Traffic Impact Assessment Final Report September 2025

Prepared by: CKM Asia Limited

CONTENTS

<u>CHA</u>	<u>PTER</u>	PAGE
1.0	INTRODUCTION Background Scope of the Assessment Contents of the Report	1
2.0	THE EXISTING SITUATION The Subject Site Traffic Survey Operational Performance of the Surveyed Junctions Pedestrian Facilities Availability of Public Transport Facilities	2
3.0	THE PROPOSED DEVELOPMENT Development Parameters and Provision of Internal Transport Facilities Reasons for Deviation from the HKPSG Maximum Recommendation Layout Plans Swept Path Analysis Vehicle Lift Analysis Traffic Management Plan Passenger Safety Measures	7
4.0	TRAFFIC IMPACT Design Year Traffic Forecast Estimated Traffic Growth Rate from 2031 to 2032 Planned Developments in the Vicinity of the Proposed Development Traffic Generated by the Proposed Development Planned Junction Improvement Schemes 2032 Traffic Flows 2032 Junction Operational Performance	10
5.0	PEDESTRIAN ASSESSMENT Surveyed Pedestrian Locations Existing Pedestrian Flows Estimated growth from 2025 to 2032 Pedestrian Generated by the Proposed Development Year 2032 Pedestrian Flows Level-Of-Service ("LOS") Assessment	<mark>15</mark>

CONTENTS (Continued)

CHA	<u>PTER</u>	PAGE
<mark>6.0</mark>	SENSITIVITY TEST Traffic Generated by the Proposed Development (Sensitivity Test) 2032 Junction Operational Performance (Sensitivity Test)	18
7.0	CONCLUSION	<mark>20</mark>
	FIGURES Appendix 1— Calculation Appendix 2 — Swept Path Analysis Appendix 3 — Vehicle Lift Analysis Appendix 4 — Planned Junction Improvement Schemes	

TABLES

NUMBER

- 2.1 Existing junction operational performance
- 2.2 Franchised bus and GMB services operating close to the Subject Site
- 3.1 Comparison of the HKPSG recommendation and the proposed provision
- 4.1 2021-based TPEDM data produced by Planning Department for Kwun Tong district
- 4.2 Planned developments in the vicinity of the Proposed Development
- 4.3 Comparison of trip generation rates
- 4.4 Traffic generation of the Proposed Development
- 4.5 Planned traffic improvement schemes in the vicinity of the Proposed Development
- 4.6 2032 junction operational performance
- 5.1 Surveyed pedestrian locations
- 5.2 Pedestrian generation rates of the surveyed hotels
- 5.3 Pedestrian generated by the Proposed Development
- 5.4 Extract of exhibit 18-3 of the HCM 2000
- 5.5 Effective width of surveyed footpaths
- 5.6 Year 2032 LOS of footpath without and with the Proposed Development
- 5.7 Year 2032 LOS of pedestrian crossing waiting areas without and with the Proposed Development

TABLES (Continued)

NUMBER

- 6.1 Traffic generation of the Proposed Development by adopting mean rates from TPDM
- 6.2 2032 sensitivity test junction operational performance

FIGURES

Ν	U	V	ΙB	F	R

1.1	Location of the Subject Site
2.1	Location of the surveyed junctions
2.2	Layout of Junction of Hoi Bun Road / Shun Yip Street
2.3	Layout of junction of Wai Yip Street / Shun Yip Street
2.4	Layout of junction of Tai Yip Street / Service Lane
2.5	Layout of junction of Hong Tak Road / Tai Yip Street
2.6	Layout of junction of Tai Yip Street / Tai Yip Lane
2.7	Layout of junction of Kwun Tong Road / Hong Tak Road
2.8	Layout of junction of Wai Yip Street / Lai Yip Street
2.9	Layout of junction of Kwun Tong Road / Lai Yip Street
2.10	Layout of junction of Hoi Bun Road / Lai Yip Street
2.11	Layout of junction of Lai Yip Street / Hung To Road
2.12	Layout of junction of Tai Yip Street / Siu Yip Street
2.13	Layout of junction of Wai Yip Street / Siu Yip Street
2.14	2025 peak hour traffic flows
2.15	The public transport services provided in the vicinity of the Subject Site
3.1	G/F layout plan
3.2	B1/F layout plan

FIGURES (Continued)

NUMBER

- 4.1 Location of planned developments in the vicinity of the Proposed Development
- 4.2 Year 2032 peak hour traffic flows without the Proposed Development
- 4.3 Year 2032 peak hour traffic flows with the Proposed Development
- 4.4 The ingress / egress route for traffic generated by the Proposed Development (via Wai Yip Street)
- 4.5 The ingress route for traffic generated by the Proposed Development (via the Service Lane)
- 5.1 Observed existing pedestrian flows and main walking routes to / from the Subject Site
- 5.2 Year 2032 pedestrian flows without the Proposed Development
- 5.3 Year 2032 pedestrian flows with the Proposed Development
- 6.1 Sensitivity test 2032 peak hour traffic flows
- 6.2 The ingress / egress route of sensitivity test (via Wai Yip Street)
- 6.3 The ingress route of sensitivity test (via the Service Lane)

1.0 INTRODUCTION

Background

- 1.1 The Subject Site is located at Nos. 107 109 Wai Yip Street in Kwun Tong, which is now vacant. Figure 1.1 shows the location of the Subject Site.
- On 29th May 2020, the Town Planning Board ("TPB") approved the S16 Planning Application for Office, Shop and Services & Eating Place Uses at 107-109 Wai Yip Street (TPB ref: A/K14/780) ("Approved S16 Scheme"). The Applicant has the intention to construct a hotel ("Proposed Development") at the Subject Site.
- 1.3 CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned by the Applicant, to conduct a traffic impact assessment ("TIA") in support of Proposed Development. This report presents the findings of the TIA of the Proposed Development.

Scope of the Assessment

- 1.4 The main objectives of this TIA are as follows:
 - To assess the existing traffic issues in the vicinity of the Subject Site;
 - To quantify the traffic and pedestrians generated by the Proposed Development; and
 - To examine the traffic and pedestrian impact on the local road network in the vicinity of the Subject Site.

Contents of the Report

1.5 After this introduction, the remaining chapters contain the following:

Chapter Two
Chapter Three
Chapter Four
Chapter Five
Chapter Six
Chapter Six
Chapter Seven

- describes the existing situation;
outlines the development proposal;
- presents the traffic impact analysis;
- presents the pedestrian impact analysis;
- presents the traffic sensitivity test; and
- summarises the overall conclusion.

2.0 THE EXISTING SITUATION

The Subject Site

2.1 The Subject Site fronts onto Wai Yip Street to the south, and is bounded by a service lane to the north. The section of Wai Yip Street fronting the Subject Site is a dual carriageway 3-lane road.

Traffic Survey

- 2.2 To quantify the traffic flows at the junctions chosen for the capacity analysis, manual classified counts were conducted on Thursday, 12th June 2025 during the AM and PM peak periods. The locations of the surveyed junctions are presented in Figure 2.1 and their layout is shown in Figures 2.2 to 2.13.
- 2.3 The surveyed junctions include the following:
 - J1: Hoi Bun Road / Shun Yip Street;
 - J2: Wai Yip Street / Shun Yip Street;
 - J3: Tai Yip Street / Service Lane;
 - J4: Hong Tak Road / Tai Yip Street;
 - J5: Tai Yip Street / Tai Yip Lane;
 - J6: Kwun Tong Road / Hong Tak Road;
 - J7: Wai Yip Street / Lai Yip Street;
 - J8: Kwun Tong Road / Lai Yip Street;
 - J9: Hoi Bun Road / Lai Yip Street;
 - J10: Lai Yip Street / Hung To Road;
 - J11: Tai Yip Street / Siu Yip Street; and
 - J12: Wai Yip Street / Siu Yip Street.
- 2.4 The counts were classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. From the survey, the AM and PM peak hours were found to be between 0845 0945 and 1730 1830 hours respectively and the existing AM and PM peak hour traffic flows are presented in Figure 2.14.

Operational Performance of the Surveyed Junctions

2.5 The existing operational performance of the surveyed junctions is calculated based on the observed traffic counts and the analysis is undertaken using the methods outlined in Volume 2 of Transport Planning and Design Manual ("TPDM"). The existing operational performance of the surveyed junctions are summarised in Table 2.1 and the detailed calculations are found in Appendix 1.

TABLE 2.1	EXISTING JUNCTION	OPFRATIONAL	PERFORMANCE
1/\DLL Z.1			

Ref	Junction	Type of Junction	Parameter ⁽¹⁾	AM Peak	PM Peak
	***************************************	71	rarameter	AIVI FEAK	
J1	Hoi Bun Road / Shun Yip Street	Signal	RC	56%	43%
J2	Wai Yip Street / Shun Yip Street	Signal	RC	66%	62%
J3	Tai Yip Street / Service Lane	Priority	RFC	0.010	0.010
J4	Hong Tak Road / Tai Yip Street	Priority	RFC	0.224	0.177
J5	Tai Yip Street / Tai Yip Lane	Priority	RFC	0.049	0.023
J6	Kwun Tong Road / Hong Tak Road	Priority	RFC	0.366	0.451
J7	Wai Yip Street / Lai Yip Street	Signal	RC	80%	87%
J8	Kwun Tong Road / Lai Yip Street	Signal	RC	60%	44%
J9	Hoi Bun Road / Lai Yip Street ⁽²⁾	Signal	RC	82%	85%
J10	Lai Yip Street / Hung To Road ⁽²⁾	Signal	RC	80%	98%
J11	Tai Yip Street / Siu Yip Street	Priority	RFC	0.322	0.403
J12	Wai Yip Street/ Siu Yip Street	Priority	RFC	0.421	0.361

Notes: (1) RC - Reserve Capacity

RFC - Ratio of Flow to Capacity

2.6 The results in Table 2.1 indicate that the junctions now operate with capacities during the AM and PM peak hours.

Pedestrian Facilities

There are good pedestrian facilities provided in the vicinity of the Subject Site, including footpaths, and at-grade pedestrian crossings are provided at the signalised road junctions.

Availability of Public Transport Facilities

- 2.8 The Subject Site is well-served by various types of public transport services, including road-based franchised bus and public light bus. These services operate along Kwun Tong Road and Wai Yip Street within 500m or about 10 minutes' walk away. The Subject Site is located close to the Ngau Tau Kok MTR Station and the nearest entrance is at Lai Yip Street, which is some 400 metres or 6 minutes' walk away.
- 2.9 Details of the road-based public transport services operating in the vicinity of the Subject Site are shown in Figure 2.15 and Table 2.2.

TABLE 2.2 FRANCHISED BUS AND GMB SERVICES OPERATING CLOSE TO THE SUBJECT SITE

Route	Routing	Frequency (minutes)
KMB 1A	Sau Mau Ping (Central) – Star Ferry	5 – 15
KMB 3D	Tsz Wan Shan (Central) – Kwun Tong (Yue Man Square)	4 – 16
KMB 5R	Kai Tak Cruise Terminal – Kwun Tong (apm) (Circular)	30
KMB 6P	Cheung Sha Wan (So Uk Estate) – Lei Yue Mun Estate	AM, PM Peak
KMB 11B	Kwun Tong (Tsui Ping Road) – Kowloon City Ferry	10 – 25
KMB 11C	Chuk Yuen Estate – Sau Mau Ping (Upper)	15 – 25
KMB 11D	Lok Fu – Kwun Tong Ferry	15 – 30
KMB 13D	Po Tat – Island Harbourview	15 – 25
KMB 13M	Kwun Tong (Elegance Road) – Po Tat (Circular)	15 – 30
KMB 14	Lei Yue Mun Estate – China Ferry Terminal	12 – 25
KMB 14B	Ngau Tau Kok – Lam Tin (Kwong Tin Estate)	15 – 25
KMB 14X	Yau Tong (Shung Tak Wai) – Tsim Sha Tsui (Circular)	15 – 30
KMB 15	Ping Tin – Hung Hom (Hung Luen Road)	12 – 20
KMB 15A	Ping Tin – Tsz Wan Shan (North)	20 – 30

⁽²⁾ Site factor applied to reflect kerbside / on-street activities

ica basiness zon	e, 107-107 Wal Tip Street, Kwall Tolly	i iriai Nepor
Route	Routing	Frequency
	· ·	(minutes)
KMB 15X	Lam Tin (Kwong Tin Estate) – Hung Hom Station	AM, PM Peak
KMB 16	Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)	8 – 20
KMB 16P	Kwun Tong Ferry – Mong Kok (Park Avenue)	AM, PM Peak
KMB 17	Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)	5 – 20
KMB 23M	Lok Wah – Shun Lee (Circular)	12 – 20
KMB 28B	Choi Fook – Kai Tak (Kai Ching Estate)	15 – 25
KMB 28S	Kwun Tong (Yue Mun Square) – Lok Wah	AM Peak
KMB 33	Tsuen Wan West Station – Yau Tong	15 – 30
KMB 33B	Tsuen Wan West Station – Yau Tong	20 – 25
KMB 38	Kwai Shing (East) – Ping Tin	5 – 20
KMB 38P	Kwai Shing (Central) – Ping Tin	AM Peak
KMB 40	Tsuen Wan (Belvedere Garden) – Laguna City	12 – 25
KMB 40A	Ping Tin – Kwai Hing Station	AM, PM Peak
KMB 40B	Kwai Chung Estate – Ping Tin	AM Peak
KMB 40P	Kwun Tong Ferry – Tsuen Wan (Shek Wai Kok)	AM, PM Peak
KMB 42C	Tsing Yi (Cheung Hang Estate) – Lam Tin Station	5 – 15
KMB 49	Ching Fu Court – Tseung Kwan O Industrial Estate	AM, PM Peak
KMB 62P	Tuen Mun Central – Lei Yue Mun Estate	8 – 25
KMB 62X	Tuen Mun Central – Lei Yue Mun Estate	8 – 25
KMB 69C	Tin Yan Estate – Kwun Tong Ferry	AM, PM Peak
KMB 74C	Kau Lung Hang – Kwun Tong Ferry	AM Peak
KMB 74D	Kau Lung Hang – Kwun Tong Ferry	25 – 60
KMB 74E	Tai Mei Tuk – Kwun Tong Ferry	AM, PM Peak
KMB 74F	Kwun Tong Ferry – Education University of Hong Kong	AM Peak
KMB 74P	Kwun Tong Ferry – Tai Po Central	AM Peak
KMB 74X	Tai Po Central – Kwun Tong Ferry	3 – 15
KMB 80	Mei Lam – Kwun Tong Ferry	5 – 20
KMB 80A	Mei Lam – Kwun Tung Ferry	AM Peak
KMB 80P	Hin Keng – Kwun Tong Ferry	AM Peak
KMB 80X	Chun Shek – Kwun Tong Ferry	8 – 25
KMB 83A	Shui Chuen O – Kwun Tong Ferry	AM Peak
KMB 83X	Shui Chuen O – Kwun Tong Ferry	8 – 30
KMB 88X	Fo Tan Chung Yeung Estate – Ping Tin (Circular)	20 – 30
KMB 89	Lek Yuen – Kwun Tong Station	8 – 20
KMB 89B	Shatin Wai – Kwun Tong Station	10 – 25
KMB 89C	Heng On – Kwun Tong (Tsui Ping Road)	12 – 30
KMB 89D KMB 89P	Wu Kai Sha Station – Lam Tin Station Ma On Shan Town Centre – Lam Tin Station Bus Terminus	3 – 20 AM Peak
KMB 89X	Shatin Station – Kwun Tong (Tsui Ping Road)	7 – 20
KMB 93K	Po Lam – Mong Kok East Station	15 – 30
KMB 95M	Tsui Lam – Kwun Tong Road (Elegance Road)	20 – 30
KMB 98	Tseung Kwan O Industrial Estate – Ngau Tau Kok Station	15 – 20
KIVID 70	(Circular)	15 20
KMB 98A	Hang Hau (North) (Tseung Kwan O Hospital) – Ngau Tau	8 – 20
7071	Kok Station (Circular)	0 20
KMB 98B	Hang Hau (North) (Tseung Kwan O Hospital) – Kwun Tong	AM Peak
	Station	
KMB 213B	On Tai – Ting Fu Street (Circular)	AM Peak
KMB 215X	Lam Tin (Kwong Tin Estate) – Kowloon Station	5 – 20
KMB 234C	Sham Tseng – Kwun Tong Station	AM, PM Peak
KMB 234D	Tsing Lung Tau – Kwun Tong Station	AM, PM Peak
KMB 252X	Handsome Court – Lam Tin Station	AM, PM Peak
KMB 258A	Hung Shui Kiu (Hung Fuk Estate) – Lam Tin Station	AM Peak
KMB 258D	Tuen Mun (Po Tin Estate) – Lam Tin Station	5 – 20
KMB 258P	Hung Shui Kiu (Hung Fuk Estate) – Lam Tin Station	AM, PM Peak
KMB 258S	Tuen Mun (Shan King Estate) – Lam Tin Station	AM Peak
KMB 258X	Tuen Mun (Po Tin Estate) – Kwun Tong Ferry	AM, PM Peak

Route	Routing	Frequency
		(minutes)
KMB 259D	Tuen Mun (Lung Mun Oasis) – Lei Yue Mun Estate	7 – 25
KMB 259X	Lung Mun Oasis – Kwun Tong Ferry	AM, PM Peak
KMB 267X	Tuen Mun (Siu Hong Court) – Lam Tin Station	AM, PM Peak
KMB 268A	Long Ping Estate – Kwun Tong Ferry	AM, PM Peak
KMB 268C	Long Ping Station – Kwun Tong Ferry	5 – 20
KMB 268P	Ma Wang Road (Shan Shui House) – Kwun Tong Ferry	AM, PM Peak
	Kwun Tong Ferry – Long Ping Station	
KMB 269C	Tin Shui Wai Town Centre – Kwun Tong Ferry	5 – 20
KMB 269S	Tin Shui Wai Town Centre – Kwun Tong Ferry	AM, PM Peak
KMB 274X	Kwun Tong Ferry – Tai Po Central	PM Peak
KMB 277A	Sha Tau Kok – Lam Tin Station	AM, PM Peak
KMB 277E	Lam Tin Station – Sheung Shui (Tin Ping)	15 – 30
KMB 277P	Sheung Shui (Tin Ping) – Lam Tin Station	AM, PM Peak
KMB 277X	Fanling (Luen Wo Hui) – Lam Tin Station	5 – 30
KMB 296A	Sheung Tak – Ngau Tau Kok Station (Circular)	7 – 15
KMB 296C	Sheung Tak – Cheung Sha Wan (Hoi Ying Estate)	15 – 30
KMB N3D	Kwun Tong (Yue Man Square) – Tsz Wan Shan (Central)	Overnight
KMB N293	Sheung Yak – Mong Kok East Station	Overnight
KMB T74	Tai Po (Tai Wo) – Kwun Tong Ferry	AM Peak
KMB T277	Sheung Shui – Lam Tin Station	AM, PM Peak
KMB W2	Jordan (West Kowloon Station) – Kwun Tong (Circular)	30 – 60
KMB X42C	Tsing Yi (Cheung Hang Estate) – Yau Tong	7-30
KMB X42P	Tsing Yi (Cheung On Estate) – Lam Tin Station	AM Peak
KMB X89D	Nai Chung – Kwun Tong Ferry	AM, PM Peak
KMB/CTB 101	Kwun Tong (Yue Man Square) – Kennedy Town	3 20
KMB/CTB 101X	Kwun Tong (Yue Man Square) – Kennedy Town	AM, PM Peak
KMB/CTB 606	Siu Sai Wan (Island Resort) – Choi Wan (Fung Shing Street)	20 – 25
KMB/CTB 606A	Shau Kei Wan (Yiu Tung Estate) – Choi Wan (Fung Shing	AM Peak
KNAD/CTD (O()	Street)	AAA DAADaala
KMB/CTB 606X	Siu Sai Wan (Island Resort) – Kowloon Bay	AM, PM Peak
KMB/CTB 619	Shun Lee – Central (Macau Ferry)	4 – 25
KMB/CTB 619P	Shun Lee – Central (Macau Ferry)	AM Peak
KMB/CTB 641	Kai Tak (Kai Ching Estate) – Central (Macau Ferry)	AM, PM Peak
KMB/CTB 671	Diamond Hill Station – Ap Lei Chau Lee Lok Street	15 – 45
KMB/CTB 671X	Ap Lei Chau Lee Lok Street – Diamond Hill Station	AM Peak
KMB/CTB N619	Shun Lee – Central (Macau Ferry)	Overnight
CTB 55	Ching Tin and Wo Tin – Kwun Tong Ferry Pier	AM, PM Peak
CTB 61R	Lam Tin Station – City One Shatin	12 – 20
CTB 78C	Queen's Hill Fanling – Kai Tak	AM, PM Peak
CTB 78P	Queen's Hill Fanling – Kwun Tong	AM Peak
CTB 78X	Queen's Hill Fanling – Kai Tak	30 – 60
CTB 796S	Tseung Kwan O Station – Ngau Tau Kok Station (Circular)	Overnight
CTB 797	Lohas Park – Kowloon Bay (Circular)	15 – 20
CTB A22	Lam Tin Station – Airport	15 – 40
CTB A29	Tseung Kwan O (Po Lam) – Airport / HZMB Hong Kong Port	20 – 60
CTB E22	Lam Tin (North) – AsiaWorld-Expo	8 – 20
CTB E22A	Tseung Kwan O (Hong Sing Garden) – AsiaWorld-Expo	25 – 30
CTB E22C	Tiu Keng Leng Station – Aircraft Maintenance Area	AM, PM Peak
CTB E22S	Tung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)	AM, PM Peak
CTB E22X	Yau Tong – AsiaWorld-Expo	AM, PM Peak
CTB N29 CTB NA29	Tseung Kwan O (Hong Sing Garden) – Tung Chung Station Tseung Kwan O (Po Lam) – Airport / HZMB Hong Kong Port	Overnight
GMB 22A	Lok Wah Estate – Cheung Yip Street / Kwun Tong Ferry Pier	Overnight 20
GIVID ZZA	(Circular)	20
GMB 35	Choi Ha Estate – Hong Lee Court	5 – 7
GMB 36A	Crocodile Hill (Hong Lee Court) To Yue Man Square Public	4 – 5
	Transport Interchange (Circular)	

Route	Routing	Frequency (minutes)
GMB 56	Richland Gardens – Kwun Tong (Shung Yan St)	10 20
GMB 62S	Kwong Tin Estate – Tsim Sha Tsui (Haiphong Road)	Overnight
GMB 68	Choi Wan Estate – Kowloon Bay (Enterprise Square)	8 12
GMB 86	Kai Tak Cruise Terminal – Telford Gardens	8 20
GMB 90A	Yau Lai Estate – HK Children's Hospital	20
GMB 90B	Sau Mau Ping Estate Phase 5 – HK Children's Hospital	15 – 20
GMB 102	Hang Hau Station – San Po Kong (Hong Keung Street)	2 – 15
GMB 102B	Hang Hau (Yuk Ming Court) – Choi Hung	12 – 20
GMB 102S	Hang Hau Station – San Po Kong (Hong Keung Street)	Overnight
GMB 104	The HK University of Science and Technology – Ngau Tau	12 – 25
	Kok Station	
GMB 106	Tseung Kwan O (Po Lam) – Kowloon Bay (Enterprise Square)	7 – 25
GMB 501S	Sheung Shui Station – Kwun Tong (Yue Man Square)	Overnight

Note: KMB – Kowloon Motor Bus CTB – City Bus GMB – Green Minibus

3.0 THE PROPOSED DEVELOPMENT

Development Parameters and Provision of Internal Transport Facilities

The Proposed Development is a Hotel with 984 guest rooms. The internal transport facilities for the Proposed Development are provided in accordance to the recommendations of the Hong Kong Planning Standards and Guidelines ("HKPSG"), and are presented in Table 3.1.

TABLE 3.1 COMPARISON OF THE HKPSG RECOMMENDATION AND THE PROPOSED PROVISION

TROFOSEDTROVISION	
HKPSG Recommendation for a Hotel with 984 guest rooms	Proposed Provision
Car Parking Space	
1 car parking space per 100 rooms. 984 / 100 = 9.8, say <u>10 nos.</u>	10 nos. comprising of: (i) 9 nos. @ 5m (L) x 2.5m (W) x 2.4m, (ii) 1 no. @ 5m (L) x 3.5m (W) x 2.4m (H) for persons with disabilities = HKPSG recommendation
Motorcycle Parking Space	
5 to 10% of the total provision for private cars Minimum = 10 x 5% = 0.05, say 1 no. Maximum = 10 x 10% = 0.1, say 1 no.	1 no. @ 2.4m (L) x 1m (W) x 2.4m (H) = HKPSG recommendation
Taxi and Private Car Layby	
Minimum 4 lay-bys for taxi and private cars for \ge 600 rooms $=$ 4 nos.	$\frac{4 \text{ nos. } @ 5\text{m (L) x 2.5m (W) x 2.4m (H)}}{\text{HKPSG recommendation}}$
Single-Deck Tour Bus Layby	
Minimum 3 lay-bys for single-deck tour buses for \geq 900 rooms $=$ 3 nos.	3 nos. @ 12m (L) x 3.5m (W) x 4.7m (H) = HKPSG recommendation
	Note: These 3 laybys are proposed to be "Shared-use" for Coaches/buses and M/HGV
Goods Vehicle Loading / Unloading Bay	
0.5 - 1 goods vehicle bay per 100 rooms	8 nos. comprising of:
Minimum = $984 / 100 \times 0.5 = 4.9$, say	(i) 7 nos. LGV @ 7m (L) x 3.5m (W) x 3.6m
5 nos. (X LGV, X HGV)	(H) &
Maximum = $984 / 100 \times 1 = 9.8$, say	(ii) 1 no. M/HGV @ 11m (L) x 3.5m (W) x
10 nos. (7 LGV, 3 HGV)	4.7m (H) > HKPSG minimum & < HKPSG
	maximum recommendation

Reasons for Deviation from the HKPSG Maximum Recommendation

- The only internal transport facility which deviates from the HKPSG maximum recommendation is the provision of 8 loading / unloading bays, which is 2 less than the maximum HKPSG recommendation, but, 3 more than the HKPSG minimum recommendation.
- 3.3 The provision of 2 nos. more M/HGV loading / unloading bays was considered, but not found to be possible due site constraint, and is explained as follows:

- (1) The Outline Development Plan no. D/K14A/1H require the Subject Site to setback (i) along Wai Yip Street of 2.3m, and (ii) 1.5m setback and 1.5m non-building area along the service lane;
- (2) With the above setback requirements, the length of the Subject Site (i.e. measured from Wai Yip Street to the service lane) which is originally 21.3m is reduced to only 17.5m (reduction of substantial length of 17.8%)
- (3) The ground floor layout has maximised the provision of M/HGV loading / unloading bays which need to front onto the turntable so vehicles could enter and leave the loading / unloading bay.
- 3.4 After accommodating the essential facilities such as, structural columns, staircases, escalators, lift lobby and car lift to the basement car park, etc, the provision of 2 more M/HGV loading / unloading bay is not possible.

Layout Plans

- 3.5 The carpark layout plans for G/F and B1/F are found in Figures 3.1 3.2. Similar to the Approved S16 Planning Application (TPB ref: A/K14/809), two vehicular access points are provided and these are located at:
 - (i) The service lane at the northern side of the Proposed Development:
 - (ii) Wai Yip Street

Swept Path Analysis

3.6 The CAD-based swept path analysis program, Autodesk Vehicle Tracking, was used to check the ease of vehicle manoeuvring, and the swept path drawings of vehicle manoeuvring on the parking levels are found in in Appendix 2. Vehicles are found to have no manoeuvring problems and all vehicles could enter and leave the spaces with ease.

Vehicle Lift Analysis

3.7 A light goods vehicle lift is provided to access B1/F from G/F, and to prevent potential tailback to Wai Yip Street, a waiting space provided on G/F. A vehicle lift analysis was conducted to check on the operation of the vehicle lift system, and it was found that the vehicle lift system is acceptable and can serve the Proposed Development. The vehicle lift analysis is found in Appendix 3.

Traffic Management Plan

#1 Turntable

- 3.8 A traffic management plan will be implemented by the Applicant, which includes the following:
 - Loading / unloading related to goods deliveries will be undertaken during the non-peak hours.
 - All users have to make reservation with the property management prior to the use of the goods vehicle loading/unloading bay and "Shared-use" for Coaches/buses and M/HGV laybys.
 - The Management Office will ensure that maintenance of the turntable will be carried out during the non-peak period.
 - The Management Office will ensure that should the turntable breaks down, the Management Office will immediately contact the turntable maintenance company to repair, and all users will be notified that the use of HGV loading/unloading bay and "Shared-use" for Coaches/buses and M/HGV laybys will be suspended.

#2 Car Lift

- (i) Operation and Maintenance of the lift
- A management staff will be deployed to guide the driver to enter the vehicle lift. Regular inspection will be arranged, and prior to the conduct of the regular maintenance, all occupants will be notified of the date and duration of the suspension of the vehicle lift.

(ii) Breakdown of the lift

- 3.10 If a vehicle lift breaks down, the Property Management will immediately call the vehicle lift maintenance company. However, if a vehicle is trapped inside the vehicle lift, the Fire Services Department will be contacted, and notice will be displayed at the entrance of the car park to inform motorists of the suspension of service.
- 3.11 As mentioned in Section 3.8, the use of goods vehicle loading/unloading bay and "Shared-use" for Coaches/buses and M/HGV layby is by reservation only, the Management Office would be aware of the arrival times of the vehicles, thus enabling efficient scheduling and coordination.
- 3.12 In the event that the car lift has broken down, the following measures will be undertaken for vehicles which use the car lift, i.e., LGV, private car and motorcycle:

#1 Measure for LGV

LGV could use the 3 "Shared-use" for Coaches/buses and M/HGV laybys.

#2 Measure for Private cars

The management staff will direct the driver to use nearby public car park eg NEO at 123 Hoi Bun Road.

#3 Measure for Motorcycle

The management staff will direct the driver to use nearby public car park opposite One Bay East Citi Tower at 83 Hoi Bun Road.

- (iii) Management of passages between compartments of the carpark and L/UL at B/F in case of opposing traffic
- 3.13 A management staff will be deployed on B/F to ensure smooth operation on B/F to guide the drive to enter and leave the vehicle lift.

Passenger Safety Measures

3.14 Directional signs will be installed at key locations to guide passengers to the lobby. In addition, management staff will be deployed to guide passengers.

4.0 TRAFFIC IMPACT

Design Year

4.1 The Proposed Development is expected to be completed by 2029, and the design year adopted for the capacity analysis is 2032, i.e. 3 years after the completion of the development.

Traffic Forecast

4.2 The 2032 traffic flows used for the junction analysis are produced with reference to: (i) 2031 traffic flows from the Base District Traffic Model ("BDTM"); (ii) estimated traffic growth from 2031 to 2032; (iii) the planned developments in the vicinity of the Proposed Development, and (iv) additional traffic generated by the Proposed Development.

Estimated Traffic Growth Rate from 2031 to 2032

4.3 Reference is made to the 2021 – based Territorial Population and Employment Data Matrix ("TPEDM") data produced by Planning Department for Kwun Tong District, which are for 2021, 2026 and 2031 and are presented in Table 4.1.

TABLE 4.1 2021-BASED TPEDM DATA PRODUCED BY PLANNING DEPARTMENT FOR KWUN TONG DISTRICT

Item	TPEDM Esti	mates and Projections	
	2021	2026	2031
Population	673,150	682,500	690,750
Employment	395,900	400,050	441,300
<u>Total</u>	1,069,050	1,082,550	1,132,050
Average Growth	From 2021 to 2026: +0.25% From 2021 to 2031: +0.57%	From 2026 to 2031: +0.90%	N/A

4.4 Table 4.1 shows that the highest average annual growth rate is +0.90%. In view that there is no estimation beyond 2031 and to err on the high side, the growth rate of 1% per annum is adopted for the traffic growth between 2031 and 2032.

Planned Developments in the Vicinity of the Proposed Development

4.5 The planned developments included in the 2032 reference traffic flows are presented in Table 4.2, and the locations of planned developments are shown in Figure 4.1.

TABLE 4.2 PLANNED DEVELOPMENTS IN THE VICINITY OF THE PROPOSED DEVELOPMENT

Site	Planning Application No. / Plan No.	Address	Use	Development Parameters (Approx.)
1	A/K14/763	350 Kwun Tong Road	Commercial	$GFA = 25,658m^2$
2	A/K14/766	41 King Yip Street	Commercial	$GFA = 30,576m^2$
3	A/K14/771	32 Hung To Road	Commercial	$GFA = 13,122m^2$
4	A/K14/773	82 Hung To Road	Industrial	$GFA = 13,378 \text{m}^2$
5	A/K14/774	7 Lai Yip Street	Commercial	$GFA = 14,775 \text{m}^2$
6	A/K14/775	132 Wai Yip Street	Commercial	$GFA = 6.021 \text{m}^2$
7	A/K14/777	71 How Ming Street	Office	GFA=18,312m ²
8	A/K14/782	4 Tai Yip Street	Retail	GFA=8,027m ²
9	A/K14/787	33 Hung To Road	Industrial	$GFA = 13,830 \text{m}^2$

Site	Planning Application No. / Plan No.	Address	Use	Development Parameters (Approx.)
10	A/K14/796	28A Hung To Road	Hotel	No. of rooms=89
11	A/K14/804	334 -336 and 338 Kwun Tong Road	Commercial	GFA=23,211m ²
12	A/K14/806	11 Lai Yip Street	Office	GFA=15,051m ²
13	A/K14/807	Kun Tong Inland Lots 1 S.A , 1 RP, 3 and 15	Commercial	GFA=66,890m ²
14	A/K14/809	1 Tai Yip Street and 111 Wai Yip Street	Commercial	GFA=13,349m ²
15	A/K14/810	5 Lai Yip Street	Commercial	GFA=14,788m ²
16	A/K14/820	73 – 75 Hung To Road	Commercial	$GFA = 26,757m^2$
17	A/K14/822	25 Tai Yip Street, Kwun Tong	Commercial	GFA=5,572m ²
18	A/K14/832	201 and 203 Wai Yip Street	Hotel	No. of rooms=448
19	A/K14/819 & S/K14S/URA1/3 Urban Renewal Authority 'Vertical City' mixed use development	Areas 4 and 5 of Kwun Tong Town Centre	Commercial GFA = 65,000m ² , Office GFA = 127,619m ² and G GFA = 8,601m ²	
20	N/A	EKEO Lai Yip Street Development	Commercial	GFA=23,000m ²
21	N/A	Kwun Tong Action Area	Commercial	GFA=89,350m ²
22	N/A	Kowloon Bay Action Area	Commercial	GFA=500,000m ²

- 4.6 The infrastructure and road network included in the BDTM are as follows:
 - Kai Tak Development
 - Tseung Kwan O Lam Tin Tunnel
 - Central Kowloon Route
 - Trunk Road T2 between Central Kowloon Route and Tseung Kwan O Lam Tin Tunnel

Traffic Generated by the Proposed Development

- 4.7 Surveys were conducted on Tuesday, 26th November 2024 between 0800 1100 and 1600 1900 hours at 4 hotels which are of similar class, number of hotel rooms and traffic characteristics, i.e. proximity to the MTR and road-based public transport services. The surveyed hotels are shown below:
 - (i) 254-room Nina Hotel Kowloon East at 38 Chong Yip Street, Kwun Tong
 - (ii) 298-room Tuen Mun Pentahotel at 6 Tsun Wen Road, Tuen Mun
 - (iii) 360-room Dorsett Kwun Tong at 84 Hung To Road, Kwun Tong
 - (iv) 598-room Hotel Cozi Harbour View at 163 Wai Yip Sreet, Kwun Tong
- 4.8 In addition, reference is made the survey of the Regal Riverside Hotel found in TD 05/2006 Trip Generation Survey 2006 Report. The comparison of these trip generation rates with the TPDM lower limit is found in Table 4.3.

TABLE 4.3 COMPARISON OF TRIP GENERATION RATES

Items	Trip Generation rate in pcu/hr/room			
	AM	Peak	PM	Peak
	In	Out	In	Out
(i) Nina Hotel ⁽¹⁾	0.0591	0.0433	0.0512	0.0472
(ii) Tuen Mun Pentahotel ⁽¹⁾	0.0369	0.0336	0.0336	0.0336
(iii) Dorsett Kwun Tong ⁽¹⁾	0.0361	0.0333	0.0361	0.0333
(iv) Hotel Cozi Harbour View ⁽¹⁾	0.0084	0.0151	0.0134	0.0167
(v) Regal Riverside Hotel ⁽²⁾	0.0837	0.0993	0.1005	0.0909
(iv) Lower limit of rates from TPDM	0.0832	0.0843	0.0908	0.0883
Maximum rate	0.0837	0.0993	0.1005	0.0909

Note (1) CKM survey

4.9 To be conservative, trip generation rates from the Regal Riverside Hotel is adopted to estimate the traffic generation for Proposed Development, and the calculated traffic generation associated with the Proposed Development are found in Table 4.4.

TABLE 4.4 TRAFFIC GENERATION OF THE PROPOSED DEVELOPMENT

Item	AM Peak Hour		PM Peak Hour				
	In	Out	2-way	In	Out	2-way	
Trip Generation Rates for hotel (pcu/hour/guest room)							
Rates from Table 4.3	0.0837	0.0993	NA	0.1005	0.0909	NA	
Traffic Generation of Proposed Development (pcu/hour)							
984 guest rooms	<u>83</u>	<u>98</u>	<u>181</u>	<u>99</u>	<u>90</u>	<u>189</u>	

4.10 Table 4.4 shows the Proposed Development generates 181 and 189 more pcu (2-way) during the AM and PM peak hours respectively.

Planned Junction Improvement Schemes

4.11 The planned junction improvement schemes found in the vicinity of the Subject Site are summarised in Table 4.5 and shown in Appendix 4.

TABLE 4.5 PLANNED TRAFFIC IMPROVEMENT SCHEMES IN THE VICINITY OF THE PROPOSED DEVELOPMENT

	Junction Description of Work		Project Proponent	Estimated Completion Year
J1	Hoi Bun Road / Shun Yip Street	The road markings are changed at Shun Yip Street Westbound and Eastbound	Kowloon Bay Action Area – Feasibility Study	Before 2032
Ј8	Kwun Tong Road / Lai Yip Street	The road alignment is adjusted at Lai Yip Street Northbound	Kwun Tong District Council Traffic Development and Transport Committee Discussion Paper No. 3/2023	
J9	Hoi Bun Road / Lai Yip Street	A new pedestrian crossing across Hoi Bun Road Eastbound is added and existing staggered pedestrian crossing at Lai Yip Street to be	Technical study on the Lai Yip Street site in Kowloon East	

⁽²⁾ From TD 05/2006 – Traffic Generation Survey 2006 Final Report

	1		
Junction	Description of Work	Project Proponent	Estimated Completion Year
	converted to straight crossing		

2032 Traffic Flows

4.12 Year 2032 traffic flows for the following cases are derived:

2032 without the = 2031 traffic flows derived with reference to BDTM + estimated total growth from 2031 to 2032 + Traffic generated by the planned developments in the vicinity of the Proposed Development = [A] + traffic generated by the Proposed Development [B] = Development (Table 4.4)

4.13 The 2032 peak hour traffic flows for the cases without and with the Proposed Development, are shown in Figures 4.2 - 4.3, respectively. The ingress/egress vehicular routings to/from the Proposed Development via Wai Yip Street and the service lane at the northern side of the Proposed Development are shown in Figures 4.4 - 4.5.

2032 Junction Operational Performance

4.14 Year 2032 capacity analysis for the cases without and with the Proposed Development are summarised in Table 4.6 and detailed calculations are found in the Appendix 1.

TABLE 4.6 2032 JUNCTION OPERATIONAL PERFORMANCE

Ref.	Junction	Type of Junction / Parameter ⁽¹⁾	Without the Proposed Development		With the Proposed Development AM PM	
			Peak	Peak	Peak	Peak
J1	Hoi Bun Road / Shun Yip Street(3)	Signal / RC	22%	17%	21%	16%
J2	Wai Yip Street / Shun Yip Street ⁽⁴⁾	Signal / RC	22%	21%	18%	18%
J3	Tai Yip Street / Service Lane	Priority / RFC	0.044	0.036	0.046	0.037
J4	Hong Tak Road / Tai Yip Street	Priority / RFC	0.384	0.294	0.498	0.420
J5	Tai Yip Street / Tai Yip Lane	Priority / RFC	0.135	0.116	0.137	0.117
J6	Kwun Tong Road / Hong Tak Road	Priority / RFC	0.655	0.740	0.743	0.841
J7	Wai Yip Street / Lai Yip Street	Signal / RC	32%	44%	31%	43%
J8	Kwun Tong Road / Lai Yip Street (3)	Signal / RC	23%	18%	22%	18%
J9	Hoi Bun Road / Lai Yip Street (2)(3)	Signal / RC	18%	21%	18%	21%
J10	Lai Yip Street / Hung To Road ⁽²⁾	Signal / RC	29%	37%	29%	36%
J11	Tai Yip Street / Siu Yip Street	Priority /RFC	0.384	0.503	0.387	0.505
J12	Wai Yip Street / Siu Yip Street	Priority / RFC	0.750	0.715	0.805	0.748

Notes: (1) RC – reserve capacity RFC – Ratio of Flow to Capacity

⁽²⁾ Site factor to reflect kerbside / on-street activities

⁽³⁾ Junction Improvement Scheme has been incorporated in the assessment

⁽⁴⁾ In order to meet RC not less than 15% for sensitivity test in Section 6, the PM cycle time of J2 - Wai Yip Street / Shun Yip Street, could be increased from 108 to 112 seconds.

Traffic Impact Assessment Final Report

4.15 Table 4.6 shows that the junctions operate with capacities during the AM and PM peak hours for the cases without and with the Proposed Development.

5.0 PEDESTRIAN ASSESSMENT

Surveyed Pedestrian Locations

5.1 In order to quantify the existing pedestrian flows, pedestrian counts were conducted between AM (0800 – 1000 hours), Noon(1200 – 1400 hours) and PM (1700 – 1900 hours) on Thursday, 12th June 2025 at the footpaths and waiting area of the pedestrian crossing shown in Figure 5.1. The survey locations are summarised in Table 5.1.

TABLE 5.1 SURVEYED PEDESTRIAN LOCATIONS

Ref.	Location				
	<u>Footpath</u>				
F1	Northern footpath of Wai Yip Street between Shun Yip Lane and Tai Yip Street (Eastern side)				
F2	Northern footpath of Wai Yip Street between Shun Yip Lane and Tai Yip Street (Western side)				
F3	Shun Yip Lane between Wai Yip Street and Service Lane				
	Waiting area of pedestrian crossing				
W1	Western pedestrian crossing of Wai Yip Street / Shun Yip Street				
W2	Eastern pedestrian crossing of Wai Yip Street / Shun Yip Street				

Existing Pedestrian Flows

5.2 The existing peak 15-minute 2-way pedestrian flows are also presented in Figure 5.1.

Estimated growth from 2025 to 2032

5.3 The 2032 reference pedestrian flows are estimated with the reference of the existing pedestrian flows and a growth rate of 1% per annum, which is derived from the latest TPEDM data.

Pedestrian Generated by the Proposed Development

The pedestrian generated by the Proposed Development is calculated based on the pedestrian generation rates of 4 surveyed hotels listed in paragraph 4.7 and the adopted pedestrian generation rates are presented in Table 5.2. The calculated pedestrian generation is found in Table 5.3.

TABLE 5.2 PEDESTRIAN GENERATION RATES OF THE SURVEYED HOTELS

Development	No. of	Pedestrian Generation Rates (ped / 15 min / room)					oom)
	rooms	AM	Peak	Noon Peak		PM Peak	
		In	Out	In	Out	In	Out
Nina Hotel	254	0.0512	0.1732	0.1063	0.1614	0.1575	0.1772
Tuen Mun Pentahotel	298	0.0134	0.1174	0.0638	0.1007	0.1141	0.0805
Dorsett Kwun Tong	360	0.0444	0.1972	0.0500	0.0750	0.0750	0.0722
Hotel Cozi Harbour	598	0.0318	0.0769	0.0368	0.0234	0.0401	0.0485
View							
Adopted maximum rate		0.0512	0.1972	0.1063	0.1614	0.1972	0.1772

TABLE 5.3 PEDESTRIAN GENERATED BY THE PROPOSED DEVELOPMENT

Use	Pedestrian Generation (ped / 15 min)								
	AM Peak			Noon Peak			PM Peak		
	In	Out	2-way	In	Out	2-way	In	Out	2-way
Proposed Development with 984 Rooms	<u>51</u>	<u>195</u>	<u>246</u>	<u>105</u>	<u>159</u>	<u>264</u>	<u>155</u>	<u>175</u>	330

Year 2032 Pedestrian Flows

5.5 The 2032 pedestrian flow with and without the Proposed Development are derived using the following method:

Without the = 2025 observed pedestrian flows + growth from 2025 Proposed to 2032 + pedestrian generated by the planned Development [a] developments in the vicinity of the Subject Site

With the Proposed [a] + pedestrian generated by the Proposed

Development [b] = Development (Table 5.3)

5.6 The 2032 pedestrian flows without and with the Proposed Development are presented in Figures 5.2 and 5.3.

Level-Of-Service ("LOS") Assessment

5.7 The pedestrian assessment method adopted is referenced to Exhibit 18-3 of Chapter 18 of the Highway Capacity Manual ("HCM") 2000 and the extract of Exhibit 18-3 is summarised in Table 5.4.

TABLE 5.4 EXTRACT OF EXHIBIT 18-3 OF THE HCM 2000

LOS	Space (m²/p)	Flow Rate (p/min/m)
А	> 5.6	≤ 16
В	> 3.7-5.6	> 16-23
С	> 2.2-3.7	> 23-33
D	> 1.4-2.2	> 33-49
E	> 0.75-1.4	> 49-75
F	≤ 0.75	variable

5.8 As stated in Volume 6 Section 10.5 of TPDM, "In general, LOS C is desirable for most design at streets with dominant 'living' pedestrian activities".

(a) LOS of the Footpaths

5.9 The effective width of the surveyed footpaths and the year 2032 LOS without and with the Proposed Development are presented in Tables 5.5 and 5.6.

TABLE 5.5 EFFECTIVE WIDTH OF SURVEYED FOOTPATHS

Ref.	Footpath width (m)	Effective width (m) ⁽¹⁾
F1	3.5	2.5
F2	2.7	1.7
F3	9.8	8.8

Note:⁽¹⁾ The effective width does not include 0.5m dead zone on both sides, i.e. 1m

TABLE 5.6 YEAR 2032 LOS OF FOOTPATH WITHOUT AND WITH THE PROPOSED DEVELOPMENT

Ref.	Peak Period	Year 2032 without the Proposed Development			Year 2032 with the Proposed Development			
		Flow	Rate ⁽¹⁾	LOS	Flow	Rate ⁽¹⁾	LOS	
		(Ped/15 min)	(Ped/min/ m)		(Ped/15 min)	(Ped/ min/m)		
F1	AM	315	8.4	Α	376	10.0	Α	
	Noon	98	3.0	Α	223	6.0	Α	
	PM	251	6.7	Α	333	8.9	Α	
F2	AM	442	17.3	В	469	18.4	В	
	Noon	266	11.0	Α	370	15.0	Α	
	PM	320	12.5	Α	359	14.1	Α	
F3	AM	911	6.9	А	1024	7.8	Α	
	Noon	530	5.0	А	753	6.0	Α	
	PM	558	4.2	А	717	5.4	Α	

Note: (1) pedestrian flow rate = pedestrian flow \div 15 minutes \div effective width

5.10 Table 5.6 shows that the footpaths achieve LOS A and B during AM, Noon and PM peak for the 2032 cases without and with the Proposed Development, both which are acceptable.

(b) Waiting area of the Pedestrian Crossing

5.11 The year 2032 LOS of pedestrian crossing waiting areas without and with the Proposed Development are presented in Table 5.7.

TABLE 5.7 YEAR 2032 LOS OF PEDESTRIAN CROSSING WAITING AREAS WITHOUT AND WITH THE PROPOSED DEVELOPMENT

Ref.	Area (m²)	Average No. of Pedestrians at the waiting area (ped/signal cycle)			Pedestrian Space (m²/ped)			LOS		
		AM	Noon	PM	AM	Noon	PM	AM	Noon	PM
	Without the Proposed Development									
W1	150	34	12	8	4.4	12.5	18.8	В	Α	Α
W2	63	25	8	2	2.5	7.9	31.5	С	Α	Α
With the Proposed Development										
W1	150	36	14	10	4.2	10.7	15.0	В	Α	Α
W2	63	27	10	4	2.3	6.3	15.8	С	Α	Α

5.12 Table 5.7 shows that the pedestrian crossing waiting areas achieve LOS A and C during AM, Noon and PM peak for the 2032 cases without and with the Proposed Development, both which are acceptable.

6.0 SENSITIVITY TEST

6.1 A sensitivity test using mean rates from the TPDM and the results are presented below.

Traffic Generated by the Proposed Development (Sensitivity Test)

Trip generation rates from mean rates from TPDM is used to estimate the traffic generation for Proposed Development, and the calculated traffic generation is found in Table 6.1.

TABLE 6.1 TRAFFIC GENERATION OF THE Proposed Development BY ADOPTING MEAN RATES FROM TPDM

	Al	M Peak Ho	<mark>our</mark>	PM Peak Hour					
	<mark>In</mark>	<mark>Out</mark>	<mark>2-way</mark>	<mark>In</mark>	<mark>Out</mark>	<mark>2-way</mark>			
Trip Generation Rates for hotel (pcu/hour/guest room)									
Mean rates from TPDM	<mark>0.1457</mark>	<mark>0.1329</mark>	<mark>NA</mark>	<mark>0.1546</mark>	<mark>0.1290</mark>	NA			
Traffic Generation of Proposed Development (pcu/hour)									
984 guest rooms	<mark>144</mark>	131	<mark>275</mark>	<mark>153</mark>	<mark>127</mark>	<mark>280</mark>			

- 6.3 Table 6.1 shows the Proposed Development generates 275 and 280 more pcu (2-way) during the AM and PM peak hours respectively.
- The sensitivity test 2032 peak hour traffic flows are shown in Figure 6.1. The ingress/egress vehicular routings to/from the Proposed Development via Wai Yip Street and the service lane at the northern side of the Proposed Development are shown in Figures 6.2 6.3.

2032 Junction Operational Performance (Sensitivity Test)

6.5 The 2032 sensitivity test capacity analysis for the cases without and with the Proposed Development are summarised in Table 6.2 and detailed calculations are found in the Appendix 1.

TABLE 6.2 2032 SENSITIVITY TEST JUNCTION OPERATIONAL PERFORMANCE

Ref.	Junction	Type of Junction / Parameter ⁽¹⁾	Without the Proposed Development		With the Proposed Development	
			AM Peak	PM Peak	AM Peak	PM Peak
J <mark>1</mark>	Hoi Bun Road / Shun Yip Street (3)	Signal / RC	<mark>22%</mark>	<mark>17%</mark>	<mark>21%</mark>	<mark>16%</mark>
<mark>J2</mark>	Wai Yip Street / Shun Yip Street (4)	Signal / RC	<mark>22%</mark>	<mark>21%</mark>	<mark>16%</mark>	<mark>16%</mark>
J3	Tai Yip Street / Service Lane	Priority / RFC	0.044	0.036	0.046	0.037
<mark>J4</mark>	Hong Tak Road / Tai Yip Street	Priority / RFC	<mark>0.384</mark>	<mark>0.294</mark>	<mark>0.538</mark>	<mark>0.428</mark>
<mark>J5</mark>	Tai Yip Street / Tai Yip Lane	Priority / RFC	<mark>0.135</mark>	<mark>0.116</mark>	<mark>0.137</mark>	<mark>0.118</mark>
<mark>J6</mark>	Kwun Tong Road / Hong Tak Road	Priority / RFC	<mark>0.655</mark>	<mark>0.740</mark>	<mark>0.773</mark>	<mark>0.847</mark>
J <mark>7</mark>	Wai Yip Street / Lai Yip Street	Signal / RC	<mark>32%</mark>	<mark>44%</mark>	<mark>31%</mark>	<mark>42%</mark>
<mark>J8</mark>	Kwun Tong Road / Lai Yip Street (3)	Signal / RC	<mark>23%</mark>	<mark>18%</mark>	<mark>22%</mark>	<mark>17%</mark>
<mark>J9</mark>	Hoi Bun Road / Lai Yip Street (2)(3)	Signal / RC	<mark>18%</mark>	<mark>21%</mark>	<mark>18%</mark>	<mark>20%</mark>
<mark>J10</mark>	Lai Yip Street / Hung To Road ⁽²⁾	Signal / RC	<mark>29%</mark>	<mark>37%</mark>	<mark>29%</mark>	<mark>35%</mark>
<mark>J11</mark>	Tai Yip Street / Siu Yip Street	Priority /RFC	<mark>0.384</mark>	<mark>0.503</mark>	<mark>0.387</mark>	<mark>0.507</mark>
<mark>J12</mark>	Wai Yip Street / Siu Yip Street	Priority / RFC	<mark>0.750</mark>	<mark>0.715</mark>	<mark>0.829</mark>	<mark>0.772</mark>

Notes: (1) RC – reserve capacity R

RFC - Ratio of Flow to Capacity

Table 6.2 shows that the junctions operate with capacities during the AM and PM peak hours with implementation of an increased PM peak cycle time at J2 - Wai Yip Street / Shun Yip Street for the cases without and with the Proposed Development.

⁽²⁾ Site factor to reflect kerbside / on-street activities

⁽³⁾ Junction Improvement Scheme has been incorporated in the assessment

⁽⁴⁾ In order to meet RC not less than 15%, the PM cycle time of J2 Wai Yip Street / Shun Yip Street, could be increased from 108 to 112 seconds.

7.0 CONCLUSION

- 7.1 The Subject Site is located at Nos. 107 109 Wai Yip Street in Kwun Tong. On 29th May 2020, the TPB approved the S16 Planning Application (TPB ref: A/K14/780) for Office, Shop and Services & Eating Place Uses at the Subject Site. Subsequent to the Approved S16 Scheme (TPB ref: A/K14/780), the Applicant has the intention to construct a hotel with 984 rooms.
- 7.2 Manual classified counts were conducted at junctions located in the vicinity of the Subject Site in order to establish the peak hour traffic flows. Currently, the surveyed junctions operate with capacities during the AM and PM peak hours.
- 7.3 Similar to the Approved S16 Scheme (TPB ref: A/K14/780), two vehicular access points are provided for the Proposed Development, including, (i) The service lane at the northern side of the Proposed Development, and (ii) Wai Yip Street.
- 7.4 The internal transport facilities for the Proposed Development are provided with reference to the recommendation of the HKPSG. Swept path analysis was conducted to ensure that all vehicles could enter and leave the development and the spaces provided with ease.
- 7.5 The Proposed Development is expected to be completed by 2029, and the junction capacity analysis is undertaken for year 2032. For the design year 2032, the junctions analysed are expected to operate with capacities during the peak hours for the case without and with the Proposed Development.
- 7.6 With implementation of increased PM peak cycle time at J2 Wai Yip Street / Shun Yip Street, all junctions analysed for the sensitivity test have sufficient capacity to accommodate the expected traffic flow in the 2032 and the traffic generated by the Proposed Development.
- 7.7 The pedestrian assessment conducted found that the surveyed footpaths and waiting area of the pedestrian crossing would operate with LOS A to C in 2032 for the cases without and with the Proposed Development.
- 7.8 It is concluded that the Proposed Development will result in <u>no</u> adverse traffic impact to the surrounding road network.

LEGEND:

LGV loading / unloading bay @7m(L) X 3.5m(W) X 3.6m(H)

Accessible car parking space @5m(L) X 3.5m(W) X 2.4m(H)

Private car parking space @5m(L) X 2.5m(W) X 2.4m(H)

Motorcycle parking space @2.4m(L) X 1m(W) X 2.4m(H)

Figure No.

Project Title PROPOSED MINOR RELAXATION OF PLOT RATIO AND BUILDING HEIGHT RESTRICTIONS FOR PROPOSED HOTEL USE IN "OTHER SPECIFIED USES" ANNOTATED "BUSINESS" ZONE, 107-109 WAI YIP STREET, KWUN TONG, KOWLOON

J7409

3.2 Checked by

CYY NCM Scale in A4

Wan Chai, Hong Kong Tel: (852) 2520 5990 Fax: (852) 2528 6343 19 SEP 2025 1:250

Email: mail@ckmasia.com.hk

Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road,

Figure Title

B1/F LAYOUT PLAN

Junction:		Road / Shun Y	ip Stree	t										-	Job Nu	mber:	
Scenario: Design Year:	Existing C	Condition Designe	ed By:					Checke	ed By:				-	Date:	19 Se	P. eptembe	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
U. B B I							Gradient		(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		
Hoi Bun Road	WB	SA SA+RT	A1 A2	1	3.50	25.0		78	1965 2011	419 428	0.213	0.213	100	1965 1986	326 330	0.166 0.166	0.166
		SATIN	AZ	'	3.30	23.0		70	2011	420	0.213		100	1900	330	0.100	
Hoi Bun Road	EB	LT	B1	2	3.50	15.0		100	1786	309	0.173	0.173	100	1786	419	0.235	0.235
		SA	B2	2	3.50				2105	297	0.141			2105	296	0.141	
																	_
pedestrian pha	200		Ср	1 2		min o	rossing	timo –	7	800	GM +	7	coc E	GM =	14	600	
pedesman pna	1SE		Dр	1,3 2,3			rossing		6		GM +	6		GM =	12	sec	
			Ер	3			rossing		11		GM +	12		GM =	23	sec	
			Fp	3			rossing		8		GM +	6		GM =	14	sec	
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr))			N	S=1940+1	00(W-3.25	i) :	S=2080+10	00(W-3.25)	Note:		
309					419					S _M =S÷(1+	1.5f/r)	S	S _M =(S-230)	÷(1+1.5f/r)			
			\		\perp				\		AM	Peak	PM	Peak			
	297	335				296		329			1+2		1+2				
		512					327			Sum y	0.386		0.401				
		312					321			L (s)	39 118		39 108				
										C (s)	0.603		0.575				
										R.C. (%)	56%		43%				
1		2				3											
•		P4	Ì					.Ep									
Ср		B2	→				Cp: ▼		Fp								
	†	Dp					Dp	į	гр								
	←	— A2 — A1	¥				•	•									
AM G =	:	I/G = 8	G =		I/G =	8	G =	23	I/G =	2	G =	_	I/G =		G =	_	
G =	:	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =	:	I/G = 8	G =		I/G =	8	G =	23	I/G =	2	G =		I/G =		G =		

						<u> </u>	ounce		<i>,</i> -								
Junction:	Hoi Bun	Road / Shun Y	ip Stree	t										-	Job Nu	mber:	J7409
Scenario: Design Year:		the Proposed Designe					-	Checke	d By:				=	Date:	19 Se	P. eptembe	
	Approach		Phase	Stage	Width (m)	Radius (m)		Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Hoi Bun Road	WB	SA	A1	1,2	3.50		Gradient		(pcu/hr) 1965	(pcu/hr) 839	0.427			(pcu/hr) 1965	(pcu/hr) 710	0.361	
		RT	A2	1	3.50	25.0		100	1986	431		0.217	100	1986	414	0.208	0.208
Hoi Bun Road	EB	LT	B1	2	3.50	15.0		100	1786	491	0.275	0.275	100	1786	503	0.282	0.282
		SA+LT	B2	2	3.50	20.0		10	2089	574	0.275		16	2080	585	0.281	
pedestrian pha	ase		Ср	1,3		min c	rossing	time =	7	sec	GM +	7	sec F	GM =	14	sec	
			Dp	3		min c	rossing	time =	6		GM +	6	sec F	GM =	12	sec	
			Ep	3			rossing		11		GM +	12		GM =	23	sec	
			Fp	3		min c	rossing	time =	8	sec	GM +	6	sec F	GM =	14	sec	
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr)				N	S=1940+1	00(W-3.25)	S=2080+10		Note:		
550					599					S _M =S÷(1+	1.5f/r)	S	S _M =(S-230)	÷(1+1.5f/r)		Improver by Other	
	515		`		$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	489			`			Peak		Peak			
	010	431				400		414		Sum y	0.492		0.490				
		839 - I					710	—		L (s)	39		39				
										C (s)	118		108				
										practical y	0.603		0.575				
										R.C. (%)	22%		17%				
1 Cp	† _	2 B1 B2 A2 A1	_ 1	←	A1	3	Cp Dp	Ep	Fp								
AM G =	:	I/G = 8	G =		I/G =	8	G =	23	I/G =	2	G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =		I/G = 8	G =		I/G =	8	G =	23	I/G =	2	G =		I/G =		G =		
G =	:	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

Junction:		Road / Shun Y												<u>-</u>	Job Nu		
Scenario: Design Year:		Proposed Dev Design					=	Checke	d By:				=	Date:	19 Se	P. ptembe	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical y
Hoi Bun Road	WB	SA	A1	1,2	3.50				1965	839	0.427			1965	710	0.361	
		RT	A2	1	3.50	25.0		100	1986	439	0.221	0.221	100	1986	421	0.212	0.212
Hoi Bun Road	EB	LT	B1	2	3.50	15.0		100	1786	491	0.275	0.275	100	1786	503	0.282	0.282
		SA+LT	B2	2	3.50	20.0		10	2089	574	0.275		16	2080	585	0.281	
pedestrian pha	ase		Ср	1,3		min c	rossing	time =	7	sec	GM +	7	sec F	GM =	14	sec	
			Dp	3			rossing		6		GM +	6	sec F		12	sec	
			Ep Fp	3			rossing		11 8		GM + GM +	12 6		GM =	23 14	sec	
AM Traffic Flow (pcu/h	ır)		N	PM Traffic	Flow (pcu/hr)			N	S=1940+1	00(W-3.25	i)	S=2080+10	0(W-3.25)	Note:		
550			Γ,		599				Γ,	S _M =S÷(1+	1.5f/r)	s	S _M =(S-230)	÷(1+1.5f/r)	Junction	Improver by Other	ment Project
†					1						AM	Peak	PM	Peak	Scrience	by Other	riojeci
`	515					489					1+2		1+2				
		439 1						421 1		Sum y	0.496		0.494				
		839 🕶					710	—		L (s)	39		39				
										C (s)	118		108				
										R.C. (%)	0.603 21%		0.575 16%				
1 Cp		2 B1	<u>_</u>			3	↓ ↓	Ep 🗼									
•	↑	B2 ————————————————————————————————————	→	←	——— A1		Dp	ļ	Fp								
		I/G = 8	G =		I/G =		G =	23	I/G =	2	G =		I/G =		G =		
AM G =					I/G =		G =		I/G =		G =		I/G =		G =		
AM G = G =		I/G = 8	G =		I/G =		G =	23	I/G =	2	G =		I/G =		G =		

Junction:	Hoi Bun F	Road / Shun Y	∕ip Stree	t											Job Nu	mber:	J7409
Scenario:		Proposed Dev														P.	
Design Year:	2032	Design	ied By:				-	Checke	d By:				-	Date:		ptembe	r 2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical y
Hoi Bun Road	WB	SA	A1	1,2	3.50				1965	839	0.427			1965	710	0.361	
		RT	A2	1	3.50	25.0		100	1986	444	0.224	0.224	100	1986	429	0.216	0.216
Hoi Bun Road	EB	LT	B1	2	3.50	15.0		100	1786	491	0.275	0.275	100	1786	503	0.282	0.282
		SA+LT	B2	2	3.50	20.0		10	2089	574	0.275		16	2080	585	0.281	
pedestrian pha	ise		Ср	1,3		min c	rossing	time =	7	sec	GM +	7	sec F	GM =	14	sec	
			Dp	3			rossing		6	sec	GM +	6	sec F	GM =	12	sec	
			Ep	3			rossing .		11		GM +	12		GM =	23	sec	
			Fp	3		min c	ossing time =		8	sec	GM +	6	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr	r)			PM Traffic	Flow (pcu/hr				N.I.	S=1940+1	00(W-3.25)	S=2080+10	0(W-3 25)	Note:		
550			∠ N		599				√ N	S _M =S÷(1+		•	S _M =(S-230)	` '		Improver	
1.					1.						AM	Peak	PM	Peak	Scheme	by Other	Project
	515	444				489		429			1+2		1+2				
		839	_				710	†		Sum y	0.498		0.498				
										L (s)	39 118		39 108				
										practical y	0.603		0.575				
										R.C. (%)	21%		16%				
1		2	+			3	▲ ∢ ····	Ep									
Ср		B1 1	 →				Ср	Ī									
	•						Dp \	į	Fp								
	<u> </u>	— A2 — A1		-	—— A1		₹	•									
AM C		I/C - 8			1/0			22	1/0	2			1/0				
AM $G =$ $G =$		I/G = 8 I/G =	G = G =		I/G =	σ	G = G =	23	I/G =		G = G =		I/G =		G = G =		
PM G=		I/G = 8	G =		I/G =	8	G =	23	I/G =	2	G =		I/G =		G =		

Junction:	Wai Yip Str	eet / Shun Y	ip Stree	et											Job Nu	mber:	J7409
Scenario:	Existing Cor															P.	
Design Year:			ed By:				•	Checke	d By:					Date:	19 Se	ptembe	r 2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical y
Wai Yip Street	t EB	SA	A1	1	3.50		Gradient		1965	479	0.244	0.244		1965	399	0.203	
		SA	A2	1	3.50				2105	513	0.244			2105	427	0.203	0.203
		SA	A3	1	3.50				2105	512	0.243			2105	427	0.203	
Wai Yip Street	t WB	SA	B1	1	3.50				1965	271	0.138			1965	305	0.155	
		SA	B2	1	3.50				2105	291	0.138			2105	327	0.155	
		SA	В3	1	3.50				2105	291	0.138			2105	326	0.155	
Shun Yip Stree	et NB	LT	C1	3	3.50	15.0		100	1786	206	0.115	0.115	100	1786	262	0.147	0.147
		LT+RT	C2	3	3.50	18.0		100	1943	224	0.115		100	1943	284	0.146	
		RT	C3	3	3.50	25.0		100	1854	214	0.115		100	1854	202	0.109	
pedestrian pha	ase		Dp	1,2		min c	rossing	time =	8		GM +	11	sec F		19	sec	
			Ep	2			rossing		12		GM +	9	sec F		21	sec	
<u></u>			Fp	2		min c	rossing	time =	13	sec	GM +	12	sec F	GM =	25	sec	
AM Traffic Flow (pcu/hi	ır)		N	PM Traffic	Flow (pcu/hr)	١			Ŋ	S=1940+1	00(W-3.25	i) ;	S=2080+10	0(W-3.25)	Note:		
			1						1	S _M =S÷(1+	1.5f/r)	S	_M =(S-230)	÷(1+1.5f/r)	i		
	► 1504		1			1253			١		AM	Peak	PM I	Peak			
											1+3		1+3				
	8	353 ←					958	-		Sum y	0.359		0.350				
407 -					5 4€ 4	 ,→		•		L (s)	40		40				
427 ⁻					546 -	—	958 202	•——		L (s)	40 118		40 108				
427 -					546 ⁴			-	_	L (s)	40		40				
427 -					546 ⁴	3				L (s) C (s) practical y	40 118 0.595		40 108 0.567				
427 ·			_		546 -	3				L (s) C (s) practical y	40 118 0.595		40 108 0.567				
427 ·		2	F0.	4		3				L (s) C (s) practical y	40 118 0.595		40 108 0.567				
427 ·		2	Fp		546 ⁴	3				L (s) C (s) practical y	40 118 0.595		40 108 0.567				
1 A1 A2 A3	217	2				3				L (s) C (s) practical y	40 118 0.595		40 108 0.567				
427 ·	217	B3 B2	Fp ■ Dp			3				L (s) C (s) practical y	40 118 0.595		40 108 0.567				
1 A1 A2 A3 A3 AM G =	217	B3 B2 B1 VG = 7	∢ Dp		Ep //G =	3 C1 8	202 C2 C3 G =		I/G =	L (s) C (s) practical y R.C. (%)	40 118 0.595 66%		40 108 0.567 62%		G =		
1 A1 → A2 → A3 → D _F	217	- B3 - B2 - B1	∢ Dp	25	Ep	3 C1 8	202		I/G =	L (s) C (s) practical y R.C. (%)	40 118 0.595 66%		40 108 0.567 62%		G = G = G = G = G = G = G = G = G = G =		

Junction: <u>W</u>	/ai Yip Stree	et / Shun Y	'ip Stree	et											Job Nu	mber:	J7409
	Vithout the P						-	Checke	d By:				-	Date:	19 Se	P. eptembe	
Α	pproach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Ma: Win Cturat F	<u> </u>	C 4	A 4	4	2.50		Gradient		(pcu/hr)	(pcu/hr)	0.040			(pcu/hr)	(pcu/hr)	0.070	
Wai Yip Street El	3	SA SA	A1 A2	1	3.50				1965 2105	616 660	0.313	0.314		1965 2105	534 572	0.272	
		SA	A3	1	3.50				2105	659	0.313	0.514		2105	573	0.272	0.272
		O/ C	710		0.00				2100	000	0.010			2100	0.0	0.272	O.L.
Wai Yip Street W	В	SA	B1	1	3.50				1965	392	0.199			1965	409	0.208	
		SA	B2	1	3.50				2105	420	0.200			2105	438	0.208	
		SA	В3	1	3.50				2105	420	0.200			2105	438	0.208	
Shun Yip Street N	JB	LT	C1	3	3.50	15.0		100	1786	314	0.176	0.176	100	1786	365	0.204	
onan np onoon		LT+RT	C2	3	3.50	18.0		100	1943	341	0.176		100	1943	398	0.205	0.205
		RT	C3	3	3.50	25.0		100	1854	326	0.176		100	1854	250	0.135	
pedestrian phase			Dp	1,2		min c	rossing	timo –	8	800	GM +	11	sec F	GM -	19	800	
pedestriari priase	:		Ер	2			rossing		12		GM +	9	sec F		21	sec	
			Fр	2			rossing		13		GM +	12	sec F		25	sec	
			- 1														
AM Tariffic Floor (a sufficient				DM T#'-	F1// >										Mara		
AM Traffic Flow (pcu/hr)			N	Рм тапіс	Flow (pcu/hr)				N		100(W-3.25	-	S=2080+10	` ′	Note:		. :-
										S _M =S÷(1+	-1.5f/r)	S	S _M =(S-230)	, ,	propos	ycle time ed to inc	rease
── 1:	935		\		→	1679			\			Peak		Peak	from 10)8s to 11	2s
											0.489		0.477				
	123	2 ←					1285	•		Sum y	40		40				
650 ←	331				763 <		250			C (s)^	118		112				
300										practical y			0.579				
										R.C. (%)	22%		21%				
1		2				3											
A1																	
A2 ————————————————————————————————————			Fp		Ep												
		33				-	┿┍										
4		32 31	4		,												
Dp		<u> </u>	Dp				C2 C3			_							
AM G =		= 7	G =	25	I/G =		G =		I/G =	2	G =		I/G =		G =		
G = PM G =	I/G	= = 7	G = G =	25	I/G =		G =		I/G =	2	G =		I/G =		G =		
РМ G = G =	I/G :		G =	20	I/G =	J	G =		I/G =	_	G =		I/G =		G =		
G =	I/G :	_	G =		I/G =		G =		I/G =		G =		1/6 =		G =		

						giiai	ounce										
Junction:	Wai Yip S	Street / Shun Y	'ip Stree	et										<u>-</u>	Job Nu	mber:	J7409
Scenario: Design Year:	With the I	Proposed Dev Designe					-	Checke	ed By:					Date:	19 Se	P. eptembe	
	Approach		Phase	Stage	Width (m)	Radius (m)		Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Wai Yip Street	t FR	SA	A1	1	3.50		Gradient		(pcu/hr) 1965	(pcu/hr) 640	0.326	0.326		(pcu/hr) 1965	(pcu/hr) 564	0.287	
wai rip otieei	(LD	SA	A2	1	3.50				2105	685	0.325	0.020		2105	604	0.287	0.287
		SA	A3	1	3.50				2105	685	0.325			2105	603	0.286	0.201
											0.000					0.200	
Wai Yip Street	t WB	SA	B1	1	3.50				1965	392	0.199			1965	409	0.208	
		SA	B2	1	3.50				2105	420	0.200			2105	438	0.208	
		SA	В3	1	3.50				2105	420	0.200			2105	438	0.208	
Shun Yip Stree	et NB	LT	C1	3	3.50	15.0		100	1786	316	0.177		100	1786	365	0.204	
		LT+RT	C2	3	3.50	18.0		100	1943	345	0.178	0.178	100	1943	398	0.205	0.205
		RT	C3	3	3.50	25.0		100	1854	328	0.177		100	1854	257	0.139	
pedestrian pha	ase		Dp ==	1,2			rossing		8		GM +	11	sec F		19	sec	
			Ep Fp	2			rossing		12 13		<u>GM +</u> GM +	9	sec F		21 25	sec	
			ТР			11111111	10331119	unie –	10	360	OW T	12	3601	OIVI =	20	360	
AM Traffic Flow (pcu/h	ur)			PM Traffic	Flow (pcu/hr	\				1			Į.		Note:		1
	,		Ν			,			V.		00(W-3.25		S=2080+10 6 _M =(S-230)			vcle tim	e is
	> 2040		\			. 4774			\	S _M =S÷(1+					propos	ed to inc	rease
	→ 2010		,			1771			,		1+3	Peak	1+3	Peak	Irom 10)8s to 11	128
										Sum y	0.503		0.492				
		1232 -					1285	•	_	L (s)	40		40				
650	→ 3:	39			763	—	257			C (s)^	118		112				
										practical y	0.595		0.579				
										R.C. (%)	18%		18%				
1		2				3											
A1		1		4	,												
A3 ———			Fp		Ep												
	—	— B3 — B2				-	→										
∢ D	>	— B1 ▼	 Dp		,												
		1	•				C2 C3 G=		I/G =	2	G =		I/G =	<u> </u>	G =		
	=	I/G = 7	G =	25	I/G =	0			1/G =	-	• -		1/0 -		G =		
		I/G = 7 I/G =	G = G =	25	I/G =		G =		I/G =		G =		I/G =		G =		
AM G =	=																

Junction:	-	reet / Shun Y			isio dise o T		-1		4-1						Job Nu	mber:	
Scenario: Design Year:		roposed Dev Designe			isitivity i								=	Date:	19 Se	P. eptembe	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
Wai Yip Street	EB	SA	A1	1	3.50		Oradicit		1965	657	0.334			1965	578	0.294	
		SA	A2	1	3.50				2105	704	0.334			2105	619	0.294	
		SA	А3	1	3.50				2105	705		0.335		2105	620	0.295	0.295
Wai Yip Street	t WB	SA	B1	1	3.50				1965	392	0.199			1965	409	0.208	
		SA	B2	1	3.50				2105	420	0.200			2105	438	0.208	
		SA	B3	1	3.50				2105	420	0.200			2105	438	0.208	
Shun Yip Stree	et NB	LT	C1	3	3.50	15.0		100	1786	318	0.178		100	1786	365	0.204	
		LT+RT	C2	3	3.50	18.0		100	1943	346	0.178	0.178	100	1943	398	0.205	0.20
		RT	C3	3	3.50	25.0		100	1854	330	0.178		100	1854	265	0.143	
pedestrian pha	ase		Dp	1,2		min c	rossing	time =	8	sec	GM +	11	sec F	GM =	19	sec	
			Ep	2		min c	rossing	time =	12	sec	GM +	9	sec F	GM =	21	sec	
			Fp	2		min c	rossing	time =	13	sec	GM +	12	sec F	GM =	25	sec	
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr)			N	S=1940+1	100(W-3.25	i) :	S=2080+10	0(W-3.25)	Note:		
			Ť						Ť	S _M =S÷(1+	·1.5f/r)	S	S _M =(S-230)	÷(1+1.5f/r)	^ The c	ycle tim	e is
	▶ 2066		\			1817			\		AM	Peak	PM I	Peak		ed to inc 8s to 11	
											1+3		1+3				
										Sum y	0.513		0.499				
	1	232					1285	•	_	L (s)	40		40				
650	34	4			763 1		265			C (s)^	118		112				
										practical y	0.595		0.579				
	'									R.C. (%)	16%		16%				
I		2				3											
A1		•		4	1												
A3	4		Fp		Ep												
	=	— B3 — B2				-	↑										
∢ Dp		— _{В1}	∢ Dp	≯	7	0.4											
AM G =		I/G = 7	G =		I/G =		C2 C3 G=		I/G =	2	G =		I/G =	<u> </u>	G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =	:	I/G = 7	G =	25	I/G =	8	G =		I/G =	2	G =		I/G =		G =		

						9				,							
Junction:	Wai Yip Str	eet / Lai Yip	Street											-	Job Nu	mber:	J7409
Scenario: Design Year:	Existing Co 2025		ed By:				-	Checke	d By:					Date:	19 Se	P. eptembe	25 r 2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Wai Yip Street	t WB	SA+LT	A1	3	2.80	20.0	Gradieni	27	(pcu/hr) 1977	(pcu/hr) 276	0.140		34	(pcu/hr) 1981	(pcu/hr) 301	0.152	
	-	SA	A2	3	2.80				2035	284	0.140			2035	309	0.152	
		SA	А3	3	2.80				2035	285	0.140			2035	308	0.151	
Lai Yip Street	SB	LT	B1	2	3.10	20.0		100	2638	170	0.064	0.064	100	2638	208	0.079	0.079
		SA SA	B2 B3	1,2 1,2	3.10				2065 2065	358 357	0.173			2065 2065	217 217	0.105	
		SA	БЗ	1,2	3.10				2005	337	0.173			2003	217	0.103	
Wai Yip Street	t EB	SA+LT	C1	3	3.30	20.0		63	2097	576	0.275		50	2142	489	0.228	
		SA	C2	3	3.30				2085	573	0.275	0.275		2085	476	0.228	0.228
		SA	C3	3	3.30				2085	572	0.274			2085	476	0.228	
Lai Yip Street	NR	SA+LT	D1	1	4.00	15.0		45	2048	183	0.089	0.089	72	2013	198	0.098	0.098
Lai Tip Giroot	110	SA	D2	1	3.50	10.0		10	2105	188	0.089	0.000		2105	207	0.098	0.000
pedestrian pha	ase		Еp	3		min c	rossing	time =	11	sec	GM +	10	sec F	GM =	21	sec	
			Fp	1,2		min c	rossing	time =	7	sec	GM +	11	sec F	GM =	18	sec	
			Gp	1,2		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
			Нр	1,3			rossing		5		GM +	7	sec F		12	sec	
			lp	2		min c	rossing	time =	7	sec	GM +	11	sec F	GM =	18	sec	
AM Traffic Flow (pcu/h	nr)		N	PM Traffic	Flow (pcu/hr)	1	1		N	S=1940+1	00(W-3.25) :	S=2080+10	0(W-3.25)	Note:		
	\vdash	170	7				 	208	7	S _M =S÷(1+	1.5f/r)	s	6 _M =(S-230)	÷(1+1.5f/r)	^ Based	on observ	ation/
360	ļ		\		243		↓		\		AM	Peak	PM	Peak	ı		
	715				1.		434				1+2+3	1,2+3	1+2+3	1,2+3			
	1361	774				1198	045			Sum y	0.429	0.448	0.406	0.333			
	†	771 🕌	_			262 †	815	ļ	_	L (s)	17	12	17	12			
82	2 ←	74			143	\leftarrow		103		C (s)	120	120	108	108			
										practical y	0.773 80%	0.810 81%	0.758 87%	0.800			
1	B3 B2	2		B3 B2 B	1	13				K.C. (78)	0070	0170	0770	14070			
Gp ⁴		▼ N. Gp	4			C1		Ep	MrHp								
	Fn.	lp	Ļ	Fp 🔻		C2———	$\overrightarrow{\rightarrow}$	←	—— Аз								
	V. V			1 P V	Gp [™]		E p	.	A2 A1								
-	Gp [▲]									ĺ				i			
D1 D2 AM^ G =	<u>.</u>	/G = 7	G =		I/G =	5	G =		I/G =	8	G =		I/G =		G =		
	: = I	/G = 7	G =		I/G =		G = G =		I/G =		G =		I/G =		G = G =		
AM^ G =	- = I					6				8							

Junction:		treet / Lai Yip												-	Job Nu	mber:	
Scenario: Design Year:		<u>e Proposed D</u> Designe					-	Checke	ed By:					Date:	19 Se	P. ptembe	26 r 2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %		AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Wai Yip Street	: WB	SA+LT	A1	3	2.80	20.0	Gradient	52	(pcu/hr) 1944	(pcu/hr) 422	0.217		62	(pcu/hr) 1944	(pcu/hr)	0.228	
		SA	A2	3	2.80				2035	442	0.217			2035	465	0.229	
		SA	А3	3	2.80				2035	441	0.217			2035	466	0.229	
Lai Via Otaaat	OD.		D4	_	2.40	20.0		400	0000	202	0.444	0.444	400	0000	000	0.400	0.400
Lai Yip Street	5B	LT SA	B1 B2	1,2	3.10	20.0		100	2638 2065	293 492	0.111	0.111	100	2638 2065	263 377	0.100	0.100
		SA	B3	1,2	3.10				2065	491	0.238			2065	377	0.183	
Wai Yip Street	EB	SA+LT	C1	3	3.30	20.0		60	2101	698	0.332		61	2127	610	0.287	
		SA	C2	3	3.30				2085	693	0.332	0.332		2085	598	0.287	0.287
		SA	C3	3	3.30				2085	693	0.332			2085	598	0.287	
Lai Yip Street	NB	SA+LT	D1	1	4.00	15.0		58	2025	285	0.141	0.141	63	2029	285	0.140	0.140
		SA	D2	1	3.50				2105	296	0.141			2105	295	0.140	
pedestrian pha	ase		Ep	3		min c	rossing	time =	11	sec	GM +	10	sec F	GM =	21	sec	
			Fp	1,2			rossing		7		GM +	11		GM =	18	sec	
			Gp Hp	1,2 1,3			rossing		5 5		<u>GM +</u> GM +	10 7	sec F	GM =	15 12	sec	
			Ip	2			rossing		7		GM +	11		GM =	18	sec	
						_											
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr)			N	S=1940+1	00(W-3.25) :	S=2080+10	0(W-3.25)	Note:		
	-	→ 293	1					263	1	S _M =S÷(1+	1.5f/r)	S	_M =(S-230)	÷(1+1.5f/r)	^ Based	on observ	ation/
416	↓ 98	12	\		373		↓ 754		\		AM	Peak	PM	Peak			
<u> </u>	1668	55			<u></u>	1433	754				1+2+3	1,2+3	1+2+3	1,2+3			
		1082 🕶	_			400	1098	•	_	Sum y	0.584	0.571	0.527	0.469			
165	†	↓ 223			180	†		↓ 277		L (s)	17 120	12 120	17 108	12 108			
100	, - 	223			160			211		C (s)	0.773	0.810	0.758	0.800			
	l									R.C. (%)	32%	42%	44%	70%			
1	B3 B2	2		B3 B2 B	1	3											
V. Gp →		Hp Gp	4				4 4	Ep	≜ ·······Hp								
	↓ ↓ ↑	lp	1		→	C1	→ `										
† †	Fp♥		÷	Fp 🔻	44.	C3	→	-	—— A3 —— A2								
←	 Gp	*			Gp [™]		4 Ep		→ A1								
D1 D2																	
AM G =		I/G = 7	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G = PM G =		I/G = 1/G = 7	G = G =		I/G =		G = G =		I/G =		G = G =		I/G =		G = G =		
РМ G =		I/G = 7	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =	:	I/G =	G =		I/G =	Ö	G =		I/G =	ď	G =		I/G =		G =		

Junction:	Wai Yip Stre	et / Lai Yip	Street											<u>.</u>	Job Nu	mber:	J7409
Scenario:	With the Pro													_			27
Design Year:	2032	Designe	ed By:				-	Checke	d By:					Date:	19 Se	eptembe	r 2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
		04.17					Gradient	_	(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		,
Wai Yip Street	t WB	SA+LT SA	A1 A2	3	2.80	20.0		53	1943 2035	422 442	0.217		62	1944 2035	444	0.228	
		SA	A3	3	2.80				2035	441	0.217			2035	466	0.229	
		O/ C	710		2.00				2000		0.217			2000	100	0.220	
Lai Yip Street	SB	LT	B1	2	3.10	20.0		100	2638	293	0.111	0.111	100	2638	263	0.100	0.100
		SA	B2	1,2	3.10				2065	494	0.239			2065	379	0.184	
		SA	В3	1,2	3.10				2065	493	0.239			2065	379	0.184	
Wai Yip Street	t EB	SA+LT	C1	3	3.30	20.0		60	2101	707	0.337	0.337	62	2126	619	0.291	0.291
		SA	C2	3	3.30				2085	701	0.336			2085	607	0.291	
		SA	C3	3	3.30				2085	701	0.336			2085	606	0.291	
Lai Yip Street	NR	SA+LT	D1	1	4.00	15.0		58	2025	285	0.141	0.141	63	2029	285	0.140	0.140
Lai Tip Otrect	ND	SA	D2	1	3.50	10.0		- 00	2105	296	0.141	0.141	- 00	2105	295	0.140	0.140
											_						
nadaatrian nha			F.,	2		min o	rossing	ima	11	200	GM +	10	sec F	CM	21		
pedestrian pha	ase		Ep Fp	3 1,2			rossing		11 7		3M +	10	sec F		21 18	sec	
			Gp	1,2			rossing		5		3M +	10	sec F		15	sec	
			Hp	1,3			rossing		5		GM +	7	sec F		12	sec	
			lр	2		min c	rossing	time =	7	sec	GM +	11	sec F	GM =	18	sec	
AM Traffic Flow (pcu/h	nr)		N	PM Traffic	Flow (pcu/hr)				N	S=1940+1	00(W-3.25) :	S=2080+10	0(W-3.25)	Note:		
		293	7					263	7	S _M =S÷(1+	1.5f/r)	S	6 _M =(S-230)	÷(1+1.5f/r)	^ Based	on observ	ation/
422	ţ		\		382		ţ		\		AM	Peak	PM	Peak			
\rightarrow	987				1	4.450	758				1+2+3	1,2+3	1+2+3	1,2+3			
	1687	82 🕶				1450	1098			Sum y	0.588	0.576	0.531	0.475			
	†	ţ	_			400 †	1096	ļ		L (s)	17	12	17	12			
165	5 ←	223			180	←		277		C (s)	120	120	108	108			
										practical y	0.773 31%	0.810 41%	0.758 43%	0.800 69%			
1	B3 B2	2		B3 B2 B	1	13				R.C. (%)	3170	4170	4370	0370			
!		Ž.,				3		F	, *								
▼	 ∆ *	Gp	<u> </u>	$\downarrow\downarrow\downarrow$	→	C1		Ep	≜ . Hp								
P. Gp ♣	↓ ↓ ♠ ¬ ¬₽	In				C2	→	←	A3								
Gp. ₄	Fp_ Fp_	lp	Ļ	Fp ♥_		00											
Gp ↑	Fp Gp	lp	.	Fp ♥	Gp *	00	Ep	-	→ A2 A1								
+		lp	↓	Fp √	Gp [★]		Ęp		A2 A1								
D1 D2	:	ip 6 = 7	G =	Fp V	Gp ▲		€ Ep	-	A2 A1 I/G =	8	G =		I/G =		G =		
D1 D2	= I/G		G = G =	Fp ♥		5	•		I/G =		G = G =		I/G =		G = G =		
D1 D2 AM G =	= I/G			Fp ∜ •	I/G =	5	G =			8							

Junction:	Wai Yip S	Street / Lai Yip	Street												Job Nu	mber:	
Scenario: Design Year:	With the I	Proposed Dev Designe												Date:	19 Se	P. ptembe	28 r 2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %		AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Wai Yip Street	WB	SA+LT	A1	3	2.80	20.0	Gradient	53	(pcu/hr) 1943	(pcu/hr) 422	0.217		62	(pcu/hr) 1944	(pcu/hr)	0.228	
		SA	A2	3	2.80				2035	442	0.217			2035	465	0.229	
		SA	А3	3	2.80				2035	441	0.217			2035	466	0.229	
Lai Yip Street	SB	LT	B1	2	3.10	20.0		100	2638	293	0.111	0.111	100	2638	263	0.100	0.100
		SA	B2	1,2	3.10				2065	494	0.239			2065	383	0.185	
		SA	В3	1,2	3.10				2065	494	0.239			2065	382	0.185	
Wai Yip Street	EB	SA+LT	C1	3	3.30	20.0		60	2101	709	0.337		63	2124	626	0.295	
		SA	C2	3	3.30				2085	704	0.338	0.338		2085	615	0.295	0.295
		SA	C3	3	3.30				2085	703	0.337			2085	614	0.294	
Lai Yip Street	NB	SA+LT	D1	1	4.00	15.0		58	2025	285	0.141	0.141	63	2029	285	0.140	0.140
		SA	D2	1	3.50				2105	296	0.141			2105	295	0.140	
pedestrian pha	ase		Ep	3			rossing		11		GM +	10	sec F		21	sec	
			Fp Gp	1,2 1,2			rossing		7 5		<u>GM +</u> GM +	11	sec F		18 15	sec	
			Нр	1,3			rossing		5		GM +	7	sec F		12	sec	
			lp	2			rossing		7		GM +	11	sec F		18	sec	
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr)			N	S=1940+1	00(W-3.25) ;	S=2080+10	0(W-3.25)	Note:		
	-	→ 293	7					263	7	S _M =S÷(1+	1.5f/r)	s	_M =(S-230)	÷(1+1.5f/r)	^ Based	on observ	ation
423	ļ		/		393		↓		\		AM	Peak	PM	Peak			
		88			1		765				1+2+3	1,2+3	1+2+3	1,2+3			
·	1693	1000 .				1462	1000			Sum y	0.589	0.577	0.535	0.480			
	416 †	1082	_			400 ↑	1098	$\overline{}$		L (s)	17	12	17	12			
165	5 ←	223			180	-		277		C (s)	120	120	108	108			
										practical y	0.773 31%	0.810 40%	0.758 42%	0.800 67%			
1	B3 B2	2		B3 B2 B	1	3				11.0. (70)	0.70	.070	.270	0.70			
P. Gp •		Hp Gp	4		→	C1	↑	Ep .	≜Hp								
†	Fp ▼ Gr	,	*	Fp [▼]	Gp *	C3	→ Ep	+	A3 A2 A1								
D1 D2 AM G =		I/G = 7	G =		I/G =	5	G =		I/G =	8	G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =		I/G = 7 I/G =	G = G =		I/G =		G = G =		I/G =		G = G =		I/G =		G = G =		
G =		1/5 =	G =		I/G =	U	G =		I/G =	0	G =		I/G =		G =		

Junction:		Road / Lai	Yip Stre	et										-	Job Nu	mber:	
Scenario: Design Year:	Existing Co	ondition Designe	ed By:				-	Checke	d By:					Date:	19 Se		29 r 2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
							Gradient		(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		
Kwun Tong Ro	oad EB	SA	A1	1,2	3.20				1935	349	0.180	0.404		1935	288	0.149	
		SA	A2	1,2	3.20				2075	375	0.181	0.181		2075	309	0.149	
Lai Yip Street	NB	LT+SA	B1	5	3.50	30.0		32	2117	478	0.226		63	2105	385	0.183	0.183
		SA	B2	5	3.50				2105	476	0.226	0.226		2105	385	0.183	
Elegance Roa	d NB	SA	B3	5	3.50				2105	277	0.132			2105	184	0.087	
		SA+RT		5	3.50	18.0		9	2089	275	0.132		37	2042	178	0.087	
		RT	B5	5	3.50	15.0		100	1914	251	0.131		100	1914	167	0.087	
Kwun Tong Ro	oad WB	LT	C1	1,5	3.30	15.0		100	1768	365	0.206		100	1768	168	0.095	
		SA	C2	1,2	3.50				2105	365	0.173			2105	476	0.226	0.226
		SA	C3	1,2	3.50				2105	365	0.173			2105	475	0.226	
Elegance Roa	d SB	LT	D1	3,4	3.50	15.0		100	1786	153	0.086	0.086	100	1786	176	0.099	0.099
		SA	D2	3,4	3.50				2105	173	0.082			2105	141	0.067	
		SA+RT		3,4	3.50	18.0		13	2082	171	0.082		47	2026	136	0.067	
		RT	D4	3,4	3.50	15.0		100	1914	156	0.082		100	1914	128	0.067	
pedestrian pha	ase		Ep	1,2		min c	rossing	time =	12	sec	GM +	10	sec F	GM =	22	sec	
			Fp	1,2,3,4			rossing		5		GM +	7		GM =	12	sec	
			Gp	2,3		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
AM Traffic Flow (pcu/h			N	PM Traffic I	Flow (pcu/hr)				N	S=1940+1	00(W-3.25) :	S=2080+10	0(W-3.25)	Note:		
	179 ◀	153	1			192	\rightarrow	176	1	S _M =S÷(1+	1.5f/r)	S	_M =(S-230)	÷(1+1.5f/r)		Peak, State : 2>4>5	
		21	\				213		\		AM	Peak	PM	Peak	2) In PM	Peak, Sta	age
→	724			_	→	597					2+4+5		2+3+5		Sequenc	e: 2>3>5	i>2
										Sum y	0.493		0.508				
		730	_				951	\downarrow	_	L (s)	15		20				
	528 1	365				296 ↑		168		C (s)	118		108				
151	1← → 275	5			241	\longleftrightarrow	233			practical y	0.786		0.733				
						1				R.C. (%)	60%		44%				
1		2				3	D4 D3	D2 D1		4	D4 D3	D2 D1		5			
A1	\Longrightarrow	A1 — A2 —		\Longrightarrow										↑ 1→1	→		
							+				+						
\leftarrow		C3 C2	←		— C3 — C2		+	+			+	+		B3 B4 B5			— c4
Fp,	↓	C1 Fp, ✓	E p	Gp ▶		Fp▼		Gp V.		Fp▼				←		†	— C1
Marin .		*		``*		A .		• **		*				B1 B2			
AM		I/G =			I/G =				I/G =	5			I/G =	10		I/G =	3
DM		1/0			1/2	7			1/6	7			1/6	6		1/6	2
PM		I/G =			I/G =	1			I/G =	1			I/G =	б		I/G =	3

						<u> </u>											
Junction:	Kwun Tong														Job Nu	mber:	
Scenario: Design Year:	Without the 2032	Designe					-	Checke	ed By:					Date:	19 Se	P. eptembe	30 r 2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %		AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
Kuun Tana Da	and ED	C A	۸.4	1.0	2 20		Gradient		(pcu/hr) 1935	(pcu/hr)	0.406			(pcu/hr) 1935	(pcu/hr)	0.462	
Kwun Tong Ro	Dau EB	SA SA	A1 A2	1,2 1,2	3.20				2075	379 406	0.196			2075	316 338	0.163	
				- ,	00					.,,,							
Lai Yip Street I	NB	SA+LT	B1	5	3.40	15.0		42	1876	373	0.199		84	1804	344	0.191	
		SA	B2	5	3.30				2085	414	0.199			2085	397	0.190	
		SA	В3	5	3.30				2085	414	0.199			2085	397	0.190	
				_													
Elegance Road	d NB	SA	B4	5	3.50	40.0		2	2105	359	0.171		40	2105	294	0.140	
		SA+RT RT	B5 B6	5 5	3.50	18.0 15.0		100	2100 1914	358 327	0.170		18 100	2074 1914	289 267	0.139	
		K1	ВО	3	3.30	15.0		100	1914	321	0.171		100	1914	201	0.139	
Kwun Tong Ro	oad WB	LT	C1	1,5	3.30	15.0		100	1768	576	0.326	0.326	100	1768	403	0.228	0.228
		SA	C2	1,2	3.50				2105	433	0.206			2105	573	0.272	0.27
		SA	C3	1,2	3.50				2105	432	0.205			2105	572	0.272	
Elegance Road	d SB	LT	D1	3,4	3.50	15.0		100	1786	195	0.109	0.109	100	1786	216	0.121	0.12
		SA	D2	3,4	3.50				2105	224	0.106			2105	178	0.085	
		SA+RT		3,4	3.50	18.0		41	2035	216	0.106		65	1997	169	0.085	
		RT	D4	3,4	3.50	15.0		100	1914	204	0.107		100	1914	162	0.085	
pedestrian pha	ase		Ep	1,2		min c	rossing	time =	12	sec	GM +	10	sec F	GM =	22	sec	
			Fp	1,2,3,4			rossing		5		GM +	7	sec F		12	sec	
			Gp	2,3		min c	rossing	time =	5	sec	GM +	5	sec F	GM =	10	sec	
AM Tartie Flance	-			DM T#-	<u> </u>										Matai		
AM Traffic Flow (pcu/h		→ 105	N	PM Traffic	Flow (pcu/hr			-046	N		00(W-3.25		S=2080+10		Note:	on Improv	romont
	291	195	1			272	¥	216	1	S _M =S÷(1+	1.5f/r)	S	_M =(S-230)	÷(1+1.5f/r)	vvorks p	roposea II	n
	35 · 785	03	\	_		654	237		`			Peak		Peak	Develop	Council Tr	
	703					004					0.641		2+3+5 0.621		Discussi	rt Commit on Paper	
	8	865 🕶	_				1145	←	_	Sum y	15		20		3/2023		
	706	↓ 576				531		↓ 403		C (s)	118		108			Peak, State e : 2>4>5	
157	7← 338				288	†	319			practical y	0.786		0.733			Peak, St	
										R.C. (%)	23%		18%		Sequenc	e : 2>3>5	5>2
1		2				3	D4 D2	D2 D1		4	D4 D2	D2 D1		5			
A1 ————————————————————————————————————		A1 — A2 —		\Rightarrow			1 1				1 1			† † ſ	→		
/ VE	•	72					لِـ				لِـ						
=	c	2	\leftarrow		— C3 — C2		\neg	ţ			\neg	ţ		B3 B4 B5			
Fp, √ ← Ep	. C	1 Fp,▼ .	E p	Gp ▶.		Fp▼		Gp V		Fp▼				┪∐		↓	— C1
Married .		****		*****		AL.		****		A control					13		
AM	l,	/G =			I/G =				I/G =	5			I/G =	10		I/G =	3
PM	l.	/G =			I/G =	7			I/G =	7			I/G =	6		I/G =	3

Junction:	Kwun Tong														Job Nu	mber:	
Scenario: Design Year:	With the Pro	oposed Dev Designe					-	Checke	d By:					Date:	19 Se		31 2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %		AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Kwun Tong Ro	and ER	SA	A1	1,2	3.20		Gradient		(pcu/hr) 1935	(pcu/hr) 379	0.196			(pcu/hr) 1935	(pcu/hr) 316	0.163	
rtwaii rong rt	Jau LD	SA	A2	1,2	3.20				2075	406	0.196			2075	338	0.163	
Lai Yip Street	NB	SA+LT	B1	5	3.40	15.0		42	1876	375	0.200		83	1805	346	0.192	
•		SA	B2	5	3.30				2085	416	0.200			2085	400	0.192	
		SA	В3	5	3.30				2085	416	0.200			2085	401	0.192	
Elegance Roa	d NB	SA	B4	5	3.50				2105	361	0.171			2105	297	0.141	
		SA+RT	B5	5	3.50	18.0		3	2100	360	0.171		17	2076	293	0.141	
		RT	B6	5	3.50	15.0		100	1914	329	0.172		100	1914	269	0.141	
Kwun Tong Ro	oad WB	LT	C1	1,5	3.30	15.0		100	1768	580	0.328	0.328	100	1768	407	0.230	0.230
		SA	C2	1,2	3.50				2105	433	0.206	0.206		2105	573	0.272	0.272
		SA	C3	1,2	3.50				2105	432	0.205			2105	572	0.272	
Elegance Roa	d SB	LT	D1	3,4	3.50	15.0		100	1786	195	0.109	0.109	100	1786	216	0.121	0.121
		SA	D2	3,4	3.50				2105	224	0.106			2105	178	0.085	
		SA+RT	D3	3,4	3.50	18.0		41	2035	216	0.106		65	1997	169	0.085	
		RT	D4	3,4	3.50	15.0		100	1914	204	0.107		100	1914	162	0.085	
pedestrian pha	ase		Ep	1,2			rossing		12		GM +	10	sec F		22	sec	
			Fp Gp	1,2,3,4 2,3			rossing rossing		5 5		<u>GM +</u> GM +	7 5	sec F		12 10	sec	
			Op	2,0		11111110	rocomig		J	000	O.W. 1	Ŭ	0001	O.W. =	10	000	
AM Traffic Flow (pcu/h	nr)		N	PM Traffic	low (pcu/hr)				N.	S=1940+1	00(W-3.25) :	S=2080+10	0(W-3 25)	Note:		
	291 ←	→ 195	₹ N			272	\leftarrow	216	₹ N	S _M =S÷(1+	-	•		÷(1+1.5f/r)	1) Junctio	on Improv	rement
	35	53	/				237		/		AM	Peak	PMI	Peak	District C		
	785			-		654					2+4+5		2+3+5		Transpor		
										Sum y	0.643		0.623		Discussion 3/2023	on Paper	No.
	8	865	_				1145	\downarrow	_	L (s)	15		20		2) In AM	Peak, Sta	age
	712 ♦	580				540 ♦		407		C (s)	118		108		Sequenc	e : 2>4>5	>2
157	7← → 338				288	 	319			practical y	0.786 22%		0.733		3) In PM Sequenc	Peak, Sta e : 2>3>5	
1		2				3				4	•			5			
A1	=	A1 — A2 —		===			D4 D3	D2 D1			D4 D3	D2 D1		 	→		
Fp Ep	c	2	Ep	Gp V	C3 C2	Fp .▼	\neg	Gp		Fp▼	\neg	†		B3 B4 B5		Ţ	— _{C1}
AM	l.	/G =			I/G =	<u> </u>			I/G =	5			I/G =	B1 B2 B	3	I/G =	3
PM	I.	/G =			I/G =	7			I/G =	7			I/G =	6		I/G =	3

Junction:	Kwun Tong														Job Nu	mber:	
Scenario: Design Year:	With the Pro	oposed Dev Designe						mean ra						Date:	19 Se		32 r 2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical y
Kwun Tong Ro	oad EB	SA	A1	1,2	3.20		Gradient		1935	379	0.196			1935	316	0.163	
<u> </u>		SA	A2	1,2	3.20				2075	406	0.196			2075	338	0.163	
Lai Yip Street	NB	SA+LT	B1	5	3.40	15.0		42	1876	375	0.200		82	1807	350	0.194	
		SA	B2	5	3.30				2085	417	0.200			2085	404	0.194	
		SA	В3	5	3.30				2085	416	0.200			2085	404	0.194	
Elegance Roa	d NB	SA	B4	5	3.50				2105	362	0.172			2105	300	0.143	
		SA+RT	B5	5	3.50	18.0		3	2100	361	0.172		17	2076	296	0.143	
		RT	В6	5	3.50	15.0		100	1914	328	0.171		100	1914	274	0.143	
Kwun Tong Ro	oad WB	LT	C1	1,5	3.30	15.0		100	1768	581	0.329	0.329	100	1768	414	0.234	0.234
		SA	C2	1,2	3.50				2105	433	0.206	0.206		2105	573	0.272	0.272
		SA	C3	1,2	3.50				2105	432	0.205			2105	572	0.272	
Elegance Roa	d SB	LT	D1	3,4	3.50	15.0		100	1786	195	0.109	0.109	100	1786	216	0.121	0.121
		SA	D2	3,4	3.50				2105	224	0.106			2105	178	0.085	
		SA+RT	D3	3,4	3.50	18.0		41	2035	216	0.106		65	1997	169	0.085	
		RT	D4	3,4	3.50	15.0		100	1914	204	0.107		100	1914	162	0.085	
pedestrian pha	ase		Ep	1,2			rossing		12		GM +	10	sec F		22	sec	
			Fp Gp	1,2,3,4 2,3			rossing rossing		5 5		GM + GM +	7 5	sec F		12 10	sec	
AM Traffic Flow (pcu/h	^{r)} 291 ←	195	N	PM Traffic I	Flow (pcu/hr)	272		216	V N		00(W-3.25		S=2080+10 M=(S-230)		Note:	on Improv	/ement
	•	53				212	↓ 237	210	\	S _M =S÷(1+					Works pr	oposea ii	1
	785			_		654					2+4+5	Peak	2+3+5	Peak	Developr Transpor	ment and	tee
										Sum y	0.644		0.627		Discussion 3/2023		
	;	865	_				1145	•	_	L (s)	15		20		2) In AM	Book St	200
	713	♦ 581				551		♦ 414		C (s)	118		108		Sequenc		
157	7← → 338	3			288	$\stackrel{\longleftarrow}{\longrightarrow}$	319			practical y	0.786		0.733		3) In PM	Peak, Sta e : 2>3>5	
	1					I				R.C. (%)	22%		17%		Ocquerio	0.27070	
A1	==	A1 — A2 —		==	— сз	3	D4 D3	D2 D1		4	D4 D3	D2 D1		5 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	→		
Fp Ep	G3 C2 C1 Fp. Ep					Fp .▼	*	Gp V		Fp▼	*	*		→ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑			— C1
AM	l	/G =			I/G =				I/G =	5			I/G =	10		I/G =	3
PM	Į	/G =			I/G =	7			I/G =	7			I/G =	6		I/G =	3

Junction:	Hoi Bun Ro	oad / Lai Yip	Street												Job Nu	mber:	J7409
Scenario:	Existing Co	ondition														P.	33
Design Year:	2025	Design	ed By:				-	Checke	d By:				-	Date:	19 Se	ptembe	2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
Hoi Bun Road	EB	LT	A1	1	3.30	15.0	Gradient	100	1768	158	0.089	0.089	100	1768	149	0.084	0.084
		SA	A2	1	3.30				2085	139	0.067			2085	147	0.071	
Hoi Bun Road	WB	SA	B1	1,2	3.30				1945	326	0.168			1945	238	0.122	
		RT	B2	2	3.30	20.0		100	1940	213	0.110	0.110	100	1940	256	0.132	0.132
Lai Yip Street	SB	LT	C1	3	3.30	18.0		100	1795	268	0.149		100	1795	119	0.066	
		RT^	C2	3	3.30	25.0		100	1869	262	0.140	0.149	100	1869	210	0.112	
		RT^	C3	3	3.30	22.0		100	1854	259	0.140		100	1854	208	0.112	0.112
pedestrian pha	ase		Dp	1,2,4		min c	rossing	time =	12	sec	GM +	9	sec F	GM =	21	sec	
			Ep	3,4			rossing		7		GM +	6	sec F		13	sec	
			Fp	4		min c	rossing	time =	7	sec	GM +	7	sec F	GM =	14	sec	
_																	
AM Traffic Flow (pcu/h	nr)		N	PM Traffic	Flow (pcu/hr)				, N	S=1940+1	00(W-3.25		S=2080+10		Note:		
			1				Ī		/	S _M =S÷(1+			S _M =(S-230)	, ,	^ Site F	actor is	applie
	521 ←	268	•			418	₩	119	,			Peak	PM	Peak			
										Sum y	0.348		0.329				
158					149					L (s)	35		35				
<u> </u>	139	213 †		_	<u></u>	147		256 ↑		C (s)	118		108				
	326	5 ← —					238 🕶			practical y	0.633		0.608				
										R.C. (%)	82%		85%				
1	4	2		4		3				4	_						
1 A1	4 ······▶ Dp	2		4 ·····• > Dp		3 ◀…	> Ep ←	C3 C2 C1	*	4	> Ep	↓▶ Dp					
1 A1 A2	∢▶ Dp	2		•·····• ► Dp		3 ◀…		C3 C2 C1	+	4	≽ Ep	Dp					
	D p Dp	2		Dp Dp B2 ↑ B1 ← B1		3 ◀…		C3 C2 C1	•	4	▶	Dp Fp					
→ A2	B1 ←	2 VG = 8	G =	B2 	//G =			C3 C2 C1	→ I/G =	4 →…	▶ Ep	Fp	I/G =	3	G =		
→ A2	B1 ←	2 VG = 8 VG = VG = 8	G = G = G =	B2 	VG =	5	Ep ←	C3 C2 C1	I/G = I/G =			Fp 14	I/G = I/G =		G = G =		

Junction:	Hoi Bun Ro	ad / Lai Yip	Street												Job Nu	mber:	J7409
Scenario:	Without the															P.	
Design Year:	2032	Design	ed By:				-	Checke	d By:				•	Date:	19 Se	ptembe	2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
Hoi Bun Road	EB	LT*	A1	1	3.65	15.0	Gradient	100	1800	250	0.139	0.139	100	1800	239	0.133	0.133
		SA*	A2	1	3.65				2120	265	0.125			2120	250	0.118	
Hoi Bun Road	WB	SA	B1	1,2	3.30	00.0		400	1945	429	0.221	0.474	400	1945	400	0.206	0.47
		RT	B2	2	3.30	20.0		100	1940	331	0.171	0.171	100	1940	341	0.176	0.176
Lai Yip Street	SB	LT	C1	3	3.30	18.0		100	1795	365	0.203	0.226	100	1795	307	0.171	
		RT^	C2	3	3.30	25.0		100	1869	422	0.226		100	1869	363	0.194	
		RT^	C3	3	3.30	22.0		100	1854	419	0.226		100	1854	361	0.195	0.19
pedestrian pha	ase*		Fp	4		min c	rossing	time =	7	sec	GM +	7	sec F	GM =	14	sec	
			Gp	4		min c	rossing	time =	8	sec	GM +	8	sec F	GM =	16	sec	
			Нр	4		min c	rossing	time =	10	sec	GM +	9	sec F	GM =	19	sec	
AM Traffic Flow (pcu/hi	ır)		N	PM Traffic	Flow (pcu/hr))			N	S=1940+1	100(W-3.25) :	S=2080+10	0(W-3.25)	Note:		
							- 1			S _M =S÷(1+	·1.5f/r)	S	6 _M =(S-230)	÷(1+1.5f/r)	*Junction	on ement S	cheme
	841	365	`			724	\downarrow	307	`			Peak		Peak	by Othe	er Projec	t
										Sum y	0.536		0.503		^ Site F	actor is	applie
250					239					L (s)	35		35				
<u></u>	265	331		_	\perp	250		341		C (s)	118		108				
	429	, —					400			practical y	0.633		0.608				
										R.C. (%)	18%		21%				
		2				3				4							
1										4							
1 A1							+	 	>		Нр	†					
A1 A2							+	C3 C2 C1	•	•	Hp	•					
	B1 ←			B2 ↑	_		+	J ₄ J L C3 C2 C1	•	•	Hp Gp	Fp					
		1/G = 8	G =		I/G =	5	← G =	C3 C2 C1	I/G =	8	Gp G =	14	I/G =	3	G =		
→ A2	=	1/G = 8 1/G = 1/G = 8	G = G =		//G =		G = G = G =	C3 C2 C1	I/G = I/G =		Gp	14	I/G = I/G =		G = G = G =		

Scenario: Design Year: Hoi Bun Road E		Design														P.	35
		Design	ed By:														
Hoi Bun Road E							-	Checke	d By:					Date:	19 Se	ptembe	r 2025
Hoi Bun Road E	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
	 ΞΒ	LT*	A1	1	3.65	15.0	Gradient	100	1800	250	0.139	0.139	100	1800	239	0.133	0.133
		SA*	A2	1	3.65				2120	265	0.125			2120	250	0.118	
Hoi Bun Road V	NB	SA	B1	1,2	3.30	20.0		400	1945	433	0.223	0.474	400	1945	403	0.207	0.47
		RT	B2	2	3.30	20.0		100	1940	331	0.171	0.171	100	1940	341	0.176	0.17
Lai Yip Street S	SB	LT	C1	3	3.30	18.0		100	1795	365	0.203		100	1795	307	0.171	
		RT^	C2	3	3.30	25.0		100	1869	424	0.227		100	1869	365	0.195	
		RT^	C3	3	3.30	22.0		100	1854	421	0.227	0.227	100	1854	363	0.196	0.196
pedestrian phas	se*		Fp	4			rossing t		7		GM +	7	sec F		14	sec	
			Gp Hp	4			rossing t		10		GM + GM +	8 9	sec F sec F		16 19	sec	
AM Traffic Flow (pcu/hr)				PM Traffic	Flow (pcu/hr)					S=1940+1	00(W-3.25) 5	S=2080+10	0(W-3 25)	Note:		
	Ī		ĽΝ				1		√ _N	S _M =S÷(1+			_M =(S-230)		*Junctio		
		_	/						/		AM	Peak	PM I	Peak		ement S er Projec	
	845	365				728		307			1+2+3		1+2+3		^ Site F	actor is	applie
050					000					Sum y	0.537		0.504				-11
250 1	005	331			239	050		341		L (s)	35		35				
	265 433			_	_ 	250	403 ←	1		C (s)	118 0.633		108 0.608				
	400						403			R.C. (%)	18%		21%				
I		2				3		111		4							
A1 A2							+	C3 C2 C1	•	4	Нр	-					
	B1 ←			B2 ↑	_					.	Gp	Fp					
M 0	I/G	i = 8	G =		I/G =	5	G =		I/G =	8	G =	14	I/G =	3	G =		
AM G =			G =		I/G =		G =		I/G =		G =		I/G =		G =		
AM G = G = PM G =	I/G	i = 8	G =		I/G =		G =		I/G =		G =		I/G =		G =		

Junction:		oad / Lai Yip		-+ (0	ziti it . T		-l ti		4-1						Job Nu	mber:	
Scenario: Design Year:		roposed Dev Design			Sitivity I			Checke						Date:	19 Se	ptembe	36 r 2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical y
Hoi Bun Road	EB	LT*	A1	1	3.65	15.0	Ordaloni	100	1800	250	0.139	0.139	100	1800	239	0.133	0.133
		SA*	A2	1	3.65				2120	265	0.125			2120	250	0.118	
Hoi Bun Road	WB	SA	B1	1,2	3.30				1945	437	0.225			1945	404	0.208	
		RT	B2	2	3.30	20.0		100	1940	331	0.171	0.171	100	1940	341	0.176	0.176
Lai Yip Street	SB	LT	C1	3	3.30	18.0		100	1795	365	0.203		100	1795	307	0.171	
		RT^	C2	3	3.30	25.0		100	1869	425	0.227		100	1869	369	0.197	
		RT^	C3	3	3.30	22.0		100	1854	421	0.227	0.227	100	1854	366	0.197	0.197
pedestrian pha	ase*		Fp	4		min c	rossing	time =	7		GM +	7	sec F		14	sec	
			Gp Hp	4			rossing rossing		10		GM + GM +	9	sec F		16 19	sec sec	
AM Traffic Flow (pcu/h	r)			PM Traffic	Flow (pcu/hr))			N.	S=1940+1	00(W-3.25) !	S=2080+10	0(W-3 25)	Note:		
		1	∠ _N						₹ _N	S _M =S÷(1+			S _M =(S-230)		*Junctio		
			/						/		AM	Peak	PM I	Peak		ement S er Projec	
	846	365				735		307			1+2+3		1+2+3		^ Site F	actor is	applied
										Sum y	0.537		0.506				
250 1		331			239 1			341		L (s)	35		35				
	265 437	†		_		250	404 ←	1		C (s)	118 0.633		108 0.608				
	437	1					404			practical y	18%		20%				
1 A1 A2		2				3	4	C3 C2 C1	•	4	Нр	·····					
	B1 ←			B2 L B1 ←						•	Gp	Fp ▼					
AM G =		I/G = 8	G = G =		I/G =		G = G =		I/G =	8	G = G =		I/G =	3	G = G =		
PM G =		I/G = 8	G =		I/G =		G =		I/G =	8	G =		I/G =	3	G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

						9		1011 /										
Junction:	Lai Yip S	treet / Hung To	Road												Job Nu	mber:	J7409	
Scenario:	Existing (Condition														P.	37	
Design Year:	2025	Designe	ed By:	By: Checked By: Date:									Date:	22 September 2025				
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical	
						rtaarao (iii)	Gradient	running 70	(pcu/hr)	(pcu/hr)			ranning 70	(pcu/hr)	(pcu/hr)		Omiodi	
_ai Yip Street	SB	SA	A1	1	3.50				1965	331		0.169		1965	184	0.094		
		SA	A2	1	3.50				2105	355	0.169			2105	197	0.094		
_ai Yip Street	NB	SA	B1	1	3.50				1965	313	0.159			1965	244	0.124	0.124	
		SA	B2	1	3.50				2105	336	0.160			2105	261	0.124		
	I W/D	LT	C1	2	3.50	15.0												
Hung To Road	I VV D	LT+RT	C2*	2	3.50	18.0		100	1846	504	0.273	0.273	100	1846	526	0.285	0.28	
		RT	C3	2	3.50	25.0		100	1040	304	0.270	0.210	100	1040	020	0.200	0.200	
																	_	
pedestrian pha	ase		Dp	1		min c	rossing	time =	7	sec	GM +	16	sec F	GM =	23	sec		
AM Traffic Flow (pcu/h	ir)		N	PM Traffic I	Flow (pcu/hr)				N	S=1940+1	00(W-3.25) :	S=2080+10	0(W-3.25)	Note:			
			7							S _M =S÷(1+	1.5f/r)	s	S _M =(S-230)	÷(1+1.5f/r)		that phas		
	♦ 686		\			♦ 381			\		AM	Peak	PM	Peak	on-street	t parking a	activitie	
		305						265			1+2		1+2			tor is appl		
		† —						<u></u>		Sum y	0.442		0.409					
649 ★		♦ 199			505 			♦ 261		L (s)	14		11					
		100						201		C (s)	120		108					
l					ı					practical y	0.795 80%		0.808 98%					
		12								R.C. (%)	00 /6	l	90 /0					
A2	, ↓ 2 A1 •			<u> </u>	— сз													
D4 D0	D D	p			— C2 — C1													
B1 B2 ↑ ↑				ţ														
AM G =	:	I/G = 10	G =		I/G =	6	G =		I/G =		G =		I/G =		G =			
G =	:	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =			
		I/G = 6	G =		I/G =	7	G =		I/G =		G =		I/G =		G =			
PM G =																		

Junction:	Lai Yip Str	reet / Hung To	o Road												Job Nu	mber:	J7409
Scenario:	Without th	e Proposed [Develop	ment												P.	38
Design Year:	2032	Designe	ed By:				-	Checke	d By:				-	Date:	22 Septembe		r 2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical
_ai Yip Street	SB	SA	A1	1	3.50		Gradient		1965	449	0.228	0.228		1965	309	0.157	
'		SA	A2	1	3.50				2105	480	0.228			2105	331	0.157	
_ai Yip Street	NB	SA	B1	1	3.50				1965	402	0.205			1965	373	0.190	0.19
•		SA	B2	1	3.50				2105	430	0.204			2105	400	0.190	
Hung To Road	d WB	LT	C1	2	3.50	15.0											
		LT+RT	C2*	2	3.50	18.0		100	1846	716	0.388	0.388	100	1846	742	0.402	0.40
		RT	C3	2	3.50	25.0											
pedestrian phase			Dp	1		min c	rossing	time =	7	sec	GM +	16	sec F	GM =	23	sec	
AM Traffic Flow (pcu/r	nr)		N	PM Traffic	Flow (pcu/hr)	<u> </u>			N		100(W-3.25		S=2080+10		Note:	that phas	os C1
	929		1			↓ 640			1				S _M =(S-230)		Assume that phases C ² and C3 are blocked due on-street parking activit		
	323	369				040		365			1+2	Peak	1+2			ing To Ro for is appl	
		†						<u> </u>		Sum y	0.616		0.592				
832		↓ 347			773			↓ 377		L (s)	14		11				
		347						311		C (s)	120		108				
l					ļ					practical y	0.795 29%		0.808				
I		2															
Ā	12 A1 ▲			†	— сз												
	Dp			<u></u>	— C2 — C1												
B1 B2				+													
AM G:	=	I/G = 10	G =		I/G =	6	G =		I/G =		G =		I/G =		G =		
G:		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G:		I/G = 6	G =		I/G =	7	G =		I/G =		G =		I/G =		G =		
G :	=	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

						J			ilalys									
Junction:	Lai Yip St	reet / Hung To	Road											_	Job Nu	mber:	J7409	
Scenario:	With the F	Proposed Dev	elopmer	nt												P.	39	
Design Year:	2032	Designe	ned By: Checked By: Dat										Date:	22 September 2025				
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y	
				Olago		rtadiao (iii)	Gradient	ranning 70	(pcu/hr)	(pcu/hr)			running 70	(pcu/hr)	(pcu/hr)		Ontious y	
Lai Yip Street	SB	SA	A1	1	3.50				1965	450	0.229	0.229		1965	311	0.158		
		SA	A2	11	3.50				2105	483	0.229			2105	333	0.158		
Lai Yip Street	NB	SA	B1	1	3.50				1965	405	0.206			1965	378	0.192	0.192	
		SA	B2	1	3.50				2105	433	0.206			2105	404	0.192		
Hung To Road	d WB	LT DT	C1	2	3.50	15.0		400	40.40	740	0.000		400	40.40	7.10	0.400	0.400	
		LT+RT	C2*	2	3.50	18.0		100	1846	716	0.388	0.388	100	1846	742	0.402	0.402	
		RT	C3	2	3.50	25.0												
pedestrian pha	ase		Dp	1		min c	rossing	time =	7	sec	GM +	16	sec F	GM =	23	sec		
AM Traffic Flow (pcu/h	ir)		N	PM Traffic I	Flow (pcu/hr)				N	S=1940+1	100(W-3.25)	S=2080+10	0(W-3.25)	Note:			
			7						7	S _M =S÷(1+	-1.5f/r)	8	S _M =(S-230)	÷(1+1.5f/r)		that phas		
	↓ 933		\			↓ 644			\		AM	Peak	PM	Peak	on-stree	are blocke t parking a	activities	
		369						365			1+2		1+2			ing To Ro tor is appl		
		<u>†</u>						<u>†</u>		Sum y	0.617		0.594					
838		↓			782					L (s)	14		11					
†		347			†			377		C (s)	120		108					
										practical y	0.795		0.808					
ı					Į.					R.C. (%)	29%		36%					
1		2																
				4														
Ā	7 ♥ 2 A1 ▲ Dp	,		<u> </u>	— C3 — C2													
B1 B2	¥			<u> </u>	— C1													
1				*														
AM G =	:	I/G = 10	G =		I/G =	6	G =		I/G =		G =		I/G =		G =			
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =			
PM G =		I/G = 6	G =		I/G =		G =		I/G =		G =		I/G =		G =			
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =			

Junction:	Lai Yip Str	eet / Hung To	o Road												Job Nu	mber:	J7409	
Scenario:	With the P	roposed Dev	elopmei	nt (Sen	sitivity T	est for a	dopting	mean ra	te)							P.	40	
Design Year:	2032	Designe	ed By:				-	Checke	d By:				•	Date:	22 Se	eptembe	r 2025	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical y	
Lai Yip Street S	SB	SA	A1	1	3.50				1965	451	0.230	0.230		1965	314	0.160		
		SA	A2	1	3.50				2105	483	0.229			2105	337	0.160		
Lai Yip Street I	NB	SA	B1	1	3.50				1965	405	0.206			1965	383	0.195	0.195	
		SA	B2	1	3.50				2105	434	0.206			2105	410	0.195		
Hung To Road	WB	LT	C1	2	3.50	15.0												
		LT+RT	C2*	2	3.50	18.0		100	1846	716	0.388	0.388	100	1846	742	0.402	0.402	
		RT	C3	2	3.50	25.0												
pedestrian pha	150		Dp	1		min c	rossing	time –	7	SAC	GM +	16	sec F	GM -	23	sec		
pedestrian pria	36		Бр	'		111111111111111111111111111111111111111	10331119	ume =		360	OWI +	10	3601	OIVI =	20	360		
AM Traffic Flow (pcu/hr) 		." ."							S=1940+100(W-3.25)					25) Note: Sf(r) Assume that phases C1			
	934					↓ 651		S _M =S÷(1+1.5f/r) AM Peak						÷(1+1.5f/r) Peak	and C3 are blocked due to on-street parking activities			
	934	369				031		365			1+2	Peak	1+2	Peak	along Hu	ing To Ro tor is appl	ad &	
		†								Sum y	0.617		0.597					
839		↓			793			↓		L (s)	14		11					
Ī		347			Ī			377		C (s)	120		108					
					l					practical y	0.795 29%		0.808 35%					
1		2								K.O. (76)	2070	I	0070					
				*														
A2	2 Å1 🛕 Dp			<u> </u>	C3 C2													
B1 B2	+			†	— C1													
AM G =		I/G = 10	G =		I/G =	6	G =		I/G =	I	G =		I/G =		G =			
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =			
PM G =		I/G = 6	G =		I/G =	7	G =		I/G =		G =		I/G =		G =			
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =			

Figure No. SP9 J7409 Checked by CYYNCM

Scale in A4 1:300

CKM Asia Limited Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong

Tel: (852) 2520 5990 Fax: (852) 2528 6343 Email: mail@ckmasia.com.hk

19 SEP 2025

Figure Title

SWEPT PATH OF LGV ENTERING AND LEAVING THE LGV LOADING / UNLOADING BAY LGV-2 ON B1/F

 CKM Asia Limited
Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong Tel: (852) 2520 5990 Fax: (852) 2528 6343

Email: mail@ckmasia.com.hk

SWEPT PATH OF LGV ENTERING AND LEAVING THE LGV LOADING / UNLOADING BAY LGV-5 ON B1/F

Designed by | Drawn by | Checked by | C Y Y | N C M | K C |
Scale in A4 | Date | 1 : 300 | 19 SEP 2025

Figure Title

Figure No. **SP11** J7409

CKM Asia Limited Traffic and Transportation Planning Consultants 21st Floor, Methodist House, 36 Hennessy Road,

Wan Chai, Hong Kong

Tel: (852) 2520 5990 Fax: (852) 2528 6343 Email: mail@ckmasia.com.hk

SWEPT PATH OF LGV ENTERING AND LEAVING THE LGV LOADING / UNLOADING BAY LGV-7 ON B1/F

Checked by CYYNCM Scale in A4

19 SEP 2025 1:300

Figure Title

Figure No. J7409

SP12 Checked by CYY NCM

19 SEP 2025 1:300

CKM Asia Limited

Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong

Tel: (852) 2520 5990 Fax: (852) 2528 6343

Email: mail@ckmasia.com.hk

Figure Title

SWEPT PATH OF PRIVATE CAR ENTERING AND LEAVING THE CAR PARKING SPACE CP-1 ON B1/F

Figure No. **SP13** J7409

Checked by

CYY NCM

19 SEP 2025 1:300

CKM Asia Limited

Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong

Tel: (852) 2520 5990 Fax: (852) 2528 6343 Email: mail@ckmasia.com.hk

Figure Title

SWEPT PATH OF PRIVATE CAR ENTERING AND LEAVING THE CAR PARKING SPACE CP-4 ON B1/F

SF 1 4 C signed by Drawn by Checked by C Y Y N C M K C

| Wan Chai, Ho | Tel: (852) 252 | 1: 300 | 19 SEP 2025 | Email: mail@

Figure Title

SWEPT PATH OF PRIVATE CAR ENTERING AND LEAVING THE CAR PARKING SPACE CP-10 ON B1/F

CKM Asia Limited

Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong

Tel: (852) 2520 5990 Fax: (852) 2528 6343 Email: mail@ckmasia.com.hk

Car Lift Analysis

Job Title
Proposed Minor Relaxation of Plot Ratio and Building Height Restrictions for
Proposed Hotel Use in "Other Specified Uses" annotated "Business" Zone, 107-109
Wai Yip Street, Kwun Tong

Ground floor to typical car park floor (m)	5.00
Average Speed (m/s)	0.50
Travel time (s)	10.00

Activity	Time (s)
Car lift travels from ground floor to typical car park floor	10
Lift door opens	5
Car exits lift in foward gear on typical car park floor	5
Car enters lift in reverse gear on typical car park floor	10
Door closes	5
Car lift travels from typical car park floor to ground floor	10
Lift door opens	5
Car exits lift in forward gear on ground floor	5
Car enters lift in reverse gear on ground floor	10
Door closes	5
<u>Tot</u>	<u>al</u> 70
Number of lift servers, k	1
Number of waiting space(s)	1
Cycle time ω (s)	70
Arrival rate λ (veh / hr)	18
Service rate μ of one lift server (veh / hr)	51

Number of Cars N	Probability of Exact N Cars in the Lift System	Probability of N Cars or Less in the Lift System	Probability of More Than N Cars in the Lift System
0	65.00%	65.00%	35.00%
1	22.75%	87.75%	12.25%
2	7.96%	95.71%	4.29%
3	2.79%	98.50%	1.50%
4	0.98%	99.47%	0.53%
5	0.34%	99.82%	0.18%
6	0.12%	99.94%	0.06%
7	0.04%	99.98%	0.02%

Conclusion

The probability of a vehicle arriving when 1 car lift and 1 waiting space are occupied is 4.29%.

Formulae: [A] [B] Floor Level (m) Distance No. of parking [A] * [B] from G/F spaces 8/F 7/F 6/F 5/F 4/F 3/F 2/F 1/F G/F 0.00 0.0 0 0 B₁/F -5.00 5.0 18 90 B2/F B3/F B4/F B5/F B6/F B7/F B8/F total parking typical floor distance spaces 5 18

Note:

k is the number of lift servers.

 λ is the arrival rate in vehicles per hour.

 μ is the service rate of a lift server in vehicles per hour.

N $1/N!*(\lambda/\mu)^{\Lambda}$ summation from N=0 to N=k-1

	(1)	our mandi
0	1	1
1	0	1
2	0	1
3	0	1
4	0	1
5	0	1
6	0	1
7	0	1
8	0	1
9	0	1
10	0	1

The assessment is based on the mutli-server queuing (M/M/N) theory, and the equations applied are listed below:

Probability of having exactly zero cars in the lift system:

$$P(0) = \frac{1}{\left[\sum_{N=0}^{k-1} \frac{1}{N!} \left(\frac{\lambda}{\mu}\right)^{N}\right] + \frac{1}{k!} \left(\frac{\lambda}{\mu}\right)^{k} \frac{k\mu}{k\mu - \lambda}}$$

Probability of having exactly N cars in the lift system:

For N < k:

$$P(N) = \frac{1}{N!} \left(\frac{\lambda}{\mu}\right)^{N} P(0)$$

For $N \ge k$:

$$P(N) = \frac{1}{k!k^{N-k}} \left(\frac{\lambda}{\mu}\right)^{N} P(0)$$

k - -number of lift servers

λ - -arrival rate

μ - -service rate

(資料來源:由起動九龍東辦事處提供) (Source: Provided by Energizing Kowloon East Office) 參考編號 REFERENCE No. M/K14S/23/35 繪圖 DRAWING 5b