Attachment E	31
Revised Traffic Impact Assessme	nt

Section 16 Planning Application in support of Proposed Minor Relaxation of Plot Ratio Restriction for Proposed Hotel use at Chai Wan Inland Lots 12 and 43, 14 - 16 Lee Chung Street, Chai Wan, Hong Kong

Traffic Impact Assessment

Final Report November 2025

Prepared by: CKM Asia Limited

Prepared for: Fortune Creation Developments Ltd.

Section 16 Planning Application in support of Proposed Minor Relaxation of Plot Ratio Restriction for Proposed Hotel use at Chai Wan Inland Lots 12 and 43, 14 - 16 Lee Chung Street, Chai Wan, Hong Kong

CONTENTS

<u>CHA</u>	<u>PTER</u>	<u>PAGE</u>
1.0	INTRODUCTION Background Structure of Report	1 1 1
2.0	EXISTING SITUATION The Subject Site Existing Traffic Flows Performance of the Surveyed Junctions Public Transport Facilities Existing Footpath Level-Of-Service	2 2 2 2 3 3
3.0	THE PROPOSED HOTEL The Proposed Hotel Provision of Internal Transport Facilities Swept Path Analysis	5 5 5 6
4.0	TRAFFIC IMPACT Design Year Traffic Forecasting Estimated Traffic Growth Rate from 2031 to 2033 Additional Planned / Committed Developments near the Subject Site Traffic Generation of the Proposed Hotel Year 2033 Traffic Flows Year 2033 Junction Capacity Analysis Gazetted Improvement at Junction of Chai Wan Road Roundabout	7 7 7 7 8 8 8 8 9
5.0	PEDESTRIAN IMPACT Pedestrian Generation Annual Pedestrian Growth Rate between 2025 – 2033 Year 2033 Pedestrian Flows Year 2033 Footpath Level-Of-Service Potential Impact to Public Transport Service	11 11 11 12 12 13
6.0	SUMMARY	14
	Appendix A – Calculation Appendix B – Swept Path Analysis	

Section 16 Planning Application in support of Proposed Minor Relaxation of Plot Ratio Restriction for Proposed Hotel use at Chai Wan Inland Lots 12 and 43, 14 - 16 Lee Chung Street, Chai Wan, Hong Kong

TABLES

NUMBER

- 2.1 Existing Junction Performance
- 2.2 Description of Pedestrian Footpath LOS
- 2.3 Existing LOS Assessment
- 3.1 Comparison of the HKPSG Recommendations and Proposed Internal Transport Facilities
- 4.1 AADT of the Core Stations in the vicinity of the Proposed Hotel
- 4.2 Hong Kong Population Projections from Census and Statistics Department
- 4.3 Additional Planned / Committed Developments near the Subject Site
- 4.4 Adopted Trip Rates and Traffic Generation for the Proposed Hotel
- 4.5 Year 2033 Junction Performance
- 4.6 Year 2033 Junction Performance of the Improved Chai Wan Road Roundabout
- 5.1 Pedestrian Generations of the Proposed Hotel and Planned / Committed Developments in the Vicinity
- 5.2 Eastern District Population Projections
- 5.3 Hong Kong Population Projections from Census and Statistics Department
- 5.4 Year 2033 LOS Assessment
- 5.5 Operational Performance of MTR Island Line in 2024

Section 16 Planning Application in support of Proposed Minor Relaxation of Plot Ratio Restriction for Proposed Hotel use at Chai Wan Inland Lots 12 and 43, 14 - 16 Lee Chung Street, Chai Wan, Hong Kong

FIGURES

NUMBER

5.1

1.1	Location of the Subject Site
2.1	Location of the Surveyed Junctions
2.2	Junction Layout of Lee Chung Street / Chui Hang Street
2.3	Junction Layout of Cheung Lee Street / Kut Shing Street (West Junction)
2.4	Junction Layout of Cheung Lee Street / Kut Shing Street (East Junction)
2.5	Junction Layout of Hong Man Street / Tai Man Street
2.6	Junction Layout of Chai Wan Road / Hong Man Street
2.7	Junction Layout of Chai Wan Road / Wan Tsui Road
2.8	Junction Layout of Chai Wan Road Roundabout
2.9	Junction Layout of Ning Foo Street / Lee Chung Street
2.10	Junction Layout of Lee Chung Street outside Shun Yee Factory Building
2.11	Junction Layout of Hong Man Street / Cheung Lee Street
2.12	Year 2025 Existing Peak Hour Traffic Flows
2.13	Public Transport Facilities in the Vicinity of the Subject Site
2.14	Year 2025 Existing Peak 15 minutes Pedestrian Flows
3.1	Proposed Ground Floor Plan
4.1	Additional Planned / Committed Developments near the Subject Site
4.2	2033 Peak Hour Traffic Flows without the Proposed Hotel
4.3	2033 Peak Hour Traffic Flows with the Proposed Hotel
4.4	Possible Improvement at Junction Chai Wan Road Roundabout

2033 Peak 15 minutes Pedestrian Flows without and with the Proposed Hotel

1.0 INTRODUCTION

Background

- 1.1 The Subject Site is located at 14 16 Lee Chung Street in Chai Wan. It is currently occupied by a revitalised industrial building which is known as the Johnson Building. **Figure 1.1** shows the location of the Subject Site.
- 1.2 A Section 16 planning application for the minor relaxation of the plot ratio for 14,068 m² industrial use at the Subject Site was approved by the Town Planning Board (TPB ref: A/H20/195) on 4th December 2020. The Owner has the intention to redevelop the existing building into a 363-room hotel (the "Proposed Hotel").
- 1.3 Against this background, CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned by the Owner to conduct a traffic impact assessment in support of the Proposed Hotel.

Structure of Report

1.4 The report is structured as follows:

Chapter One - Gives the background of the project;

Chapter Two - Describes the existing situation; Chapter Three - Presents the Proposed Hotel;

Chapter Four - Describes the traffic impact analysis;

Chapter Five - Describes the pedestrian impact analysis; and

Chapter Six - Gives the overall conclusion.

2.0 EXISTING SITUATION

The Subject Site

2.1 The Johnson Building fronts onto Lee Chung Street and it adjoins the Shell Industrial Building to the south. The run-in / out of the Johnson Building is provided at Lee Chung Street.

Existing Traffic Flows

- 2.2 To quantify the existing traffic flows in the vicinity of the Subject Site, manual classified counts were conducted on Friday, 16 May 2025 during AM and PM peak periods at the following junctions:
 - J01 Junction of Lee Chung Street / Chui Hang Street
 - J02 Junction of Cheung Lee Street / Kut Shing Street (West Junction)
 - J03 Junction of Cheung Lee Street / Kut Shing Street (East Junction)
 - J04 Junction of Hong Man Street / Tai Man Street
 - J05 Junction of Chai Wan Road / Hong Man Street
 - J06 Junction of Chai Wan Road / Wan Tsui Road
 - J07 Junction of Chai Wan Road Roundabout
 - J08 Junction of Ning Foo Street / Lee Chung Street
 - J09 Junction of Lee Chung Street outside Shun Yee Factory Building
 - 110 Junction of Hong Man Street / Cheung Lee Street
- 2.3 The area of influence and surveyed junctions are shown in **Figure 2.1** and the junction layouts are found in **Figures 2.2 2.11**.
- 2.4 The traffic counts are classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. The AM and PM peak hours identified from the surveys are found to be between 0800 0900 hours and 1730 1830 hours respectively. **Figure 2.12** presents the observed AM and PM peak hour traffic flows in pcu/hour.

Performance of the Surveyed Junctions

2.5 The existing performance of the surveyed junctions is calculated based on the observed traffic counts, and the analyses were undertaken using the methods outlined in Volume 2 of the Transport Planning and Design Manual ("TPDM"), which is published by the Transport Department. The existing junction performance is presented in **Table 2.1**, and detailed calculations are found in **Appendix A**.

TABLE 2.1 EXISTING JUNCTION PERFORMANCE

Ref.	Junction	Junction Type (Parameter)	AM Peak	PM Peak
J01	Lee Chung Street / Chui Hang Street	Priority (DFC)	0.078	0.083
J02	Cheung Lee Street / Kut Shing Street (West Junction)	Priority (DFC)	0.132	0.102
J03	Cheung Lee Street / Kut Shing Street (East Junction)	Signal (RC)	307%	396%
J04	Hong Man Street / Tai Man Street	Priority (DFC)	0.509	0.243
J05	Chai Wan Road / Hong Man Street	Signal (RC)	37%	82%
J06	Chai Wan Road / Wan Tsui Road	Priority (DFC)	0.376	0.315
J07	Chai Wan Road Roundabout	RA (DFC)	0.472	0.363

Ref.	Junction	Junction Type (Parameter)	AM Peak	PM Peak
J08	Ning Foo Street / Lee Chung Street	Signal (RC)	251%	305%
J09	Lee Chung Street outside Shun Yee Factory Building	Priority (DFC)	0.068	0.057
J10	Hong Man Street / Cheung Lee Street	Priority (DFC)	0.536	0.415

Note: DFC – design flow/capacity ratio

RC - Reserve Capacity

RA – Roundabout

2.6 The results in **Table 2.1** show that the junctions analysed operate with capacity.

Public Transport Facilities

2.7 The Subject Site is well-served by public transport facilities, and access to public transport services is convenient, including the Chai Wan MTR station exit C, which is located some 200m away. In addition, numerous franchised bus and public light bus routes operate within 500-metre from the Subject Site. **Figure 2.13** shows details of the road-based public transport services provided within 500-metre from the Subject Site.

Existing Footpath Level-Of-Service

- 2.8 To quantify the existing pedestrian flows, pedestrian counts were conducted during the AM and PM peak periods on Friday, 16 May 2025 and Tuesday, 18th November 2025 at footpaths located in the vicinity, and the observed peak hour pedestrian flows are shown in **Figure 2.14**.
- 2.9 The Level-Of-Service ("LOS") of a pedestrian footpath depends on its width and number of pedestrians using the facility. Description of the LOS at walkway is obtained from Volume 6 of the TPDM and is presented in **Table 2.2**.

TABLE 2.2 DESCRIPTION OF PEDESTRIAN FOOTPATH LOS

	TABLE 2.2 DESCRIPTION OF FEDESTRIANT TOOT ATTEMES					
LOS	Flow Rate (ped/min/m)	Description				
Α	≤ 16	Pedestrians basically move in desired paths without altering their movements in response to other pedestrians. Walking speeds are freely selected, and conflicts between pedestrians are unlikely.				
В	16 – 23	Sufficient space is provided for pedestrians to freely select their walking speeds, to bypass other pedestrians and to avoid crossing conflicts with others. At this level, pedestrians begin to be aware of other pedestrians and to respond to their presence in the selection of walking paths.				
С	23 – 33	Sufficient space is available to select normal walking speeds and to bypass other pedestrians primarily in unidirectional stream. Where reverse direction or crossing movement exist, minor conflicts will occur, and speed and volume will be somewhat lower.				
D	33 – 49	Freedom to select individual walking speeds and bypass other pedestrians is restricted. Where crossing or reverse-flow movements exist, the probability of conflicts is high and its avoidance requires changes of speeds and position. The LOS provides reasonable fluid flow; however considerable friction and interactions between pedestrians are likely to occur.				
E	49 – 75	Virtually, all pedestrians would have their normal walking speeds restricted. At the lower range of this LOS, forward movement is possible only by shuffling. Space is insufficient to pass over slower pedestrians. Cross- and reverse-movement are possible only with extreme difficulties. Design volumes approach the limit of walking capacity with resulting stoppages and interruptions to flow.				
F	> 75	Walking speeds are severely restricted. Forward progress is made only by shuffling. There are frequent and unavoidable conflicts with other pedestrians. Cross- and reverse-movements are virtually impossible. Flow is sporadic and unstable. Space is more characteristics of queued pedestrians than of moving pedestrian streams.				

Source: Volume 6 Chapter 10 of TPDM

2.10 The observed peak 15 minutes pedestrian flows LOS assessment is presented in **Table 2.3**.

TABLE 2.3 EXISTING LOS ASSESSMENT

Location	Clear Width ⁽¹⁾ [Effective Width] (m)		Flow (ped/ 15 mins)	Flow rate (ped/min/m)	LOS
P1. Eastern Footpath Outside	2.5[1.5]	AM	94	4.2	Α
14-16 Lee Chung Street		PM	187	8.4	Α
P2. Northern Footpath Outside	3.0[2.0]	AM	382	12.8	Α
12 Lee Chung Street		PM	418	14.0	Α
P3. Footpath at Ning Foo Street	4.5[3.5]	AM	452	8.7	Α
Amenity Area		PM	444	8.5	Α

⁽¹⁾ The width excludes railing and obstructions.

2.11 The above results indicate that the surveyed footpaths currently operate with LOS A during the AM and PM peak. As stated in the TPDM, LOS A to C is considered as an acceptable range of level of service. Hence, the footpaths analysed operate with capacity.

3.0 THE PROPOSED HOTEL

The Proposed Hotel

3.1 The Owner of the Subject Site intends to redevelop the existing industrial building to a 363-room hotel.

Provision of Internal Transport Facilities

3.2 The comparison of the proposed internal transport facilities and the recommendations of the Hong Kong Planning Standards and Guidelines ("HKPSG") are presented in **Table 3.1**.

TABLE 3.1 COMPARISON OF THE HKPSG RECOMMENDATIONS AND PROPOSED INTERNAL TRANSPORT FACILITIES

TROTOSED INTERNATE I	
HKPSG Recommendations for a Hotel with 363 rooms	The Proposed Hotel
Car Parking Space	
1 per 100 rooms	4 nos. comprising of:
	(i) 1 set of double-deck parking rack @ 5m(L) X
363 / 100 = 3.63, say 4 nos.	2.5m (W)
<u> </u>	(ii) 1 no. @ 5m(L) X 2.5m (W) X 2.4m(H),
	(iii) 1 no. @ 5m (L) X 3.5m (W) X 2.4m (H) for
	persons with disabilities
	= Comply with HKPSG, OK
Motorcycle Parking Space	
5% to 10% of car parking space	1 no. 2.4m(L) X 1m (W) X 2.4m(H)
O Proceedings	= Complies with HKPSG, OK
Minimum = $4 \times 5\% = 0.2$, say 1 no.	
Maximum = $4 \times 10\% = 0.4$, say 1 no.	
Goods Vehicle Loading / Unloading Bay	
0.5 – 1 goods vehicle bay per 100 rooms	2 nos. including:
	(i) 1 LGV @ 7m (L) X 3.5m (W) X 3.6m (H)
Minimum = $0.5 \times 363/100 = 1.82$, say <u>2 nos.</u>	(ii) 1 HGV @ 11m (L) X 3.5m (W) X 4.7m (H)
With 65% for LGV and 35% for HGV:	= Comply with HKPSG, OK
LGV : $2 \times 0.65 = 1.3$, say <u>1 no.</u> ; &	
HGV : $2 - 1 = 1 \text{ no.}$	
Maximum = $1 \times 363/100 = 3.63$, say 4 nos.	
With 65% for LGV and 35% for HGV:	
LGV : $4 \times 0.65 = 2.6$, say 3 nos. ; &	
HGV: $4 - 3 = 1$ no.	
<u> </u>	1
Taxi and Private Car Layby	
Minimum 3 nos. for 300 - 599 rooms	3 nos. @ 5m (L) X 2.5m (W) X 2.4m (H) = Comply with HKPSG, OK
Single Deck Tour Bus Layby	
Minimum 2 – 3 nos. for 300 - 899 rooms	2 nos. @ 12m (L) X 3.5m (W) X 3.8m (H)
	= Comply with HKPSG, OK

3.3 **Table 3.1** shows that the internal transport facilities provided comply with the recommendations of the HKPSG. The G/F layout plan is shown in **Figure 3.1**.

Traffic Impact Assessment Final Report

Swept Path Analysis

3.4 The CAD-based swept path analysis programme, Autodesk Vehicle Tracking, was used to check the ease of manoeuvring of vehicles within the Proposed Hotel, and the swept path analysis drawings are found in **Appendix B**. Vehicles are found to have no manoeuvring problems.

4.0 TRAFFIC IMPACT

Design Year

4.1 The Proposed Hotel is expected to be completed in 2030, and the design year adopted for the traffic assessment is, whichever later of the 2: (i) at least 3 years after the planned completion of the development, i.e., 2033, or (ii) 5 years from the date of this application, i.e., 2030. Therefore, Year 2033 is adopted for junction capacity analysis.

Traffic Forecasting

4.2 Year 2033 peak hour traffic flows for the junction capacity analysis are produced (i) with reference to the 2019-based Base District Traffic Model HK2 (the "BDTM"); (ii) estimated growth from 2031 to 2033; (iii) expected traffic generation by the planned / committed developments in the vicinity; and (iv) expected traffic generation by the Proposed Hotel.

Estimated Traffic Growth Rate from 2031 to 2033

- 4.3 Reference is made to the: (i) the Annual Average Daily Traffic ("AADT") of core stations located in the vicinity of the Proposed Hotel, which is found in the Annual Traffic Census, published by Transport Department, and (ii) the Hong Kong Population Projection published by Census and Statistics Department.
- 4.4 The information for (i) is presented in **Table 4.1**.

TABLE 4.1 AADT OF THE CORE STATIONS IN THE VICINITY OF THE PROPOSED HOTEL

	I I I I I I I I I I I I I I I I I I I			
ATC Station No.	1102	1220	1446	Overall
Road	Cheung Lee Street	Chai Wan Road	Island Eastern Corridor	
From	Hong Man Street	Tai Tam Road	Wan Tsui Road	
То	Kut Shing Street	Wan Tsui Road	Wing Tai Road INT	
Year	Annua	Average Daily Tr	affic (vehicles / day)	
2017	4,320	18,470*	17,730*	40,520
2018	4,500	19,140	17,780*	41,420
2019	4,320	18,490	19,630	42,440
2020	4,240	17,640*	18,700	40,580
2021	4,430	18,440*	19,070*	41,940
2022	4,230	17,590*	17,970*	39,790
2023	4,330	18,590	18,360*	41,280
Average Annual Growth (2017 - 2023)	0.04%	0.11%	0.58%	0.31%

Note: * Estimated by Growth Factor

- 4.5 **Table 4.1** shows overall annual average traffic growth of 0.31%.
- 4.6 The information for (ii) is presented in **Table 4.2**.

TABLE 4.2 HONG KONG POPULATION PROJECTIONS FROM CENSUS AND STATISTICS DEPARTMENT

Year	Population in Hong Kong (thousands)
2031	7,820.2
2033	7,903.6
Average Annual Growth (2031 – 2033)	0.53%

4.7 **Table 4.2** shows that the annual population growth between 2031 – 2033 is 0.53%. To be conservative, the annual growth rate of 1% is adopted for 2031 – 2033.

Additional Planned / Committed Developments near the Subject Site

4.8 The planned / committed developments near the Subject Site not included in the BDTM but have been incorporated to produce the future year traffic flows are listed in **Table 4.3** and the locations are presented in **Figure 4.1**.

TABLE 4.3 ADDITIONAL PLANNED / COMMITTED DEVELOPMENTS NEAR THE SUBJECT SITE

Ref.	Development			No. of Flat	Average Flat Size	
Α	Industrial Building at 18 Lee Chung	Street	9,000	-		
В	Transitional Housing at 46 Sheung C	On Street		103	30 m ²	
С	Light Public Housing at 50 Sheung (On Street		1,720	30 m ²	
D	Residential Development at 391 Cha	Residential Development at 391 Chai Wan Road			75 m ²	
E	Public Housing Development at Cheung Man Road		_	730	50 m ²	_
F	Chai Wan Government Complex and Vehicle Depot		33,930			
G	Water Supplies Department Headquarters with Regional Office and Correctional Services Department Headquarters		37,000			
Н	Joint-user Complex at Junction of	oint-user Complex at Junction of Office				
	Shing Tai Road and Sheung Mau	Public Vehicle Park				200
	Street, Chai Wan	Driving School	5,000		-	

Traffic Generation of the Proposed Hotel

4.9 To estimate the traffic generation of the Proposed Hotel, reference is made to the mean rates for Hotel uses in TPDM. The adopted trip rates and the estimated AM and PM peak hour traffic generation are presented in **Table 4.4**.

TABLE 4.4 ADOPTED TRIP RATES AND TRAFFIC GENERATION OF THE PROPOSED HOTEL

The Proposed Hotel	Hotel Parameter AM Peak		Peak	PM Peak	
(363 Rooms)		Generation	Attraction	Generation	Attraction
Mean Traffic Generation	pcu/hr/	0.1329	0.1457	0.1290	0.1546
Rates for Hotel Uses	room				
Traffic Generation	pcu/hr	49	53	47	<u>57</u>
		102 (2-way)		104 (2	-way)

4.10 The Proposed Hotel is expected to generate 102 and 104 pcu / hour (2-way) in AM and PM peak respectively.

Year 2033 Traffic Flows

4.11 Year 2033 traffic flows for the following cases are derived:

Year 2033 Without the Proposed Hotel [A] = Traffic flows derived with reference to BDTM + estimated traffic growth between 2031 and 2033 + expected traffic generation of the planned / committed developments after 2019

Year 2033 With the = [A] + Traffic Generation of the Proposed Hotel Proposed Hotel [B]

4.12 Year 2033 peak hour traffic flows for the above cases are shown in **Figures 4.2 – 4.3** respectively.

Year 2033 Junction Capacity Analysis

4.13 Year 2033 junction capacity analysis for the three cases are summarised in **Table 4.5** and detailed calculations are found in the **Appendix A**.

TABLE 4.5 YEAR 2033 JUNCTION PERFORMANCE

Ref.	Junction	Junction Type (Parameter)	Without the Proposed Hotel		With the Proposed Hotel	
			AM	PM	AM	PM
		D. 1. (D.E.C.)	Peak	Peak	Peak	Peak
J01	Lee Chung Street / Chui Hang Street	Priority (DFC)	0.114	0.101	0.220	0.180
J02	Cheung Lee Street / Kut Shing Street (West Junction)	Priority (DFC)	0.148	0.116	0.150	0.118
J03	Cheung Lee Street / Kut Shing Street (East Junction)	Signal (RC)	278%	352%	255%	320%
J04	Hong Man Street / Tai Man Street	Priority (DFC)	0.607	0.287	0.609	0.288
J05	Chai Wan Road / Hong Man Street	Signal (RC)	19%	61%	18%	59%
J06	Chai Wan Road / Wan Tsui Road	Priority (DFC)	0.412	0.345	0.412	0.345
J07	Chai Wan Road Roundabout	RA (DFC)	0.544	0.415	0.573	0.441
J08	Ning Foo Street / Lee Chung Street	Signal (RC)	206%	258%	160%	194%
J09	Lee Chung Street outside Shun Yee Factory Building	Priority (DFC)	0.079	0.063	0.080	0.064
J10	Hong Man Street / Cheung Lee Street	Priority (DFC)	0.595	0.457	0.617	0.477

Note: DFC – design flow/capacity ratio RC – Reserve Capacity RA – Roundabout

4.14 **Table 4.5** shows that the junctions analysed have capacity to accommodate the expected traffic growth to 2033 and the traffic generated by the Proposed Hotel. In addition, the traffic generated by the Proposed Hotel has negligible impact to the surrounding road junctions.

Gazetted Improvement at Junction of Chai Wan Road Roundabout

- 4.15 Improvement at the junction of Chai Wan Road Roundabout was gazetted on 4 August 2023 and will be implemented by Civil Engineering and Development Department ("CEDD") under "Site Formation and Infrastructure Works for Public Housing Development near Chai Wan Swimming Pool, Chai Wan" (CE 63/2022 (CE)). Figure 4.4 shows the possible improvement, which includes the following:
 - Widening of the approach arm of Chai Wan Road Eastbound.
 - Widening of exiting arm of Island Eastern Corridor

- Additional exclusive left turn traffic lane from Chai Wan Road Eastbound to Island Eastern Corridor northbound
- 4.16 Based on this possible improvement, the performance of Chai Wan Road Roundabout is calculated and is presented in **Table 4.6** and detailed calculations are found in the **Appendix A**.

TABLE 4.6 YEAR 2033 JUNCTION PERFORMANCE OF THE IMPROVED CHAI WAN ROAD ROUNDABOUT

Ref	Junction		Type of Junction	Without the Proposed Hotel		With the Proposed Hotel	
			(Parameter)	AM Peak	PM Peak	AM Peak	PM Peak
J <i>7</i>	Chai Wan Road existing layout		RA (DFC)	0.544	0.415	0.573	0.441
	Roundabout	with improvement	RA (DFC)	0.443	0.392	0.450	0.414

Note: DFC – design flow/capacity ratio RA – Roundabout

4.17 **Table 4.6** shows that (1) the improved Chai Wan Road Roundabout would have sufficient capacity in Year 2033 for the cases without and with the Proposed Hotel; and (2) the additional traffic generated by the Proposed Hotel has negligible traffic impact.

5.0 PEDESTRIAN IMPACT

Pedestrian Generation

5.1 The pedestrian generation of the Proposed Hotel and planned / committed developments in the vicinity, i.e., Industrial Building at 18 Lee Chung Street, are estimated with reference to in-house pedestrian generation rates and are presented in **Table 5.1**.

TABLE 5.1 PEDESTRIAN GENERATIONS OF THE PROPOSED HOTEL AND PLANNED / COMMITTED DEVELOPMENTS IN THE VICINITY

ltem	Pedestrian Generations					
	AM Peak			PM Peak		
	Generation	Attraction	Generation	Attraction		
Pedestrian Generation Rate Hotel (ped / 15 mins / room)	0.1732	0.0512	0.1772	0.1575		
Industrial (ped / 15mins / 100m ² GFA)	0.0500	0.3410	0.2820	0.0360		
Pedestrian Generation (ped / 15 mins)						
The Proposed Hotel – 363 rooms	63	19	65	58		
	82 (2-way) 123 (2-w		2-way)			
18 Lee Chung Street – 9,000m² Industrial GFA	5	31	26	4		

5.2 **Table 5.1** shows that the Proposed Hotel is expected to generate 82 and 123 pcu/15-minutes (2-way) in AM and PM peak respectively.

Annual Pedestrian Growth Rate between 2025 - 2033

- 5.3 To establish the pedestrian growth rate from 2025 to 2033, reference is made to 2 sources of information including:
 - (i) Eastern District Population Projection of "2021 based TPEDM" from Planning Department; and
 - (ii) "Hong Kong Population Projections" from the Census and Statistics Department.
- 5.4 Relevant information from the 2021 based TPEDM is presented in **Table 5.2**.

TABLE 5.2 EASTERN DISTRICT POPULATION PROJECTIONS

Year	Population [a]	Employment [b]	Overall [c] = [a] + [b]
2021	529,600	296,200	825,800
2031	467,000	277,050	744,050
Average Annual Growth 2021 to 2031	-1.3%	-0.7%	-1.0%

- 5.5 **Table 5.2** shows that the average annual population growth in the Eastern District between 2021 and 2031 is -1.0%.
- 5.6 Relevant information from the "Hong Kong Population Projections" is presented in **Table 5.3**.

TABLE 5.3 HONG KONG POPULATION PROJECTIONS FROM CENSUS AND STATISTICS DEPARTMENT

Year	Hong Kong Resident Population ('000)
2025	7,559.8
2033	7,903.6
Average Annual Growth 2025 to 2033	0.56%

5.7 **Table 5.3** shows that the average annual population growth in Hong Kong between 2025 – 2033 is 0.56%. Hence, the annual growth from 2025 to 2033 adopted is 0.56%.

Year 2033 Pedestrian Flows

- 5.8 Year 2033 pedestrian flows are produced with reference to (i) the observed 2025 pedestrian flows, (ii) annual pedestrian growth rate, (iii) expected pedestrian demand due to the planned / committed developments between 2025 2033 and the subject site.
- 5.9 Year 2033 pedestrian flows the following cases are derived:

2033 without the Proposed = 2025 observed pedestrian flows + adopted pedestrian Hotel [A] growth from 2025 to 2033 + pedestrian generation of the planned / committed developments

2033 with the Proposed = [A] + pedestrian generation of the Proposed Hotel Hotel [B]

Year 2033 Footpath Level-Of-Service

5.10 Year 2033 peak hour pedestrian flows for the case of 2033 without and with the Proposed Hotel are estimated as shown in **Figure 5.1** and the corresponding LOS assessment is presented in **Table 5.4.**

TABLE 5.4 YEAR 2033 LOS ASSESSMENT

Location	Clear Width ⁽¹⁾	Peak Period	2033 without the Proposed Hotel			2033 with the Proposed Hotel		
	[Effective Width] (m)		Flow (ped/ 15 min)	Flow rate (ped/ min/m)	LOS	Flow (ped/ 15 min)	Flow rate (ped/ min/m)	LOS
P1. Eastern Footpath	2.5[1.5]	AM	135	6.0	Α	217	9.7	Α
outside 14-16 Lee Chung Street		PM	226	10.1	А	349	15.6	Α
P2. Northern	3.0[2.0]	AM	436	14.6	Α	518	17.3	В
footpath outside 12 Lee Chung Street		PM	468	15.6	Α	591	19.7	В
P3. Footpath at Ning	4.5[3.5]	AM	509	9.7	Α	591	11.3	Α
Foo Street Amenity Area		PM	495	9.5	A	618	11.8	Α

Note: (1) The width excludes railing and obstructions.

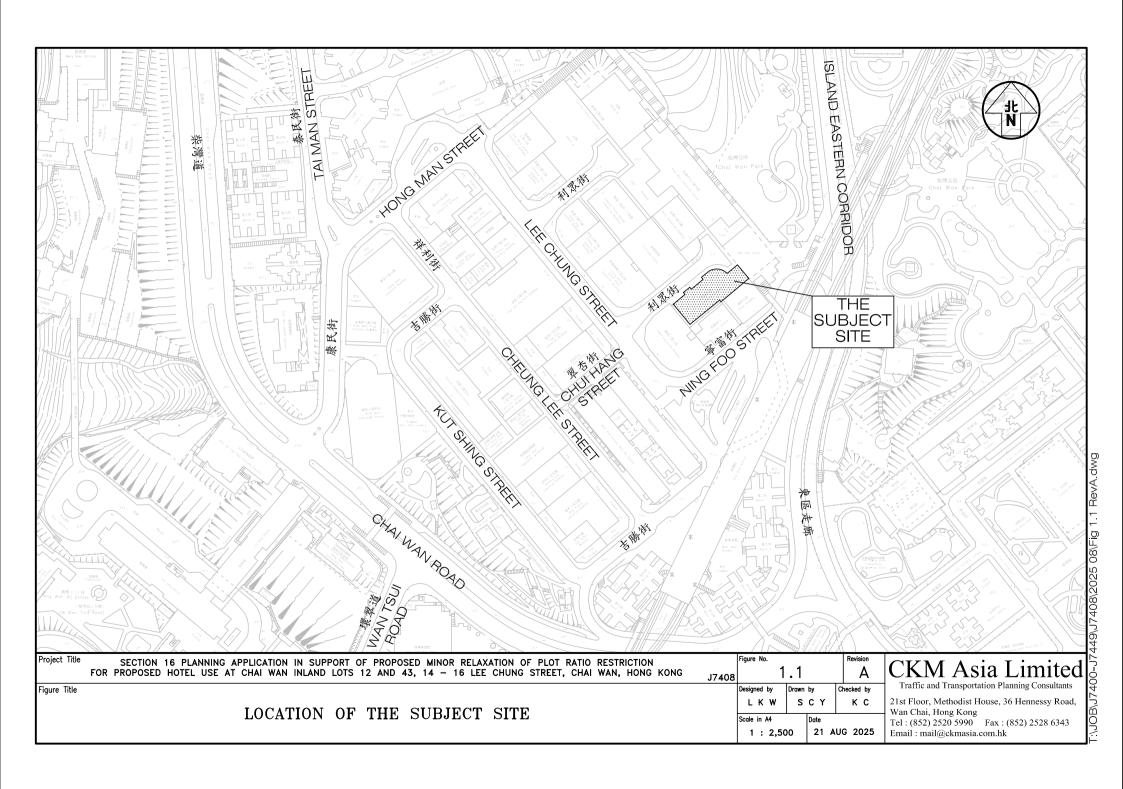
5.11 The results in **Table 5.4** show that the assessed footpaths operate with LOS A or B, which is acceptable.

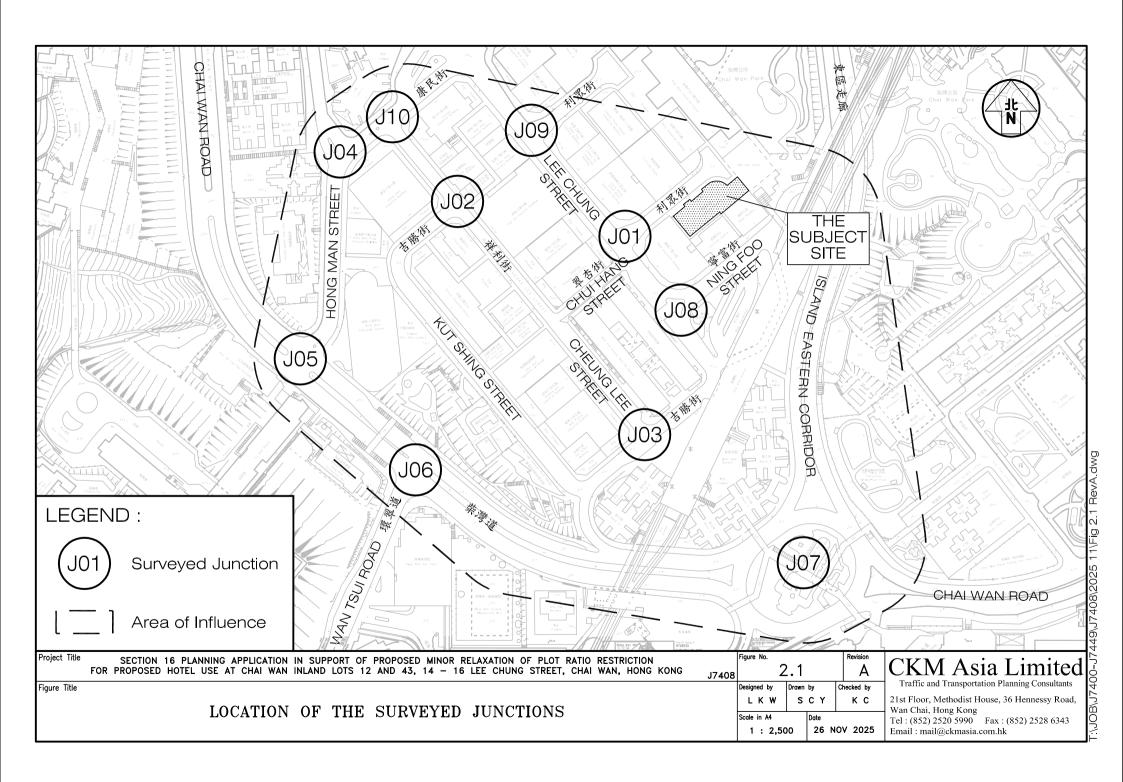
Potential Impact to Public Transport Service

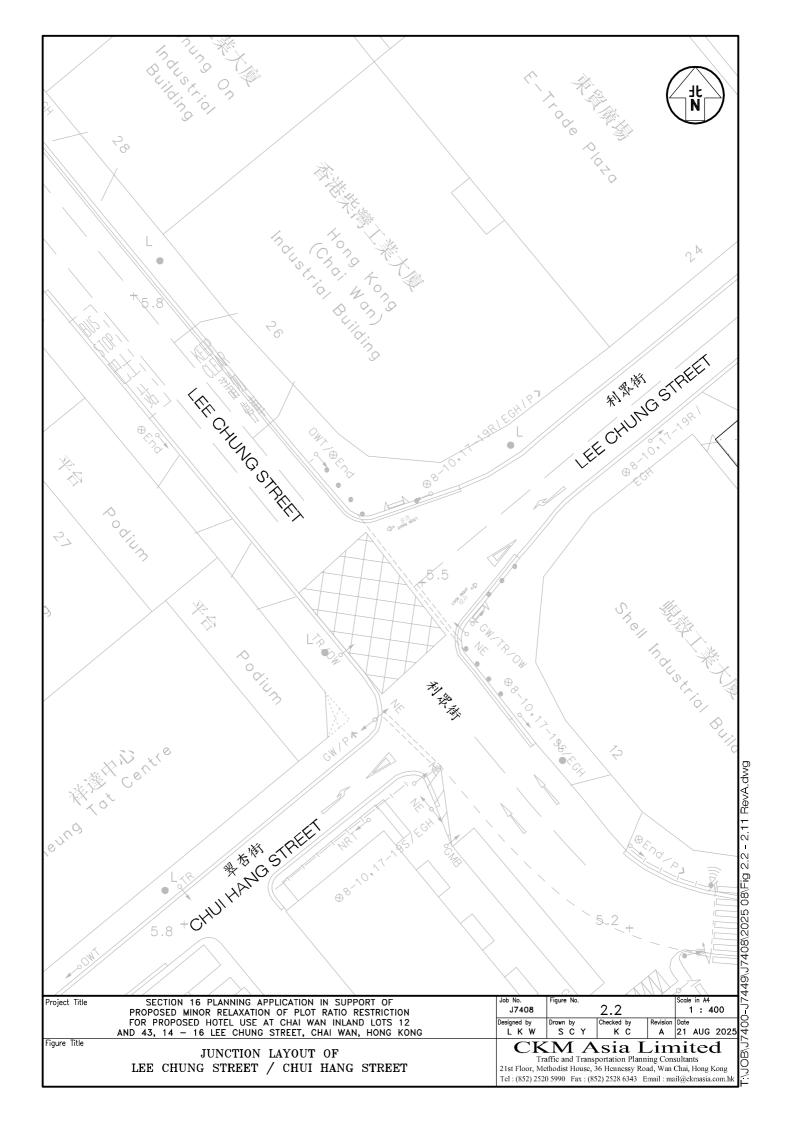
In view that Chai Wan MTR station exit C is located only around 200m away, it is expected that the most pedestrians generated would use the MTR Island Line at Chai Wan Station. The operational performance of the MTR Island Line is obtained from "Examination of Estimates of Expenditure 2025-26" in Finance Committee of Legislative Council, and is presented in **Table 5.5**.

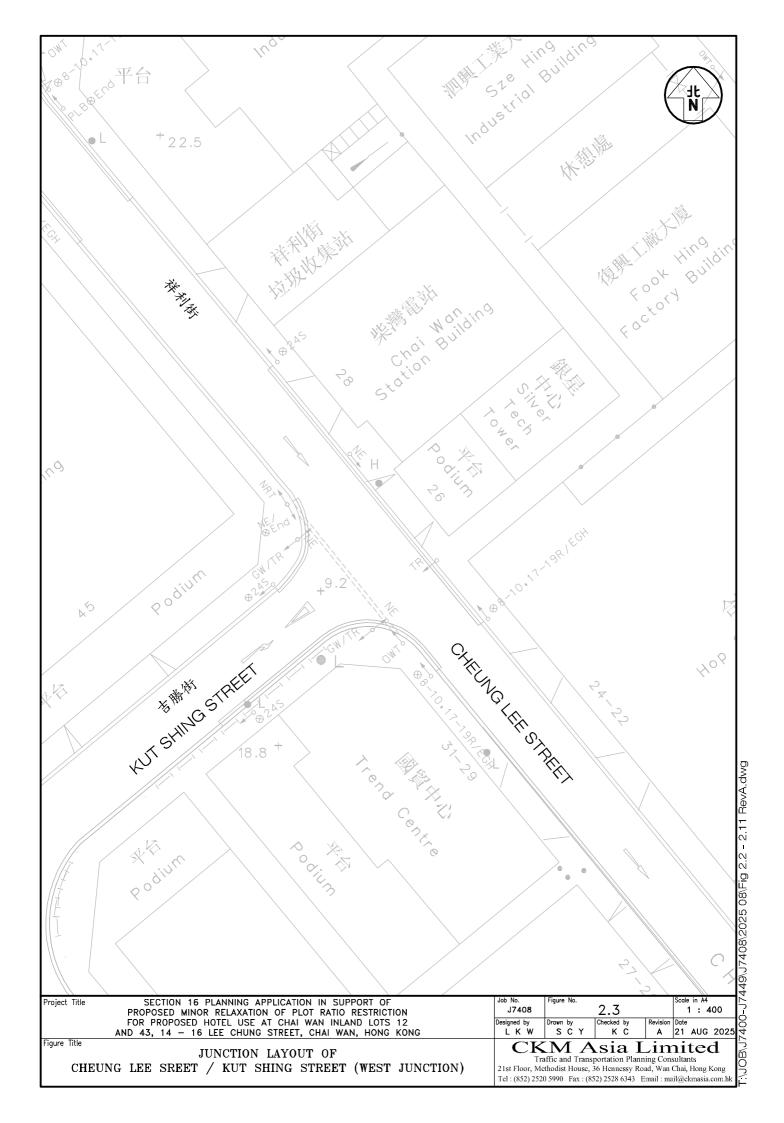
TABLE 5.5 OPERATIONAL PERFORMANCE OF MTR ISLAND LINE IN 2024

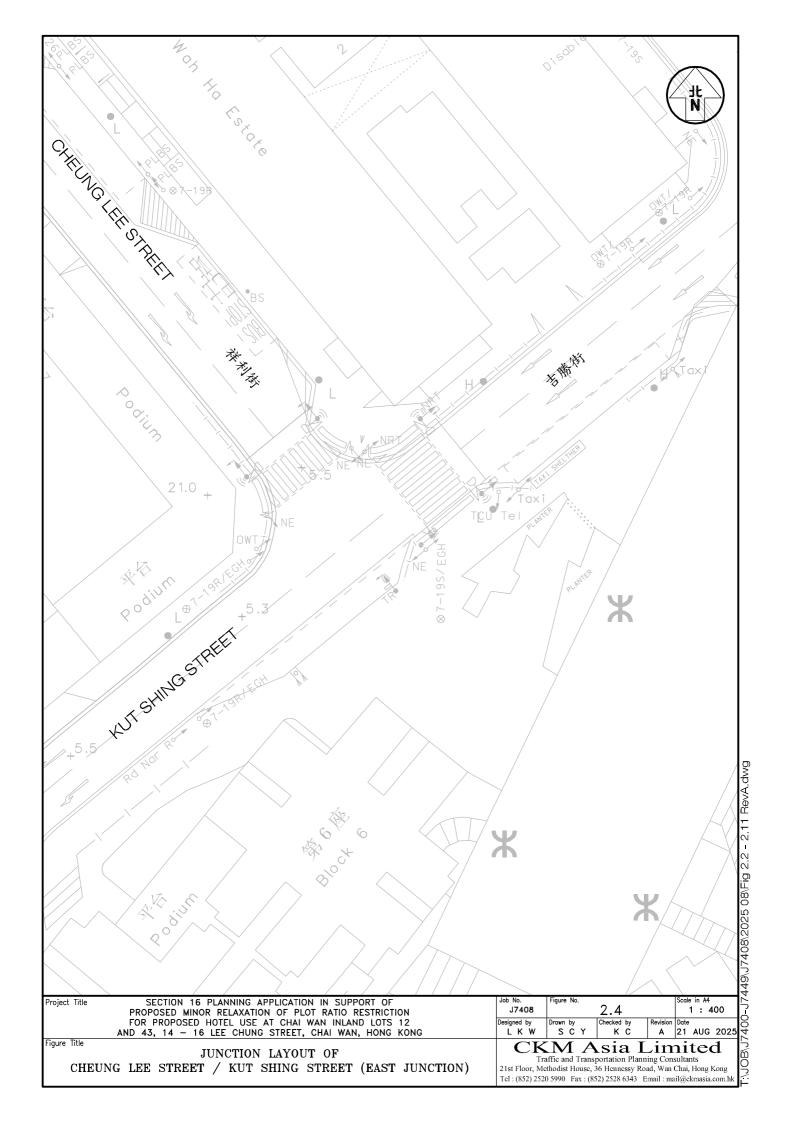
Item	Parameters
Carrying capacity [a]	80,000 passengers / hour
Current Patronage [b]	44,100 passengers / hour
Current Loading [b]/[a] {Critical Link}	55% {Tin Hau to Causeway Bay}


Source: Reply Serial No. TLB199 for Question Serial No. 2031, Controlling Officer's Reply, Examination of Estimates of Expenditure 2025-26. Finance Committee. Legislative Council. April 2025.

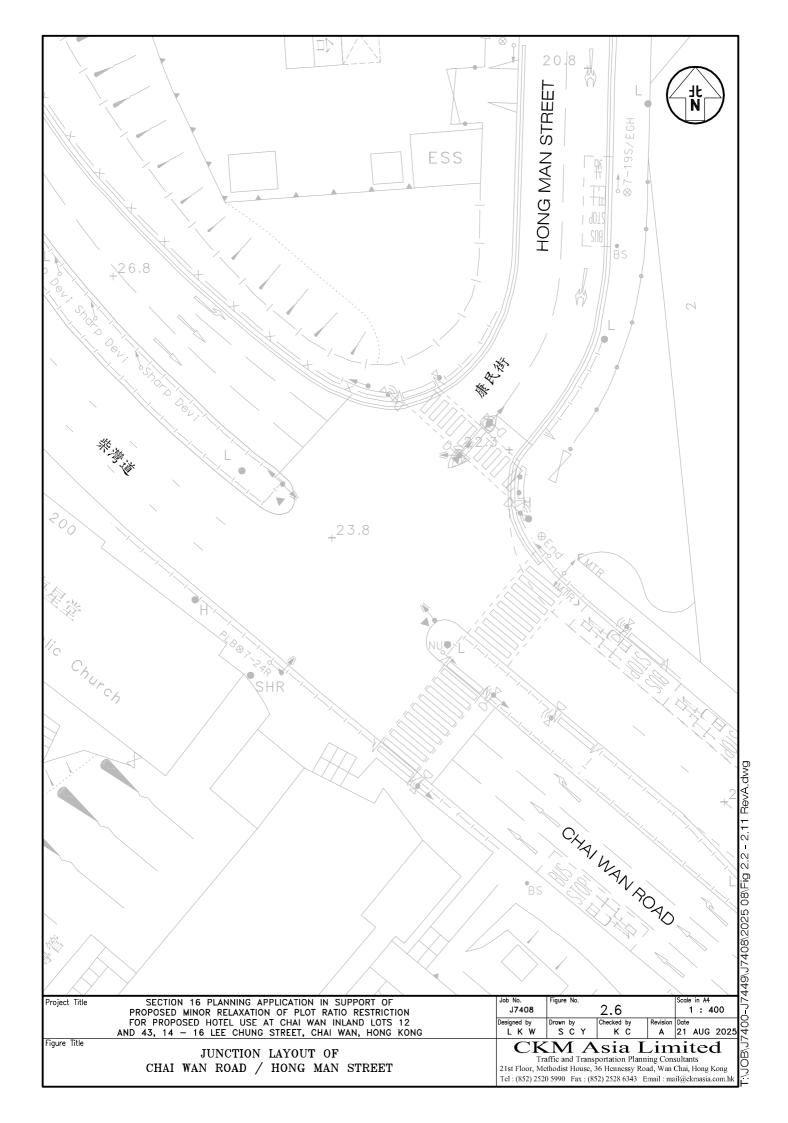

< https://www.legco.gov.hk/yr2025/english/fc/fc/w q/tlb-e.pdf>

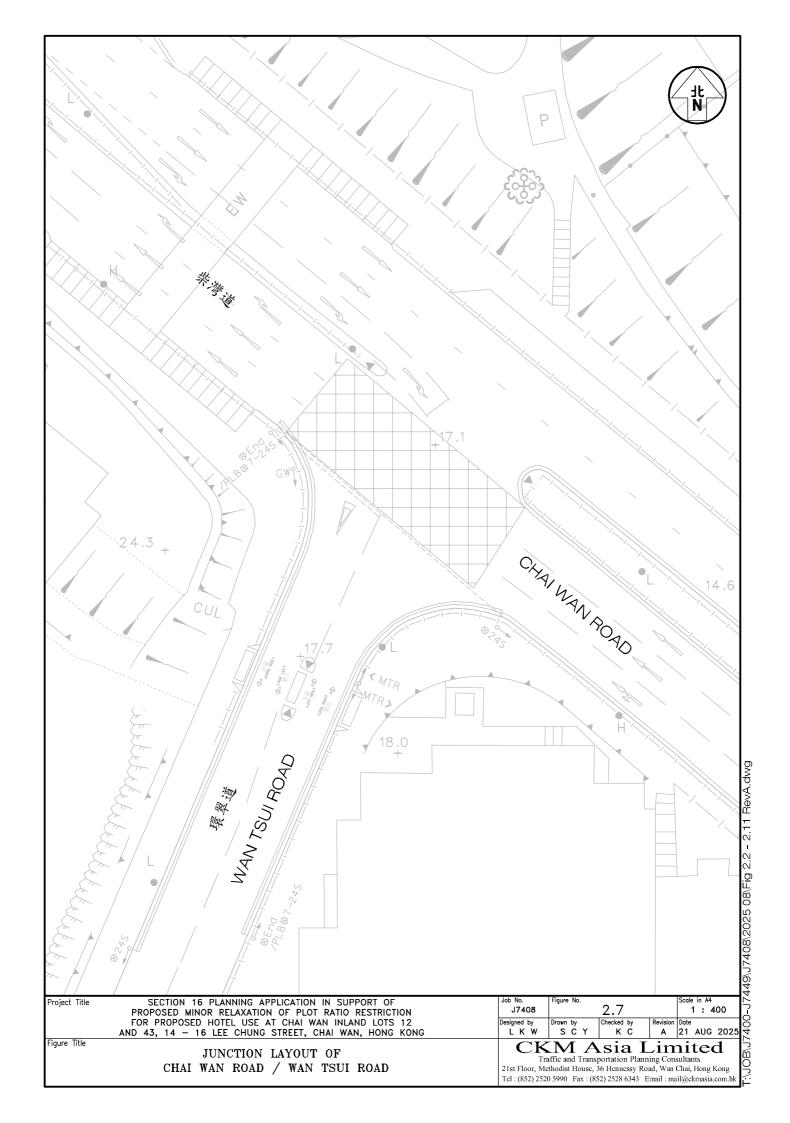

5.13 As shown in **Table 5.5**, the MTR Island Line has a carrying capacity of 80,000 passenger / hour and the current loading for the section between Tin Hau to Causeway Bay, is 55%. As presented in **Table 5.1**, the Proposed Hotel is expected to generate up to 123 pedestrians during the peak hour. If all pedestrians generated during the peak hour use the MTR, the impact is expected to be negligible [Calculation: 123 ÷ 80,000 = 0.2%].

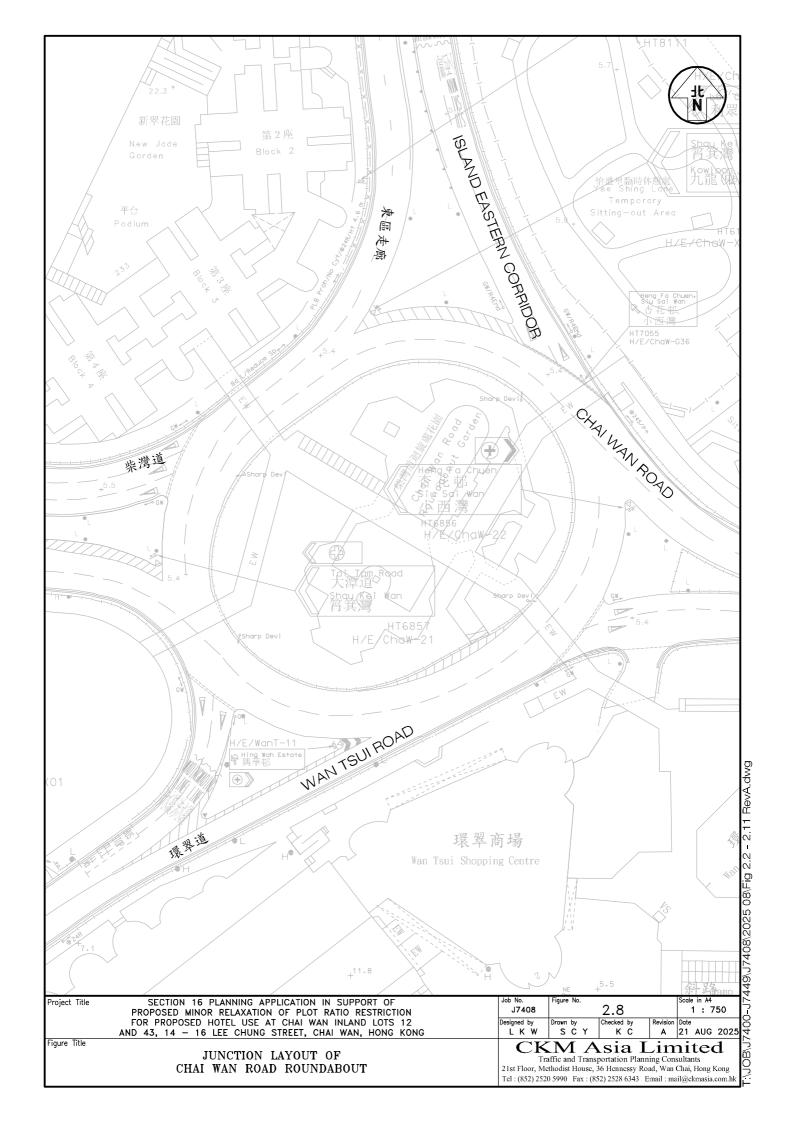

6.0 SUMMARY

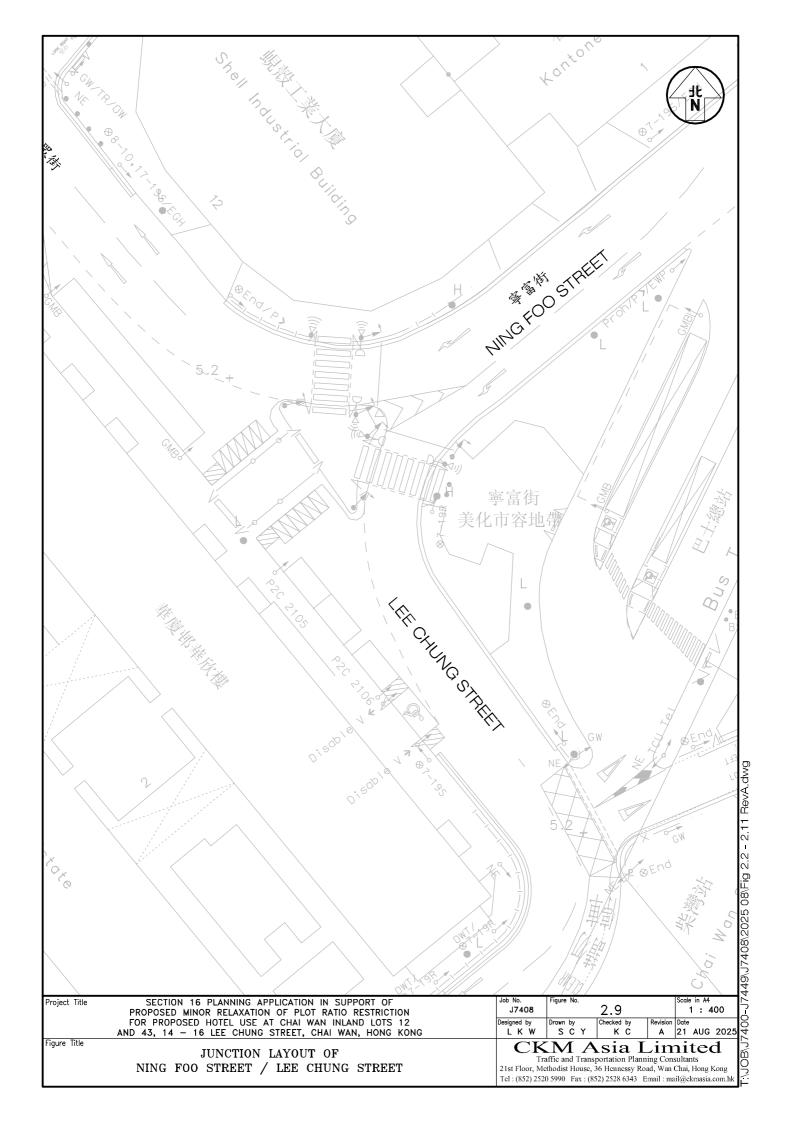

- 6.1 A Section 16 planning application for the minor relaxation of the plot ratio for 14,068 m² industrial use at the Subject Site was approved by the Town Planning Board (TPB ref: A/H20/195) on 4th December 2020. The Owner now has the intention to develop a 363-room hotel.
- 6.2 The Subject Site is conveniently located close to public transport services, including the Chai Wan MTR station and numerous franchised bus routes and public light buses. Pedestrian facilities are provided in the vicinity of the Subject Site, including footpaths along road carriageways and at-grade pedestrian crossings which connect to the Chai Wan MTR station.
- 6.3 Manual classified counts were conducted at junctions, which are located in the vicinity in order to establish the existing traffic flows during the AM and PM peak hours.
- 6.4 The internal transport facilities provided for the Proposed Hotel comply with the recommendations of the HKPSG. Swept path analysis was conducted to ensure that all vehicles could enter and leave the Proposed Hotel and their respective space / bay with ease.
- 6.5 Year 2033 peak hour traffic flows for the junction capacity analysis are produced (i) with reference to the BDTM; (ii) estimated traffic growth from 2031 to 2033; (iii) expected traffic generation by the planned / committed developments in the vicinity; and (iv) traffic generation of the Proposed Hotel.
- 6.6 This TIA concludes that the traffic generation of the Proposed Hotel has negligible traffic impact to the surrounding road network, and, is acceptable from traffic terms.
- 6.7 The assessment of footpaths found that the Proposed Hotel has negligible impact.
- 6.8 It can be concluded that the Proposed Hotel will result in no adverse traffic impact to the surrounding road network. From traffic engineering grounds, the Proposed Hotel is acceptable.

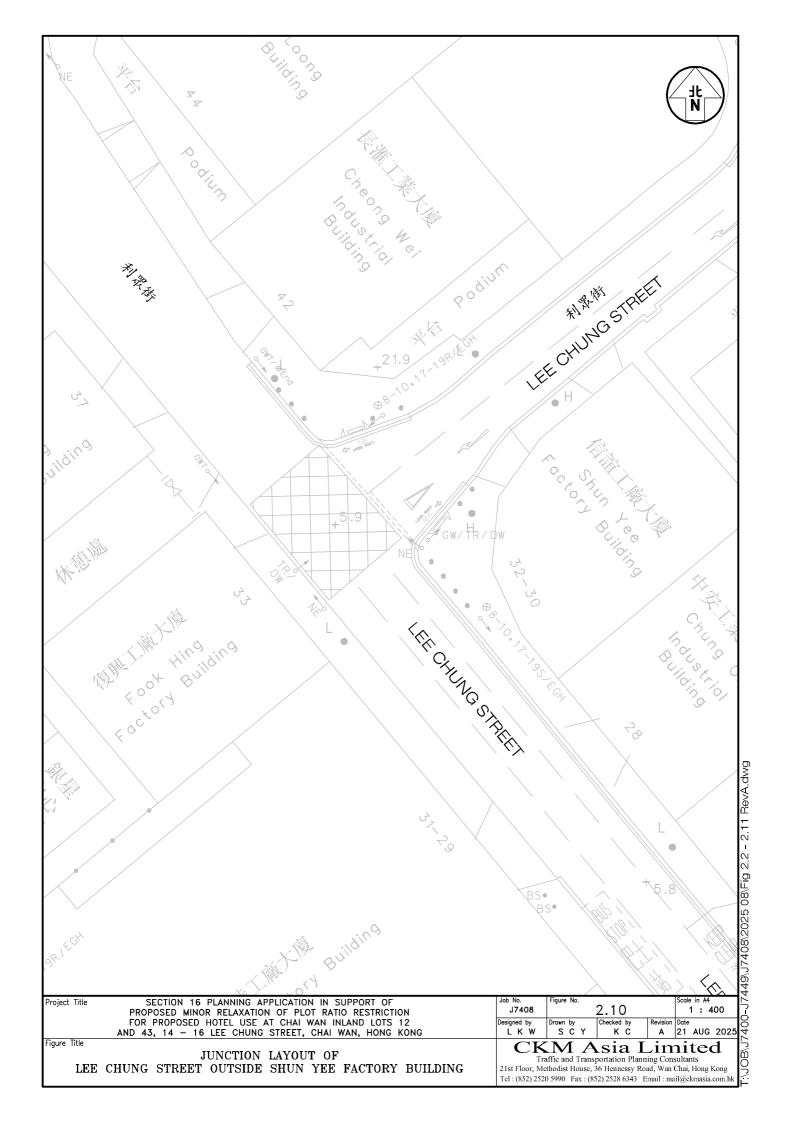


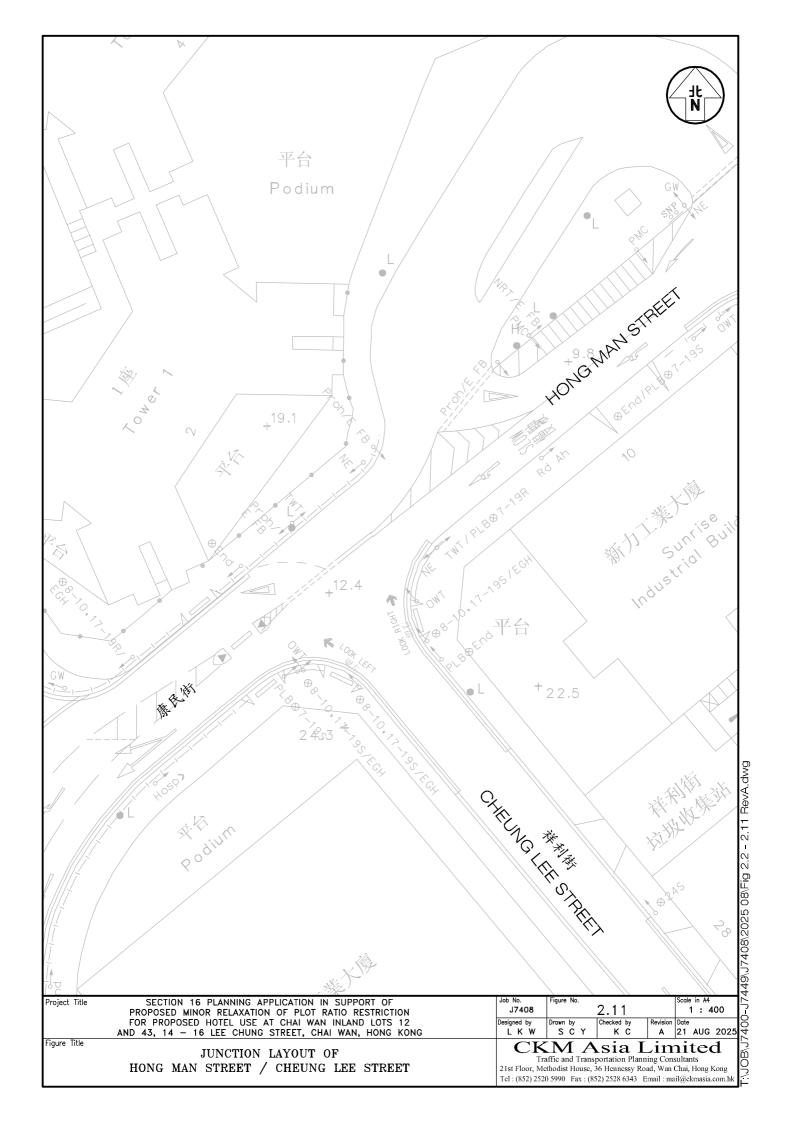


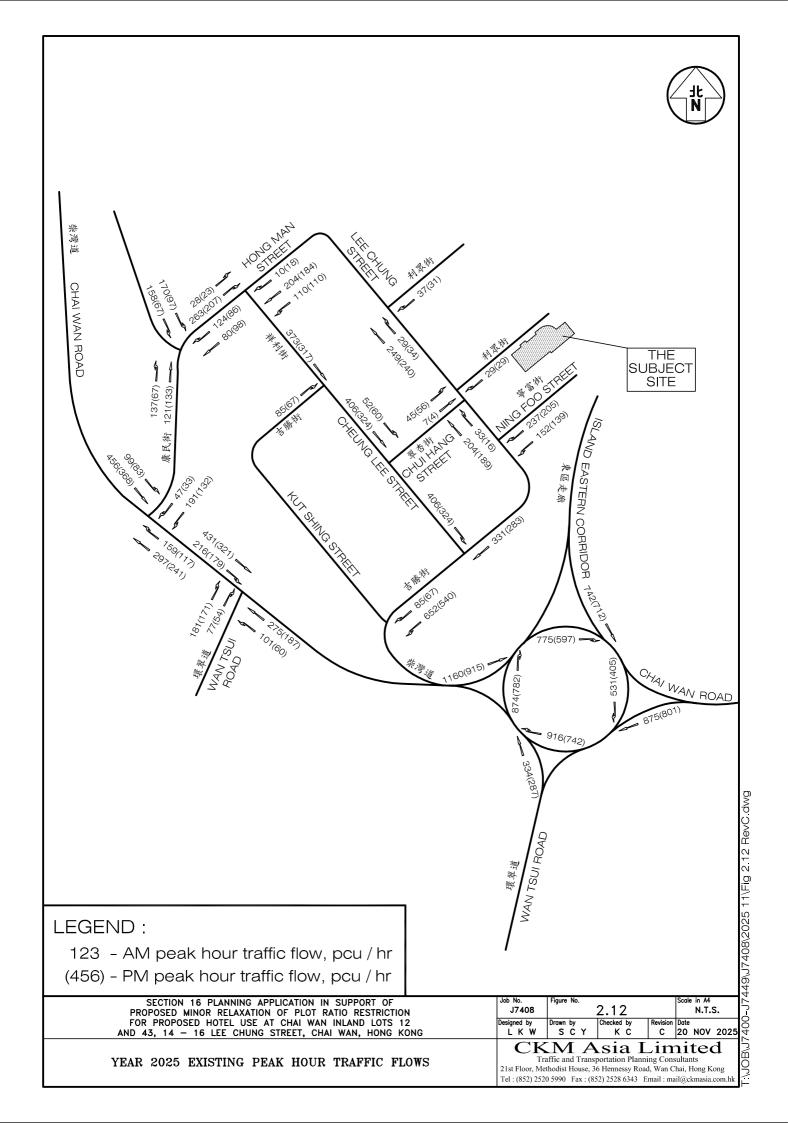


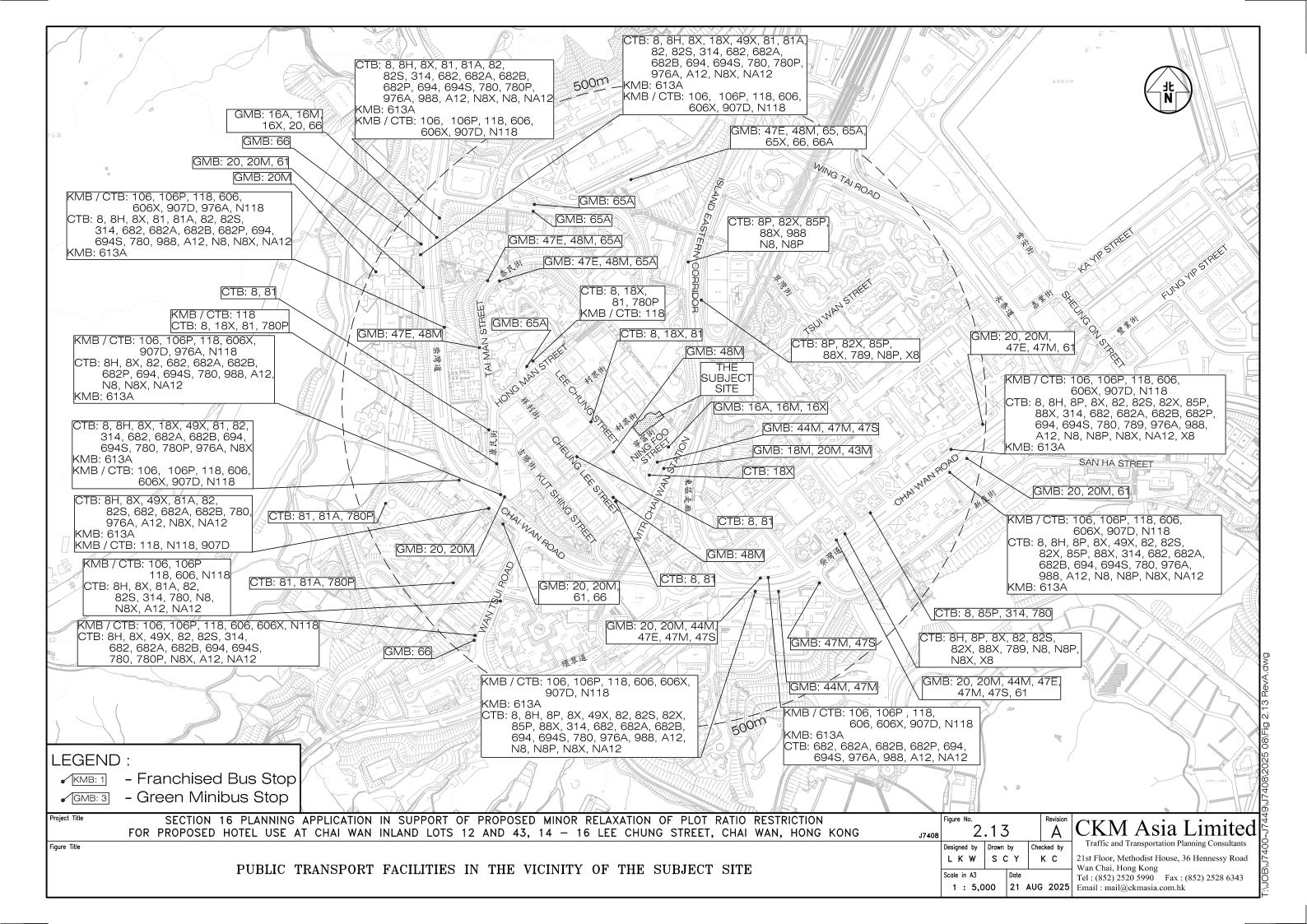


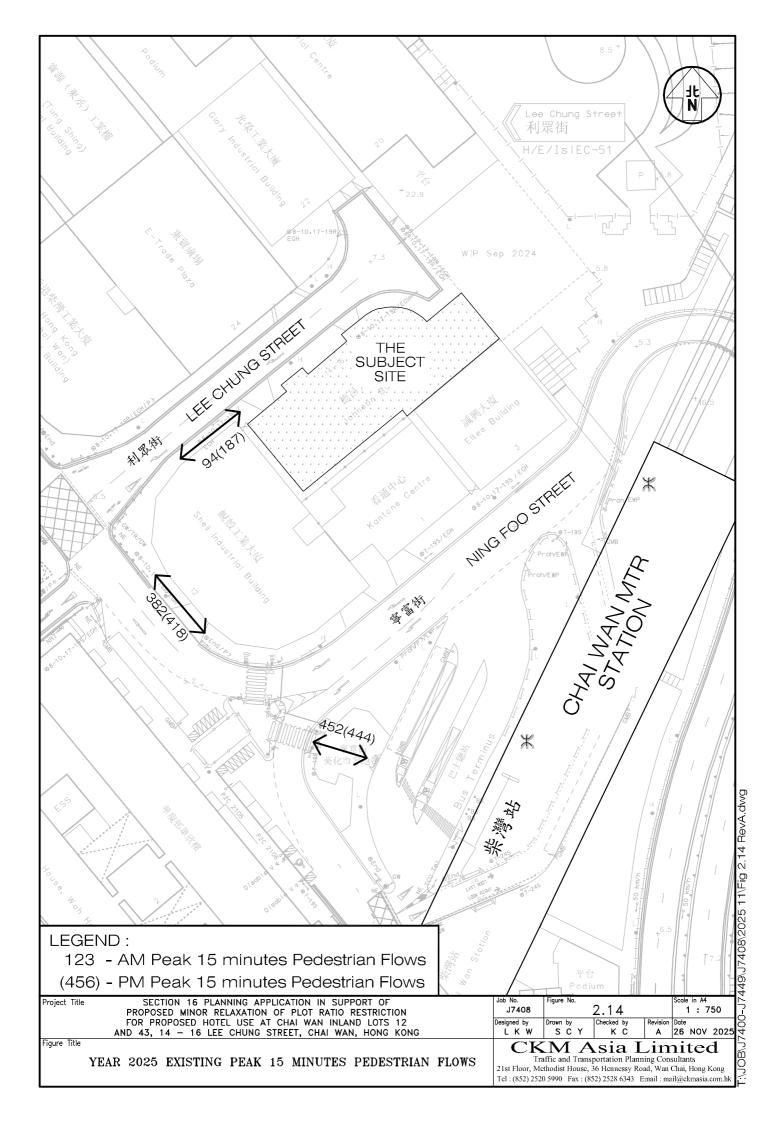


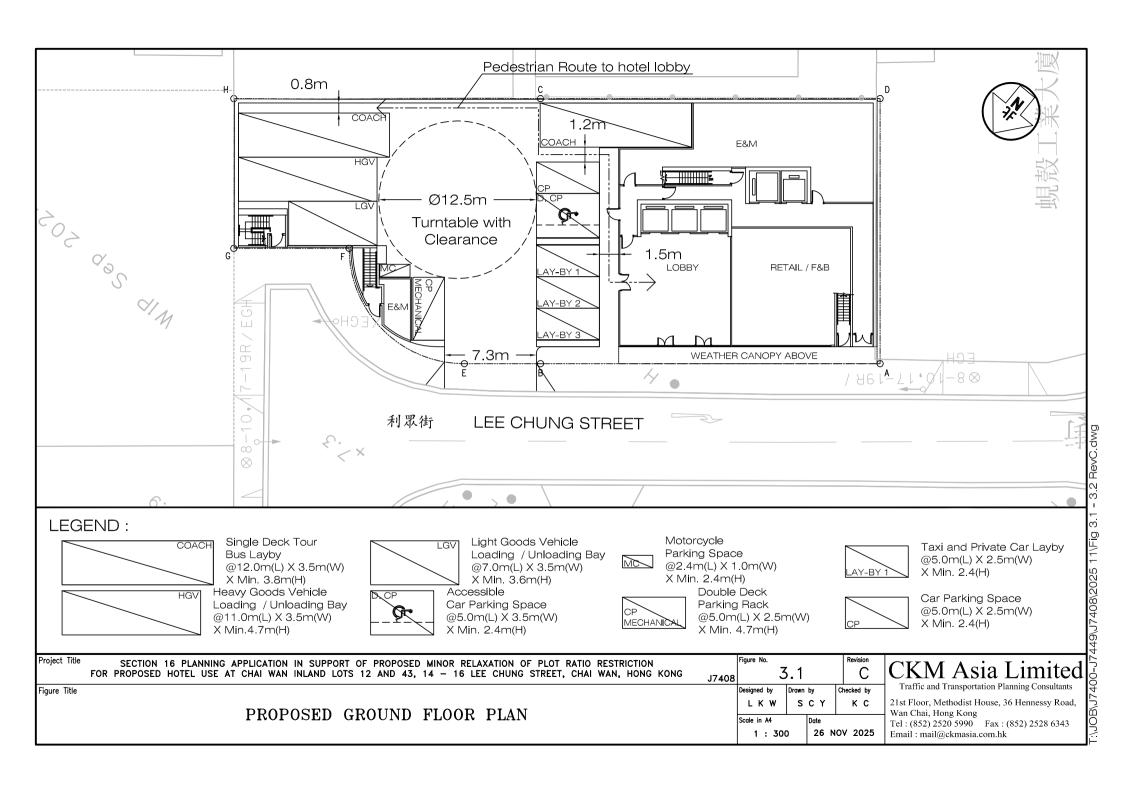


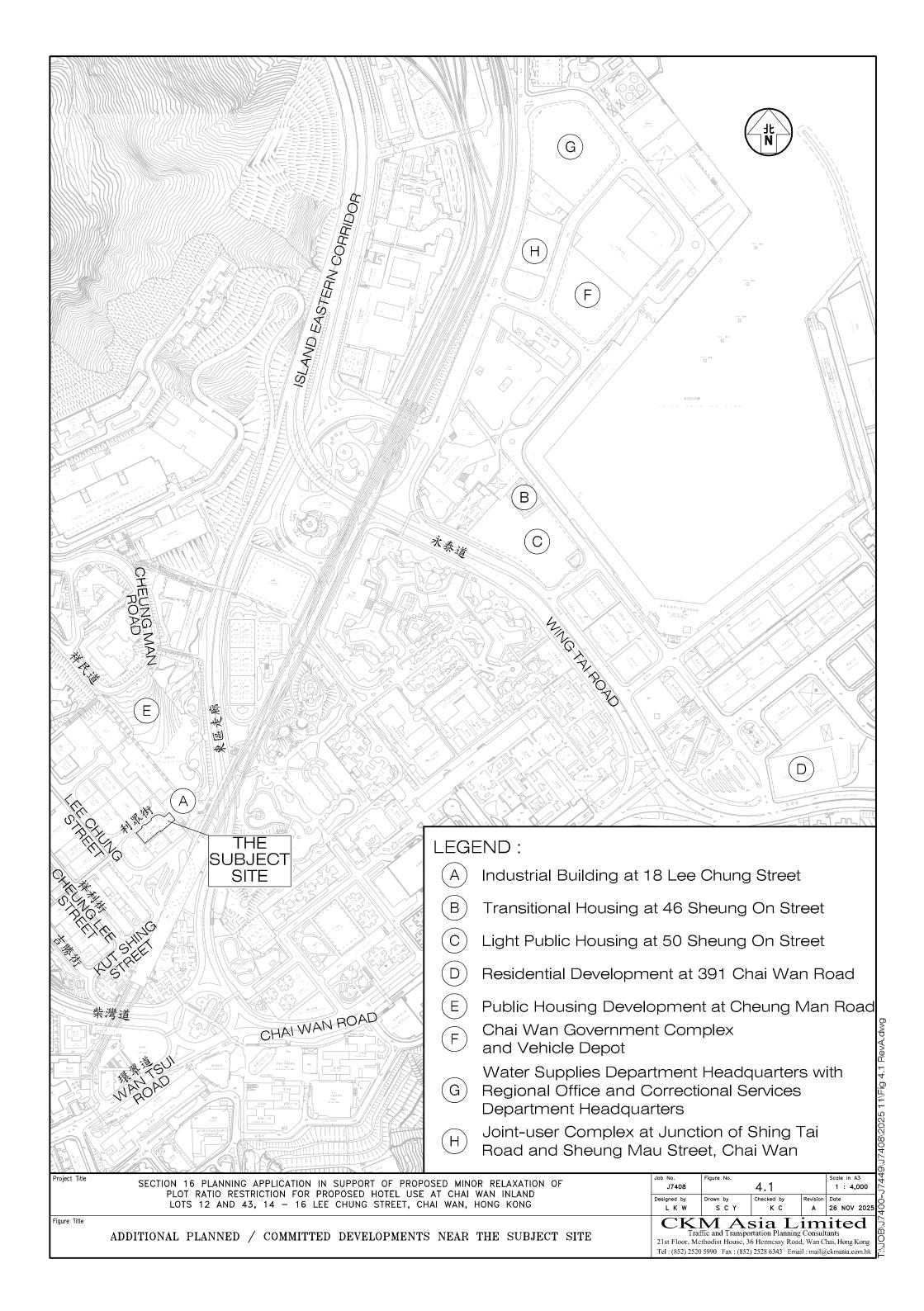


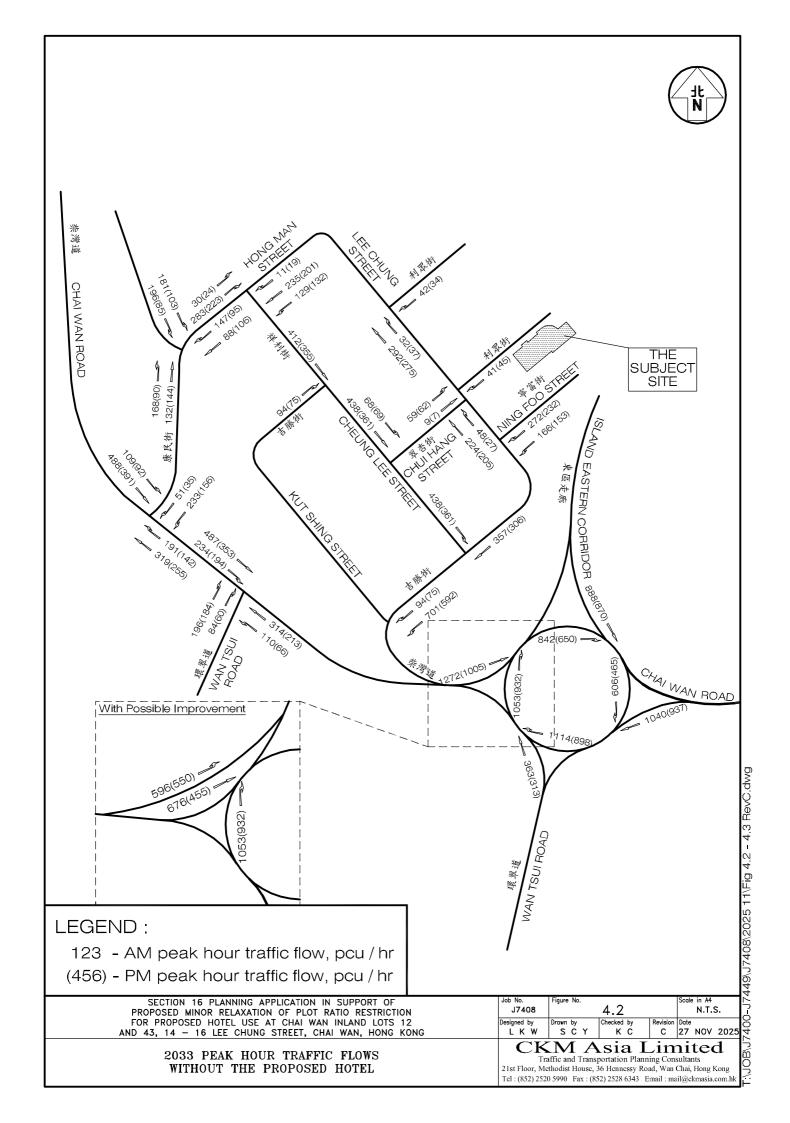


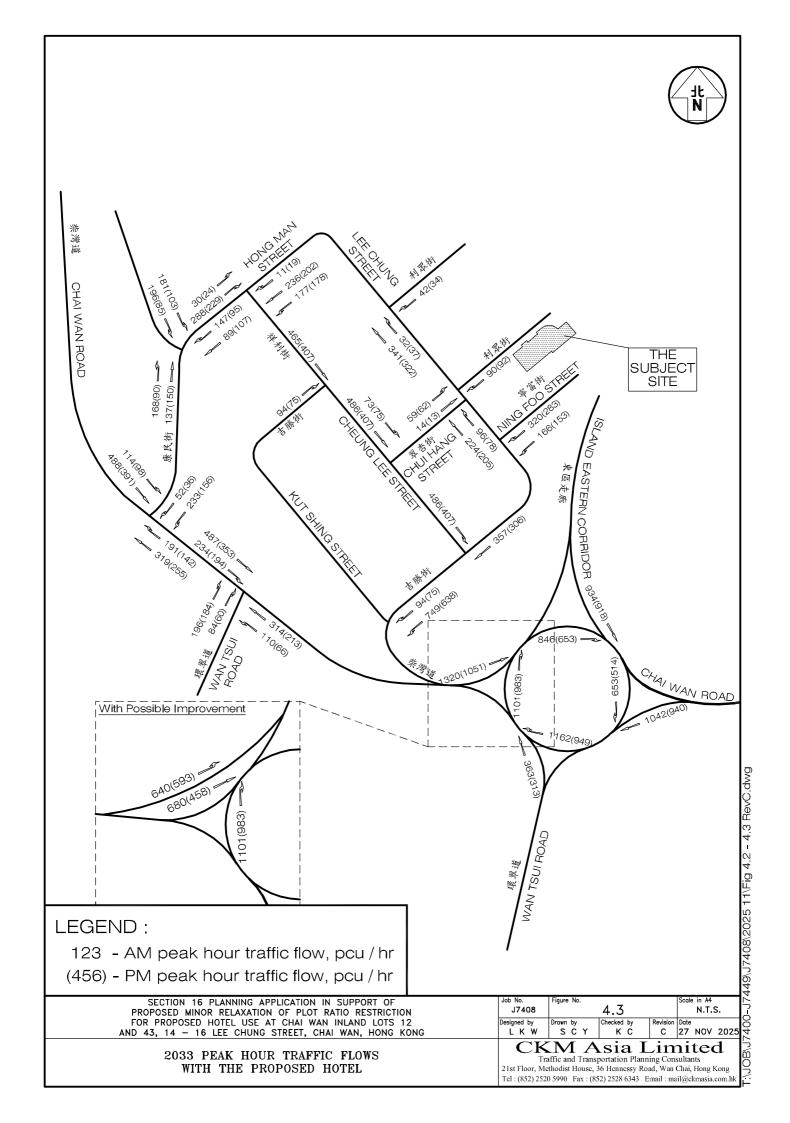


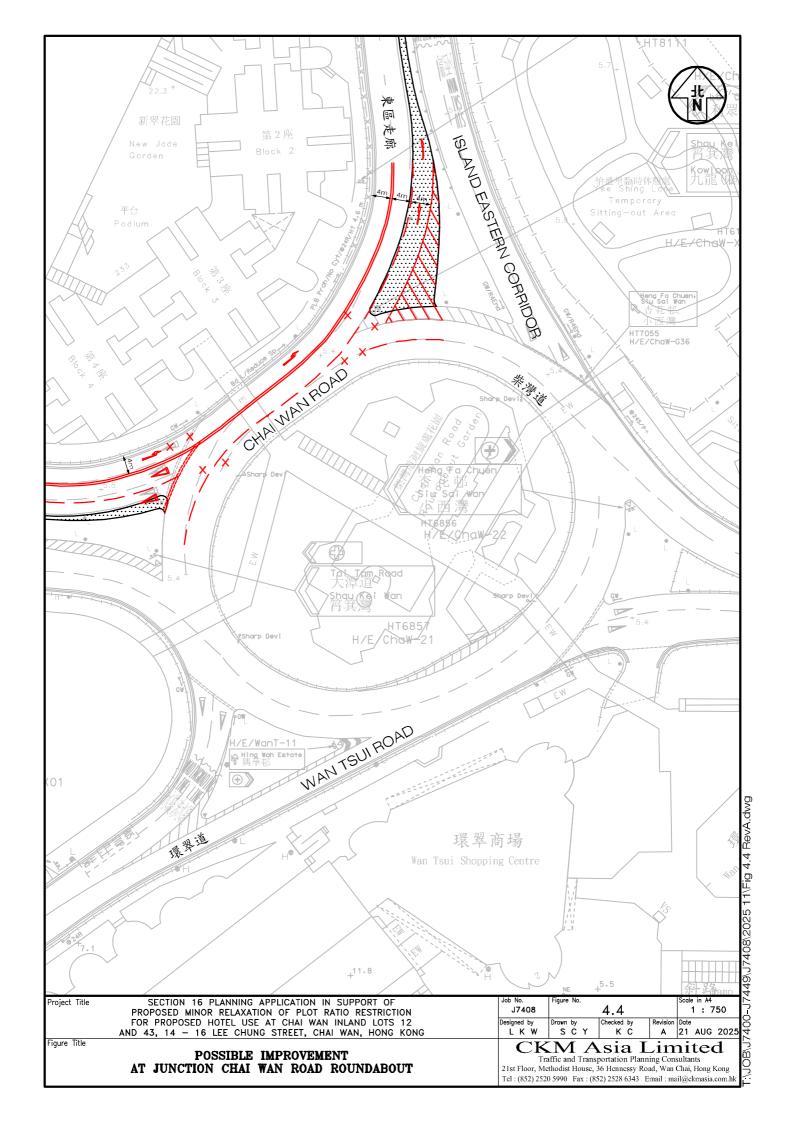


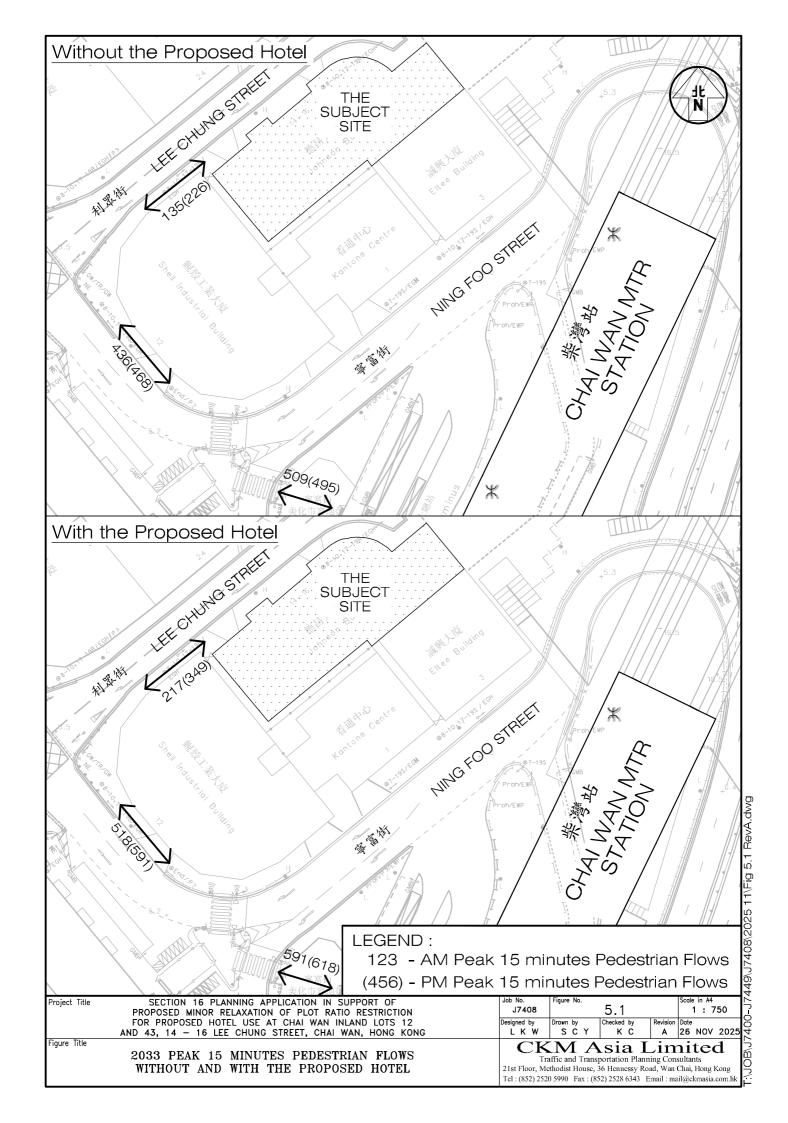


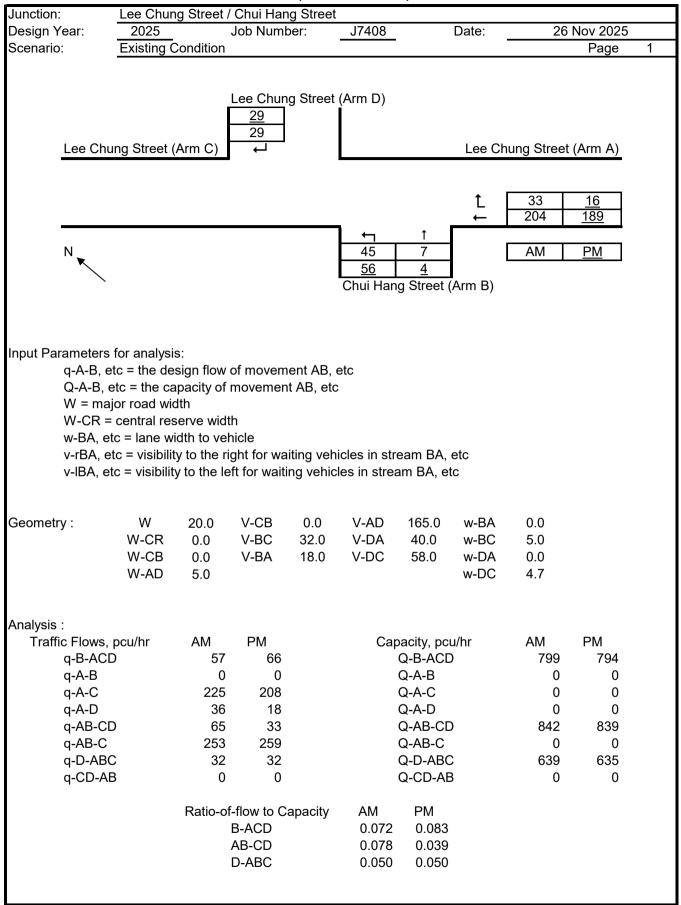


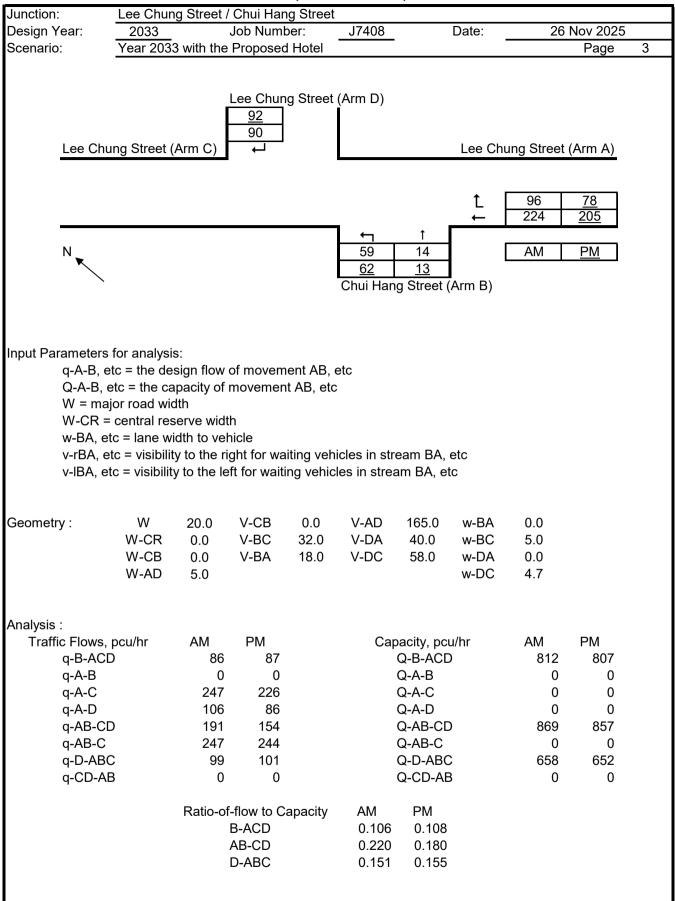




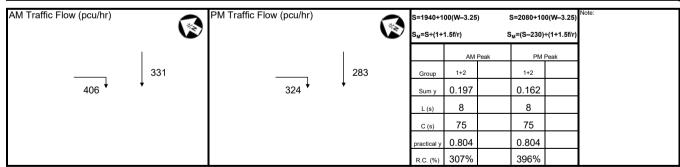








				, ,	tion Ana	1 y 313				
Junction:			Chui Han							
Design Year:	2033		Job Numb		J7408		Date:	26	Nov 2025	
Scenario:	Year 203	3 without t	he Propos	ed Hote					Page	2
Lee Chı	ung Street (Lee Chunç <u>45</u> 41	g Street	(Arm D)		Lee Chu	ung Street ((Arm A)	
N					← 59 62 Chui Han	† 9 <u>7</u> g Street (Ĺ ← [Arm B)	48 224 AM	<u>27</u> <u>205</u> <u>PM</u>	
Q-A-B, e W = ma W-CR = w-BA, e v-rBA, e	for analysietc = the de etc = the ca jor road wid central res tc = lane w etc = visibilit tc = visibilit	sign flow on the sign of the serve widthe sidth to vehight to the right of the sign of the	movement h nicle ght for wai	AB, etc	cles in stre					
Geometry :	W W-CR W-CB W-AD	20.0 0.0 0.0 5.0	V-CB V-BC V-BA	0.0 32.0 18.0	V-AD V-DA V-DC	165.0 40.0 58.0	w-BA w-BC w-DA w-DC	0.0 5.0 0.0 4.7		
Analysis : Traffic Flows, q-B-ACI q-A-B q-A-C q-A-D q-AB-CI q-AB-C q-D-AB(AM 80 0 247 53 99 281 45 0	PM 80 0 226 30 58 278 50 0			pacity, pct Q-B-ACD Q-A-B Q-A-D Q-AB-CD Q-AB-C Q-D-ABC Q-CD-AE)) ;	AM 805 0 0 0 869 0 646	PM 799 0 0 0 857 0 640	
			-flow to Ca B-ACD AB-CD D-ABC	apacity	AM 0.100 0.114 0.070	PM 0.101 0.067 0.077				

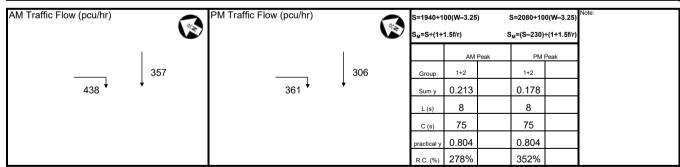

Junction: Cheung Lee Street / Kut Shing Street (West Junction) 26 Nov 2025 Design Year: 2025 Job Number: J7408 Date: Scenario: **Existing Condition** Page 4 Cheung Lee Street (Arm C) Cheung Lee Street (Arm A) 317 373 AM PM Ν 85 67 Kut Shing Street (Arm B) The predictive equations of capacity of movement are: Q-BA = D[627 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB)] Q-BC = E[745 - Y(0.364q-AC + 0.144q-AB)]Q-CB = F[745 - 0.364Y(q-AC + q-AB)]The geometric parameters represented by D, E, F are: D = [1 + 0.094(w-BA - 3.65)][1 + 0.0009(V-rBA - 120)][1 + 0.0006(V-lBA - 150)]E = [1 + 0.094(w-BC - 3.65)][1 + 0.0009(V-rBC - 120)]F = [1 + 0.094(w-CB - 3.65)][1 + 0.0009(V-rCB - 120)]where Y = 1 - 0.0345Wq-AB, etc = the design flow of movement AB, etc W = major road width W-CR = central reserve width w-BA, etc = lane width to vehicle v-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc v-IBA, etc = visibility to the left for waiting vehicles in stream BA, etc Geometry: Input Input Calculated Input W 7.30 V-rBA 25 w-BA 7.40 D 1.1441 W-CR 0.00 V-IBA 25 w-BC 0.00 Ε 0.5860 V-rBC 0 w-CB 0.00 F 0.5860 Υ 0.7482 V-rCB 0 Analysis: Traffic Flows, pcu/hr ΑM PMCapacity, pcu/hr ΑM PMQ-BA q-CA 373 317 644 655 q-CB Q-CB 437 0 0 437 q-AB 0 0 q-AC 0 0 85 67 q-BA q-BC 0 0 0 0 Ratio-of-flow to Capacity ΑM PM B-A 0.102 0.132 С-В 0.000 0.000

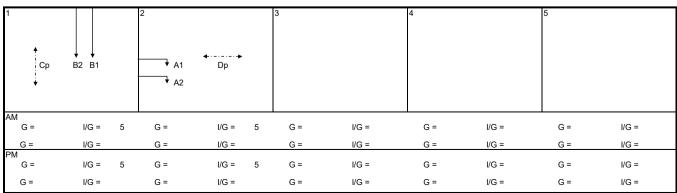
Junction: Cheung Lee Street / Kut Shing Street (West Junction) 26 Nov 2025 Design Year: 2033 Job Number: J7408 Date: Scenario: Year 2033 without the Proposed Hotel Page 5 Cheung Lee Street (Arm A) Cheung Lee Street (Arm C) 355 412 AM PM 94 75 Kut Shing Street (Arm B) The predictive equations of capacity of movement are: Q-BA = D[627 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB)] Q-BC = E[745 - Y(0.364q-AC + 0.144q-AB)]Q-CB = F[745 - 0.364Y(q-AC + q-AB)]The geometric parameters represented by D, E, F are: D = [1 + 0.094(w-BA - 3.65)][1 + 0.0009(V-rBA - 120)][1 + 0.0006(V-lBA - 150)]E = [1 + 0.094(w-BC - 3.65)][1 + 0.0009(V-rBC - 120)]F = [1 + 0.094(w-CB - 3.65)][1 + 0.0009(V-rCB - 120)]where Y = 1 - 0.0345Wq-AB, etc = the design flow of movement AB, etc W = major road width W-CR = central reserve width w-BA, etc = lane width to vehicle v-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc v-IBA, etc = visibility to the left for waiting vehicles in stream BA, etc Geometry: Input Input Calculated Input W 7.30 V-rBA 25 w-BA 7.40 1.1441 D W-CR 0.00 V-IBA 25 w-BC 0.00 Ε 0.5860 V-rBC 0 w-CB 0.00 F 0.5860 Υ 0.7482 V-rCB 0 Analysis: Traffic Flows, pcu/hr ΑM PMCapacity, pcu/hr ΑM PMQ-BA q-CA 412 355 637 648 q-CB Q-CB 437 0 0 437 q-AB 0 0 q-AC 0 0 94 75 q-BA q-BC 0 0 0 0 Ratio-of-flow to Capacity ΑM PM B-A 0.116 0.148 С-В 0.000 0.000

Junction: Cheung Lee Street / Kut Shing Street (West Junction) 26 Nov 2025 Design Year: 2033 Job Number: J7408 Date: Scenario: Year 2033 with the Proposed Hotel Page 6 Cheung Lee Street (Arm C) Cheung Lee Street (Arm A) 407 465 AM PM 94 75 Kut Shing Street (Arm B) The predictive equations of capacity of movement are: Q-BA = D[627 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB)] Q-BC = E[745 - Y(0.364q-AC + 0.144q-AB)]Q-CB = F[745 - 0.364Y(q-AC + q-AB)]The geometric parameters represented by D, E, F are: D = [1 + 0.094(w-BA - 3.65)][1 + 0.0009(V-rBA - 120)][1 + 0.0006(V-lBA - 150)]E = [1 + 0.094(w-BC - 3.65)][1 + 0.0009(V-rBC - 120)]F = [1 + 0.094(w-CB - 3.65)][1 + 0.0009(V-rCB - 120)]where Y = 1 - 0.0345Wq-AB, etc = the design flow of movement AB, etc W = major road width W-CR = central reserve width w-BA, etc = lane width to vehicle v-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc v-IBA, etc = visibility to the left for waiting vehicles in stream BA, etc Geometry: Input Input Calculated Input W 7.30 V-rBA 25 w-BA 7.40 1.1441 D W-CR 0.00 V-IBA 25 w-BC 0.00 Ε 0.5860 V-rBC 0 w-CB 0.00 F 0.5860 Υ 0.7482 V-rCB 0 Analysis: Traffic Flows, pcu/hr ΑM PMCapacity, pcu/hr ΑM PM407 Q-BA q-CA 465 626 638 q-CB Q-CB 437 0 0 437 q-AB 0 0 q-AC 0 0 94 75 q-BA q-BC 0 0 0 0 Ratio-of-flow to Capacity ΑM PM B-A 0.118 0.150 С-В 0.000 0.000

Junction:	Cheung Le	e Street / Kut Shing Str	eet (East Junction)				Job Number:	J7408
Scenario:	Existing Co	ondition					P.	7
Design Year:	2025	Designed By:	AYT	Checked By:	LKW	Date:	26 Nov 20	25

									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Cheung Lee Street SB	RT	A1	2	3.90	12.5		100	1790	207	0.116		100	1790	165	0.092	0.092
Cheung Lee Street SB	RT	A2	2	3.90	9.0		100	1719	199	0.116	0.116	100	1719	159	0.092	
Kut Shing Street WB	SA	B1	1	4.20				2035	166	0.082	0.082		2035	142	0.070	0.070
Kut Shing Street WB	SA	B2	1	4.20				2035	165	0.081			2035	141	0.069	
pedestrian phase		Ср	1		min cı	rossing	time =	8	sec	GM +	9	sec F	GM =	17	sec	
		Dp	2		min cı	rossing	time =	8	sec	GM +	8	sec F	GM =	16	sec	

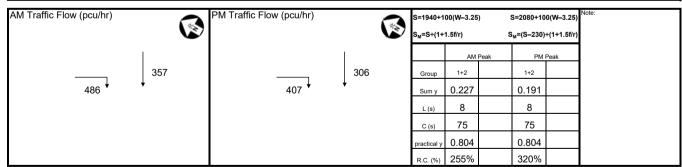

1 Cp	₩ B2 B1	2 A1 A2	Dp	3		4		5	
AM G =	I/G = 5	G =	I/G = 5	G =	I/G =	G =	I/G =	G =	I/G =
G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =
PM G =	I/G = 5	G =	I/G = 5	G =	I/G =	G =	I/G =	G =	I/G =
G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =


 Junction:
 Cheung Lee Street / Kut Shing Street (East Junction)
 Job Number:
 17408

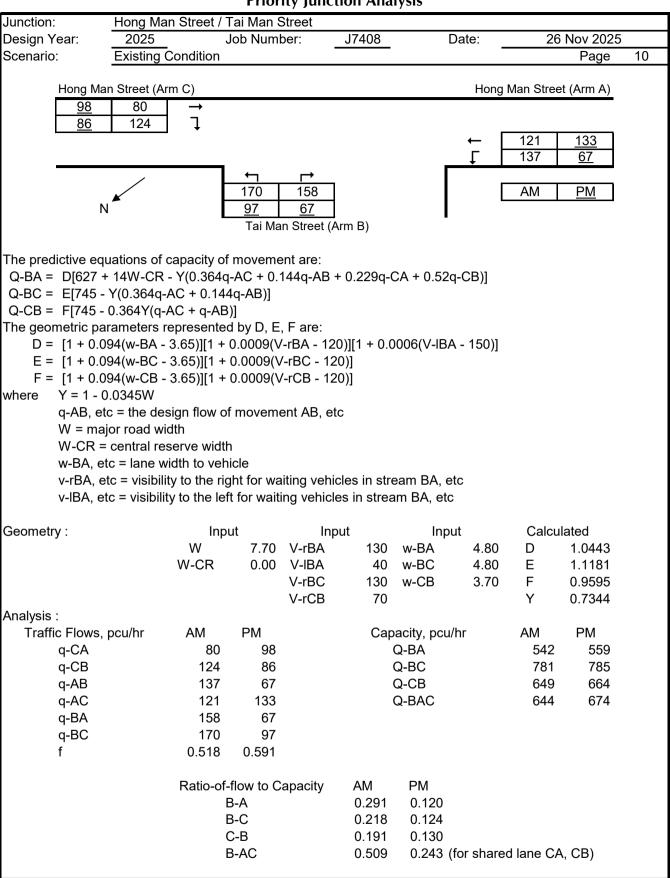
 Scenario:
 Year 2033 without the Proposed Hotel
 P. 8

 Design Year:
 2033
 Designed By:
 AYT
 Checked By:
 LKW
 Date:
 26 Nov 2025

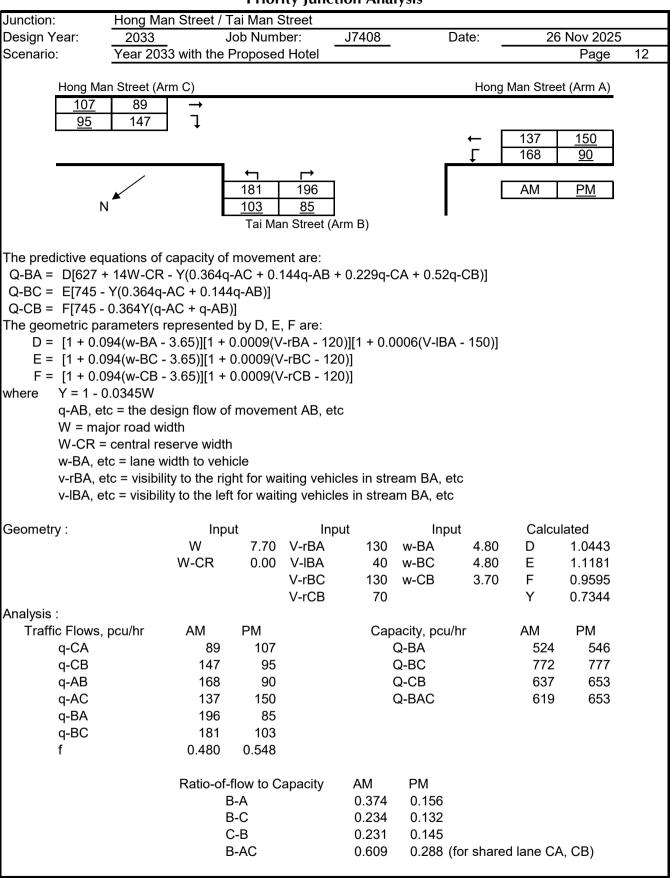
				1				AM Peak					PM Peak		
Approach	Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Cheung Lee Street SB RT	A1	2	3.90	12.5		100	1790	223	0.125	0.125	100	1790	184	0.103	0.103
Cheung Lee Street SB RT	A2	2	3.90	9.0		100	1719	215	0.125		100	1719	177	0.103	
Kut Shing Street WB SA		1	4.20				2035	179	0.088	0.088		2035	153	0.075	0.075
Kut Shing Street WB SA	B2	1	4.20				2035	178	0.087			2035	153	0.075	
pedestrian phase	Cp Dp	1 2			rossing rossing		<u>8</u> 8		GM + GM +	9		GM = GM =	17 16	sec sec	
	Бр	_		111111 0	rocomig	unio		000	OW -	Ŭ	0001	OW	10	000	



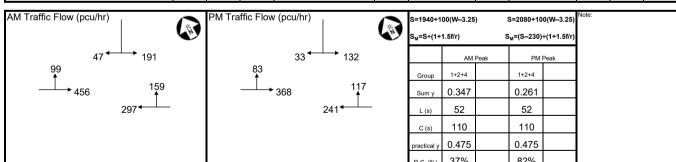
 Junction:
 Cheung Lee Street / Kut Shing Street (East Junction)
 Job Number:
 J7408


 Scenario:
 Year 2033 with the Proposed Hotel
 P. 9

 Design Year:
 2033 Designed By:
 AYT
 Checked By:
 LKW
 Date:
 26 Nov 2025


									AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Cheung Lee Street SB	RT	A1	2	3.90	12.5		100	1790	248	0.139	0.139	100	1790	208	0.116	0.116
Cheung Lee Street SB	RT	A2	2	3.90	9.0		100	1719	238	0.138		100	1719	199	0.116	
Kut Shing Street WB	SA	B1	1	4.20				2035	179	0.088	0.088		2035	153	0.075	0.075
Kut Shing Street WB	SA	B2	1	4.20				2035	178	0.087			2035	153	0.075	
pedestrian phase		Ср	1		min c	rossing	time =	8	sec	GM +	9	sec F	GM =	17	sec	
		Dp	2			rossing		8	sec	GM +	8	sec F	GM =	16	sec	

1 Cp	₩ B2 B1	2 A1 A2	Dp	3		4		5	
AM G =	I/G = 5	G =	I/G = 5	G =	I/G =	G =	I/G =	G =	I/G =
G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =
PM G =	I/G = 5	G =	I/G = 5	G =	I/G =	G =	I/G =	G =	I/G =
G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =

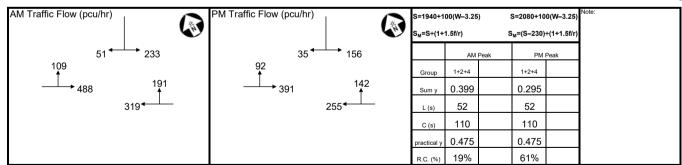

Junction: Hong Man Street / Tai Man Street J7408 26 Nov 2025 Design Year: 2033 Job Number: Date: Scenario: Year 2033 without the Proposed Hotel Page 11 Hong Man Street (Arm C) Hong Man Street (Arm A) 106 88 1 95 147 144 132 168 90 181 196 AM PM 103 85 Tai Man Street (Arm B) The predictive equations of capacity of movement are: Q-BA = D[627 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB)] Q-BC = E[745 - Y(0.364q-AC + 0.144q-AB)]Q-CB = F[745 - 0.364Y(q-AC + q-AB)]The geometric parameters represented by D, E, F are: D = [1 + 0.094(w-BA - 3.65)][1 + 0.0009(V-rBA - 120)][1 + 0.0006(V-lBA - 150)]E = [1 + 0.094(w-BC - 3.65)][1 + 0.0009(V-rBC - 120)]F = [1 + 0.094(w-CB - 3.65)][1 + 0.0009(V-rCB - 120)]where Y = 1 - 0.0345Wq-AB, etc = the design flow of movement AB, etc W = major road width W-CR = central reserve width w-BA, etc = lane width to vehicle v-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc v-IBA, etc = visibility to the left for waiting vehicles in stream BA, etc Geometry: Input Input Calculated Input W 7.70 V-rBA 130 4.80 1.0443 w-BA D W-CR 0.00 V-IBA 40 w-BC 4.80 Ε 1.1181 V-rBC 130 w-CB 3.70 F 0.9595 Υ 0.7344 V-rCB 70 Analysis: Traffic Flows, pcu/hr PMCapacity, pcu/hr ΑM PMAM q-CA 88 106 Q-BA 525 548 q-CB Q-BC 779 147 95 774 q-AB 168 90 Q-CB 638 655 q-AC 132 144 Q-BAC 621 654 196 q-BA 85 q-BC 181 103 0.480 0.548 Ratio-of-flow to Capacity ΑM PM 0.155 B-A 0.373 B-C 0.132 0.234 C-B 0.230 0.145 B-AC 0.607 0.287 (for shared lane CA, CB)

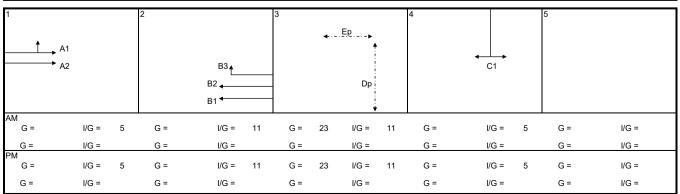


Chai Wan Road / Hong Man Street Job Number: <u>J7408</u> Junction: Scenario: **Existing Condition** P. 13

AYT LKW 26 Nov 2025 Design Year: 2025 Designed By: Checked By: Date:

					1		1		AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Chai Wan Road EB	LT+SA	A1	1	3.50	14.0		37	1988	270	0.136	0.136	38	1986	219	0.110	0.110
Chai Wan Road EB	SA	A2	1	3.50				2105	285	0.135			2105	232	0.110	
Chai Wan Road WB	SA	B1	2	3.50				1965	143	0.073			1965	116	0.059	
Chai Wan Road WB	SA	B2	2	3.50				2105	154	0.073			2105	125	0.059	
Chai Wan Road WB	RT	В3	2	3.50	15.0		100	1914	159	0.083	0.083	100	1914	117	0.061	0.061
Hong Man Road SB	LT+RT	C1	4	4.50	13.0		100	1851	238	0.129	0.129	100	1851	165	0.089	0.089
pedestrian phase		Dp	3		min c	rossing	time =	13	5001	GM +	10	sec F	GM =	23	sec	
pedestrian priase		Ер	3			rossing		8		GM +	7	sec F		15	sec	

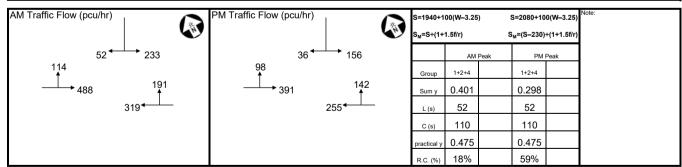


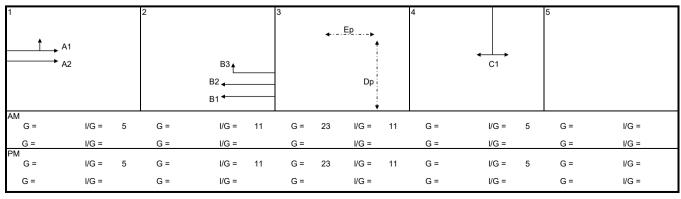


Chai Wan Road / Hong Man Street Job Number: <u>J7408</u> Junction: Scenario: Year 2033 without the Proposed Hotel P. 14

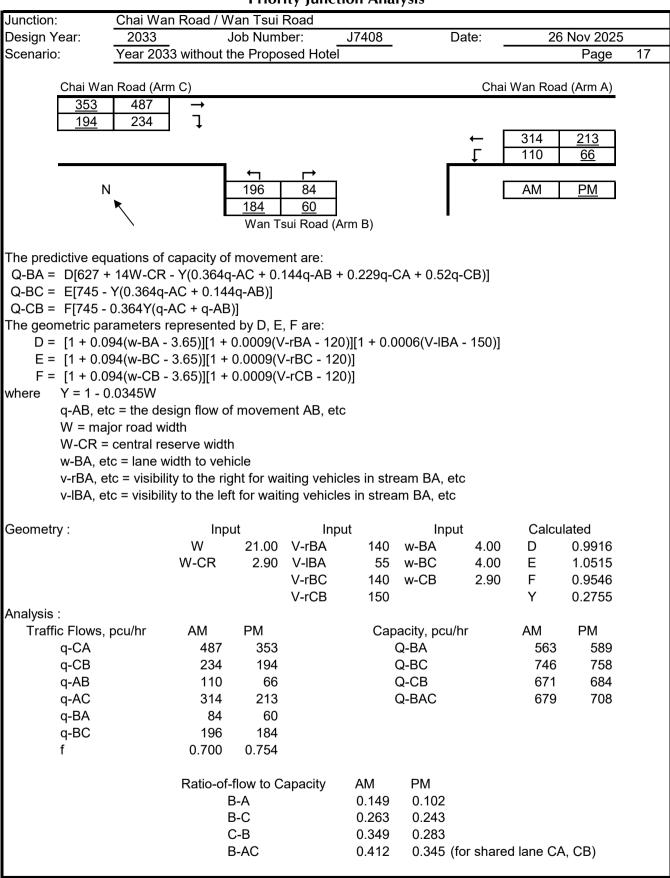
Designed By: AYT LKW 26 Nov 2025 Design Year: 2033 Checked By: Date:

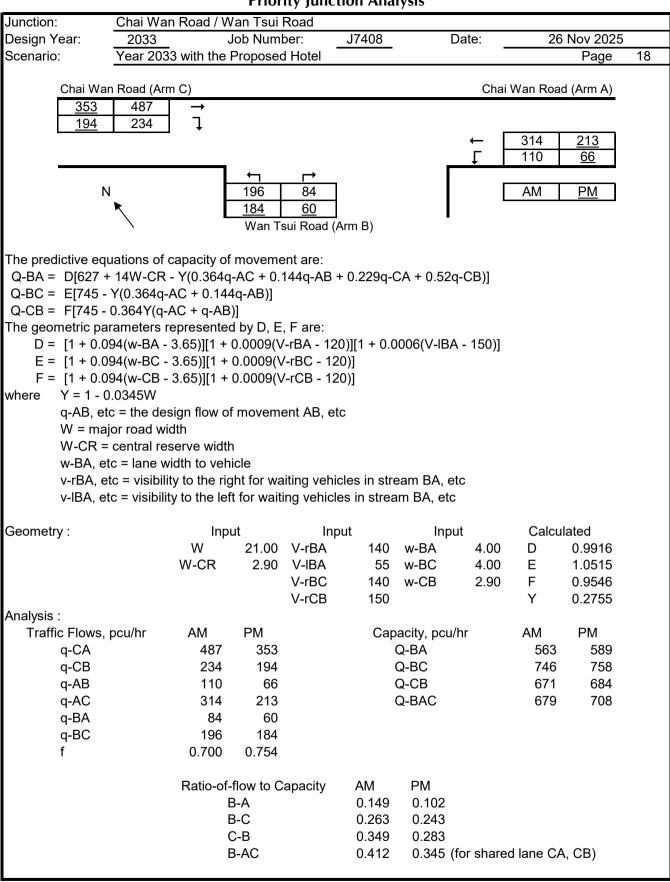
			l						AM Peak					PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Chai Wan Road EB	LT+SA	A1	1	3.50	14.0		38	1986	290	0.146	0.146	39	1984	234	0.118	0.118
Chai Wan Road EB	SA	A2	1	3.50				2105	307	0.146			2105	249	0.118	
Chai Wan Road WB	SA	B1	2	3.50				1965	154	0.078			1965	123	0.063	
Chai Wan Road WB	SA	B2	2	3.50				2105	165	0.078			2105	132	0.063	
Chai Wan Road WB	RT	B3	2	3.50	15.0		100	1914	191	0.100	0.100	100	1914	142	0.074	0.074
Hong Man Road SB	LT+RT	C1	4	4.50	13.0		100	1851	284	0.153	0.153	100	1851	191	0.103	0.103
pedestrian phase		Dp	3			rossing		13		GM +	10	sec F		23	sec	
		Ep	3		min c	rossing	time =	8	sec	GM +	7	sec F	GM =	15	sec	




 Junction:
 Chai Wan Road / Hong Man Street
 Job Number:
 J7408

 Scenario:
 Year 2033 with the Proposed Hotel
 P. 15


Design Year: 2033 Designed By: AYT Checked By: LKW Date: 26 Nov 2025


		1						AM Deeds					DM Deeds		
	Phase	Stage	Width (m)	Radius (m)		Turning %	Sat. Flow	Flow	y value	Critical y	Turning %	Sat. Flow	Flow	y value	Critical y
LT+SA	A1	1	3.50	14.0		39	1984	292	0.147		41	1980	237	0.120	0.120
SA	A2	1	3.50				2105	310	0.147	0.147		2105	252	0.120	
SA	B1	2	3.50				1965	154	0.078			1965	123	0.063	
SA	B2	2	3.50				2105	165	0.078			2105	132	0.063	
RT	В3	2	3.50	15.0		100	1914	191	0.100	0.100	100	1914	142	0.074	0.074
LT+RT	C1	4	4.50	13.0		100	1851	285	0.154	0.154	100	1851	192	0.104	0.104
	Dp Ep	3					13 8			10 7			23 15	sec sec	
	SA SA SA RT	LT+SA A1 SA A2 SA B1 SA B2 RT B3 LT+RT C1	LT+SA A1 1 SA A2 1 SA B1 2 SA B2 2 RT B3 2 LT+RT C1 4 Dp 3	LT+SA A1 1 3.50 SA A2 1 3.50 SA B1 2 3.50 SA B2 2 3.50 RT B3 2 3.50 LT+RT C1 4 4.50 Dp 3	LT+SA A1 1 3.50 14.0 SA A2 1 3.50 SA B1 2 3.50 RT B3 2 3.50 15.0 LT+RT C1 4 4.50 13.0 Dp 3 min c	LT+SA A1 1 3.50 14.0 SA A2 1 3.50 SA B1 2 3.50 SA B2 2 3.50 RT B3 2 3.50 15.0 LT+RT C1 4 4.50 13.0 Dp 3 min crossing	LT+SA A1 1 3.50 14.0 39 SA A2 1 3.50 SA B1 2 3.50 SA B2 2 3.50 RT B3 2 3.50 15.0 100 LT+RT C1 4 4.50 13.0 100 Dp 3 min crossing time =	LT+SA A1 1 3.50 14.0 39 1984 SA A2 1 3.50 14.0 1965 SA B1 2 3.50 15.0 100 1914 LT+RT C1 4 4.50 13.0 100 1851 Dp 3 min crossing time = 13	LT+SA A1 1 3.50 14.0 39 1984 292 SA A2 1 3.50	Phase Stage Width (m) Radius (m) % Up-hill Turning % Sat. Flow (pcu/hr) (pcu/hr)	Phase Stage Width (m) Radius (m) % Up-hill Turning % Sat. Flow (pculhr) y value Critical y (pculhr)	Phase Stage Width (m) Radius (m) % Up-hill Turning % Sat. Flow (pculhr) (pculhr)	Phase Stage Width (m) Radius (m) % Up-hill Turning % Sat. Flow (pculhr) (pculhr)	Phase Stage Width (m) Radius (m) % Up-hill Turning % Sat. Flow Equally Equally Turning % Sat. Flow Equally Equally Turning % Sat. Flow Equally Equally Equally Turning % Sat. Flow Equally Equally Equally Turning % Sat. Flow Equally Equ	Phase Stage Width (m) Radius (m) % Up-hill Turning % Sat. Flow (pouthr) (pouthr)

Design Year: Scenario: E	Chai Wan Road / \ 2025 Existing Condition Road (Arm C) 431	Van Tsui l Job Numb		J7408	Da	te:	26	Nov 2025	
Scenario: E Chai Wan F 321	Road (Arm C) 431 →	Job Numb	oer: <u> </u>	J7408	Da	te: _	26	Nov 2025	
Chai Wan F <u>321</u>	Road (Arm C) 431 →								
<u>321</u>	431 →							Page	16
<u>321</u>	431 →					Chai V	Van Road	l (Arm A)	
<u>179</u>									
	216								
						-	275	<u>187</u>	
		l .				Ţ	101	<u>60</u>	
N		181	77			Г	AM	PM	
	•	171	54			<u>L</u>	Aivi	<u>1 1V1</u>	
	\		sui Road (Arı	m B)					
				/					
The predictive equa	tions of capacity o	of moveme	ent are:						
Q-BA = D[627 + 1]	4W-CR - Y(0.364	q-AC + 0.′	144q-AB + (0.229q - 0	CA + 0.52q-0	CB)]			
Q-BC = E[745 - Y]	•	. ,-							
Q-CB = $F[745 - 0.$, , , ,	/-							
The geometric para	•	•		,,, <u> </u>		4 = 0 \ -			
_	(w-BA - 3.65)][1 +	•	•		006(V-IBA -	150)]			
_	(w-BC - 3.65)][1 +	•	,	_					
•	(w-CB - 3.65)][1 +	F 0.0009(V	-rCB - 120))]					
		of moveme	ant AR ata						
	= the design flow o road width	JI IIIOVEIIIE	eni Ab, eic						
•	entral reserve wid	th							
	= lane width to ve								
	= visibility to the ri		itina vehicle	es in stre	eam BA, etc				
	= visibility to the le	-	-						
0		4			I		0.11	. 4 . 1	
Geometry :		out	Input		Input	4.00	Calcul		
	W W-CR	21.00	V-rBA V-IBA	140 55	w-BA w-BC	4.00 4.00	D	0.9916 1.0515	
	W-CK	2.90	V-IBA V-rBC	140	w-BC w-CB	2.90	E F	0.9546	
			V-rCB	150	W-CD	2.90	Y	0.9340	
Analysis :			v -1 OD	130			•	0.2100	
Traffic Flows, po	cu/hr AM	PM		Can	acity, pcu/hr		AM	РМ	
q-CA	431	321			Q-BA		573	596	
q-CB	216	179			Q-BC		750	761	
q-AB	101	60			Q-CB		675	688	
q-AC	275	187			Q-BAC		687	714	
q-BA	77	54							
q-BC	181	171							
f	0.702	0.760							
	Detic -	f flour to O	anasit:	A B 4	DM				
	Katio-o	f-flow to C	apacity	AM	PM				
		B-A		0.134	0.091				
		B-C C-B		0.241 0.320	0.225 0.260				
		B-AC		0.320	0.260 0.315 (fo	r sharad	lane CA	CB)	
		D-VC		0.570	0.515 (10	i siiai eu	ialie CA	, 00)	

Roundabout Analysis

Location	Chai Wan Road Roundabout					J7
Scenario	Existing Condition				Page	19
Design Ye	ar 2025	Job Number	J7408	Date	26 Nov 2	025

AM Peak

Arm	To A	То В	To C	To D	Total	q _c
From A					742	775
From B					875	531
From C					334	916
From D					1160	874
Total					3111	

PM Peak

Arm	To A	То В	To C	To D	Total	q _c
From A					712	597
From B					801	405
From C					287	742
From D					915	782
Total					2715	

Legend

Arm	Road (in clockwise order)
Α	Island Eastern Corridor
В	Chai Wan Road WB
С	Wan Tsui Road
D	Chai Wan Road EB

Geometric Parameters

Geometri	c Paramete	213					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	8.0	7.3	100.0	10.0	80	10	0.1
From B	9.4	6.4	57.0	32.0	80	28	0.2
From C	8.0	4.5	25.0	29.0	80	32	0.2
From D	10.0	7.3	50.0	67.0	80	27	0.1

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
$q_{\rm c}$	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_{D}	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							C) _E	Entry	Flow	RF	-C
Arm	X ₂	M	t_D	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.872	7.389	1.060	1.109	2385.184	0.573	2152	2265	742	712	0.345	0.314
From B	8.708	7.389	1.060	1.039	2638.431	0.610	2404	2484	875	801	0.364	0.322
From C	7.025	7.389	1.060	1.003	2128.537	0.535	1643	1736	334	287	0.203	0.165
From D	9.692	7.389	1.060	1.040	2936.552	0.654	2459	2522	1160	915	0.472	0.363

Roundabout Analysis

Location	Chai Wan Road Roundabout					J7
Scenario	Year 2033 without the Proposed Hotel				Page	20
Design Yea	ar 2033	Job Number	J7408	Date	26 Nov 2	025

AM Peak

Arm	To A	То В	To C	To D	Total	q _c
From A					888	842
From B					1040	606
From C					363	1114
From D					1272	1053
Total					3563	

PM Peak

Arm	To A	То В	To C	To D	Total	q_c
From A					870	650
From B					937	465
From C					313	898
From D					1005	932
Total					3125	

Legend

Arm	Road (in clockwise order)
Α	Island Eastern Corridor
В	Chai Wan Road WB
С	Wan Tsui Road
D	Chai Wan Road EB

Geometric Parameters

Geometric	. Faraillett	71 O					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	8.0	7.3	100.0	10.0	80	10	0.1
From B	9.4	6.4	57.0	32.0	80	28	0.2
From C	8.0	4.5	25.0	29.0	80	32	0.2
From D	10.0	7.3	50.0	67.0	80	27	0.1

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	$= \exp[(D-60)/10]$
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							Q_{E}		Entry	Flow	RI	-C
Arm	X ₂	М	t_{D}	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.872	7.389	1.060	1.109	2385.184	0.573	2109	2231	888	870	0.421	0.390
From B	8.708	7.389	1.060	1.039	2638.431	0.610	2357	2446	1040	937	0.441	0.383
From C	7.025	7.389	1.060	1.003	2128.537	0.535	1537	1653	363	313	0.236	0.189
From D	9.692	7.389	1.060	1.040	2936.552	0.654	2337	2420	1272	1005	0.544	0.415

Roundabout Analysis

Location Cha	ai Wan Road Roundabout					J7
Scenario Yea	ar 2033 with the Proposed Hotel		·		Page	21
Design Year	2033	Job Number	J7408	Date	26 Nov 2	2025

AM Peak

Arm	To A	То В	To C	To D	Total	q _c
From A					934	846
From B					1042	653
From C					363	1162
From D					1320	1101
Total					3659	

PM Peak

Arm	To A	To B	To C	To D	-	Total	q_c
AIIII	107	100	100	10 D		Total	40
From A						918	653
From B						940	514
From C						313	949
From D						1051	983
Total					;	3222	

Legend

9	
Arm	Road (in clockwise order)
Α	Island Eastern Corridor
В	Chai Wan Road WB
С	Wan Tsui Road
D	Chai Wan Road EB

Geometric Parameters

Geometri	C Farainett	713					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	8.0	7.3	100.0	10.0	80	10	0.1
From B	9.4	6.4	57.0	32.0	80	28	0.2
From C	8.0	4.5	25.0	29.0	80	32	0.2
From D	10.0	7.3	50.0	67.0	80	27	0.1

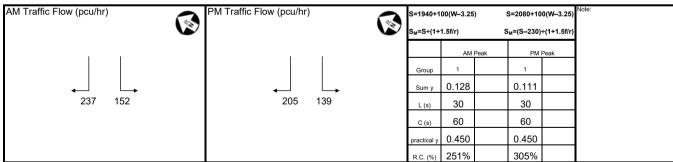
Predictive Equation $Q_E = K(F - f_cq_c)$

Q_{E}	Entry Capacity
$q_{\rm c}$	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	$= \exp[(D-60)/10]$
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

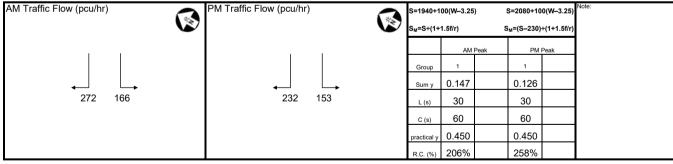

							Q_{E}		Entry Flow		RFC	
Arm	X ₂	M	t_D	K	F	f_{c}	AM	PM	AM	PM	AM	PM
From A	7.872	7.389	1.060	1.109	2385.184	0.573	2107	2229	934	918	0.443	0.412
From B	8.708	7.389	1.060	1.039	2638.431	0.610	2327	2415	1042	940	0.448	0.389
From C	7.025	7.389	1.060	1.003	2128.537	0.535	1511	1625	363	313	0.240	0.193
From D	9.692	7.389	1.060	1.040	2936.552	0.654	2305	2385	1320	1051	0.573	0.441
Ī												

 Junction:
 Ning Foo Street / Lee Chung Street
 Job Number:
 J7408

 Scenario:
 Existing Condition
 P. 22

 Design Year:
 2025
 Designed By:
 AYT
 Checked By:
 LKW
 Date:
 26 Nov 2025

					,	1			AMA De ele			PM Peak					
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	
Ning Foo Street SB	LT	A1	1	4.20	14.0		100	1838	152	0.083		100	1838	139	0.076		
Ning Foo Street SB	RT	A2	1	3.70	20.0		100	1847	237	0.128	0.128	100	1847	205	0.111	0.111	
pedestrian phase		Вр	2		min c	rossing	time =	11	sec (GM +	7	sec F	GM =	18	sec		
		•					_										
				l .	i .				L						l .		

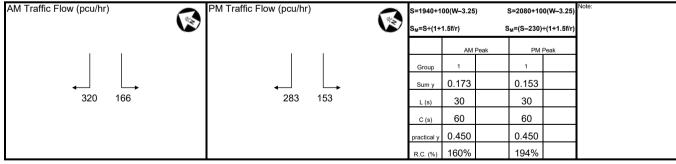

A2	A1	Bp 4	Bp	3		4		5	
AM G =	I/G = 5	G = 15	I/G = 11	G =	I/G =	G =	I/G =	G =	I/G =
G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =
PM G =	I/G = 5	G = 15	I/G = 11	G =	I/G =	G =	I/G =	G =	I/G =
G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =

 Junction:
 Ning Foo Street / Lee Chung Street
 Job Number:
 17408

 Scenario:
 Year 2033 without the Proposed Hotel
 P. 23

 Design Year:
 2033 Designed By: AYT
 Checked By: LKW
 Date: 26 Nov 2025

							1		AM Peak			I		PM Peak		
Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Ning Foo Street SB	LT	A1	1	4.20	14.0		100	1838	166	0.090		100	1838	153	0.083	
Ning Foo Street SB	RT	A2	1	3.70	20.0		100	1847	272	0.147	0.147	100	1847	232	0.126	0.126
pedestrian phase		Вр	2		min c	rossing	time =	11	sec (GM +	7	sec F	GM =	18	sec	

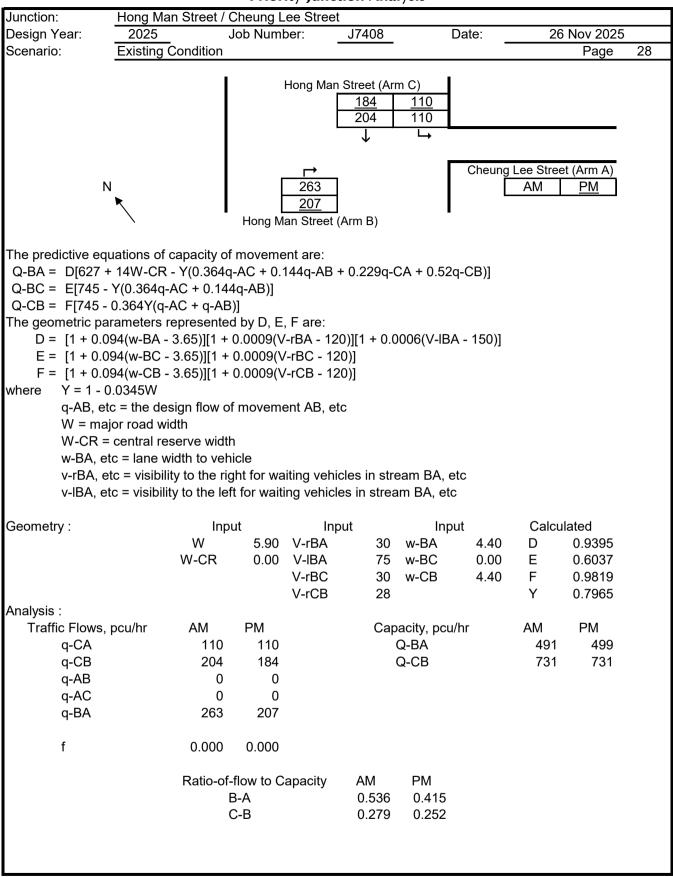

A2	A1	Bp 4	Вр	3		4		5	
AM G =	I/G = 5	G = 15	I/G = 11	G =	I/G =	G =	I/G =	G =	I/G =
G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =
PM G =	I/G = 5	G = 15	I/G = 11	G =	I/G =	G =	I/G =	G =	I/G =
G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =

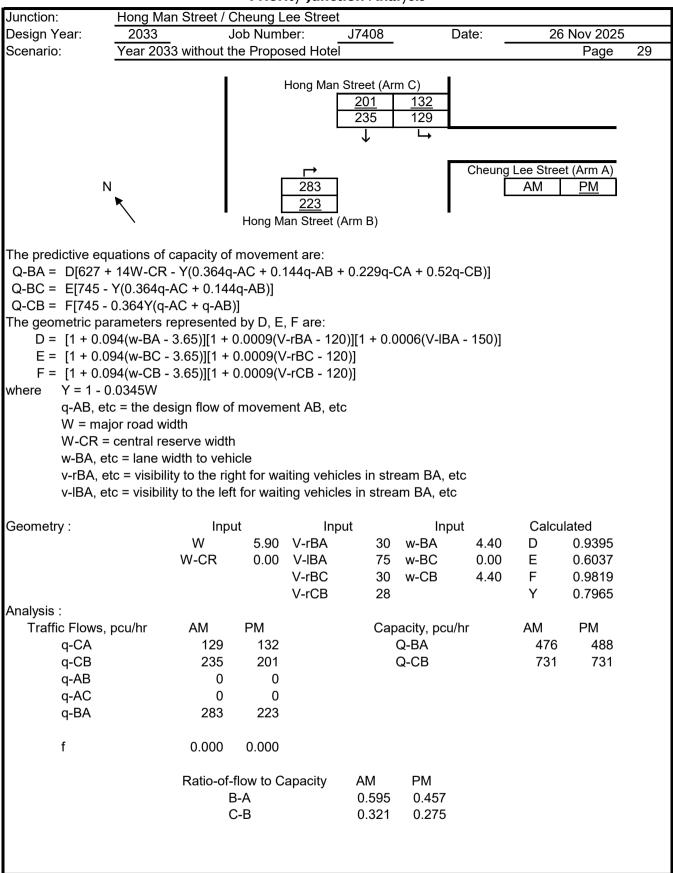
 Junction:
 Ning Foo Street / Lee Chung Street
 Job Number:
 17408

 Scenario:
 Year 2033 with the Proposed Hotel
 P. 24

 Design Year:
 2033
 Designed By:
 AYT
 Checked By:
 LKW
 Date:
 26 Nov 2025

Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Approach		Phase	Stage	width (m)	Radius (m)	% Up-nili Gradient	Turning %	(pcu/hr)	(pcu/hr)	y value	Critical y	Turning %	(pcu/hr)	(pcu/hr)	y value	Critical y
Ning Foo Street SB	LT	A1	1	4.20	14.0		100	1838	166	0.090		100	1838	153	0.083	
Ning Foo Street SB	RT	A2	1	3.70	20.0		100	1847	320	0.173	0.173	100	1847	283	0.153	0.153
			•					4.4		014	_			40		
pedestrian phase		Вр	2		min c	rossing	ime =	11	sec	GM +	7	sec F	GM =	18	sec	
				l	l									1	ı	




1 A2	A1	2 Bp •	Bp	3		4		5	
AM G =	I/G = 5	G = 15	I/G = 11	G =	I/G =	G =	I/G =	G =	I/G =
G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =
PM G =	I/G = 5	G = 15	I/G = 11	G =	I/G =	G =	I/G =	G =	I/G =
G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =	G =	I/G =

Junction: Lee Chung Street / Lee Chung Street outside Shun Yee Factory Building 26 Nov 2025 Design Year: 2025 Job Number: J7408 Date: Scenario: **Existing Condition** Page 25 Lee Chung Street (Arm C) Lee Chung Street (Arm A) 240 249 7 34 29 37 AM PM31 Ν Lee Chung Street outside Shun Yee Factory Building (Arm B) The predictive equations of capacity of movement are: Q-BA = D[627 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB)] Q-BC = E[745 - Y(0.364q-AC + 0.144q-AB)]Q-CB = F[745 - 0.364Y(q-AC + q-AB)]The geometric parameters represented by D, E, F are: D = [1 + 0.094(w-BA - 3.65)][1 + 0.0009(V-rBA - 120)][1 + 0.0006(V-lBA - 150)]E = [1 + 0.094(w-BC - 3.65)][1 + 0.0009(V-rBC - 120)]F = [1 + 0.094(w-CB - 3.65)][1 + 0.0009(V-rCB - 120)]where Y = 1 - 0.0345Wq-AB, etc = the design flow of movement AB, etc W = major road width W-CR = central reserve width w-BA, etc = lane width to vehicle v-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc v-IBA, etc = visibility to the left for waiting vehicles in stream BA, etc Geometry: Input Input Calculated Input W 10.50 V-rBA 45 4.40 w-BA D 0.9324 W-CR 0.00 V-IBA 40 w-BC 0.00 Ε 0.6126 V-rBC 45 w-CB 3.50 F 0.9460 Υ 75 V-rCB 0.6378 Analysis: Traffic Flows, pcu/hr PMCapacity, pcu/hr ΑM PMAM q-CA 249 240 Q-BA 542 541 q-CB Q-BC 456 456 29 34 q-AB 0 0 Q-CB 705 705 q-AC 0 0 Q-BAC 542 541 37 31 q-BA q-BC 0 0 0.000 0.000 Ratio-of-flow to Capacity ΑM PM 0.068 B-A 0.057 0.000 B-C 0.000 C-B 0.041 0.048

Lee Chung Street / Lee Chung Street outside Shun Yee Factory Building Junction: 26 Nov 2025 Design Year: Job Number: J7408 Date: Scenario: Year 2033 without the Proposed Hotel Page 26 Lee Chung Street (Arm C) Lee Chung Street (Arm A) 275 292 7 32 37 42 AM PM34 Ν Lee Chung Street outside Shun Yee Factory Building (Arm B) The predictive equations of capacity of movement are: Q-BA = D[627 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB)] Q-BC = E[745 - Y(0.364q-AC + 0.144q-AB)]Q-CB = F[745 - 0.364Y(q-AC + q-AB)]The geometric parameters represented by D, E, F are: D = [1 + 0.094(w-BA - 3.65)][1 + 0.0009(V-rBA - 120)][1 + 0.0006(V-lBA - 150)]E = [1 + 0.094(w-BC - 3.65)][1 + 0.0009(V-rBC - 120)]F = [1 + 0.094(w-CB - 3.65)][1 + 0.0009(V-rCB - 120)]where Y = 1 - 0.0345Wq-AB, etc = the design flow of movement AB, etc W = major road width W-CR = central reserve width w-BA. etc = lane width to vehicle v-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc v-IBA, etc = visibility to the left for waiting vehicles in stream BA, etc Geometry: Input Input Calculated Input W 10.50 V-rBA 45 4.40 w-BA D 0.9324 W-CR 0.00 V-IBA 40 w-BC 0.00 Ε 0.6126 V-rBC 45 w-CB 3.50 F 0.9460 Υ 75 V-rCB 0.6378 Analysis: Traffic Flows, pcu/hr ΑM PMCapacity, pcu/hr ΑM PMq-CA 292 275 Q-BA 535 536 q-CB Q-BC 456 32 37 456 q-AB 0 0 Q-CB 705 705 q-AC 0 0 Q-BAC 535 536 42 q-BA 34 q-BC 0 0 0.000 0.000 Ratio-of-flow to Capacity ΑM PM 0.063 B-A 0.079 B-C 0.000 0.000 C-B 0.045 0.053

Junction: Lee Chung Street / Lee Chung Street outside Shun Yee Factory Building 26 Nov 2025 Design Year: Job Number: J7408 Date: 2033 Scenario: Year 2033 with the Proposed Hotel Page 27 Lee Chung Street (Arm C) Lee Chung Street (Arm A) 322 341 7 32 37 42 AM PM34 Ν Lee Chung Street outside Shun Yee Factory Building (Arm B) The predictive equations of capacity of movement are: Q-BA = D[627 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB)] Q-BC = E[745 - Y(0.364q-AC + 0.144q-AB)]Q-CB = F[745 - 0.364Y(q-AC + q-AB)]The geometric parameters represented by D, E, F are: D = [1 + 0.094(w-BA - 3.65)][1 + 0.0009(V-rBA - 120)][1 + 0.0006(V-lBA - 150)]E = [1 + 0.094(w-BC - 3.65)][1 + 0.0009(V-rBC - 120)]F = [1 + 0.094(w-CB - 3.65)][1 + 0.0009(V-rCB - 120)]where Y = 1 - 0.0345Wq-AB, etc = the design flow of movement AB, etc W = major road width W-CR = central reserve width w-BA, etc = lane width to vehicle v-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc v-IBA, etc = visibility to the left for waiting vehicles in stream BA, etc Geometry: Input Input Calculated Input W 10.50 V-rBA 45 4.40 w-BA D 0.9324 W-CR 0.00 V-IBA 40 w-BC 0.00 Ε 0.6126 V-rBC 45 w-CB 3.50 F 0.9460 Υ 75 V-rCB 0.6378 Analysis: Traffic Flows, pcu/hr ΑM PMCapacity, pcu/hr ΑM PMq-CA 341 322 Q-BA 528 529 q-CB Q-BC 32 37 456 456 q-AB 0 0 Q-CB 705 705 q-AC 0 0 Q-BAC 528 529 42 q-BA 34 q-BC 0 0 0.000 0.000 Ratio-of-flow to Capacity ΑM PM 0.080 0.064 B-A 0.000 B-C 0.000 C-B 0.045 0.053

					on Ana	<u> </u>				
Junction:	Hong Mar									
Design Year:	2033		Job Numb		J7408	Da	te: _	26	Nov 2025	
Scenario:	Year 2033	3 with the I	Proposed	Hotel					Page	30
			H	long Man S	Street (Arr 202 236 ↓	<u>178</u> 177 →	Cheung	Lee Stree	t (Arm A)	
N	1		Hong Ma	288 229 In Street (A	rm B)			AM	<u>PM</u>	
Q-BA = D[627 + Q-BC = E[745 - Q-CB = F[745 - The geometric pa $D = [1 + 0.0]$	Y(0.364q-A 0.364Y(q-A rameters re 94(w-BA - 3	AC + 0.144 AC + q-AB epresented 3.65)][1 +	4q-AB)])] d by D, E, 0.0009(V-	F are: rBA - 120))][1 + 0.0	·				
q-AB, et W = ma W-CR = w-BA, et v-rBA, e	94(w-CB - 3 0.0345W oc = the des jor road wid central res tc = lane wid	3.65)][1 + ign flow of lth erve width dth to veh y to the rig	0.0009(V- f movement icle ght for wait	rCB - 120 nt AB, etc ting vehicl	es in stre	eam BA, etc ım BA, etc				
F = [1 + 0.0 where Y = 1 - 0 q-AB, et W = ma W-CR = w-BA, et v-rBA, et	94(w-CB - 3 0.0345W cc = the des jor road wid ccentral res tc = lane wid tc = visibility	ign flow of lth erve width dth to veh y to the rig / to the lef	0.0009(V- f movement icle ght for waiting	rCB - 120 nt AB, etc ting vehicles	es in strea	m BA, etc		Calcul	oto d	
F = [1 + 0.0 where Y = 1 - 0 q-AB, et W = ma W-CR = w-BA, et v-rBA, et	94(w-CB - 3 0.0345W cc = the des jor road wid ccentral res tc = lane wid tc = visibility	ign flow of lth erve width dth to veh y to the rig to the lef Inpu	0.0009(V- f movement icle ght for waiting the state of th	rCB - 120 nt AB, etc ting vehicles Inpu V-rBA	es in strea	m BA, etc Input w-BA	4.40	Calcul D	0.9395	
F = [1 + 0.0 where Y = 1 - 0 q-AB, et W = ma W-CR = w-BA, et v-rBA, et	94(w-CB - 3 0.0345W cc = the des jor road wid ccentral res tc = lane wid tc = visibility	ign flow of lth erve width dth to veh y to the rig y to the lef	0.0009(V- f movement icle ght for waiting ut 5.90 0.00	rCB - 120 nt AB, etc ting vehicles Inpu V-rBA V-IBA	es in stres in stres t 30 75	Im BA, etc Input w-BA w-BC	0.00	D E	0.9395 0.6037	
F = [1 + 0.0 where Y = 1 - 0 q-AB, et W = ma W-CR = w-BA, et v-rBA, et	94(w-CB - 3 0.0345W cc = the des jor road wid ccentral res tc = lane wid tc = visibility	ign flow of lth erve width dth to veh y to the rig to the lef Inpu	0.0009(V- f movement icle ght for waiting ut 5.90 0.00	rCB - 120 nt AB, etc ting vehicles Inpu V-rBA V-IBA V-rBC	es in streats in streats and to the streats and the streats are streats and the streats are streats and the streats and the streats and the streats are streats and the streats are streats and the streats are streats and the streats and the streats are streats are streats and the streats are streats and the streats are streats are streats and the streats are streats and the streats are streats are streats and the streats are streats are streats and the streats are streats are streats are streats are streats are streats are streat	m BA, etc Input w-BA		D E F	0.9395 0.6037 0.9819	
F = [1 + 0.0 where Y = 1 - 0 q-AB, et W = ma W-CR = w-BA, et v-rBA, et v-IBA, et	94(w-CB - 3 0.0345W cc = the des jor road wid ccentral res tc = lane wid tc = visibility	ign flow of lth erve width dth to veh y to the rig to the lef Inpu	0.0009(V- f movement icle ght for waiting ut 5.90 0.00	rCB - 120 nt AB, etc ting vehicles Inpu V-rBA V-IBA	es in stres in stres t 30 75	Im BA, etc Input w-BA w-BC	0.00	D E	0.9395 0.6037	
F = [1 + 0.0 where Y = 1 - 0 q-AB, et W = ma W-CR = w-BA, et v-rBA, et v-lBA, et walls :	94(w-CB - 3 0.0345W ic = the desi jor road wid c central res tc = lane wid tc = visibility tc = visibility	ign flow of lth erve width dth to veh y to the rig to the lef Unpu W W-CR	0.0009(V- f movement icle ght for waiting t for waiting t 5.90 0.00	rCB - 120 nt AB, etc ting vehicles Inpu V-rBA V-IBA V-rBC	es in streat t 30 75 30 28	Im BA, etc Input w-BA w-BC w-CB	0.00 4.40	D E F Y	0.9395 0.6037 0.9819 0.7965	
F = [1 + 0.0 where Y = 1 - 0 q-AB, et W = ma W-CR = w-BA, et v-rBA, et v-IBA, et	94(w-CB - 3 0.0345W ic = the desi jor road wid c central res tc = lane wid tc = visibility tc = visibility	ign flow of lth erve width dth to veh y to the rig to the lef Inpu	0.0009(V- f movement icle ght for waiting ut 5.90 0.00	rCB - 120 nt AB, etc ting vehicles Inpu V-rBA V-IBA V-rBC	es in streats in streatt 30 75 30 28 Cap	Im BA, etc Input w-BA w-BC	0.00 4.40	D E F	0.9395 0.6037 0.9819	
F = [1 + 0.0 where Y = 1 - 0 q-AB, et W = ma W-CR = w-BA, et v-rBA, et v-lBA, et Geometry :	94(w-CB - 3 0.0345W ic = the desi jor road wid c central res tc = lane wid tc = visibility tc = visibility	ign flow of lth erve width dth to veh y to the rig to the lef W W-CR	0.0009(V- f movement icle ght for waiting ut 5.90 0.00	rCB - 120 nt AB, etc ting vehicles Inpu V-rBA V-IBA V-rBC	es in streat t 30 75 30 28 Cap	Im BA, etc Input w-BA w-BC w-CB acity, pcu/hr	0.00 4.40	D E F Y	0.9395 0.6037 0.9819 0.7965	
F = [1 + 0.0 where Y = 1 - 0 q-AB, et W = ma W-CR = w-BA, et v-rBA, et v-lBA, et Geometry : Analysis : Traffic Flows, q-CA	94(w-CB - 3 0.0345W ic = the desi jor road wid c central res tc = lane wid tc = visibility tc = visibility	ign flow of lth erve width dth to veh y to the rig / to the lef W W-CR	0.0009(V- f movement icle ght for waiting t for waiting t 5.90 0.00 PM 178	rCB - 120 nt AB, etc ting vehicles Inpu V-rBA V-IBA V-rBC	es in streat t 30 75 30 28 Cap	Im BA, etc Input w-BA w-BC w-CB acity, pcu/hr Q-BA	0.00 4.40	D E F Y AM 467	0.9395 0.6037 0.9819 0.7965 PM 480	
F = [1 + 0.0 where Y = 1 - 0 q-AB, et W = ma W-CR = w-BA, et v-rBA, et v-lBA, et Traffic Flows, q-CA q-CB	94(w-CB - 3 0.0345W ic = the desi jor road wid c central res tc = lane wid tc = visibility tc = visibility	ign flow of lth erve width dth to veh y to the rig y to the lef Unpu W W-CR	0.0009(V- f movement icle ght for waiting t for waiting t 5.90 0.00 PM 178 202	rCB - 120 nt AB, etc ting vehicles Inpu V-rBA V-IBA V-rBC	es in streat t 30 75 30 28 Cap	Im BA, etc Input w-BA w-BC w-CB acity, pcu/hr Q-BA	0.00 4.40	D E F Y AM 467	0.9395 0.6037 0.9819 0.7965 PM 480	
F = [1 + 0.0 where Y = 1 - 0 q-AB, et W = ma W-CR = w-BA, et v-rBA, et v-lBA, et w-lBA; et w-lBA	94(w-CB - 3 0.0345W ic = the desi jor road wid c central res tc = lane wid tc = visibility tc = visibility	ign flow of lth erve width dth to veh y to the rig to the lef W W-CR AM 177 236 0	0.0009(V- f movement icle ght for waiting t for waiting t 5.90 0.00 PM 178 202 0	rCB - 120 nt AB, etc ting vehicles Inpu V-rBA V-IBA V-rBC	es in streat t 30 75 30 28 Cap	Im BA, etc Input w-BA w-BC w-CB acity, pcu/hr Q-BA	0.00 4.40	D E F Y AM 467	0.9395 0.6037 0.9819 0.7965 PM 480	
F = [1 + 0.0 where Y = 1 - 0 q-AB, et W = ma W-CR = w-BA, et v-rBA, et v-lBA, et v-lBA, et raffic Flows, q-CA q-CB q-AB q-AC	94(w-CB - 3 0.0345W ic = the desi jor road wid c central res tc = lane wid tc = visibility tc = visibility	ign flow of lth erve width dth to veh y to the rig to the lef W W-CR AM 177 236 0	0.0009(V- f movement icle ght for waiting t for waiting t 5.90 0.00 PM 178 202 0 0	rCB - 120 nt AB, etc ting vehicles Inpu V-rBA V-IBA V-rBC	es in streat t 30 75 30 28 Cap	Im BA, etc Input w-BA w-BC w-CB acity, pcu/hr Q-BA	0.00 4.40	D E F Y AM 467	0.9395 0.6037 0.9819 0.7965 PM 480	
F = [1 + 0.0] where Y = 1 - 0 q-AB, et W = ma W-CR = w-BA, et v-rBA, et v-rBA, et q-CA q-CA q-CB q-AB q-AC q-BA	94(w-CB - 3 0.0345W ic = the desi jor road wid c central res tc = lane wid tc = visibility tc = visibility	ign flow of lith erve width dth to veh y to the rig / to the lef W W-CR AM 177 236 0 0 288 0.000	0.0009(V- f movement icle ght for waiting to the forwaiting to the forwaiting the following the foll	ting vehicles Inpu V-rBA V-rBC V-rCB	es in streat t 30 75 30 28 Cap	Im BA, etc Input w-BA w-BC w-CB acity, pcu/hr Q-BA	0.00 4.40	D E F Y AM 467	0.9395 0.6037 0.9819 0.7965 PM 480	
F = [1 + 0.0 where Y = 1 - 0 q-AB, et W = ma W-CR = w-BA, et v-rBA, et v-rBA, et v-rBA, et q-CA q-CB q-AB q-AC q-BA	94(w-CB - 3 0.0345W ic = the desi jor road wid c central res tc = lane wid tc = visibility tc = visibility	ign flow of lith erve width dth to veh y to the rigy to the lef W W-CR AM 177 236 0 0 288 0.000 Ratio-of-	0.0009(V- f movement icle ght for waiting t for waiting t 5.90 0.000 PM 178 202 0 0 229 0.000	ting vehicles Inpu V-rBA V-rBC V-rCB	es in streats in streat t 30 75 30 28 Cap	Im BA, etc Input w-BA w-BC w-CB acity, pcu/hr Q-BA Q-CB	0.00 4.40	D E F Y AM 467	0.9395 0.6037 0.9819 0.7965 PM 480	

Roundabout Analysis

Location	Chai Wan Road Roundabout						
Scenario	Year 2033 without the Proposed Hotel	el			Page	31	
Design Yea	ar <u>2033</u>	Job Number	J7408	Date	26 Nov 2	025	

AM Peak

Arm	To A	То В	To C	To D	Total	q _c
From A					888	842
From B					1040	606
From C					363	1114
From D					676	1053
Total					2967	

PM Peak

Arm	To A	То В	To C	To D	T	otal	q _c
From A					8	370	650
From B					9	37	465
From C					3	13	898
From D					4	55	932
Total					2	575	

Legend

Arm	Road (in clockwise order)
Α	Island Eastern Corridor
В	Chai Wan Road WB
С	Wan Tsui Road
D	Chai Wan Road EB

Geometric Parameters

Geometri	c raiaillett	<i>;</i> 13					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	8.0	7.3	100.0	10.0	76	10	0.1
From B	9.4	6.4	57.0	32.0	76	28	0.2
From C	8.0	4.5	25.0	29.0	76	32	0.2
From D	8.0	6.6	50.0	10.0	76	33	0.2

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
$q_{\rm c}$	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t_D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

							C) _E	Entry	Flow	RF	-C
Arm	X ₂	M	t_D	K	F	f_c	AM	PM	AM	PM	AM	PM
From A	7.872	4.953	1.084	1.109	2385.184	0.586	2097	2222	888	870	0.423	0.392
From B	8.708	4.953	1.084	1.039	2638.431	0.624	2348	2439	1040	937	0.443	0.384
From C	7.025	4.953	1.084	1.003	2128.537	0.547	1523	1642	363	313	0.238	0.191
From D	7.567	4.953	1.084	1.019	2292.756	0.572	1722	1793	676	455	0.393	0.254

CKM Asia Limited J7_imp

Roundabout Analysis

Location Cl	Chai Wan Road Roundabout						
Scenario Ye	ear 2033 with the Proposed Hotel				Page	32	
Design Year	2033	Job Number	J7408	Date	26 Nov 2	2025	

AM Peak

Arm	To A	То В	To C	To D	Total	q _c
From A					934	846
From B					1042	653
From C					363	1162
From D					680	1101
Total					3019	

PM Peak

					1	
Arm	To A	To B	To C	To D	Total	q_c
From A					918	653
From B					940	514
From C					313	949
From D					458	983
Total					2629	

Legend

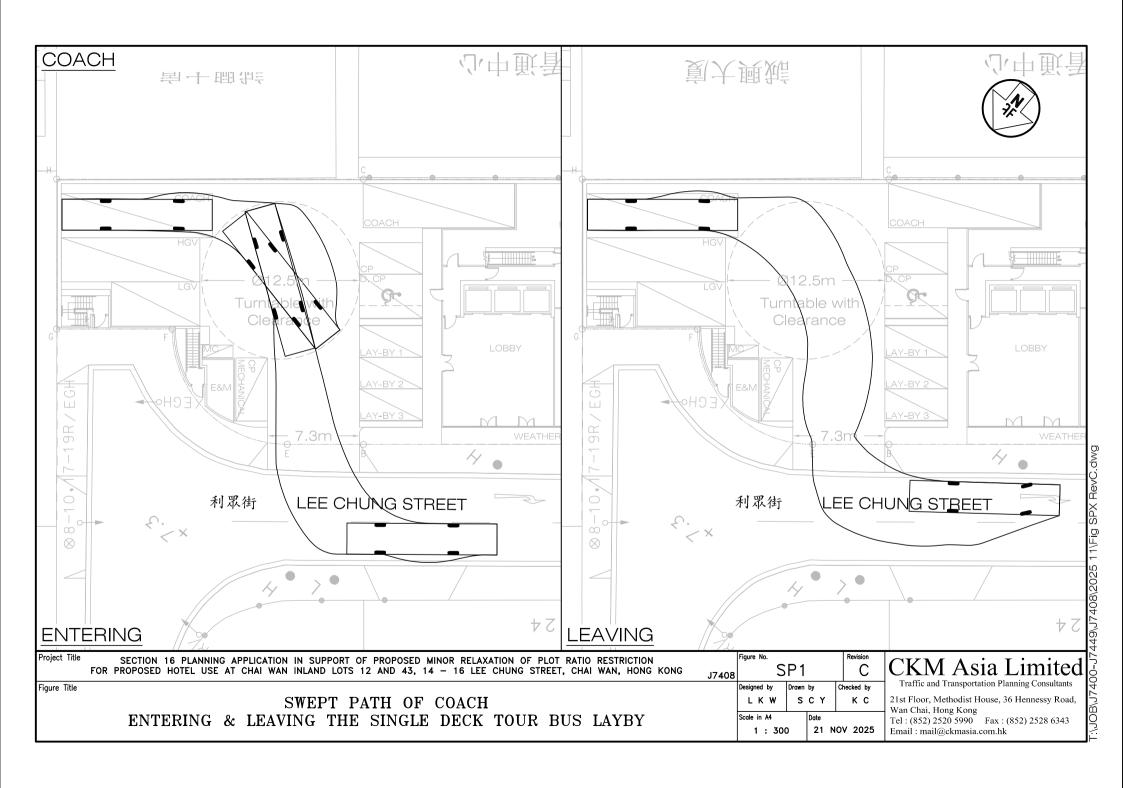
Arm	Road (in clockwise order)
Α	Island Eastern Corridor
В	Chai Wan Road WB
С	Wan Tsui Road
D	Chai Wan Road EB

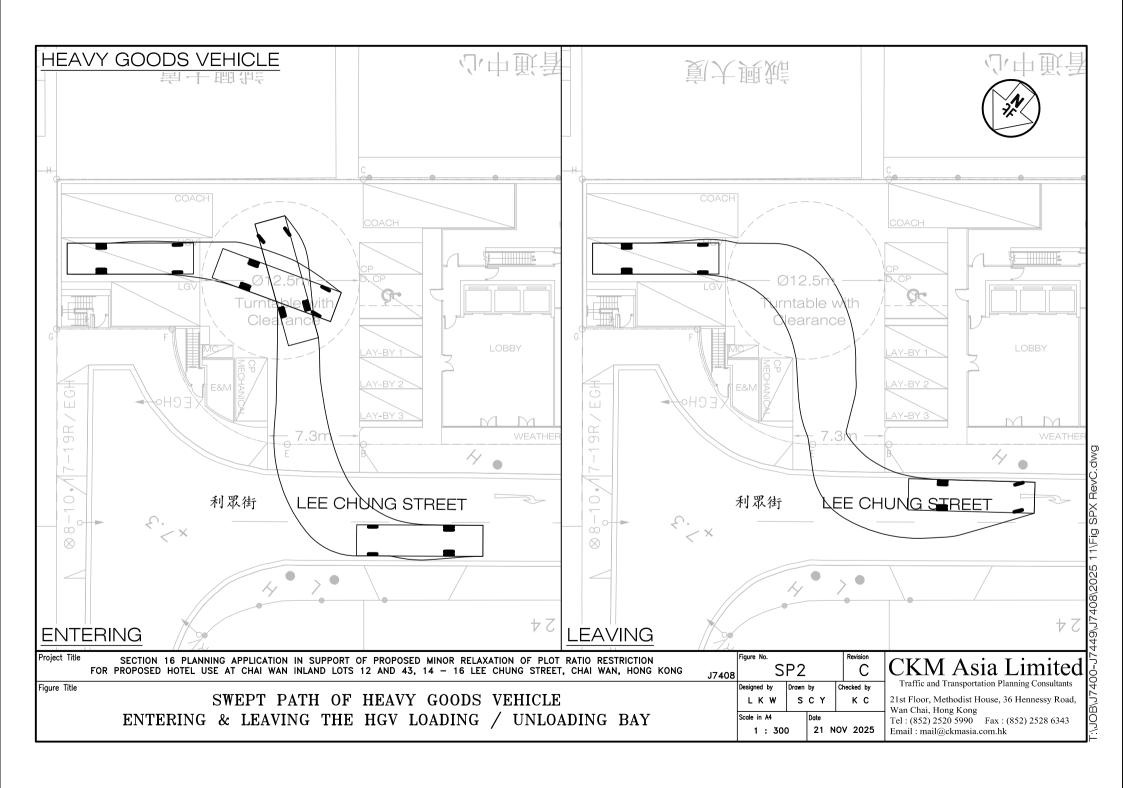
Geometric Parameters

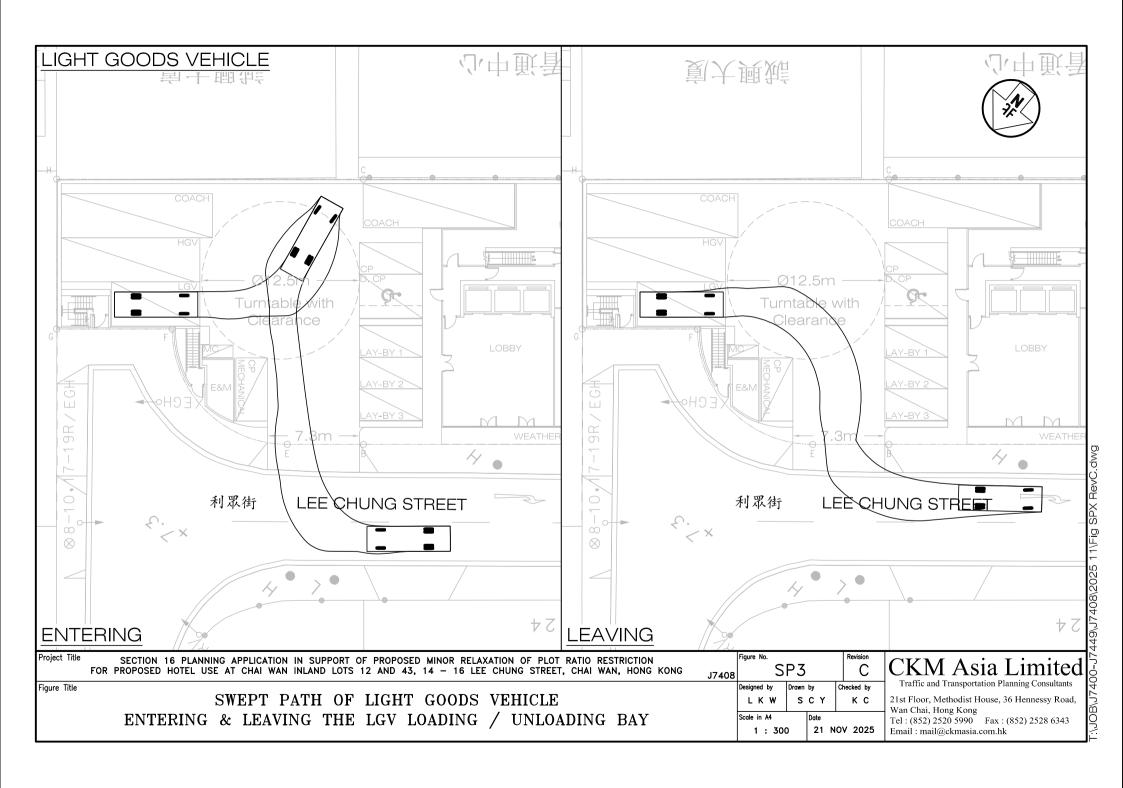
Geometric Farameters									
Arm	e (m) v (m)		r (m) L (m)		D (m)	Ø (°)	S		
From A	8.0	7.3	100.0	10.0	76	10	0.1		
From B	9.4	6.4	57.0	32.0	76	28	0.2		
From C	8.0	4.5	25.0	29.0	76	32	0.2		
From D	8.0	6.6	50.0	10.0	76	33	0.2		

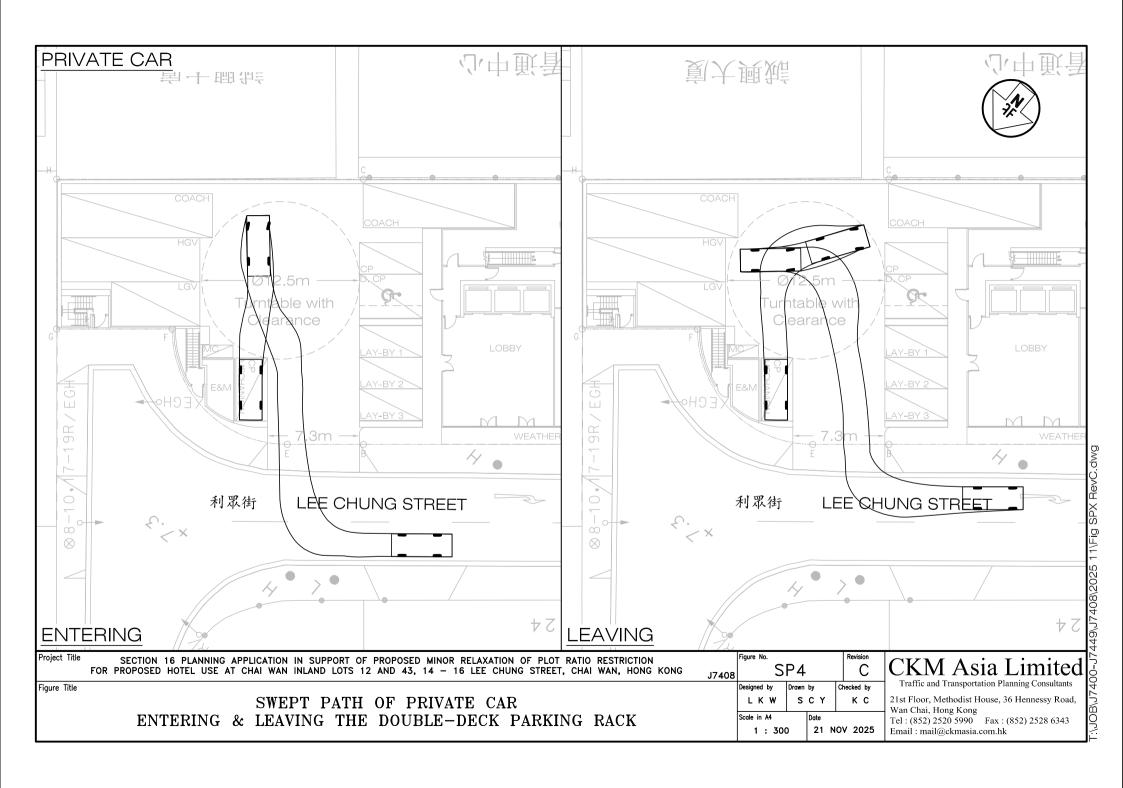
Predictive Equation $Q_E = K(F - f_cq_c)$

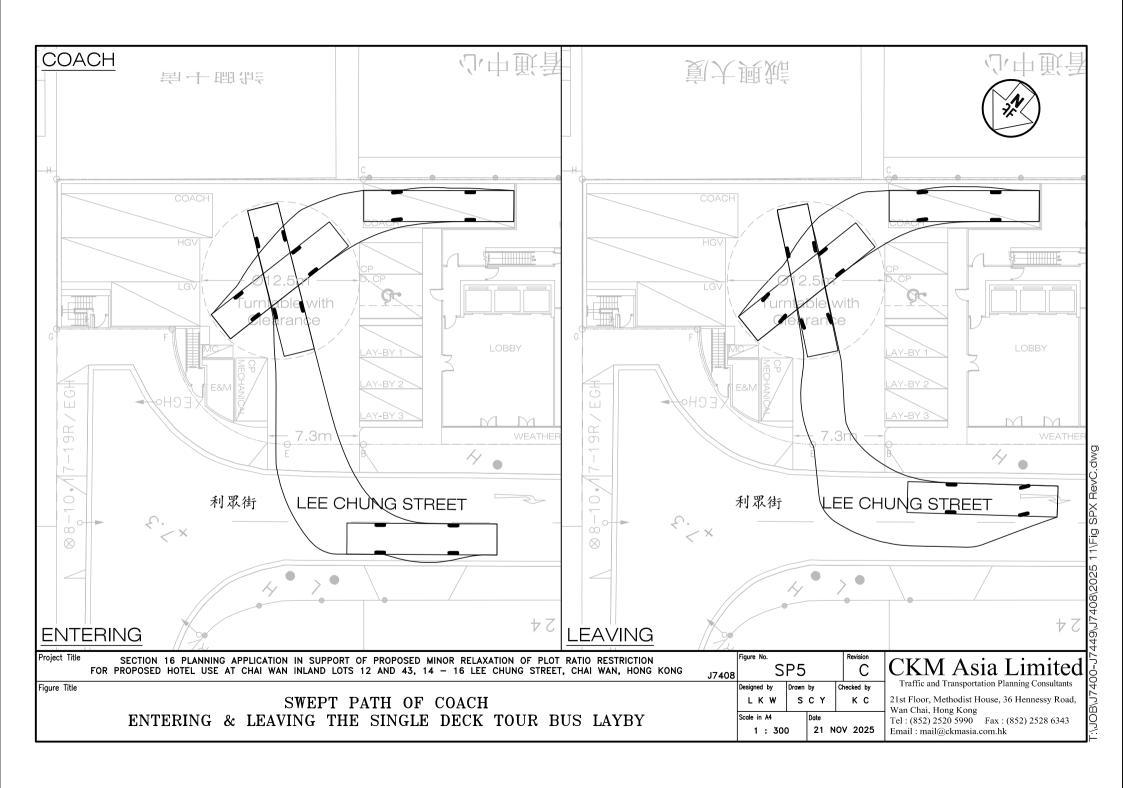
Q_{E}	Entry Capacity
$q_{\rm c}$	Circulating Flow across the Entry
K	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	$= 303x_2$
f _c	$= 0.210t_{D}(1+0.2x_{2})$
t_D	= 1+0.5/(1+M)
М	$= \exp[(D-60)/10]$
x_2	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

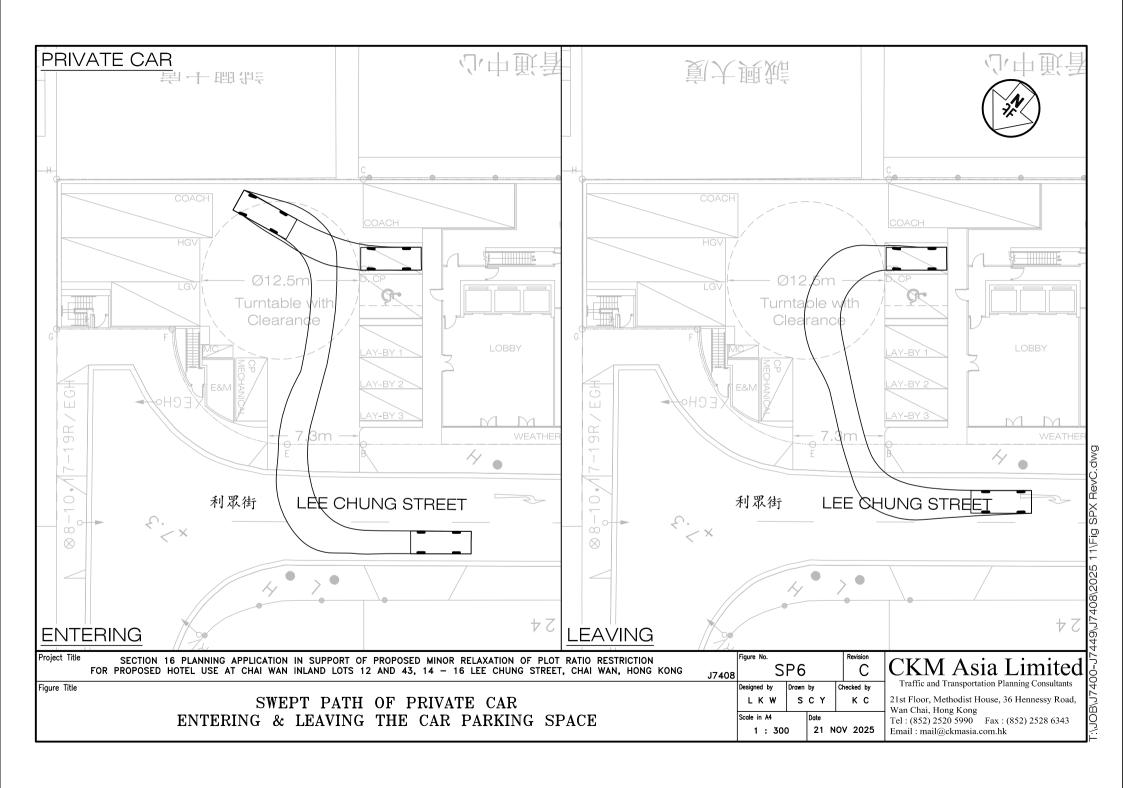

Limitation

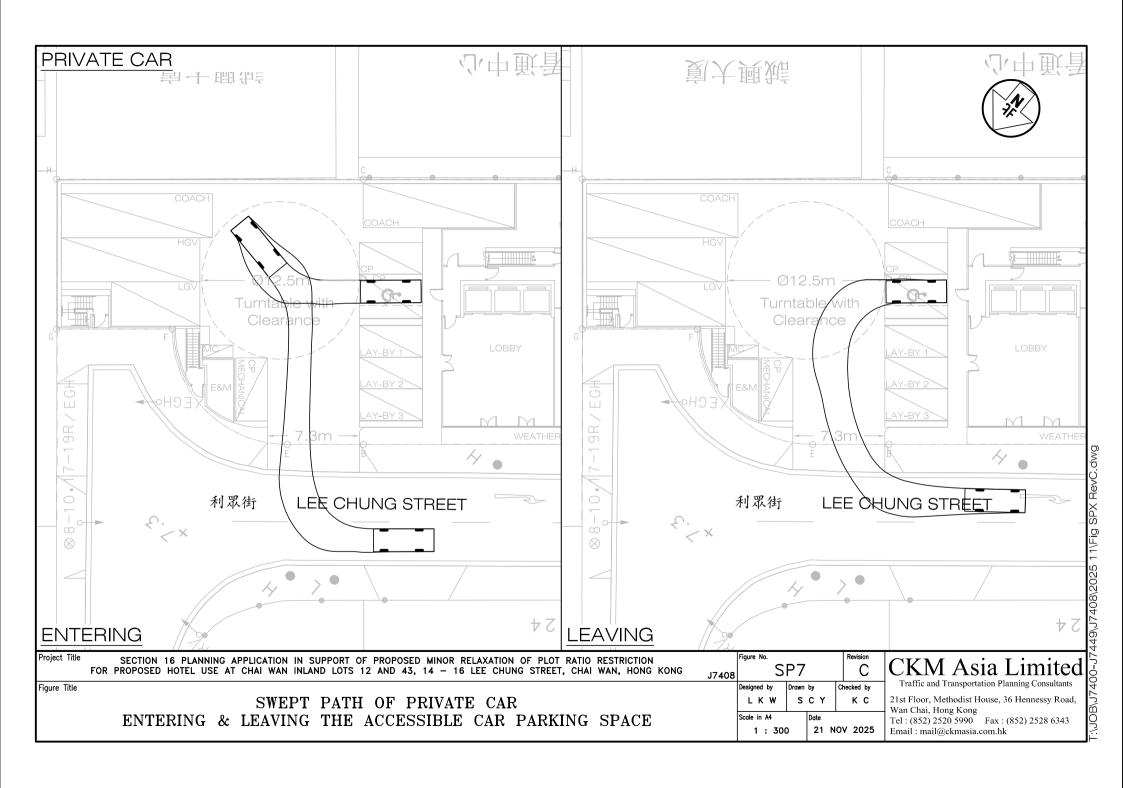

е	Entry Width	4.0 - 15.0 m
V	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

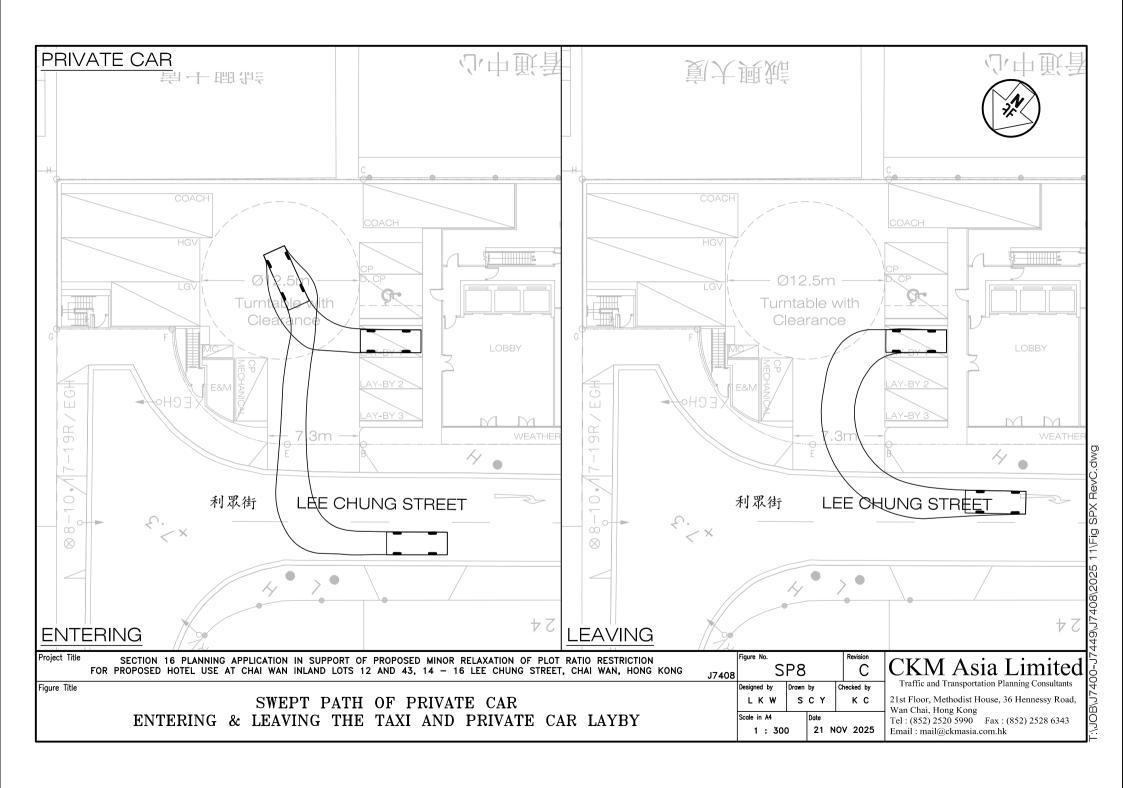

Ratio-of-Flow to Capacity (RFC)

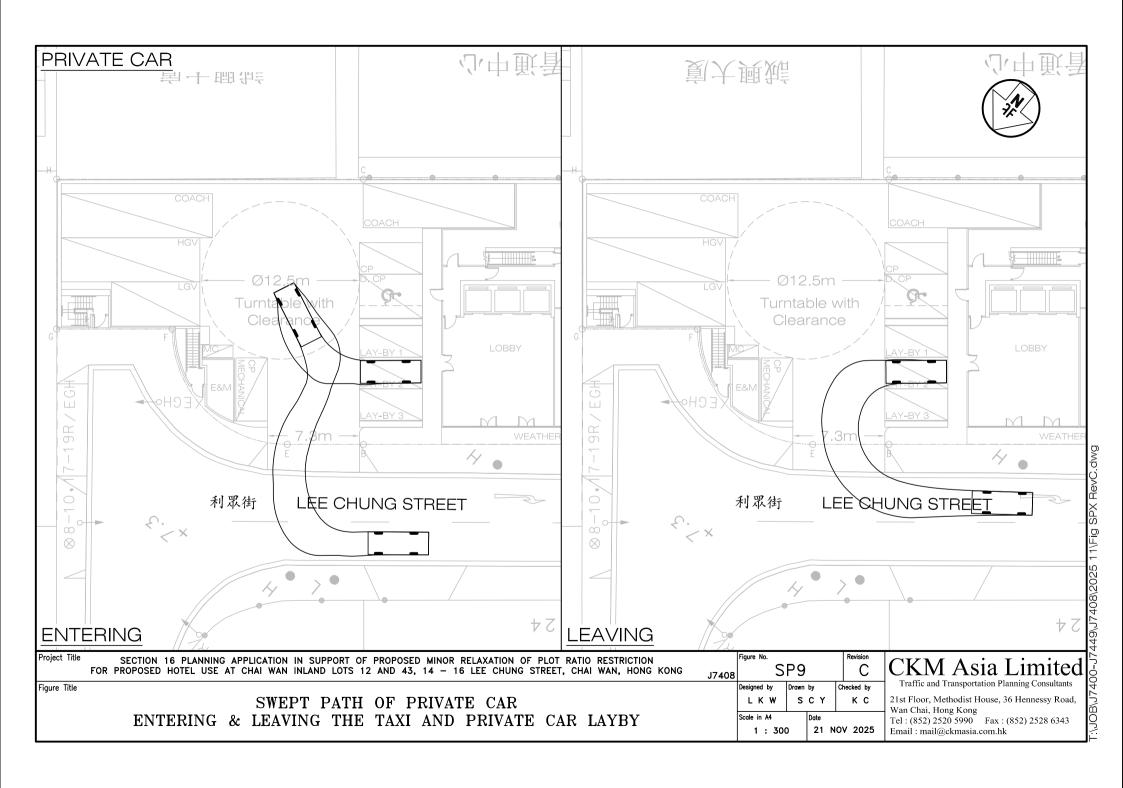

							Q_{E}		Entry Flow		RFC	
Arm	X ₂	M	t_D	K	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.872	4.953	1.084	1.109	2385.184	0.586	2094	2220	934	918	0.446	0.414
From B	8.708	4.953	1.084	1.039	2638.431	0.624	2317	2407	1042	940	0.450	0.390
From C	7.025	4.953	1.084	1.003	2128.537	0.547	1497	1614	363	313	0.243	0.194
From D	7.567	4.953	1.084	1.019	2292.756	0.572	1694	1763	680	458	0.401	0.260

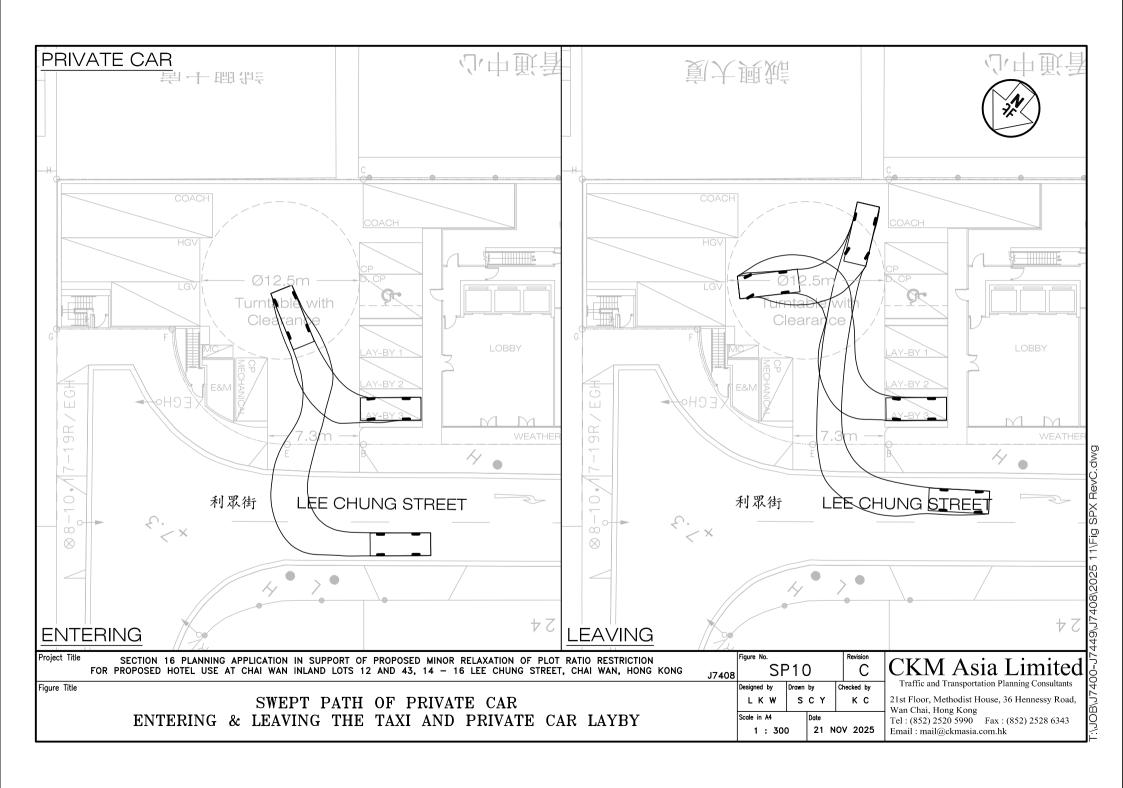

CKM Asia Limited J7_imp











Attachment B2

Operation Instructions of Proposed Double-deck Parking Rack

OPERATION INSTRUCTIONS

Car Parking Procedure:

- All passengers leave the car. Drive the car slowly until car wheels reach stop bar. Ensure hand brake is engaged according to manufacturer's instructions.
- Check safety lever is in "up" position for lifting operation.
- Insert key into control panel E-stop switch. Check there are no people, animals or objects in the parking platform and/or in the effective area of the unit.
- Turn the key to switch on the system with Running indicator red lamp light up.
- Turn selector switch to right and keep it in position until the platform reaches its highest level, then turn to the left to lower platform onto safety hook.
- Check mechanical safety hook has engaged fully.
- Press the E-stop switch then remove the key from the control panel.

Car Collection Procedure

The procedure to lower the car that is parked in the upper platform is as follows:-

- Insert key into control panel E-stop switch. Check there are no people, animals or objects in the parking platform and/or in the effective area of the unit.
- Turn the key to switch on the system with Running indicator red lamp light up.
- Turn selector switch to the right to raise the platform;
- Ensure safety lever is in correct position for lowering. (The safety lever, which is located at the edge of the front of the platform, is simply pulled manually to the correct position)
- Release safety hook by manually turn the Safety Lever to "down" position;
- Turn selector switch to the left until to lower platform.
- Press the E-stop switch and the key must be kept safely.