Annex B of FI (5)

Replacement Page of Traffic Impact Assessment

> Traffic Impact Assessment Updated Final Report (3rd Revision) 11th September, 2025

Prepared by: CKM Asia Limited

Prepared for: Goldshine Investment Limited

CONTENTS

<u>CH</u>	<u>APTER</u>	<u>PAGE</u>
1.	INTRODUCTION Background Scope of Study Contents of the Report	1
2.	THE EXISTING SITUATION The Subject Site The Existing Development The Road Network Pedestrian Facilities Public Transport Services Existing Traffic Flows Performance of the Surveyed Junctions and Road Links Existing Pedestrian Flows Performance of the Surveyed Footpaths Existing Car Park Utilisation Existing Layby Utilisation	2
3.	THE PROPOSED CONVERSION The Proposed Conversion Internal Transport Facilities Internal Transport Layout Traffic Generation Pedestrian Generation Proposed Traffic Management	10
4.	TRAFFIC IMPACT Design Year Historic Traffic Growth Population Projection Traffic Forecast Year 2030 Traffic Flows Year 2030 Junction and Road Link Capacity Analyses Pedestrian Forecast Year 2030 Pedestrian Flows Year 2030 Footpath Operational Performance	18
5.	Summary	24

CONTENTS

<u>CHAPTER</u> <u>PAGE</u>

Figures

Appendix A – Junction Capacity Analyses Appendix B – Swept Path Analyses

TABLES

Ν	U	M	В	E	R
---	---	---	---	---	---

3.7

3.8

INUIVI	<u>DLN</u>
2.1	Approved Internal Transport Provision
2.2	Existing Headroom of Loading / Unloading Bays and Layby
2.3	Public Transport Services Operating near the Subject Site
2.4	List of Surveyed Junctions and Road Links
2.5	Comparsion of Peak Hour Traffic Flows at Beach Road
2.6	Existing Peak Hour Junction Performance
2.7	Existing Peak Hour Road Links Performance
2.8	List of Surveyed Footpaths
2.9	Existing Footpath Operational Performance
2.10	Utilisation of Existing General Layby on Beach Road
3.1	Comparison on Development Parameters
3.2	Comparisons of the Provision of Internal Transport Facilities
3.3	Results of Trip Generation Surveys at the Existing Development
3.4	Adopted Weekday Hotel Trip Rates
3.5	Results of Trip Generation Surveys and the Derived Weekend / Weekday Ratio at the WM Hotel
3.6	Weekend Trip Rates Adopted for the Proposed Conversion

Net Change in Weekday Traffic Generation

Net Change in Weekend Traffic Generation

TABLES

NUMBER

- 3.9 Details of the Surveyed Hotels
- 3.10 Results of Weekday Pedestrian Generation Surveys and Derived Pedestrian Generation Rates
- 3.11 Results of Weekend Pedestrian Generation Surveys and Derived Pedestrian Generation Rates
- 3.12 Pedestrian Generation of Proposed Conversion
- 4.1 AADT of ATC Stations Located near the Subject Site
- 4.2 Project Population for Southern District
- 4.3 Details of Other Known Major Planned / Committed Developments Identified
- 4.4 Year 2030 Peak Hour Junction Performance
- 4.5 Year 2030 Peak Hour Road Link Performance ((P/Df)
- 4.6 Year 2030 Peak Hour Footpath Performance

FIGURES

Ν	U	M	В	E	R
---	---	---	---	---	---

1.1	Location of the Subject Site
2.1	Approved UG/F Layout of the Existing Development
2.2	Approved LG/F Layout of the Existing Development
2.3	Approved B1/F Layout of the Existing Development
2.4	Approved B2/F Layout of the Existing Development
2.5	Approved B3/F Layout of the Existing Development
2.6	Public Transport Services operating near the Subject Site
2.7	Area of Influence and Location of the Surveyed Junctions
2.8	Junction of Repulse Bay Road / Beach Road (J01)
2.9	Junction of Beach Road / South Bay Path (J02) and Junction of South Bay Road / South Bay Path (J02)
2.10	Junction of South Bay Road / Beach Road (J03)
2.11	Junction of Repulse Bay Road / South Bay Road (J05)
2.12	Junction of South Bay Road / South Bay Close (J06)
2.13	Existing Weekday Peak Hour Traffic Flows (Swimming Season July 2025)
2.14	Existing Weekend Peak Hour Traffic Flows (Swimming Season July 2025)
2.15	Existing Weekend Peak Hour Traffic Flows (Swimming Season June 2024)
2.16	Existing Weekend Peak Hour Traffic Flows (Swimming Season June 2024)
2.17	Location of the Surveyed Footpaths

FIGURES

NUMBER

- 3.1 Proposed Internal Transport Layout at UG/F with the Proposed Conversion
- 3.2 Proposed Internal Transport Layout at B3/F with the Proposed Conversion
- 3.3 Visibility Assessment at Approved / Existing Vehicular Accesses along Beach Road
- 3.4 Recommended Ingress Route to the Subject Site (via Repulse Bay Road and South Bay Road)
- 3.5 Pedestrian Access Route between Hotel Lobby and Layby for Single-Deck Tour Bus
- 4.1 Locations of Other Planned / Committed Developments in the vicinity
- 4.2 Year 2030 Weekday Peak Hour Traffic Flow without the Proposed Conversion (Swimming Season in July)
- 4.3 Year 2030 Weekend Peak Hour Traffic Flow without the Proposed Conversion (Swimming Season in July)
- 4.4 Year 2030 Weekday Peak Hour Traffic Flow with the Proposed Conversion (Swimming Season in July)
- 4.5 Year 2030 Weekend Peak Hour Traffic Flow with the Proposed Conversion (Swimming Season in July)
- 4.6 Year 2030 Weekday Peak Hour Traffic Flow without the Proposed Conversion (Swimming Season in June)
- 4.7 Year 2030 Weekend Peak Hour Traffic Flow without the Proposed Conversion (Swimming Season in June)
- 4.8 Year 2030 Weekday Peak Hour Traffic Flow with the Proposed Conversion (Swimming Season in June)
- 4.9 Year 2030 Weekend Peak Hour Traffic Flow with the Proposed Conversion (Swimming Season in June)

1.0 INTRODUCTION

Background

- 1.1 The Subject Site is located at 28 Beach Road, Repulse Bay, Hong Kong. It is now occupied by a retail building, which is known as The Pulse (hereinafter "the Existing Development"). **Figure 1.1** shows the location of the Subject Site.
- 1.2 The Owner, i.e. Goldshine Investment Limited, intends to convert the upper 2 floors (1/F and UG/F) of the Existing Development into a hotel with 96 rooms. In addition, part of the existing B1/F will also be converted into an ancillary gym and spa for the hotel. With this conversion, the retail GFA will be reduced from the existing 13,728m² to 5,841m² (hereinafter "the Proposed Conversion").
- 1.3 CKM Asia Limited, a traffic and transportation planning consultancy firm, has been commissioned by the Owner to prepare this Traffic Impact Assessment ("TIA") in support of the planning application for the Proposed Conversion. This TIA report has been updated in responses to the comments provided by Transport Department and Planning Department in March, July and September 2025.

Scope of Study

- 1.4 The main objectives of this study are as follows:
 - To assess the existing traffic and pedestrian issues in the vicinity of the Subject Site;
 - To justify the provision of internal transport facilities;
 - To quantify the amount of traffic and pedestrian generated by the Proposed Conversion;
 - To examine the traffic and pedestrian impact on the local road network;
 - To identify any deficiencies in the road and pedestrian network in accommodating the expected traffic and pedestrian generation associated with the Proposed Conversion; and
 - To recommend traffic and pedestrian improvement measures, if necessary.

Contents of the Report

1.5 After this introduction, the remaining chapters contain the following:

Chapter Two - Describes the existing condition and surveys,

Chapter Three - Outlines the Proposed Conversion,

Chapter Four - Presents the traffic and pedestrian impact analyses, and

Chapter Five - Summarises the overall conclusion.

2.0 THE EXISTING SITUATION

The Subject Site

2.1 The Subject Site is elongated with a length of some 260m, but has a narrow depth averaging at only 15m. It is bounded by Beach Road to the east, and the Repulse Bay Beach to the west.

The Existing Development

The Existing Development is a 6-storey retail-only building with some 13,728 m² GFA. For easy understanding, the existing approved building disposition is illustrated below:

Roof @+ 18.05		E&M					
1/F @ + 14.05			Retail				
<i>UG/F @ +9.45</i> Beach Road		Retail Walk- Run-In/Out & L/V					Repulse Bay
LG/F @ +5.65	Run-Out	Retail		way	Retail	Ramp	Beach
B1/F @ + 1.85	Ramp	Ramp Retail		D.R.	Changing Rm	Down	
B2/F @ -0.70	Up	E&M, Bu	Building Services etc.				
B3/F @ -3.75			Car Park				

[D.R. – Drainage Reserve] [L/UL – Loading / Unloading] [Changing Rm – Changing Room]

Illustration of the Existing Development

2.3 Internal transport facilities are provided on UG/F, and B3/F. Table 2.1 presents details of the approved internal transport provision.

TABLE 2.1 APPROVED INTERNAL TRANSPORT PROVISION

Facility		Number of Spaces / Bays	Location
Private Car	Conventional:	26 nos. @ 5.0m (L) x 2.5m (W) x Min. 2.4m (H)	B3/F
Parking Spaces	Mechanical:	70 nos. on 35 sets of double deck car parking	
		racks @ 5.0m (L) x 2.5m (W)	
	Accessible:	1 no. @ 5.0m (L) x 3.5m (W) x Min. 2.4m (H)	
	Total:	97 nos.	
Van-Type Goods	4 nos. @ 5.0m	(L) x 2.5m (W)	UG/F (Indoor)
Vehicle Loading /			
Unloading Bays			
LGV Layby	1 no. @ 7.0m (L) x 3.5m (W)	UG/F (Semi-Open)

2.4 The headroom required for loading / unloading bays and layby are not stated in the Lease or the approved GBP. Hence, the headroom available at the loading / unloading area are measured on-site and summarised in Table 2.2.

TABLE 2.2 EXISTING HEADROOM OF LOADING / UNLOADING BAYS AND LAYBY

Facility	Location	Minimum Clear Headroom
Van-type Loading / Unloading Bays	UG/F (Indoor)	2.9m ^(Note 1)
LGV Layby	UG/F (Semi-Open)	3.8m ^(Note 1)

Note 1: Lowest headroom measured along the driveway, and at the loading / unloading bay or layby.

- 2.5 In addition, the Existing Development has 3 vehicular access points, including:
 - (i) Run-out from the car park at the northern end of the building.
 - (ii) Run-in/out of the UG/F indoor loading / unloading area and run-in of the car park at the southern end of the building, and
 - (iii) Run-in/out of the UG/F semi-open LGV loading / unloading bay at the southernmost end.

2.6 **Figures 2.1 - 2.5** show the approved internal transport layout, and locations of the 3 vehicular access points.

Existing Goods Delivery Operation

- 2.7 In view that the Existing Development provides limited number and type of goods vehicle loading / unloading bays, a survey was conducted to understand the existing goods delivery operation. Questionnaire was distributed to all shop tenants of the Existing Development, which had a tenancy rate of 80%, i.e. to 30 tenants (out of 44 shops). The questionnaire survey covered a 2-week period which was from Sunday, 22nd June to Saturday, 5th July 2025, and had a response rate of 83%, i.e. 25 out of 30 tenants responded [Calculation: 25 / 30 x 100% = 83%].
- 2.8 During the 2-week survey period, the maximum daily delivery was on Monday, 30th June 2025 with a total of 17 deliveries, of which 73% or 11 nos. used private car and goods van, and the remaining 27% or 6 nos. used LGV. The peak 2-hour period was from 1100 to 1300 hours with 6 deliveries, i.e. an average of 3 deliveries per hour. No M/HGV was reported during the 2-week survey period.
- 2.9 Some 80% of the deliveries were completed within 15 minutes, and the remaining 20% between 15 30 minutes.
- 2.10 If the Existing Development were fully occupied, i.e. a tenancy rate 100%, the estimated maximum delivery would be 4 per hour *[Calculation: 3 x (1 + 20%) = 3.6, says 4]*, including 3 private car / goods van and 1 LGV. This demand could be fulfilled by the 4 van-type loading / unloading bays and 1 LGV loading / unloading bay provided at the Existing Development as present.

The Road Network

- 2.11 Beach Road is a single carriageway 1-way local road connecting Repulse Bay Road to the north and South Bay Road to the south. On-street parking spaces, laybys for passenger pick-off / drop-off, and red minibus and taxi stands are provided along Beach Road. Vehicles exceeding the height of 4.1m are warned to enter Beach Road due to restricted headroom under Repulse Bay Road. Goods vehicles are prohibited to enter Beach Road between 12noon and 7pm on Saturday, and all day on Sundays and General Holidays.
- 2.12 South Bay Path is a single carriageway 2-way local road connecting Beach Road and South Bay Road. Goods vehicles are prohibited to enter South Bay Path between 12noon and 7pm on Saturday, and all day on Sundays and General Holidays.
- 2.13 South Bay Road is a single carriageway 2-way local road connecting Repulse Bay Road to the north and ends at the South Bay Beach.
- 2.14 Repulse Bay Road is a single carriageway 2-way Primary Distributor connecting Wong Nai Chung Gap Road to the north and continues as Stanley Gap Road to the south. It provides regional access to the Subject Site.

Pedestrian Facilities

2.15 In general, footpaths are provided along both sides of Beach Road fronting the Subject Site. Further north of the Subject Site, footpath is only provided along one side of Beach Road, i.e. the western side along Repulse Bay Beach. Pedestrian can reach the public transport service provided at Repulse Bay Road via a stairway which connects Beach Road and Repulse Bay Road.

Public Transport Services

The Subject Site is located close to public transport services, including franchised bus and green mini-bus (the "GMB") routes operate along Repulse Bay Road. Figure 2.6 shows the stop locations of these public transport services in the vicinity, and Table 2.3 presents the details.

TABLE 2.3 PUBLIC TRANSPORT SERVICES OPERATING NEAR THE SUBJECT SITE

Route	Origin - Destination	Frequency (minutes)
CTB 6	Central (Exchange Square) ↔ Stanley Prison	10 – 30
CTB 6A	Central (Exchange Square) → Stanley Fort Gate	20 (1)
CTB 6X	Central (Exchange Square) ↔ Stanley Prison	10 – 25
CTB 63	North Point Ferry ↔ Stanley Prison	30 (1)
CTB 65	North Point Ferry ↔ Stanley Market	12 - 20 ⁽²⁾
CTB 66	Central (Exchange Square) ↔ Ma Hang Estate	20 - 30 ⁽³⁾
CTB 73	Cyberport / Wah Fu (North) ↔ Stanley Prison	12 – 30
CTB 260	Central (Exchange Square) ↔ Stanley Prison	15 – 20
CTB 973	Tsim Sha Tsui (Mody Road) ↔ Stanley	30 – 60
GMB 40	Causeway Bay ↔ Stanley Village	10 – 20
GMB 40X	Causeway Bay ↔ Stanley (Stanley Prison)	4 – 9
GMB 52	Aberdeen (Shek Pai Wan) ↔ Stanley Prison	5 – 12
GMB N40	Causeway Bay ↔ Stanley Village	20 (4)
RMB	Mong Kok → Repulse Bay Beach	AM Service Only ⁽⁵⁾
	Repulse Bay Beach → Mong Kok	PM Service Only ⁽⁵⁾

Note: CTB – Citybus

GMB - Green Minibus

RMB – Red Minibus

Existing Traffic Flows

Swimming Season in July 2025

- 2.17 To quantify the existing traffic flows during the swimming season in summer, manual classified counts were conducted during the AM and PM peak periods, i.e. from 0800 to 1000 hours and 1700 to 1900 hours, at selected junctions within the Area of Influence ("AOI") on Friday, 4th July, 2025 (weekday), and on Sunday, 6th July 2025 (weekend).
- 2.18 Details of the survey locations are found in Table 2.4. The AOI and survey locations are shown in **Figure 2.7**, and the surveyed junction layouts are presented in **Figures 2.8 2.12**.

⁽¹⁾ No service on Sundays and Public Holidays.

⁽²⁾ Service on Sundays and Public Holidays only.

⁽³⁾ AM and PM peak hours service. No service on Saturdays, Sundays and Public Holidays.

⁽⁴⁾ Overnight Services.

⁽⁵⁾ Limited services on Saturdays, Sundays, and Public Holidays during swimming season from April to September.

TABLE 2.4 LIST OF SURVEYED JUNCTIONS AND ROAD LINKS

Ref.	Surveyed Junctions and Road Links
	7 -
J01	Junction of Repulse Bay Road / Beach Road
J02	Junction of Beach Road / South Bay Path
J03	Junction of South Bay Road / Beach Road
J04	Junction of South Bay Road / South Bay Path
J05	Junction of Repulse Bay Road / South Bay Road
J06	Junction of South Bay Road / South Bay Close
L01	Beach Road between Repulse Bay Road and South Bay Path
L02	Repulse Bay Road between Beach Road and South Bay Road

- 2.19 The traffic counts were classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. The AM peak hour are found to be 0800 to 0900 hours on a weekday, and 0900 to 1000 on a weekend; whereas the PM peak hour is found to be 1700 to 1800 for both weekday and weekend respectively.
- 2.20 Although Typhoon Signal No. 1 was hoisted from 1220 hours on Friday, 4th July 2025 to 1420 hours on Sunday, 6th July 2025, there were no other special weather warning, except for "*Very Hot Weather Warning*." The weather on both survey days was sunny and hot with high temperature of 33° to 35°C. In addition, no rainfall was recorded on both survey days, and the Repulse Bay Beach remained opened, i.e. red flag was not hoisted by the Leisure and Cultural Services Department ("LCSD").
- 2.21 To ascertain if the observed traffic flows in early July 2025 are representative, additional traffic counts at Beach Road to the north of South Bay Path were conducted on Friday, 8th August 2025 and Sunday, 10th August 2025. The weather on these 2 days in August 2025 was sunny and hot with no special weather warning, except for "Very Hot Weather Warning." Table 2.5 compares the peak hour traffic at Beach Road for the 4 survey days.

TABLE 2.5 COMPARISON OF PEAK HOUR TRAFFIC FLOWS AT BEACH ROAD

Peak Hour		Observed Peak Hour Traffic Flow (pcu/hr)								
	Weekday (Friday) Weekend (Sunday)									
	4 Jul 2025	8 Aug 2025	Difference	6 Jul 2025	10 Aug 2025	Difference				
AM Peak Hour	242	229	-5%	338	323	-4%				
PM Peak Hour	390	372	-5%	467	463	-1%				

Table 2.5 shows the peak hour traffic flows observed on Friday 4th and Sunday 6th July, 2025 are similar to those of Friday 8th and Sunday 10th August 2025, i.e. no more than 5% difference. Though Typhoon Signal No. 1 was hoisted from 1220 hours on Friday, 4th July 2025 to 1420 hours on Sunday, 6th July 2025, traffic flows appear to be marginally higher than the 2 corresponding days, i.e. Friday, 8th and Sunday, 10th August 2025. Hence, based on the traffic flows, it can be concluded that Typhoon Signal No. 1, had no significant effect to the traffic condition on Beach Road, and the observed peak hour traffic flows (of Friday 4th July and Sunday 6th July 2025) adopted are considered acceptable. Figures 2.13 and 2.14 present the existing AM and PM peak hour traffic flows for the swimming season in July 2025, in pcu/hour, for a weekday and a weekend respectively.

Swimming Season in June 2024

- 2.23 In view that the latest available Annual Traffic Census ("ATC") is for 2023, reference is made to the 2023 ATC Core Station 1011 Repulse Bay Road. It shows that traffic flow along Repulse Bay Road in the month of June is the highest month, and Friday is the busiest weekday and Saturday is the busiest weekend.
- 2.24 To provide a more comprehensive assessment, traffic surveys previously conducted on Friday, 7th June 2024 and Saturday, 8th June 2024 are also assessed. **Figures 2.15 and 2.16** present the AM and PM peak hour traffic flows for the swimming season in June 2024 for weekday and weekend respectively.

Performance of the Surveyed Junctions and Road Links

Performance of surveyed junctions and road links were calculated using the methods outlined in Volume 2 of the TPDM, which is published by the Transport Department. Tables 2.6 and 2.7 present the results and detailed calculations are found in **Appendix A**.

TABLE 2.6 EXISTING PEAK HOUR JUNCTION PERFORMANCE

Ref.	Junction	Туре	Parameter	Swimming Season in July 2025		Swimming Season in June 2024	
				AM	PM	AM	PM
				Peak	Peak	Peak	Peak
				Hour	Hour	Hour	Hour
		Weekday					
J01	J/O Repulse Bay Road / Beach Road	Priority	RFC	0.060	0.083	0.087	0.049
J02	J/O Beach Road / South Bay Path	Priority	RFC	0.035	0.043	0.021	0.030
J03	J/O South Bay Road / Beach Road	Priority	RFC	0.087	0.093	0.062	0.080
J04	J/O South Bay Road / South Bay Path	Priority	RFC	0.282	0.403	0.178	0.193
J05	J/O Repulse Bay Road / South Bay Road	Roundabout	RFC	0.453	0.425	0.471	0.427
J06 J/O South Bay Road / South Bay Close		Roundabout	RFC	0.226	0.255	0.162	0.217
		Weekend					
	J/O Repulse Bay Road / Beach Road	Priority	RFC	0.085	0.135	0.073	0.085
J02	J/O Beach Road / South Bay Path	Priority	RFC	0.057	0.075	0.024	0.037
_	J/O South Bay Road / Beach Road	Priority	RFC	0.155	0.166	0.070	0.157
_	J/O South Bay Road / South Bay Path	Priority	RFC	0.430	0.545	0.202	0.322
J05	J/O Repulse Bay Road / South Bay Road	Roundabout	RFC	0.314	0.427	0.351	0.440
J06	J/O South Bay Road / South Bay Close	Roundabout	RFC	0.267	0.341	0.198	0.249

Note: RFC – Ratio of Flow to Capacity

TABLE 2.7 EXISTING PEAK HOUR ROAD LINK PERFORMANCE

Ref.	Road Link	Config.	Direction	Design	Peak Hourly Flows / Design Flow Ratio (P/Df)							
				Flow (pcu/hr)		ng Season / 2025		ng Season e 2024				
					AM Peak PM Peak Hour Hour		AM Peak Hour	PM Peak Hour				
	Weekday											
L01	Beach Road	Single-1	Southbound	900	0.269	0.376	0.146	0.170				
L02	Repulse Bay	Single-2	Southbound	1,200	0.542	0.507	0.493	0.507				
	Road		Northbound	1,200	0.748	0.701	0.732	0.632				
	Weekend											
L01	Beach Road	Single-1	Southbound	900	0.433	0.519	0.207	0.244				
L02	Repulse Bay	Single-2	Southbound	1,200	0.270	0.383	0.419	0.524				
	Road		Northbound	1,200	0.533	0.684	0.615	0.718				

2.26 The results in Tables 2.6 and 2.7 indicate that the junctions and road links analyzed operate with capacity during the weekday and weekend peak hours.

Existing Pedestrian Flow

2.27 To quantify the existing pedestrian flows, pedestrian counts were conducted during the AM and PM peak periods on Friday, 4th July, 2025 (weekday) and on Sunday, 6th July 2025 (weekend), at the selected footpaths within the AOI. The surveyed footpaths are found in Table 2.8, and their locations are illustrated in Figure 2.15.

TABLE 2.8 LIST OF SURVEYED FOOTPATHS

Ref.	Surveyed Footpaths
FP01	Stairway between Repulse Bay Road and Beach Road
FP02	Southern Footpath of Beach Road (outside Seaview Building)
FP03	Southern Footpath of Beach Road (outside Car Park / Repulse Bay Beach Building)
FP04	Northern Footpath of Beach Road (outside Beach Centre)
FP05	Southern Footpath of Beach Road (opposite South Bay Path)
FP06	Southern Footpath of Beach Road (opposite 49/53/55 Beach Road))
FP07	Northern Footpath of Beach Road (south of South Bay Road)
FP08	Footpath along Repulse Bay Beach (near Repulse Bay Beach Building)
FP09	Footpath along Repulse Bay Beach (outside the Subject Site)

Performance of the Surveyed Footpaths

2.28 Level-of-Service ("LOS") analysis was conducted, and the LOS grading follows TPDM Volume 6, Section 10.4. Table 2.9 summarize the pedestrian flows, and analysis results.

TABLE 2.9 EXISTING FOOTPATH OPERATIONAL PERFORMANCE

Footpath	Measured	Effective	AM Pea	k Hour	PM Peak	Hour
Section	Width (m)	Width (m)	2-way Pedestrian Flow (ped/hour)	Flow Rates [LOS] (ped/m/min)	2-way Pedestrian Flow (ped/hour)	Flow Rates LOS] (ped/m/min)
			Weeko	lav		
FP01	3.5m	2.5m	149	1.0 [A]	432	2.9 [A]
FP02	2.5m	1.5m	64	0.7 [A]	85	0.9 [A]
FP03	3.0m	2.0m	56	0.5 [A]	199	1.7 [A]
FP04	1.8m	0.8m	68	1.4 [A]	30	0.6 [A]
FP05	2.8m	1.8m	59	0.5 [A]	231	2.1 [A]
FP06	1.8m	0.8m	47	1.0 [A]	90	1.9 [A]
FP07	1.5m	1.0m	11	0.2 [A]	13	0.2 [A]
FP08	4.0m	3.0m	200	1.1 [A]	284	1.6 [A]
FP09	3.5m	3.0m	163	0.9 [A]	273	1.5 [A]
			Weeke	end		
FP01	3.5m	2.5m	272	1.8 [A]	736	4.9 [A]
FP02	2.5m	1.5m	317	3.5 [A]	176	2.0 [A]
FP03	3.0m	2.0m	120	1.0 [A]	207	1.7 [A]
FP04	1.8m	0.8m	82	1.7 [A]	42	0.9 [A]
FP05	2.8m	1.8m	113	1.0 [A]	221	2.0 [A]
FP06	1.8m	0.8m	74	1.5 [A]	78	1.6 [A]
FP07	1.5m	1.0m	11	0.2 [A]	7	0.1 [A]
FP08	4.0m	3.0m	317	1.8 [A]	701	3.9 [A]
FP09	3.5m	3.0m	288	1.6 [A]	568	3.2 [A]

2.29 Table 2.9 shows the footpaths analyzed operate with capacity during the weekday and weekend peak hours.

Existing Car Park Utilisation

2.30 The Existing Development provides ancillary car parking, and the maximum occupancy on the survey days are 32 cars on Friday, 4th July 2025 and 58 cars on Sunday, 6th July 2025. Based on 58 car parking spaces in use on the survey days, the weekday and weekend utilisation rates are 55% and 100% respectively. According to the Applicant, for a number of years, the ancillary car park has operated with 58 car parking spaces.

Existing Layby Utilisation

A general layby is found along the northern kerbside of Beach Road opposite the Existing Development, and to the immediate east of South Bay Lane, where "*No Stopping Restriction*" is imposed between 0700 and 1900 hours, except for buses and taxi coach pick-up / drop-off. Utilisation survey was conducted at this general layby during the AM and PM peak periods on Friday, 4th July, 2025, and on Sunday, 6th July 2025. Table 2.10 presents the results.

TABLE 2.10 UTILISATION OF EXISTING GENERAL LAYBY ON BEACH ROAD

Date	Total	Observed (Occupancy	Utilisation		
	Capacity	(m-min	ute) [b]	[b] / [a]		
	(m-minute)	AM Peak Period	PM Peak Period	AM Peak Period	PM Peak Period	
	[a]	(0800 - 1000)	(1700 – 1900)	(0800 - 1000)	(1700 – 1900)	
Weekday	5,760	1,249	2,583	22%	45%	
Weekend	5,760	1,797	3,484	31%	60%	

Note: Total Capacity = Length of Layby, i.e. 48m, x 120 minutes = 5,760 m-minute Observed Occupancy = ∑Stopped Vehicle Length x Stopping Duration

2.32 Table 2.10 shows the surveyed layby operates at some 22% and 31% of its capacity during the weekday and weekend AM peak period, and some 31% and 60% during the weekday and weekend PM peak period.

3.0 THE PROPOSED CONVERSION

The Proposed Conversion

- The Proposed Conversion involves changing some existing 7,887m² retail GFA to become a hotel with 96 rooms at 1/F and UG/F. In addition, part of the existing B1/F will also be converted into an ancillary gym and spa for the hotel. Whereas, the existing retail use on LG/F and B1/F will remain.
- 3.2 Table 3.1 compares the development parameters for the Existing Development and the Proposed Conversion.

TABLE 3.1 COMPARISON ON DEVELOPMENT PARAMETERS

Use	Existing Development	Proposed Conversion	Difference
Retail	13,728m ² GFA	About 5,841m ² GFA	-7,887m² GFA
	(1/F, UG/F, LG/F,	(LG/F, B1/F [Part] and B2/F) (Note 1)	
	B1/F, and B2/F)		
Hotel	-	96 rooms with GFA of about 6,590m ² ,	+96 rooms (+about
		including some 300m ² GFA of restaurant	6,590m ² GFA)
		(1/F, UG/F and B1/F [Part])	
Others	-	Car parking spaces and facilities etc.	+ 1,297 m ² GFA
TOTAL	13,728m² GFA	13,728m² GFA	No change

Note 1: According to the Approved GBP, some existing E&M facilities on B2/F is GFA accountable, and these GFA is included as Retail GFA under the Proposed Conversion for the purpose of technical assessment.

3.3 For easy understanding, the disposition of the Proposed Conversion is illustrated below:

Roof @+ 18.05		E&M					
1/F @ + 14.05		Hotel with 96 rooms			Run-In/Ou	ıt	
<i>UG/F @ + 9.45</i> Beach Road	(includ	(including some 300m² restaurant GFA) Walk- & L/UL				Repulse Bay	
LG/F @ +5.65	Run-Out	Retail		way	Retail	Ramp	Beach
B1/F @ + 1.85	Ramp	Ramp Retail			Hotel (G&S)	Down	
B2/F @ -0.70	Up	Up E&M, Building Services etc.					
<i>B3/F @ -3.75</i>			Car Park				
ID D Designer	. D	[[/[]] Looding / []alo	ad: ad 1 11 lat	11000	110401/6.000 0 0	17	

[D.R. – Drainage Reserve] [L/UL – Loading / Unloading] [Hotel (G&S) – Hotel (Gym & Spa)]

Illustration of the Proposed Conversion

Internal Transport Facilities

The internal transport facilities provided for the Proposed Conversion agree with the recommendation of the Hong Kong Planning Standards and Guidelines ("HKPSG"), and is compared in Table 3.2. In view that Hong Kong Island, , is defined as "Main Urban Area and New Towns" by the HKPSG, including Repulse Bay, the internal transport facilities for the Proposed Conversion is calculated based on the recommendation for a hotel in "Main Urban Area and New Towns".

TABLE 3.2 COMPARISON OF THE PROVISION OF INTERNAL TRANSPORT FACILITIES

	TACILITIES	
Use	HKPSG Recommendation (Retail GFA = 5,841m ² GFA, and Hotel with 96 rooms, including some 300m ² GFA of restaurant)	Proposed Provision
Car Park	ring Spaces	
Retail	1 car parking space per $150 - 300 \text{ m}^2 \text{ GFA}$ Minimum: $5,841 \div 300 = 19.5$, say 20 nos. Maximum: $5,841 \div 150 = 38.9$, say 39 nos.	58 nos., including: - 56 nos. regular @ 5.0m (L) x 2.5m (W) x min. 2.4m (H)
Hotel	$\frac{1 \text{ car parking space per 100 rooms}}{96 \div 100 = 1.0, \text{ say 1 nos.}}$	- 2 nos. accessible @ 5.0m (L) x 3.5m (W) x min. 2.4m (H) > HKPSG Maximum, OK
	0.5 – 1 car parking space per 200m ² GFA of	
	conference and banquet facilities	
	Minimum: $300 \times 0.5 \div 200 = 0.8$, say 1 no.	
	Maximum: $300 \times 1.0 \div 250 = 1.5$, say 2 nos	
TOTAL	Minimum: $20 + 1 + 1 = 22 \text{ nos.}$	
	Maximum: $39 + 1 + 2 = 42$ nos.	
	cle Parking Spaces	
Overall	5% - 10% of car parking space provided	6 nos. @ 2.4m (L) x 1.0m (W) x
	Minimum: $58 \times 5\% = 2.9$, say 3 nos .	min. 2.4m (H)
	Maximum: $58 \times 10\% = 5.8$, say 6 nos.	= HKPSG Maximum, OK
Goods \	/ehicle Loading / Unloading Bays	
Retail	$\frac{1 \text{ loading / unloading bay per } 800 - 1,200 \text{ m}^2}{\text{GFA, with } 35\% \text{ HGV and } 65\% \text{ LGV}}$ Minimum: 5,841 ÷ 1,200 = 4.8, say 5 nos. Maximum: 5,841 ÷ 800 = 7.3, say 8 nos.	9 nos., including - 2 nos. HGV @ 11.0m (L) x 3.5m (W) x min. 4.7m (H), - 2 nos. LGV @ 7.0m (L) x 3.5m
Hotel	0.5 – 1 loading / unloading bay per 100 rooms Minimum: $96 \times 0.5 \div 100 = 0.5$, say 1 no. Maximum: $96 \times 1.0 \div 100 = 1.0$, say 1 no.	(W) x min. 3.6m (H), and - 5 nos. Van-type @ 5.0m (L) x 2.5m (W) x min. 2.4m (H)
TOTAL	Minimum: $6 + 1 = 7 \text{ nos.}$ HGV: $7 \times 35\% = 2.5$, say 3 nos. LGV: $7 - 3 = 4 \text{ nos.}$ Maximum: $8 + 1 = 9 \text{ nos.}$ HGV: $9 \times 35\% = 3.2$, say 4 nos.	= HKPSG Maximum with deviation on type of bays provided, OK
	LGV: $9 - 4 = 5$ nos.	[Remarks: Only van-type goods vehicle loading / unloading bays are provided in the Existing Development.]
Layby fo	r Taxi and Private Cars	
Retail	No Recommendation	2 nos. @ 5.0m (L) x 2.5m (W) x
Hotel	For Taxi and Private Cars:	min. 2.4m (H)
	Minimum 2 nos. for ≤299 rooms	=HKPSG, OK
Layby fo	or Single-Deck Tour Bus	
Retail	No Recommendation	
Hotel	For Single-Deck Tour Bus: Minimum 1 nos. for ≤299 rooms	1 no. @ 12.0m (L) x 3.5m (W) x min. 3.8m (H) = HKPSG, OK

Car Parking Spaces

Table 3.2 shows that the number of car parking spaces provided satisfies the HKPSG maximum recommendation for both retail and hotel uses. The Applicant is aware of the demand for car parking in Repulse Bay and is willing to provide 16 additional car parking spaces beyond the HKPSG recommendation. Hence, the Proposed Conversion would maintain the existing 58 car parking spaces in use.

Motorcycle Parking Spaces

3.6 Table 3.2 also shows that the number of motorcycle parking spaces satisfies the HKPSG maximum recommendation. Considering that the Existing Development does not provide motorcycle parking space, the introduction of motorcycle parking spaces to the Proposed Conversion is a merit.

Goods Vehicle Loading / Unloading Bays

- 3.7 Table 3.2 shows that the number of goods vehicle loading / unloading bays provided satisfies the HKPSG maximum recommendation. The Proposed Conversion offers <u>a merit</u> which is the introduction of HGV loading / unloading bays, currently not provided within the Existing Development, as well as an additional LGV loading / unloading bay.
- 3.8 To enable LGV and HGV to access the existing loading / unloading area at the Existing Development, the portion of the 1/F above the loading / unloading area will be demolished as part of the Proposed Conversion, in order to increase the clear headroom for the loading / unloading area.

Layby for Taxi and Private Cars

3.9 Table 3.2 shows that the number of layby for private car and taxi provided satisfies the HKPSG recommendation. Provision of 2 laybys for 96 rooms is equivalent to 1 layby per 48 rooms, which is 3 times more than the HKPSG recommendation of 2 laybys per 299 rooms, i.e. 1 layby per 149.5 rooms $[Calculation 149.5 \div 48 = 3.1]$.

Layby for Single-deck Tour Bus Parking Space

3.10 Table 3.2 shows that the number of layby for single-deck tour bus provided satisfies the HKPSG recommendation. Provision of 1 layby for 96 rooms is 3 times more than the HKPSG recommendation of 1 layby per 299 rooms $[Calculation 299 \div 96 = 3.1]$.

Internal Transport Layout

- 3.11 **Figures 3.1 and 3.2** present the internal transport layout at UG/F and B3/F for the Proposed Conversion. The 3 existing vehicular access points at Beach Road remain unchanged, but the existing entry drop bar at UG/F will be relocated to B3/F to enable vehicle queuing to increase from some 25m, or equivalent to 4 vehicles, to some 170m, or equivalent to 28 vehicles, i.e. 7 times increase.
- 3.12 Swept path analysis was conducting using CAD-based program to ensure ease of vehicle manoeuvring with the Proposed Conversion. No manoeuvring issue is found. The swept path analysis drawings are found in the **Appendix B**.
- 3.13 Visibility assessments meeting the requirement as stipulated in the TPDM at the 3 existing vehicular access points are performed and illustrated in **Figure 3.3**.

Traffic Generation

3.14 Traffic generation for the Existing Development and the Proposed Conversion are estimated based on trip generation surveys, and the hotel trip rates found in the TPDM, and are presented in below paragraphs.

Trip Generation of the Existing Development

3.15 Trip generation surveys were conducted at the Existing Development on Friday, 4th July, 2025, and Sunday, 6th July 2025, and the results are presented in Table 3.3.

TABLE 3.3 RESULTS OF TRIP GENERATION SURVEYS AT THE EXISTING DEVELOPMENT

ltem	AM P	eak Hour	PM Peak Hour		
	Generation (pcu/hour)	Attraction (pcu/hour)	Generation (pcu/hour)	Attraction (pcu/hour)	
Weekday	9	13	15	12	
Weekend	15	19	23	21	

Hotel Trip Rates

3.16 Table 3.4 presents weekday hotel trip rates obtained from the TPDM.

TABLE 3.4 ADOPTED WEEKDAY HOTEL TRIP RATES

Use	Unit	Adopted Trip Rates (TPDM Upper Limit)					
		AM Pea	ak Hour	PM Pea	ık Hour		
		Generation	Attraction	Generation	Attraction		
Hotel	pcu/room/hr	0.1814	0.2082	0.1697	0.2183		

- 3.17 Since the TPDM has no weekend trip rates, these are produced with (i) reference to the weekday trip rates presented in Table 3.4, and (ii) the weekend / weekday factor derived from surveys conducted at a similar hotel, i.e the WM Hotel, which is located at 28 Wai Man Road, Sai Kung. The surveys were conducted on Friday, 4th July, 2025, and Sunday, 6th July 2025.
- 3.18 Similar to the Subject Site, the WM Hotel is also located in a leisure area with good access by both private and public transport. It is noted that the WM Hotel with 260 rooms provides limited shuttle services, with no noticeable effect on trip generation. Although WM Hotel provides substantial number of car parking spaces, the results obtained could be considered as more conservative if it has a high trip generation / attraction. Nevertheless, the trip characteristics obtained is only used to derive the weekday / weekend relationship, and is not used to estimate the traffic generation associated with the Proposed Conversion.
- 3.19 Other leisure hotels were considered, but found to be not suitable, and these include:
 - i) The Pier Hotel at 9 Pak Sha Wan Street in Sai Kung with 40 guestrooms is found to have very low trip rates. If these trip rates are adopted, the traffic generation would be under-estimated;
 - ii) Gold Coast Hotel in Tuen Mun, and the hotels in the Hong Kong Disneyland Resort, have more guestrooms, i.e. over 400 with frequent shuttle service. These hotels do not have similar operational characteristic; and
 - iii) The Auberge Discovery Bay Hong Kong and the Silvermine Resort Hotel are located on Lantau Island, with restricted access by both private and public transport. These hotels have different transport characteristics, and are not considered.

- 3.20 With reference to the latest "Hotel Room Occupancy Report" published by Hong Kong Tourism Board in August 2025, the monthly occupancy of hotel rooms in the New Territories was 92% in July 2025, hence, the surveyed hotel is assumed to have full occupancy when the surveys were conducted.
- 3.21 Results of the trip generation surveys and the derived weekend / weekday ratios are summarised in Table 3.5.

TABLE 3.5 RESULTS OF TRIP GENERATION SURVEYS AND THE DERIVED WEEKEND / WEEKDAY RATIO AT THE WM HOTEL

Item		AM Pe	ak hour		PM Peak Hour				
	Generation (pcu/hour)		Attraction (pcu/hour)		Generation (pcu/hour)		Attraction (pcu/hour)		
	Weekday	Weekend	Weekday	Weekend	Weekday	Weekend	Weekday	Weekend	
Observed Number of Trips	17	25	28	41	31	53	35	57	
Weekend / Weekday Ratio	1.4	1.471		1.464		1.710		1.629	

3.22 Based on Table 3.5, the derived weekend trip rates are presented in Table 3.6.

TABLE 3.6 WEEKEND TRIP RATES ADOPTED FOR THE PROPOSED CONVERSION

Use	Parameter	Weekend Trip Rates				
		AM Pe	ak Hour	PM Pea	k Hour	
		Generation	Attraction	Generation	Attraction	
Hotel(Table 3.4 x Table 3.5)	pcu/room/hr	0.2668	0.3048	0.2902	0.3556	

Net Change in Traffic Generation

3.23 Tables 3.7 and 3.8 show the net change in calculated weekday and weekend traffic generation between the Existing Development and Proposed Conversion.

TABLE 3.7 NET CHANGE IN WEEKDAY TRAFFIC GENERATION

Use	Trip Generation (pcu/hour)									
	AM Peak Hour PM Peak Hour									
	Generation	Attraction	2-Way	Generation	Attraction	2-Way				
Existing Development (1	Existing Development (13,728m² Retail GFA)									
Retail	9	13	22	15	12	27				
Total [a]	9	13	22	15	12	27				
Proposed Conversion (5	,841m² Retail	GFA and 96-	room Hot	tel)						
Retail (Note 1)	4	6	10	6	5	11				
Hotel	17	20	37	16	21	37				
Total [b]	21	26	4 <i>7</i>	22	26	48				
Net Change in Traffic G	eneration									
Net Change [b] – [a]	12	13	25	7	14	21				

Note 1: Retail trip generation / attraction of 5,841m² GFA for Proposed Conversion are estimated on a pro rata basis with the trip generation / attraction of the Existing Development with 13,728m² GFA.

TABLE 3.8 NET CHANGE IN WEEKEND TRAFFIC GENERATION

Use	Trip Generation (pcu/hour)									
Ose	41	Перияния Перияния на приничения и приниче Приничения и приничения и приниче	Generali	PM Peak Hour						
	Generation		2-Way	Generation		2-Way				
	Generation	Generation	Attraction	Z-vvay						
Existing Development (1	13,728m² Reta	ail GFA)								
Retail	15	19	34	23	21	44				
Total [a]	15	19	34	23	21	44				
Proposed Conversion (5	,841m² Retail	GFA and 96-	room Hot	tel)						
Retail (Note 1)	6	8	14	10	9	19				
Hotel	26	29	55	28	34	62				
Total [b]	32	37	69	38	43	81				
Net Change in Traffic G	eneration									
Net Change [b] – [a]	1 <i>7</i>	18	35	15	22	37				

Note 1: Retail trip generation / attraction of 5,841m² GFA for Proposed Conversion are estimated on a pro rata basis with the trip generation / attraction of the Existing Development with 13,728m² GFA.

Pedestrian Generation

3.24 To derive the pedestrian generation rates for the hotel use within the Proposed Conversion, pedestrian generation surveys was conducted in July 2025 at the WM Hotel, and additional survey results obtained from the CKM in-house database are referenced. Table 3.9 presents details of the surveyed hotels.

TABLE 3.9 DETAILS OF THE SURVEYED HOTELS

Hotel Address	No. of Rooms	Survey Date
28 Wai Man Road, Sai Kung	260	July 2025
3 Kau U Fong, Central	162	March 2018
263 Hollywood Road, Central	142	March 2018

- 3.25 Although 2 of the above surveyed hotels are located in Central and Western ("C&W") District where there is convenient access to public transport services, the pedestrian generations of these 2 hotels are expected to be generally higher; and in view that the pedestrian generation rates are relatively higher, the analysis conducted would give more conservative results. Based on the "Hotel Room Occupancy Report", the surveyed hotel in Sai Kung was assumed to have occupancy of 92% when the survey was conducted, and for the hotels in C&W, the occupancy for March 2018 is 91%.
- 3.26 Tables 3.10 and 3.11 summarise the results of weekday and weekend pedestrian surveys, and the derived generation rates respectively.

TABLE 3.10 RESULTS OF WEEKDAY PEDESTRIAN GENERATION SURVEYS AND DERIVED PEDESTRIAN GENERATION RATES

Period	AM Pea	k Hour	PM Peak Hour						
	Generation	Attraction	Generation	Attraction					
Observed Pedestrian Generation (ped / hour)									
28 Wai Man Road, Sai Kung	17	32	62	85					
3 Kau U Fong, Central	18	51	28	54					
263 Hollywood Road, Central	13	36	39	15					
Pedestrian Generation Rates (ped / hour / room)									
28 Wai Man Road, Sai Kung (260 rooms)	0.0654	0.1231	0.2385	0.3269					
3 Kau U Fong, Central (162 rooms)	0.1111	0.3148	0.1728	0.3333					
263 Hollywood Road, Central (142 rooms)	0.0915	0.2535	0.2746	0.1056					

TABLE 3.11 RESULTS OF WEEKEND PEDESTRIAN GENERATION SURVEYS AND DERIVED PEDESTRIAN GENERATION RATES

Period	AM Pea	k Hour	PM Peak Hour							
l chica			Generation							
Observed Pedestrian Generation (ped / hour)										
28 Wai Man Road, Sai Kung	26	42	102	135						
3 Kau U Fong, Central	20	58	33	48						
263 Hollywood Road, Central	15	42	45	38						
Pedestrian Generation	Pedestrian Generation Rates (ped / hour / room)									
28 Wai Man Road, Sai Kung (260 rooms)	0.1000	0.1615	0.3923	0.5192						
3 Kau U Fong, Central (162 rooms)	0.1235	0.3580	0.2037	0.2963						
263 Hollywood Road, Central (142 rooms)	0.1056	0.2958	0.3169	0.2676						

3.27 To err on the high side, the highest pedestrian generation rates presented in Tables 3.10 and 3.11 are adopted, and the calculated pedestrian generation of the Proposed Conversion is presented in Table 3.12.

TABLE 3.12 PEDESTRIAN GENERATION OF PROPOSED CONVERSION

Period	AM Pea	ık Hour	PM Pea	k Hour							
	Generation	Attraction	Generation	Attraction							
Adopted Pedestrian Generation Rates (ped / hour / room)											
Weekday	0.1111	0.3148	0.2746	0.3333							
Weekend	0.1235	0.3580	0.3923	0.5192							
	Pedestri	an Generation (pec	I / hour)								
Weekday	11	30	26	32							
Weekend	12	34	38	50							

Note: Proposed Conversion has 96 rooms, i.e. Pedestrian Generation = Pedestrian Generation Rates x 96 rooms.

Proposed Traffic Management

3.28 To reduce the potential traffic impact associated with the Proposed Conversion on Beach Road, the Applicant undertakes to implement the following traffic management measures:

- (i) Recommended Access Route
- The Applicant will publicise on the official website the recommended access route to the Proposed Conversion, which is to use South Bay Road and South Bay Path, as shown in **Figure 3.4**, when arriving from the west. This measure aims to discourage vehicles from entering Beach Road from Repulse Bay Road (opposite 56 Repulse Bay Road), hence, reducing traffic flow along Beach Road (between its junctions with Repulse Bay Road and South Bay Path). All hotel patrons will be reminded to use the recommended access route.

(ii) Use of Single-deck Tour Bus Layby

- 3.30 The Proposed Conversion has only 96 rooms and is a high tariff luxury accommodation; hence, the number of tour groups is expected to be negligible. Therefore, the use of single-deck tour bus by hotel guests is expected to be rare. Nevertheless, should there be tour groups, advanced arrangement will be made to ensure that only 1 single-deck tour bus or private light bus would use the layby.
- 3.31 Hotel staff will be deployed to monitor the maneuvering of tour bus and ensure the pedestrian passage between Beach Road and the Repulse Bay Public Toilet is not blocked. The staff will also direct guests to the hotel lobby and not wait at the layby or at the adjoining public footpath. All departing guests must wait within the hotel lobby, and only proceed to the layby after the tour bus has arrived. **Figure 3.5** shows the pedestrian access route between the single-deck tour bus layby and the hotel lobby.

(iii) Use of Goods Vehicles Loading / Unloading Bays

- 3.32 As in the existing condition, there is no barrier gate to restrict vehicles from entering the loading / unloading area at UG/F from Beach Road, and this condition shall be maintained. In addition, vehicle manoeuvring within the loading / unloading area shall be closely monitored by the management office; hence, incoming vehicles queue back onto Beach Road is not anticipated.
- 3.33 The management office will request all shop tenants and the hotel operator to: (i) carry out loading / unloading during the off-peak period on weekdays and only during the early morning on Saturday, and (ii) goods vehicles are prohibited from entering Beach Road and South Bay Path between 12noon and 7pm on Saturday, and all day on Sundays and General Holidays.
- 3.34 With the Proposed Conversion, retail GFA is reduced and the demand for goods loading / unloading is expected to decrease accordingly. Therefore, the operation of the loading / unloading bays is expected to improve compared to the existing condition.

(iv) Use of Taxi / Private Car Layby

3.35 The taxi / private car layby at UG/F is for use by taxis only and all private car pick-up / drop-off will be directed to use the laybys at B3/F. Hence, the conflict between vehicles using the taxi / private car layby with goods vehicles using the loading / unloading bays is minimised. In addition, similar to existing condition, car park attendants will operate the ancillary car park during peak period to ensure traffic and pedestrian safety, and smooth traffic flow.

4.0 TRAFFIC IMPACT

Design Year

4.1 The Proposed Conversion is anticipated to complete in 2027 and the design year adopted for this traffic study is 2030, i.e. 3 years after completion.

Historic Traffic Growth

4.2 Table 4.1 presents the historic annual average daily traffic ("AADT") from the ATC published by the Transport Department for roads located nearby.

TABLE 4.1 AADT OF ATC STATIONS LOCATED NEAR THE SUBJECT SITE

			, , , , , , , , , , , , , , , ,	COCITIE	,		C1 011L
Station No.	1011	1245	1835	2603	1618	1223	OVERALL
Road	Repulse	Repulse	Repulse	Beach	Island	Wong	
	Bay Road &	Bay Road	Bay Road	Road	Road	Chuk Hang	
	Stanley	,	,			Road	
	Gap Road						
From	South Bay	Wong Nai	Island	Repulse	Deep	Nam Fung	
	Road	Chung Gap	Road	Bay Road	Water Bay	Road	
		Road		,	Road		
То	Tai Tam	Island Road	South Bay	South Bay	Repulse	Shouson	
	Road		Road	Road	Bay Road	Hill Road	
					,	E. Junction	
Year		Annu	al Average	Daily Traffic	(vehicles /	day)	
2016	15,800	7,980	21,700	2,120	20,190	19,080	86,870
2017	15,500	7,910	21,760	2,530	19,960	18,860	86,520
2018	15,650	6,910	21,650	2,550	19,860	18,210	84,830
2019	15,490	9,020	21,890	2,890	20,070	16,040	85,400
2020	-	-	-	-	-	-	-
2021	-	-	-	-	-	-	-
2022	-	-	-	-	-	-	-
2023	15,230	8,030	21,870	3,020	23,940	20,140	92,230
			Avera	age Annual	Growth (201	6 - 2023) =	+0.9%

4.3 Disregarding the AADT for 2020 to 2022, due to the COVID-19 pandemic, Table 4.1 shows that the traffic growth in vicinity is +0.9% per annum..

Population Projection

4.4 Reference is made to the "Projections of Population Distribution 2023 - 2031" for Southern District, published by the Planning Department and is presented in Table 4.2.

TABLE 4.2 PROJECTED POPULATION FOR SOUTHERN DISTRICT

Year	Population in Southern District
2025	259,600
2030	266.900
Average Annual Growth (2025 to 2030)	+0.6%

4.5 Table 4.2 shows that population in the Southern District is projected to increase by 0.6% per annum between 2025 and 2030.

Traffic Forecast

- 4.6 The design year traffic flows are estimated with reference to:
 - (i) Expected traffic growth from 2025 to 2030 with reference to the historic traffic growth from the ATC;
 - (ii) Traffic generated by other known planned / committed developments located in the vicinity, and
 - (iii) Net change in traffic generation between the Existing Development and the Proposed Conversion.
- 4.7 Details of the above are presented in below paragraphs.

(i) Traffic Growth Rate

4.8 With reference to Table 4.1, a conservative growth rate of +2.0% per annum (*Note: 222% higher than the rate of +0.9% per annum presented in Table 4.1*) is adopted to produce the 2030 traffic flows from 2025.

(ii) Other Known Planned / Committed Developments

4.9 Information on other known major planned / committed developments are summarized in Table 4.3. These are obtained from the available public domains including "Monthly Digest" published by Buildings Department, and the Town Planning Board's Statutory Planning Portal 3 by Planning Department, etc.

TABLE 4.3 DETAILS OF OTHER KNOWN MAJOR PLANNED / COMMITTED DEVELOPMENTS IDENTIFIED

	DEVELOTMENTS IDENTIFIED	ı	ı	ſ
Ref.	Address	Use	GFA(m²) (Approx.)	No. of Flat / Unit
Appr	oved General Building Plan			
A.	18A, 18B, 18C & 18D Cape Road	Residential	2,000	4
В.	22 Tung Tau Wan Road	School	11,000	-
C.	72 Repulse Bay Road	Residential	1,800	-
D.	18 Carmel Road	Residential	500	1
E.	R.B.L. 1201, Wong Ma Kok Road	Residential	20,600	86
F.	2 Headland Road	Residential	1,600	-
G.	7 Stanley Market Road / 78 & 79 Stanley Main Street	Hotel	1,000	-
Н.	125 Repulse Bay Road	Residential	2,900	-
l.	3 South Bay Close	Residential	2,500	9
J.	14 Stanley Beach Road	Residential	1,100	3
Appr	oved Planning Application			
K.	39 South Bay Road	Residential	1,300	4
L.	86 & 88 Stanley Main Street	Hotel	1,320	13
M.	30 Stanley Link Road	Residential	300	3

- 4.10 Traffic generated by the above other known major planned / committed developments is included in the design year.
 - (iii) Net change in traffic generation between the Existing Development and the Proposed Conversion
- 4.11 The net change in peak hour traffic generation on weekday and weekend between the Existing Development and the Proposed Conversion are added to the 2030 traffic flow.

Year 2030 Traffic Flows

4.12 The future traffic flows are derived as follow:

2030 Traffic Flows without = 2025 Existing Traffic Flows + Total Traffic the Proposed Conversion [A] Growth from 2025 to 2030 + Traffic Generated by Other Developments

2030 Traffic Flows with the = [A] + Net change in Traffic Generation
Proposed Conversion between the Existing Development and the
Proposed Conversion

- 4.13 To be conservative, the recommended access route described in Paragraph 3.29 is not assumed to be implemented for assessment purpose, i.e. all traffic associated with the Proposed Conversion are assumed to access Beach Road from Repulse Bay Road (opposite 56 Repulse Bay Road).
- 4.14 **Figures 4.2 and 4.3** show the year 2030 weekday and weekend peak hour traffic flows without the Proposed Conversion; and **Figures 4.4 and 4.5** show the year 2030 weekday and weekend peak hour traffic flows with the Proposed Conversion. These traffic flows ("Swimming Season in July") are derived based on the traffic flows obtained from the swimming season in July 2025.
- 4.15 **Figures 4.6 and 4.7** show the year 2030 weekday and weekend peak hour traffic flows without the Proposed Conversion; and **Figures 4.8 and 4.9** show the year 2030 weekday and weekend peak hour traffic flows with the Proposed Conversion. These traffic flows ("Swimming Season in June") are derived based on the traffic flows obtained from the swimming season in June 2024.

Year 2030 Junction Capacity and Road Link Analyses

4.16 Year 2030 junction and road link capacity analyses for the cases without and with the Proposed Conversion are summarised in Tables 4.4 and 4.5, and detailed calculations are found in the **Appendix A**.

TABLE 4.4 YEAR 2030 PEAK HOUR JUNCTION PERFORMANCE

Ref.	Junction	Туре	Para-	- 1				Swimming Season in June				
			meter	Without the Proposed Conversion		With the Proposed Conversion		Without the Proposed Conversion		With the Proposed Conversion		
				AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour	
	Weekday											
J01	Repulse Bay Road / Beach Road	Priority	RFC	0.068	0.095	0.068	0.095	0.100	0.056	0.100	0.056	
J02	Beach Road / South Bay Path	Priority	RFC	0.038	0.048	0.039	0.052	0.024	0.034	0.025	0.039	
J03	South Bay Road / Beach Road	Priority	RFC	0.097	0.104	0.100	0.109	0.071	0.091	0.074	0.096	
J04	South Bay Road / South Bay Path	Priority	RFC	0.314	0.446	0.331	0.463	0.202	0.219	0.218	0.235	
J05	Repulse Bay Road / South Bay Road	Round- about	RFC	0.501	0.470	0.501	0.470	0.537	0.483	0.540	0.483	
J06	South Bay Road / South Bay Path	Round- about	RFC	0.250	0.282	0.259	0.291	0.183	0.245	0.191	0.254	

Note: RFC – Ratio of Flow to Capacity

TABLE 4.4 YEAR 2030 PEAK HOUR JUNCTION PERFORMANCE (CONT'D)

Ref.	Junction	Туре	Para- meter	Swimming So Without the Proposed		With Prop	n the osed	Witho Prop	out the osed	eason in June With the Proposed		
					ersion	Conv AM	ersion PM	Conv	ersion PM	Conversion AM PM		
				Peak Hour			Peak Hour	Peak Hour	Peak Hour	Peak Hour	Peak Hour	
	Weekend											
J01	Repulse Bay Road / Beach Road	Priority	RFC	0.095	0.153	0.095	0.154	0.081	0.096	0.082	0.097	
J02	Beach Road / South Bay Path	Priority	RFC	0.064	0.083	0.068	0.092	0.027	0.042	0.032	0.050	
J03	South Bay Road / Beach Road	Priority	RFC	0.171	0.184	0.176	0.191	0.078	0.173	0.083	0.179	
J04	South Bay Road / South Bay Path	Priority	RFC	0.477	0.606	0.500	0.629	0.226	0.356	0.249	0.378	
J05	Repulse Bay Road / South Bay Road	Round- about	RFC	0.350	0.480	0.363	0.494	0.388	0.487	0.388	0.488	
J06	South Bay Road / South Bay Path	Round- about	RFC	0.295	0.376	0.307	0.388	0.219	0.274	0.230	0.286	

Note: RFC – Ratio of Flow to Capacity

TABLE 4.5 YEAR 2030 PEAK HOUR ROAD LINK PERFORMANCE (P/Df)

Ref.	Road Link	Con-	Dir.	Design	Swin	nming S	eason in	July	Swimming Season in June				
		fig.		Flow	Witho	out the	With	n the	Witho	out the	With the		
				(pcu/hr)	Prop	osed	Prop	osed	Prop	osed	Prop	osed	
					Conv	ersion	Conversion		Conv	ersion	Conv	ersion	
					AM	AM PM		PM	AM	PM	AM	PM	
					Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	
					Hour	Hour	Hour	Hour	Hour	Hour	Hour	Hour	
					W	eekday							
L01	Beach Road	S1	SB	900	0.298	0.416	0.316	0.439	0.164	0.191	0.182	0.214	
L02	Repulse Bay	S 2	SB	1,200	0.598	0.559	0.598	0.559	0.555	0.571	0.555	0.571	
	Road		NB	1,200	0.826	0.774	0.834	0.783	0.824	0.712	0.833	0.720	
					W	eekend							
L01	Beach Road	S1	SB	900	0.478	0.573	0.508	0.607	0.228	0.270	0.258	0.303	
L02	Repulse Bay	S 2	SB	1,200	0.298	0.423	0.298	0.423	0.463	0.578	0.463	0.578	
	Road		NB	1,200	0.588	0.755	0.600	0.766	0.679	0.793	0.691	0.803	

Note: P/Df - Peak Hourly Flows / Design Flow Ratio Config. - Configureation Dir. - Direction S1 - Single-1 S2 - Single-2 SB - Southbounod NB - Northbound

4.17 Tables 4.4 and 4.5 show that the analyzed junctions and road links will have capacity to accommodate the expected traffic growth to Year 2030 and the expected change in traffic generation between the Existing Development and the Proposed Conversion.

Pedestrian Forecast

- 4.18 The design year pedestrian flows are estimated with reference to:
 - (i) Expected population growth from 2025 to 2030 with reference to the project population change in Southern District;
 - (ii) Pedestrian generation of the Proposed Conversion.
- 4.19 Details of the above are presented in below paragraphs.
 - (i) Pedestrian Growth Rate
- 4.20 With reference to Table 4.2, a conservative growth rate of 1.0% per annum is adopted to produce the 2030 pedestrian flows.
 - (ii) Pedestrian Generation of the Proposed Conversion
- 4.21 Peak hour pedestrian generation on weekday and weekend for the Proposed Conversion presented in Table 3.12 are added to the 2030 pedestrian flow. To be conservative, pedestrian generations of the Existing Development are not subtracted from the future pedestrian forecast.

Year 2030 Pedestrian Flows

4.20 The future pedestrian flows are derived as follow:

2030 Pedestrian Flows without = 2025 Existing Pedestrian Flows + the Proposed Conversion [A] Total Pedestrian Growth from 2025 to 2030

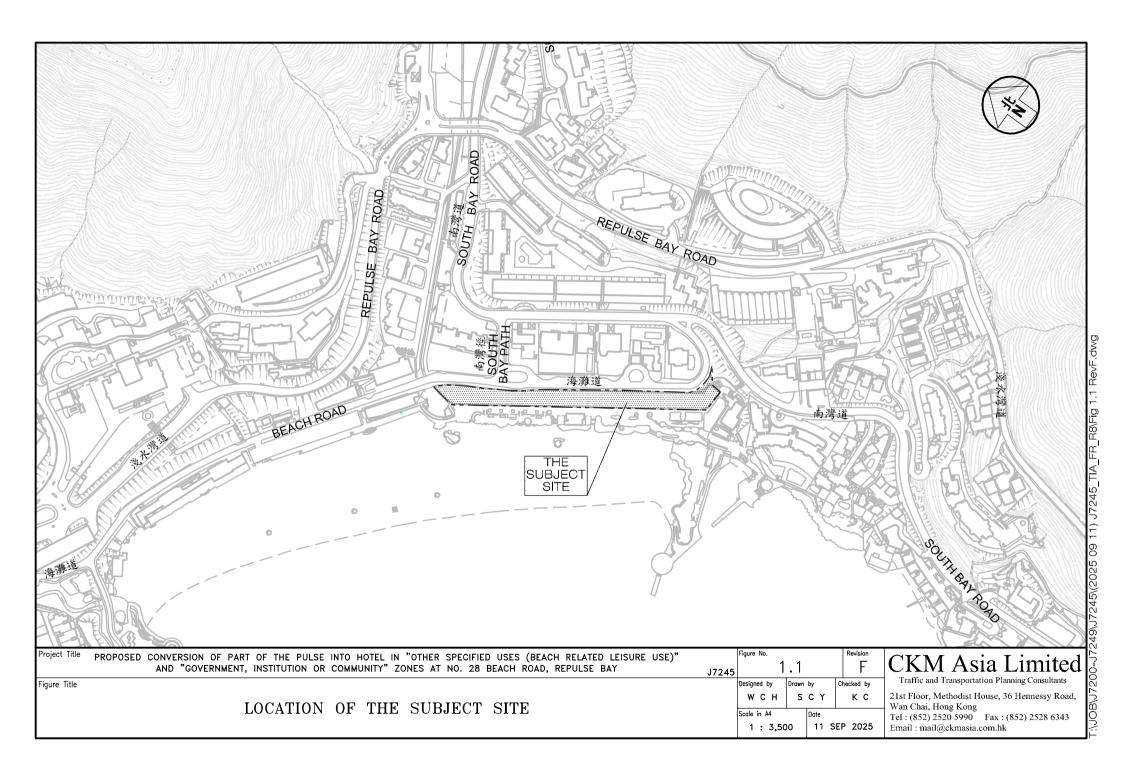
2030 Pedestrian Flows with the = [A] + Pedestrian Generation of the Proposed Conversion Proposed Conversion

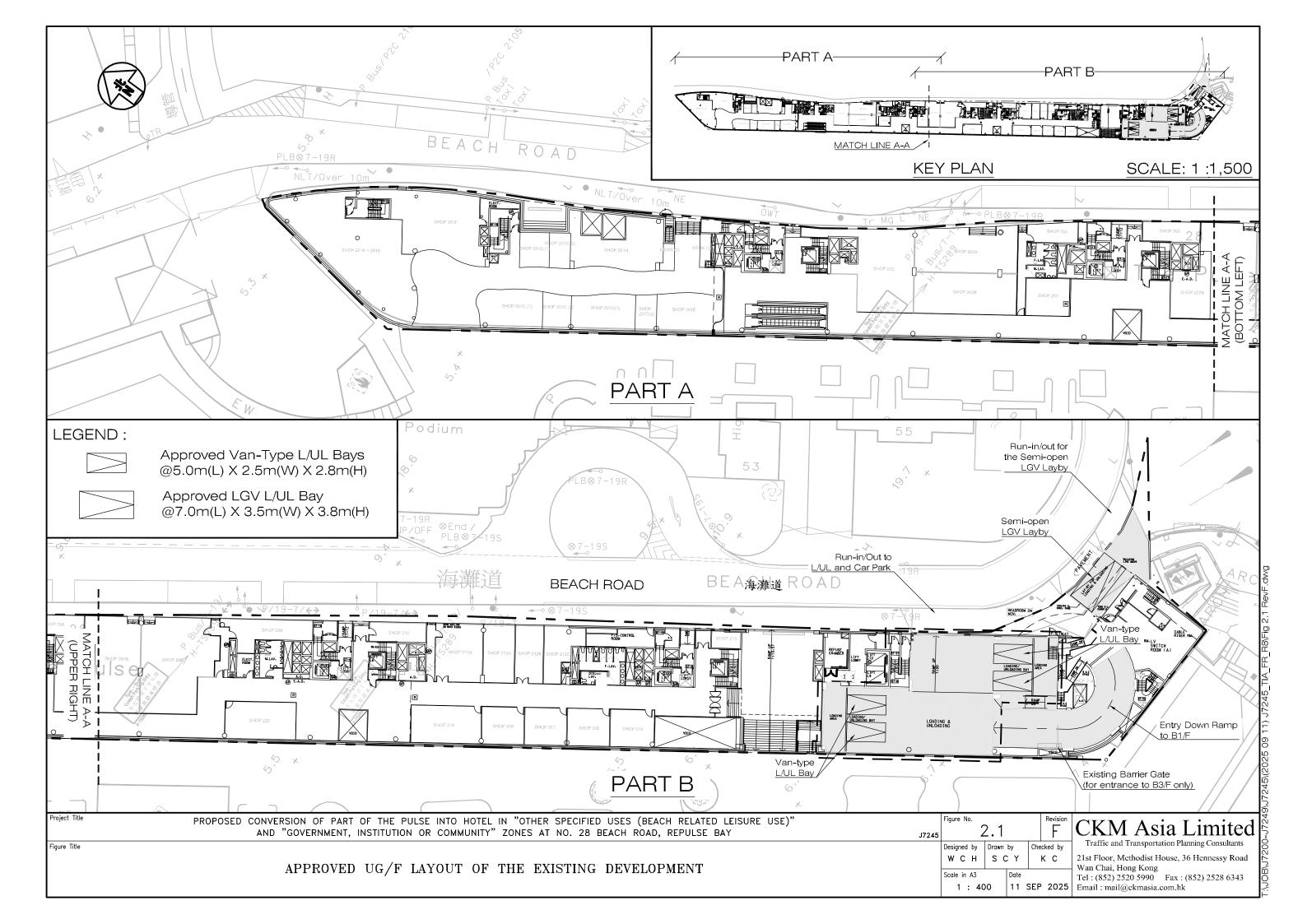
Year 2030 Footpath Operational Performance

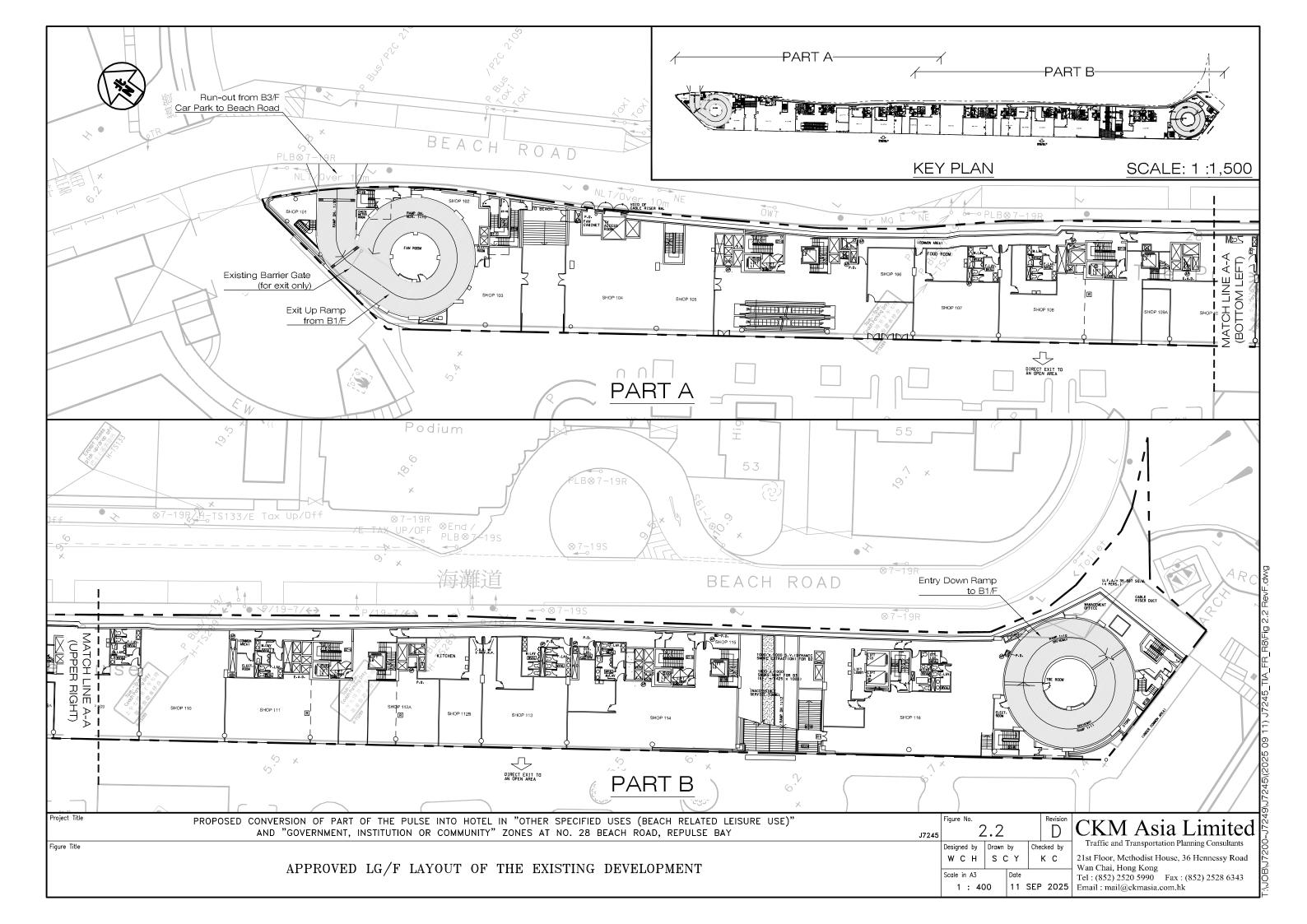
4.21 Year 2030 peak hour footpath operational performance are calculated and summarised in Table 4.6.

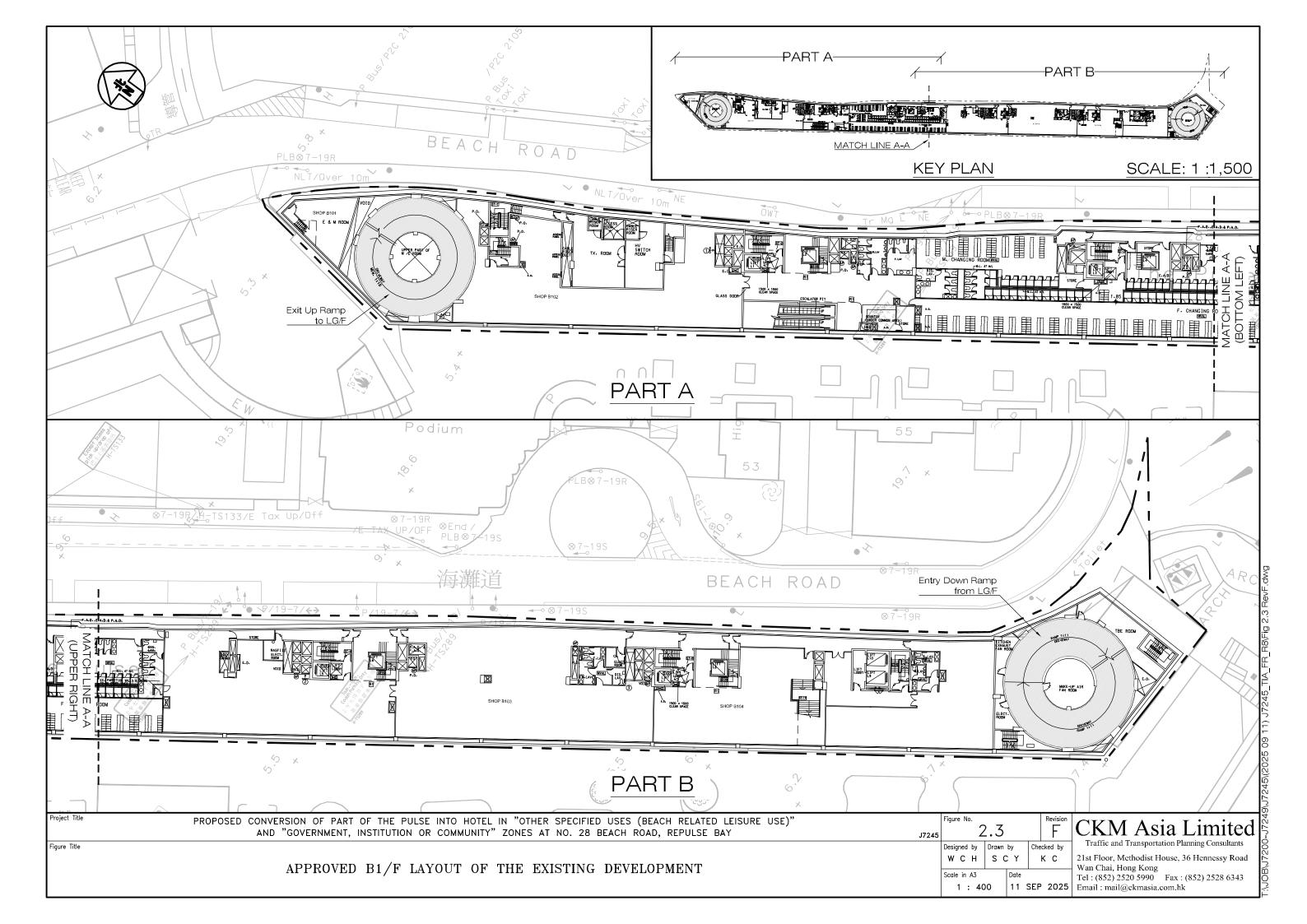
TABLE 4.6 YEAR 2030 PEAK HOUR FOOTPATH PERFORMANCE

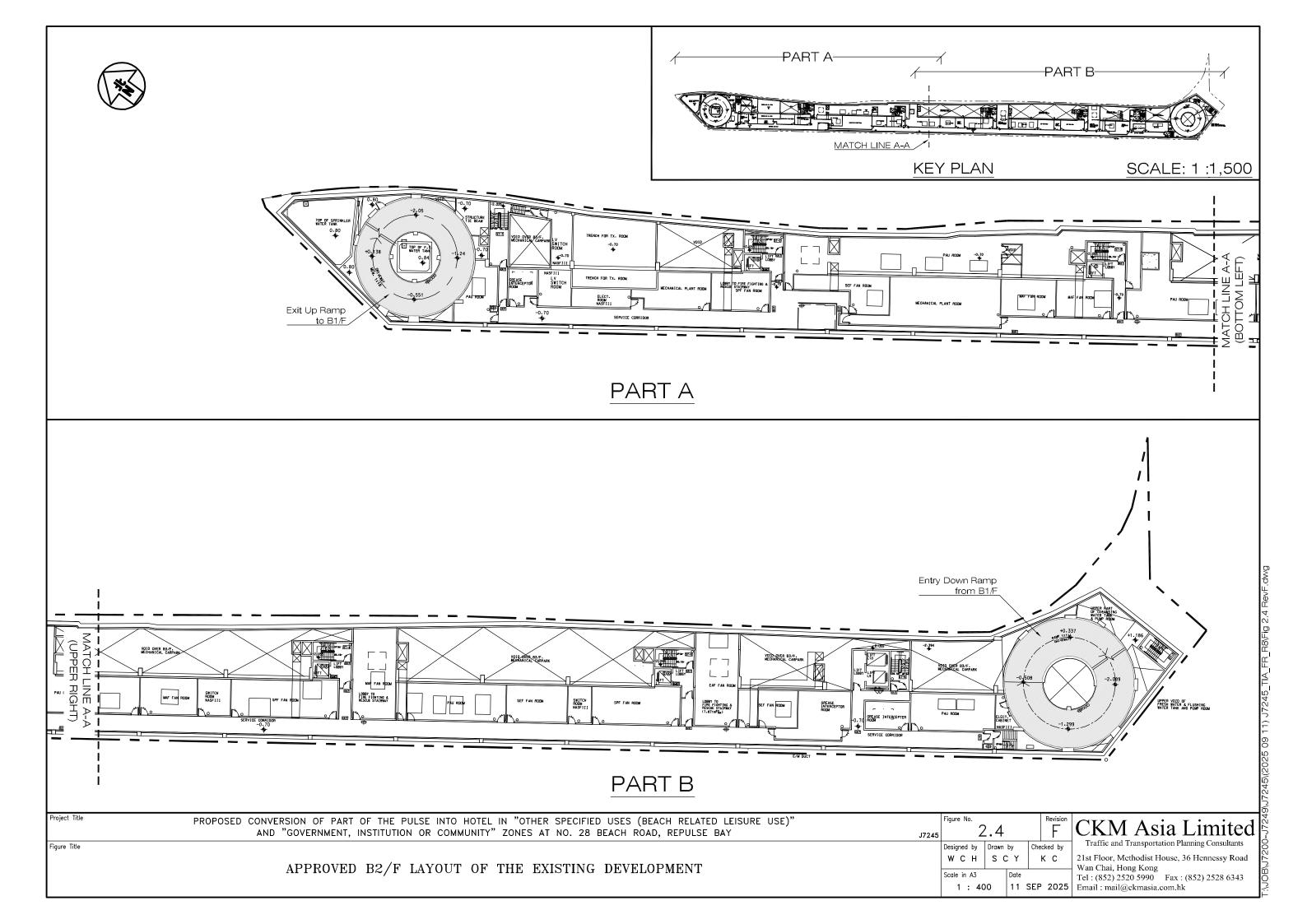
Footpath Section	Actual Width (m)	Effective Width (m)	AM	With Proposed Peak Hour		on 'eak Hour	With the Proposed Conversion AM Peak Hour PM Peak Hour					
			Ped. Flow (p/hr)	Ped. Flow Rate Flow (p/hr/m)		Flow Rate (p/hr/m) [LOS]	Ped. Flow (p/hr)	Flow Rate (p/hr/m) [LOS]	Ped. Flow (p/hr)	Flow Rate (p/hr/m) [LOS]		
	Weekday											
FP01	3.5m	2.5m	156	1.0 [A]	454	3.0 [A]	197	1.3 [A]	512	3.4 [A]		
FP02	2.5m	1.5m	67	0.7 [A]	88	1.0 [A]	72	0.8 [A]	101	1.1 [A]		
FP03	3.0m	2.0m	59	0.5 [A]	209	1.7 [A]	80	0.7 [A]	238	2.0 [A]		
FP04	1.8m	0.8m	72	1.5 [A]	32	0.7 [A]	72	1.5 [A]	32	0.7 [A]		
FP05	2.8m	1.8m	62	0.6 [A]	243	2.3 [A]	103	1.0 [A]	301	2.8 [A]		
FP06	1.8m	0.8m	50	1.0 [A]	94	2.0 [A]	50	1.0 [A]	94	2.0 [A]		
FP07	1.5m	1.0m	11	0.2 [A]	13	0.2 [A]	11	0.2 [A]	13	0.2 [A]		
FP08	4.0m	3.0m	210	1.2 [A]	299	1.7 [A]	210	1.2 [A]	299	1.7 [A]		
FP09	3.5m	3.0m	1 <i>7</i> 1	1.0 [A]	287	1.6 [A]	191	1.1 [A]	316	1.8 [A]		

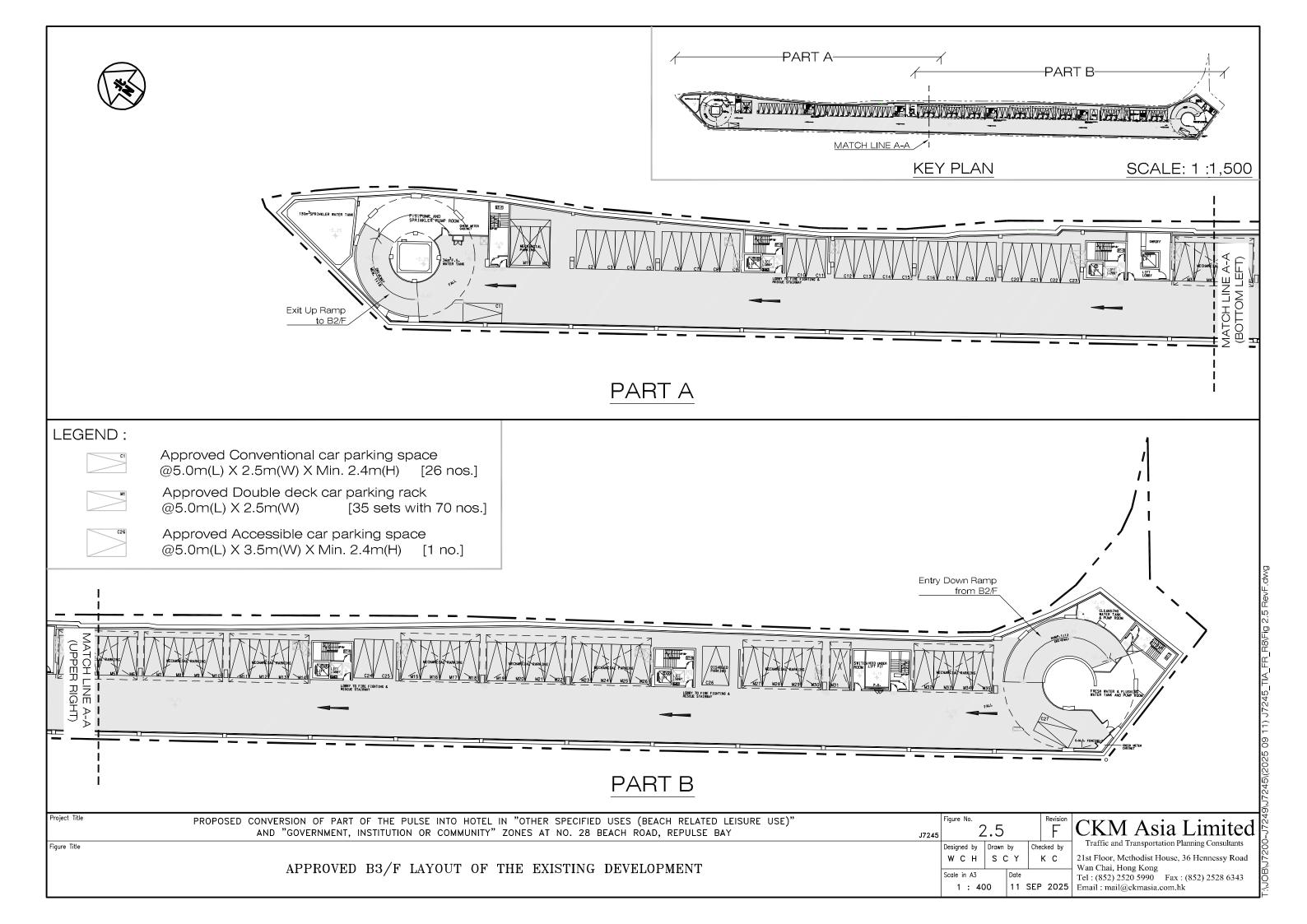

TABLE 4.6 YEAR 2030 PEAK HOUR FOOTPATH PERFORMANCE (CONT'D)

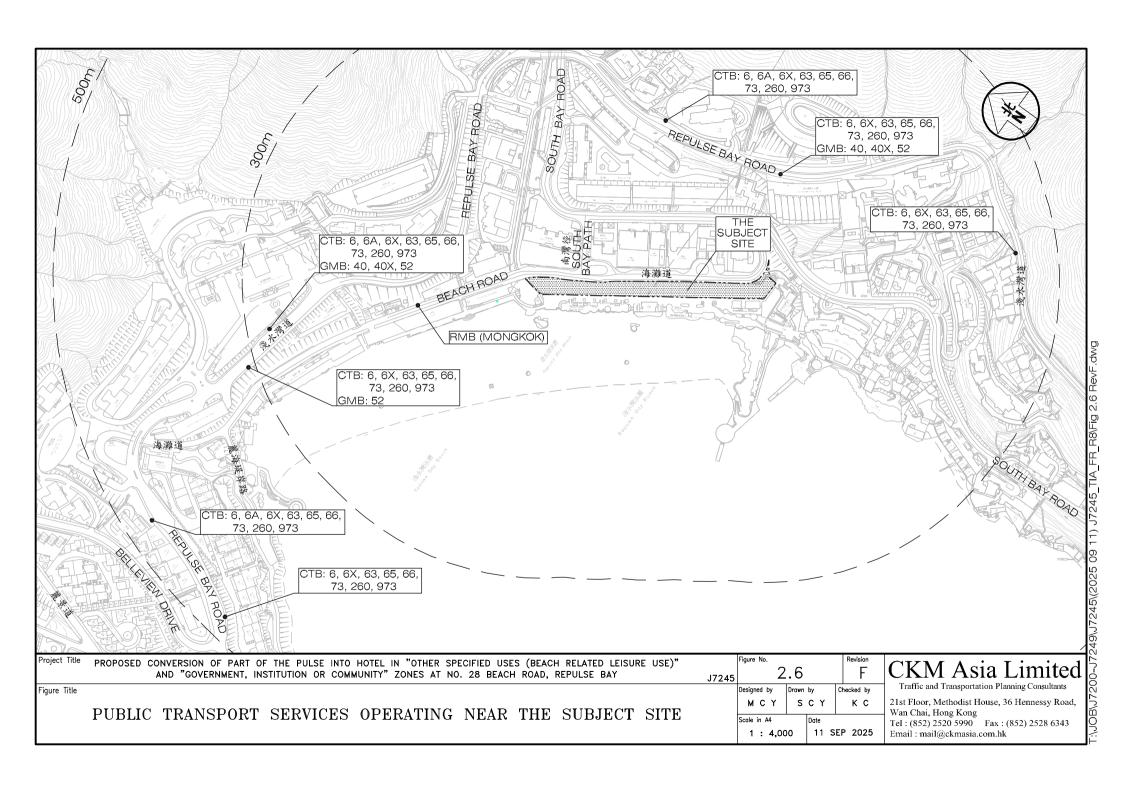

Pedestrian Facility	Actual Width (m)	Effective Width (m)	Without the Proposed Conversion AM Peak Hour PM Peak Hour				With the Proposed Conversion AM Peak Hour PM Peak Hour			
	, , , ,	, var,	Ped. Flow (p/hr)	Flow Rate (p/hr/m) [LOS]	Ped. Flow (p/hr)	Flow Rate (p/hr/m) [LOS]	Ped. Flow (p/hr)	Flow Rate (p/hr/m) [LOS]	Ped. Flow (p/hr)	Flow Rate (p/hr/m) [LOS]
Weekend										
FP01	3.5m	2.5m	286	1.9 [A]	773	5.2 [A]	332	2.2 [A]	861	5.7 [A]
FP02	2.5m	1.5m	334	3.7 [A]	185	2.1 [A]	340	3.8 [A]	204	2.3 [A]
FP03	3.0m	2.0m	126	1.1 [A]	217	1.8 [A]	149	1.2 [A]	261	2.2 [A]
FP04	1.8m	0.8m	86	1.8 [A]	44	0.9 [A]	86	1.8 [A]	44	0.9 [A]
FP05	2.8m	1.8m	118	1.1 [A]	232	2.1 [A]	164	1.5 [A]	320	3.0 [A]
FP06	1.8m	0.8m	78	1.6 [A]	82	1.7 [A]	198	4.1 [A]	202	4.2 [A]
FP07	1.5m	1.0m	11	0.2 [A]	7	0.1 [A]	11	0.2 [A]	7	0.1 [A]
FP08	4.0m	3.0m	334	1.9 [A]	736	4.1 [A]	334	1.9 [A]	736	4.1 [A]
FP09	3.5m	3.0m	303	1.7 [A]	597	3.3 [A]	326	1.8 [A]	641	3.6 [A]

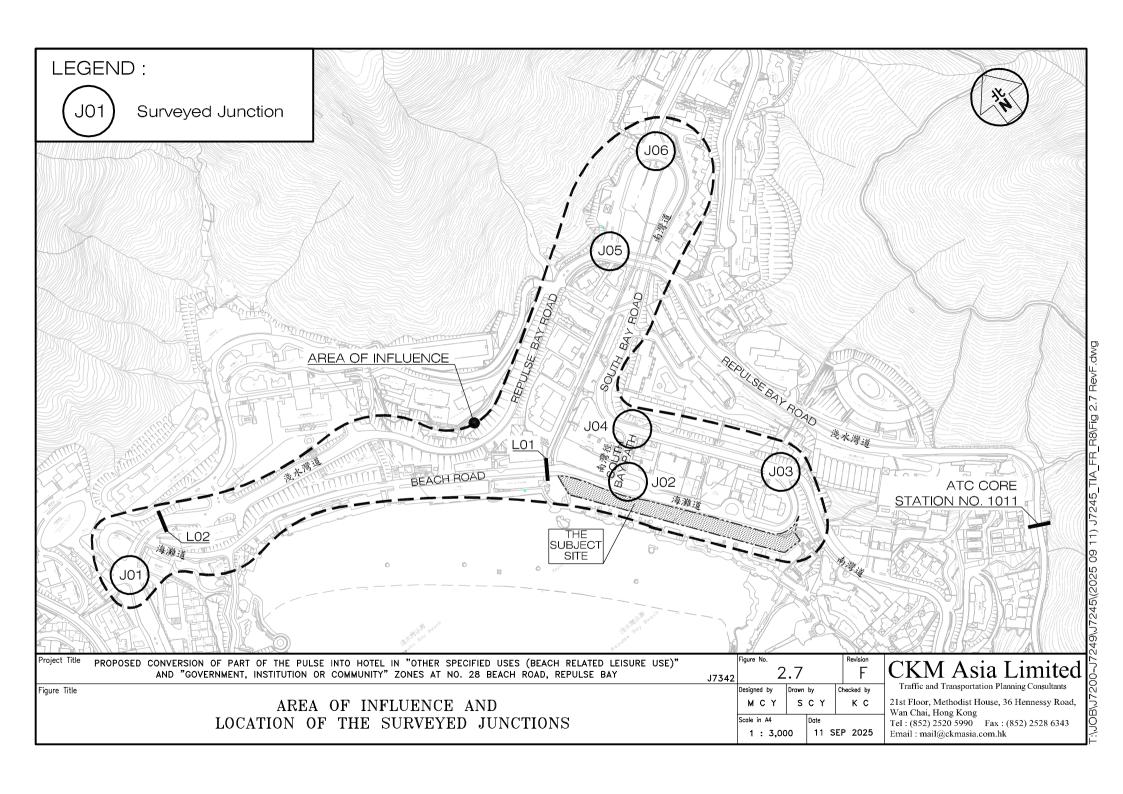

- P01 Stairway between Repulse Bay Road and Beach Road
- FP02 Southern Footpath of Beach Road (outside Seaview Building)
- FP03 Southern Footpath of Beach Road (outside Car Park / Repulse Bay Beach Building)
- FP04 Northern Footpath of Beach Road (outside Beach Centre)
- FP05 Southern Footpath of Beach Road (opposite South Bay Path)
- FP06 Southern Footpath of Beach Road (opposite 49/53/55 Beach Road))
- FP07 Northern Footpath of Beach Road (south of South Bay Road)
- FP08 Footpath along Repulse Bay Beach (near Repulse Bay Beach Building)
- FP09 Footpath along Repulse Bay Beach (outside the Subject Site)
- 4.22 Table 4.6 shows that the analyzed footpaths will have capacity to accommodate the expected pedestrian growth to Year 2030 and the expected pedestrian generation of the Proposed Conversion.

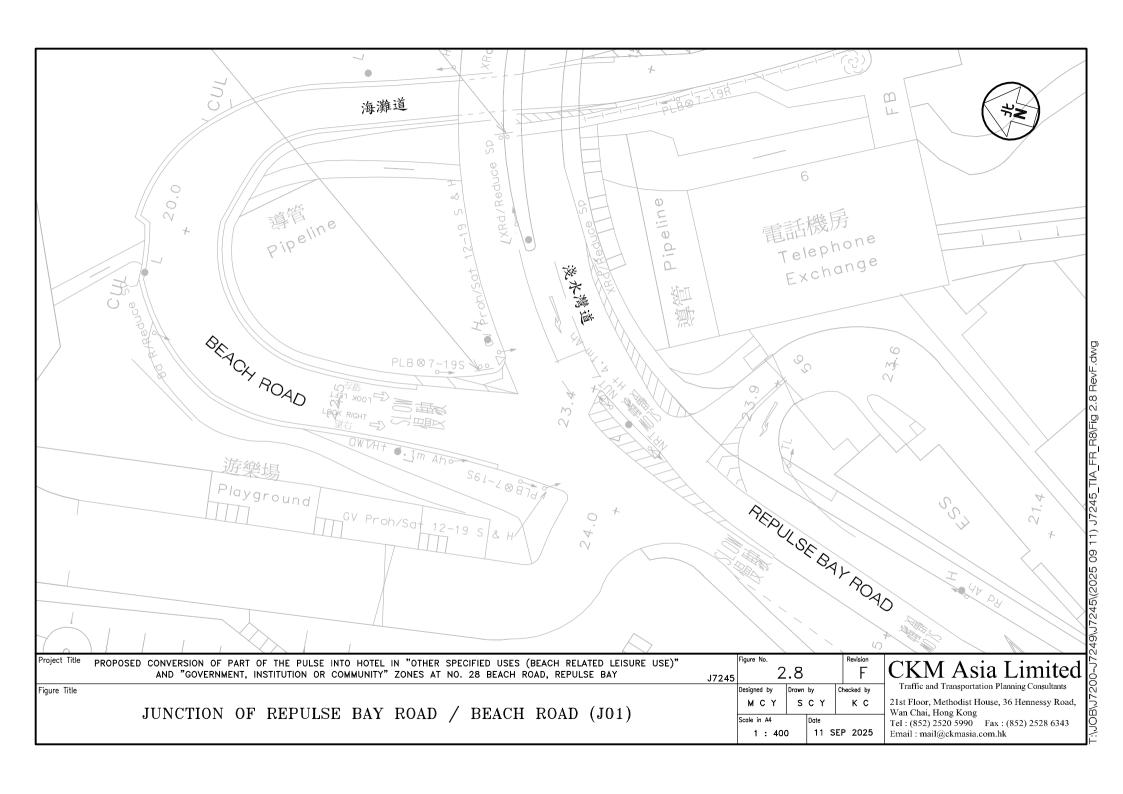

5.0 SUMMARY

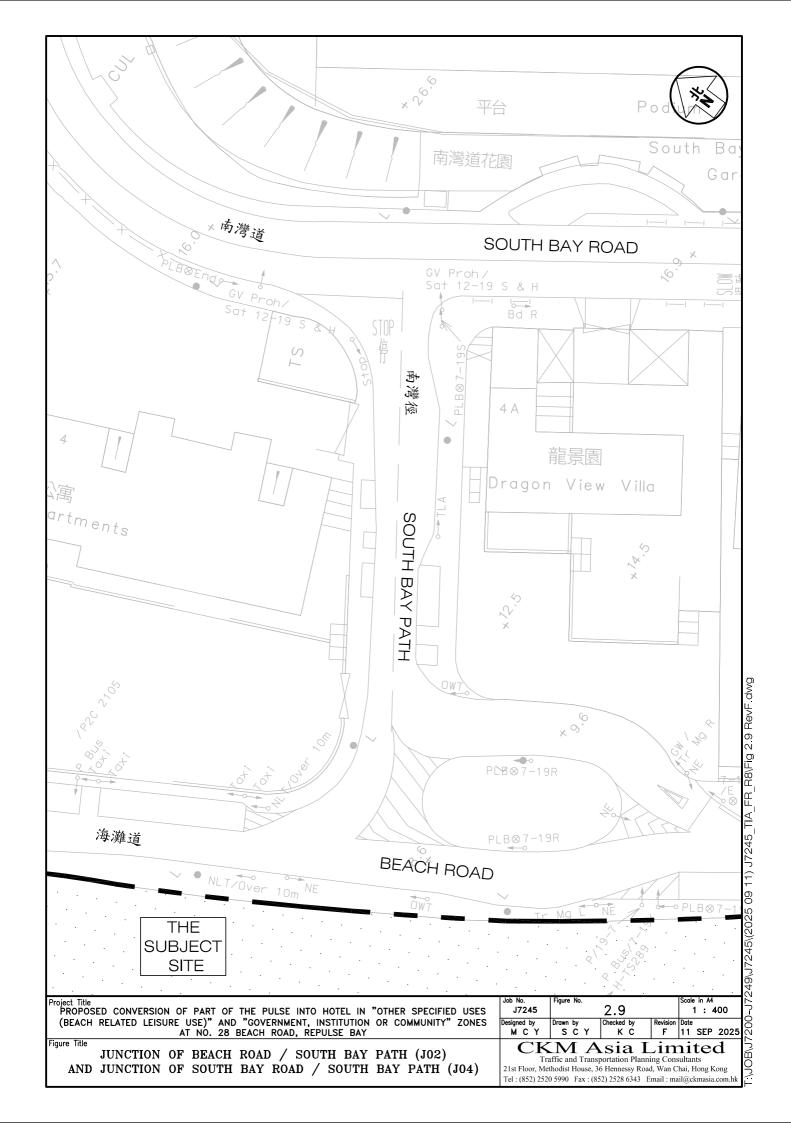

- 5.1 The Owner intends to convert the 1/F, UG/F and B1/F [part] of the Existing Development into a hotel with 96-room, and hence, retail GFA will be reduced substantially from existing 13,728 m² to become 5,841m².
- 5.2 The Proposed Conversion provides internal transport facilities which satisfy the maximum HKPSG recommendation, including:
 - 58 nos. car parking spaces,
 - 6 nos. motorcycle parking spaces,
 - 9 nos. goods vehicle loading / unloading bays,
 - 2 nos. laybys for taxi and private cars, and
 - 1 no. layby for single deck tour bus.
- 5.3 The Existing Development provides limited number and type of goods vehicle loading / unloading bays, i.e. van-type goods vehicles and LGV. With the Proposed Conversion, modification will be undertaken to provide sufficient headroom for LGV and HGV loading / unloading bays, and layby for single deck tour bus.
- 5.4 The Proposed Conversion provides a total of 58 car parking spaces, which is 16 more than the HKPSG recommendation. which is the same as the existing condition.
- 5.5 Manual classified counts were conducted at junctions and road links located in the vicinity of the Subject Site in summer on weekday and weekend AM and PM peak periods. Capacity analyses found that these junctions and road links operate with capacity.
- 5.6 Pedestrian counts were conducted at footpaths located the vicinity of the Subject Site in summer on weekday and weekend AM and PM peak hours. Capacity analyses found that these footpaths operate with capacity.
- 5.7 Weekday and weekend peak hour traffic generation for the Proposed Conversion are estimated. The future year junction capacity analyses found that the Proposed Conversion will not have adverse effect on the local road network.
- 5.8 Weekday and weekend peak hour pedestrian generation for the Proposed Conversion are estimated. The future year footpath capacity analyses found that the Proposed Conversion will not have adverse effect on the local pedestrian network
- 5.9 In view the internal transport facilities provided for the Proposed Conversion satisfies the HKPSG recommendation, and is believed to be sufficient to serve the Proposed Conversion. Based on the above, from traffic engineering grounds, the Proposed Conversion is acceptable.

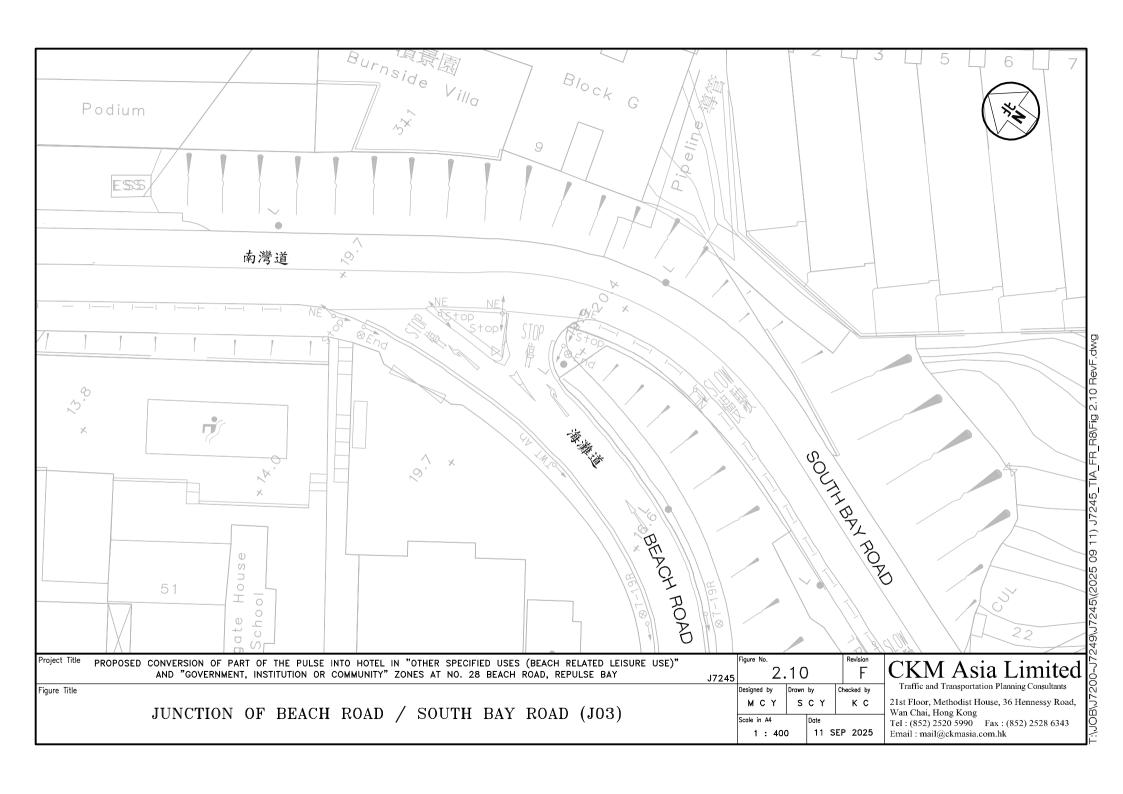


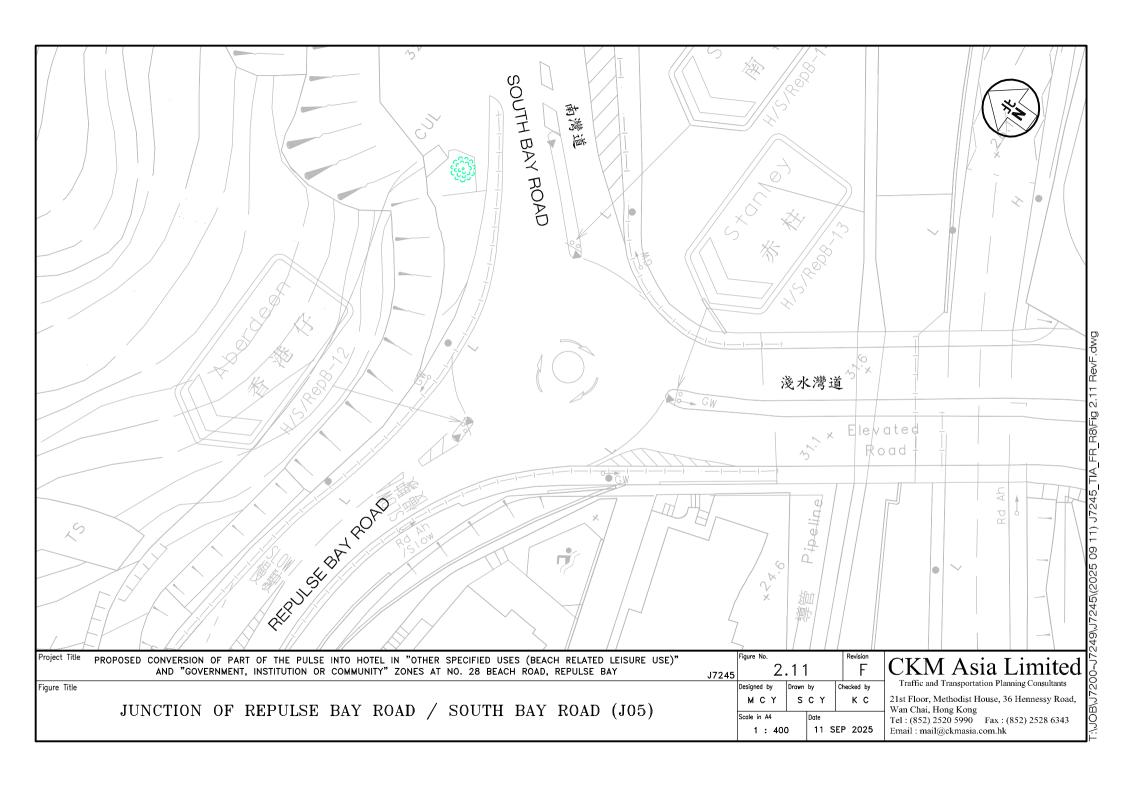


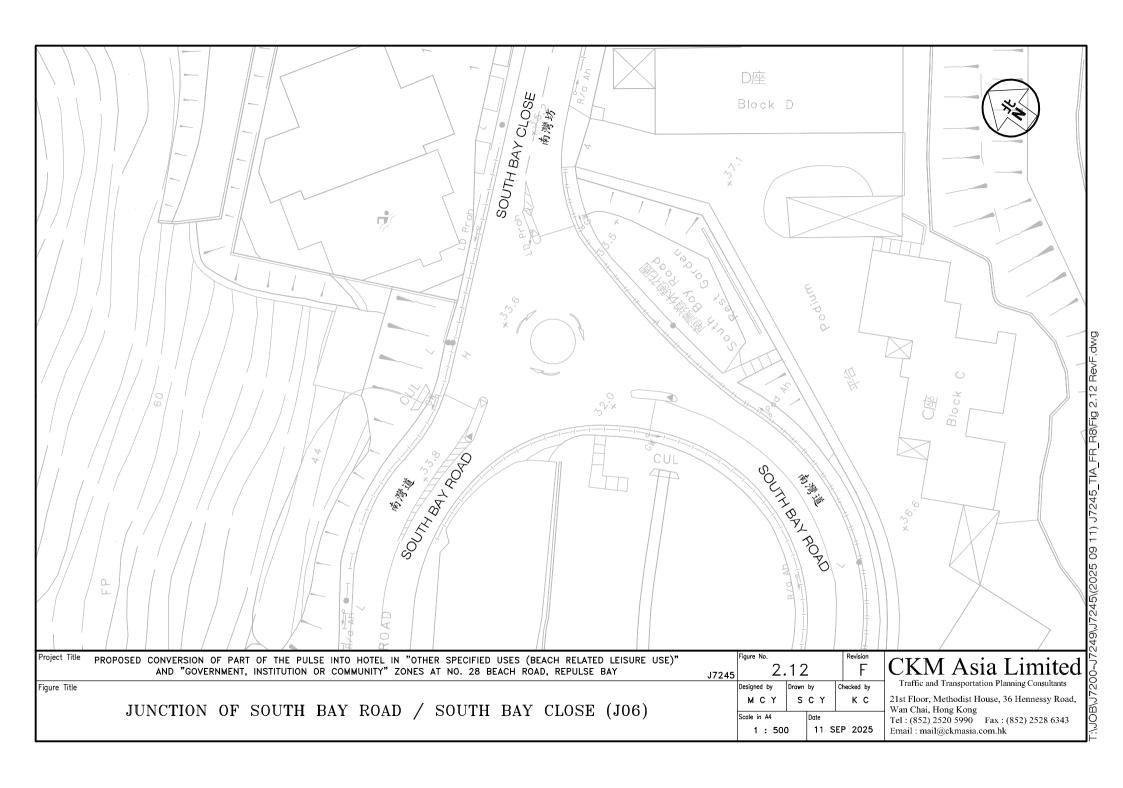


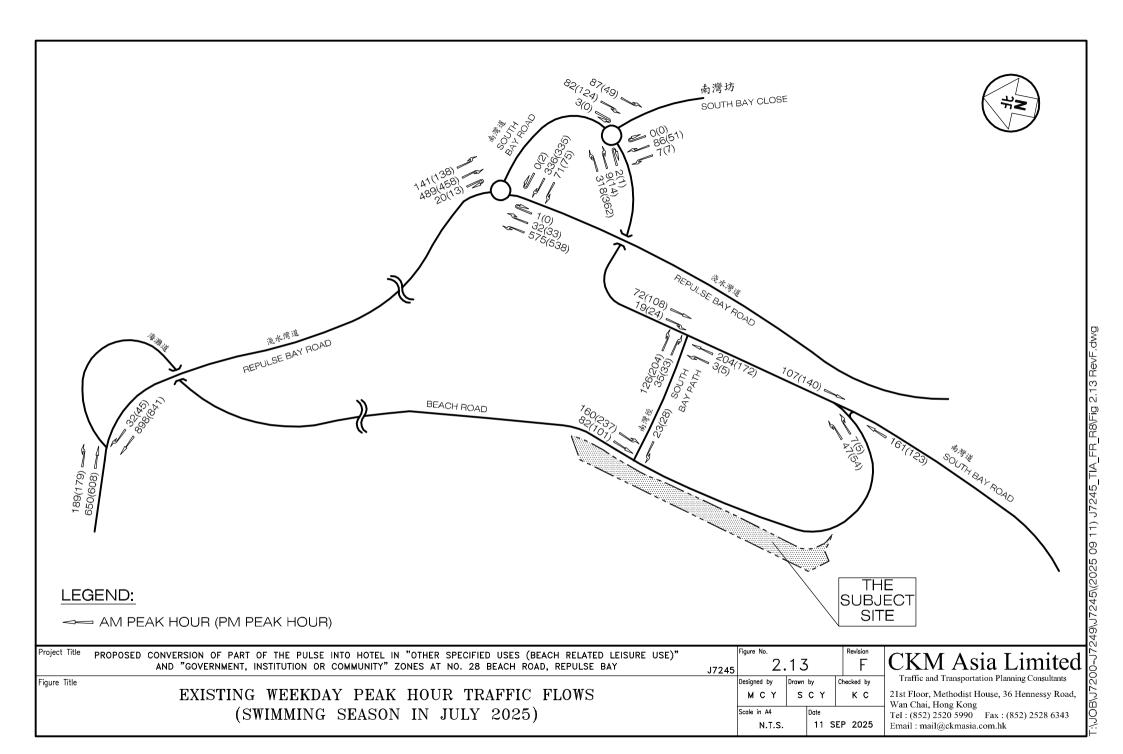


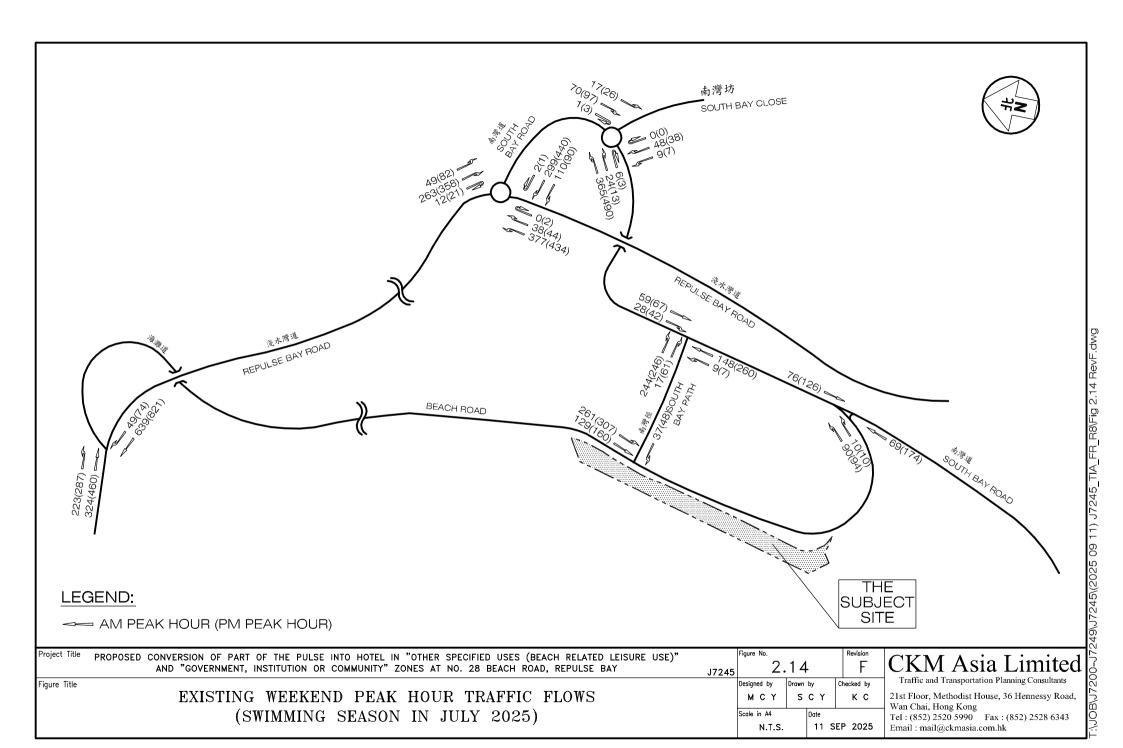


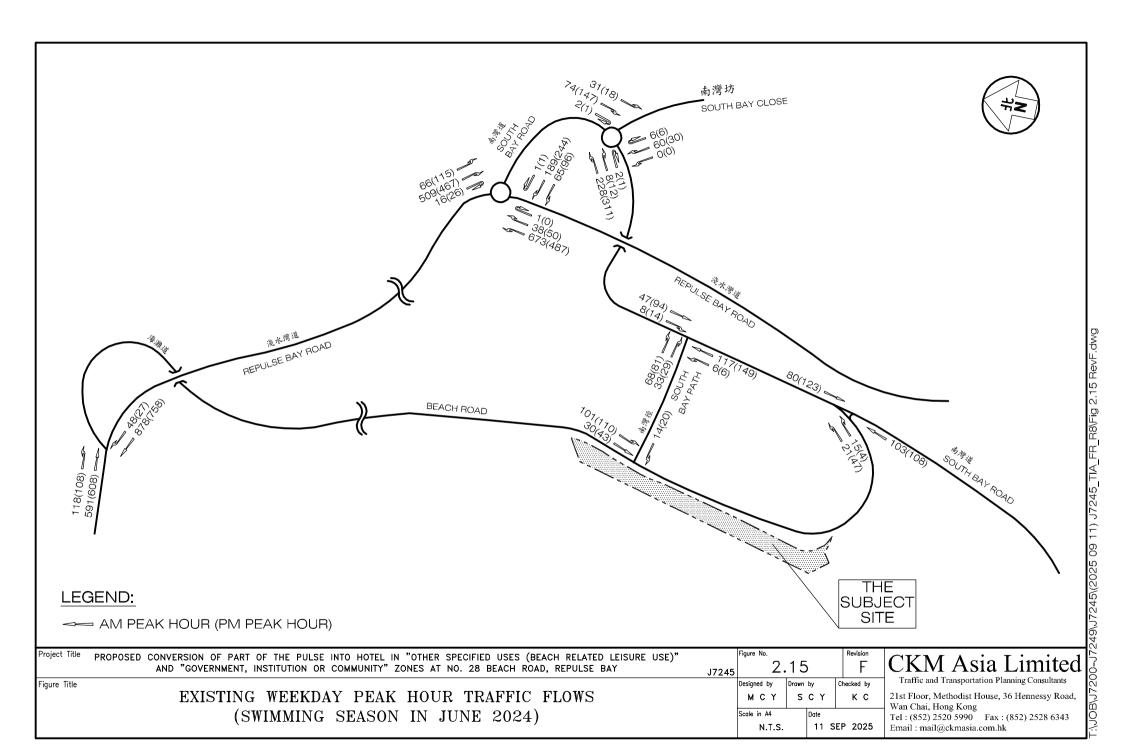


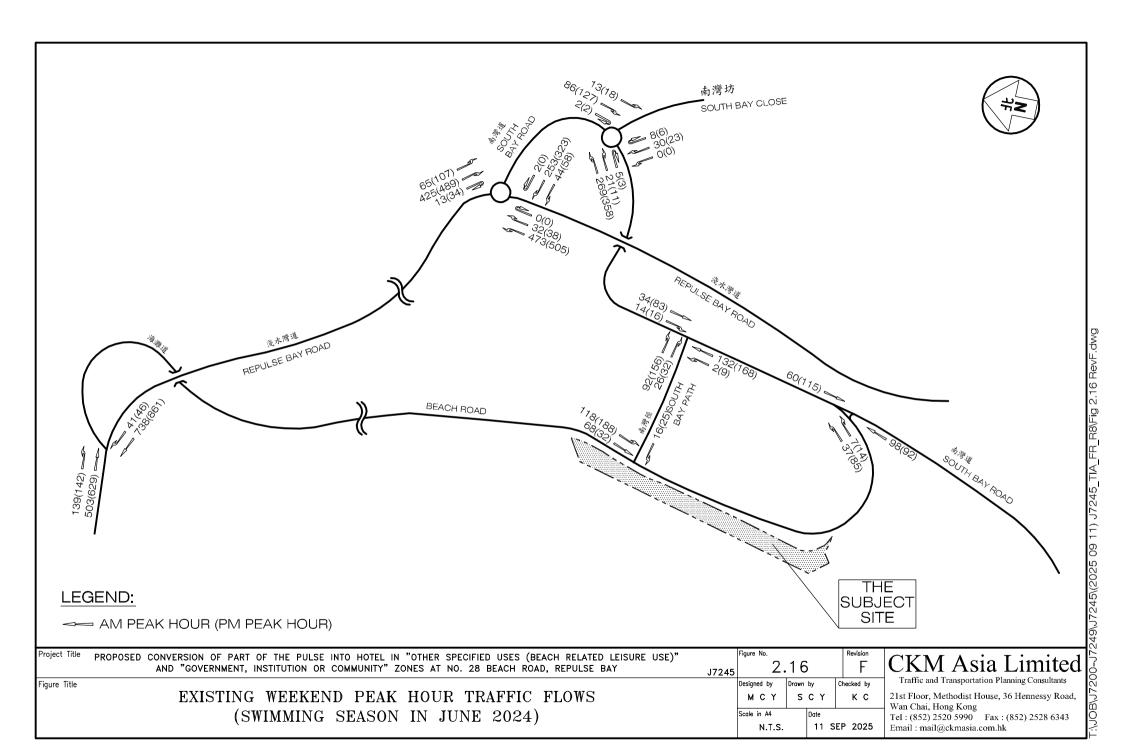


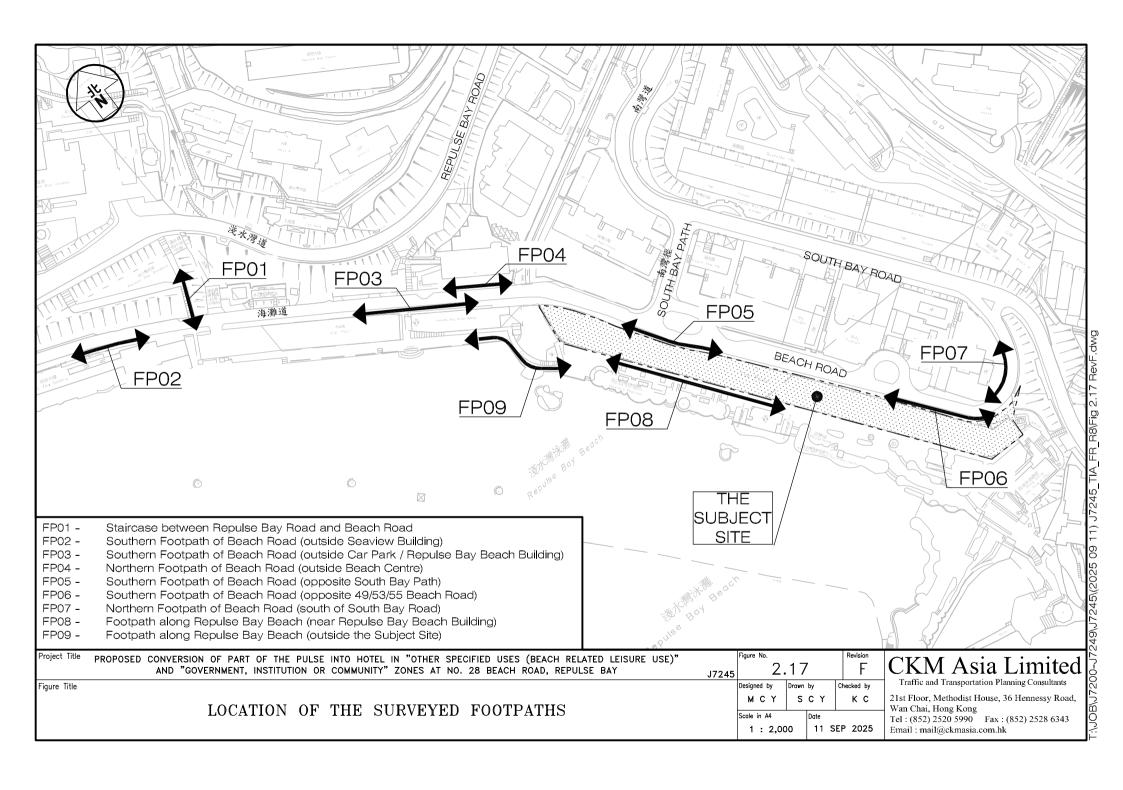


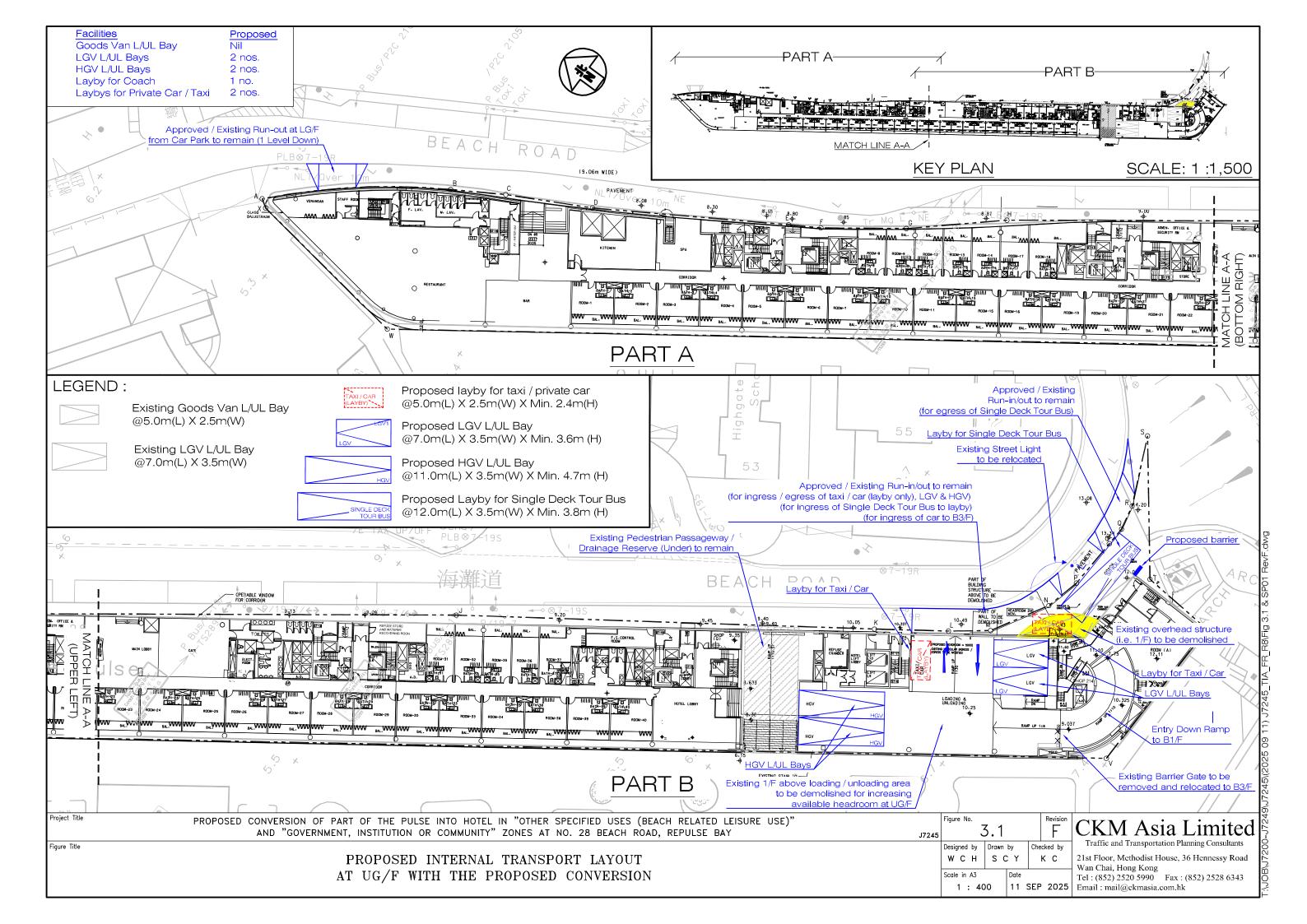


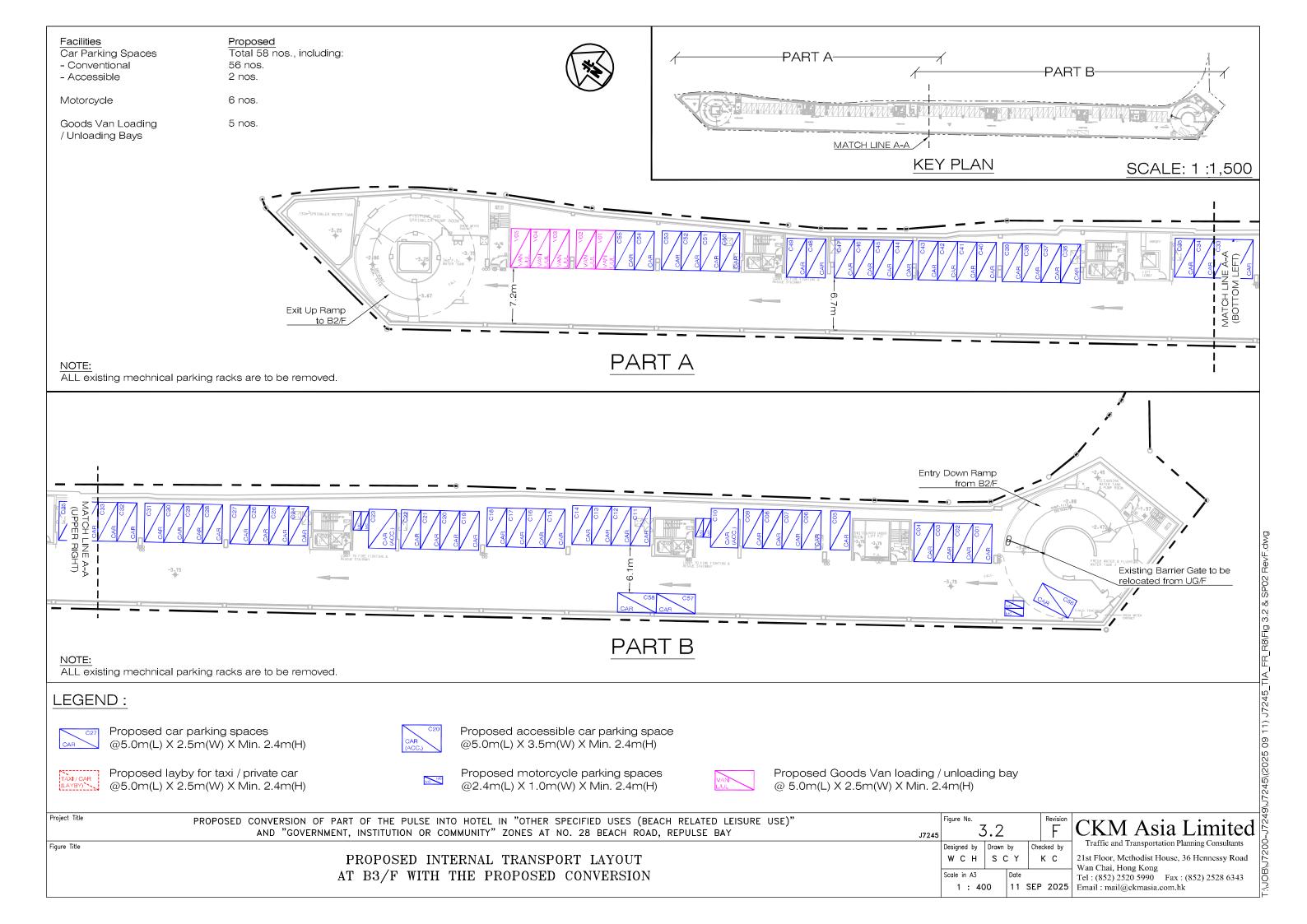


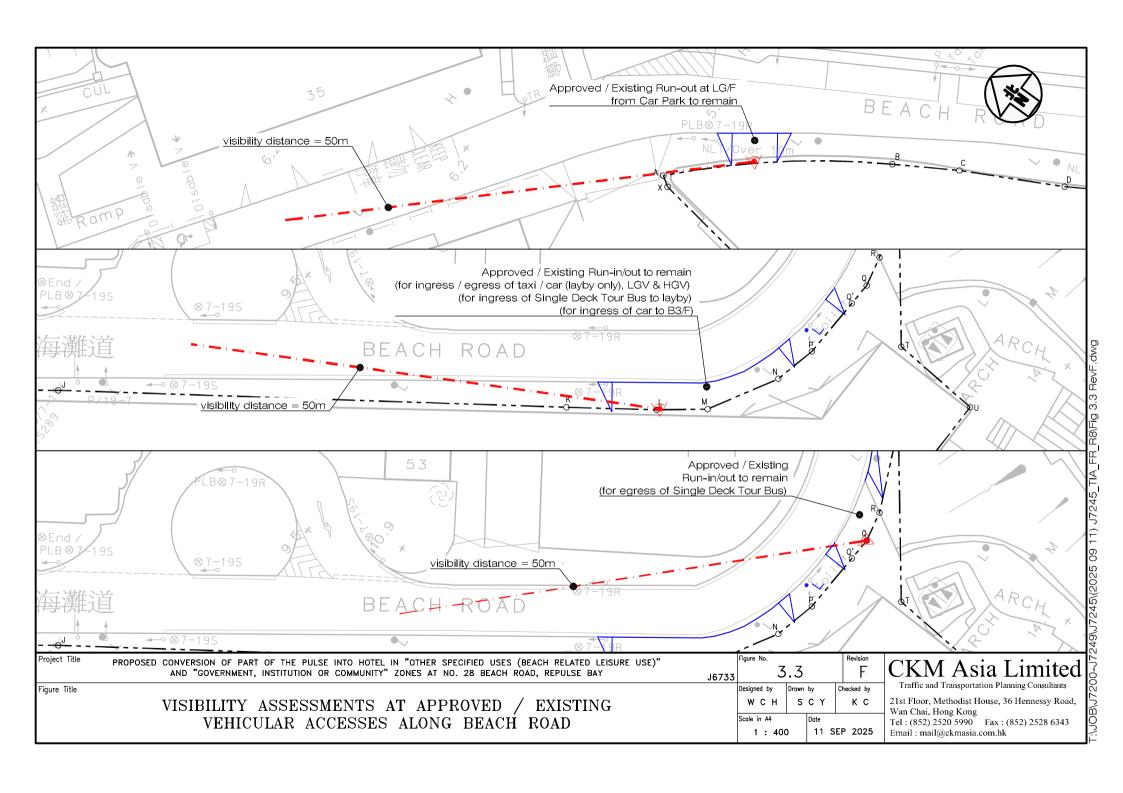


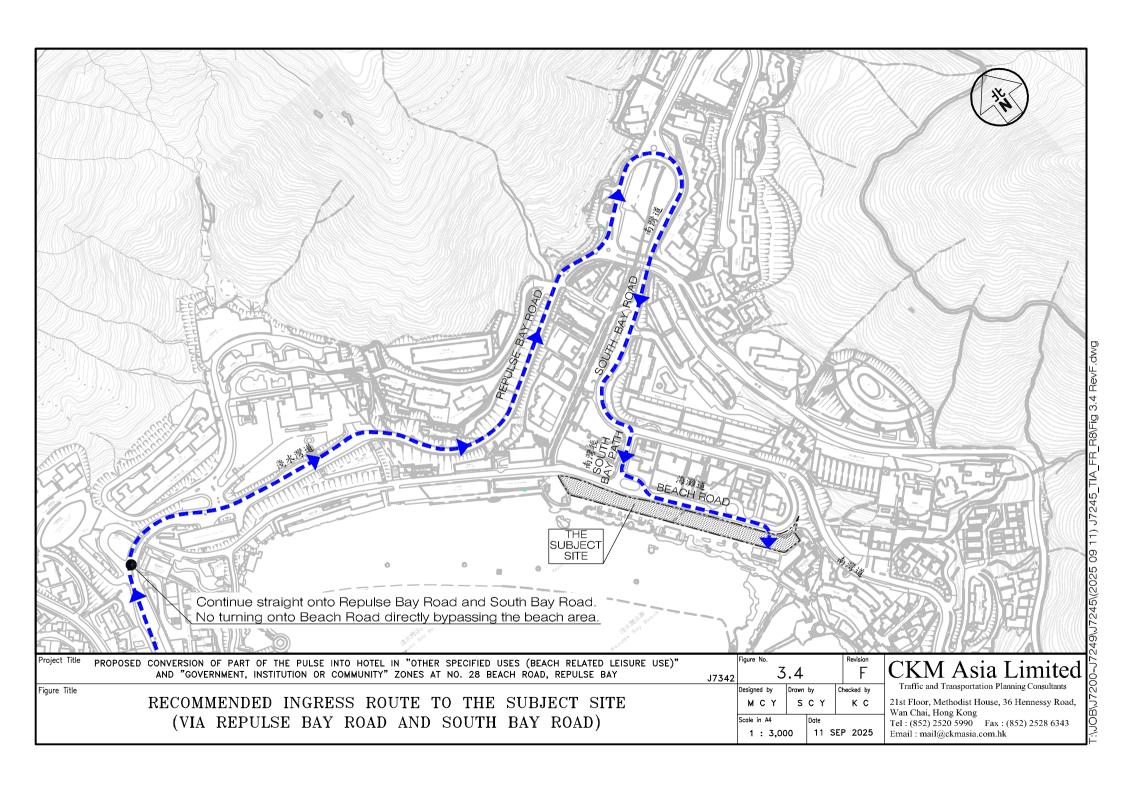


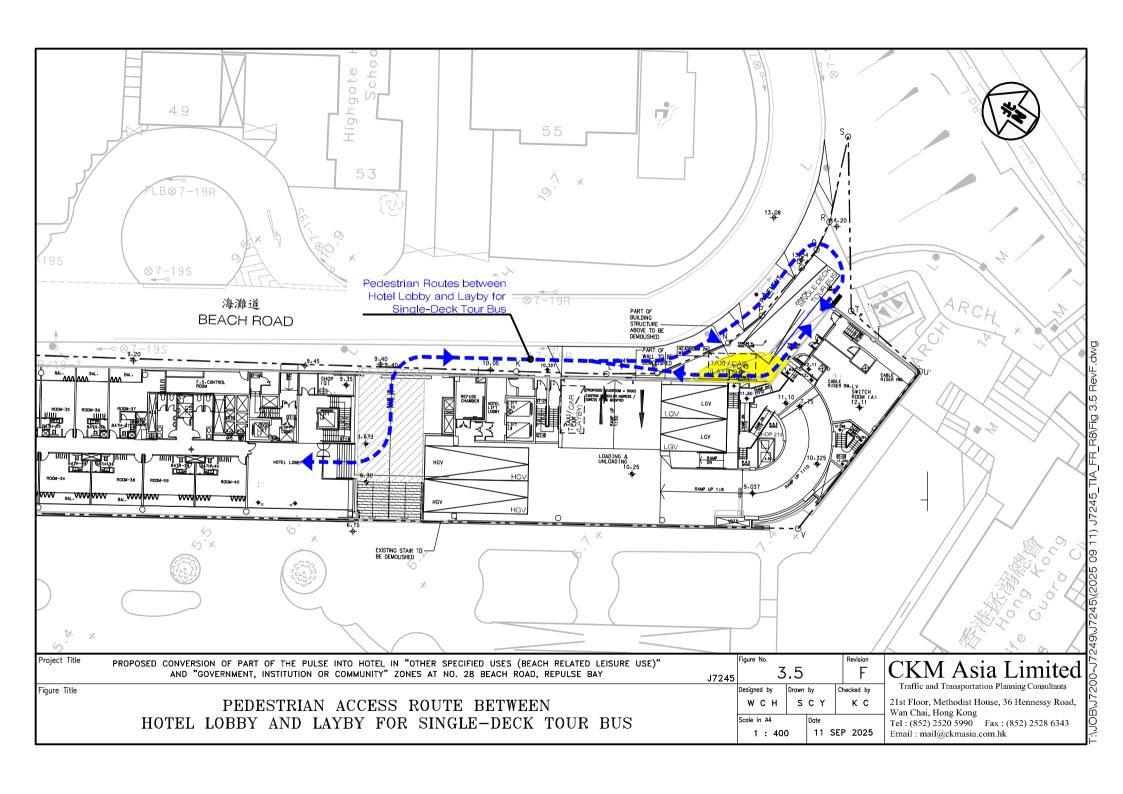


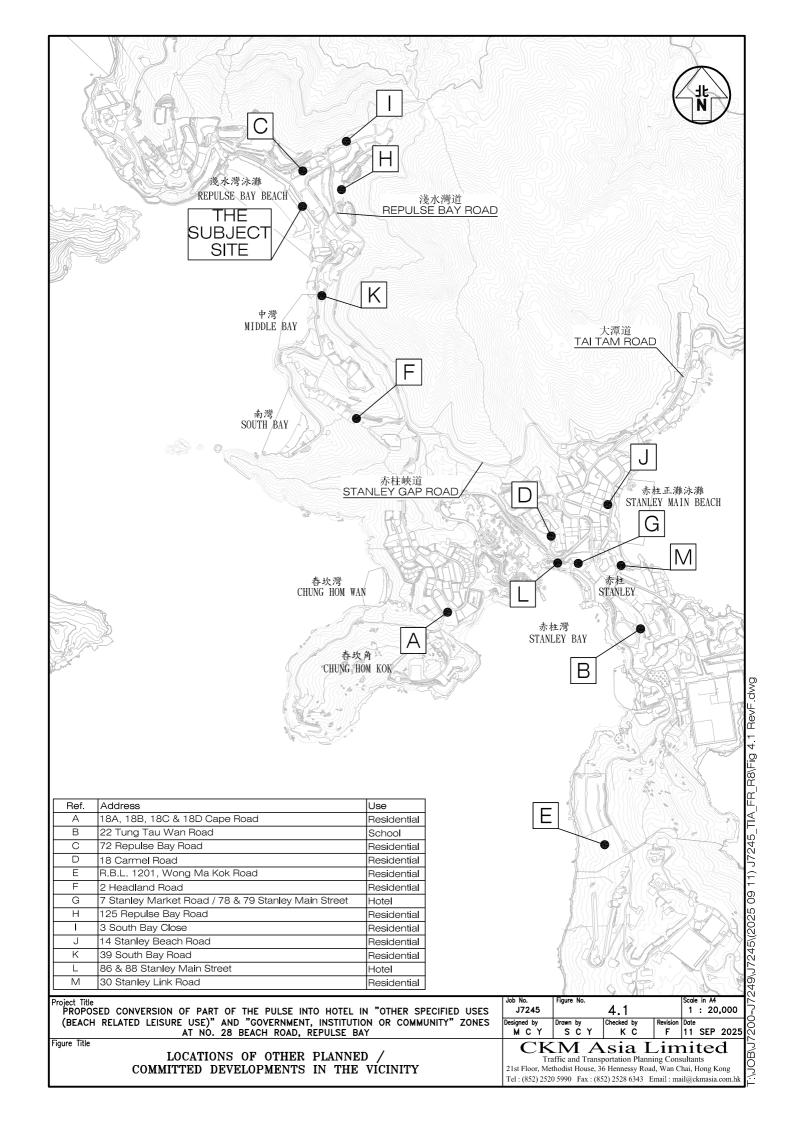


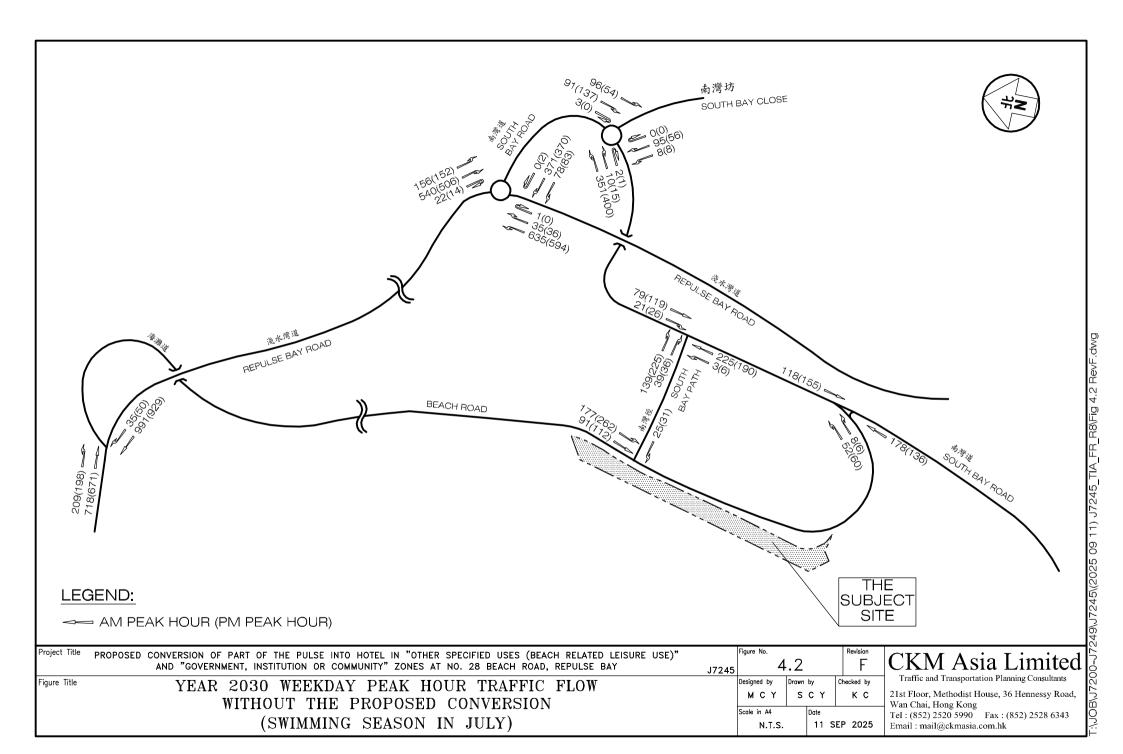


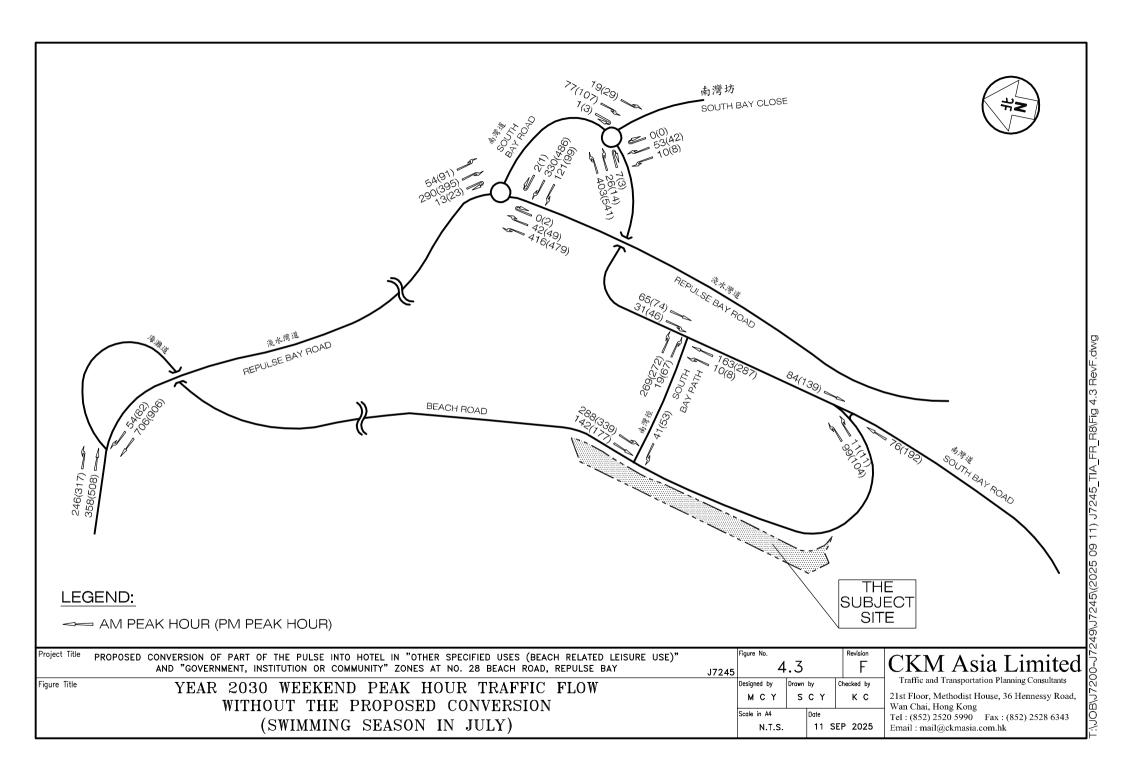


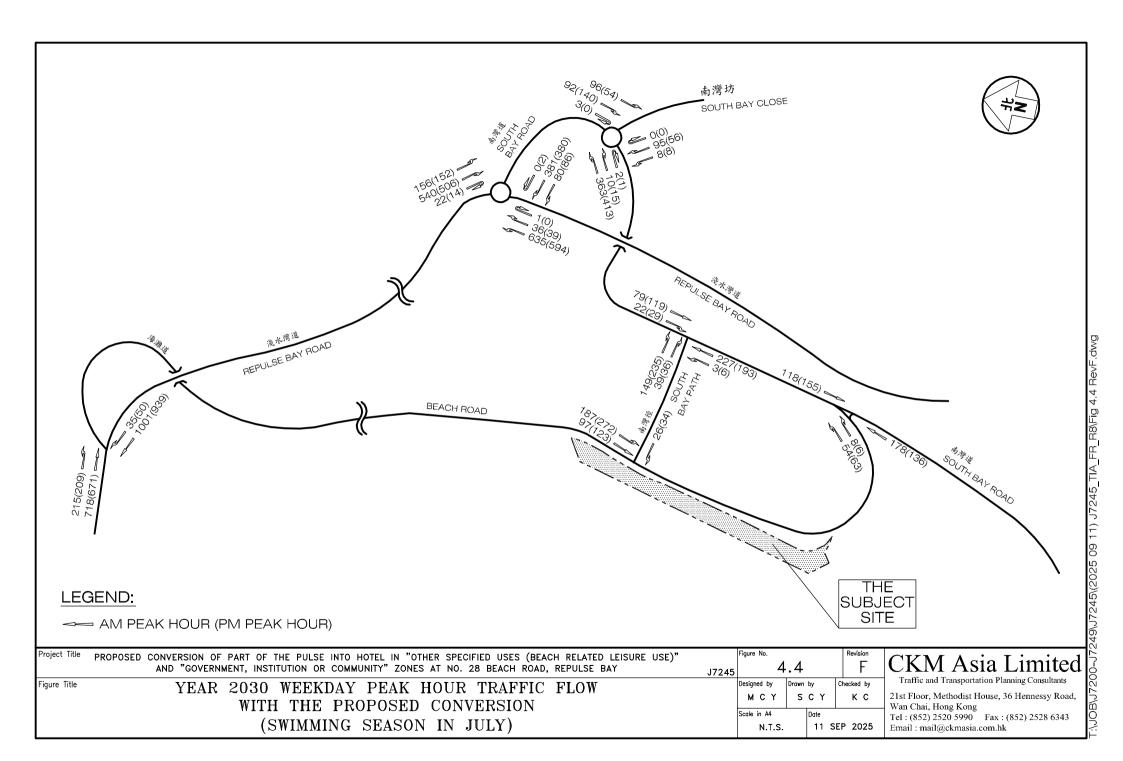


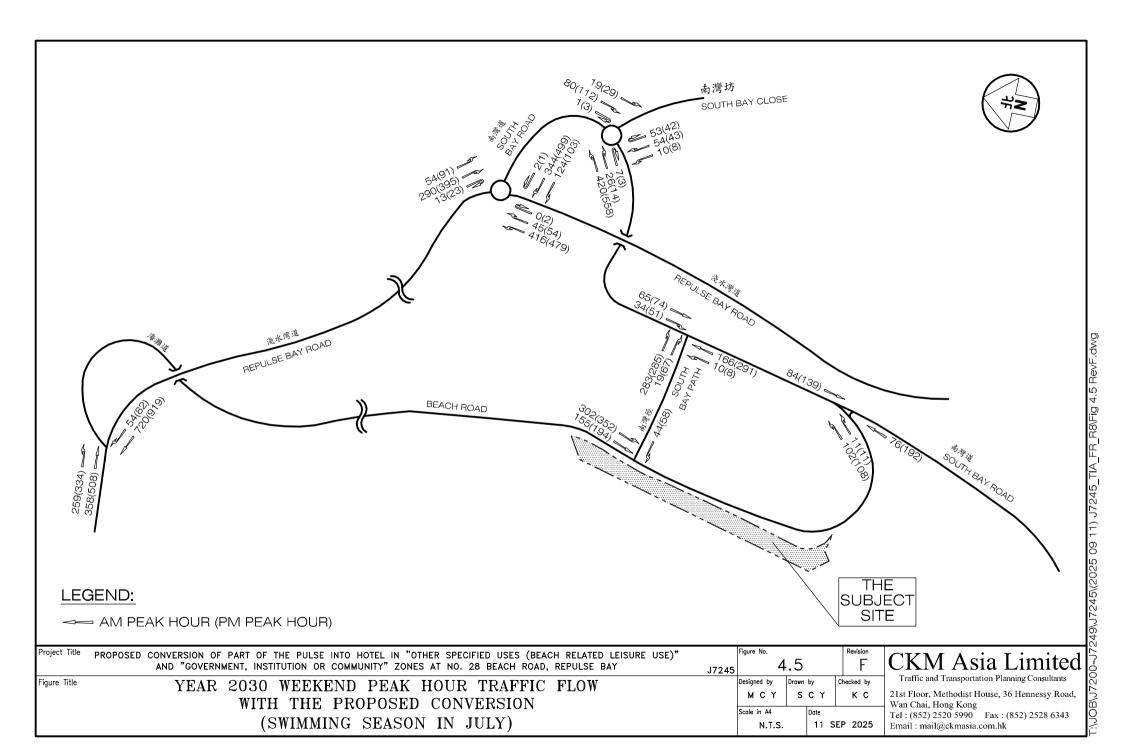


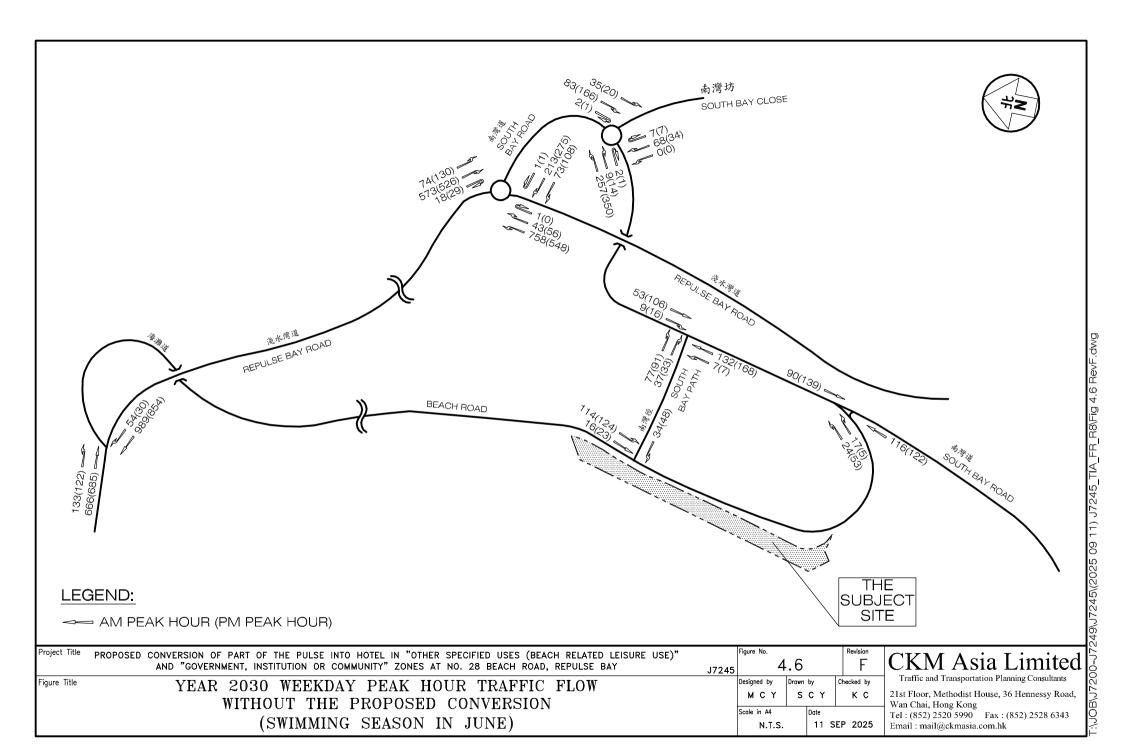


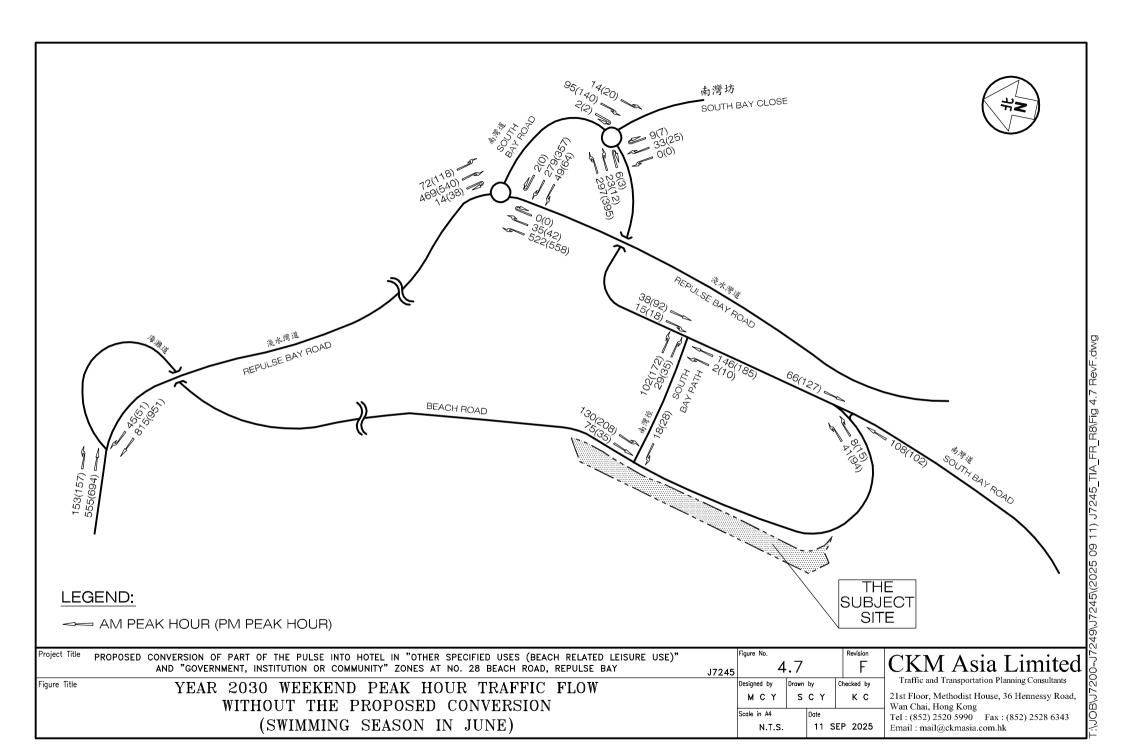


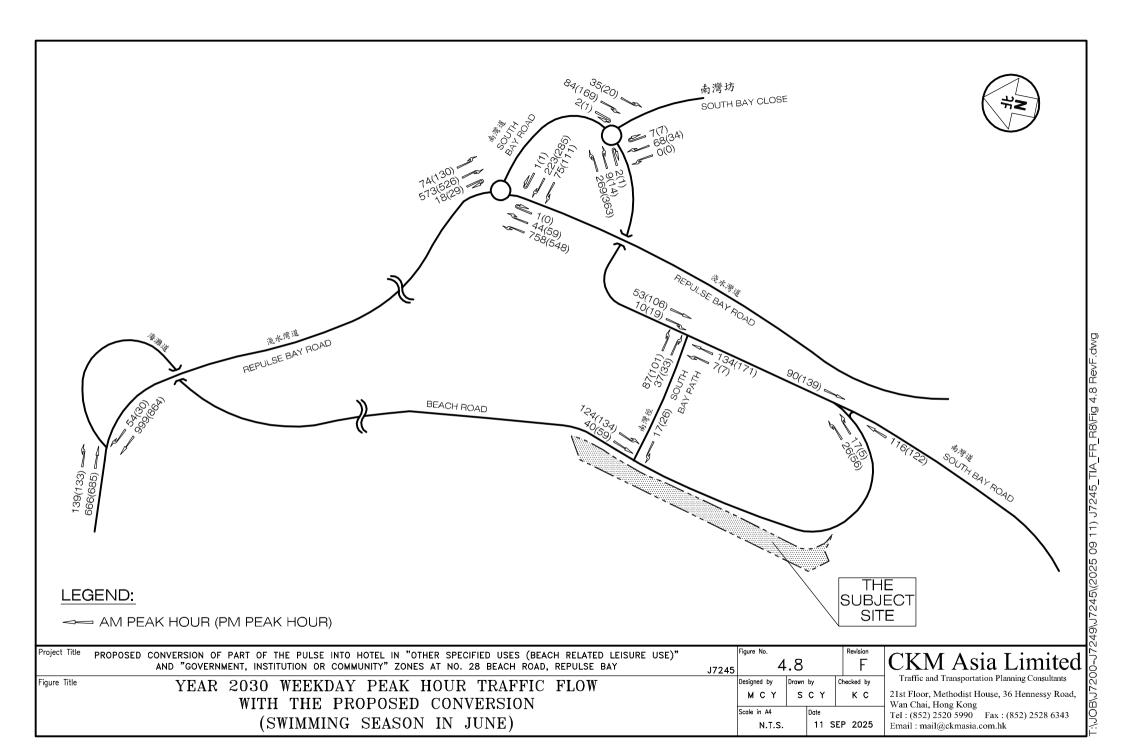


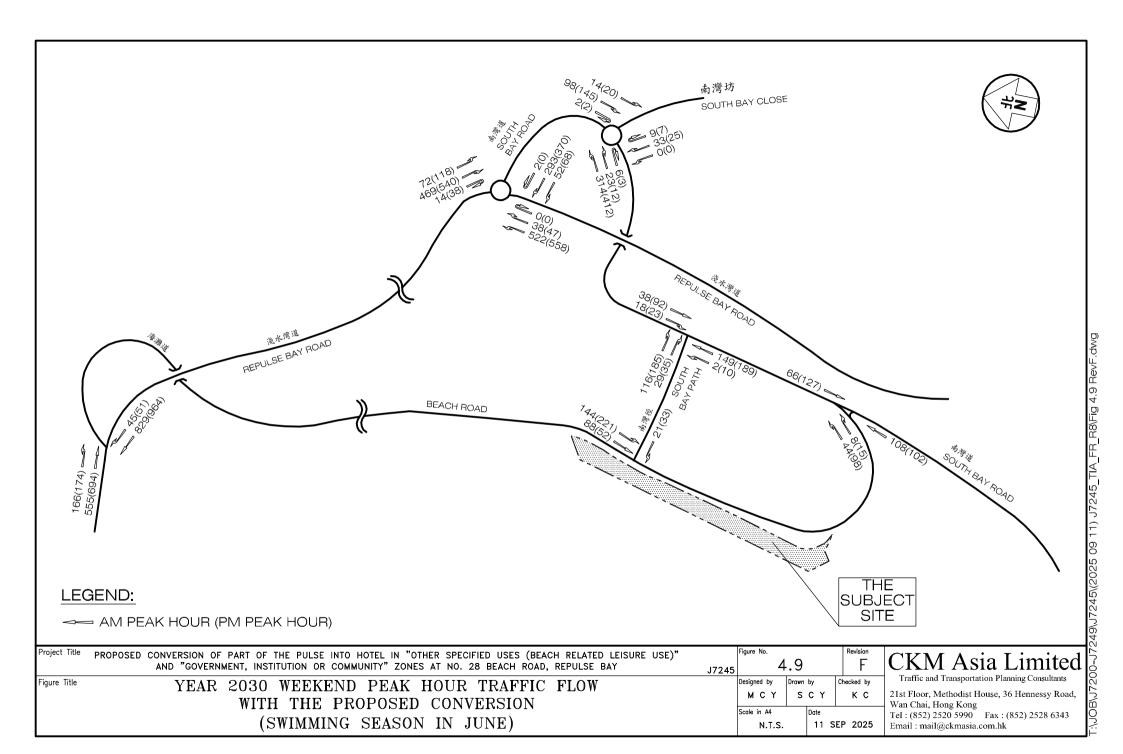


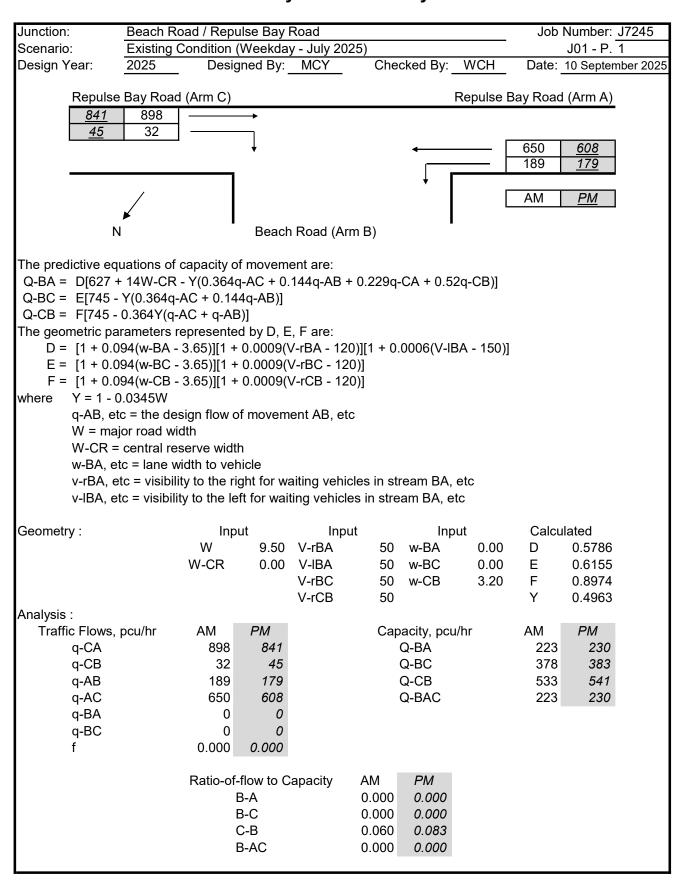


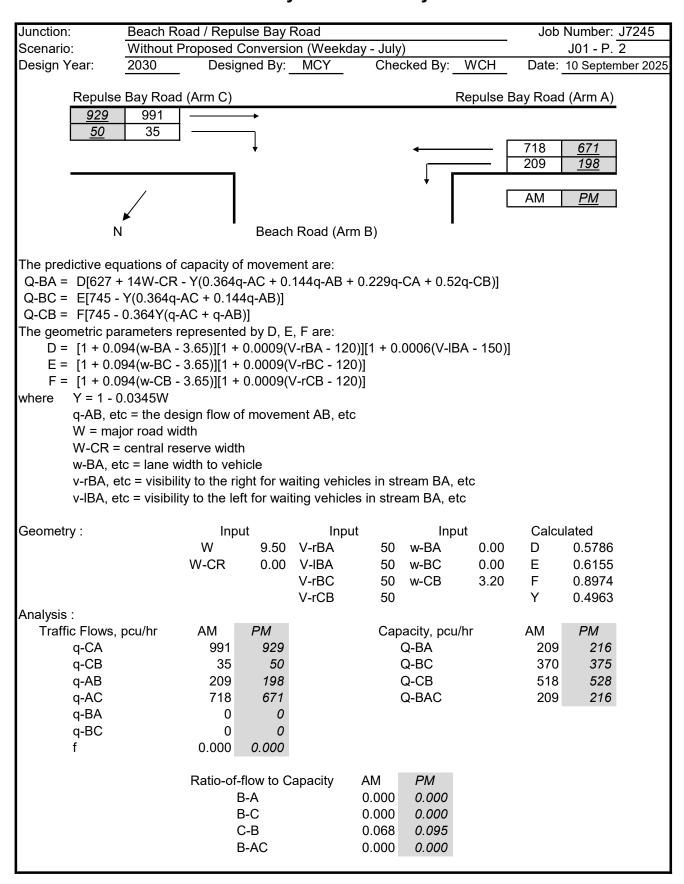


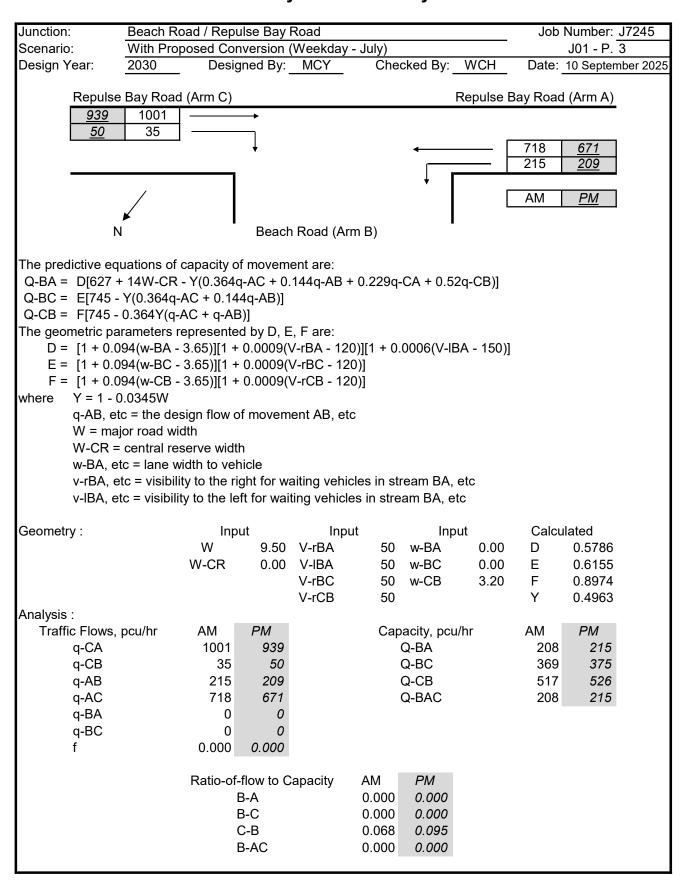


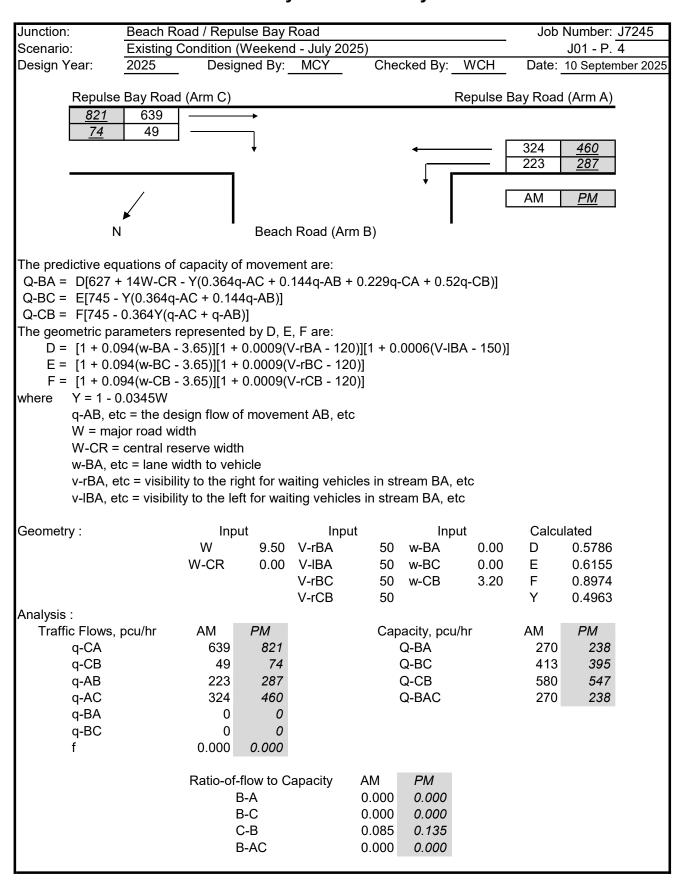


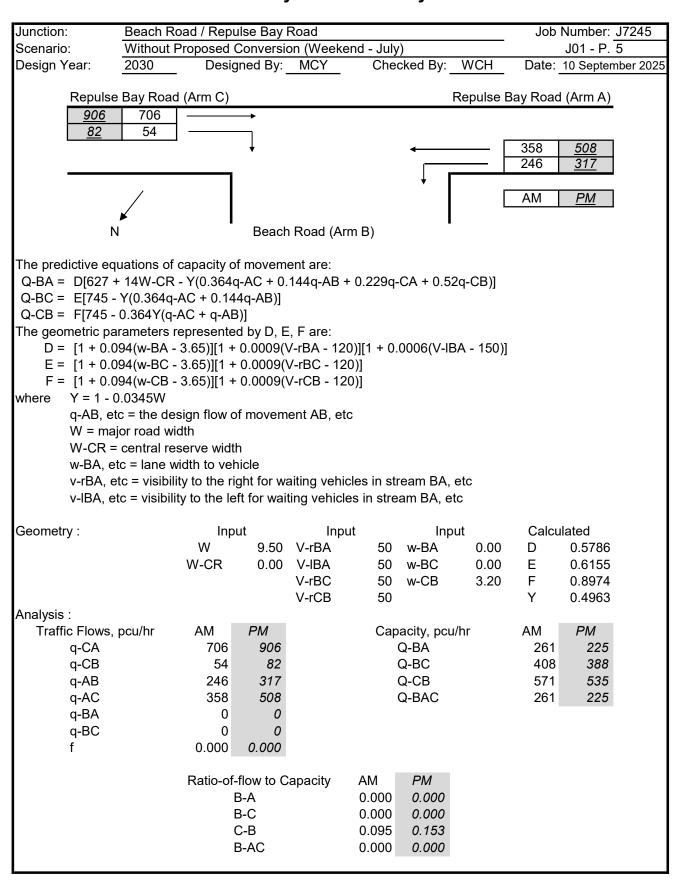


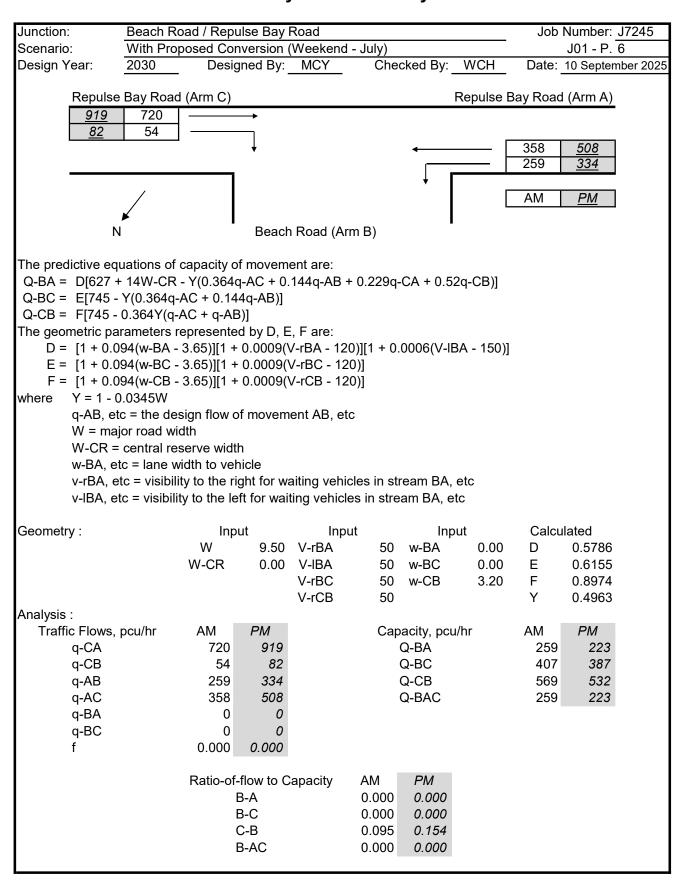


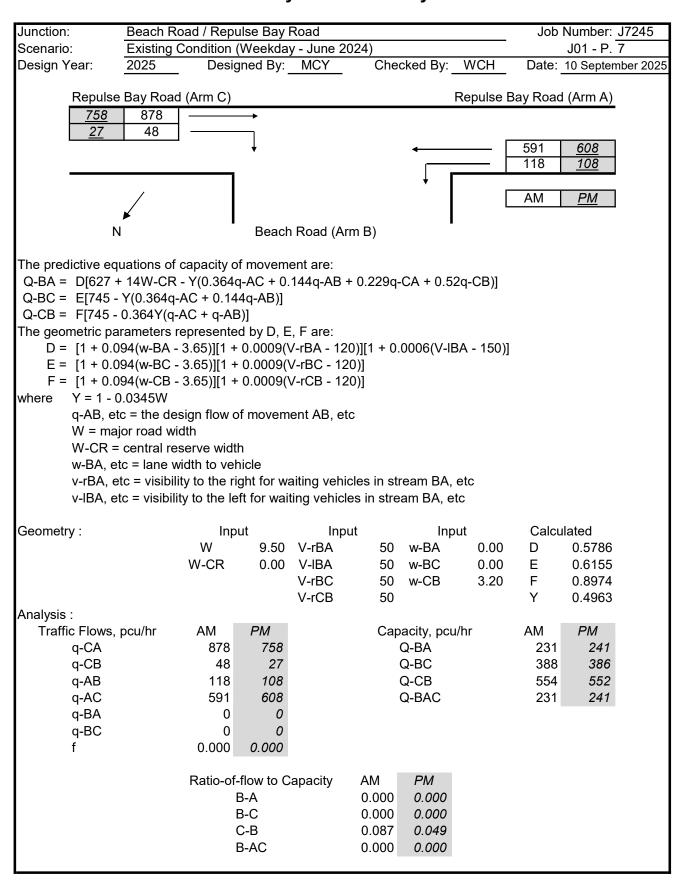


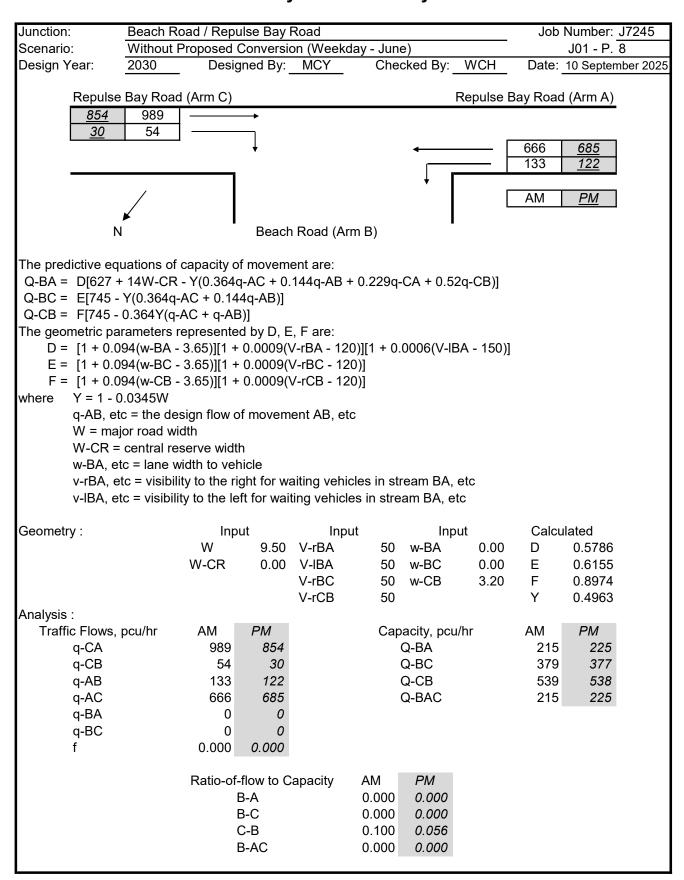


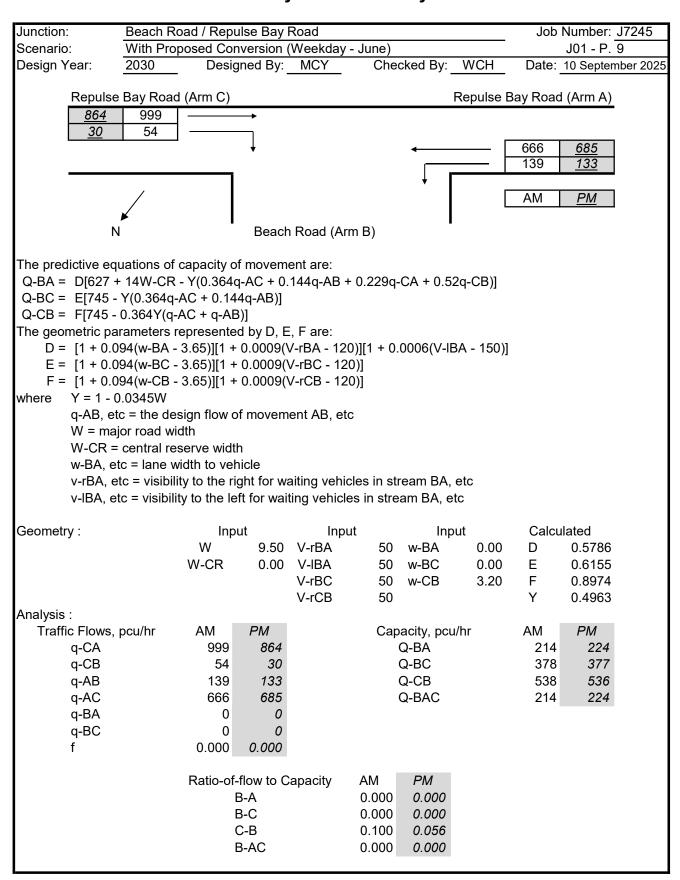


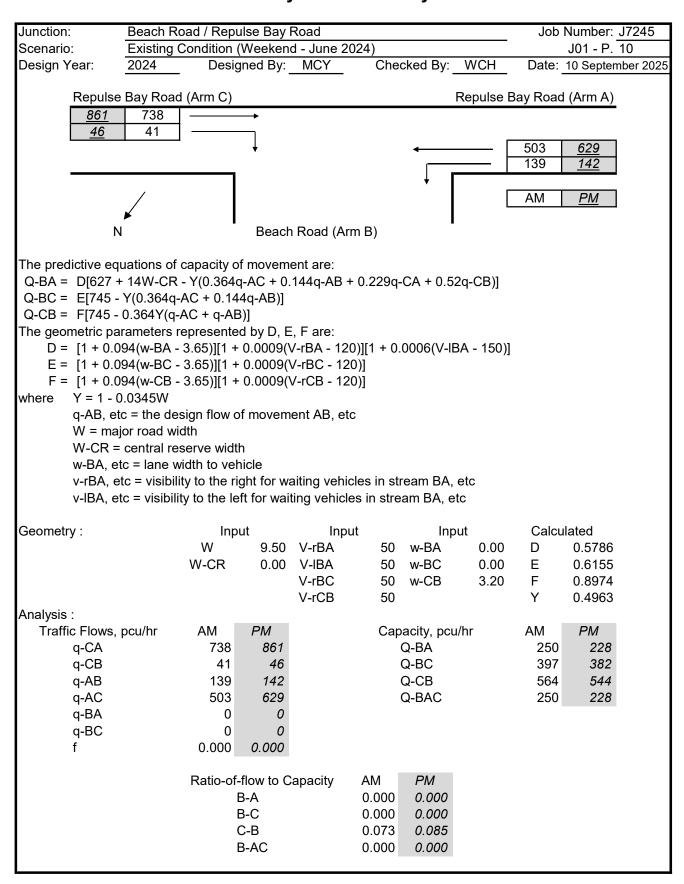


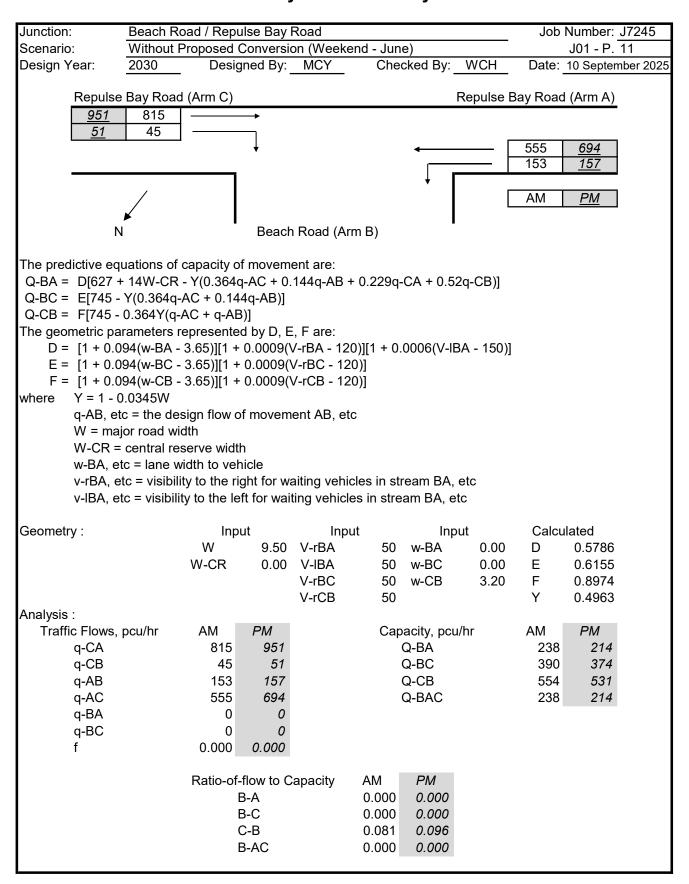


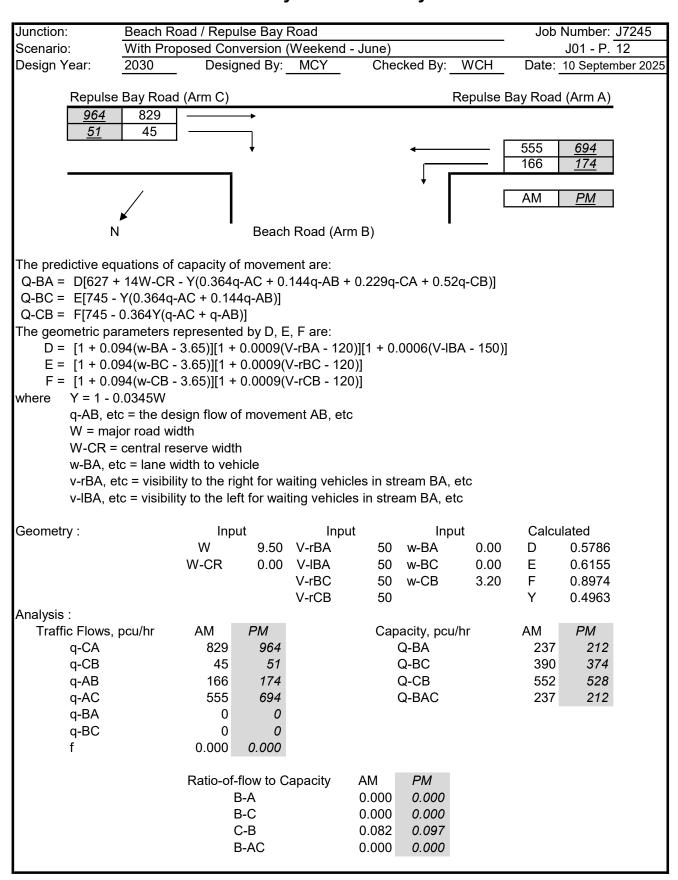


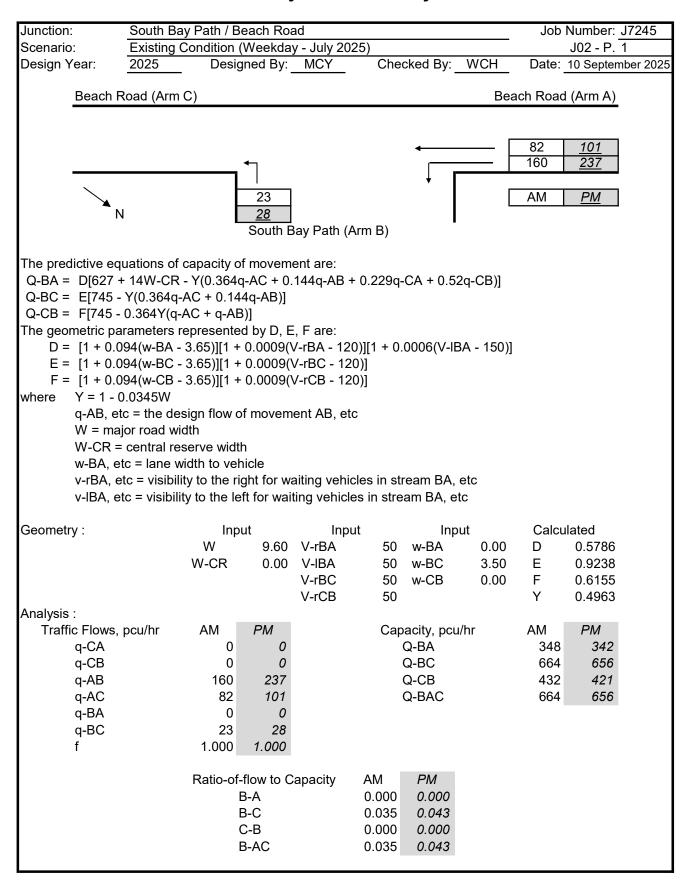


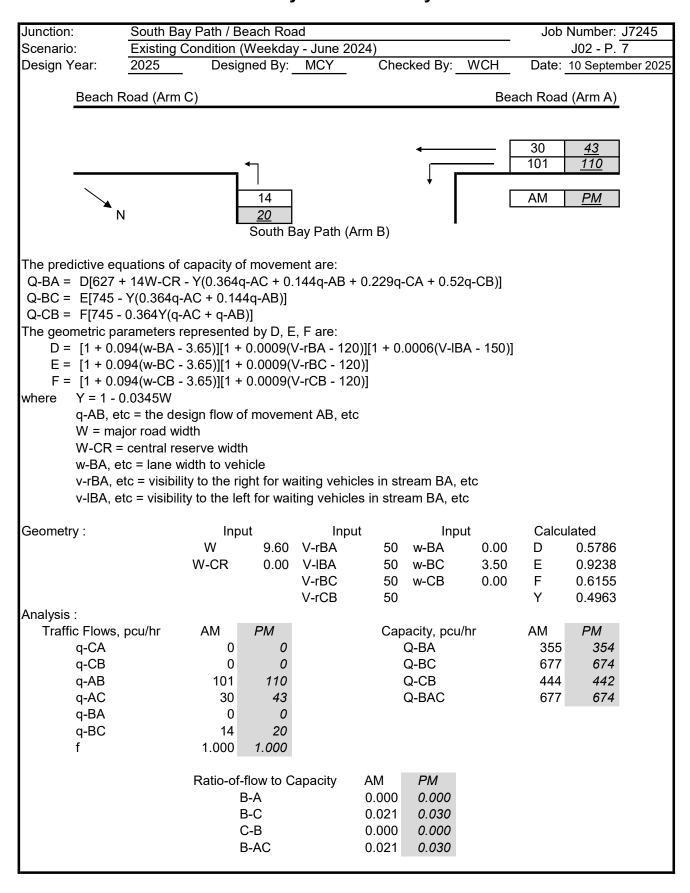






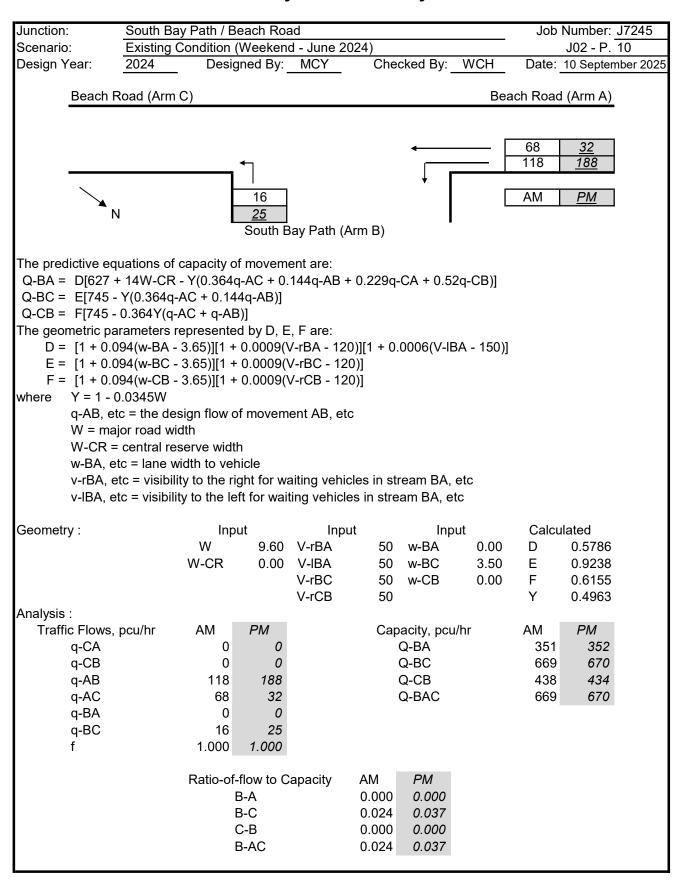


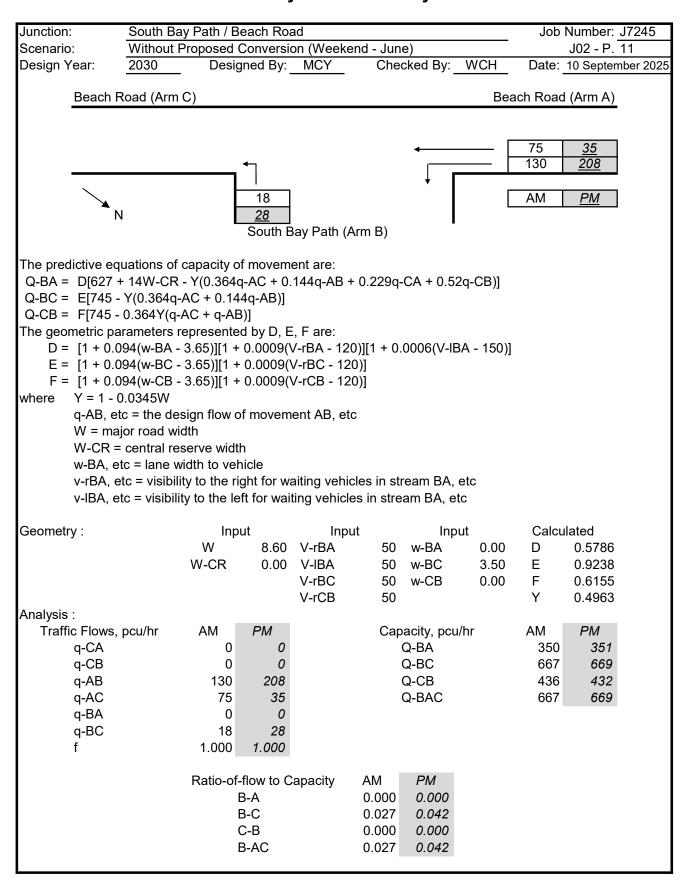


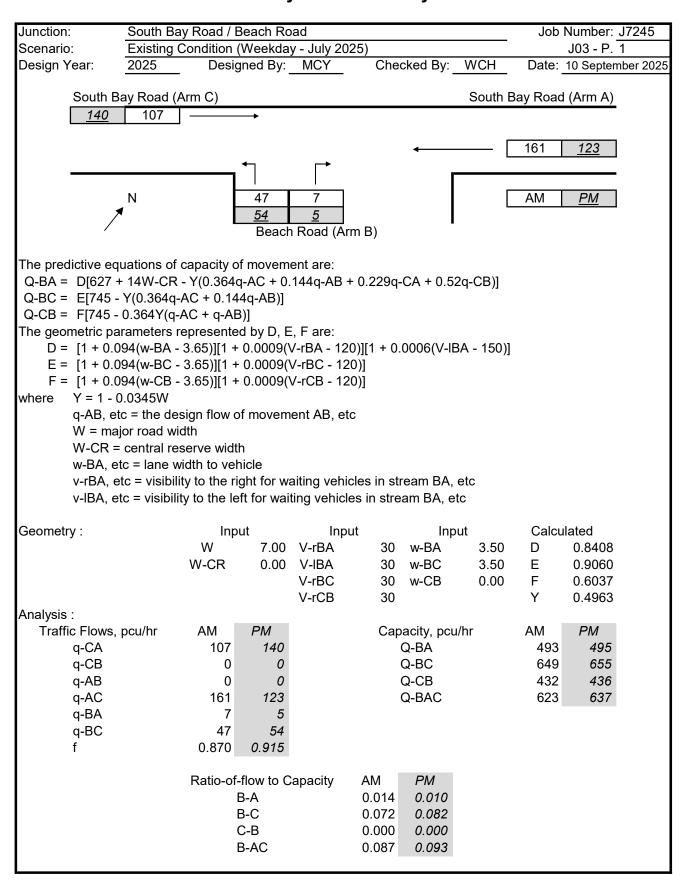

lunation	Couth Day Dath /	Booch Do	- d				lah	Number 170	15
Junction:	South Bay Path /			ove lighe	\		Job	Number: J72	.45
Scenario:	Without Proposed				ked By:	MCH	Data	J02 - P. 2	2025
Design Year:	2030 Des	igned By:	IVICT	Cried	жей бу	VVCH	Date.	10 September	2025
Beach R	oad (Arm C)					Bea	ch Road	(Arm A)	
	,							,	
		25 31			<u></u>	<u> </u>	91 177 AM	112 262 PM	
l 'N			Bay Path (A	rm B)	ı				
Q-BA = D[627 + Q-BC = E[745 - Q-CB = F[745 - The geometric particle particl	uations of capacity 14W-CR - Y(0.364 Y(0.364q-AC + 0.1 0.364Y(q-AC + q-A rameters represent 94(w-BA - 3.65)][1 94(w-BC - 3.65)][1 .0345W c = the design flow or road width central reserve wid c = lane width to ve c = visibility to the c = visibility to the	4q-AC + 0. 44q-AB)] ed by D, E + 0.0009(\(\frac{1}{2}\) + 0.0009(\(\frac{1}{2}\) of movemath ehicle right for wa	144q-AB + E, F are: V-rBA - 120 V-rBC - 120 V-rCB - 120 ent AB, etc	())][1 + 0.())]))] les in str	0006(V-IB <i>A</i> eam BA, e	tc			
Geometry :	In	put	Inpu	t	Inpu	ŧ	Calcu	lated	
	W W-CR	•	V-rBA V-IBA V-rBC V-rCB	50	w-BA w-BC w-CB	0.00 3.50 0.00	D E F Y	0.5786 0.9238 0.6155 0.4963	
Analysis :									
Traffic Flows, q-CA q-CB q-AB q-AC q-BA q-BC f	ocu/hr AM 0 0 177 91 0 25 1.000	0 262 112 0 31		(acity, pcu/ł Q-BA Q-BC Q-CB Q-BAC	nr	AM 346 661 429 661	PM 340 652 417 652	
	Ratio-c	f-flow to C B-A B-C C-B B-AC	apacity	AM 0.000 0.038 0.000 0.038	PM 0.000 0.048 0.000 0.048				

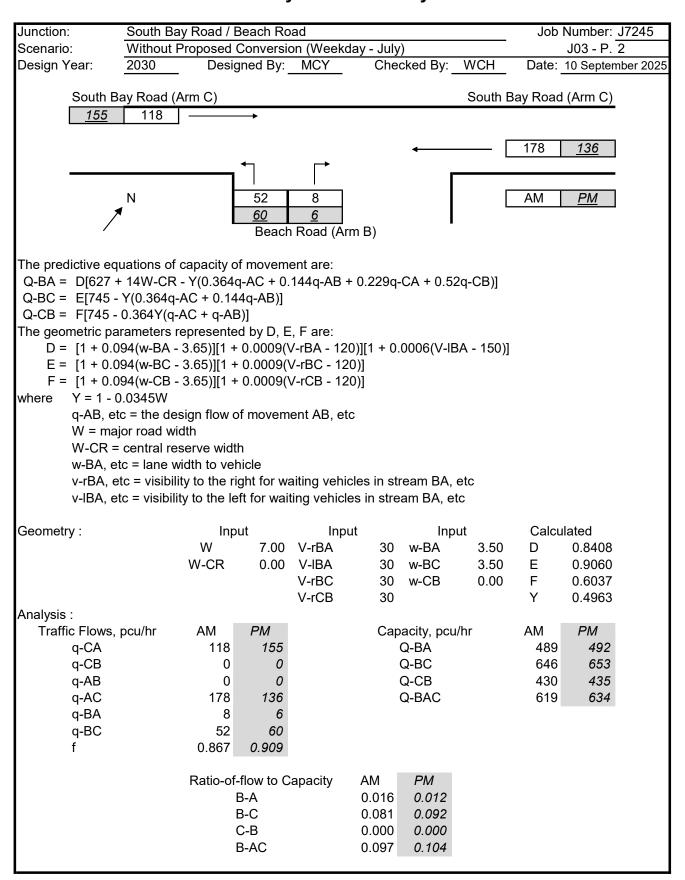
lunation: Sout	h Pay Dath / D	ooob Po	a d				loh	Number: 17245
	h Bay Path / B Proposed Cor			lub/\			JOD	Number: <u>J7245</u> J02 - P. 3
Design Year: 2030	•	ned By:	<u> </u>	• •	ked By:	W/CH	Date:	10 September 2025
Design real. 2030		Jileu by.	IVICT	Cilec	ned by	VVCII	Date.	10 September 2023
Beach Road (Arm C)					Bea	ch Road	l (Arm A)
	,							<u> </u>
					←	— [97	<u>123</u>
		←					187	<u>272</u>
		<u> </u>			+	_		
\		26				L	AM	<u>PM</u>
N	L	<u>34</u>	D 11 /4	Β)				
		South E	Bay Path (A	rm B)				
The prodictive equation	a of canacity o	f movem	ont ara:					
The predictive equation Q-BA = D[627 + 14W				0 220a	CA + 0.52	g_CB\I		
Q-BC = $E[745 - Y(0.3)]$	•	-	1-7-Y-VD T	0.229 4 -	UA 1 0.32	d-OD)]		
Q-CB = $F[745 - 0.364]$	•	. /-						
The geometric paramet		<i>,</i> -	. F are:					
D = [1 + 0.094(w-	•	•))][1 + 0.0	0006(V-IB	A - 150)1		
E = [1 + 0.094(w-	,	•		,	(7,1		
F = [1 + 0.094(w-	,	•		, -				
where Y = 1 - 0.0345	SW .							
q-AB, etc = th	e design flow o	of movem	ent AB, etc	;				
W = major roa								
	al reserve widt							
The state of the s	ne width to vel							
	sibility to the ri	-	-					
v-IBA, etc = vi	sibility to the le	ft for wai	ting vehicle	s in strea	am BA, etc	3		
Geometry :	Inp	ut	Inpu	t	Inpu	ıt	Calcu	lated
	W		V-rBA		w-BA	0.00	D	0.5786
	W-CR	0.00	V-IBA	50	w-BC	3.50	E	0.9238
			V-rBC	50	w-CB	0.00	F	0.6155
			V-rCB	50			Υ	0.4963
Analysis :	_							
Traffic Flows, pcu/h		PM			acity, pcu/	hr	AM	PM
q-CA	0	0			Q-BA		345	339
q-CB	0	0			Q-BC		660	650
q-AB	187	272			Q-CB		427	415
q-AC	97	123		(Q-BAC		660	650
q-BA	0	0						
q-BC f	26 1.000	34 1.000						
'	1.000	1.000						
	Ratio-of-	-flow to C	apacity	AM	PM			
		B-A		0.000	0.000			
		B-C		0.039	0.052			
		C-B		0.000	0.000			
		B-AC		0.039	0.052			
I								

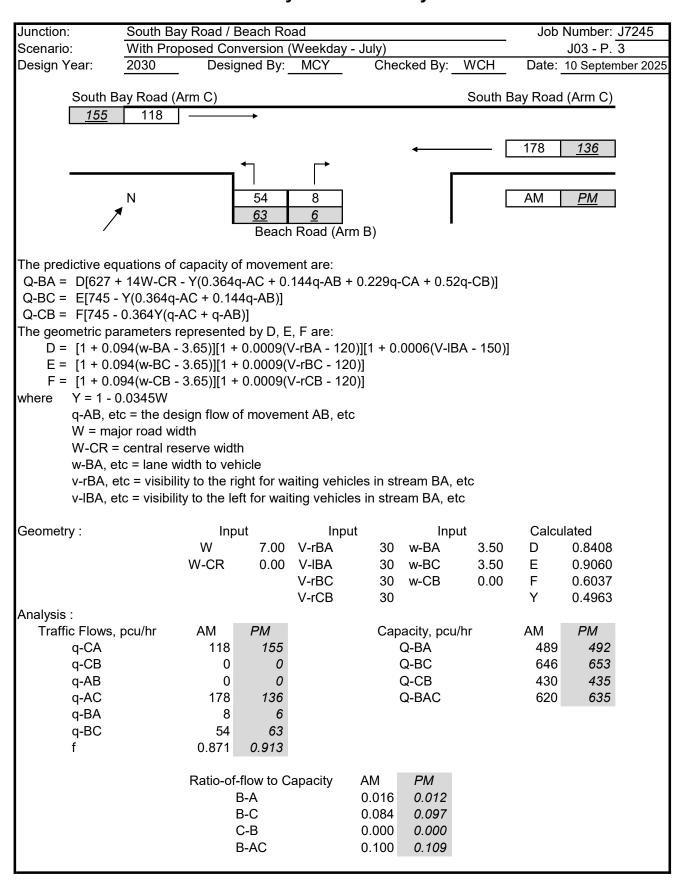
lunation. (Courth Day Dath / D	ooob Do	a d				lah	Number 1704E
_	South Bay Path / B			05)			JOD	Number: <u>J7245</u> J02 - P. 4
_	Existing Condition 2025 Design	gned By:			ked By:	\/\CH	Date:	10 September 2025
Design real.	<u>2023</u> Desig	gned by.	IVICT	Cilec	лец by. <u> </u>	VVCII	Date.	10 September 2020
Beach Ro	ad (Arm C)					Bea	ch Road	l (Arm A)
	,							<u> </u>
					←		129	<u>160</u>
		$\overline{}$					261	<u>307</u>
		<u> </u>			+	_		
\	ļ	37				L	AM	<u>PM</u>
N	L	<u>48</u>	D (1 /A	Β)				
		South E	Bay Path (A	rm B)				
The predictive equa	ations of canacity o	of movem	ent are:					
Q-BA = D[627 + 1				0.229a-	CA + 0 52	a-CR)1		
Q-BC = E[745 - Y]	,	•		JUq	J. C. U.UZ	7 00/]		
Q-CB = F[745 - 0	•	. /-						
The geometric para		/ -	F are:					
	4(w-BA - 3 ['] .65)][1 +	•))][1 + 0.0	0006(V-IB	A - 150)]		
_	4(w-BC - 3.65)][1 +	•		,	`	/ -		
	4(w-CB - 3.65)][1 +	0.0009(V-rCB - 120))]				
where $Y = 1 - 0.0$								
	= the design flow of	of movem	ent AB, etc	;				
	r road width							
	entral reserve widt							
	= lane width to vel			laa : a4	D A -			
	= visibility to the ri = visibility to the le							
V-IDA, etc	- visibility to trie ie	it ioi wai	ung vernole	5 111 511 6	aiii DA, Gi	,		
Geometry :	Inp	ut	Inpu	t	Inpu	ıt	Calcu	lated
	W	9.60	V-rBA	50	w-BA	0.00	D	0.5786
	W-CR	0.00	V-IBA	50	w-BC	3.50	Е	0.9238
			V-rBC	50	w-CB	0.00	F	0.6155
			V-rCB	50			Υ	0.4963
Analysis :	,,	5//		_	., .	•		51.4
Traffic Flows, po		PM			acity, pcu/	hr	AM	PM
q-CA	0	0			Q-BA		338	333
q-CB	0	0 207			Q-BC		649 415	641 407
q-AB q-AC	261 129	307 160			Q-CB Q-BAC		649	407 641
q-AC q-BA	0	0		,	∝-DA €		049	071
q-BA q-BC	37	48						
f q-bo	1.000	1.000						
	Ratio-of	-flow to C	apacity	AM	PM			
		B-A	-	0.000	0.000			
		B-C		0.057	0.075			
		С-В		0.000	0.000			
		B-AC		0.057	0.075			
I								

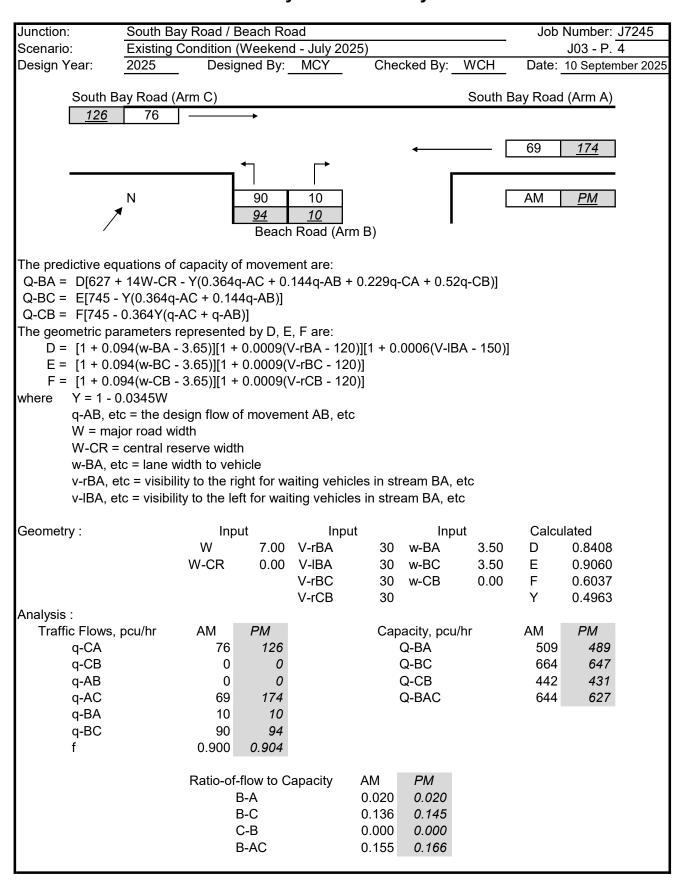

lunction:	South Poy Dath / P	loooh Do	ad				loh	Number: J7245
-	South Bay Path / B			nd luly	١		JOD	J02 - P. 5
-	Without Proposed 2030 Designation	gned By:) cked By:	WCH	Date:	10 September 2025
Design real.	<u>2030</u> Desi	giled by.	IVICT	Cile	лец by. <u> </u>	VVCII	Date.	10 September 2025
Beach Ro	oad (Arm C)					Bea	ch Road	I (Arm A)
	•							
					•		142	<u>177</u>
		←					288	<u>339</u>
		<u> </u>			* I	_		
\		41				L	AM	<u>PM</u>
N	L	<u>53</u>) D - 41- /A	D\	ı			
		South E	Bay Path (A	rm B)				
The predictive equa	ations of capacity o	of movem	ent are·					
	14W-CR - Y(0.364			0.229a-	CA + 0.52	a-CB)I		
_	/(0.364q-AC + 0.14	•				-1 /1		
•	.364Y(q-AC + q-AE	. /-						
_	ameters represente	<i>,</i> -	, F are:					
	4(w-BA - 3.65)][1 +				0006(V-IB	A - 150)]		
	4(w-BC - 3.65)][1 +	,		/ -				
	4(w-CB - 3.65)][1 +	- 0.0009(V-rCB - 120	0)]				
where $Y = 1 - 0.0$		_						
-	= the design flow of	of movem	ent AB, etc	;				
_ ·	r road width	ı.						
	central reserve widt							
•	: = lane width to vel : = visibility to the r		aiting vehic	lee in etr	eam BA e	to		
	: = visibility to the le	-	-					
V 15/1, Cit	violomity to the le	it for war	ing vernoic	30 111 011 01	ani Di i, cic	,		
Geometry :	Inp	ut	Inpu	t	Inpu	t	Calcu	ılated
	W	8.60	V-rBA	50	w-BA	0.00	D	0.5786
	W-CR	0.00	V-IBA	50	w-BC	3.50	Е	0.9238
			V-rBC	50	w-CB	0.00	F	0.6155
			V-rCB	50			Υ	0.4963
Analysis :	/l	D1.1		_	:4 "		0.04	7044
Traffic Flows, p		PM		•	acity, pcu/l	nr	AM	PM 330
q-CA	0	0			Q-BA Q-BC		336 646	330 636
q-CB q-AB	288	0 339			д-вС Q-CB		411	401
q-AB q-AC	142	339 177			Q-СБ Q-BAC		646	636
q-AC q-BA	0	0		,	a-D/LO		040	030
q-BC	41	53						
f f	1.000	1.000						
	Ratio-of	-flow to C	apacity	AM	PM			
		B-A		0.000	0.000			
		B-C		0.064	0.083			
		С-В		0.000	0.000			
		B-AC		0.064	0.083			

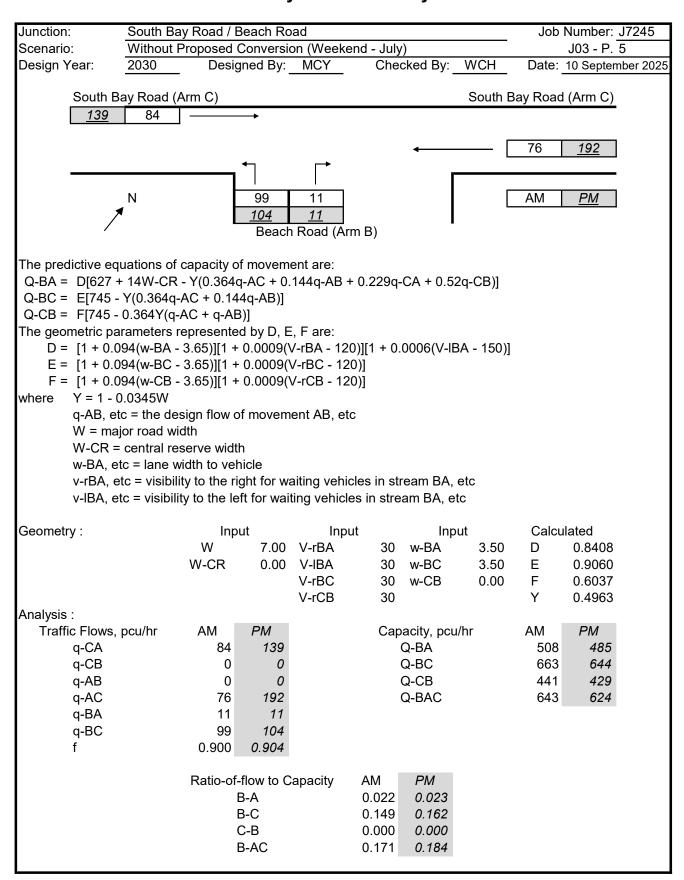

Junction: S	outh Bay Path / E	Beach Roa	ad				Job	Number: J7245
	/ith Proposed Co			- July)				J02 - P. 6
Design Year: 20	Desi	gned By:	MCY	Chec	ked By:	WCH_	Date:	10 September 2025
Beach Roa	d (Arm C)					Bea	ich Road	(Arm A)
N		44 58 South E	Bay Path (A	rm B)		<u> </u>	155 302 AM	<u>194</u> <u>352</u> <u>PM</u>
E = [1 + 0.094] F = [1 + 0.094] where Y = 1 - 0.03 q-AB, etc = W = major W-CR = ce w-BA, etc = v-rBA, etc =	4W-CR - Y(0.364 0.364q-AC + 0.14 864Y(q-AC + q-A) neters represente (w-BA - 3.65)][1 - (w-BC - 3.65)][1 - (w-CB - 3.65)][1 - 345W	q-AC + 0.14q-AB)] 3)] ed by D, E - 0.0009(\(^1 + 0.0009(^1 + 0.000	144q-AB + E, F are: V-rBA - 120 V-rBC - 120 V-rCB - 120 ent AB, etc))][1 + 0.())]))] ; les in str	0006(V-IB <i>A</i> eam BA, e	A - 150)] tc		
Geometry :	Inp W W-CR		Inpu V-rBA V-IBA V-rBC	50 50 50	Inpu w-BA w-BC w-CB	0.00 3.50 0.00	Calcu D E F	0.5786 0.9238 0.6155
A l !			V-rCB	50			Υ	0.4963
Analysis : Traffic Flows, pci q-CA q-CB q-AB q-AC q-BA q-BC f	u/hr AM 0 0 302 155 0 44 1.000	PM 0 0 352 194 0 58 1.000		(acity, pcu/ł Q-BA Q-BC Q-CB Q-BAC	nr	AM 334 642 408 642	PM 328 633 398 633
	Ratio-of	f-flow to C B-A B-C C-B B-AC	apacity	AM 0.000 0.068 0.000 0.068	PM 0.000 0.092 0.000 0.092			

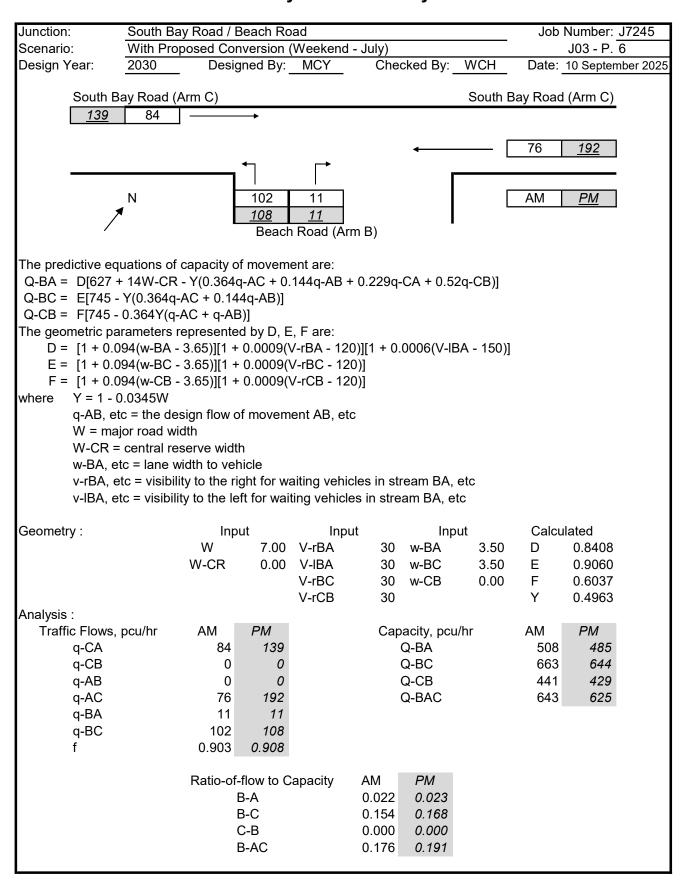

Junction:	South Bay Path /	Beach Ro	ad				Job	Number: J7245
_	Without Proposed			ay - June	e)			J02 - P. 8
Design Year:	2030 Des	signed By:	MCY	Chec	ked By:	WCH_	Date:	10 September 2025
Beach Ro	oad (Arm C)					Bea	ich Road	(Arm A)
N		16 23 South E	3ay Path (A	rm B)		<u> </u>	34 114 AM	<u>48</u> <u>124</u> <u>PM</u>
E = [1 + 0.09] F = [1 + 0.09] where Y = 1 - 0.00] q-AB, etc W = majo W-CR = 00 w-BA, etc v-rBA, etc	14W-CR - Y(0.36 Y(0.364q-AC + 0.1 .364Y(q-AC + q-A ameters represent 4(w-BA - 3.65)][1 4(w-BC - 3.65)][1 4(w-CB - 3.65)][1	4q-AC + 0.144q-AB)] ted by D, E + 0.0009(' + 0.0009(' + 0.0009(' of movement dth ehicle right for wa	144q-AB + E, F are: V-rBA - 120 V-rBC - 120 V-rCB - 120 ent AB, etc	())][1 + 0.())]))] les in str	0006(V-IB <i>A</i> eam BA, e	tc		
Geometry :	In W W-CR	8.60 0.00	Inpu V-rBA V-IBA V-rBC	50 50 50	Inpu w-BA w-BC w-CB	0.00 3.50 0.00	Calcu D E F	0.5786 0.9238 0.6155
A			V-rCB	50			Υ	0.4963
Analysis : Traffic Flows, p q-CA q-CB q-AB q-AC q-BA q-BC f	cu/hr AM 0 114 34 0 16	0 124 48 0 0 3 23		(acity, pcu/ł Q-BA Q-BC Q-CB Q-BAC	nr	AM 355 675 442 675	PM 353 672 439 672
	Ratio-d	of-flow to C B-A B-C C-B B-AC	Capacity	AM 0.000 0.024 0.000 0.024	PM 0.000 0.034 0.000 0.034			

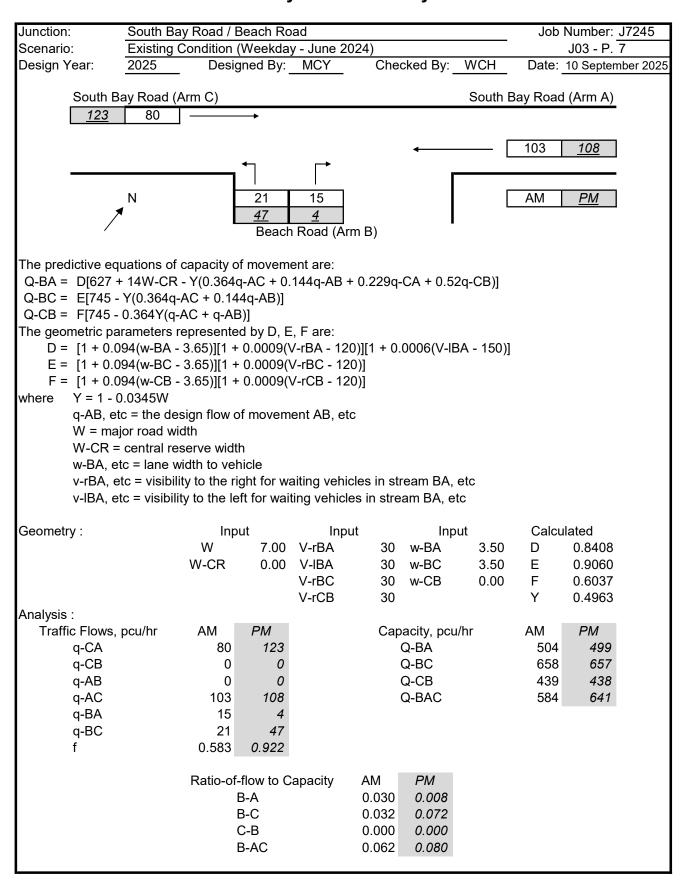

Junction: S	outh Bay Path / B	Beach Roa	ad				Job	Number: J7245
Scenario: W	/ith Proposed Co	nversion	Weekday -	June)				J02 - P. 9
Design Year: 2	030 Desi	gned By:	MCY	Chec	ked By:	WCH_	Date:	10 September 2025
Beach Roa	nd (Arm C)					Bea	ich Road	(Arm A)
N		17 26 South E	Bay Path (A	rm B)	<u></u>	<u> </u>	40 124 AM	<u>59</u> <u>134</u> <u>PM</u>
E = [1 + 0.094 F = [1 + 0.094 where Y = 1 - 0.00 q-AB, etc = W = major W-CR = ce w-BA, etc = v-rBA, etc =	4W-CR - Y(0.364 0.364q-AC + 0.14 364Y(q-AC + q-A meters represente (w-BA - 3.65)][1 - (w-BC - 3.65)][1 - (w-CB - 3.65)][1 - 345W the design flow	q-AC + 0.14q-AB)] B)] ed by D, E 0.0009(' 0.0009(' 0.0009(' thousand movements	144q-AB + E, F are: V-rBA - 120 V-rBC - 120 V-rCB - 120 ent AB, etc))][1 + 0.())]))] ; les in str	0006(V-IB <i>A</i> eam BA, e	A - 150)] tc		
Geometry :	Inp W W-CR		Inpu V-rBA V-IBA V-rBC	50 50 50	Inpu w-BA w-BC w-CB	0.00 3.50 0.00	Calcu D E F Y	0.5786 0.9238 0.6155
A I !			V-rCB	50			Y	0.4963
Analysis : Traffic Flows, pc q-CA q-CB q-AB q-AC q-BA q-BC f	u/hr AM 0 0 124 40 0 17 1.000	PM 0 0 134 59 0 26 1.000		(acity, pcu/ł Q-BA Q-BC Q-CB Q-BAC	nr	AM 353 673 440 673	PM 351 670 437 670
	Ratio-o	F-flow to C B-A B-C C-B B-AC	apacity	AM 0.000 0.025 0.000 0.025	PM 0.000 0.039 0.000 0.039			

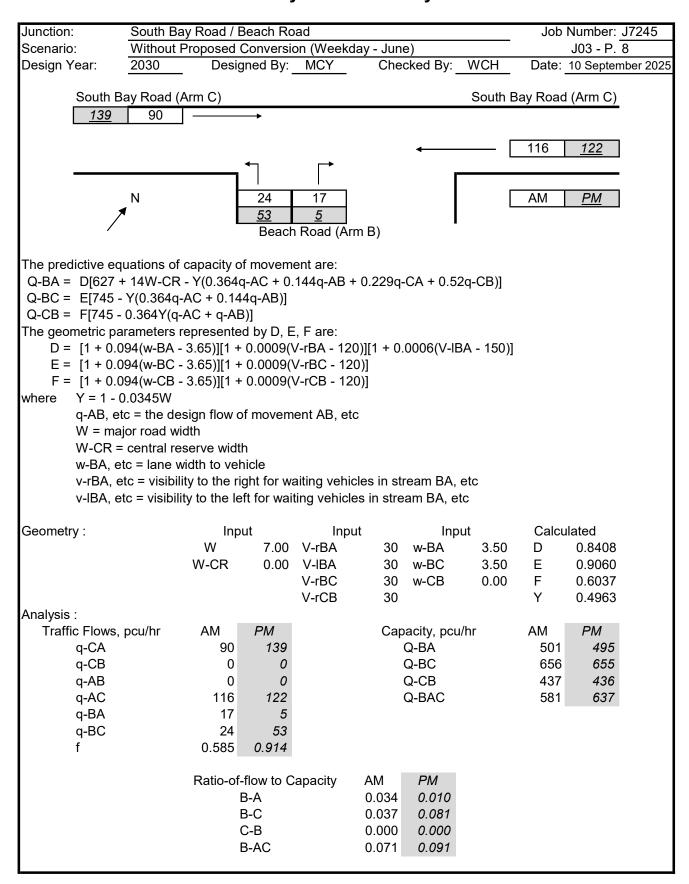


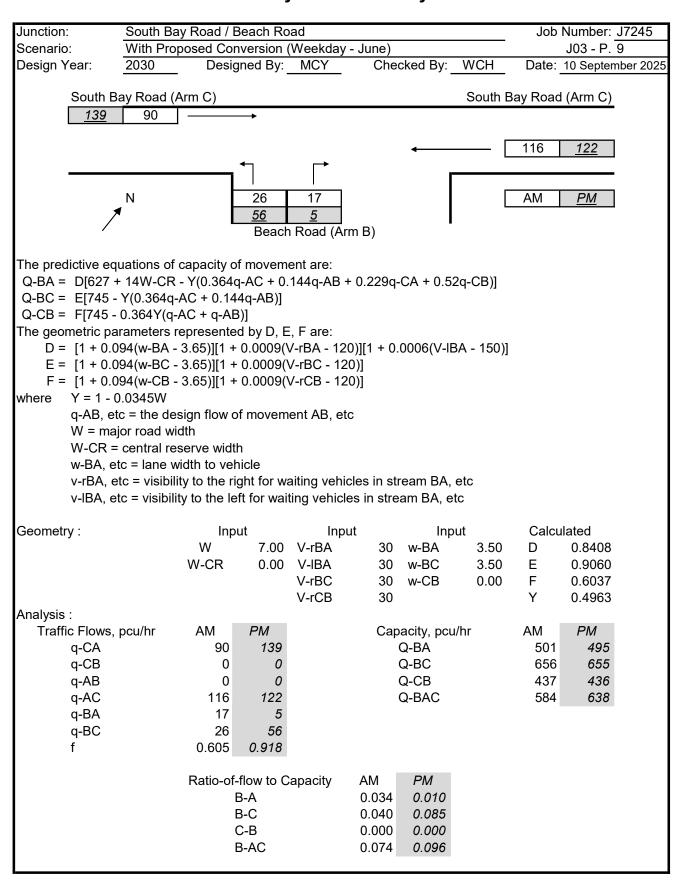


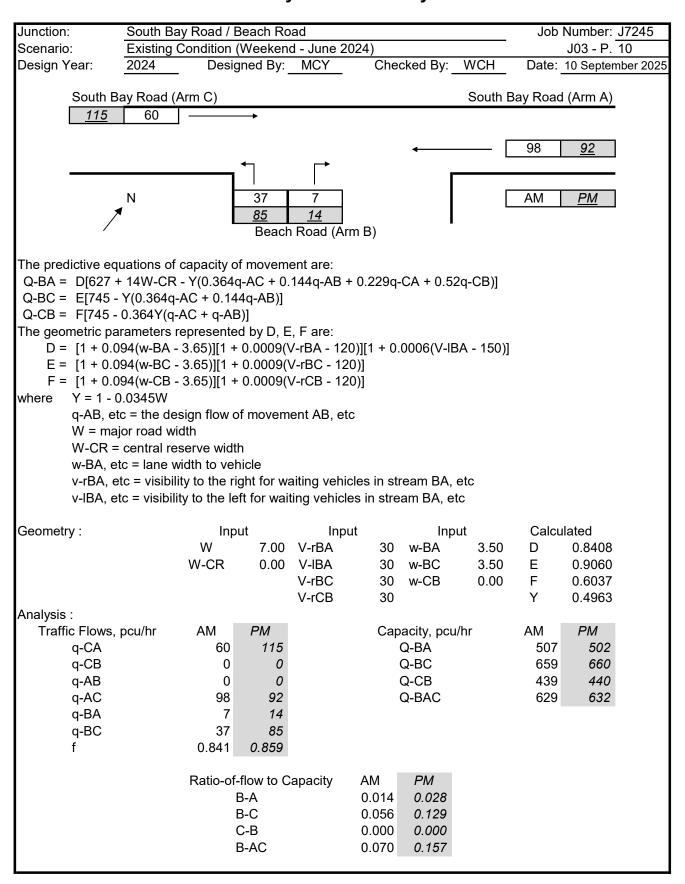

Junction: S	outh Bay Path / E	Beach Roa	ıd				Job	Number: J7245
	Vith Proposed Co			June)				J02 - P. 12
Design Year: 2	030 Desi	gned By:	MCY	Chec	ked By:	WCH_	Date:	10 September 2025
Beach Roa	ad (Arm C)					Bea	ch Road	(Arm A)
N		21 33 South B	ay Path (Ar	rm B)	<u></u>	<u> </u>	88 144 AM	<u>52</u> <u>221</u> <u>PM</u>
E = [1 + 0.094 F = [1 + 0.094 where Y = 1 - 0.0 q-AB, etc = W = major W-CR = ce w-BA, etc = v-rBA, etc	4W-CR - Y(0.364 (0.364q-AC + 0.14 364Y(q-AC + q-Al meters represente (w-BA - 3.65)][1 - (w-BC - 3.65)][1 - (w-CB - 3.65)][1 -	q-AC + 0.14q-AB)] 3)] ed by D, E 0.0009(\ 0.0009(\ 0.0009(\ th hicle ight for wa	144q-AB + , F are: /-rBA - 120 /-rBC - 120 /-rCB - 120 ent AB, etc)][1 + 0.()])])] es in str	0006(V-IB <i>A</i> eam BA, e	tc		
Geometry :	Inp W W-CR	8.60	Input V-rBA V-IBA V-rBC	50 50 50	Input w-BA w-BC w-CB	0.00 3.50 0.00	Calcu D E F Y	0.5786 0.9238 0.6155
A malveia			V-rCB	50			Y	0.4963
Analysis : Traffic Flows, pc q-CA q-CB q-AB q-AC q-BA q-BC f	u/hr AM 0 0 144 88 0 21	PM 0 0 221 52 0 33 1.000		(acity, pcu/r Q-BA Q-BC Q-CB Q-BAC	nr	AM 348 664 433 664	PM 348 665 428 665
	Ratio-of	F-flow to Co B-A B-C C-B B-AC	apacity	AM 0.000 0.032 0.000 0.032	PM 0.000 0.050 0.000 0.050			

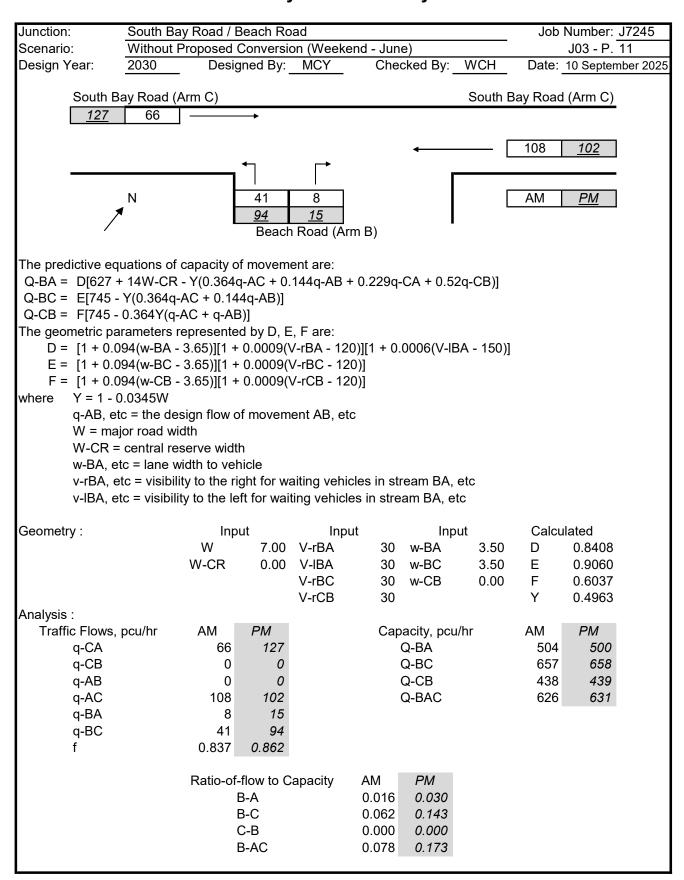


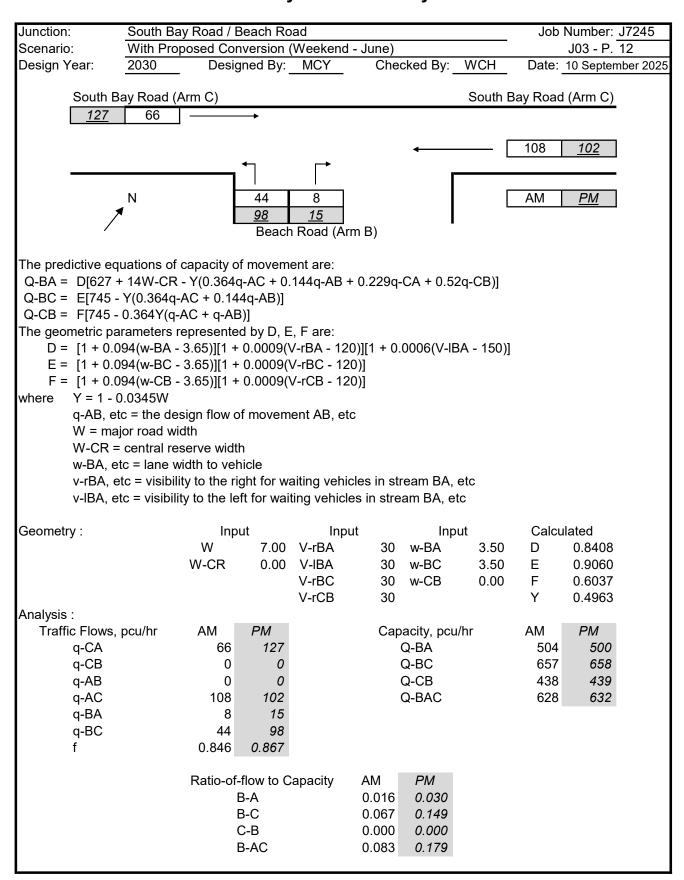


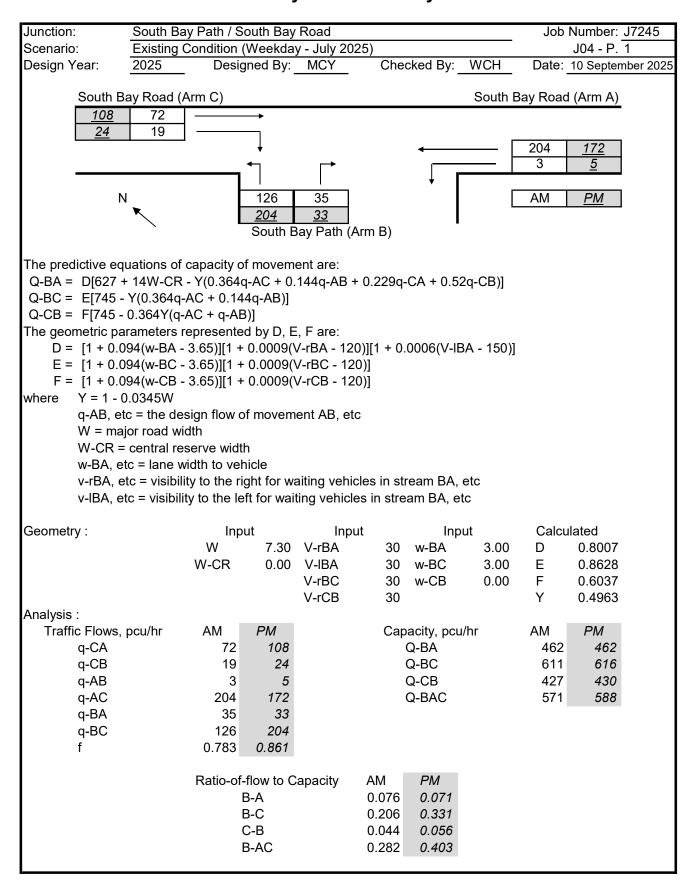


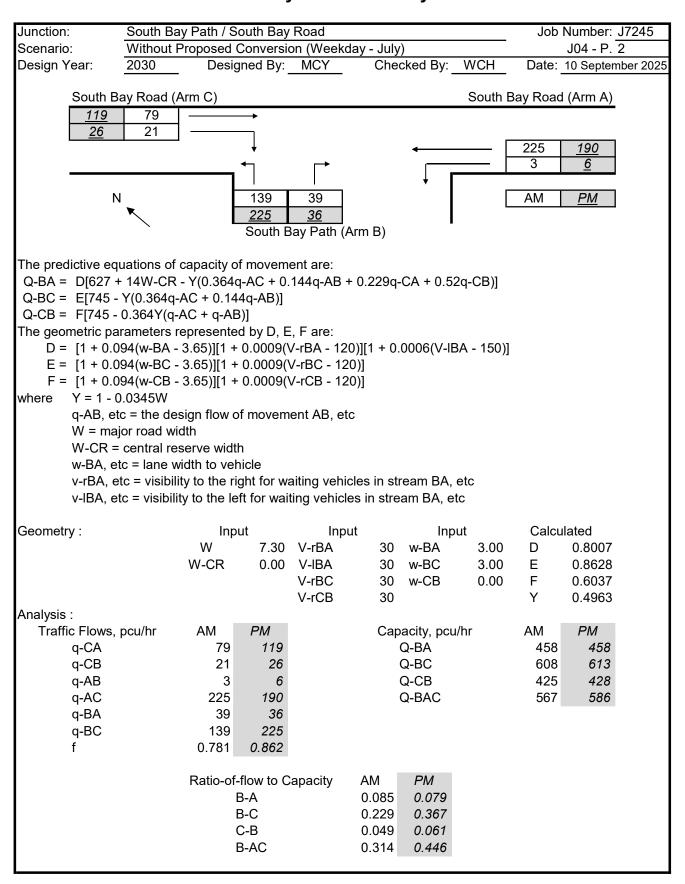


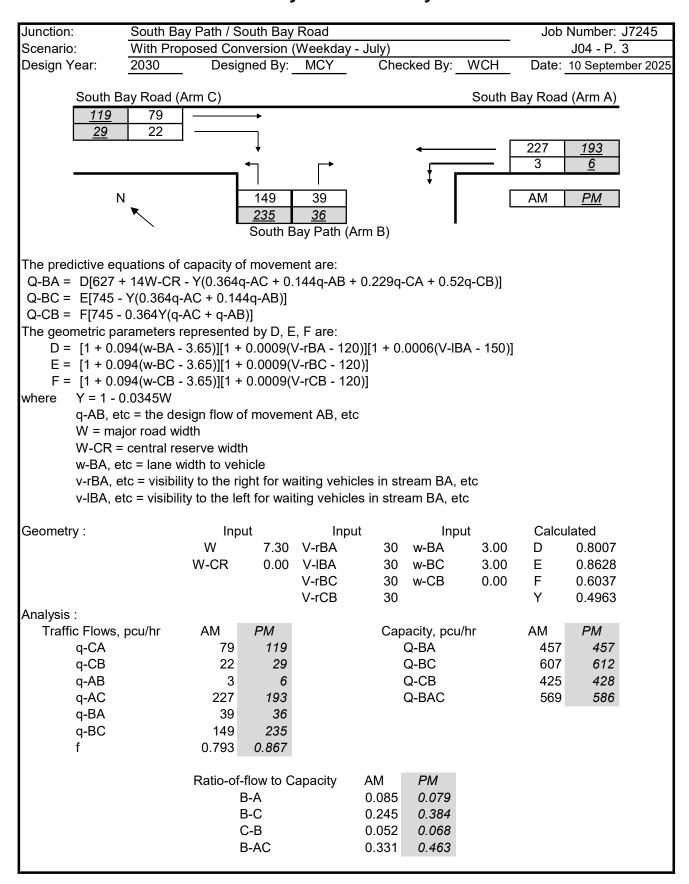


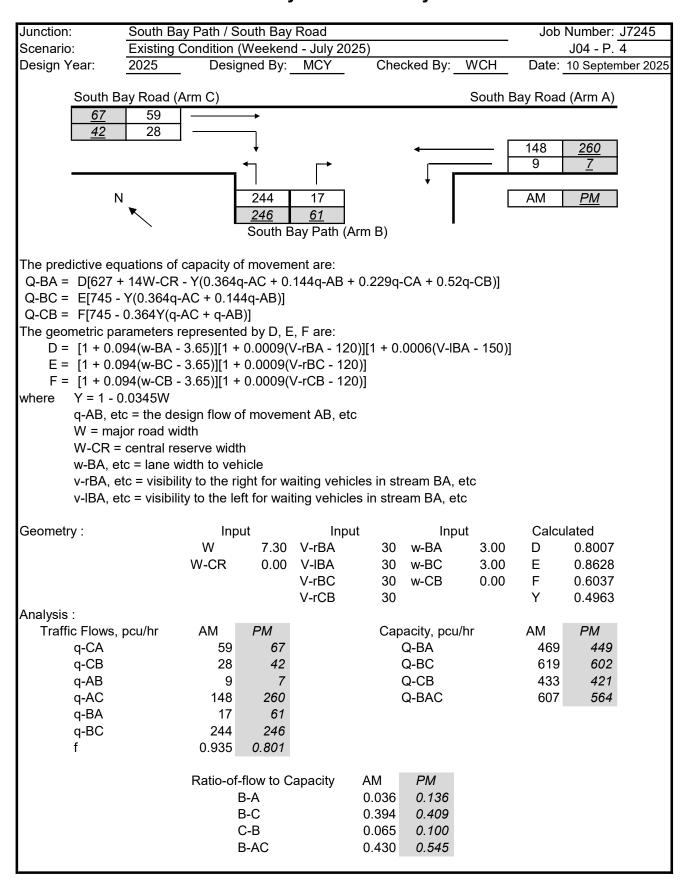


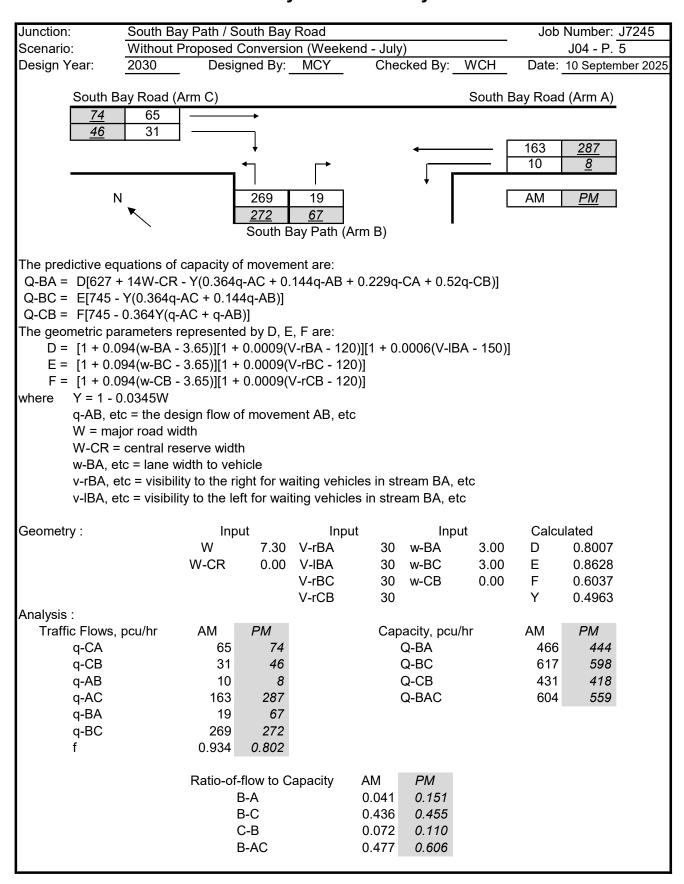


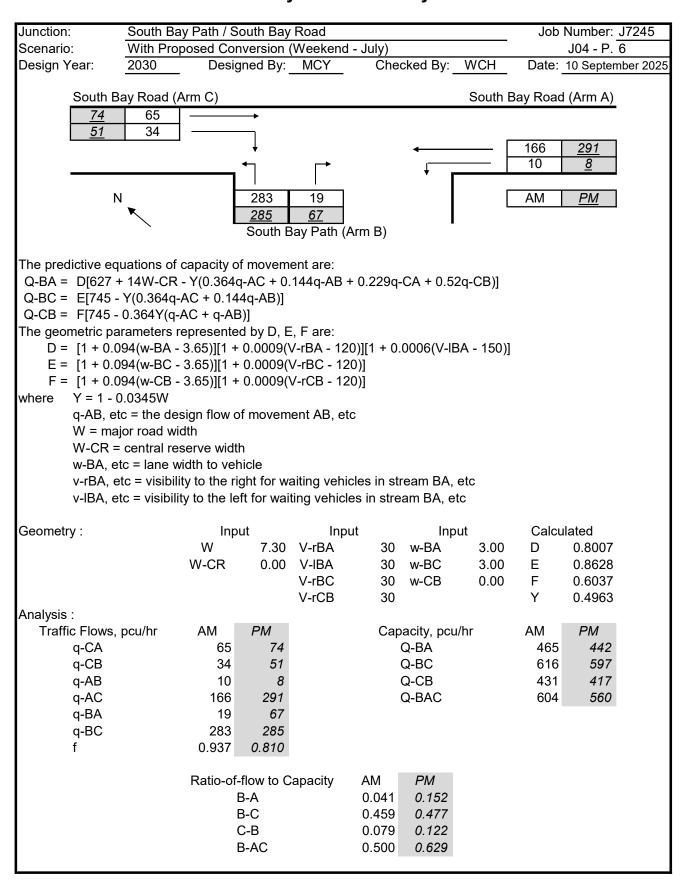


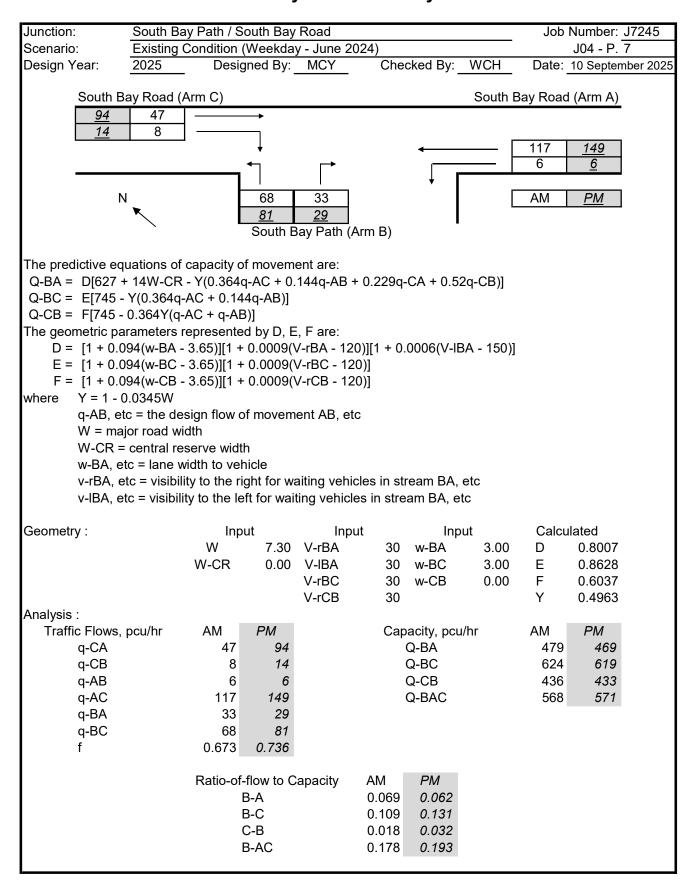


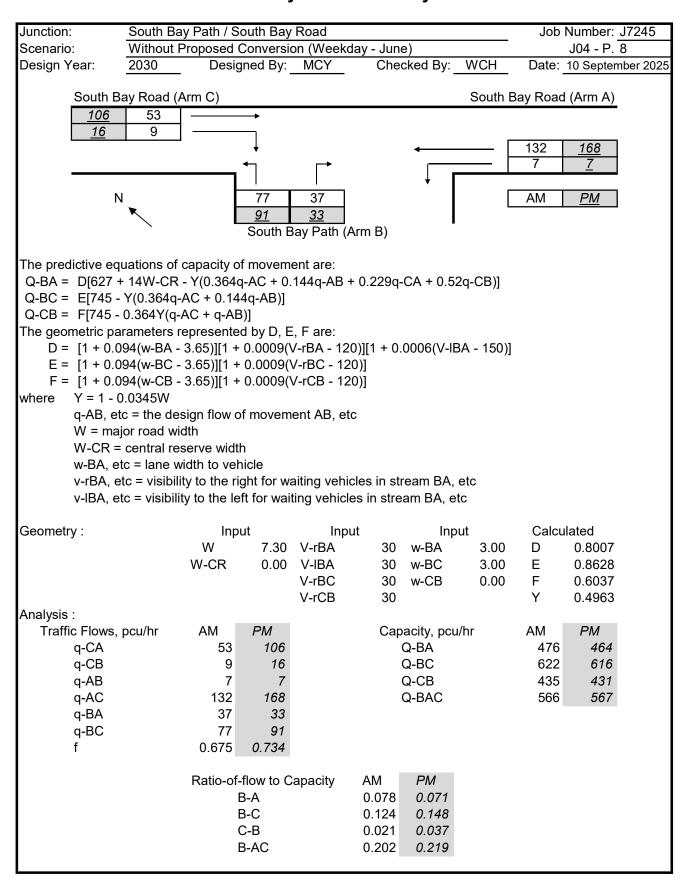


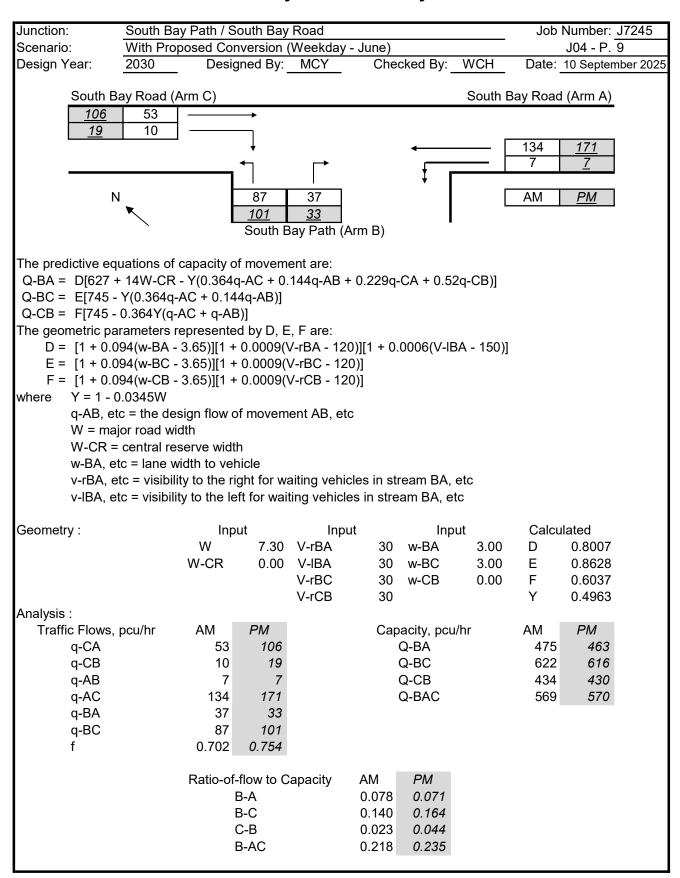


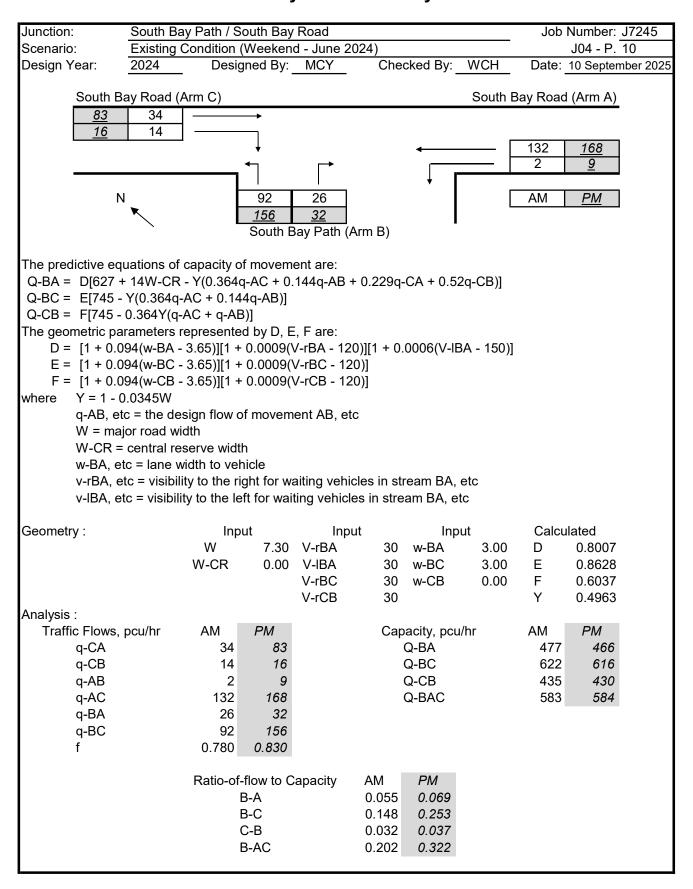


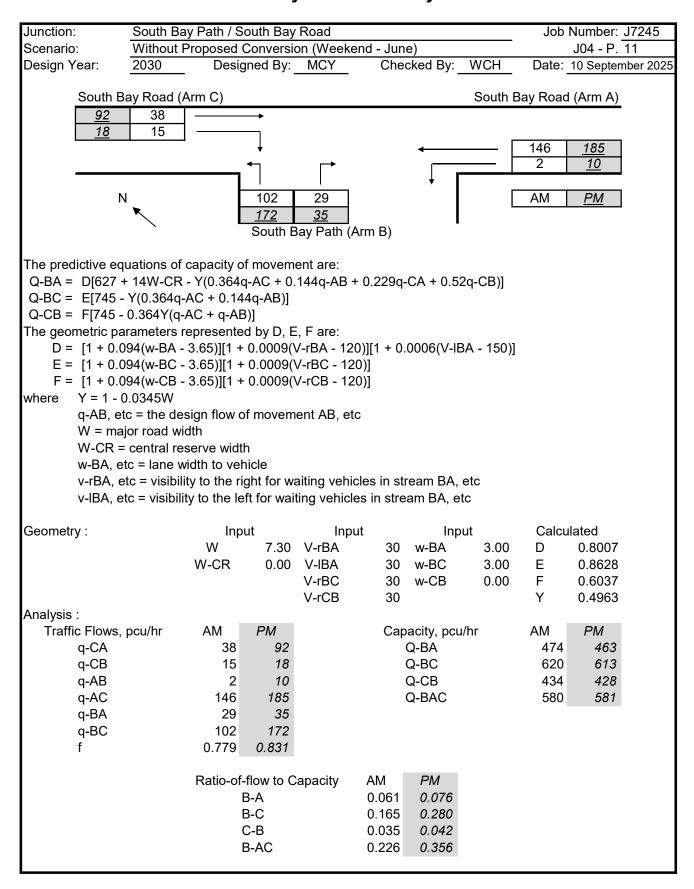


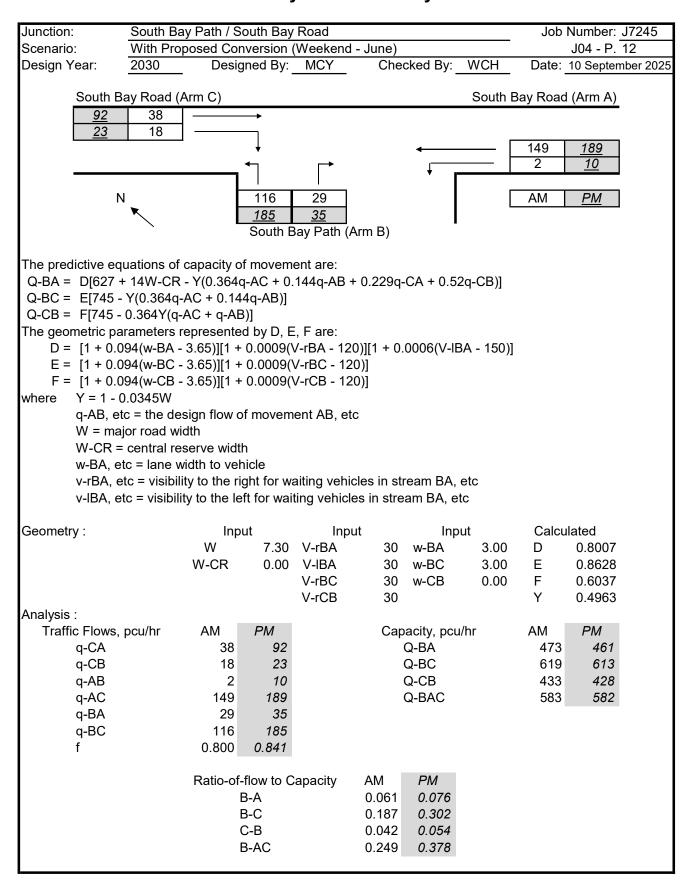












 Junction:
 Repulse Bay Road / South Bay Road Roundabout
 Job Number: J7245

 Scenario:
 Existing Condition (Weekday - July 2025)
 J05 - P. 1

 Design Year:
 2024
 Designed By: MCY
 Checked By: WCH
 Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	1	575	32						608	356
From B	489	20	141						650	33
From C	71	336	0						407	510
From D										
From E										
From F										
From G										
From H										
Total	561	931	173						1665	

PM Peak										
Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	0	538	33						571	350
From B	458	13	138						609	35
From C	75	335	2						412	471
From D										
From E										
From F										
From G										
From H										

Legend

Total

Arm	Road (in clockwise order)
Α	Repulse Bay Rd (WB)
В	Repulse Bay Rd (EB)
С	South Bay Road
D	
Е	
F	
G	
Н	

886

173

533

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	5.0	100.0	100.0	20	15	0.0
From B	5.0	3.5	50.0	10.0	20	20	0.2
From C	5.0	4.0	50.0	10.0	20	30	0.2
From D							
From E							
From F							
From G							
From H							

1592

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

Entry Width	4.0 - 15.0 m
Approach Half Width	2.0 - 7.3 m
Entry Radius	6.0 - 100.0 m
Effective Length of Flare	1.0 - 100.0 m
nscribed Circle Diameter	15 - 100 m
Entry Angle	10° - 60°
Sharpness of Flare	0.0 - 3.0
	Approach Half Width Entry Radius Effective Length of Flare nscribed Circle Diameter Entry Angle

Ratio-of-Flow to Capacity (RFC)

							C	Q _E	Entry	Flow	RI	-C
Arm	x ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	5.000	0.018	1.491	1.091	1515	0.626	1410	1414	608	571	0.431	0.404
From B	4.514	0.018	1.491	1.064	1368	0.596	1434	1433	650	609	0.453	0.425
From C	4.758	0.018	1.491	1.029	1442	0.611	1163	1188	407	412	0.350	0.347
From D												
From E												
From F												
From G												
From H												

Junction:Repulse Bay Road / South Bay Road RoundaboutJob Number: J7245Scenario:Without Proposed Concersion (Weekday)J05 - P. 2

Design Year: 2029 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	1	635	35						671	393
From B	540	22	156						718	36
From C	78	371	0						449	563
From D										
From E										
From F										
From G										
From H										
Total	619	1028	191						1838	

PM Peak										
Arm	To A	То В	То С	To D	To E	To F	To G	То Н	Total	9 c
From A	0	594	36						630	386
From B	506	14	152						672	38
From C	83	370	2						455	520
From D										
From E										
From F										
From G										
From H										
Total	589	978	190						1757	

Legend

Arm	Road (in clockwise order)
Α	Repulse Bay Rd (WB)
В	Repulse Bay Rd (EB)
С	South Bay Road
D	
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	5.0	100.0	100.0	20	15	0.0
From B	5.0	3.5	50.0	10.0	20	20	0.2
From C	5.0	4.0	50.0	10.0	20	30	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

	low to Cap		,					Q _E	Entry	/ Flow	RFC	
					_				1 1		l	-
Arm	X ₂	М	t_D	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	5.000	0.018	1.491	1.091	1515	0.626	1385	1389	671	630	0.485	0.453
From B	4.514	0.018	1.491	1.064	1368	0.596	1432	1431	718	672	0.501	0.470
From C	4.758	0.018	1.491	1.029	1442	0.611	1130	1157	449	455	0.397	0.393
From D												
From E												
From F												
From G												
From H												

Junction:Repulse Bay Road / South Bay Road RoundaboutJob Number: J7245Scenario:With Proposed Concersion (Weekday)J05 - P. 3

Design Year: 2029 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	1	635	36						672	403
From B	540	22	156						718	37
From C	80	381	0						461	563
From D										
From E										
From F										
From G										
From H										
Total	621	1038	192						1851	

PM Peak										
Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	9 c
From A	0	594	39						633	396
From B	506	14	152						672	41
From C	86	380	2						468	520
From D										
From E										
From F										
From G										
From H										
Total	592	988	193						1773	

Legend

Arm	Road (in clockwise order)
Α	Repulse Bay Rd (WB)
В	Repulse Bay Rd (EB)
С	South Bay Road
D	
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	5.0	100.0	100.0	20	15	0.0
From B	5.0	3.5	50.0	10.0	20	20	0.2
From C	5.0	4.0	50.0	10.0	20	30	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

IXALIO-01-I	low to oal	Jacity (KFC	,									
							Q_E		Entry Flow		RFC	
Arm	x ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	5.000	0.018	1.491	1.091	1515	0.626	1378	1383	672	633	0.488	0.458
From B	4.514	0.018	1.491	1.064	1368	0.596	1432	1429	718	672	0.501	0.470
From C	4.758	0.018	1.491	1.029	1442	0.611	1130	1157	461	468	0.408	0.405
From D												
From E												
From F												
From G												
From H												

 Junction:
 Repulse Bay Road / South Bay Road Roundabout
 Job Number: J7245

 Scenario:
 Existing Condition (Weekend - July 2025
 J05 - P. 4

 Design Year:
 2024
 Designed By: MCY
 Checked By: WCH
 Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	0	377	38						415	313
From B	263	12	49						324	40
From C	110	299	2						411	275
From D										
From E										
From F										
From G										
From H										
Total	373	688	89						1150	

PM Peak	
Arm	Γ

Arm	To A	То В	То С	To D	To E	To F	To G	То Н	Total	9 c
From A	2	434	44						480	462
From B	358	21	82						461	47
From C	90	440	1						531	381
From D										
From E										
From F										
From G										
From H										
Total	450	895	127						1472	

Legend

Arm	Road (in clockwise order)
Α	Repulse Bay Rd (WB)
В	Repulse Bay Rd (EB)
С	South Bay Road
D	
Е	
F	
G	
Н	

Geometric Parameters

			, ,				_
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	5.0	100.0	100.0	20	15	0.0
From B	5.0	3.5	50.0	10.0	20	20	0.2
From C	5.0	4.0	50.0	10.0	20	30	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

a Finaturi (Milatha 4.0, 45.0 mg	
e Entry Width 4.0 - 15.0 m	
v Approach Half Width 2.0 - 7.3 m	
r Entry Radius 6.0 - 100.0 m	
L Effective Length of Flare 1.0 - 100.0 m	
D Inscribed Circle Diameter 15 - 100 m	
Ø Entry Angle 10° - 60°	
S Sharpness of Flare 0.0 - 3.0	

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow		RFC	
Arm	x ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	5.000	0.018	1.491	1.091	1515	0.626	1439	1337	415	480	0.288	0.359
From B	4.514	0.018	1.491	1.064	1368	0.596	1430	1425	324	461	0.227	0.323
From C	4.758	0.018	1.491	1.029	1442	0.611	1311	1244	411	531	0.314	0.427
From D												
From E												
From F												
From G												
From H												

Junction:Repulse Bay Road / South Bay Road RoundaboutJob Number: J7245Scenario:Without Proposed Development (Weekend)J05 - P. 5

Design Year: 2029 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	0	416	42						458	345
From B	290	13	54						357	44
From C	121	330	2						453	303
From D										
From E										
From F										
From G										
From H										
Total	411	759	98						1268	

PM Peak										
Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	9 c
From A	2	479	49						530	510
From B	395	23	91						509	52
From C	99	486	1						586	420
From D										
From E										
From F										
From G										
From H										
Total	496	988	141						1625	

Legend

Arm	Road (in clockwise order)
Α	Repulse Bay Rd (WB)
В	Repulse Bay Rd (EB)
С	South Bay Road
D	0
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	5.0	100.0	100.0	20	15	0.0
From B	5.0	3.5	50.0	10.0	20	20	0.2
From C	5.0	4.0	50.0	10.0	20	30	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	$= \exp[(D-60)/10]$
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

Entry Width	4.0 - 15.0 m
Approach Half Width	2.0 - 7.3 m
Entry Radius	6.0 - 100.0 m
Effective Length of Flare	1.0 - 100.0 m
nscribed Circle Diameter	15 - 100 m
Entry Angle	10° - 60°
Sharpness of Flare	0.0 - 3.0
	Approach Half Width Entry Radius Effective Length of Flare nscribed Circle Diameter Entry Angle

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow		RFC	
Arm	x ₂	М	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	5.000	0.018	1.491	1.091	1515	0.626	1417	1305	458	530	0.323	0.406
From B	4.514	0.018	1.491	1.064	1368	0.596	1427	1422	357	509	0.250	0.358
From C	4.758	0.018	1.491	1.029	1442	0.611	1293	1220	453	586	0.350	0.480
From D												
From E												
From F												
From G												
From H												

Junction:Repulse Bay Road / South Bay Road RoundaboutJob Number: J7245Scenario:With Proposed Development (Weekend)J05 - P. 6

Design Year: 2029 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	0	416	45						461	359
From B	290	13	54						357	47
From C	124	344	2						470	303
From D										
From E										
From F										
From G										
From H										
Total	414	773	101						1288	

PM Peak										
Arm	To A	То В	То С	To D	To E	To F	To G	То Н	Total	9 c
From A	2	479	54						535	523
From B	395	23	91						509	57
From C	103	499	1						603	420
From D										
From E										
From F										
From G										
From H										
Total	500	1001	146						1647	

Legend

Arm	Road (in clockwise order)
Α	Repulse Bay Rd (WB)
В	Repulse Bay Rd (EB)
С	South Bay Road
D	
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	5.0	100.0	100.0	20	15	0.0
From B	5.0	3.5	50.0	10.0	20	20	0.2
From C	5.0	4.0	50.0	10.0	20	30	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

a Finaturi (Milatta 4.0. 45.0 mg	
e Entry Width 4.0 - 15.0 m	
v Approach Half Width 2.0 - 7.3 m	
r Entry Radius 6.0 - 100.0 m	
L Effective Length of Flare 1.0 - 100.0 m	
D Inscribed Circle Diameter 15 - 100 m	
Ø Entry Angle 10° - 60°	
S Sharpness of Flare 0.0 - 3.0	

Ratio-of-Flow to Capacity (RFC)

							C	ĴΕ	Entry	Flow	RI	-C
Arm	x ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	5.000	0.018	1.491	1.091	1515	0.626	1408	1296	461	535	0.327	0.413
From B	4.514	0.018	1.491	1.064	1368	0.596	1425	1419	357	509	0.250	0.359
From C	4.758	0.018	1.491	1.029	1442	0.611	1293	1220	470	603	0.363	0.494
From D												
From E												
From F												
From G												
From H												

Junction:Repulse Bay Road / South Bay Road RoundaboutJob Number: J7245Scenario:Existing Condition (Weekday - June 2024)J05 - P. 7

Design Year: 2024 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	1	673	38						712	206
From B	509	16	66						591	40
From C	65	189	1						255	526
From D										
From E										
From F										
From G										
From H										
Total	575	878	105						1558	

PM Peak										
Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	0	487	50						537	271
From B	467	26	115						608	51
From C	96	244	1						341	493
From D										
From E										
From F										
From G										
From H										
Total	563	757	166						1486	

Legend

Arm	Road (in clockwise order)
Α	Repulse Bay Rd (WB)
В	Repulse Bay Rd (EB)
С	South Bay Road
D	
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	5.0	100.0	100.0	20	15	0.0
From B	5.0	3.5	50.0	10.0	20	20	0.2
From C	5.0	4.0	50.0	10.0	20	30	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

Kalio-oi-r	low to Cap	Jacity (KFC	ر د									
							C	Q _E	Entry	Flow	RI	FC
Arm	X ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	5.000	0.018	1.491	1.091	1515	0.626	1512	1468	712	537	0.471	0.366
From B	4.514	0.018	1.491	1.064	1368	0.596	1430	1423	591	608	0.413	0.427
From C	4.758	0.018	1.491	1.029	1442	0.611	1153	1174	255	341	0.221	0.291
From D												
From E												
From F												
From G												
From H												

Junction:Repulse Bay Road / South Bay Road RoundaboutJob Number: J7245Scenario:Without Proposed Concersion (Weekday)J05 - P. 8

Design Year: 2029 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	1	758	43						802	232
From B	573	18	74						665	45
From C	73	213	1						287	592
From D										
From E										
From F										
From G										
From H										
Total	647	989	118				•		1754	

PM Peak										
Arm	To A	То В	То С	To D	To E	To F	To G	То Н	Total	9 c
From A	0	548	56						604	305
From B	526	29	130						685	57
From C	108	275	1						384	555
From D										
From E										
From F										
From G										
From H										
Total	634	852	187						1673	

Legend

Arm	Road (in clockwise order)
Α	Repulse Bay Rd (WB)
В	Repulse Bay Rd (EB)
С	South Bay Road
D	
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	5.0	100.0	100.0	20	15	0.0
From B	5.0	3.5	50.0	10.0	20	20	0.2
From C	5.0	4.0	50.0	10.0	20	30	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							C	Q _E	Entry Flow		RFC	
Arm	x ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	5.000	0.018	1.491	1.091	1515	0.626	1495	1445	802	604	0.537	0.418
From B	4.514	0.018	1.491	1.064	1368	0.596	1427	1419	665	685	0.466	0.483
From C	4.758	0.018	1.491	1.029	1442	0.611	1111	1135	287	384	0.258	0.338
From D												
From E												
From F												
From G												
From H												

Junction:Repulse Bay Road / South Bay Road RoundaboutJob Number: J7245Scenario:With Proposed Concersion (Weekday)J05 - P. 9

Design Year: 2029 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	1	758	44						803	242
From B	573	18	74						665	46
From C	75	223	1						299	592
From D										
From E										
From F										
From G										
From H										
Total	649	999	119						1767	

PM Peak										
Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	0	548	59						607	315
From B	526	29	130						685	60
From C	111	285	1						397	555
From D										
From E										
From F										
From G										
From H										
Total	637	862	190						1689	

Legend

Arm	Road (in clockwise order)
Α	Repulse Bay Rd (WB)
В	Repulse Bay Rd (EB)
С	South Bay Road
D	
E	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	5.0	100.0	100.0	20	15	0.0
From B	5.0	3.5	50.0	10.0	20	20	0.2
From C	5.0	4.0	50.0	10.0	20	30	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry	Flow	RFC	
Arm	x ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	5.000	0.018	1.491	1.091	1515	0.626	1488	1438	803	607	0.540	0.422
From B	4.514	0.018	1.491	1.064	1368	0.596	1426	1417	665	685	0.466	0.483
From C	4.758	0.018	1.491	1.029	1442	0.611	1111	1135	299	397	0.269	0.350
From D												
From E												
From F												
From G												
From H												

 Junction:
 Repulse Bay Road / South Bay Road Roundabout
 Job Number: J7245

 Scenario:
 Existing Condition (Weekend - June 2024
 J05 - P. 10

 Design Year:
 2024
 Designed By: MCY
 Checked By: WCH
 Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	0	473	32						505	268
From B	425	13	65						503	34
From C	44	253	2						299	438
From D										
From E										
From F										
From G										
From H										
Total	469	739	99						1307	

PM Peak										
Arm	To A	То В	То С	To D	To E	To F	To G	То Н	Total	q _c
From A	0	505	38						543	357
From B	489	34	107						630	38
From C	58	323	0						381	523
From D										
From E										
From F										
From G										
From H										
Total	547	862	145						1554	

Legend

Arm	Road (in clockwise order)
Α	Repulse Bay Rd (WB)
В	Repulse Bay Rd (EB)
С	South Bay Road
D	
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	5.0	100.0	100.0	20	15	0.0
From B	5.0	3.5	50.0	10.0	20	20	0.2
From C	5.0	4.0	50.0	10.0	20	30	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

Itutio-01-1	low to cap	oucity (Iti t	• 1									
							Q_{E}		Entry	Flow	RFC	
Arm	x ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	5.000	0.018	1.491	1.091	1515	0.626	1470	1409	505	543	0.344	0.385
From B	4.514	0.018	1.491	1.064	1368	0.596	1434	1431	503	630	0.351	0.440
From C	4.758	0.018	1.491	1.029	1442	0.611	1208	1155	299	381	0.247	0.330
From D												
From E												
From F												
From G												
From H												

 Junction:
 Repulse Bay Road / South Bay Road Roundabout
 Job Number: J7245

 Scenario:
 Without Proposed Development (Weekend)
 J05 - P. 11

Design Year: 2029 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	To H	Total	q_c
From A	0	522	35						557	295
From B	469	14	72						555	37
From C	49	279	2						330	483
From D										
From E										
From F										
From G										
From H										
Total	518	815	109						1442	

PM Peak										
Arm	To A	То В	То С	To D	To E	To F	To G	То Н	Total	9 c
From A	0	558	42						600	395
From B	540	38	118						696	42
From C	64	357	0						421	578
From D										
From E										
From F										
From G										
From H										
Total	604	953	160						1717	

Legend

Arm	Road (in clockwise order)
Α	Repulse Bay Rd (WB)
В	Repulse Bay Rd (EB)
С	South Bay Road
D	0
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	5.0	100.0	100.0	20	15	0.0
From B	5.0	3.5	50.0	10.0	20	20	0.2
From C	5.0	4.0	50.0	10.0	20	30	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

Italio-01-1	low to cap	oucity (Iti t	-,									
							C	Q _E	Entry	Flow	RF	FC
Arm	x ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	5.000	0.018	1.491	1.091	1515	0.626	1452	1383	557	600	0.384	0.434
From B	4.514	0.018	1.491	1.064	1368	0.596	1432	1429	555	696	0.388	0.487
From C	4.758	0.018	1.491	1.029	1442	0.611	1180	1120	330	421	0.280	0.376
From D												
From E												
From F												
From G												
From H												

Junction:Repulse Bay Road / South Bay Road RoundaboutJob Number: J7245Scenario:With Proposed Development (Weekend)J05 - P. 12

Design Year: 2029 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	0	522	38						560	309
From B	469	14	72						555	40
From C	52	293	2						347	483
From D										
From E										
From F										
From G										
From H										
Total	521	829	112						1462	

PM Peak										
Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	0	558	47						605	408
From B	540	38	118						696	47
From C	68	370	0						438	578
From D										
From E										
From F										
From G										
From H										
Total	608	966	165						1739	

Legend

Arm	Road (in clockwise order)
Α	Repulse Bay Rd (WB)
В	Repulse Bay Rd (EB)
С	South Bay Road
D	
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	5.0	100.0	100.0	20	15	0.0
From B	5.0	3.5	50.0	10.0	20	20	0.2
From C	5.0	4.0	50.0	10.0	20	30	0.2
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

Entry Width	4.0 - 15.0 m
Approach Half Width	2.0 - 7.3 m
Entry Radius	6.0 - 100.0 m
Effective Length of Flare	1.0 - 100.0 m
nscribed Circle Diameter	15 - 100 m
Entry Angle	10° - 60°
Sharpness of Flare	0.0 - 3.0
	Approach Half Width Entry Radius Effective Length of Flare nscribed Circle Diameter Entry Angle

Ratio-of-Flow to Capacity (RFC)

Kalio-oi-r	low to Cap	Jacity (KFC	ر -									
							Q_{E}		Entry Flow		RI	FC
Arm	X ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	5.000	0.018	1.491	1.091	1515	0.626	1442	1374	560	605	0.388	0.440
From B	4.514	0.018	1.491	1.064	1368	0.596	1430	1425	555	696	0.388	0.488
From C	4.758	0.018	1.491	1.029	1442	0.611	1180	1120	347	438	0.294	0.391
From D												
From E												
From F												
From G												
From H												

 Junction:
 South Bay Road / South Bay Close Roundabout
 Job Number: J7245

 Scenario:
 Existing Condition (Weekday - July 2025)
 J06 - P. 1

 Design Year:
 2024
 Designed By: MCY
 Checked By: WCH
 Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	3	87	82						172	11
From B	86	0	7						93	87
From C	318	9	2						329	89
From D										
From E										
From F										
From G										
From H										
Total	407	96	91						594	

PM Peak										
Arm	To A	То В	То С	To D	To E	To F	To G	То Н	Total	q _c
From A	0	49	124						173	15
From B	51	0	7						58	125
From C	362	14	1						377	51
From D										
From E										
From F										

Legend

From G From H Total

Arm	Road (in clockwise order)
Α	South Bay Rd (EB)
В	South Bay Close (WB)
С	South Bay Rd (NB)
D	
Ε	
F	
G	
Н	

413

63

132

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	3.5	25.0	15.0	25	25	0.2
From B	5.0	4.0	25.0	50.0	25	15	0.0
From C	5.0	4.0	25.0	50.0	25	30	0.0
From D							
From E							
From F							
From G							
From H							

608

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
M	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

Kalio-oi-r	low to Cap	Dacity (KFC	ر -									
		•					Q_E		Entry Flow		RFC	
Arm	x ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	4.636	0.030	1.485	1.027	1405	0.601	1436	1434	172	173	0.120	0.121
From B	4.940	0.030	1.485	1.062	1497	0.620	1532	1507	93	58	0.061	0.038
From C	4.940	0.030	1.485	1.010	1497	0.620	1456	1479	329	377	0.226	0.255
From D												
From E												
From F												
From G												
From H												

Junction:South Bay Road / South Bay Close RoundaboutJob Number: J7245Scenario:Without Proposed Concersion (Weekday)J06 - P. 2

Design Year: 2029 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	3	96	91						190	12
From B	95	0	8						103	96
From C	351	10	2						363	98
From D										
From E										
From F										
From G										
From H										
Total	449	106	101						656	

PM Peak										
Arm	To A	То В	То С	To D	To E	To F	To G	То Н	Total	q _c
From A	0	54	137						191	16
From B	56	0	8						64	138
From C	400	15	1						416	56
From D										
From E										
From F										
From G										
From H										
Total	456	69	146						671	

Legend

Arm	Road (in clockwise order)
Α	South Bay Rd (EB)
В	South Bay Close (WB)
С	South Bay Rd (NB)
D	
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	3.5	25.0	15.0	25	25	0.2
From B	5.0	4.0	25.0	50.0	25	15	0.0
From C	5.0	4.0	25.0	50.0	25	30	0.0
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow		RFC	
Arm	x ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	4.636	0.030	1.485	1.027	1405	0.601	1436	1433	190	191	0.132	0.133
From B	4.940	0.030	1.485	1.062	1497	0.620	1526	1498	103	64	0.067	0.043
From C	4.940	0.030	1.485	1.010	1497	0.620	1450	1476	363	416	0.250	0.282
From D												
From E												
From F												
From G												
From H												

Junction:South Bay Road / South Bay Close RoundaboutJob Number: J7245Scenario:With Proposed Concersion (Weekday)J06 - P. 3

Design Year: 2029 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	To H	Total	q_c
From A	3	96	92						191	12
From B	95	0	8						103	97
From C	363	10	2						375	98
From D										
From E										
From F										
From G										
From H										
Total	461	106	102						669	

PM Peak										
Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	0	54	140						194	16
From B	56	0	8						64	141
From C	413	15	1						429	56
From D										
From E										
From F										
From G										
From H										
Total	469	69	149						687	

Legend

Arm	Road (in clockwise order)
Α	South Bay Rd (EB)
В	South Bay Close (WB)
С	South Bay Rd (NB)
D	
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	3.5	25.0	15.0	25	25	0.2
From B	5.0	4.0	25.0	50.0	25	15	0.0
From C	5.0	4.0	25.0	50.0	25	30	0.0
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow		RFC	
Arm	x ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	4.636	0.030	1.485	1.027	1405	0.601	1436	1433	191	194	0.133	0.135
From B	4.940	0.030	1.485	1.062	1497	0.620	1525	1496	103	64	0.068	0.043
From C	4.940	0.030	1.485	1.010	1497	0.620	1450	1476	375	429	0.259	0.291
From D												
From E												
From F												
From G												
From H												

Junction: South Bay Road / South Bay Close Roundabout Job Number: J7245

 Scenario:
 Existing Condition (Weekend - July 2025
 J06 - P. 4

 Design Year:
 2024
 Designed By: MCY
 Checked By: WCH
 Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	To H	Total	q _c
From A		17	70						87	30
From B	48	0	9						57	76
From C	365	24	6						395	48
From D										
From E										
From F										
From G										
From H										
Total	413	41	85						539	

PM Peak										
Arm	To A	То В	То С	To D	То Е	To F	To G	То Н	Total	q _c
From A	3	26	97						126	16
From B	38	0	7						45	103
From C	490	13	3						506	41
From D										
From E										
From F										
From G										
From H										

Legend

Total

Arm	Road (in clockwise order)
Α	South Bay Rd (EB)
В	South Bay Close (WB)
С	South Bay Rd (NB)
D	
Е	
F	
G	
Н	

531

39

107

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	3.5	25.0	15.0	25	25	0.2
From B	5.0	4.0	25.0	50.0	25	15	0.0
From C	5.0	4.0	25.0	50.0	25	30	0.0
From D							
From E							
From F							
From G							
From H							

677

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_E		Entry Flow		RI	FC
Arm	X ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	4.636	0.030	1.485	1.027	1405	0.601	1424	1433	87	126	0.061	0.088
From B	4.940	0.030	1.485	1.062	1497	0.620	1539	1522	57	45	0.037	0.030
From C	4.940	0.030	1.485	1.010	1497	0.620	1481	1486	395	506	0.267	0.341
From D												
From E												
From F												
From G												
From H												

Junction:South Bay Road / South Bay Close RoundaboutJob Number: J7245Scenario:Without Proposed Development (Weekend)J06 - P. 5

Design Year: 2029 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	1	19	77						97	33
From B	53	0	10						63	85
From C	403	26	7						436	54
From D										
From E										
From F										
From G										
From H										
Total	457	45	94						596	

PM Peak										
Arm	To A	То В	То С	To D	To E	To F	To G	То Н	Total	q _c
From A	3	29	107						139	17
From B	42	0	8						50	113
From C	541	14	3						558	45
From D										
From E										
From F										
From G										
From H										
Total	586	43	118						747	

Legend

Arm	Road (in clockwise order)
Α	South Bay Rd (EB)
В	South Bay Close (WB)
С	South Bay Rd (NB)
D	
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	3.5	25.0	15.0	25	25	0.2
From B	5.0	4.0	25.0	50.0	25	15	0.0
From C	5.0	4.0	25.0	50.0	25	30	0.0
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow		RFC	
Arm	x ₂	M	t_{D}	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	4.636	0.030	1.485	1.027	1405	0.601	1423	1432	97	139	0.068	0.097
From B	4.940	0.030	1.485	1.062	1497	0.620	1533	1515	63	50	0.041	0.033
From C	4.940	0.030	1.485	1.010	1497	0.620	1478	1483	436	558	0.295	0.376
From D												
From E												
From F												
From G												
From H												

Junction:South Bay Road / South Bay Close RoundaboutJob Number: J7245Scenario:With Proposed Development (Weekend)J06 - P. 6

Design Year: 2029 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	1	19	80						100	33
From B	53	0	10						63	88
From C	420	26	7						453	54
From D										
From E										
From F										
From G										
From H										
Total	474	45	97						616	

PM Peak										
Arm	To A	То В	То С	To D	To E	To F	To G	То Н	Total	q _c
From A	3	29	112						144	17
From B	42	0	8						50	118
From C	558	14	3						575	45
From D										
From E										
From F										
From G										
From H										
Total	603	43	123						769	

Legend

Arm	Road (in clockwise order)
Α	South Bay Rd (EB)
В	South Bay Close (WB)
С	South Bay Rd (NB)
D	
E	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	3.5	25.0	15.0	25	25	0.2
From B	5.0	4.0	25.0	50.0	25	15	0.0
From C	5.0	4.0	25.0	50.0	25	30	0.0
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

Kalio-oi-r	Ratio-of-Flow to Capacity (RFC)											
							C	Q _E	Entry	Flow	RI	FC
Arm	X ₂	M	t_D	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	4.636	0.030	1.485	1.027	1405	0.601	1423	1432	100	144	0.070	0.101
From B	4.940	0.030	1.485	1.062	1497	0.620	1531	1512	63	50	0.041	0.033
From C	4.940	0.030	1.485	1.010	1497	0.620	1478	1483	453	575	0.307	0.388
From D												
From E												
From F												
From G												
From H												

Junction:South Bay Road / South Bay Close RoundaboutJob Number: J7245Scenario:Existing Condition (Weekday - June 2024)J06 - P. 7

Design Year: 2024 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	2	31	74						107	10
From B	60	0	6						66	78
From C	228	8	2						238	62
From D										
From E										
From F										
From G										
From H										
Total	290	39	82						411	

PM Peak										
Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	1	18	147						166	13
From B	30	0	6						36	149
From C	311	12	1						324	31
From D										
From E										
From F										
From G										
From H										
Total	342	30	154						526	

Legend

Arm	Road (in clockwise order)
Α	South Bay Rd (EB)
В	South Bay Close (WB)
С	South Bay Rd (NB)
D	
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	3.5	25.0	15.0	25	25	0.2
From B	5.0	4.0	25.0	50.0	25	15	0.0
From C	5.0	4.0	25.0	50.0	25	30	0.0
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

a Finaturi (Milatta 4.0. 45.0 mg	
e Entry Width 4.0 - 15.0 m	
v Approach Half Width 2.0 - 7.3 m	
r Entry Radius 6.0 - 100.0 m	
L Effective Length of Flare 1.0 - 100.0 m	
D Inscribed Circle Diameter 15 - 100 m	
Ø Entry Angle 10° - 60°	
S Sharpness of Flare 0.0 - 3.0	

Ratio-of-Flow to Capacity (RFC)

							C) ^E	Entry	Flow	RI	FC
Arm	x ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	4.636	0.030	1.485	1.027	1405	0.601	1437	1435	107	166	0.074	0.116
From B	4.940	0.030	1.485	1.062	1497	0.620	1538	1491	66	36	0.043	0.024
From C	4.940	0.030	1.485	1.010	1497	0.620	1473	1492	238	324	0.162	0.217
From D												
From E												
From F												
From G												
From H												

Junction:South Bay Road / South Bay Close RoundaboutJob Number: J7245Scenario:Without Proposed Concersion (Weekday)J06 - P. 8

Design Year: 2029 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	2	35	83						120	11
From B	68	0	7						75	87
From C	257	9	2						268	70
From D										
From E										
From F										
From G										
From H										
Total	327	44	92						463	

PM Peak										
Arm	To A	То В	То С	To D	To E	To F	To G	То Н	Total	q _c
From A	1	20	166						187	15
From B	34	0	7						41	168
From C	350	14	1						365	35
From D										
From E										
From F										
From G										
From H										
Total	385	34	174						593	

Legend

Arm	Road (in clockwise order)
Α	South Bay Rd (EB)
В	South Bay Close (WB)
С	South Bay Rd (NB)
D	
E	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	3.5	25.0	15.0	25	25	0.2
From B	5.0	4.0	25.0	50.0	25	15	0.0
From C	5.0	4.0	25.0	50.0	25	30	0.0
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

a Finaturi (Milatta 4.0. 45.0 mg	
e Entry Width 4.0 - 15.0 m	
v Approach Half Width 2.0 - 7.3 m	
r Entry Radius 6.0 - 100.0 m	
L Effective Length of Flare 1.0 - 100.0 m	
D Inscribed Circle Diameter 15 - 100 m	
Ø Entry Angle 10° - 60°	
S Sharpness of Flare 0.0 - 3.0	

Ratio-of-Flow to Capacity (RFC)

							C	Q _E	Entry	Flow	RI	FC
Arm	x ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	4.636	0.030	1.485	1.027	1405	0.601	1436	1434	120	187	0.084	0.130
From B	4.940	0.030	1.485	1.062	1497	0.620	1532	1479	75	41	0.049	0.028
From C	4.940	0.030	1.485	1.010	1497	0.620	1468	1489	268	365	0.183	0.245
From D												
From E												
From F												
From G												
From H												

Junction:South Bay Road / South Bay Close RoundaboutJob Number: J7245Scenario:With Proposed Concersion (Weekday)J06 - P. 9

Design Year: 2029 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q _c
From A	2	35	84						121	11
From B	68	0	7						75	88
From C	269	9	2						280	70
From D										
From E										
From F										
From G										
From H										
Total	339	44	93						476	

PM Peak										
Arm	To A	То В	То С	To D	To E	To F	To G	То Н	Total	q _c
From A	1	20	169						190	15
From B	34	0	7						41	171
From C	363	14	1						378	35
From D										
From E										
From F										
From G										
From H										

Legend

Total

Arm	Road (in clockwise order)
Α	South Bay Rd (EB)
В	South Bay Close (WB)
С	South Bay Rd (NB)
D	
Е	
F	
G	
Н	

398

34

177

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	3.5	25.0	15.0	25	25	0.2
From B	5.0	4.0	25.0	50.0	25	15	0.0
From C	5.0	4.0	25.0	50.0	25	30	0.0
From D							
From E							
From F							
From G							
From H							

609

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

Italio-01-1	silo-oi-riow to Capacity (KrC)											
							Q_E		Entry Flow		RFC	
Arm	x ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	4.636	0.030	1.485	1.027	1405	0.601	1436	1434	121	190	0.084	0.133
From B	4.940	0.030	1.485	1.062	1497	0.620	1531	1477	75	41	0.049	0.028
From C	4.940	0.030	1.485	1.010	1497	0.620	1468	1489	280	378	0.191	0.254
From D												
From E												
From F												
From G												
From H												

Junction:South Bay Road / South Bay Close RoundaboutJob Number: J7245Scenario:Existing Condition (Weekend - June 2024)J06 - P. 10

Design Year: 2024 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	To H	Total	q_c
From A		13	86						99	26
From B	30	0	8						38	91
From C	269	21	5						295	30
From D										
From E										
From F										
From G										
From H										
Total	299	34	99						432	

PM Peak										
Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	9 c
From A	2	18	127						147	14
From B	23	0	6						29	132
From C	358	11	3						372	25
From D										
From E										
From F										
From G										
From H										
Total	383	29	136						548	

Legend

Arm	Road (in clockwise order)
Α	South Bay Rd (EB)
В	South Bay Close (WB)
С	South Bay Rd (NB)
D	
Е	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	3.5	25.0	15.0	25	25	0.2
From B	5.0	4.0	25.0	50.0	25	15	0.0
From C	5.0	4.0	25.0	50.0	25	30	0.0
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
M	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

Entry Width	4.0 - 15.0 m
Approach Half Width	2.0 - 7.3 m
Entry Radius	6.0 - 100.0 m
Effective Length of Flare	1.0 - 100.0 m
nscribed Circle Diameter	15 - 100 m
Entry Angle	10° - 60°
Sharpness of Flare	0.0 - 3.0
	Approach Half Width Entry Radius Effective Length of Flare nscribed Circle Diameter Entry Angle

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry Flow		RFC	
Arm	X ₂	M	t_D	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	4.636	0.030	1.485	1.027	1405	0.601	1427	1434	99	147	0.069	0.102
From B	4.940	0.030	1.485	1.062	1497	0.620	1529	1502	38	29	0.025	0.019
From C	4.940	0.030	1.485	1.010	1497	0.620	1493	1496	295	372	0.198	0.249
From D												
From E												
From F												
From G												
From H												

Junction:South Bay Road / South Bay Close RoundaboutJob Number: J7245Scenario:Without Proposed Development (Weekend)J06 - P. 11

Design Year: 2029 Designed By: MCY Checked By: WCH Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	2	14	95						111	29
From B	33	0	9						42	103
From C	297	23	6						326	35
From D										
From E										
From F										
From G										
From H										
Total	332	37	110						479	

PM Peak										
Arm	To A	То В	То С	To D	To E	To F	To G	То Н	Total	q _c
From A	2	20	140						162	15
From B	25	0	7						32	145
From C	395	12	3						410	27
From D										
From E										
From F										
From G										
From H										
Total	422	32	150						604	

Legend

Arm	Road (in clockwise order)
Α	South Bay Rd (EB)
В	South Bay Close (WB)
С	South Bay Rd (NB)
D	
Ε	
F	
G	
Н	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	3.5	25.0	15.0	25	25	0.2
From B	5.0	4.0	25.0	50.0	25	15	0.0
From C	5.0	4.0	25.0	50.0	25	30	0.0
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

Entry Width	4.0 - 15.0 m
Approach Half Width	2.0 - 7.3 m
Entry Radius	6.0 - 100.0 m
Effective Length of Flare	1.0 - 100.0 m
nscribed Circle Diameter	15 - 100 m
Entry Angle	10° - 60°
Sharpness of Flare	0.0 - 3.0
	Approach Half Width Entry Radius Effective Length of Flare nscribed Circle Diameter Entry Angle

Ratio-of-Flow to Capacity (RFC)

Kalio-oi-r	low to Cap	Dacity (RFC	ره)									
							C	Q _E	Entry	/ Flow	RI	FC
Arm	x ₂	M	t_{D}	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	4.636	0.030	1.485	1.027	1405	0.601	1425	1434	111	162	0.078	0.113
From B	4.940	0.030	1.485	1.062	1497	0.620	1522	1494	42	32	0.028	0.021
From C	4.940	0.030	1.485	1.010	1497	0.620	1489	1495	326	410	0.219	0.274
From D												
From E												
From F												
From G												
From H												

 Junction:
 South Bay Road / South Bay Close Roundabout
 Job Number: J7245

 Scenario:
 With Proposed Development (Weekend)
 J06 - P. 12

 Design Year:
 2029
 Designed By: MCY
 Checked By: WCH
 Date: 10 September 2025

AM Peak

Arm	To A	То В	To C	To D	To E	To F	To G	То Н	Total	q_c
From A	2	14	98						114	29
From B	33	0	9						42	106
From C	314	23	6						343	35
From D										
From E										
From F										
From G										
From H										
Total	349	37	113						499	·

PM Peak										
Arm	To A	То В	То С	To D	To E	To F	To G	То Н	Total	q _c
From A	2	20	145						167	15
From B	25	0	7						32	150
From C	412	12	3						427	27
From D										
From E										
From F										
From G										
From H										
Total	439	32	155						626	

Legend

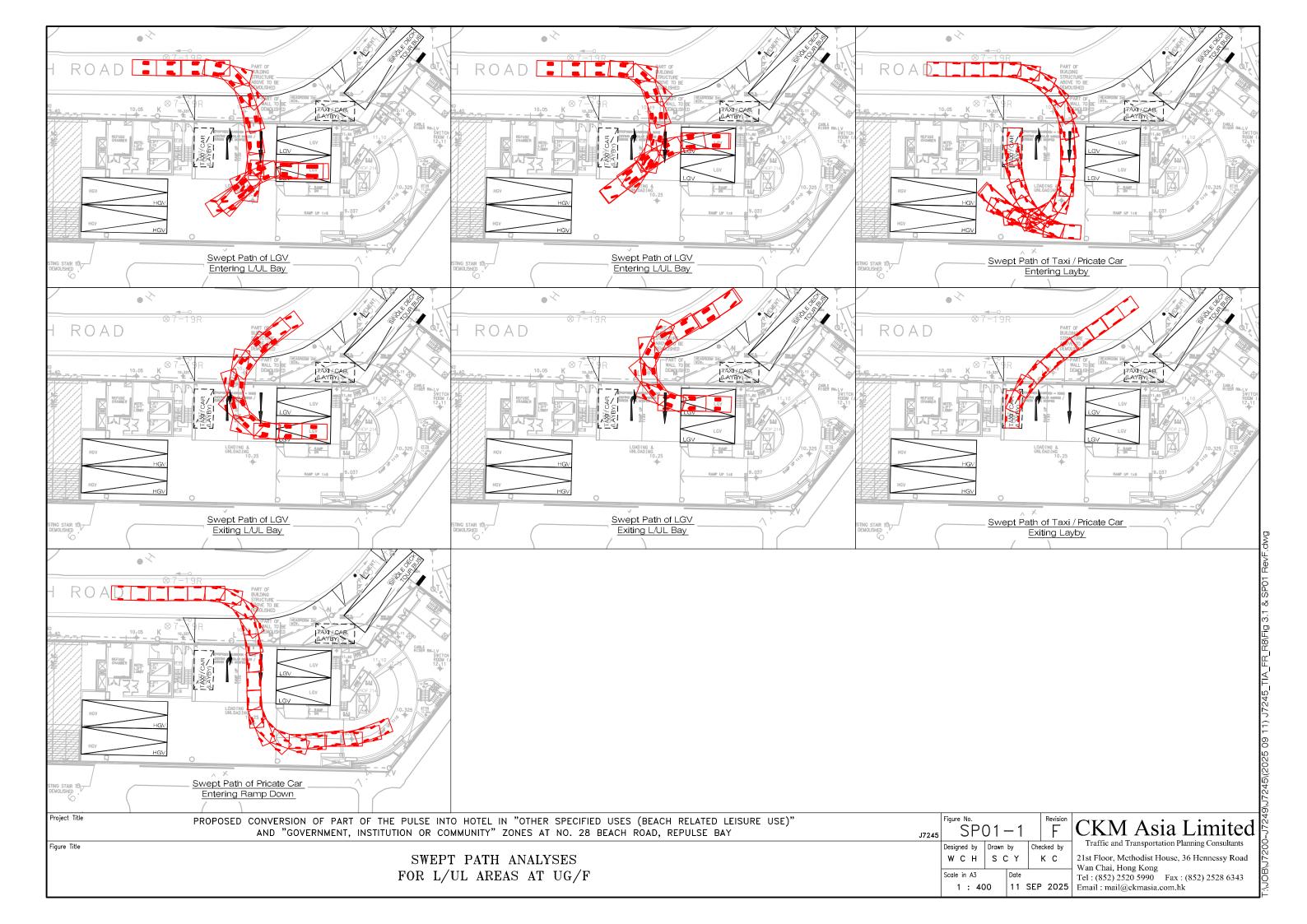
Arm	Road (in clockwise order)
Α	South Bay Rd (EB)
В	South Bay Close (WB)
С	South Bay Rd (NB)
D	
Е	
F	
G	
Н	

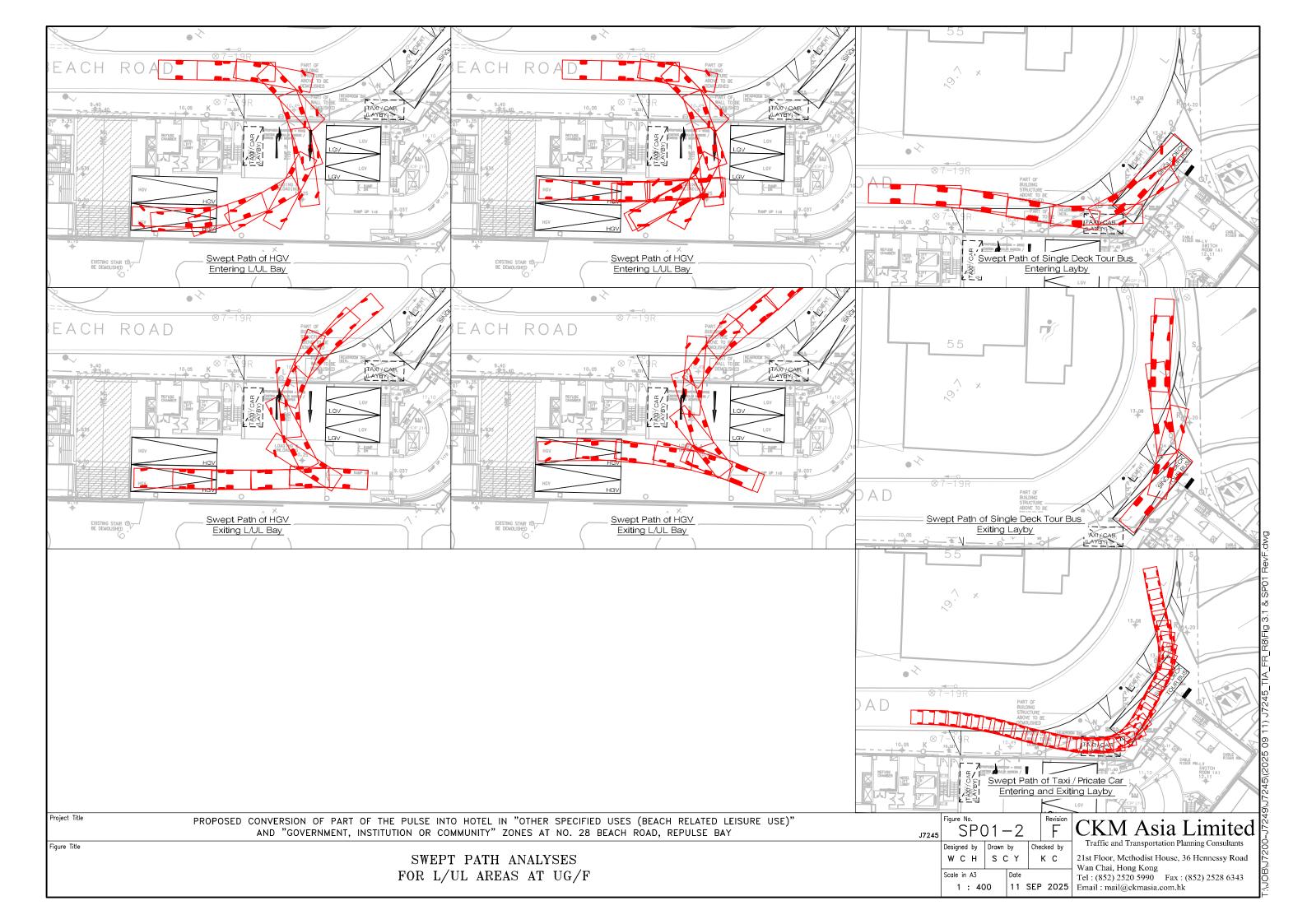
Geometric Parameters

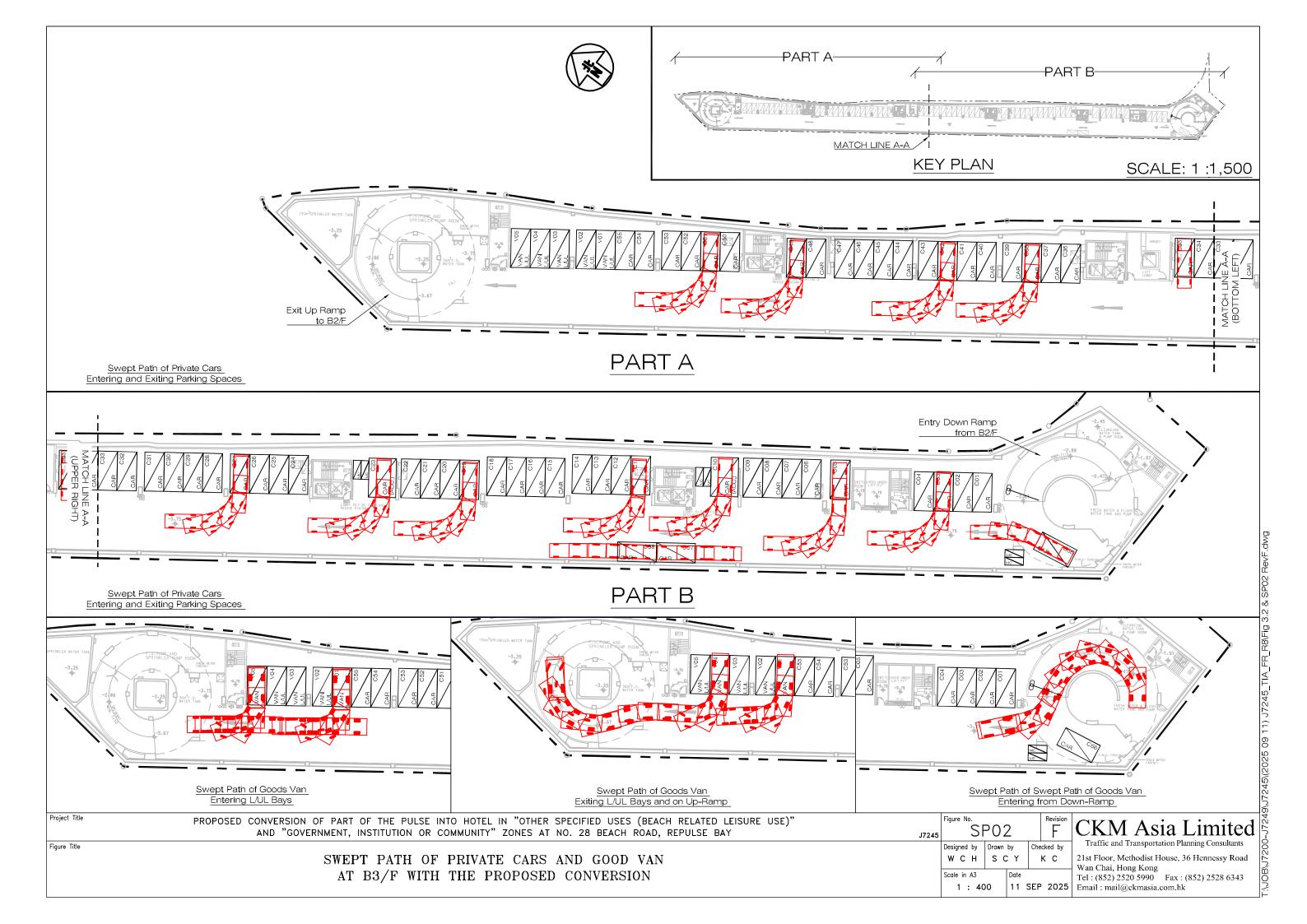
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	5.0	3.5	25.0	15.0	25	25	0.2
From B	5.0	4.0	25.0	50.0	25	15	0.0
From C	5.0	4.0	25.0	50.0	25	30	0.0
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L


Limitation


е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
s	Sharpness of Flare	0.0 - 3.0


Ratio-of-Flow to Capacity (RFC)

							C	Q _E	Entry	Flow	RI	-C
Arm	x ₂	M	t_D	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	4.636	0.030	1.485	1.027	1405	0.601	1425	1434	114	167	0.080	0.116
From B	4.940	0.030	1.485	1.062	1497	0.620	1520	1491	42	32	0.028	0.021
From C	4.940	0.030	1.485	1.010	1497	0.620	1489	1495	343	427	0.230	0.286
From D												
From E												
From F												
From G												
From H												

	Appendix B -					
Swept	Path A	nalyses				

