Appendix 5

Traffic Impact Assessment

Traffic Impact Assessment Final Report August 2025

Prepared by: CKM Asia Limited

CONTENTS

<u>CHA</u>	<u>PTER</u>	<u>PAGI</u>
1.0	INTRODUCTION Background Scope of the Assessment Contents of the Report	1
2.0	THE EXISTING SITUATION The Subject Site Traffic Survey Operational Performance of the Surveyed Junctions Pedestrian Facilities Availability of Public Transport Facilities	2
3.0	THE PROPOSED DEVELOPMENT Development Parameters and Provision of Internal Transport Facilities Reasons for Deviation from the HKPSG Maximum Recommendation Layout Plans Swept Path Analysis Vehicle Lift Analysis Traffic Management Plan	7
4.0	TRAFFIC IMPACT Design Year Traffic Forecast Estimated Traffic Growth Rate from 2031 to 2032 Planned Developments in the Vicinity of the Proposed Development Traffic Generated by the Proposed Development Planned Junction Improvement Schemes 2032 Traffic Flows 2032 Junction Operational Performance	10
5.0	PEDESTRIAN ASSESSMENT Surveyed Pedestrian Locations Existing Pedestrian Flows Estimated growth from 2025 to 2032 Pedestrian Generated by the Proposed Development Year 2032 Pedestrian Flows Level-Of-Service ("LOS") Assessment	14

CONTENTS (Continued)

CHA	<u>PTER</u>	<u>PAGE</u>
6.0	CONCLUSION	17
	FIGURES Appendix 1 — Calculation Appendix 2 — Swept Path Analysis Appendix 3 — Vehicle Lift Analysis Appendix 4 — Planned Junction Improvement Schemes	

TABLES

NUMBER

- 2.1 Existing junction operational performance
- 2.2 Franchised bus and GMB services operating close to the subject site
- 3.1 Comparison of the HKPSG recommendations and the proposed provision
- 4.1 2021-based TPEDM data produced by Planning Department for Kwun Tong district
- 4.2 Planned developments in the vicinity of the Proposed Development
- 4.3 Comparison of trip generation rates
- 4.4 Traffic generation of the Proposed Development
- 4.5 Planned traffic improvement schemes in the vicinity of the Proposed Development
- 4.6 2032 junction operational performance
- 5.1 Surveyed pedestrian locations
- 5.2 Pedestrian generation rates of the surveyed hotels
- 5.3 Pedestrian generated by the Proposed Development
- 5.4 Extract of exhibit 18-3 of the HCM 2000
- 5.5 Effective width of surveyed footpaths
- 5.6 Year 2032 LOS of footpath without and with the Proposed Development
- 5.7 Year 2032 LOS of pedestrian crossing waiting areas without and with the Proposed Development

FIGURES

NUMBER

1.1	Location of the Subject Site
2.1	Location of the surveyed junctions
2.2	Layout of Junction of Hoi Bun Road / Shun Yip Street
2.3	Layout of junction of Wai Yip Street / Shun Yip Street
2.4	Layout of junction of Tai Yip Street / Service Lane
2.5	Layout of junction of Hong Tak Road / Tai Yip Street
2.6	Layout of junction of Tai Yip Street / Tai Yip Lane
2.7	Layout of junction of Kwun Tong Road / Hong Tak Road
2.8	Layout of junction of Wai Yip Street / Lai Yip Street
2.9	Layout of junction of Kwun Tong Road / Lai Yip Street
2.10	Layout of junction of Hoi Bun Road / Lai Yip Street
2.11	Layout of junction of Lai Yip Street / Hung To Road
2.12	Layout of junction of Tai Yip Street / Siu Yip Street
2.13	Layout of junction of Wai Yip Street / Siu Yip Street
2.14	2025 peak hour traffic flows
2.15	The public transport services provided in the vicinity of the Subject Site
3.1	G/F layout plan
3.2	B1/F layout plan

FIGURES (Continued)

NUMBER

- 4.1 Location of planned developments in the vicinity of the Proposed Development
- 4.2 Year 2032 peak hour traffic flows without the Proposed Development
- 4.3 Year 2032 peak hour traffic flows with the Proposed Development
- 4.4 The ingress / egress route for traffic generated by the Proposed Development (via Wai Yip Street)
- 4.5 The ingress route for traffic generated by the Proposed Development (via the Service Lane)
- 5.1 Observed existing pedestrian flows
- 5.2 Year 2032 pedestrian flows without the Proposed Development
- 5.3 Year 2032 pedestrian flows with the Proposed Development

1.0 INTRODUCTION

Background

- 1.1 The Subject Site is located at Nos. 107 109 Wai Yip Street in Kwun Tong, which is now vacant. **Figure 1.1** shows the location of the Subject Site.
- On 29th May 2020, the Town Planning Board ("TPB") approved the S16 Planning Application for Office, Shop and Services & Eating Place Uses at 107-109 Wai Yip Street (TPB ref: A/K14/780) ("Approved S16 Scheme"). The Applicant has the intention to construct a hotel ("Proposed Development") at the Subject Site.
- 1.3 CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned by the Applicant, to conduct a traffic impact assessment ("TIA") in support of Proposed Development. This report presents the findings of the TIA of the Proposed Development.

Scope of the Assessment

- 1.4 The main objectives of this TIA are as follows:
 - To assess the existing traffic issues in the vicinity of the Subject Site;
 - To quantify the traffic and pedestrians generated by the Proposed Development; and
 - To examine the traffic and pedestrian impact on the local road network in the vicinity of the Subject Site.

Contents of the Report

1.5 After this introduction, the remaining chapters contain the following:

Chapter Two - describes the existing situation;
Chapter Three - outlines the development proposal;
Chapter Four - presents the traffic impact analysis;

Chapter Five - presents the pedestrian impact analysis; and

Chapter Six - summarises the overall conclusion.

2.0 THE EXISTING SITUATION

The Subject Site

2.1 The Subject Site fronts onto Wai Yip Street to the south, and is bounded by a service lane to the north. The section of Wai Yip Street fronting the Subject Site is a dual carriageway 3-lane road.

Traffic Survey

- 2.2 To quantify the traffic flows at the junctions chosen for the capacity analysis, manual classified counts were conducted on Thursday, 12th June 2025 during the AM and PM peak periods. The locations of the surveyed junctions are presented in **Figure 2.1** and their layout is shown in **Figures 2.2 to 2.13**.
- 2.3 The surveyed junctions include the following:
 - J1: Hoi Bun Road / Shun Yip Street;
 - J2: Wai Yip Street / Shun Yip Street;
 - J3: Tai Yip Street / Service Lane;
 - J4: Hong Tak Road / Tai Yip Street;
 - J5: Tai Yip Street / Tai Yip Lane;
 - J6: Kwun Tong Road / Hong Tak Road;
 - J7: Wai Yip Street / Lai Yip Street;
 - J8: Kwun Tong Road / Lai Yip Street;
 - J9: Hoi Bun Road / Lai Yip Street;
 - J10: Lai Yip Street / Hung To Road;
 - J11: Tai Yip Street / Siu Yip Street and;
 - J12: Wai Yip Street / Siu Yip Street
- 2.4 The counts were classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. From the survey, the AM and PM peak hours were found to be between 0845 0945 and 1730 1830 hours respectively and the existing AM and PM peak hour traffic flows are presented in **Figure 2.14**.

Operational Performance of the Surveyed Junctions

2.5 The existing operational performance of the surveyed junctions is calculated based on the observed traffic counts and the analysis is undertaken using the methods outlined in Volume 2 of Transport Planning and Design Manual ("TPDM"). The existing operational performance of the surveyed junctions are summarised in **Table 2.1** and the detailed calculations are found in **Appendix 1**.

TABLE 2.1 EXISTING JUNCTION OPERATIONAL PERFORMANCE

Ref	Junction	Type of Junction	Parameter ⁽¹⁾	AM Peak	PM Peak
J1	Hoi Bun Road / Shun Yip Street	Signal	RC	56%	43%
J2	Wai Yip Street / Shun Yip Street	Signal	RC	66%	62%
J3	Tai Yip Street / Service Lane	Priority	RFC	0.010	0.010
J4	Hong Tak Road / Tai Yip Street	Priority	RFC	0.224	0.177
J5	Tai Yip Street / Tai Yip Lane	Priority	RFC	0.049	0.023
J6	Kwun Tong Road / Hong Tak Road	Priority	RFC	0.366	0.451
J <i>7</i>	Wai Yip Street / Lai Yip Street	Signal	RC	80%	87%
J8	Kwun Tong Road / Lai Yip Street	Signal	RC	60%	44%
J9	Hoi Bun Road / Lai Yip Street ⁽²⁾	Signal	RC	82%	85%
J10	Lai Yip Street / Hung To Road ⁽²⁾	Signal	RC	80%	98%
J11	Tai Yip Street / Siu Yip Street	Priority	RFC	0.322	0.403
J12	Wai Yip Street/ Siu Yip Street	Priority	RFC	0.421	0.361

Notes: (1) RC – Reserve Capacity

RFC – Ratio of Flow to Capacity

2.6 The results in **Table 2.1** indicate that the junctions now operate with capacities during the AM and PM peak hours.

Pedestrian Facilities

2.7 There are good pedestrian facilities provided in the vicinity of the Subject Site, including footpaths, and at-grade pedestrian crossings are provided at the signalised road junctions.

Availability of Public Transport Facilities

- 2.8 The Subject Site is well-served by various types of public transport services, including road-based franchised bus and public light bus. These services operate along Kwun Tong Road and Wai Yip Street within 500m or about 10 minutes' walk away. The Subject Site is located close to the Ngau Tau Kok MTR Station and the nearest entrance is at Lai Yip Street, which is some 400 metres or 6 minutes' walk away.
- 2.9 Details of the road-based public transport services operating in the vicinity of the Subject Site are shown in **Figure 2.15** and **Table 2.2**.

TABLE 2.2 FRANCHISED BUS AND GMB SERVICES OPERATING CLOSE TO THE SUBJECT SITE

Route	Routing	Frequency (minutes)
KMB 1A	Sau Mau Ping (Central) – Star Ferry	5 – 15
KMB 3D	Tsz Wan Shan (Central) – Kwun Tong (Yue Man Square)	4 – 16
KMB 5R	Kai Tak Cruise Terminal – Kwun Tong (apm) (Circular)	30
KMB 6P	Cheung Sha Wan (So Uk Estate) – Lei Yue Mun Estate	AM, PM Peak
KMB 11B	Kwun Tong (Tsui Ping Road) – Kowloon City Ferry	10 – 25
KMB 11C	Chuk Yuen Estate – Sau Mau Ping (Upper)	15 – 25
KMB 11D	Lok Fu – Kwun Tong Ferry	15 – 30
KMB 13D	Po Tat – Island Harbourview	15 – 25
KMB 13M	Kwun Tong (Elegance Road) – Po Tat (Circular)	15 – 30
KMB 14	Lei Yue Mun Estate – China Ferry Terminal	12 – 25
KMB 14B	Ngau Tau Kok – Lam Tin (Kwong Tin Estate)	15 – 25
KMB 14X	Yau Tong (Shung Tak Wai) – Tsim Sha Tsui (Circular)	15 – 30
KMB 15	Ping Tin – Hung Hom (Hung Luen Road)	12 – 20
KMB 15A	Ping Tin – Tsz Wan Shan (North)	20 – 30

⁽²⁾ Site factor applied to reflect kerbside / on-street activities

Route	Routing	Frequency
10.45.45.4		(minutes)
KMB 15X	Lam Tin (Kwong Tin Estate) – Hung Hom Station	AM, PM Peak
KMB 16	Lam Tin (Kwong Tin Estate) – Mong Kok (Park Avenue)	8 – 20
KMB 16P	Kwun Tong Ferry – Mong Kok (Park Avenue)	AM, PM Peak
KMB 17	Kwun Tong (Yue Man Square) – Ho Man Tin (Oi Man Estate)	5 – 20
KMB 23M	Lok Wah – Shun Lee (Circular)	12 – 20
KMB 28B	Choi Fook – Kai Tak (Kai Ching Estate)	15 – 25
KMB 28S	Kwun Tong (Yue Mun Square) – Lok Wah	AM Peak
KMB 33	Tsuen Wan West Station – Yau Tong	15 – 30
KMB 33B	Tsuen Wan West Station – Yau Tong	20 – 25
KMB 38	Kwai Shing (East) – Ping Tin	5 – 20
KMB 38P	Kwai Shing (Central) – Ping Tin	AM Peak
KMB 40	Tsuen Wan (Belvedere Garden) – Laguna City	12 – 25
KMB 40A	Ping Tin – Kwai Hing Station	AM, PM Peak
KMB 40B	Kwai Chung Estate – Ping Tin	AM Peak
KMB 40P	Kwun Tong Ferry – Tsuen Wan (Shek Wai Kok)	AM, PM Peak
KMB 42C	Tsing Yi (Cheung Hang Estate) – Lam Tin Station	5 – 15
KMB 49	Ching Fu Court – Tseung Kwan O Industrial Estate	AM, PM Peak
KMB 62P	Tuen Mun Central – Lei Yue Mun Estate	8 – 25
KMB 62X	Tuen Mun Central – Lei Yue Mun Estate	8 – 25
KMB 69C	Tin Yan Estate – Kwun Tong Ferry	AM, PM Peak
KMB 74C	Kau Lung Hang – Kwun Tong Ferry	AM Peak
KMB 74D	Kau Lung Hang – Kwun Tong Ferry	25 – 60
KMB 74E	Tai Mei Tuk – Kwun Tong Ferry	AM, PM Peak
KMB 74F	Kwun Tong Ferry – Education University of Hong Kong	AM Peak
KMB 74P	Kwun Tong Ferry – Tai Po Central	AM Peak
KMB 74X	Tai Po Central – Kwun Tong Ferry	3 – 15
KMB 80	Mei Lam – Kwun Tong Ferry	5 – 20
KMB 80A	Mei Lam – Kwun Tung Ferry	AM Peak
KMB 80P KMB 80X	Hin Keng – Kwun Tong Ferry	AM Peak
KMB 83A	Chun Shek – Kwun Tong Ferry Shui Chuen O – Kwun Tong Ferry	8 – 25 AM Peak
KMB 83X	Shui Chuen O – Kwun Tong Ferry Shui Chuen O – Kwun Tong Ferry	8 – 30
KMB 88X	Fo Tan Chung Yeung Estate – Ping Tin (Circular)	20 – 30
KMB 89	Lek Yuen – Kwun Tong Station	8 – 20
KMB 89B	Shatin Wai – Kwun Tong Station	10 – 25
KMB 89C	Heng On – Kwun Tong (Tsui Ping Road)	12 – 30
KMB 89D	Wu Kai Sha Station – Lam Tin Station	3 – 20
KMB 89P	Ma On Shan Town Centre – Lam Tin Station Bus Terminus	AM Peak
KMB 89X	Shatin Station – Kwun Tong (Tsui Ping Road)	7 – 20
KMB 93K	Po Lam – Mong Kok East Station	15 – 30
KMB 95M	Tsui Lam – Kwun Tong Road (Elegance Road)	20 – 30
KMB 98	Tseung Kwan O Industrial Estate – Ngau Tau Kok Station	15 – 20
Tavib 30	(Circular)	1.5 20
KMB 98A	Hang Hau (North) (Tseung Kwan O Hospital) – Ngau Tau	8 – 20
	Kok Station (Circular)	
KMB 98B	Hang Hau (North) (Tseung Kwan O Hospital) – Kwun Tong	AM Peak
	Station	
KMB 213B	On Tai – Ting Fu Street (Circular)	AM Peak
KMB 215X	Lam Tin (Kwong Tin Estate) – Kowloon Station	5 – 20
KMB 234C	Sham Tseng – Kwun Tong Station	AM, PM Peak
KMB 234D	Tsing Lung Tau – Kwun Tong Station	AM, PM Peak
KMB 252X	Handsome Court – Lam Tin Station	AM, PM Peak
KMB 258A	Hung Shui Kiu (Hung Fuk Estate) – Lam Tin Station	AM Peak
KMB 258D	Tuen Mun (Po Tin Estate) – Lam Tin Station	5 – 20
KMB 258P	Hung Shui Kiu (Hung Fuk Estate) – Lam Tin Station	AM, PM Peak
KMB 258S	Tuen Mun (Shan King Estate) – Lam Tin Station	AM Peak
KMB 258X	Tuen Mun (Po Tin Estate) – Kwun Tong Ferry	AM, PM Peak

Route	Routing	Frequency (minutes)
KMB 259D	Tuen Mun (Lung Mun Oasis) – Lei Yue Mun Estate	7 – 25
KMB 259X	Lung Mun Oasis – Kwun Tong Ferry	AM, PM Peak
KMB 267X	Tuen Mun (Siu Hong Court) – Lam Tin Station	AM, PM Peak
KMB 268A	Long Ping Estate – Kwun Tong Ferry	AM, PM Peak
KMB 268C	Long Ping Station – Kwun Tong Ferry	5 – 20
KMB 268P	Ma Wang Road (Shan Shui House) – Kwun Tong Ferry	AM, PM Peak
	Kwun Tong Ferry – Long Ping Station	
KMB 269C	Tin Shui Wai Town Centre – Kwun Tong Ferry	5 – 20
KMB 269S	Tin Shui Wai Town Centre – Kwun Tong Ferry	AM, PM Peak
KMB 274X	Kwun Tong Ferry – Tai Po Central	PM Peak
KMB 277A	Sha Tau Kok – Lam Tin Station	AM, PM Peak
KMB 277E	Lam Tin Station – Sheung Shui (Tin Ping)	15 – 30
KMB 277P	Sheung Shui (Tin Ping) – Lam Tin Station	AM, PM Peak
KMB 277X	Fanling (Luen Wo Hui) – Lam Tin Station	5 – 30
KMB 296A	Sheung Tak – Ngau Tau Kok Station (Circular)	7 – 15
KMB 296C	Sheung Tak – Cheung Sha Wan (Hoi Ying Estate)	15 – 30
KMB N3D	Kwun Tong (Yue Man Square) – Tsz Wan Shan (Central)	Overnight
KMB N293	Sheung Yak – Mong Kok East Station	Overnight
KMB T74	Tai Po (Tai Wo) – Kwun Tong Ferry	AM Peak
KMB T277	Sheung Shui – Lam Tin Station	AM, PM Peak
KMB W2	Jordan (West Kowloon Station) – Kwun Tong (Circular)	30 – 60
KMB X42C	Tsing Yi (Cheung Hang Estate) – Yau Tong	7-30
KMB X42P	Tsing Yi (Cheung On Estate) – Lam Tin Station	AM Peak
KMB X89D	Nai Chung – Kwun Tong Ferry	AM, PM Peak
KMB/CTB 101	Kwun Tong (Yue Man Square) – Kennedy Town	3 – 20
KMB/CTB 101X	Kwun Tong (Yue Man Square) – Kennedy Town	AM, PM Peak
KMB/CTB 606	Siu Sai Wan (Island Resort) – Choi Wan (Fung Shing Street)	20 – 25
KMB/CTB 606A	Shau Kei Wan (Yiu Tung Estate) – Choi Wan (Fung Shing Street)	AM Peak
KMB/CTB 606X	Siu Sai Wan (Island Resort) – Kowloon Bay	AM, PM Peak
KMB/CTB 619	Shun Lee – Central (Macau Ferry)	4 – 25
KMB/CTB 619P	Shun Lee – Central (Macau Ferry)	AM Peak
KMB/CTB 641	Kai Tak (Kai Ching Estate) – Central (Macau Ferry)	AM, PM Peak
KMB/CTB 671	Diamond Hill Station – Ap Lei Chau Lee Lok Street	15 – 45
KMB/CTB 671X	Ap Lei Chau Lee Lok Street – Diamond Hill Station	AM Peak
KMB/CTB N619	Shun Lee – Central (Macau Ferry)	Overnight
CTB 55	Ching Tin and Wo Tin – Kwun Tong Ferry Pier	AM, PM Peak
CTB 61R	Lam Tin Station – City One Shatin	12 – 20
CTB 78C	Queen's Hill Fanling – Kai Tak	AM, PM Peak
CTB 78P	Queen's Hill Fanling – Kwun Tong	AM Peak
CTB 78X	Queen's Hill Fanling – Kai Tak	30 – 60
CTB 796S	Tseung Kwan O Station – Ngau Tau Kok Station (Circular)	Overnight
CTB 797	Lohas Park – Kowloon Bay (Circular)	15 – 20
CTB A22	Lam Tin Station – Airport	15 – 40
CTB A29	Tseung Kwan O (Po Lam) – Airport / HZMB Hong Kong Port	20 – 60
CTB E22	Lam Tin (North) – AsiaWorld-Expo	8 – 20
CTB E22A	Tseung Kwan O (Hong Sing Garden) – AsiaWorld-Expo	25 – 30
CTB E22C	Tiu Keng Leng Station – Aircraft Maintenance Area	AM, PM Peak
CTB E22S	Tung Chung (Mun Tung Estate) – Tseung Kwan O (Po Lam)	AM, PM Peak
CTB E22X	Yau Tong – AsiaWorld-Expo	AM, PM Peak
CTB N29	Tseung Kwan O (Hong Sing Garden) – Tung Chung Station	Overnight
CTB NA29	Tseung Kwan O (Po Lam) – Airport / HZMB Hong Kong Port	Overnight
GMB 22A	Lok Wah Estate – Cheung Yip Street / Kwun Tong Ferry Pier	20
	(Circular)	
GMB 35	Choi Ha Estate – Hong Lee Court	5 – 7
GMB 36A	Crocodile Hill (Hong Lee Court) To Yue Man Square Public	4 – 5
	Transport Interchange (Circular)	

Route	Routing	Frequency (minutes)
GMB 56	Richland Gardens – Kwun Tong (Shung Yan St)	10 20
GMB 62S	Kwong Tin Estate – Tsim Sha Tsui (Haiphong Road)	Overnight
GMB 68	Choi Wan Estate – Kowloon Bay (Enterprise Square)	8 – 12
GMB 86	Kai Tak Cruise Terminal – Telford Gardens	8 – 20
GMB 90A	Yau Lai Estate – HK Children's Hospital	20
GMB 90B	Sau Mau Ping Estate Phase 5 – HK Children's Hospital	15 – 20
GMB 102	Hang Hau Station – San Po Kong (Hong Keung Street)	2 – 15
GMB 102B	Hang Hau (Yuk Ming Court) – Choi Hung	12 – 20
GMB 102S	Hang Hau Station – San Po Kong (Hong Keung Street)	Overnight
GMB 104	GMB 104 The HK University of Science and Technology – Ngau Tau	
	Kok Station	
GMB 106	Tseung Kwan O (Po Lam) – Kowloon Bay (Enterprise Square)	7 – 25
GMB 501S	Sheung Shui Station – Kwun Tong (Yue Man Square)	Overnight

Note: KMB – Kowloon Motor Bus CTB – City Bus GMB – Green Minibus

3.0 THE PROPOSED DEVELOPMENT

Development Parameters and Provision of Internal Transport Facilities

3.1 The Proposed Development is a Hotel with 984 guest rooms. The internal transport facilities for the Proposed Development are provided in accordance to the recommendations of the Hong Kong Planning Standards and Guidelines ("HKPSG"), and are presented in **Table 3.1**.

TABLE 3.1 COMPARISON OF THE HKPSG RECOMMENDATION AND THE PROPOSED PROVISION

HKPSG Recommendation for a Hotel with 984 guest rooms	Proposed Provision
Car Parking Space	
1 car parking space per 100 rooms. 984 / 100 = 9.8, say 10 nos.	10 nos. comprising of: (i) 9 nos. @ 5m (L) x 2.5m (W) x 2.4m, (ii) 1 no. @ 5m (L) x 3.5m (W) x 2.4m (H) for persons with disabilities = HKPSG recommendation
Motorcycle Parking Space	
5 to 10% of the total provision for private cars Minimum = $10 \times 5\% = 0.05$, say 1 no. Maximum = $10 \times 10\% = 0.1$, say 1 no.	1 no. @ 2.4m (L) x 1m (W) x 2.4m (H) = HKPSG recommendation
Taxi and Private Car Layby	
Minimum 4 lay-bys for taxi and private cars for ≥ 600 rooms = 4 nos.	4 nos. @ 5m (L) x 2.5m (W) x 2.4m (H) = HKPSG recommendation
Single-Deck Tour Bus Layby	
Minimum 3 lay-bys for single-deck tour buses for ≥ 900 rooms = 3 nos.	3 nos. @ 12m (L) x 3.5m (W) x 3.8m (H) = HKPSG recommendation
Goods Vehicle Loading / Unloading Bay	
0.5 - 1 goods vehicle bay per 100 rooms	8 nos. comprising of:
Minimum = $984 / 100 \times 0.5 = 4.9$, say	(i) 7 nos. LGV @ 7m (L) x 3.5m (W) x 3.6m
5 nos. (X LGV, X HGV)	(H) &
Maximum = $984 / 100 \times 1 = 9.8$, say	(ii) 1 no. M/HGV @ 11m (L) x 3.5m (W) x
10 nos. (7 LGV, 3 HGV)	4.7m (H) > HKPSG minimum & < HKPSG
	maximum recommendation

Reasons for Deviation from the HKPSG Maximum Recommendation

- 3.2 The only internal transport facility which deviates from the HKPSG maximum recommendation is the provision of 8 loading / unloading bays, which is 2 less than the maximum HKPSG recommendation, but, 3 more than the HKPSG minimum recommendation.
- 3.3 The provision of 2 nos. more M/HGV loading / unloading bays was considered, but not found to be possible due site constraint, and is explained as follows:
 - (1) The Outline Development Plan no. D/K14A/1H require the Subject Site to setback (i) along Wai Yip Street of 2.3m, and (ii) 1.5m setback and 1.5m non-building area along the service lane;

- (2) With the above setback requirements, the length of the Subject Site (i.e. measured from Wai Yip Street to the service lane) which is originally 21.3m is reduced to only 17.5m (reduction of substantial length of 17.8%)
- (3) The ground floor layout has maximised the provision of M/HGV loading / unloading bays which need to front onto the turntable so vehicles could enter and leave the loading / unloading bay.
- 3.4 After accommodating the essential facilities such as, structural columns, staircases, escalators, lift lobby and car lift to the basement car park, etc, the provision of 2 more M/HGV loading / unloading bay is not possible.

Layout Plans

- 3.5 The carpark layout plans for G/F and B1/F are found in **Figures 3.1 3.2**. Similar to the Approved S16 Planning Application (TPB ref: A/K14/809), two vehicular access points are provided and these are located at:
 - (i) The service lane at the northern side of the Proposed Development;
 - (ii) Wai Yip Street

Swept Path Analysis

3.6 The CAD-based swept path analysis program, Autodesk Vehicle Tracking, was used to check the ease of vehicle manoeuvring, and the swept path drawings of vehicle manoeuvring on the parking levels are found in in **Appendix 2**. Vehicles are found to have no manoeuvring problems and all vehicles could enter and leave the spaces with ease.

Vehicle Lift Analysis

3.7 A light goods vehicle lift is provided to access B1/F from G/F, and to prevent potential tailback to Wai Yip Street, a waiting space provided on G/F. A vehicle lift analysis was conducted to check on the operation of the vehicle lift system, and it was found that the vehicle lift system is acceptable and can serve the Proposed Development. The vehicle lift analysis is found in **Appendix 3**.

Traffic Management Plan

#1 Turntable

- 3.8 A traffic management plan will be implemented by the Applicant, which includes the following:
 - Loading / unloading related to goods deliveries will be undertaken during the non-peak hours.
 - All users have to make reservation with the property management prior to the use of the goods vehicle loading/unloading bay and coach lay-by.
 - The Management Office will ensure that maintenance of the turntable will be carried out during the non-peak period.
 - The Management Office will ensure that should the turntable breaks down, the Management Office will immediately contact the turntable maintenance company to repair, and all users will be notified that the use of HGV loading/unloading bay and coach lay-by will be suspended.

#2 Car Lift

(i) Operation and Maintenance of the lift

3.9 A management staff will be deployed to guide the driver to enter the vehicle lift. Regular inspection will be arranged, and prior to the conduct of the regular

maintenance, all occupants will be notified of the date and duration of the suspension of the vehicle lift.

(ii) Breakdown of the lift

- 3.10 If a vehicle lift breaks down, the Property Management will immediately call the vehicle lift maintenance company. However, if a vehicle is trapped inside the vehicle lift, the Fire Services Department will be contacted, and notice will be displayed at the entrance of the car park to inform motorists of the suspension of service.
 - (iii) Management of passages between compartments of the carpark and L/UL at B/F in case of opposing traffic
- 3.11 A management staff will be deployed on B/F to ensure smooth operation on B/F to guide the drive to enter and leave the vehicle lift.

4.0 TRAFFIC IMPACT

Design Year

4.1 The Proposed Development is expected to be completed by 2029, and the design year adopted for the capacity analysis is 2032, i.e. 3 years after the completion of the development.

Traffic Forecast

4.2 The 2032 traffic flows used for the junction analysis are produced with reference to: (i) 2031 traffic flows from the Base District Traffic Model ("BDTM"); (ii) estimated traffic growth from 2031 to 2032; (iii) the planned developments in the vicinity of the Proposed Development, and (iv) additional traffic generated by the Proposed Development.

Estimated Traffic Growth Rate from 2031 to 2032

4.3 Reference is made to the 2021 – based Territorial Population and Employment Data Matrix ("TPEDM") data produced by Planning Department for Kwun Tong District, which are for 2021, 2026 and 2031 and are presented in **Table 4.1**.

TABLE 4.1 2021-BASED TPEDM DATA PRODUCED BY PLANNING DEPARTMENT FOR KWUN TONG DISTRICT

Item TPEDM Estimates and Projections			
	2021	2026	2031
Population	673,150	682,500	690,750
Employment	395,900	400,050	441,300
<u>Total</u>	1,069,050	1,082,550	1,132,050
Average Growth	From 2021 to 2026: +0.25% From 2021 to 2031: +0.57%	From 2026 to 2031: +0.90%	N/A

4.4 **Table 4.1** shows that the highest average annual growth rate is +0.90%. In view that there is no estimation beyond 2031 and to err on the high side, the growth rate of **1**% per annum is adopted for the traffic growth between 2031 and 2032.

Planned Developments in the Vicinity of the Proposed Development

4.5 The planned developments included in the 2032 reference traffic flows are presented in **Table 4.2**, and the locations of planned developments are shown in **Figure 4.1**.

TABLE 4.2 PLANNED DEVELOPMENTS IN THE VICINITY OF THE PROPOSED DEVELOPMENT

Site	Planning Application No. / Plan No.	Address	Use	Development Parameters (Approx.)
1	A/K14/763	350 Kwun Tong Road	Commercial	$GFA = 25,658 \text{m}^2$
2	A/K14/766	41 King Yip Street	Commercial	$GFA = 30,576m^2$
3	A/K14/771	32 Hung To Road	Commercial	$GFA = 13,122m^2$
4	A/K14/773	82 Hung To Road	Industrial	$GFA = 13,378 \text{m}^2$
5	A/K14/774	7 Lai Yip Street	Commercial	$GFA = 14,775 \text{m}^2$
6	A/K14/775	132 Wai Yip Street	Commercial	$GFA = 6,021 \text{m}^2$
7	A/K14/777	71 How Ming Street	Office	$GFA = 18,312m^2$
8	A/K14/782	4 Tai Yip Street	Retail	$GFA = 8,027 \text{m}^2$
9	A/K14/787	33 Hung To Road	Industrial	$GFA = 13,830 \text{m}^2$

Site	Planning Application No. / Plan No.	Address	Use	Development Parameters (Approx.)
10	A/K14/796	28A Hung To Road	Hotel	No. of rooms $= 89$
11	A/K14/804	334 -336 and 338 Kwun Tong Road	Commercial	$GFA = 23,211m^2$
12	A/K14/806	11 Lai Yip Street	Office	GFA = 15,051m ²
13	A/K14/807	Kun Tong Inland Lots 1 S.A , 1 RP, 3 and 15	Commercial	$GFA = 66,890 \text{m}^2$
14	A/K14/809	1 Tai Yip Street and 111 Wai Yip Street	Commercial	$GFA = 13,349 \text{m}^2$
15	A/K14/810	5 Lai Yip Street	Commercial	$GFA = 14,788 \text{m}^2$
16	A/K14/820	73 – 75 Hung To Road	Commercial	$GFA = 26,757m^2$
17	A/K14/822	25 Tai Yip Street, Kwun Tong	Commercial	$GFA = 5,572 \text{m}^2$
18	A/K14/832	201 and 203 Wai Yip Street	Hotel	No. of rooms = 448
19	A/K14/819 & S/K14S/URA1/3 Urban Renewal Authority 'Vertical City' mixed use development	Areas 4 and 5 of Kwun Tong Town Centre	Commercial GFA = 65,000m ² , Office GFA = 127,619m ² and GIC GFA = 8,601m ²	
20	N/A	EKEO Lai Yip Street Development	Commercial	GFA = 23,000m ²
21	N/A	Kwun Tong Action Area	Commercial	GFA=89,350m ²
22	N/A	Kowloon Bay Action Area	Commercial	$GFA = 500,000 \text{m}^2$

- 4.6 The infrastructure and road network included in the BDTM are as follows:
 - Kai Tak Development
 - Tseung Kwan O Lam Tin Tunnel
 - Central Kowloon Route
 - Trunk Road T2 between Central Kowloon Route and Tseung Kwan O Lam Tin Tunnel

Traffic Generated by the Proposed Development

- 4.7 Surveys were conducted on Tuesday, 26th November 2024 between 0800 1100 and 1600 1900 hours at 4 hotels which are of similar class, number of hotel rooms and traffic characteristics, i.e. proximity to the MTR and road-based public transport services. The surveyed hotels are shown below:
 - (i) 254-room Nina Hotel Kowloon East at 38 Chong Yip Street, Kwun Tong
 - (ii) 298-room Tuen Mun Pentahotel at 6 Tsun Wen Road, Tuen Mun
 - (iii) 360-room Dorsett Kwun Tong at 84 Hung To Road, Kwun Tong
 - (iv) 598-room Hotel Cozi Harbour View at 163 Wai Yip Sreet, Kwun Tong
- 4.8 In addition, reference is made the survey of the Regal Riverside Hotel found in TD 05/2006 Trip Generation Survey 2006 Report. The comparison of these trip generation rates with the TPDM lower limit is found in **Table 4.3**.

TABLE 4-3	COMPARISON	OF TRIP	CENIEDATION	DATES
IADIC 4)	LUNNIPARINUN		LICINEKAIILIN	$\mathbf{K} \wedge \mathbf{I} = \mathbf{I}$

Items	Trip Generation rate in pcu/hr/room						
	AM	Peak	PM	Peak			
	In	Out	In	Out			
(i) Nina Hotel ⁽¹⁾	0.0591	0.0433	0.0512	0.0472			
(ii) Tuen Mun Pentahotel ⁽¹⁾	0.0369	0.0336	0.0336	0.0336			
(iii) Dorsett Kwun Tong ⁽¹⁾	0.0361	0.0333	0.0361	0.0333			
(iv) Hotel Cozi Harbour View ⁽¹⁾	0.0084	0.0151	0.0134	0.0167			
(v) Regal Riverside Hotel ⁽²⁾	0.0837	0.0993	0.1005	0.0909			
(iv) Lower limit of rates from TPDM	0.0832	0.0843	0.0908	0.0883			
Maximum rate	0.0837	0.0993	0.1005	0.0909			

Note (1) CKM survey

4.9 To be conservative, trip generation rates from the Regal Riverside Hotel is adopted to estimate the traffic generation for Proposed Development, and the calculated traffic generation associated with the Proposed Development are found in **Table 4.4**.

TABLE 4.4 TRAFFIC GENERATION OF THE PROPOSED DEVELOPMENT

ltem	AM Peak Hour			P	ur						
	In	Out	2-way	In	Out	2-way					
Trip Generation Rates for hotel (pcu/hour/guest room)											
Rates from Table 4.3	0.0837	0.0993	NA	0.1005	0.0909	NA					
Traffic Generation of Proposed Development (pcu/hour)											
984 guest rooms	<u>83</u>	98	<u>181</u>	99	90	<u>189</u>					

4.10 **Table 4.4** shows the Proposed Development generates 181 and 189 more pcu (2-way) during the AM and PM peak hours respectively.

Planned Junction Improvement Schemes

4.11 The planned junction improvement schemes found in the vicinity of the Subject Site are summarised in **Table 4.5** and shown in **Appendix 4**.

TABLE 4.5 PLANNED TRAFFIC IMPROVEMENT SCHEMES IN THE VICINITY OF THE PROPOSED DEVELOPMENT

	Junction	Description of Work	Project Proponent	Estimated Completion Year
J1	Hoi Bun Road /	The road markings are	,	Before
	Shun Yip Street	changed at Shun Yip Street Westbound and Eastbound	Area – Feasibility Study	2032
J8	Kwun Tong Road / Lai Yip Street	The road alignment is adjusted at Lai Yip Street Northbound	C	
J9	Hoi Bun Road / Lai Yip Street	A new pedestrian crossing across Hoi Bun Road Eastbound is added and existing staggered pedestrian crossing at Lai Yip Street to be converted to straight crossing	Lai Yip Street site in	

⁽²⁾ From TD 05/2006 – Traffic Generation Survey 2006 Final Report

2032 Traffic Flows

4.12 Year 2032 traffic flows for the following cases are derived:

2032 without the Proposed Development = 2031 traffic flows derived with reference to BDTM + estimated total growth from 2031 to 2032 + Traffic generated by the planned developments in the vicinity of the Proposed Development = [A] + traffic generated by the Proposed Development [B] = Development (Table 4.4)

4.13 The 2032 peak hour traffic flows for the cases without and with the Proposed Development, are shown in **Figures 4.2 - 4.3**, respectively. The ingress/egress vehicular routings to/from the Proposed Development via Wai Yip Street and the service lane at the northern side of the Proposed Development are shown in **Figures 4.4 - 4.5.**

2032 Junction Operational Performance

4.14 Year 2032 capacity analysis for the cases without and with the Proposed Development are summarised in **Table 4.6** and detailed calculations are found in the **Appendix 1**.

TABLE 4.6 2032 JUNCTION OPERATIONAL PERFORMANCE

Ref.	Junction Type of Junction / Parameter ⁽¹⁾		Prop	out the oosed opment	With the Proposed Development		
			AM Peak	PM Peak	AM Peak	PM Peak	
J1	Hoi Bun Road / Shun Yip Street ⁽³⁾	Signal / RC	22%	17%	21%	16%	
J2	Wai Yip Street / Shun Yip Street	Signal / RC	22%	19%	18%	15%	
J3	Tai Yip Street / Service Lane	Priority / RFC	0.044	0.036	0.046	0.037	
J4	Hong Tak Road / Tai Yip Street	Priority / RFC	0.384	0.294	0.498	0.420	
J5	Tai Yip Street / Tai Yip Lane	Priority / RFC	0.135	0.116	0.137	0.117	
J6	Kwun Tong Road / Hong Tak Road	Priority / RFC	0.655	0.740	0.743	0.841	
J <i>7</i>	Wai Yip Street / Lai Yip Street	Signal / RC	32%	44%	31%	43%	
J8	Kwun Tong Road / Lai Yip Street ⁽³⁾	Signal / RC	23%	18%	22%	18%	
J9	Hoi Bun Road / Lai Yip Street (2)(3)	Signal / RC	18%	21%	18%	21%	
J10	Lai Yip Street / Hung To Road ⁽²⁾	Signal / RC	29%	37%	29%	36%	
J11	Tai Yip Street / Siu Yip Street	Priority /RFC	0.384	0.503	0.387	0.505	
J12	Wai Yip Street / Siu Yip Street	Priority / RFC	0.750	0.715	0.805	0.748	

Notes: (1) RC – reserve capacity RFC – Ratio of Flow to Capacity

4.15 **Table 4.6** shows that the junctions operate with capacities during the AM and PM peak hours for the cases without and with the Proposed Development.

⁽²⁾ Site factor to reflect kerbside / on-street activities

⁽³⁾ Junction Improvement Scheme has been incorporated in the assessment

5.0 PEDESTRIAN ASSESSMENT

Surveyed Pedestrian Locations

5.1 In order to quantify the existing pedestrian flows, pedestrian counts were conducted between AM (0800 – 1000 hours), Noon(1200 – 1400 hours) and PM (1700 – 1900 hours) on Thursday, 12th June 2025 at the footpaths and waiting area of the pedestrian crossing shown in **Figure 5.1**. The survey locations are summarised in **Table 5.1**.

TABLE 5.1 SURVEYED PEDESTRIAN LOCATIONS

Ref.	Location
	<u>Footpath</u>
F1	Northern footpath of Wai Yip Street between Shun Yip Lane and Tai Yip Street (Eastern
	side)
F2	Northern footpath of Wai Yip Street between Shun Yip Lane and Tai Yip Street (Western
	side)
F3	Shun Yip Lane between Wai Yip Street and Service Lane
	Waiting area of pedestrian crossing
W1	Western pedestrian crossing of Wai Yip Street / Shun Yip Street
W2	Eastern pedestrian crossing of Wai Yip Street / Shun Yip Street

Existing Pedestrian Flows

5.2 The existing peak 15-minute 2-way pedestrian flows are also presented in **Figure** 5.1.

Estimated growth from 2025 to 2032

5.3 The 2032 reference pedestrian flows are estimated with the reference of the existing pedestrian flows and a growth rate of 1% per annum, which is derived from the latest TPEDM data.

Pedestrian Generated by the Proposed Development

5.4 The pedestrian generated by the Proposed Development is calculated based on the pedestrian generation rates of 4 surveyed hotels listed in **paragraph 4.7** and the adopted pedestrian generation rates are presented in **Table 5.2**. The calculated pedestrian generation is found in **Table 5.3**.

TABLE 5.2 PEDESTRIAN GENERATION RATES OF THE SURVEYED HOTELS

Development	No. of	o. of Pedestrian Generation Rates (ped / 15 min / room								
	rooms	AM	Peak	Noon	Peak	PM	Peak			
		In	Out	In	Out	In	Out			
Nina Hotel	254	0.0512	0.1732	0.1063	0.1614	0.1575	0.1772			
Tuen Mun Pentahotel	298	0.0134	0.1174	0.0638	0.1007	0.1141	0.0805			
Dorsett Kwun Tong	360	0.0444	0.1972	0.0500	0.0750	0.0750	0.0722			
Hotel Cozi Harbour	598	0.0318	0.0769	0.0368	0.0234	0.0401	0.0485			
View										
Adopted maxir	num rate	0.0512	0.1972	0.1063	0.1614	0.1972	0.1772			

TABLE 5.3 PEDESTRIAN GENERATED BY THE PROPOSED DEVELOPMENT

Use	Pedestrian Generation (ped / 15 min)								
		AM Peak Noon Peak PM Peak							
	In	Out	2-way	In	Out	2-way	In	Out	2-way
Proposed Development with 984 Rooms	<u>51</u>	<u>195</u>	246	<u>105</u>	<u>159</u>	<u>264</u>	<u>155</u>	<u>175</u>	330

Year 2032 Pedestrian Flows

5.5 The 2032 pedestrian flow with and without the Proposed Development are derived using the following method:

Without the = 2025 observed pedestrian flows + growth from 2025 Proposed to 2032 + pedestrian generated by the planned Development [a] developments in the vicinity of the Subject Site

With the Proposed [a] + pedestrian generated by the Proposed

Development [b] = Development (**Table 5.3**)

5.6 The 2032 pedestrian flows without and with the Proposed Development are presented in **Figures 5.2 and 5.3**.

Level-Of-Service ("LOS") Assessment

5.7 The pedestrian assessment method adopted is referenced to Exhibit 18-3 of Chapter 18 of the Highway Capacity Manual ("HCM") 2000 and the extract of Exhibit 18-3 is summarised in **Table 5.4**.

TABLE 5.4 EXTRACT OF EXHIBIT 18-3 OF THE HCM 2000

LOS	Space (m²/p)	Flow Rate (p/min/m)
Α	> 5.6	≤ 16
В	>3.7-5.6	>16-23
С	>2.2-3.7	>23-33
D	>1.4-2.2	>33-49
E	>0.75-1.4	>49-75
F	≤ 0.75	variable

5.8 As stated in Volume 6 Section 10.5 of TPDM, "In general, LOS C is desirable for most design at streets with dominant 'living' pedestrian activities".

(a) LOS of the Footpaths

5.9 The effective width of the surveyed footpaths and the year 2032 LOS without and with the Proposed Development are presented in **Tables 5.5 and 5.6**.

TABLE 5.5 EFFECTIVE WIDTH OF SURVEYED FOOTPATHS

Ref.	Footpath width (m)	Effective width (m) ⁽¹⁾
F1	3.5	2.5
F2	2.7	1.7
F3	9.8	8.8

Note: (1) The effective width does not include 0.5m dead zone on both sides, i.e. 1m

TABLE 5.6 YEAR 2032 LOS OF FOOTPATH WITHOUT AND WITH THE PROPOSED DEVELOPMENT

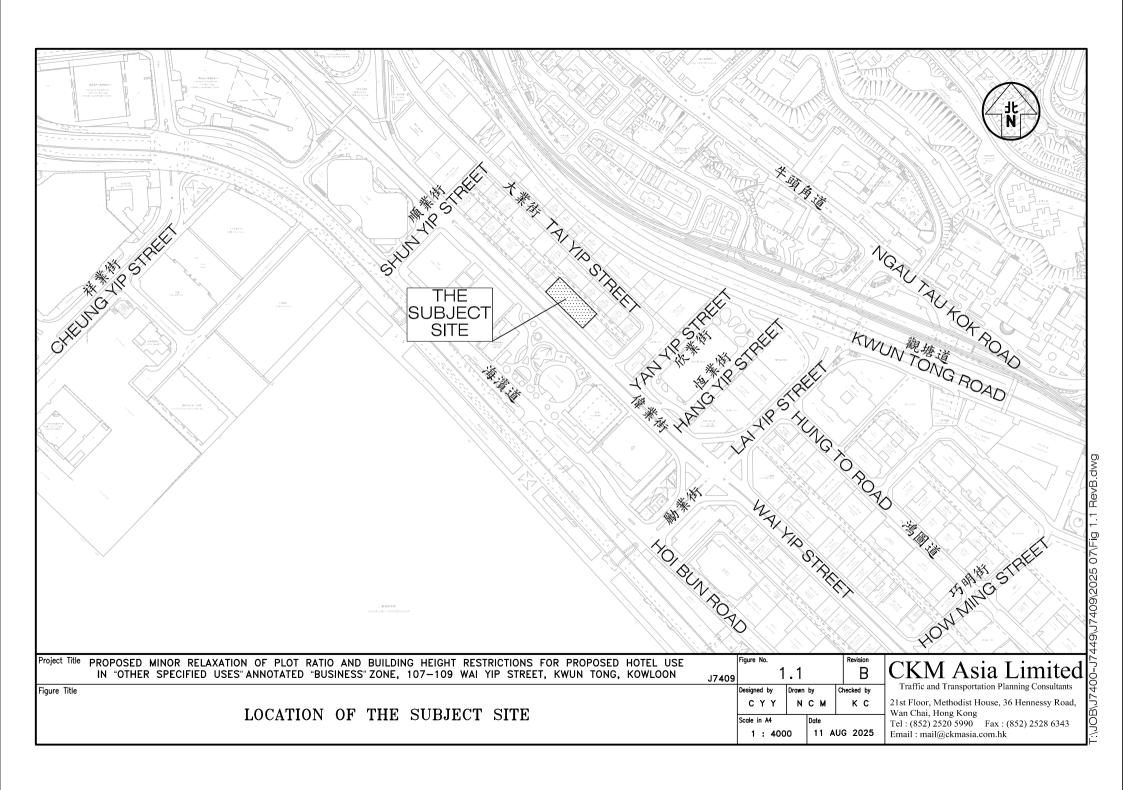
Ref.	Peak Period		2 without the Development	•	Year 2032 with the Proposed Development			
		Flow (Ped/15 min)	Rate ⁽¹⁾ (Ped/min/ m)	LOS	Flow (Ped/15 min)	Rate ⁽¹⁾ (Ped/ min/m)	LOS	
F1	AM	315	8.4	Α	376	10.0	А	
	Noon	98	3.0	Α	223	6.0	Α	
	PM	251	6.7	Α	333	8.9	Α	
F2	AM	442	17.3	В	469	18.4	В	
	Noon	266	11.0	Α	370	15.0	Α	
	PM	320	12.5	Α	359	14.1	Α	
F3	AM	911	6.9	Α	1024	7.8	А	
	Noon	530	5.0	Α	<i>7</i> 53	6.0	Α	
	PM	558	4.2	A	<i>717</i>	5.4	A	

Note: (1) pedestrian flow rate = pedestrian flow \div 15 minutes \div effective width

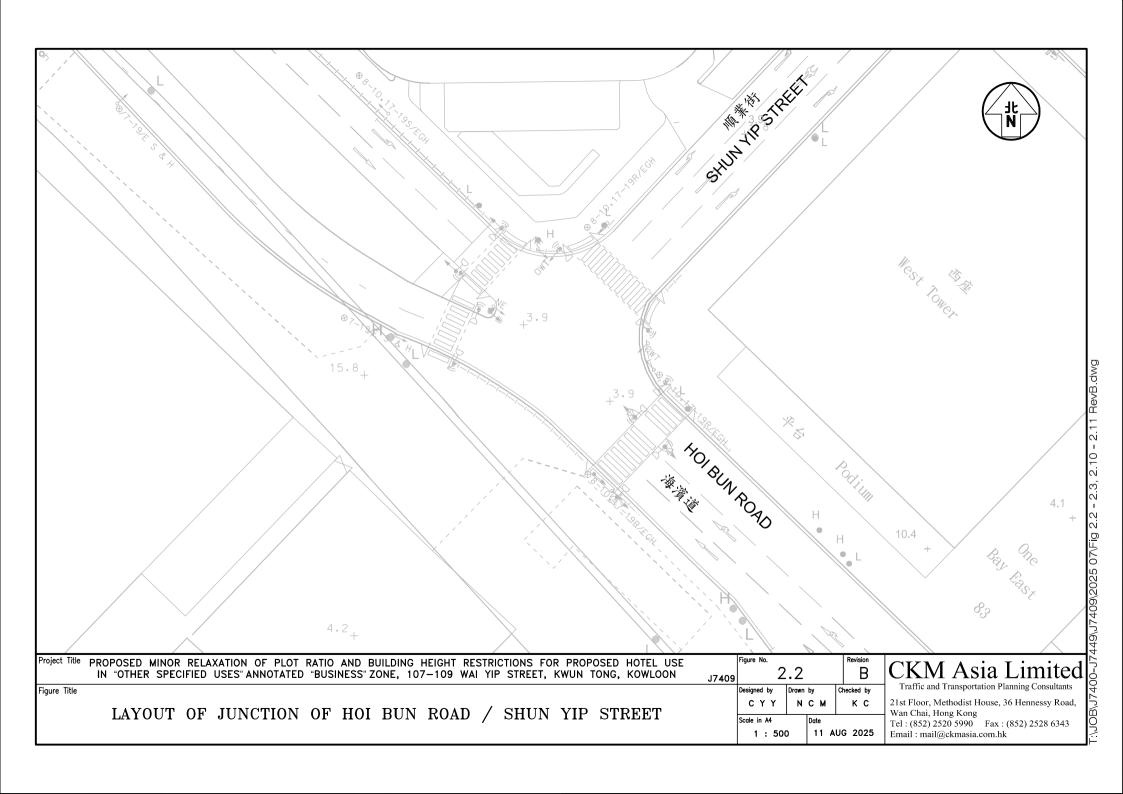
5.10 **Table 5.6** shows that the footpaths achieve LOS A and B during AM, Noon and PM peak for the 2032 cases without and with the Proposed Development, both which are acceptable.

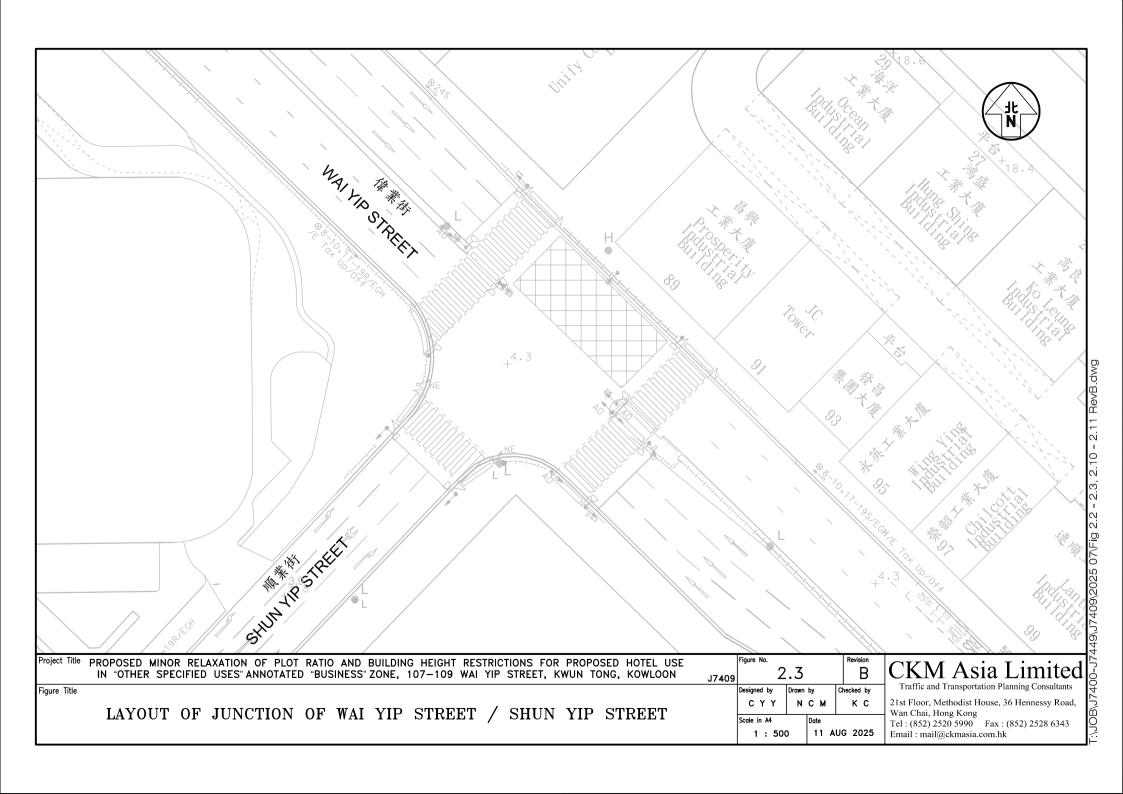
(b) Waiting area of the Pedestrian Crossing

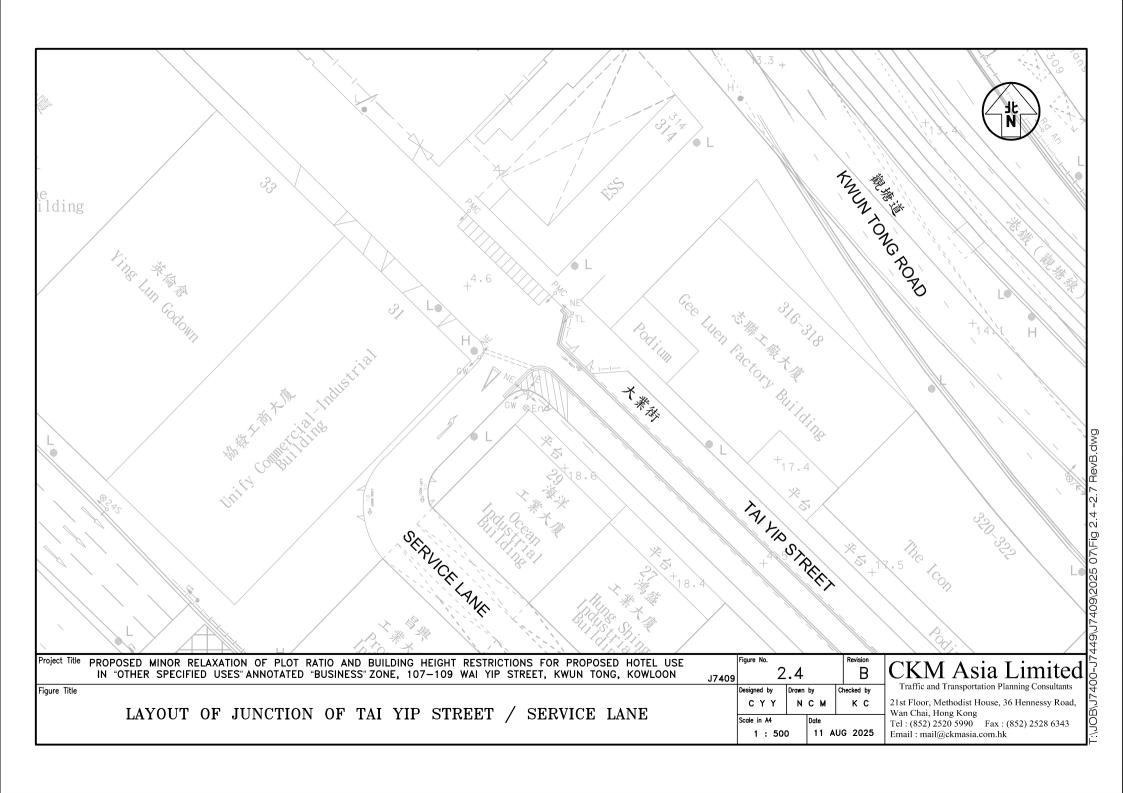
5.11 The year 2032 LOS of pedestrian crossing waiting areas without and with the Proposed Development are presented in **Table 5.7**.

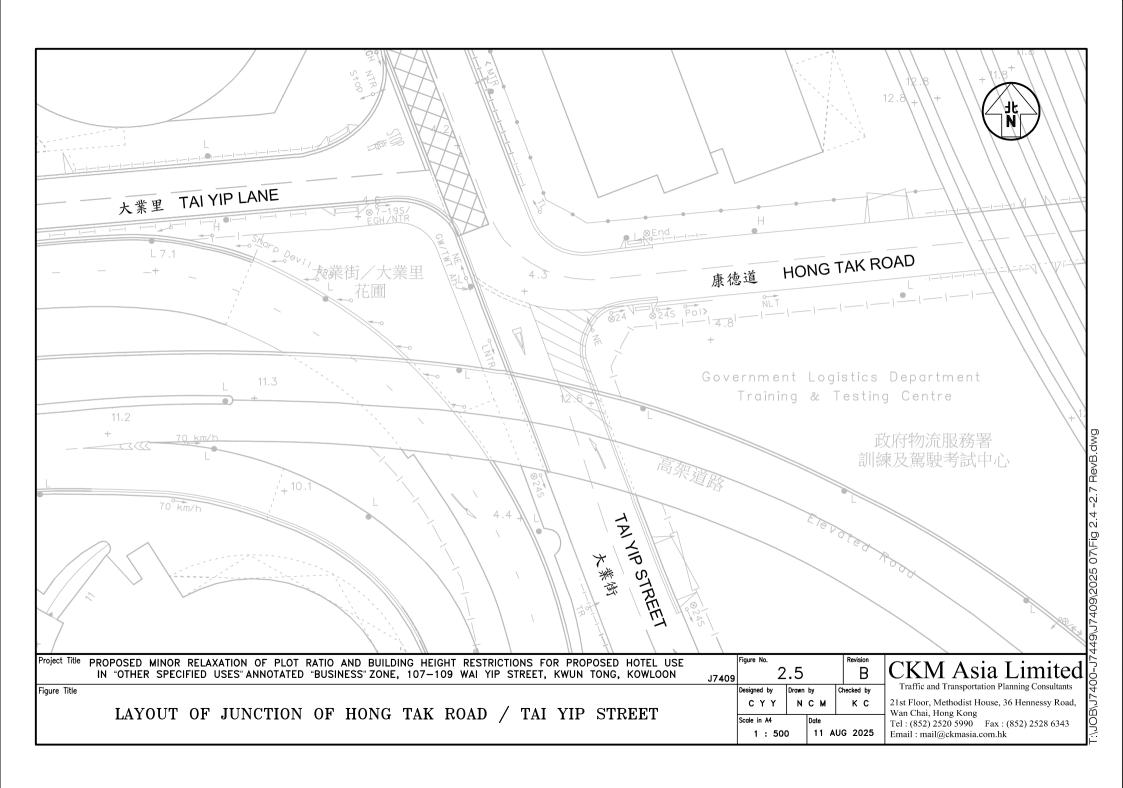

TABLE 5.7 YEAR 2032 LOS OF PEDESTRIAN CROSSING WAITING AREAS WITHOUT AND WITH THE PROPOSED DEVELOPMENT

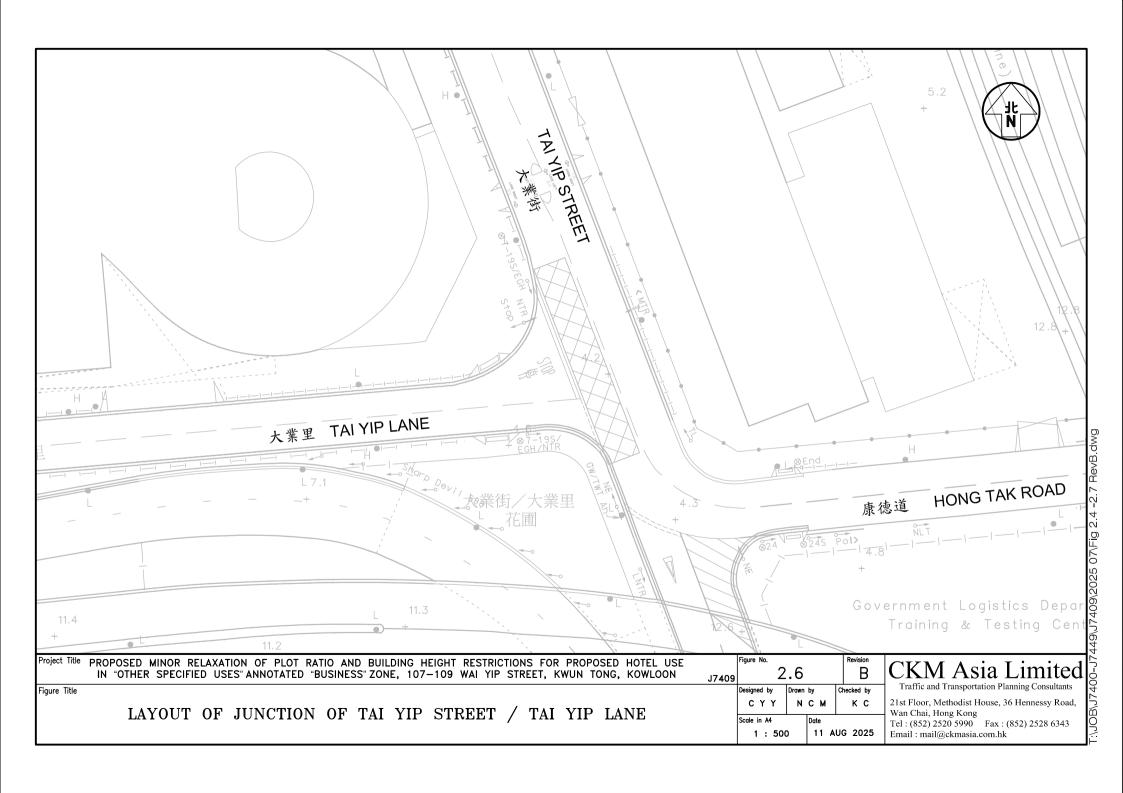
Ref.	Area (m²)	Pede	Average No. of Pedestrians at the waiting area (ped/signal cycle)			Pedestrian Space (m²/ped)			LOS	
		AM	Noon	PM	AM	Noon	PM	AM	Noon	PM
			W	ithout the	Propose	d Develo _l	oment			
W1	150	34	12	8	4.4	12.5	18.8	В	Α	Α
W2	63	25	8	2	2.5	7.9	31.5	С	Α	Α
With the I					Proposed	Developr	nent			•
W1	150	36	14	10	4.2	10.7	15.0	В	Α	Α
W2	63	27	10	4	2.3	6.3	15.8	C	Α	Α

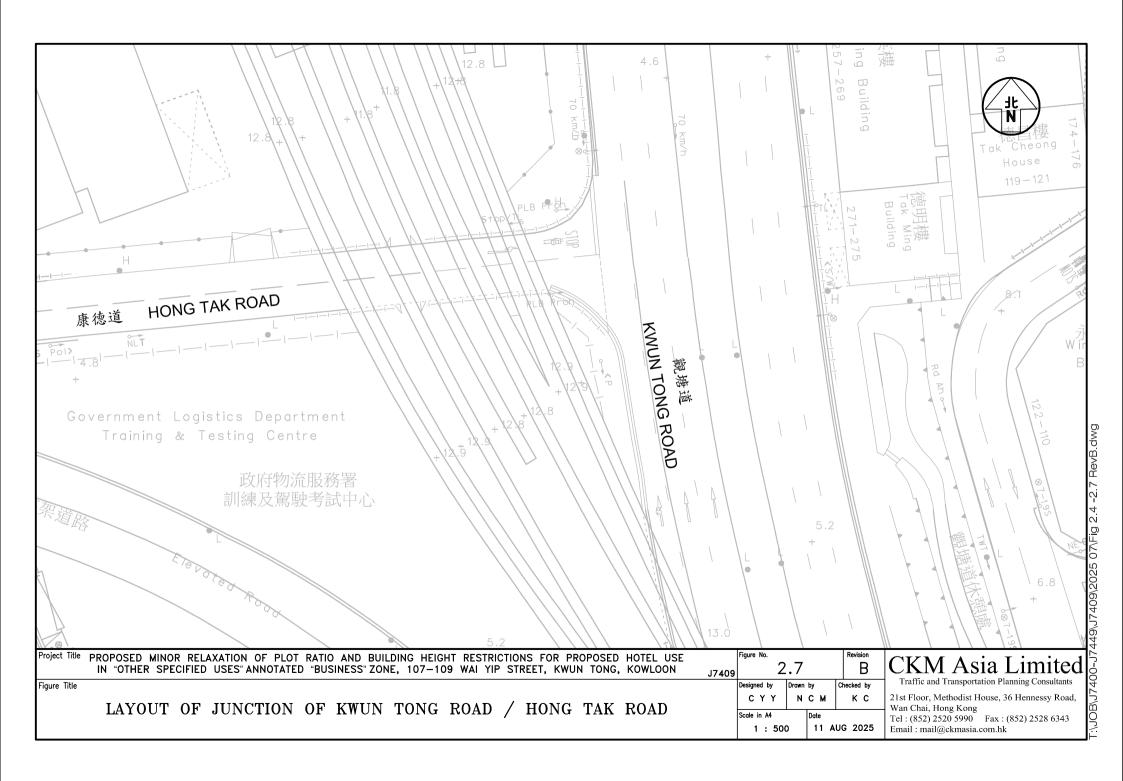

5.12 **Table 5.7** shows that the pedestrian crossing waiting areas achieve LOS A and C during AM, Noon and PM peak for the 2032 cases without and with the Proposed Development, both which are acceptable.

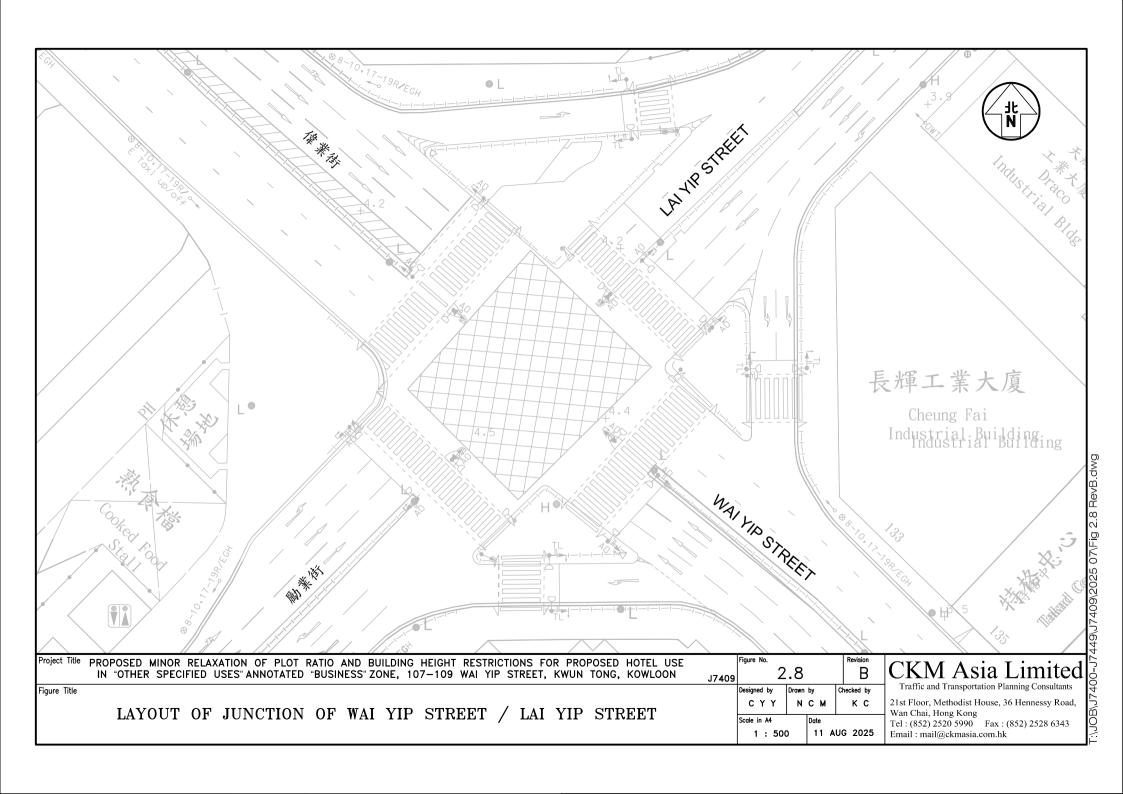

6.0 CONCLUSION

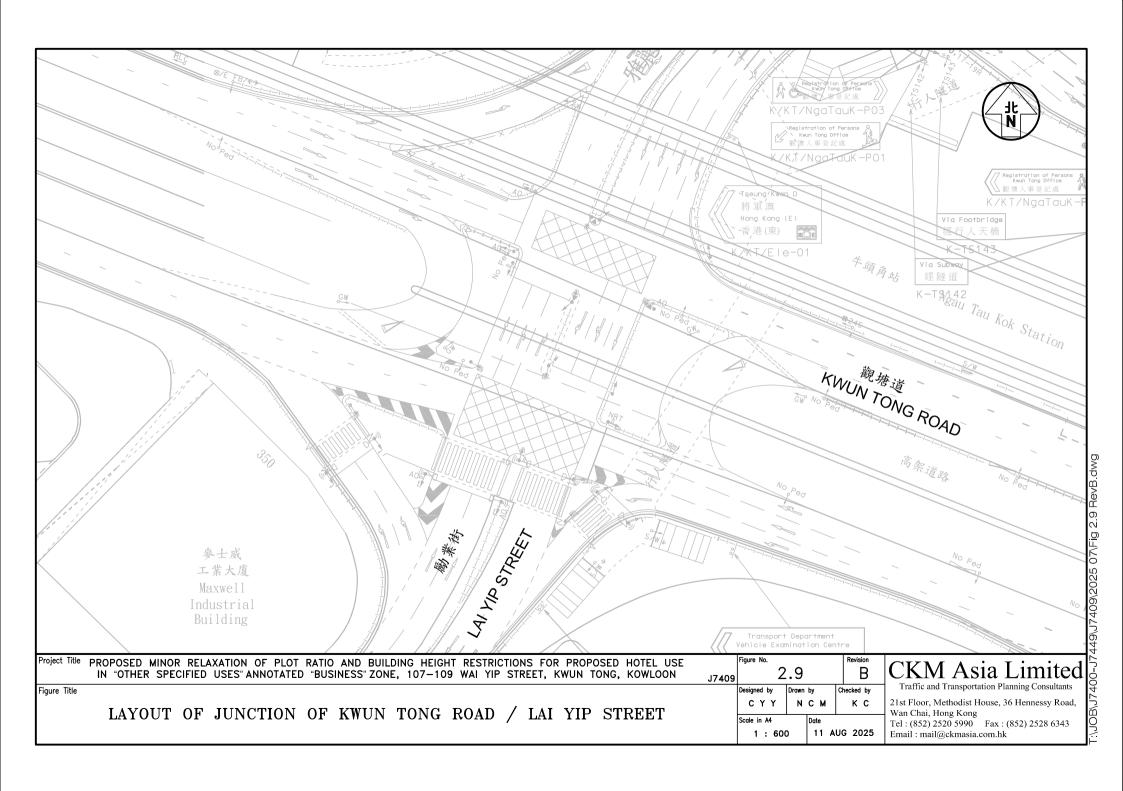

- 6.1 The Subject Site is located at Nos. 107 109 Wai Yip Street in Kwun Tong. On 29th May 2020, the TPB approved the S16 Planning Application (TPB ref: A/K14/780) for Office, Shop and Services & Eating Place Uses at the Subject Site. Subsequent to the Approved S16 Scheme (TPB ref: A/K14/780), the Applicant has the intention to construct a hotel with 984 rooms.
- 6.2 Manual classified counts were conducted at junctions located in the vicinity of the Subject Site in order to establish the peak hour traffic flows. Currently, the surveyed junctions operate with capacities during the AM and PM peak hours.
- 6.3 Similar to the Approved S16 Scheme (TPB ref: A/K14/780), two vehicular access points are provided for the Proposed Development, including, (i) The service lane at the northern side of the Proposed Development, and (ii) Wai Yip Street.
- 6.4 The internal transport facilities for the Proposed Development are provided with reference to the recommendation of the HKPSG. Swept path analysis was conducted to ensure that all vehicles could enter and leave the development and the spaces provided with ease.
- 6.5 The Proposed Development is expected to be completed by 2029, and the junction capacity analysis is undertaken for year 2032. For the design year 2032, the junctions analysed are expected to operate with capacities during the peak hours for the case without and with the Proposed Development.
- 6.6 The pedestrian assessment conducted found that the surveyed footpaths and waiting area of the pedestrian crossing would operate with LOS A to C in 2032 for the cases without and with the Proposed Development.
- 6.7 It is concluded that the Proposed Development will result in <u>no</u> adverse traffic impact to the surrounding road network.

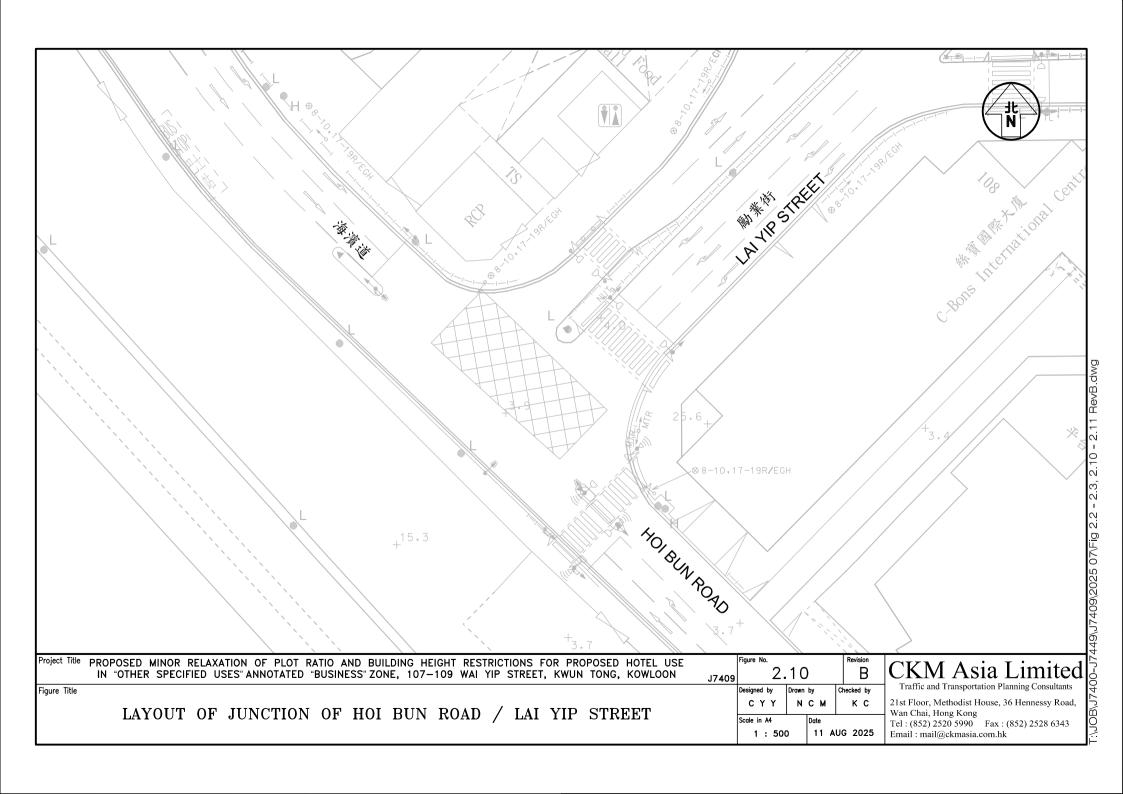


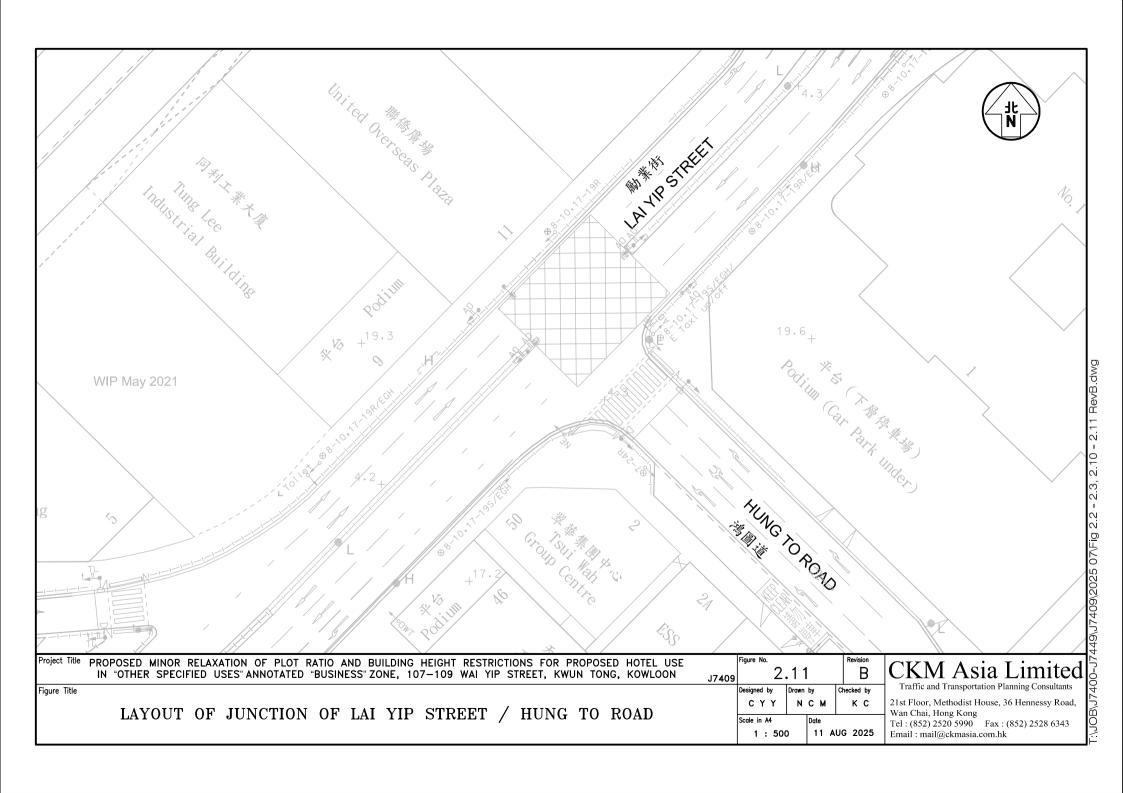


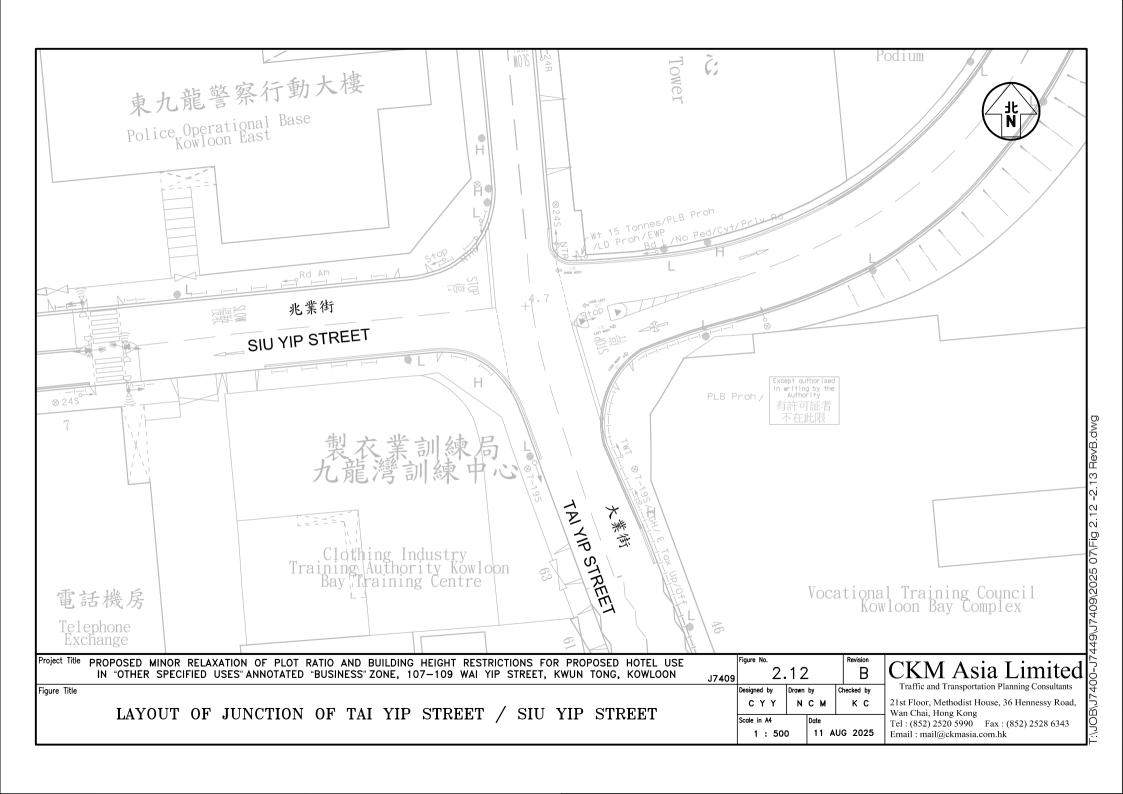


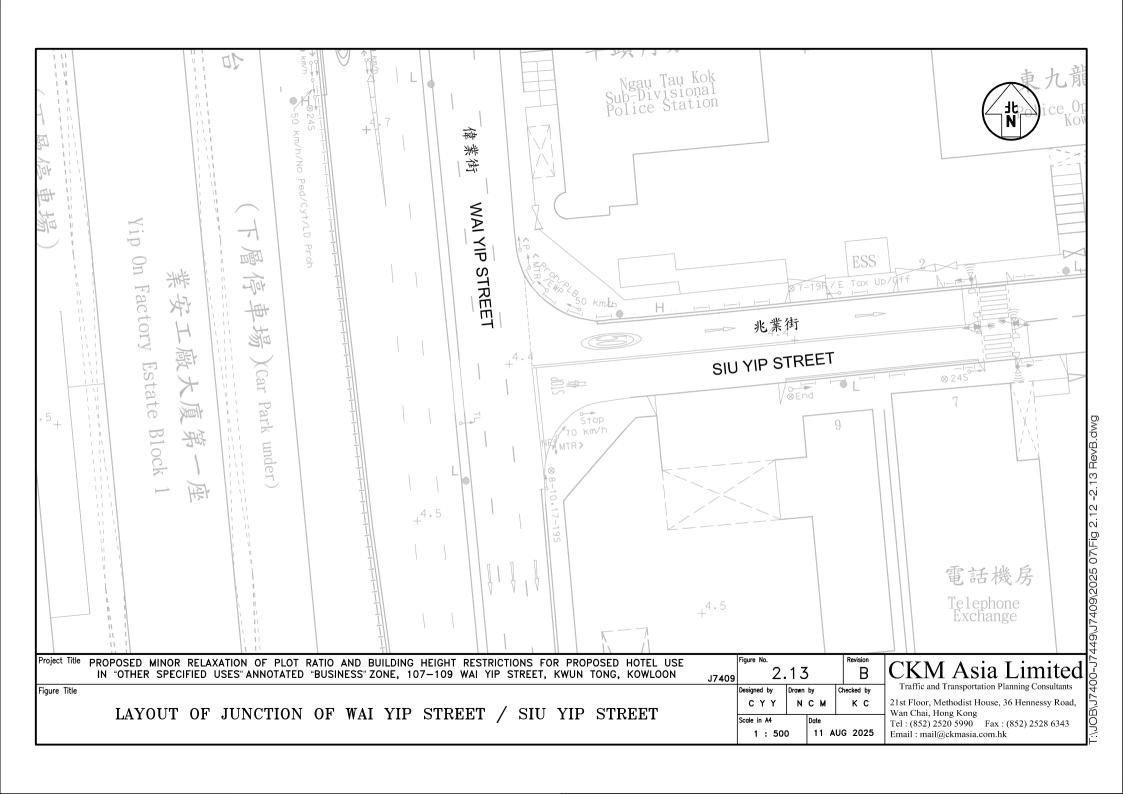


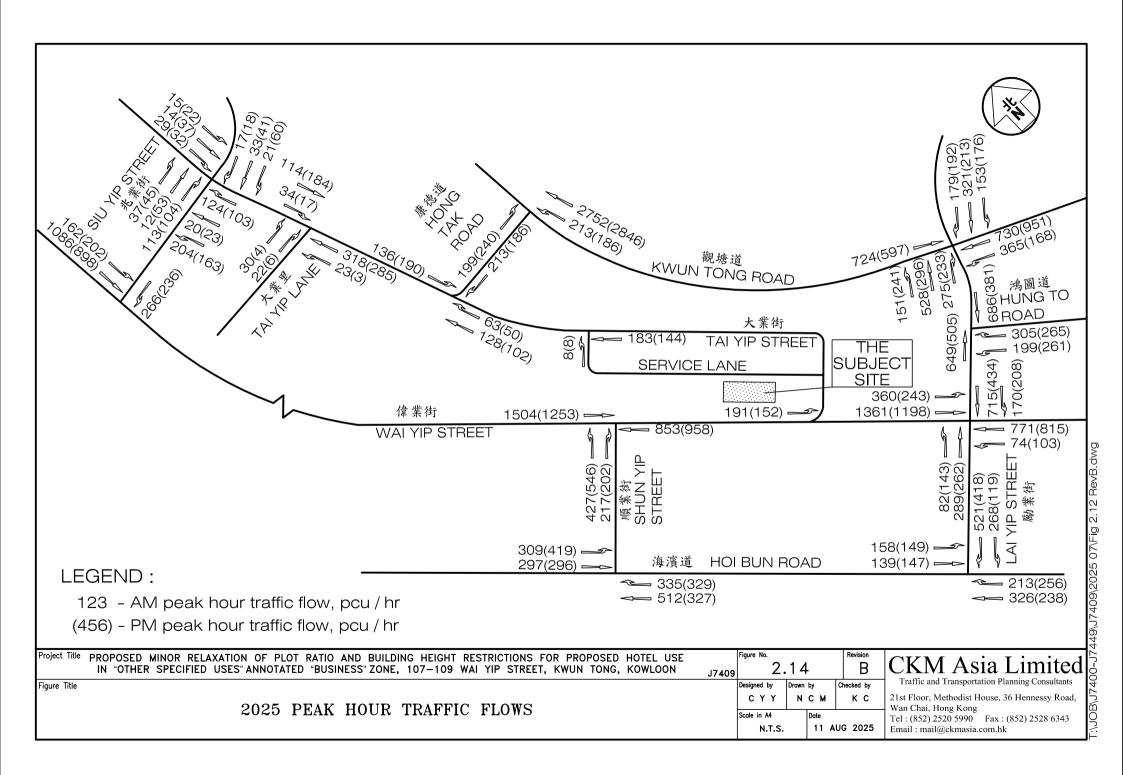


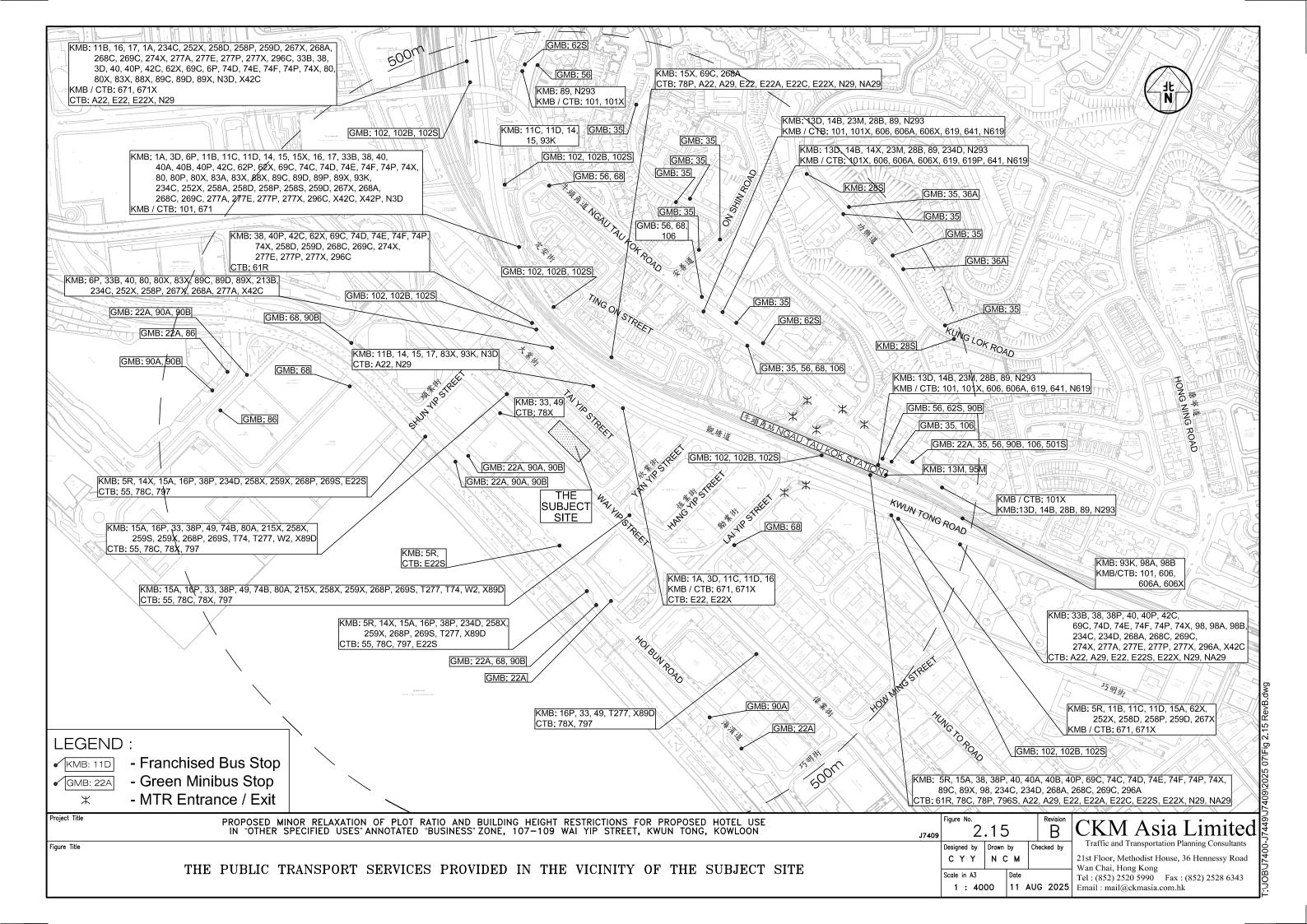


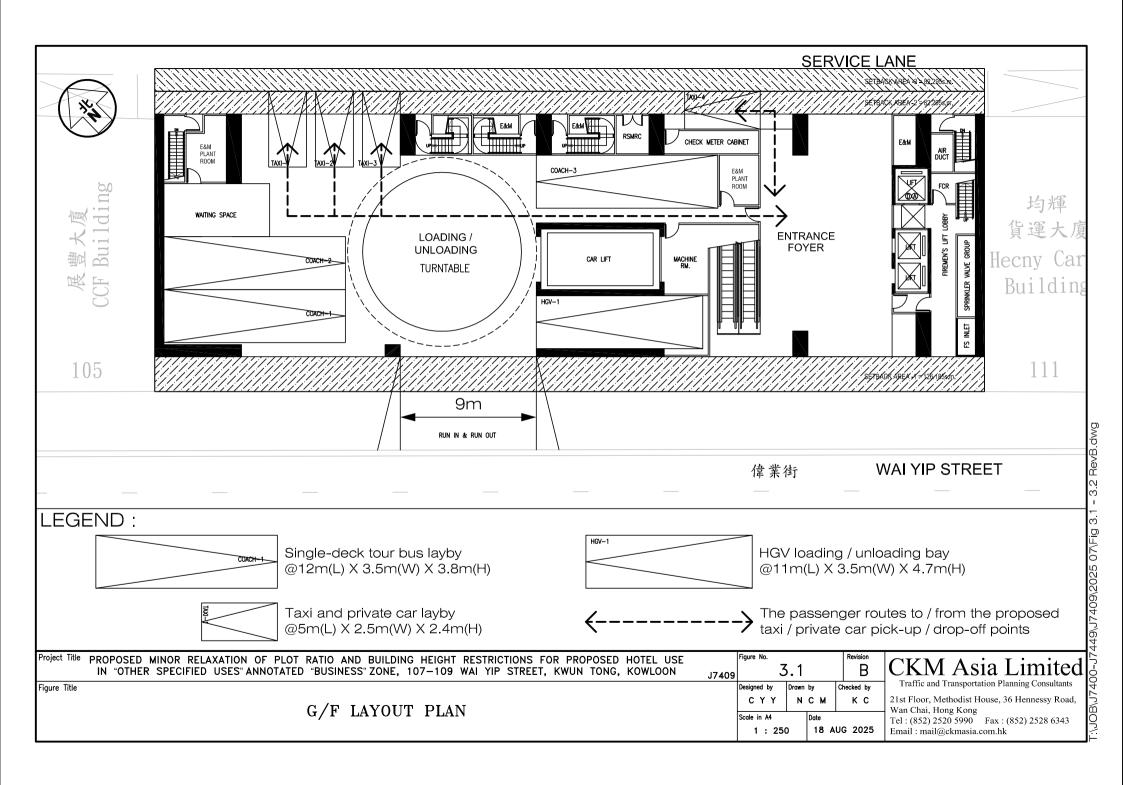


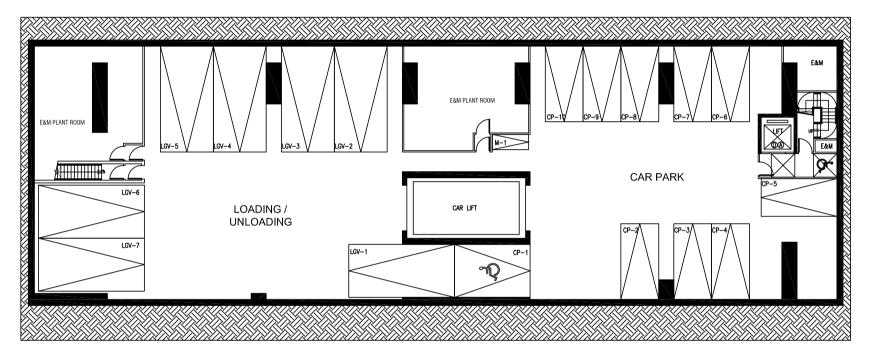


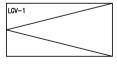












LEGEND:

Figure Title

LGV loading / unloading bay @7m(L) X 3.5m(W) X 3.6m(H)

Accessible car parking space @5m(L) X 3.5m(W) X 2.4m(H)

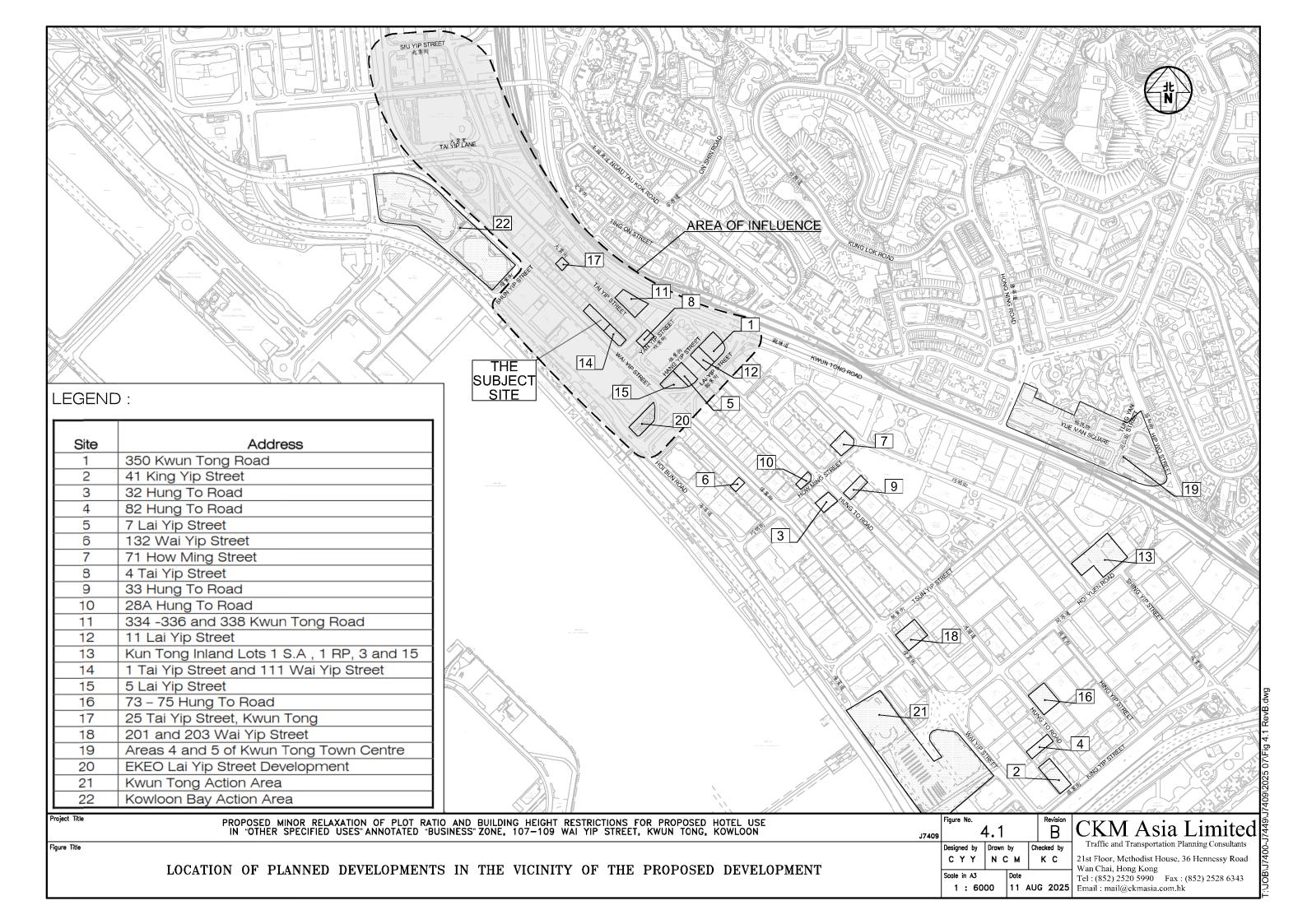
Private car parking space @5m(L) X 2.5m(W) X 2.4m(H)

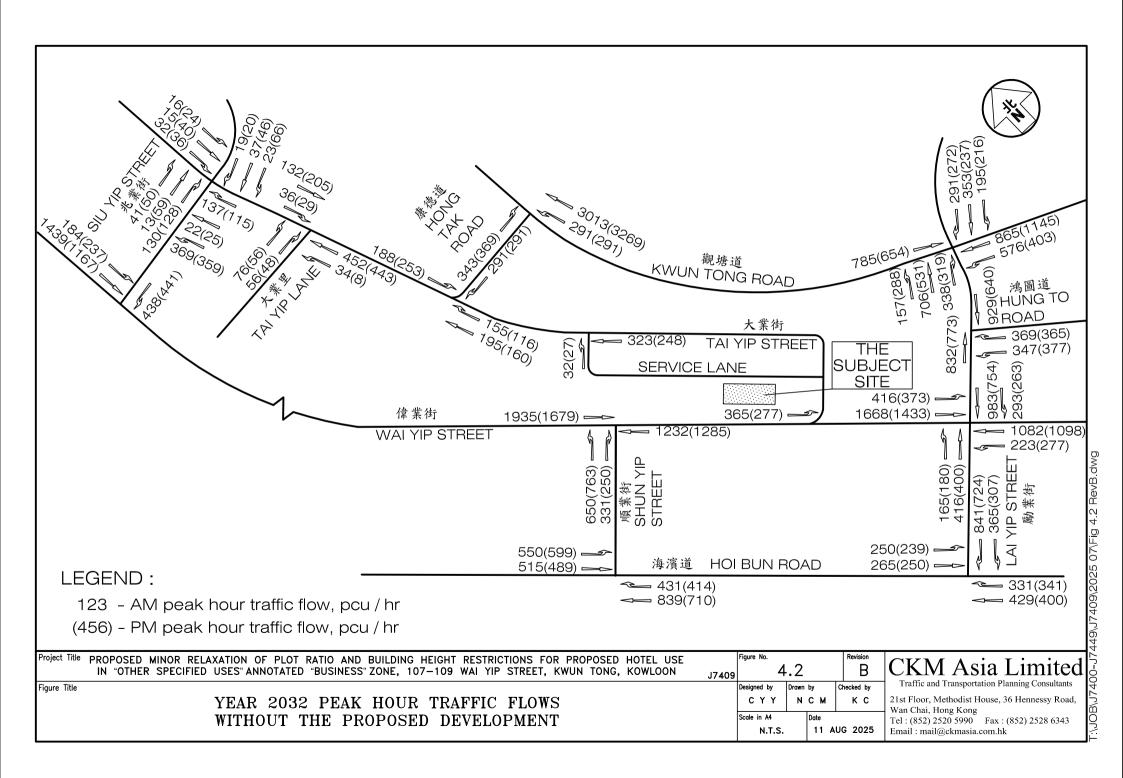
Motorcycle parking space @2.4m(L) X 1m(W) X 2.4m(H)

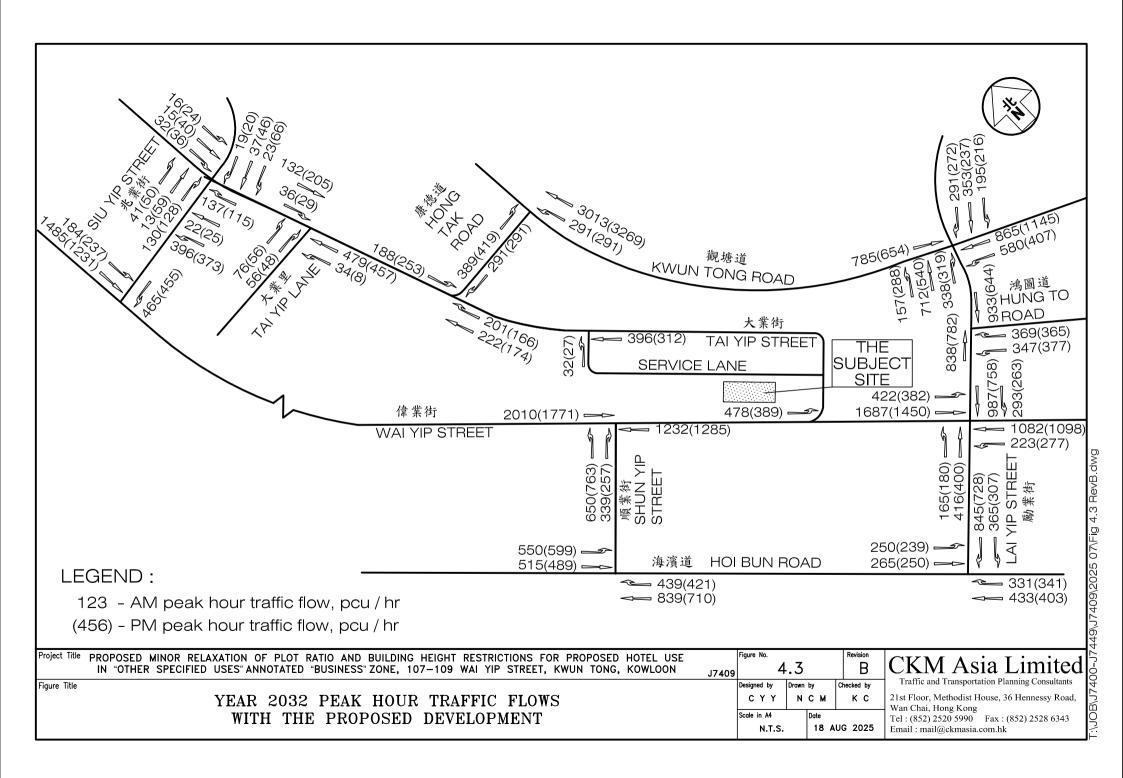
Project Title PROPOSED MINOR RELAXATION OF PLOT RATIO AND BUILDING HEIGHT RESTRICTIONS FOR PROPOSED HOTEL USE IN "OTHER SPECIFIED USES" ANNOTATED "BUSINESS" ZONE, 107-109 WAI YIP STREET, KWUN TONG, KOWLOON

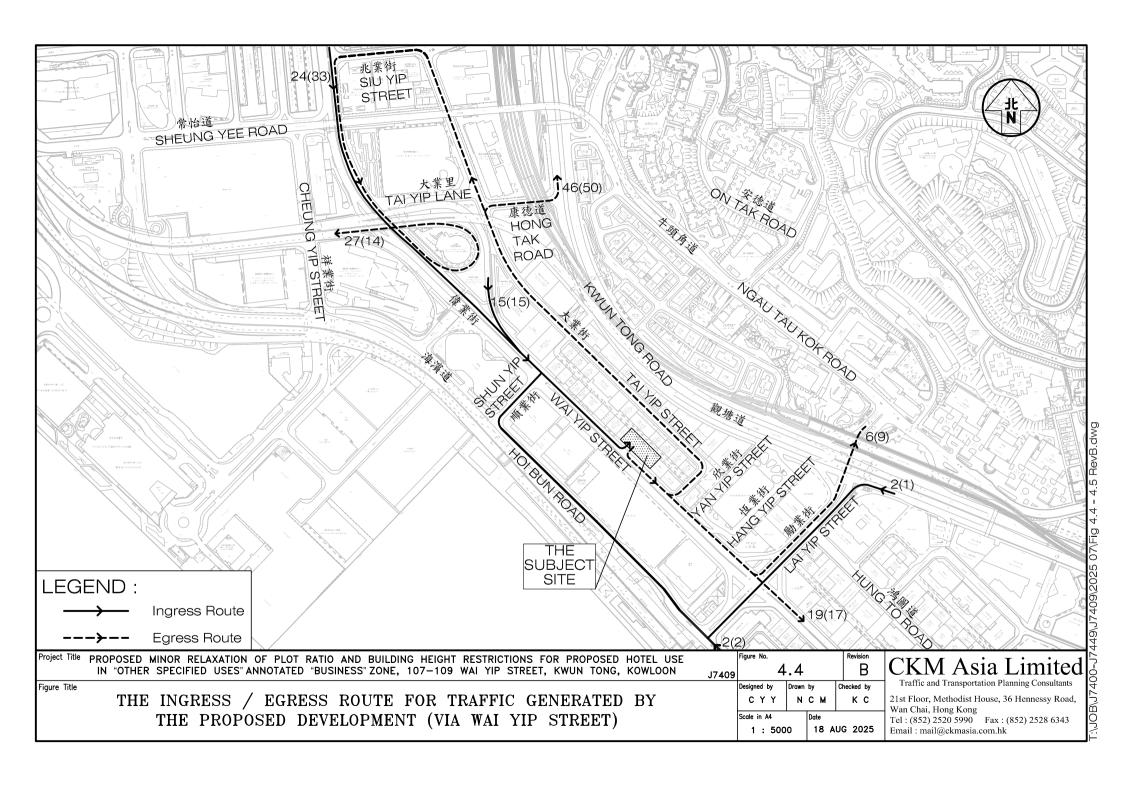
Figure No. 3.2 J7409 Checked by CYY NCM

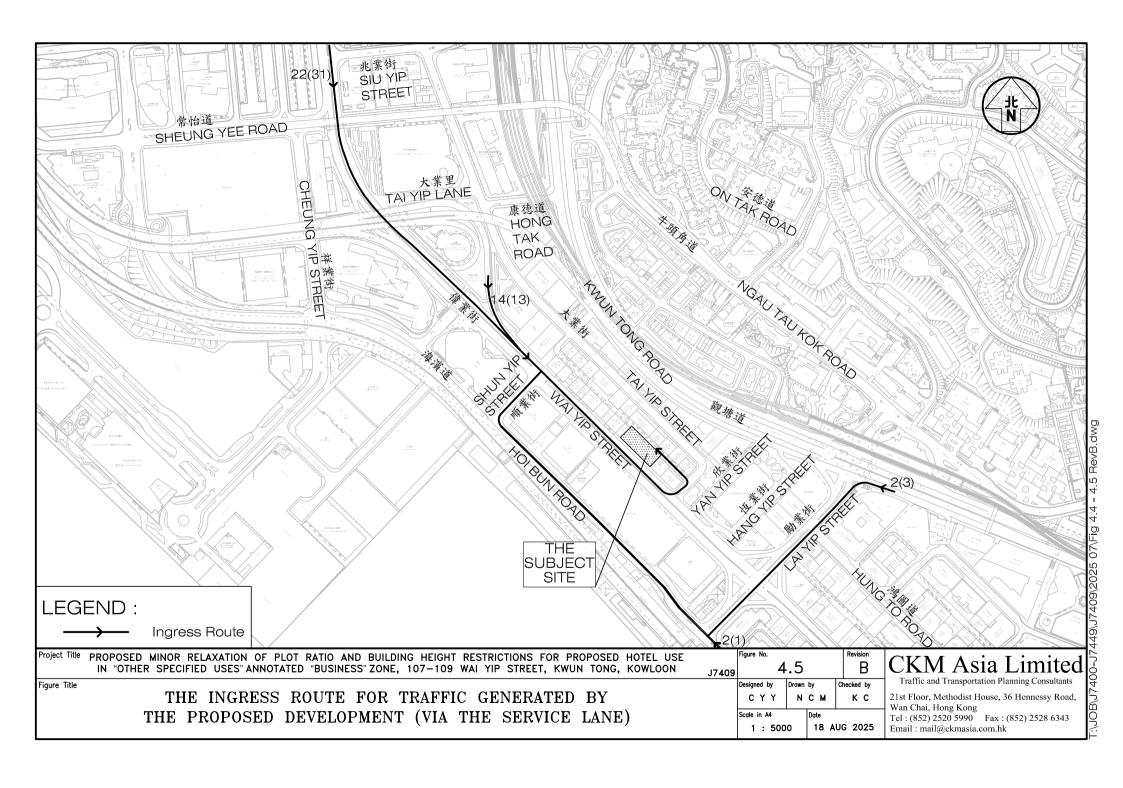
1:250

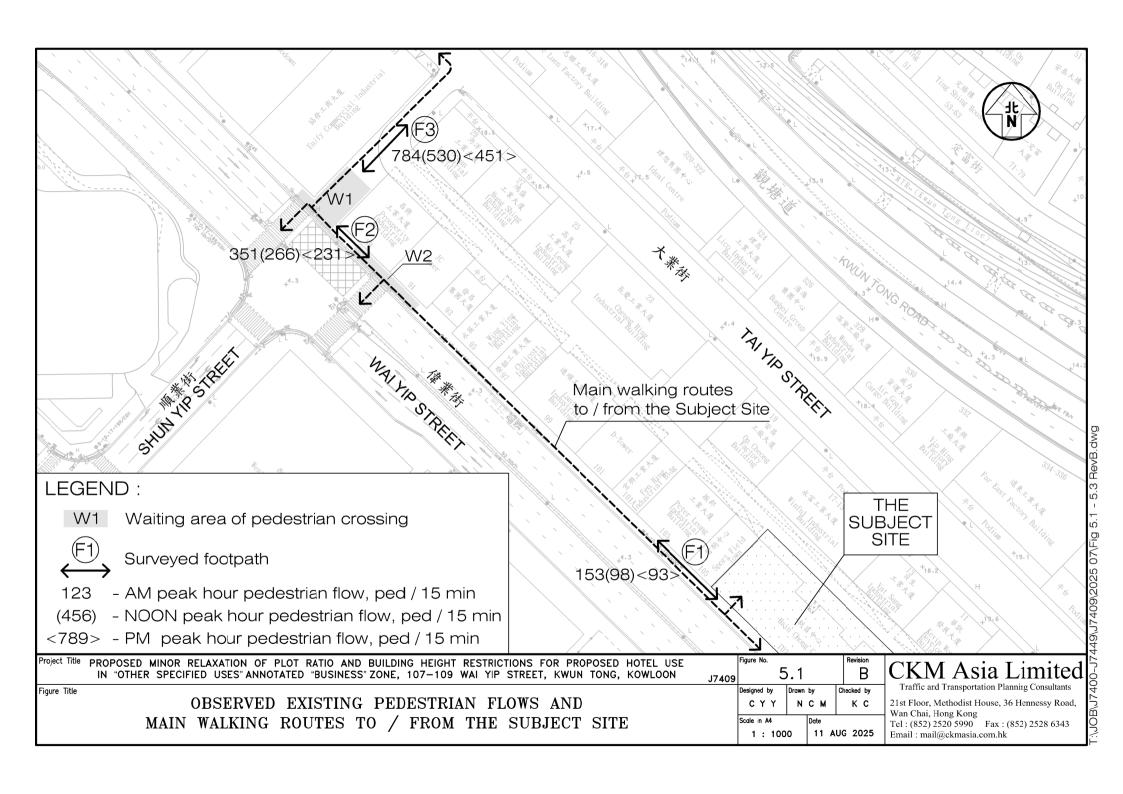

18 AUG 2025

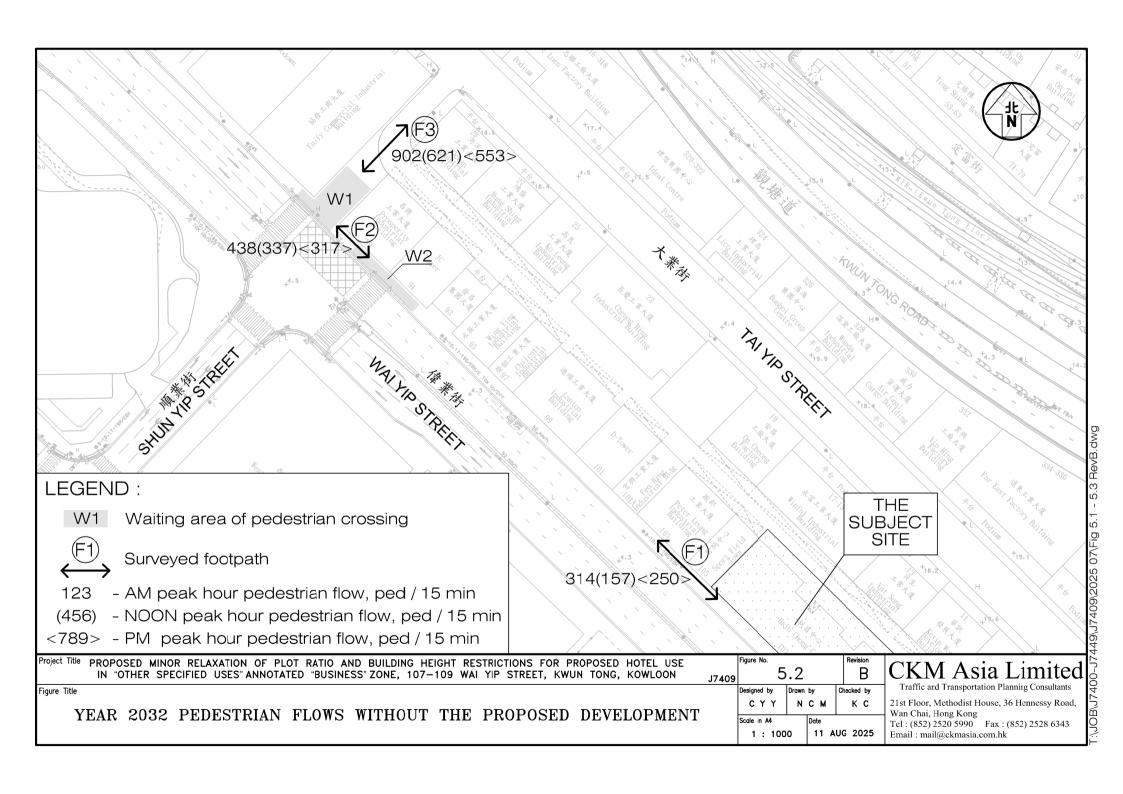

CKM Asia Limited Traffic and Transportation Planning Consultants

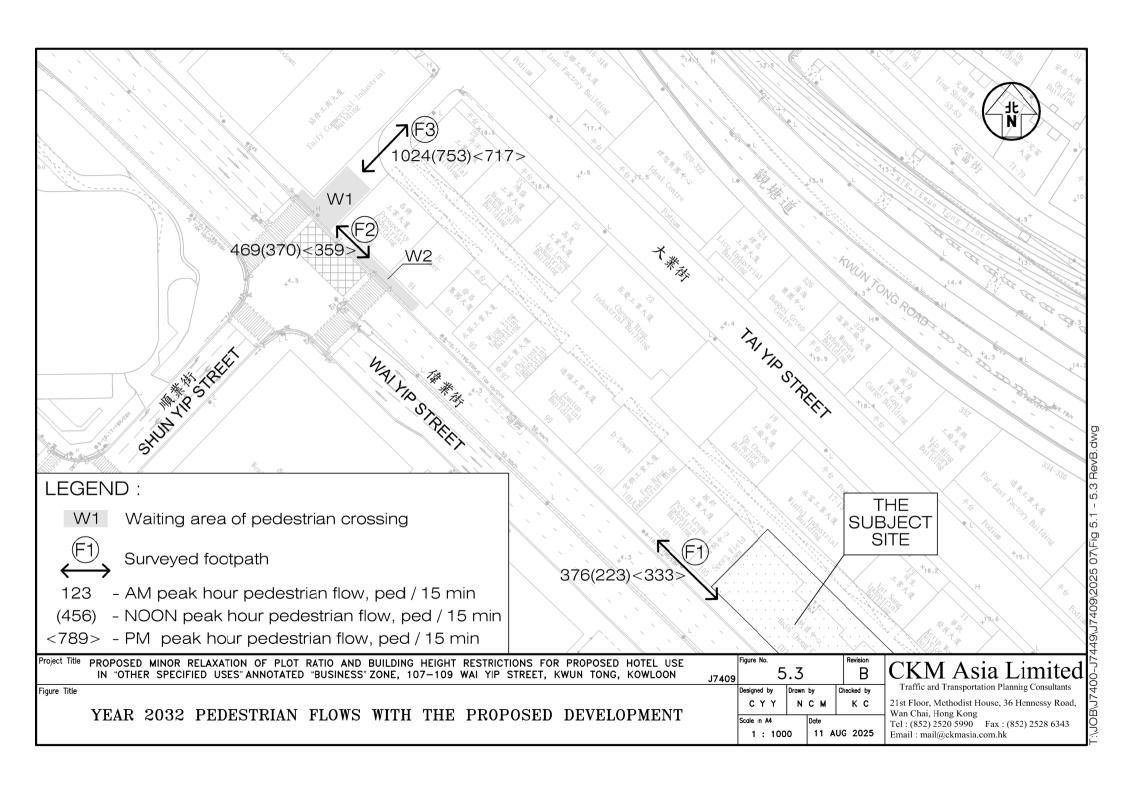

21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong


Tel: (852) 2520 5990 Fax: (852) 2528 6343 Email: mail@ckmasia.com.hk

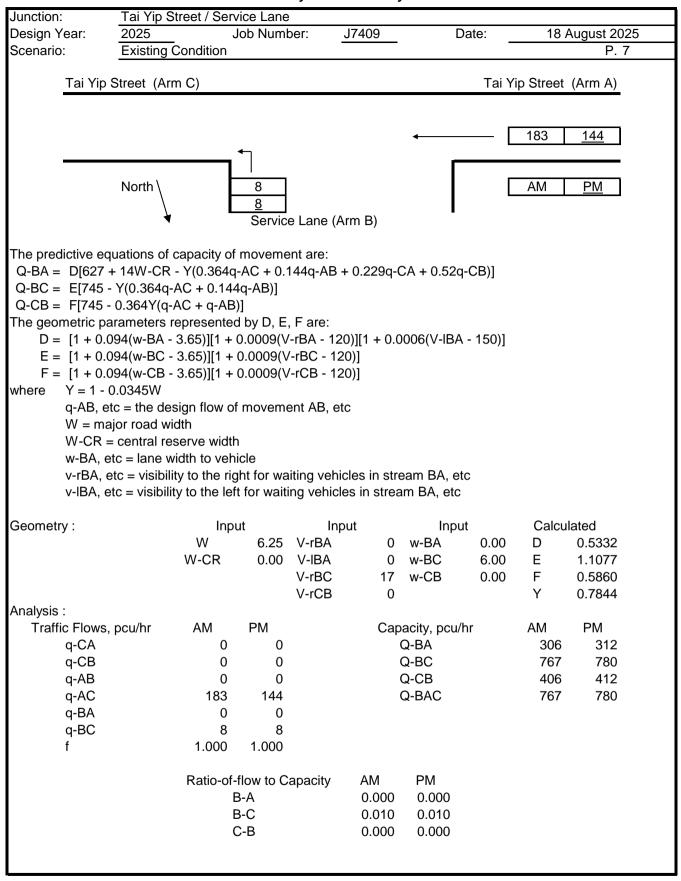

B1/F LAYOUT PLAN

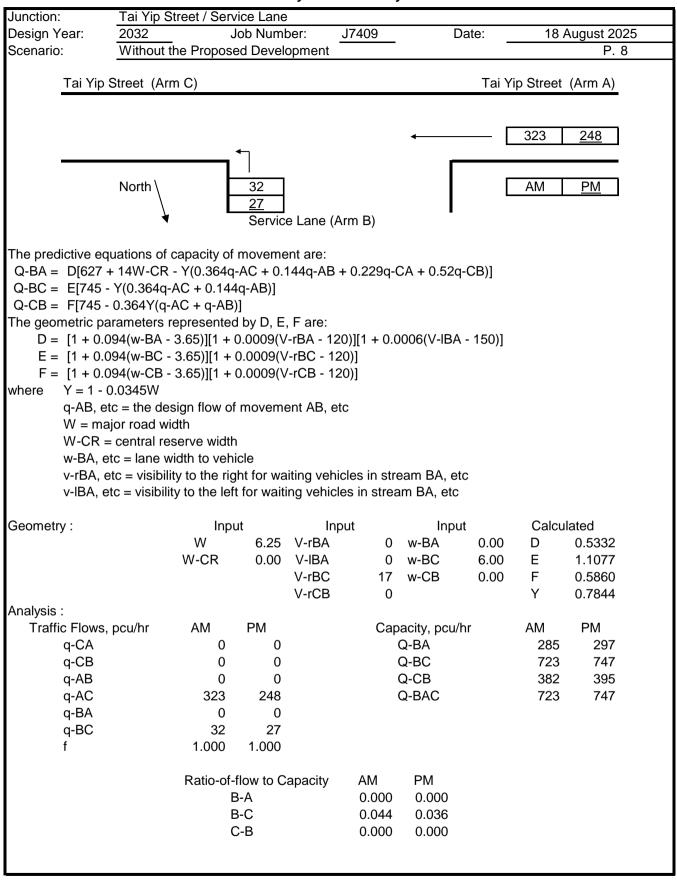


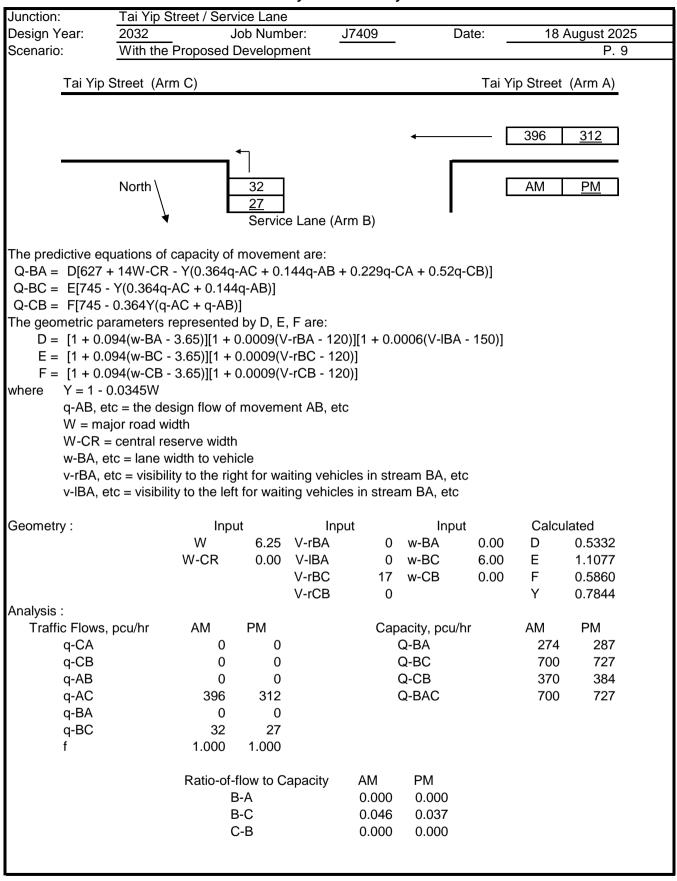


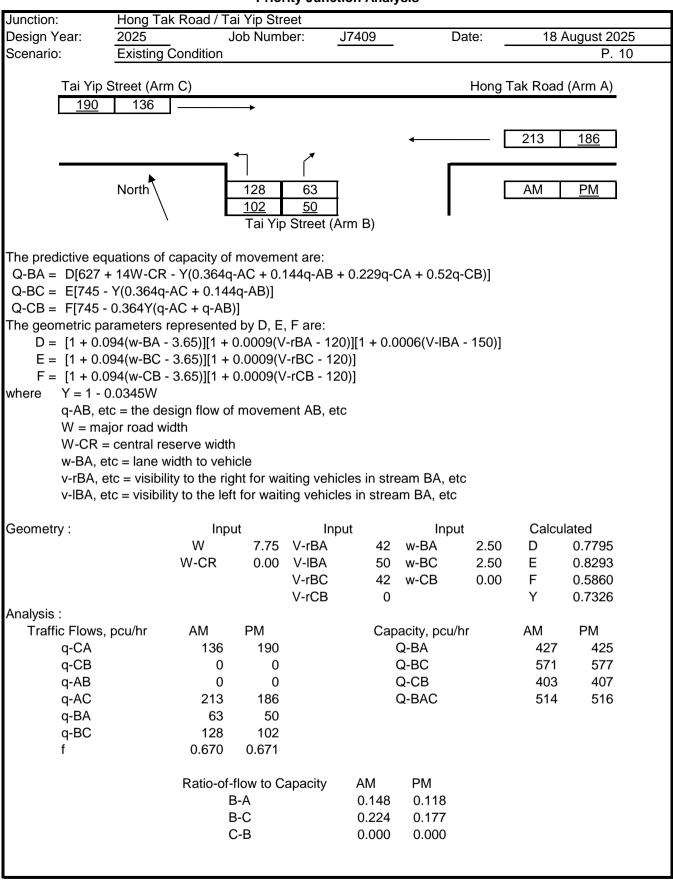


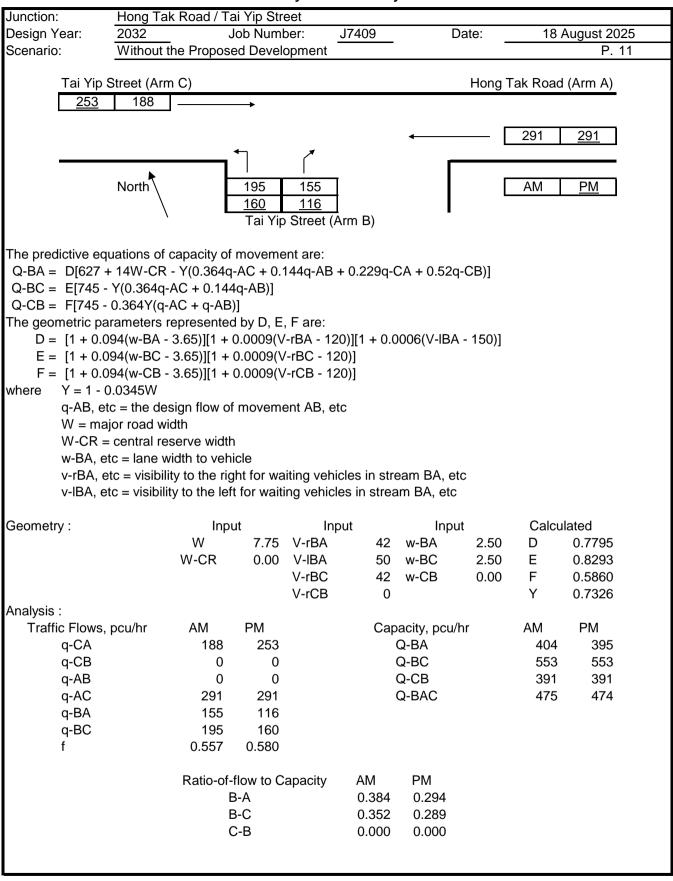
Junction:	Hoi Bun F	Road / Shun Y	ip Stree	t										-	Job Nu	mber:	J7409
Scenario: Design Year:	Existing 0		ed By:				-	Checke	ed By:					Date:	18 /	P. August 2	
			ſ			1	1	1		AM Peak			1		PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Hoi Bun Road	WB	SA	A1	1	3.50				1965	419	0.213	0.213		1965	326	0.166	0.166
		SA+RT		1	3.50	25.0		78	2011	428	0.213		100	1986	330	0.166	
Hoi Bun Road	EB	LT	B1	2	3.50	15.0		100	1786	309	0.173	0.173	100	1786	419	0.235	0.235
		SA	B2	2	3.50				2105	297	0.141			2105	296	0.141	
a a de atria e a le			0.	4.0					7		014	7			4.4		
pedestrian pha	ase		Cp Dp	1,3 2,3			rossing		7 6		<u>GM +</u> GM +	7 6		GM = GM =	14 12	sec	
			Ер	3			rossing		11		GM +	12		GM =	23	sec	
			Fp	3			rossing		8		GM +	6		GM =	14	sec	
				_			<u> </u>		_			-					
AM Traffic Flow (pcu/h	ır)		N	PM Traffic	Flow (pcu/hr)			N	S=1940+1	00(W-3.25)	S=2080+10	00(W-3.25)	Note:		
309			7		419				7	S _M =S÷(1+	1.5f/r)	8	S _M =(S-230)	÷(1+1.5f/r)			
1					1						AM	Peak	PM	Peak			
	297			-		296					1+2		1+2				
		335 1						329 1		Sum y	0.386		0.401				
		512 ← ↓					327	←		L (s)	39		39				
										C (s)	118		108				
										practical y	0.603		0.575				
										R.C. (%)	56%		43%				
1		2	•			3	, 4	Ер									
		B1	J →				Ср	Ī									
Ср							Do		Fp								
Ср		_	1				Dp \	1						1			
Ср	_1	A2	1				•	•									
Ср	₽		•				•	•									
•	↓	A2 A1	\		1/6	8	√	23	I/G	2	G		I/C		G		
AM G =		A2 A1 I/G = 8	G =		I/G =		G = G =		I/G =		G =		I/G =		G =		
•	<u> </u>	A2 A1	\		I/G = I/G = I/G =		G = G = G =		I/G = I/G =		G = G =		I/G = I/G =		G = G = G =		

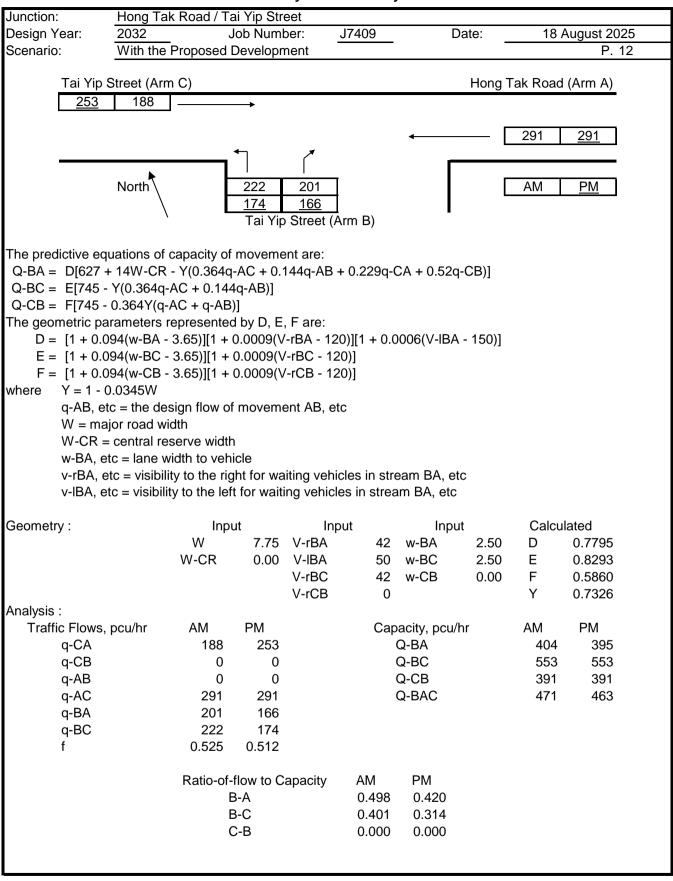

Junction:	Hoi Bun I	oad / Shun Yip Street														Job Number: J740		
Scenario:		he Proposed												-		P.		
Design Year:	2032	Design	ed By:				-	Checke	d By:				-	Date:	18	August 2	2025	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical	
Hoi Bun Road	WB	SA	A1	1,2	3.50				1965	839	0.427			1965	710	0.361		
		RT	A2	1	3.50	25.0		100	1986	431	0.217	0.217	100	1986	414	0.208	0.208	
Hoi Bun Road	EB	LT	B1	2	3.50	15.0		100	1786	491	0.275	0.275	100	1786	503	0.282	0.282	
		SA+LT	B2	2	3.50	20.0		10	2089	574	0.275		16	2080	585	0.281		
pedestrian pha	ase		Ср	1,3		min c	rossing	time =	7	sec	GM +	7	sec F	GM =	14	sec		
•			Cp 1,3 Dp 3		min crossin				6		GM +	6	sec F		12	sec		
			Ep Fp	3			min crossing t		11 8		GM + GM +	12 6		GM = GM =	23 14	sec sec		
			ТР	3		111111111111111111111111111111111111111	lossing	uirie –	0	360	GIVI T	0	3601	GIVI =	14	Sec		
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr)			N	S=1940+1	00(W-3.25	i) :	S=2080+10	0(W-3.25)	Note:			
550					599					S _M =S÷(1+	1.5f/r)	S	S _M =(S-230)	÷(1+1.5f/r)		Improver by Other		
	515		\		⊥,	489			\			Peak		Peak				
	010	431				400		414		Sum y	0.492		0.490					
		839	•				710	←		L (s)	39		39					
										C (s)	118		108					
										practical y	0.603		0.575					
		Io.				la.				R.C. (%)	22%		17%					
Cp		B1				3	-	Ep 🔺										
-P:		B2	→				* †		Fp									
					Dp 🔻	ţ												
	←	—— A1			——— A1													
AM G =		I/G = 8	G =		I/G =	8	G =	23	I/G =	2	G =		I/G =		G =			
G = I/G =		1/6 =	G =		I/G =		G =		I/G =		G =		I/G =		G =			
PM G =		I/G = 8	G =		I/G =	8	G =	23	I/G =	2	G =		I/G =		G =			

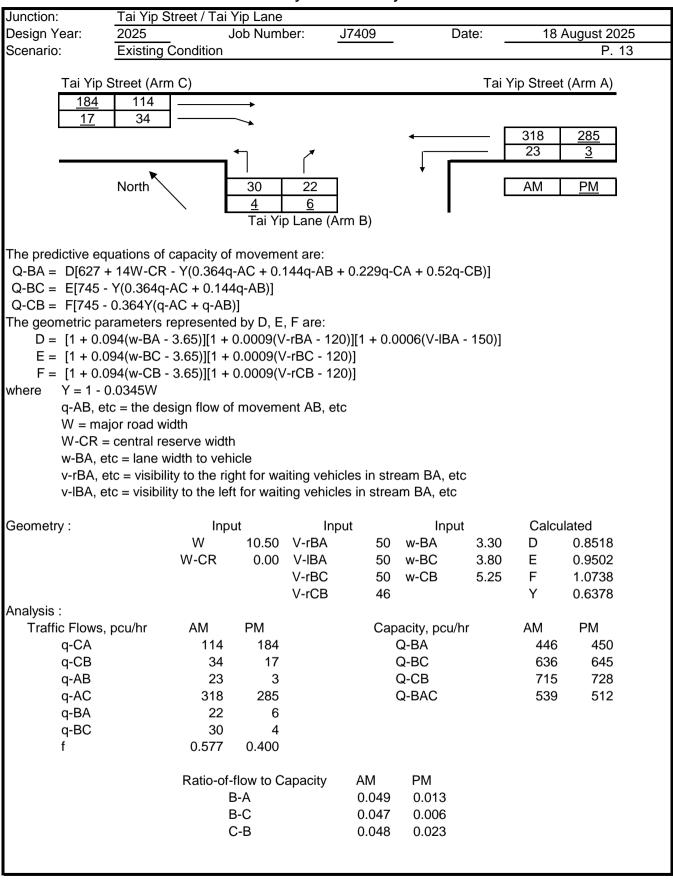

Junction:	Hoi Bun	ın Road / Shun Yip Street													Job Number: J740		
Scenario:		Proposed Dev												•	000 110	P.	
Design Year:		Design					-	Checke	d By:				-	Date:	18 /	August 2	
	Approach		Phase	Stage	Width (m)	Radius (m)		Turning %		AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
Hoi Bun Road	WR	SA	A1	1,2	3.50		Gradient		(pcu/hr) 1965	(pcu/hr) 839	0.427			(pcu/hr) 1965	(pcu/hr) 710	0.361	
TIOI DUIT TOUG	VVD	RT	A2	1	3.50	25.0		100	1986	439	0.221	0.221	100	1986	421	0.212	0.21
Hoi Bun Road	EB	LT	B1	2	3.50	15.0		100	1786	491	0.275	0.275	100	1786	503	0.282	0.28
		SA+LT	B2	2	3.50	20.0		10	2089	574	0.275		16	2080	585	0.281	
					-												
					-												
pedestrian pha	ase		Ср	1,3		min c	rossing	time =	7	sec	GM +	7	sec F	GM =	14	sec	
'			Dp 3				rossing		6	sec GM + 6		6	sec F		12	sec	
			Еp			min crossing			11	sec	GM+	12	sec F		23	sec	
			Fp	3	3		min crossing t		8	sec	GM+	6	sec F	GM =	14	sec	
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr))			N	S=1940+1	00(W-3.25)	S=2080+10	0(W-3.25)	Note:		
550			7		599				7	S _M =S÷(1+	1.5f/r)	8	S _M =(S-230)	÷(1+1.5f/r)		Improver by Other	
†					†						AM	Peak	PM	Peak	Concinc	by Guioi	1 10,00
	515					489					1+2		1+2				
		439 1						421 1		Sum y	0.496		0.494				
		839 ←					710	←		L (s)	39		39				
										C (s)	118		108				
										practical y	0.603		0.575				
										R.C. (%)	21%		16%				
1		2				3		Ep									
Cp		B1 +	Ĵ				Ср	1									
*		B2	→														
	₺						Dp ੑੑੑ										
	—	—— A2 —— A1		←	—— A1												
AM G =		I/G = 8	G =		I/G =	8	G =	23	I/G =	2	G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G=		I/G = 8	G =		I/G =	8	G =	23	I/G =	2	G =		I/G =		G =		
G =	:	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

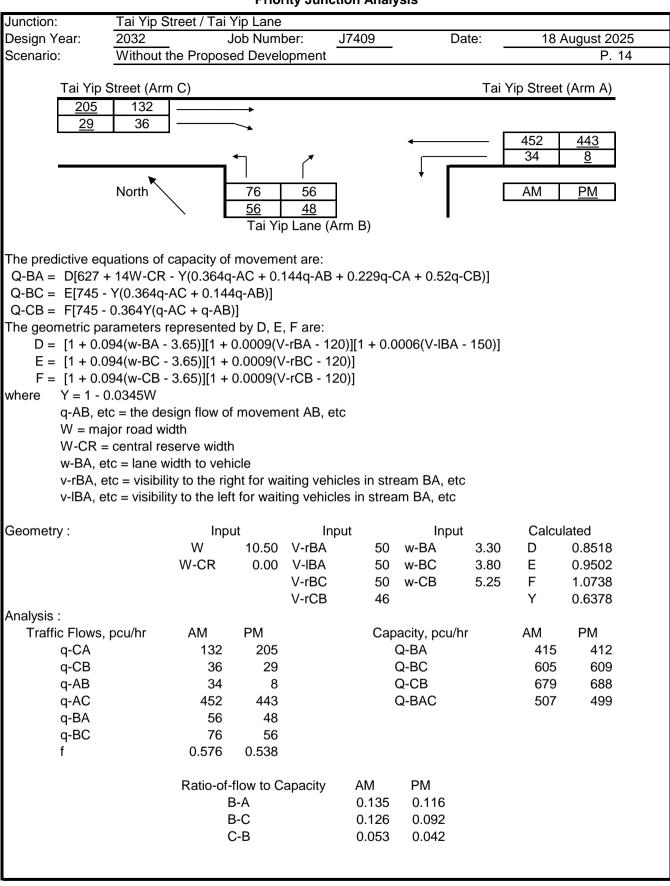

Junction:	Wai Yip Stre		ip Stree	et											Job Nu	mber:	
Scenario: Design Year:	Existing Con 2025		ed By:				-	Checke	ed By:					Date:	18 /	P. August 2	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
						,	Gradient	- 3	(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		
Wai Yip Street	I EB	SA SA	A1 A2	1	3.50				1965 2105	479 513	0.244	0.244		1965 2105	399 427	0.203	0.203
		SA	A3	1	3.50				2105	512	0.244			2105	427	0.203	0.203
		- OA	AU		3.30				2103	312	0.240			2103	721	0.203	
Wai Yip Street	t WB	SA	B1	1	3.50				1965	271	0.138			1965	305	0.155	
•		SA	B2	1	3.50				2105	291	0.138			2105	327	0.155	
		SA	В3	1	3.50				2105	291	0.138			2105	326	0.155	
Shun Yip Stree	et NB	LT	C1	3	3.50	15.0		100	1786	206	0.115	0.115	100	1786	262	0.147	0.147
		LT+RT	C2	3	3.50	18.0		100	1943	224	0.115		100	1943	284	0.146	
		RT	C3	3	3.50	25.0		100	1854	214	0.115		100	1854	202	0.109	
pedestrian pha	ase		Dp	1,2		min c	rossing	time =	8	sec	GM+	11	sec F	GM =	19	sec	
			Еp						12	sec GM + 9			sec F	GM =	21	sec	
			Fp	2		min c	rossing	time =	13	sec GM + 12		12	sec F	GM =	25	sec	
AM Traffic Flow (pcu/hr	ır)		N	PM Traffic	Flow (pcu/hr))			N	S=1940+1	00(W-3.25) :	S=2080+10	0(W-3.25)	Note:		
			1						1	S _M =S÷(1+	1.5f/r)	S	_M =(S-230)	÷(1+1.5f/r)			
	1 504		\			1253			1		AM	Peak	PM I	Peak			
											1+3		1+3				
	8	53 ←					958	•		Sum y	0.359		0.350				
	-			F40 4					L (s)	40		40					
407	427 ← 217				546		202			C (s)	118 0.595		108				
427 1	217										U.090	ı	0.567				
427 ·	217									practical y			62%				
427 ·	217	In .				12				R.C. (%)	66%		62%				
427 ·	217	2				3							62%				
427 ·	217	2		4	<u> </u>	3							62%				
427 ·	217	1 :	Fp		L Ep	3							62%				
427 ` 1 A1 A2 A3	217	B3 B2	Fp	4	Ep	3	↑						62%				
1 A1 A2 A3 A3		В3	· •	4	Ep ,	3	T						62%				
1 A1 A2 A3 A3 Dp		B3 B2 B1	∢ Dp		,		C2 C3		1/0	R.C. (%)	66%						
1 A1 A2 A3 Dp AM G =	P 1/0	B3 B2 B1	4 Dp		//G =		G =		I/G =	R.C. (%)	66% G =		I/G =		G=		
1 A1 A2 A3 A3 Dp	P = 1/0	B3 B2 B1	∢ Dp	25	,	8			I/G = I/G =	R.C. (%)	66%				G = G =		

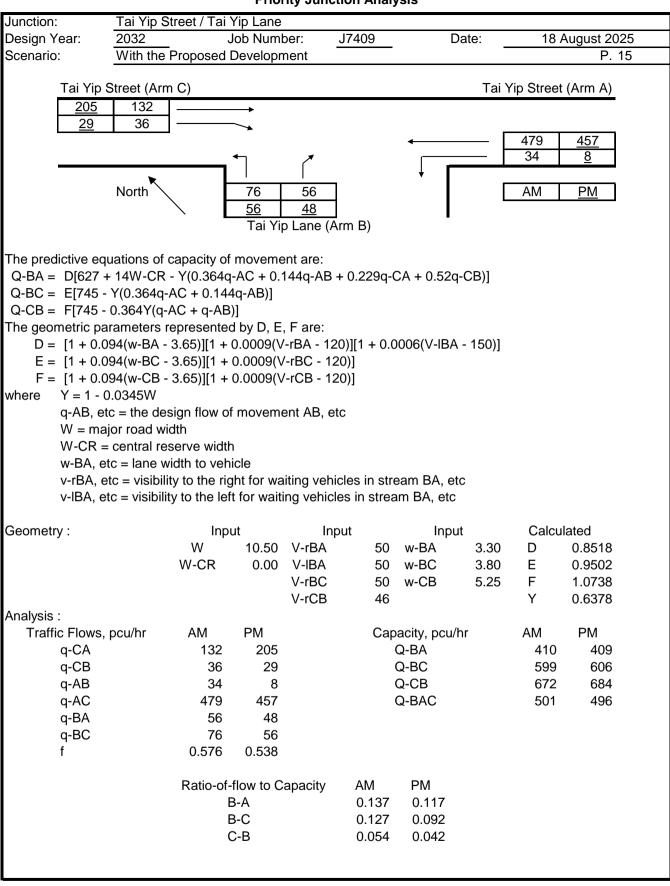

Junction:			/ Shun Yip Street posed Development													Job Number: <u>J74</u>		
Scenario: Design Year:	Without the	Proposed Designe						Checke	d By:					Date:	18 /	P. August 2		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y	
						,	Gradient	- 3	(pcu/hr)	(pcu/hr)		,	3	(pcu/hr)	(pcu/hr)			
Wai Yip Street	EB	SA SA	A1 A2	1	3.50				1965 2105	616 660	0.313	0.314		1965 2105	534 572	0.272		
		SA	A3	1	3.50				2105	659	0.313	0.314		2105	573	0.272	0.272	
		- OA	AU		3.30				2103	003	0.010			2103	373	0.212	0.212	
Wai Yip Street	t WB	SA	B1	1	3.50				1965	392	0.199			1965	409	0.208		
•		SA	B2	1	3.50				2105	420	0.200			2105	438	0.208		
		SA	В3	1	3.50				2105	420	0.200			2105	438	0.208		
Shun Yip Stree	et NB	LT	C1	3	3.50	15.0		100	1786	314	0.176	0.176	100	1786	365	0.204		
		LT+RT	C2	3	3.50	18.0		100	1943	341	0.176		100	1943	398	0.205	0.205	
		RT	C3	3	3.50	25.0		100	1854	326	0.176		100	1854	250	0.135		
pedestrian pha	ase		Dp	1,2		min c	rossing	time =	8	sec	GM +	11	sec F	GM =	19	sec		
			Еp	2		min c	rossing	time =	12 sec GM + 9			9	sec F	GM =	21	sec		
			Fp	2		min c	rossing	time =	13	sec	GM +	12	sec F	GM =	25	sec		
	,			DUT #														
AM Traffic Flow (pcu/hr	r)		N	PM Traffic	Flow (pcu/hr))			N	S=1940+1	00(W-3.25) ;	S=2080+10	0(W-3.25)	Note:			
			\						\	S _M =S÷(1+	1.5f/r)	S	_M =(S-230)	÷(1+1.5f/r)				
	▶ 1935		١	_		1679			\		AM	Peak	PM	Peak				
											1+3		1+3					
	12	32					1285	•		Sum y	0.489		0.477					
					760 4	-				L (s)	40		40					
000				763 •		250			C (s)	118 0.595		108 0.567						
650	331												0.007					
650 1	331									practical y			19%					
650	331	2				13				R.C. (%)	22%		19%					
1	331	2				3							19%					
1 A1 A1 A2	331	2		•		3							19%					
1	331		Fp	•	Ep	3							19%					
1		B3 B2	Fp		Ер	3	→ ┌						19%					
1 A1 — → A2 — → A3 — →		В3	Fp 4 ·······		Ep ,	3	*						19%					
1 A1 — A2 — A3 — A3 — Dp	—	B3 B2 B1	∢ Dp		,		C2 C3		1/0 -	R.C. (%)	22%				C-			
1 A1 A2 A3 A3 AM G =	P 1/0	B3 B2 B1	∢ Dp		//G =		G =		I/G =	R.C. (%)	22% G =		I/G =		G =			
1 A1 — A2 — A3 — A3 — Dp	P	B3 B2 B1	∢ Dp	25	,	8			I/G = I/G =	R.C. (%)	22%				G = G =			

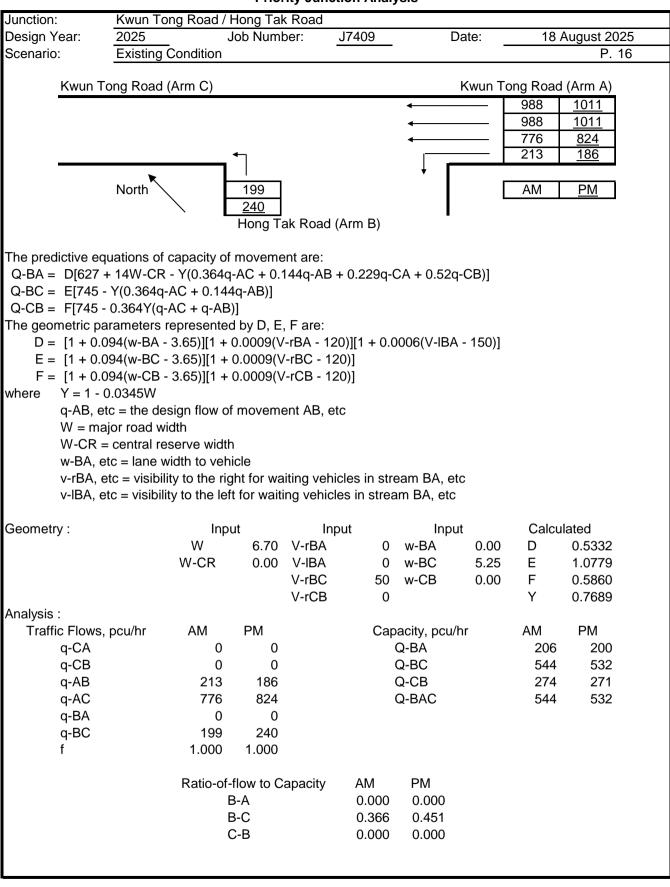

						9			···a··y c								
Junction:	Wai Yip Stre	eet / Shun Y	/ip Stree	et										i	Job Nu	mber:	J7409
Scenario: Design Year:	With the Pro	pposed Dev Designe						Checke	d By:					Date:	18	P. August 2	
	Approach		Phase	Stage	Width (m)	Radius (m)		Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Wai Yip Street	+ ED	SA	A1	1	3.50		Gradient		(pcu/hr) 1965	(pcu/hr) 640	0.326	0.326		(pcu/hr) 1965	(pcu/hr) 564	0.287	
wai rip Street	LLD	SA	A2	1	3.50				2105	685	0.325	0.320		2105	604	0.287	0.287
		SA	A3	1	3.50				2105	685	0.325			2105	603	0.286	0.201
		<u> </u>	7.0	·	0.00				2.00		0.020			2.00		0.200	
Wai Yip Street	t WB	SA	B1	1	3.50				1965	392	0.199			1965	409	0.208	
•		SA	B2	1	3.50				2105	420	0.200			2105	438	0.208	
		SA	В3	1	3.50				2105	420	0.200			2105	438	0.208	
Shun Yip Stree	et NB	LT	C1	3	3.50	15.0		100	1786	316	0.177		100	1786	365	0.204	
		LT+RT	C2	3	3.50	18.0		100	1943	345	0.178	0.178	100	1943	398	0.205	0.205
		RT	C3	3	3.50	25.0		100	1854	328	0.177		100	1854	257	0.139	
			D	4.0							014	44		O14	40		
pedestrian pha	ase		Dp Ep	1,2 2			rossing trossing t		8 12		<u>GM +</u> GM +	11 9	sec F		19 21	sec	
			– ⊑p Fp	2			rossing		13		GM +	12	sec F		25	sec	
			1 1			1111110	rossing		10	300	OW 1	12	3001	OIVI -	20	300	
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr)	1			N	S=1940+1	00(W-3.25) :	S=2080+10	0(W-3.25)	Note:		
			Ϋ́						Ť	S _M =S÷(1+	1.5f/r)	s	_M =(S-230)	÷(1+1.5f/r)			
	→ 2010		\		,	1771			\		AM	Peak	PM I	Peak			
											1+3		1+3				
										Sum y	0.503		0.492				
	12	232					1285	←		L (s)	40		40				
650	339				763	—	257			C (s)	118		108				
										practical y	0.595		0.567				
						l				R.C. (%)	18%		15%				
1		2				3											
A1		•		4													
A2 ————————————————————————————————————			Fp		Ep												
	—	В3				-	◆ → ┌→										
∢		- B2 - B1	4		,												
D			Dp			C1	C2 C3			<u> </u>							
AM G =	= I/	G = 7	G =	25	I/G =	8	G =		I/G =	2	G =		I/G =		G =		
G =		G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G=	G = 7	G =	25	I/G =	8	G =		I/G =	2	G =		I/G =		G =			
PM G=	G =	G =		I/G =				I/G =				I/G =		G =			

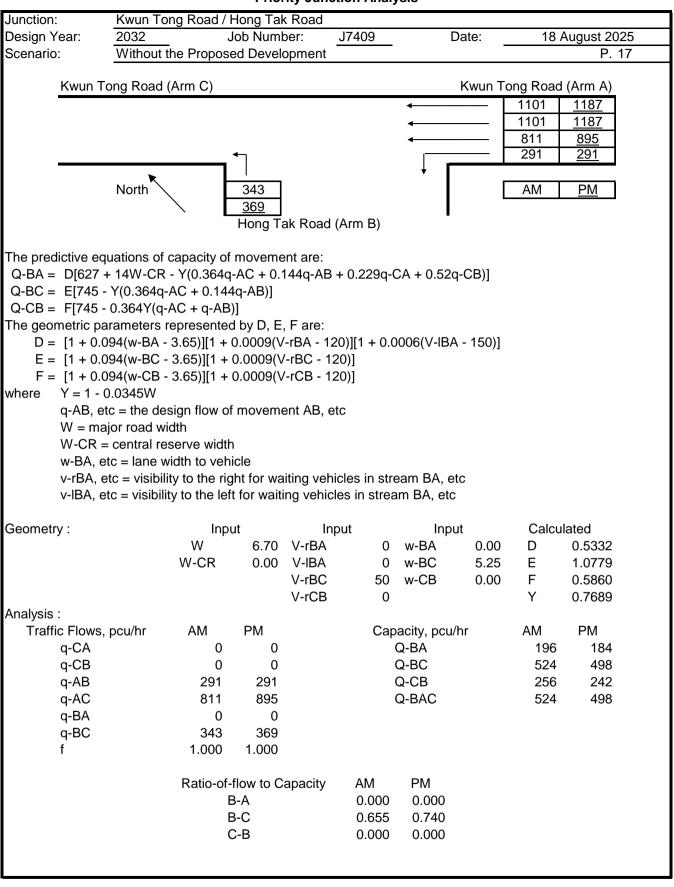


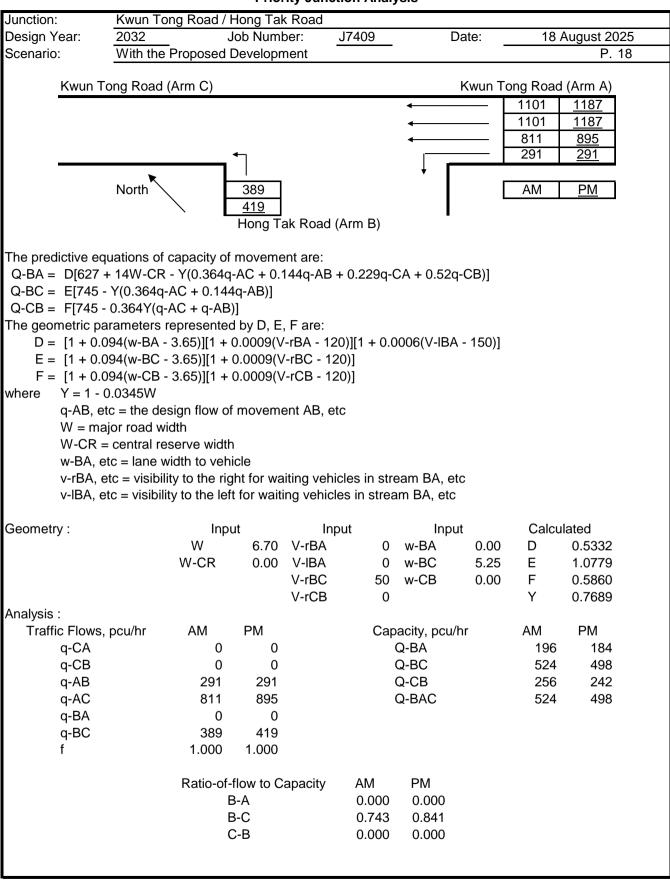












						9a.	<u> </u>	1011 A	···a··y c								
Junction:	Wai Yip Stre	et / Lai Yip	Street											<u>.</u>	Job Nu	mber:	J7409
Scenario: Design Year:	Existing Con 2025	dition Designe	ed By:					Checke	d By:				-	Date:	18	P. August 2	19 2025
	Approach		Phase	Stage	Width (m)	Radius (m)		Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Wai Yip Street	t WB	SA+LT	A1	3	2.80	20.0	Gradient	27	(pcu/hr) 1977	(pcu/hr) 276	0.140		34	(pcu/hr) 1981	(pcu/hr) 301	0.152	
		SA	A2	3	2.80				2035	284	0.140			2035	309	0.152	
		SA	А3	3	2.80				2035	285	0.140			2035	308	0.151	
Lai Yip Street	SB	LT	B1	2	3.10	20.0		100	2638	170	0.064	0.064	100	2638	208	0.079	0.098
<u> </u>		SA	B2	1,2	3.10				2065	358	0.173			2065	217	0.105	
		SA	В3	1,2	3.10				2065	357	0.173			2065	217	0.105	
Wai Yip Street	t EB	SA+LT	C1	3	3.30	20.0		63	2097	576	0.275		50	2142	489	0.228	0.228
		SA	C2	3	3.30				2085	573	0.275	0.275		2085	476	0.228	
		SA	C3	3	3.30				2085	572	0.274			2085	476	0.228	
Lai Yip Street	NB	SA+LT	D1	1	4.00	15.0		45	2048	183	0.089	0.089	72	2013	198	0.098	0.098
		SA	D2	1	3.50				2105	188	0.089			2105	207	0.098	
pedestrian pha	ase		Ep	3		min c	rossing	time =	11	sec (GM +	10	sec F	GM =	21	sec	
			Fp	1,2			rossing t		7		GM +	11	sec F		18	sec	
			Gp	1,2			rossing		5		GM +	10		GM =	15	sec	
			Hp Ip	-	1,3 min cro 2 min cro				5 7		<u>GM +</u> GM +	7 11	sec F	GM =	12 18	sec	
AM Traffic Flow (pcu/h	ur)			PM Traffic	Flow (pcu/hr)				1						Note:		
		170	V N		(()			208	γ N	S=1940+1 S _M =S÷(1+	00(W-3.25		S=2080+10 S _M =(S-230)			on oberva	ation
360	ļ	170			243			200		SM−5.(Peak	II	Peak			
†	715				<u>†</u>		434				1+2+3	1,2+3	1+2+3	1,2+3			
	1361			_		1198				Sum y	0.429	0.448	0.406	0.333			
	289 7	71 🕌	-			262	815	←	_	L (s)	17	12	17	12			
82	2 😽	74			143	-		103		C (s)	120	120	108	108			
										practical y	0.773	0.810	0.758	0.800			
										R.C. (%)	80%	81%	87%	140%			
1 Gp	B3 B2	2 Gp	4	B3 B2 B	1	3		Ер									
Ğβ.	→ → → Hp	lp	†	↓ ↓ ţl	→	C1 ————————————————————————————————————			- Hp								
† †	Fp♥		ŧ	Fp ♥	<u>.</u>	С3	→	+	—— A3 —— A2								
	Gp ♣				Gp [™]		← Ep		→ A1								
D1 D2		G = 7	G =		I/G =	5	G =		I/G =	8	G =		I/G =		G =		
AM^ G =	= 1/0	J = 1															
G =		G =	G =		I/G =	6	G =		I/G =	8	G =		I/G =		G =		
	= 1/0				I/G =		G =		I/G =		G =		I/G =		G =		

						<u> </u>		ion A	- ,								
Junction:	Wai Yip Stre													-	Job Nu	mber:	J7409
Scenario: Design Year:	Without the F	Proposed E Designe					•	Checke	d By:				•	Date:	18	P. August 2	20 2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Wai Yip Street	+ \//D	SA+LT	A1	3	2.80	20.0	Gradient	52	(pcu/hr) 1944	(pcu/hr) 422	0.217		62	(pcu/hr) 1944	(pcu/hr)	0.228	
wai rip Street	LVVD	SA	A2	3	2.80	20.0		52	2035	442	0.217		02	2035	465	0.229	
		SA	A3	3	2.80				2035	441	0.217			2035	466	0.229	
Lai Yip Street	SB	LT	B1	2	3.10	20.0		100	2638	293	0.111	0.111	100	2638	263	0.100	0.140
		SA	B2	1,2	3.10				2065	492	0.238			2065	377	0.183	
		SA	В3	1,2	3.10				2065	491	0.238			2065	377	0.183	
Mai Vin Ctroot	- FD	CALLT	C1	2	2.20	20.0		60	2101	600	0.332		61	2127	610	0.207	0.207
Wai Yip Street	LED	SA+LT SA	C1 C2	3	3.30	20.0		60	2101	698 693	0.332	0.332	61	2085	610 598	0.287	0.287
		SA	C3	3	3.30				2085	693	0.332	0.552		2085	598	0.287	
											0.00					0.20	
Lai Yip Street	NB	SA+LT	D1	1	4.00	15.0		58	2025	285	0.141	0.141	63	2029	285	0.140	0.140
		SA	D2	1	3.50				2105	296	0.141			2105	295	0.140	
pedestrian pha	ase		Еp	3		min c	rossing	time =	11	sec (GM +	10	sec F	GM =	21	sec	
			Fp	1,2			rossing		7		GM +	11	sec F		18	sec	
			Gp	1,2		min c	rossing	time =	5	sec (GM +	10	sec F	GM =	15	sec	
			Нр	1,3		min c	rossing	time =	5	sec (GM +	7	sec F	GM =	12	sec	
			lp	2		min c	rossing	time =	7	sec (GM +	11	sec F	GM =	18	sec	
AM Traffic Flow (pcu/h	*)			DM Troffic	Flow (pcu/hr)										Note:		
AM Trailic Flow (pcu/li	"		N	PW Hallic	riow (pcu/iii)				N		00(W-3.25		S=2080+10			on oberva	ation
		293	1					263	1	S _M =S÷(1+	1.5f/r)	S	_M =(S-230)	÷(1+1.5f/r)	Dascu	OII ODCIVE	ation
416 •	983		'		373		▼ 754		`			Peak		Peak			
	1668			_		1433					0.584	1,2+3	1+2+3	1,2+3			
	416 108	82 ←	_			400	1098		_	Sum y	17	0.571 12	0.527	0.469			
165	5 4	↓ 223			180			↓ 277		C (s)	120	120	108	108			
. 00								•		practical y	0.773	0.810	0.758	0.800			
	I					ı				R.C. (%)	32%	42%	44%	70%			
1	B3 B2	2		B3 B2 B	1	3											
v. Gp *	₩ AHn	 Gp	4				A 4	Ep	Mn₩								
	↓ ↓ ↑ ``"	lp	1	1 1 1 1 L	→	C1 ————————————————————————————————————	→		ΠP								
† †	Fp♥		¥	Fp ♥		C3	→		—— A3 —— A2								
+	Gp ▲				Gp [™]		€ Ep		→ A1								
I I D1 D2																	
AM G =	: I/G	G = 7	G =		I/G =	5	G =		I/G =	8	G =		I/G =		G =		
G =	: I/G	i =	G =		I/G =	6	G =		I/G =	8	G =		I/G =		G =		
PM G =		S = 7	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =	: I/G	` =	G =		I/G =	6	G =		I/G =	8	G =		I/G =		G =		

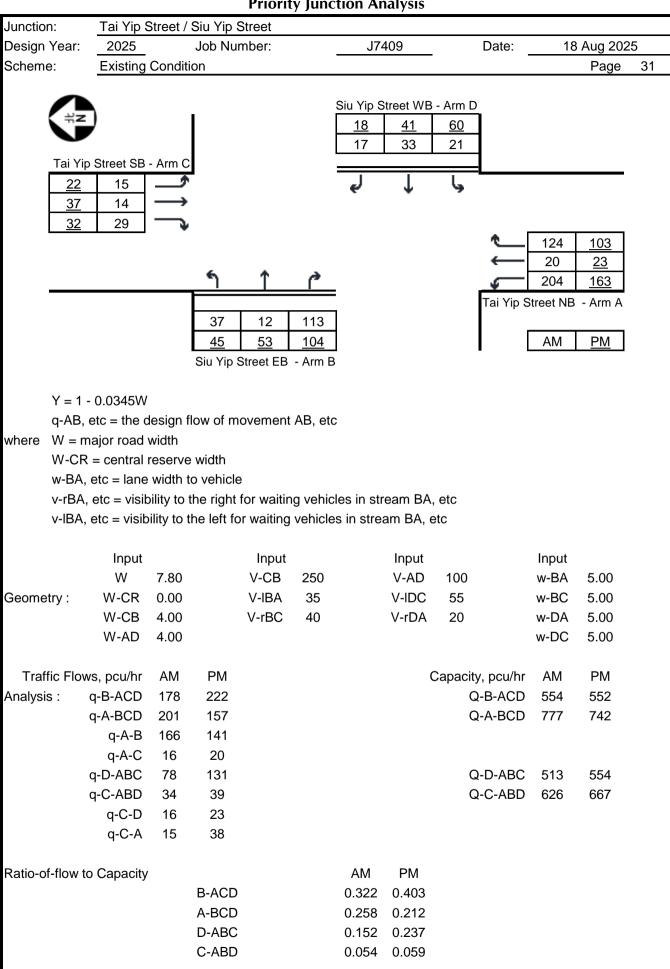
							ounce										
Junction:	Wai Yip Stre	eet / Lai Yip	Street											.	Job Nu	mber:	J7409
Scenario: Design Year:	With the Pro	posed Dev Designe					-	Checke	d By:				-	Date:	18	P. August 2	21 2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
		04.17					Gradient		(pcu/hr)	(pcu/hr)		Ontioda y		(pcu/hr)	(pcu/hr)		Oranida y
Wai Yip Street	IWB	SA+LT SA	A1 A2	3	2.80	20.0		52	1944 2035	422 442	0.217		62	1944 2035	444 465	0.228	
		SA	A3	3	2.80				2035	441	0.217			2035	466	0.229	
			7.0	-	2.00				2000		0.2			2000		0.220	
Lai Yip Street	SB	LT	B1	2	3.10	20.0		100	2638	293	0.111	0.111	100	2638	263	0.100	0.140
		SA	B2	1,2	3.10				2065	494	0.239			2065	379	0.184	
		SA	В3	1,2	3.10				2065	493	0.239			2065	379	0.184	
Wai Yip Street	ED	SA+LT	C1	3	3.30	20.0		60	2101	707	0.337		62	2126	619	0.291	0.291
wai rip Siree	LED	SA+L1	C2	3	3.30	20.0		60	2085	707	0.336	0.337	02	2085	607	0.291	0.291
		SA	C3	3	3.30				2085	701	0.336	0.337		2085	606	0.291	
																0.20	
Lai Yip Street	NB	SA+LT	D1	1	4.00	15.0		58	2025	285	0.141	0.141	63	2029	285	0.140	0.140
		SA	D2	1	3.50				2105	296	0.141			2105	295	0.140	
pedestrian pha	ase		Еp	3		min c	rossing	time =	11	sec (GM +	10	sec F	GM =	21	sec	
			Fp	1,2		min c	rossing	time =	7	sec (GM+	11	sec F	GM =	18	sec	
			Gp	1,2		min c	rossing	time =	5	sec (GM +	10	sec F	GM =	15	sec	
			Нр	1,3		min c	rossing	time =	5	sec (GM +	7	sec F	GM =	12	sec	
			lp	2		min c	rossing	time =	7	sec	GM +	11	sec F	GM =	18	sec	
AM Traffic Flow (pcu/h	r)			PM Traffic	Flow (pcu/hr)	l									Note:		
Aw Halle How (pearl	" .	000	N	i wi riame	now (powin)			000	N		00(W-3.25	•	S=2080+10			on oberva	ation
		293	1					263	1	S _M =S÷(1+			S _M =(S-230)		Daoca	on obolive	20011
422 	987		`		382 		7 58		`			Peak		Peak			
	1687			_	→	1450				Sum y	0.588	0.576	0.531	0.475			
	416 10	082 ←	_			400	1098	•	_	L (s)	17	12	17	12			
165	5 ←	↓ 223			180	→		↓ 277		C (s)	120	120	108	108			
										practical y	0.773	0.810	0.758	0.800			
	· ·					ı				R.C. (%)	31%	41%	43%	69%			
1	B3 B2	2		B3 B2 B	1	3											
™. Gp •	₩	Gp	4				† 4	Ep	≜ ₩								
	↓ ↓ ↑	lp	1	→ → ↑ ↑	→	C1 ————————————————————————————————————	→		·								
† †	Fp		*	Fp 🔻	·	C3	→	+	—— A3 —— A2								
+	Gp [▲]				Gp [™]		€ p		→ A1								
D1 D2																	
AM G =		G = 7	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =		G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G=		G = 7	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =	: I/(G =	G =		I/G =	υ	G =		I/G =	o	G =		I/G =		G =		

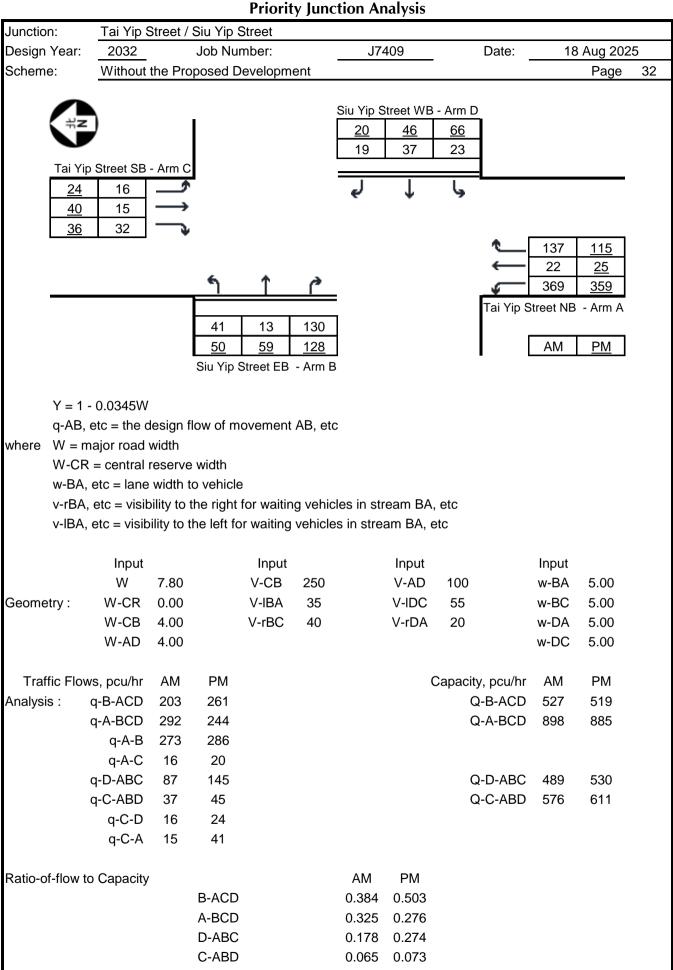
Junction:	Kwun Tong	Road / Lai	Yip Stre	et										-	Job Nu	mber:	J7409
Scenario: Design Year:	Existing Co	ndition Designe	ed By:				-	Checke	d By:				<u> </u>	Date:	18 /		22 2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
			11100	Olago	, ,	rtadiae (iii)	Gradient	running 70	(pcu/hr)	(pcu/hr)		Ontious y	running 70	(pcu/hr)	(pcu/hr)		Ormodi y
Kwun Tong Ro	oad EB	SA	A1	1,2	3.20				1935	349	0.180			1935	288	0.149	
		SA	A2	1,2	3.20				2075	375	0.181	0.181		2075	309	0.149	
Lai Yip Street	NB	LT+SA	B1	5	3.50	30.0		32	2117	478	0.226		63	2105	385	0.183	0.183
		SA	B2	5	3.50				2105	476	0.226	0.226		2105	385	0.183	
Elegance Roa	4 ND	SA	B3	5	3.50				2105	277	0.132			2105	184	0.087	
Elegance Roa	UIND	SA+RT		5	3.50	18.0		9	2089	275	0.132		37	2042	178	0.087	
		RT	B5	5	3.50			100	1914					1914	167		
		KI	B5	5	3.50	15.0		100	1914	251	0.131		100	1914	167	0.087	
Kwun Tong Ro	oad WB	LT	C1	1,5	3.30	15.0		100	1768	365	0.206		100	1768	168	0.095	
		SA	C2	1,2	3.50				2105	365	0.173			2105	476	0.226	0.226
		SA	C3	1,2	3.50				2105	365	0.173			2105	475	0.226	
E	100			0.4	0.50	45.0		400	4700	450	0.000		400	4700	470		
Elegance Roa	d SB	LT SA	D1 D2	3,4	3.50	15.0		100	1786 2105	153 173	0.086	0.086	100	1786 2105	176 141	0.099	0.099
		SA+RT		3,4	3.50	18.0		13	2082	173	0.082		47	2026	136	0.067	
		RT	D3 D4	3,4	3.50	15.0		100	1914	156	0.082		100	1914	128	0.067	
		KI	D4	3,4	3.50	15.0		100	1914	136	0.062		100	1914	120	0.067	
pedestrian pha	ase		Ep	1,2		min c	rossing	time =	12	sec	GM +	10	sec F	GM =	22	sec	
			Fp	1,2,3,4			rossing		5		GM +	7		GM =	12	sec	
			Gp	2,3		min c	rossing	time =	5	sec	GM + 	5	sec F	GM =	10	sec	
AM Traffic Flow (pcu/h	nr)	I	N	PM Traffic	Flow (pcu/hr)	1		N	S=1940+1	00(W-3.25	i) :	S=2080+10	0(W-3.25)	Note:		
	179 🕶	153	7			192	\leftarrow	176	7	S _M =S÷(1+	1.5f/r)	s	S _M =(S-230)	÷(1+1.5f/r)		Peak, Sta e : 2>4>5	
	3	* 21	\				♦ 213		\		AM	Peak	PM	Peak			
	724			-		597					2+4+5		2+3+5			Peak, Sta e : 2>3>5	
										Sum y	0.493		0.508				
		730	_				951	←	_	L (s)	15		20				
	528	↓ 365				296		↓ 168		C (s)	118		108				
151	1 275	5			241	$\leftarrow \downarrow$	233			practical y	0.786		0.733				
										R.C. (%)	60%		44%				
1		2				3	2.20	2021		4	2.20	2021		5			
A1	<u></u>	A1 —						D2 D1			1 1	D2 D1		+ + r	→		
A2		A2-						🕶				🕶					
\rightleftharpoons		3	\leftarrow		— C3 — C2		\rightarrow	Ţ			-	Ţ		B3 B4 B5			
Fp. Ep		72 71 Fp	Еp	Gp	02	Fp▼		Gp		Fp▼				←↑↑		\Box	— C1
	<u> </u>			***************************************		Account		**************************************		A				B1 B2		· 	
AM		I/G =			I/G =				I/G =	5			I/G =	10		I/G =	3
DM		I/C -			1/0	7			1/0	7			1/0	6		1/0	2
PM		I/G =			I/G =	1			I/G =	1			I/G =	Ö		I/G =	3

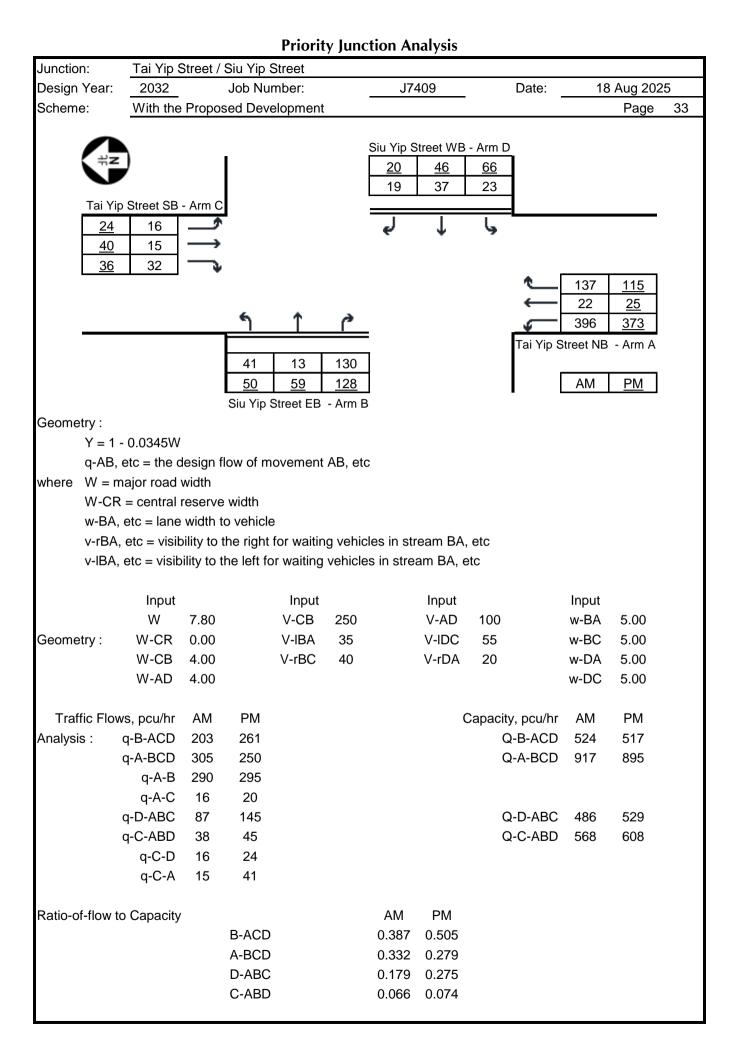
<u> </u>						<u> </u>											
Junction:	Kwun Tong													•	Job Nu		J7409
Scenario: Design Year:	2032	Proposed Designe						Checke	ed By:					Date:	18 /	August 2	23 2025
	Approach		Phase	Stage	Width (m)	Radius (m)		Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
T D.			0.4	4.0	0.00		Gradient		(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		
Kwun Tong Ro	oad EB	SA SA	A1 A2	1,2 1,2	3.20				1935 2075	379 406	0.196			1935 2075	316 338	0.163	
		- SA	AZ	1,2	3.20				2075	400	0.190			2075	330	0.103	
Lai Yip Street	NB	LT	B1	5	3.30	30.0		100	2035	157	0.077		100	2052	288	0.140	
		SA	B2	5	3.30				2085	522	0.250			2085	425	0.204	
		SA	В3	5	3.30				2085	522	0.250			2085	425	0.204	
Elegance Roa	d NB	SA	B4	5	3.50				2105	359	0.171			2105	294	0.140	
		SA+RT		5	3.50	18.0		3	2100	358	0.170		18	2074	289	0.139	
		RT	B6	5	3.50	15.0		100	1914	327	0.171		100	1914	267	0.139	
Kwun Tong Ro	pad WB	LT	C1	1,5	3.30	15.0		100	1768	576	0.326	0.326	100	1768	403	0.228	0.22
rong re		SA	C2	1,2	3.50	. 5.0		.50	2105	433	0.206		.50	2105	573	0.272	0.27
		SA	C3	1,2	3.50				2105	432	0.205			2105	572	0.272	
Elegance Roa	d SB	LT	D1	3,4	3.50	15.0		100	1786	195	0.109	0.109	100	1786	216	0.121	0.12
		SA	D2	3,4	3.50				2105	224	0.106			2105	178	0.085	
		SA+RT		3,4	3.50	18.0		41	2035	216	0.106		65	1997	169	0.085	
		RT	D4	3,4	3.50	15.0		100	1914	204	0.107		100	1914	162	0.085	
pedestrian pha	ase		Ep	1,2		min c	rossing	time =	12	sec	GM +	10	sec F	GM =	22	sec	
podootiidii piid	400		Fp	1,2,3,4			rossing		5		GM +	7		GM =	12	sec	
			Gp	2,3		min c	rossing	time =	5	sec	GM +	5		GM =	10	sec	
	,			D	<u> </u>										b		
AM Traffic Flow (pcu/h		105	N	PM Traffic	Flow (pcu/hr)			- 046	N		00(W-3.25		S=2080+10		Note: 1) Junction	on Impro	omant
	291	195	1			272	¥	216	1	S _M =S÷(1+	1.5f/r)	S	_M =(S-230)	÷(1+1.5f/r)		by Other	
	ى 785 -	53	\	_		654	237		`			Peak		Peak		Peak, St	
	703				·	034				_	2+4+5		2+3+5			e: 2>4>5	
		865 🕶	_				1145	•	_	Sum y	0.641		20		3) In PM Sequenc	Peak, State : 2>3>5	
	706	↓ 576				531		↓ 403		C (s)	118		108				
157	†				288	†	319			practical y	0.786		0.733				
										R.C. (%)	23%		18%				
1		2				3	D4 D2	D2 D1		4	D4 D3	D2 D4		5			
A1 ————————————————————————————————————	\Longrightarrow	A1 — A2 —		\Rightarrow							1			† †. ſ	→		
712		712															
\vdash	c	3 2	\leftarrow		— C3 — C2		\rightarrow	ţ			\neg	†		B3 B4 B5			
Fp. √ ∢ Ep		51 Fp,▼ .	Ep.	Gp ▶		Fp▼		Gp V		Fp▼				$ \top \hat{1}$		\downarrow	— C1
Acres 1		******		*****		A		···.		A control					3		
AM	ı	I/G =			I/G =				I/G =	5			I/G =	10		I/G =	3
PM	ı	I/G =			I/G =	7			I/G =	7			I/G =	6		I/G =	3

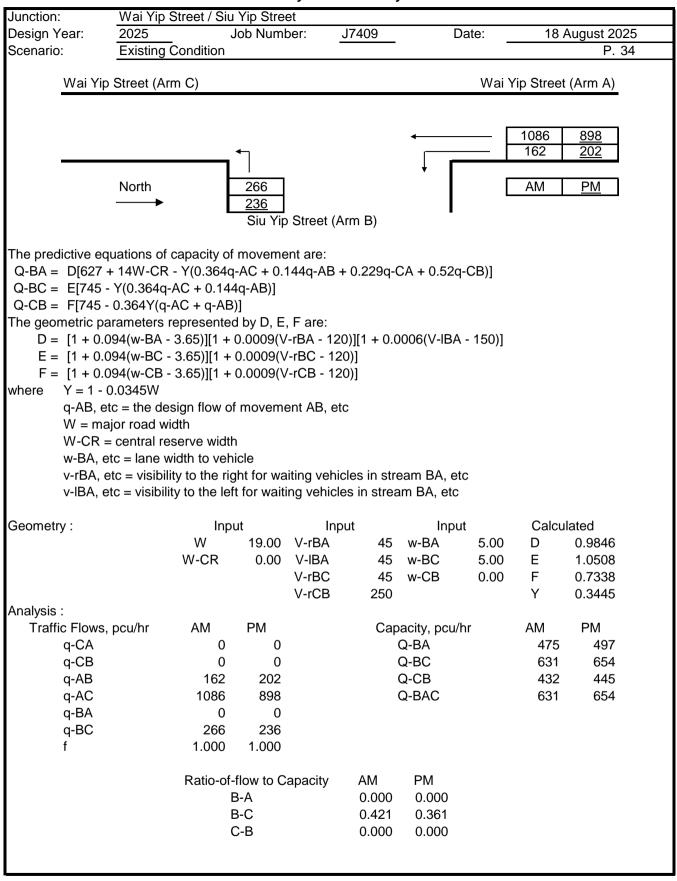
Junction:	Kwun Tong													-	Job Nui		J7409
Scenario: Design Year:	With the Pro	Designe					•	Checke	d By:				•	Date:	18 /	P. August 2	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical
						, ,	Gradient		(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		
Kwun Tong Ro	oad EB	SA SA	A1 A2	1,2 1,2	3.20				1935 2075	379 406	0.196			1935	316 338	0.163	
		SA	AZ	1,2	3.20				2075	406	0.196			2075	330	0.163	
Lai Yip Street	NB	LT	B1	5	3.30	30.0		100	2035	157	0.077		100	2052	288	0.140	
		SA	B2	5	3.30				2085	525	0.252			2085	430	0.206	
		SA	В3	5	3.30				2085	525	0.252			2085	429	0.206	
Elegance Road	d NB	SA	B4	5	3.50				2105	361	0.171			2105	297	0.141	
		SA+RT		5	3.50	18.0		3	2100	360	0.171		17	2076	293	0.141	
		RT	B6	5	3.50	15.0		100	1914	329	0.172		100	1914	269	0.141	
Kwun Tong Ro	oad WB	LT	C1	1,5	3.30	15.0		100	1768	580	0.328	0.328	100	1768	407	0.230	0.230
rong r	-30.10	SA	C2	1,2	3.50	.0.0		100	2105	433	0.206	0.206		2105	573	0.272	0.272
		SA	C3	1,2	3.50				2105	432	0.205			2105	572	0.272	
Elegance Road	d SB	LT	D1	3,4	3.50	15.0		100	1786	195	0.109	0.109	100	1786	216	0.121	0.121
		SA	D2	3,4	3.50				2105	224	0.106			2105	178	0.085	
		SA+RT	D3	3,4	3.50	18.0		41	2035	216	0.106		65	1997	169	0.085	
		RT	D4	3,4	3.50	15.0		100	1914	204	0.107		100	1914	162	0.085	
pedestrian pha	320		Еp	1,2		min c	rossing	timo –	12	200	<u>L</u> GM +	10	sec F	GM -	22	sec	
pedestrian prie	a30		Fр	1,2,3,4			rossing		5		GM +	7	sec F		12	sec	
			Gp	2,3			rossing		5		GM +	5	sec F		10	sec	
AM Traffic Flow (pcu/h	·		N	PM Traffic I	Flow (pcu/hr)				N	S=1940+1	00(W-3.25) :	S=2080+10		Note:		
	291	→ 195	1			272	¥	216	1	S _M =S÷(1+	1.5f/r)	s	_M =(S-230)	÷(1+1.5f/r)	 Junction Scheme 	on Improv by Other	
	35	3	\				237		\		AM	Peak	PM	Peak	2) In AM	Peak, Sta	age
	7 85			_	→	654					2+4+5		2+3+5		Sequenc	e : 2>4>5	>2
	٥	65 + -	_				1145	•	_	Sum y	0.643		0.623		3) In PM Seauenc	Peak, Sta e : 2>3>5	
	O	1				540	1143	407		L (s)	15 118		20 108				
	740	F00								C (s)	110		100				
157	712	580			288	†	310	407			0.786		0.733				
157	†	580			288	†	319	401		practical y	0.786		0.733 18%				
157	†	580			288	†	319	407			22%		0.733	5			
1 A1 —	†	2 A1 —			288	†		D2 D1		practical y		D2 D1		5			
1	†	2			288	†				practical y	22%	D2 D1		5	→		
1 A1	7	2 A1—A2—			— сз	†				practical y	22%	D2 D1		5 B3 B4 B5	→		
1 A1 —	7 - 338	2 A1 — A2 — A2 —	Ep	Gp		3				practical y R.C. (%)	22%	D2 D1		5 B3 B4 B5	→		— c1
1 A1 ——————————————————————————————————	7	2 A1 — A2 — A2 —	Ep	Gp	— сз	†		D2 D1		practical y	22%	D2 D1		5 B3 B4 B5 B1 B2 B	→		— c1
1 A1 ——————————————————————————————————	7 338	2 A1 — A2 — A2 —	Ep	Gp	— сз	3		D2 D1	I/G =	R.C. (%)	22%	D2 D1		★ ↑ ↑ ↑ 1 B1 B2 B	3	I/G =	
1 A1 A2 Ep	7 338	2 A1— A2—	Ep	Gp P.	— C3 — C2	3		D2 D1	I/G =	R.C. (%)	22%	D2 D1	18%	★ ↑ ↑ ↑ 1 B1 B2 B	3	I/G =	
1 A1 A2 Ep	7	2 A1— A2—	Ep.,	Gp	— C3 — C2	3 Fp		D2 D1	I/G =	Practical y R.C. (%) 4 Fp	22%	D2 D1	18%	B1 B2 B	3	I/G =	3

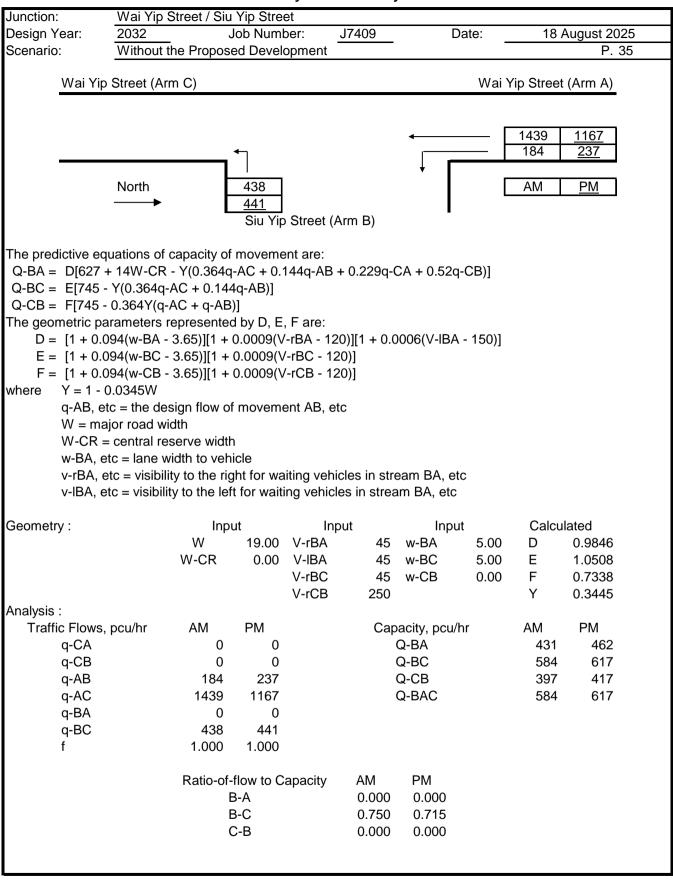
1																	
Junction:		oad / Lai Yip	Street												Job Nu	mber:	
Scenario: Design Year:	Existing C	ondition Designe	ed By:					Checke	d By:				-	Date:	18		25 2025
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
							Gradient		(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		
Hoi Bun Road	EB	LT SA	A1 A2	1	3.30	15.0		100	1768 2085	158 139	0.089	0.089	100	1768 2085	149 147	0.084	0.084
		O/ C	,,,_		0.00				2000	100	0.007			2000		0.071	
Hoi Bun Road	WB	SA	B1	1,2	3.30				1945	326	0.168			1945	238	0.122	
		RT	B2	2	3.30	20.0		100	1940	213	0.110	0.110	100	1940	256	0.132	0.132
Lai Yip Street	SB	LT RT^	C1 C2	3	3.30	18.0		100	1795	268	0.149	0.149	100	1795	119	0.066	
		RT^	C2	3	3.30	25.0 22.0		100	1869 1854	262 259	0.140	0.149	100	1869 1854	210 208	0.112	0.112
		1(1	0	J	0.00	22.0		100	1004	200	0.140		100	1007	200	0.112	0.112
					-												
			-	404					40		014	_					
pedestrian pha	ise		Dp Ep	1,2,4 3,4			rossing rossing		12 7		<u>GM +</u> GM +	9		GM = GM =	21 13	sec	
			<u> </u>	3,4			rossing		7		GM +	7		GM =	14	sec	
							- cccg			- 555	<u> </u>		0001			000	
AM Traffic Flow (pcu/hi	r)		, N	PM Traffic	Flow (pcu/hr))			∠ N	S=1940+1	00(W-3.25		S=2080+10		Note:		
			/				- [/	S _M =S÷(1+	1.5f/r)	S	6 _M =(S-230)	÷(1+1.5f/r)	^ Site F	actor is	applied
	521 [◆]	268	`			418	\downarrow	119	`			Peak		Peak			
	02.	200								0	0.348		0.329				
158					149					Sum y	35		35				
\perp	139	213		_	\perp	147		256 •		C (s)	118		108				
	32	26 ←					238 ←			practical y	0.633		0.608				
										R.C. (%)	82%		85%				
1 A1 A2	∢ Dp	2		4······ Dp		3 ◀…	. Ep ←	C3 C2 C1	*	4	▶ . Ep	←······ Dp					
	B1 ←			B2 ↑	_							Fp					
AM G =	:	I/G = 8	G =		I/G =	5	G =		I/G =	8	G =	14	I/G =	3	G =		
G =	:	I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =	:	I/G = 8	G =		I/G =	5	G =		I/G =	8	G =	14	I/G =	3	G =		
		I/G =	G =		I/G =												

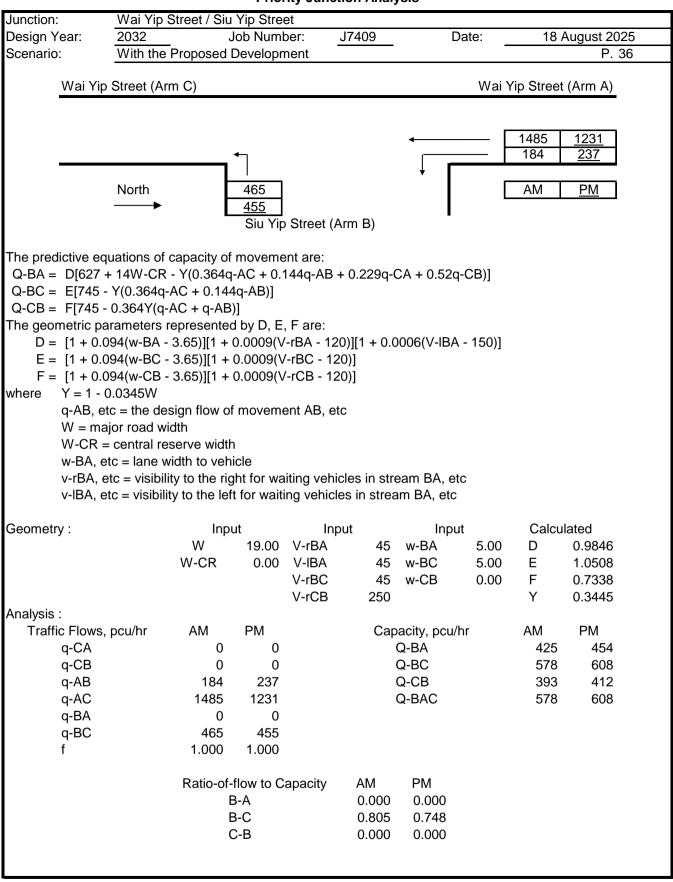

1																	
Junction:	Hoi Bun Roa	d / Lai Yip	Street												Job Nu	mber:	J7409
Scenario: Design Year:	Without the F							Checke	d By:					Date:	18 /	P. August 2	26 2025
			l		l					AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Hoi Bun Road	EB	LT*	A1	1	3.65	15.0		100	1800	250	0.139	0.139	100	1800	239	0.133	0.133
		SA*	A2	1	3.65				2120	265	0.125			2120	250	0.118	
U. D. D. D.	IMP.		D4	4.0	0.00				4045	400	0.004			4045	400	0.000	
Hoi Bun Road	WB	SA RT	B1	1,2	3.30	20.0		100	1945 1940	429	0.221	0.171	100	1945 1940	400 341	0.206	0.47
		KI	B2	2	3.30	20.0		100	1940	331	0.171	0.171	100	1940	341	0.176	0.17
Lai Yip Street S	SB	LT	C1	3	3.30	18.0		100	1795	365	0.203	0.226	100	1795	307	0.171	
		RT^	C2	3	3.30	25.0		100	1869	422	0.226		100	1869	363	0.194	
		RT^	С3	3	3.30	22.0		100	1854	419	0.226		100	1854	361	0.195	0.19
																	_
pedestrian pha	se*		Fp	4		min c	rossing	time =	7	sec (GM +	7	sec F	GM =	14	sec	
			Gp	4			rossing		8		GM +	8	sec F		16	sec	
			Нр	4		min c	rossing t	time =	10	sec (GM +	9	sec F	GM =	19	sec	
AM Traffic Flow (pcu/hr)			PM Traffic	Flow (pcu/hr))				S=1940+1	00(W-3.25) 9	S=2080+10	0(W_3 25)	Note:		
			₽						N	3-134011	00(**-5.25			÷(1+1.5f/r)	*Junctio	nn	
			./						7	Su=S÷(1+	1.5f/r)	S	M=(S-230)				
										S _M =S÷(1+					Improve	ement S	
	841	→ ₃₆₅				724		307		S _M =S÷(1+	AM	Peak	PM	Peak	Improve by Othe	ement S er Projed	t
	841	→ 365				724		307		S _M =S÷(1+				Peak	Improve by Othe	ement S	t
250	841	→ 365			239	724		307			AM 1+2+3		PM 1+2+3	Peak	Improve by Othe	ement S er Projed	t
250	841	→ 365 331		_	239	724 250		307 341		Sum y	1+2+3 0.536		1+2+3 0.503	Peak	Improve by Othe	ement S er Projed	t
250 				_	239		400			Sum y	1+2+3 0.536 35		1+2+3 0.503 35	Peak	Improve by Othe	ement S er Projed	t
250 —	265			-	239		400			Sum y L (s) C (s)	1+2+3 0.536 35 118		1+2+3 0.503 35 108	Peak	Improve by Othe	ement S er Projed	t
250	265			-	239		400			Sum y L (s) C (s) practical y	1+2+3 0.536 35 118 0.633		1+2+3 0.503 35 108 0.608	Peak	Improve by Othe	ement S er Projed	t
1	265			_	239		400	341	<u> </u>	Sum y L (s) C (s) practical y	1+2+3 0.536 35 118 0.633		1+2+3 0.503 35 108 0.608	Peak	Improve by Othe	ement S er Projed	t
250 1 A1 A2	265			-	239		400		•	Sum y L (s) C (s) practical y	1+2+3 0.536 35 118 0.633 18%		1+2+3 0.503 35 108 0.608	Peak	Improve by Othe	ement S er Projed	t
1 A1	265				239		400	341	•	Sum y L (s) C (s) practical y	1+2+3 0.536 35 118 0.633 18%		1+2+3 0.503 35 108 0.608	Peak	Improve by Othe	ement S er Projed	t
1 A1	265			B2 ↑ B1	239		400	341	•	Sum y L (s) C (s) practical y R.C. (%)	1+2+3 0.536 35 118 0.633 18%	Peak	1+2+3 0.503 35 108 0.608	Peak	Improve by Othe	ement S er Projed	t
1 A1 A2	265 429	331			<u></u>	250	+	341	-	Sum y L (s) C (s) practical y R.C. (%)	AM 1+2+3 0.536 35 118 0.633 18% Hp	Fp	PM 1+2+3 0.503 35 108 0.608 21%	Peak	Improve by Othe ^ Site F	ement S er Projed	t
$ \begin{array}{ccc} & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$	265 429 ·	331	G =		I/G =	250	← G =	341	▶ I/G =	Sum y L (s) C (s) practical y R.C. (%)	AM 1+2+3 0.536 35 118 0.633 18% Hp	Fp	PM 1+2+3 0.503 35 108 0.608 21%	Peak	Improve by Othe ^ Site F	ement S er Projed	t
1 A1 A2	265 429 ·	331	G = G = G = G = G = G = G = G = G = G =		<u></u>	250	+	341	-	Sum y L (s) C (s) practical y R.C. (%) 4	AM 1+2+3 0.536 35 118 0.633 18% Hp	Fp	PM 1+2+3 0.503 35 108 0.608 21%	Peak 3	Improve by Othe ^ Site F	ement S er Projed	t

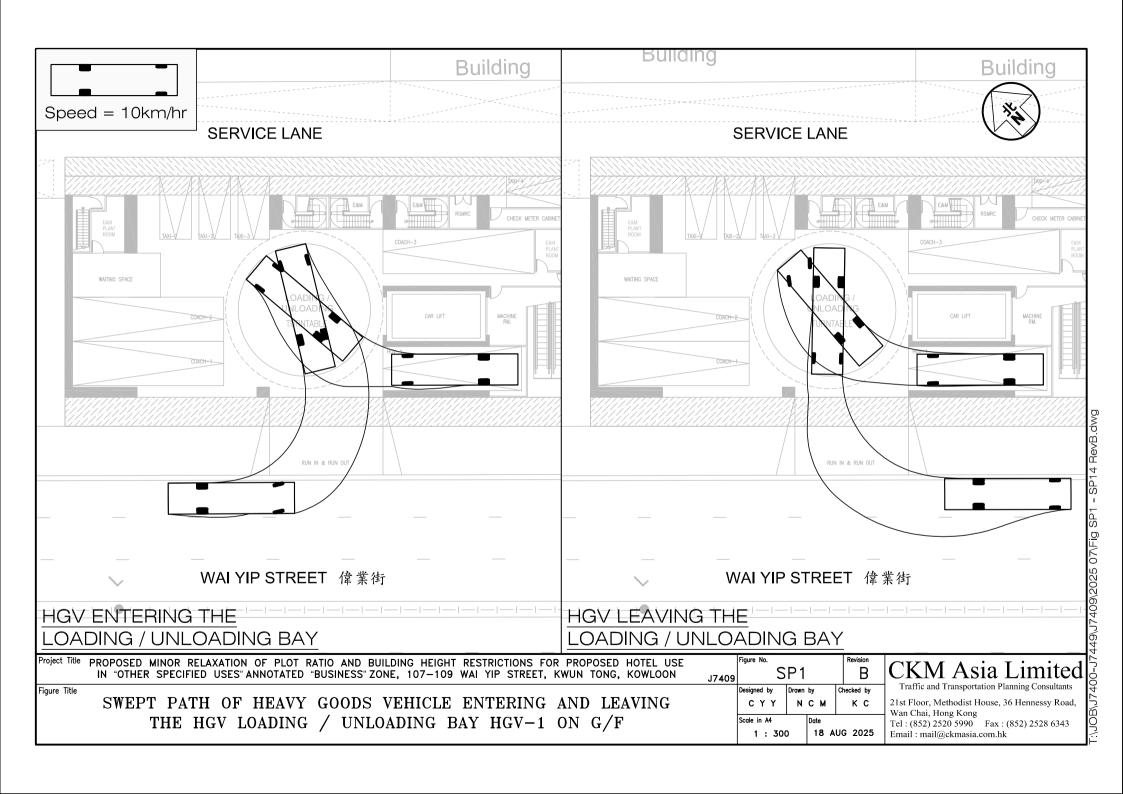

Junction:	Hoi Bun Ro	ad / Lai Yin	Street												Joh Nu	mber:	.17409
Scenario:	With the Pr			nt										•	000 140		27
Design Year:		Design						Checke	d By:				-	Date:	18 /	August 2	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	PM Peak Flow (pcu/hr)	y value	Critical y
Hoi Bun Road	EB	LT*	A1	1	3.65	15.0		100	1800	250	0.139	0.139	100	1800	239	0.133	0.133
		SA*	A2	1	3.65				2120	265	0.125			2120	250	0.118	
Hoi Bun Road	WB	SA	B1	1,2	3.30				1945	433	0.223			1945	403	0.207	
nor Burrioud	****	RT	B2	2	3.30	20.0		100	1940	331	0.171	0.171	100	1940	341		0.176
				_	0.00												
Lai Yip Street	SB	LT	C1	3	3.30	18.0		100	1795	365	0.203	0.227	100	1795	307	0.171	
		RT^	C2	3	3.30	25.0		100	1869	424	0.227		100	1869	365	0.195	
		RT^	C3	3	3.30	22.0		100	1854	421	0.227		100	1854	363	0.196	0.196
pedestrian pha	ase*		Fp	4		min c	rossing	time =	7	sec	GM +	7	sec F	GM =	14	sec	
,			Gp	4			rossing		8		GM +	8		GM =	16	sec	
			Нр	4		min c	rossing	time =	10	sec	GM +	9	sec F	GM =	19	sec	
AM Traffic Flow (pcu/h	t)		ļ.	PM Traffic	Flow (pcu/hr		ļ.	Į		1					Note:		Į.
Aw Hame How (pearli	.,		٧ N	i w riame	riow (pearin				∠ N		00(W-3.25		S=2080+10		*Junctio	on	
										S _M =S÷(1+	1.5f/r)		S _M =(S-230)	÷(1+1.5f/r)	Improv	ement S	
	845 ←	365	•			728	4	307	•			Peak		Peak	by Othe	er Projed	t
										_	1+2+3		1+2+3		^ Site F	actor is	applied
250					239					Sum y	0.537 35		0.504 35				
	265	331			1.	250		341		L (s)	118		108				
	433	₃ ←					403 ←	<u> </u>		practical y			0.608				
										R.C. (%)	18%		21%				
1		2				3		1 1 1		4							
1 A1							•	C3 C2 C1	*	4 ····	Hp						
——→ A2								00 02 01									
	B1 ←			B2 1 B1 ←							Gp	Fp					
AM 5	-	NO 2			1/2	-							110	2			
AM G =		I/G = 8 I/G =	G = G =		I/G =	э	G = G =		I/G =	d	G = G =	14	I/G =	3	G = G =		
G = PM G =		I/G = 8	G =		I/G =	5	G =		I/G =	8	G =	14	I/G =	3	G =		
G =		//G =	G =		I/G =		G =		I/G =	-	G =		I/G =		G =		
			-		-		-		-		-		-		-		

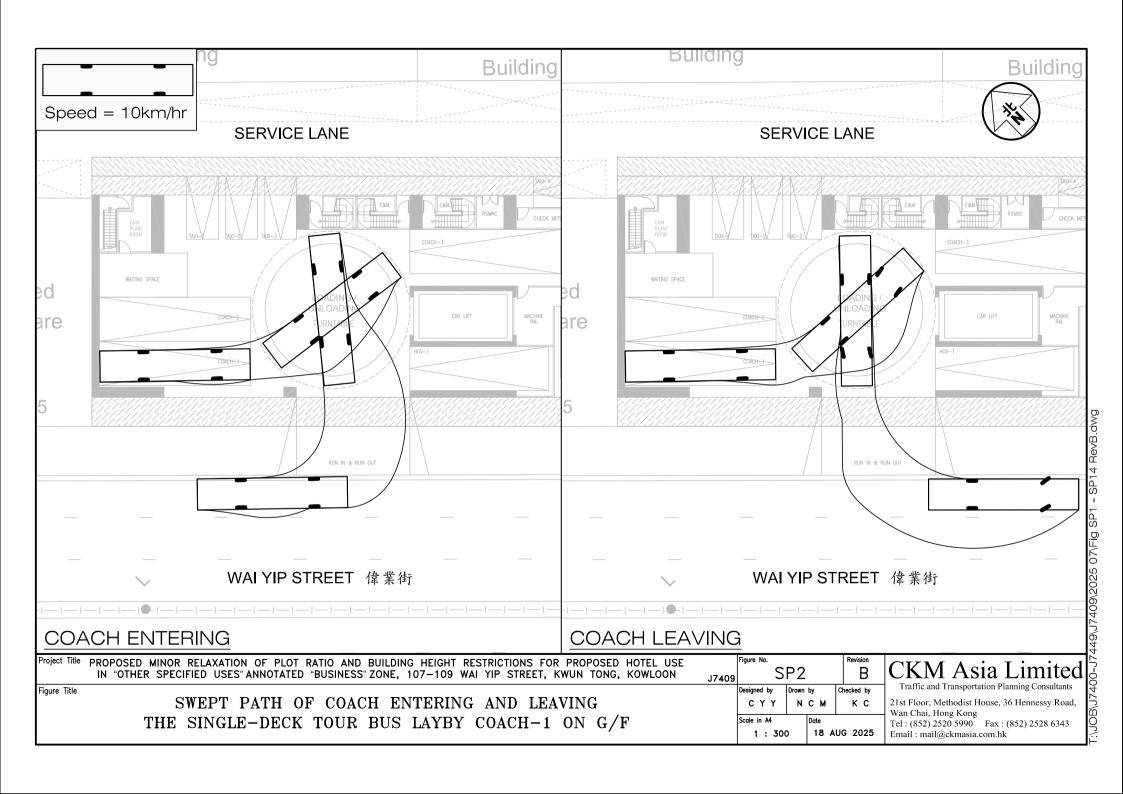

Junction:	Lai Yip Str	reet / Hung To	Road											-	Job Nu	mber:	J7409
Scenario: Design Year:	Existing C 2025	ondition Designe	ed By:					Checke	d By:				=	Date:	18 /		28 2025
	A		Dhara	01	Mildely (see)	Dadius (m)	0/ 11= 1:11	Tuesda - 0/	0-1 5	AM Peak		Orbitantin	Tuesday 0/	0-1 5	PM Peak	It	O-WI
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
Lai Yip Street S	SB	SA	A1	1	3.50				1965	331	0.168	0.169		1965	184	0.094	
		SA	A2	1	3.50				2105	355	0.169			2105	197	0.094	
Lai Yip Street N	NB	SA	B1	1	3.50				1965	313	0.159			1965	244	0.124	0.124
Lai Tip Oliooti	1.5	SA	B2	1	3.50				2105	336	0.160			2105	261	0.124	0.12
Hung To Road	WB	LT	C1	2	3.50	15.0											
		LT+RT	C2*	2	3.50	18.0		100	1846	504	0.273	0.273	100	1846	526	0.285	0.285
		RT	C3	2	3.50	25.0											
pedestrian pha	ise		Dp	1		min c	rossing	time =	7	sec (GM+	16	sec F	GM =	23	sec	
•			•														
AM Traffic Flow (pcu/hr	·)		N	PM Traffic	Flow (pcu/hr)			N	S=1940+1	00(W-3.25) :	S=2080+10	0(W-3.25)	Note:		
			7						7	S _M =S÷(1+	1.5f/r)	s	6 _M =(S-230)	÷(1+1.5f/r)		that phas	
	♦ 686		\			♦ 381			\		AM	Peak	PM	Peak	on-street	parking a	activities
		305						265			1+2		1+2			tor is appl	
		†						1		Sum y	0.442		0.409				
649		+			505			+		L (s)	14		11				
Ī		199			Ī			261		C (s)	120		108				
										practical y	0.795		0.808				
										R.C. (%)	80%		98%				
1		2															
ļ	↓			t													
A2	¥ 2 A1 ↓ Dp			F	C3 C2												
B1 B2	÷			<u> </u>	— C1												
 																	
AM G =		I/G = 10	G =		I/G =	6	G =		I/G =		G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =		I/G = 6	G =		I/G =	7	G =		I/G =		G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

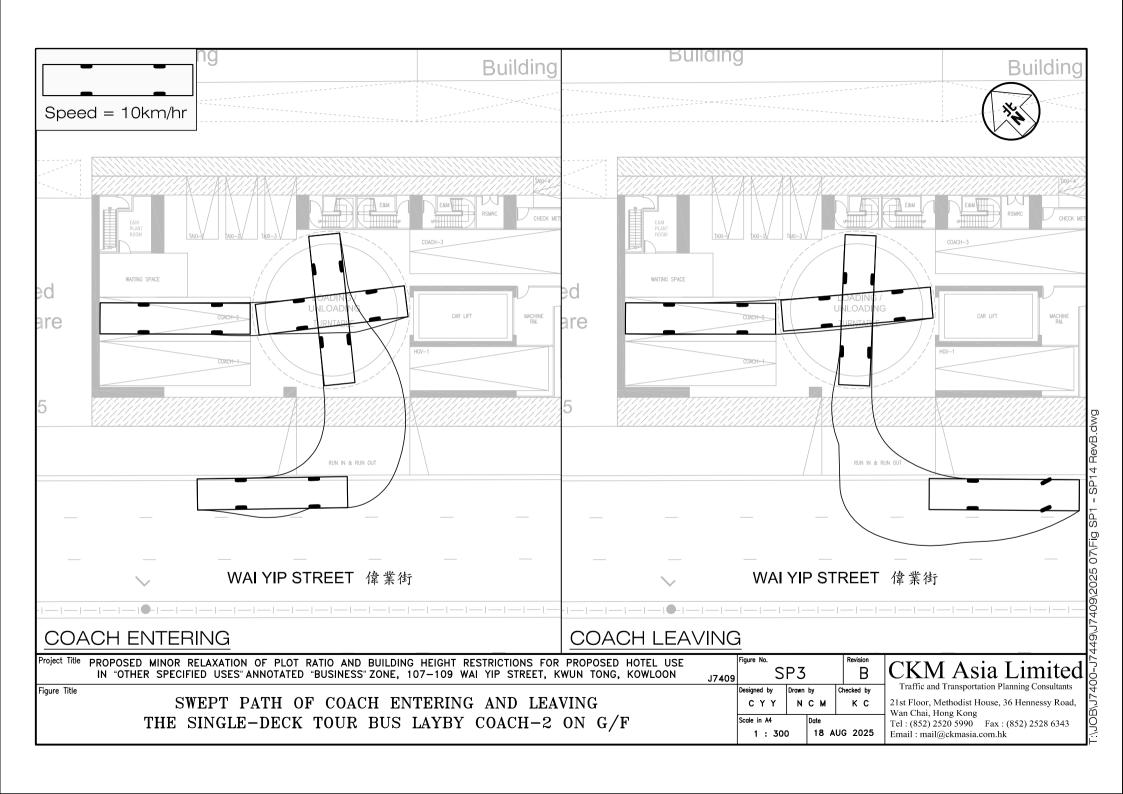

Junction:	Lai Yip Stre	et / Hung To	Road											<u>-</u>	Job Nu	mber:	J7409
Scenario: Design Year:		Proposed Designe						Checke	d By:				_	Date:	18 /		29 2025
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
ai Yip Street S	SB	SA	A1	1	3.50				1965	449	0.228	0.228		1965	309	0.157	
		SA	A2	1	3.50				2105	480	0.228			2105	331	0.157	
ai Vin Stroot I	NID	67	B1	1	2.50				1065	402	0.205			1965	272	0.100	0.10
_ai Yip Street N	NB	SA SA	B1 B2	1	3.50				1965 2105	430	0.205			2105	373 400	0.190	0.190
		- SA	DZ	-	3.30				2103	430	0.204			2103	400	0.190	
Hung To Road	I WB	LT	C1	2	3.50	15.0											
		LT+RT	C2*	2	3.50	18.0		100	1846	716	0.388	0.388	100	1846	742	0.402	0.40
		RT	C3	2	3.50	25.0											
					<u> </u>												
					-												
pedestrian pha	ise		Dp	1		min c	rossing	time =	7	sec	GM +	16	sec F	GM =	23	sec	
M Traffic Flow (pcu/hr)	r)		Ν	PM Traffic I	Flow (pcu/hr) 			N	S=1940+1	00(W-3.25		S=2080+10		Note:		
			1						1	S _M =S÷(1+	1.5f/r)	S	_M =(S-230)	÷(1+1.5f/r)	Assume and C3 a	that phas are blocke	es C1 d due t
	929		\			640			\		AM	Peak	PM	Peak		parking a	
		369						365			1+2		1+2			tor is appl	
		<u> </u>						<u> </u>		Sum y	0.616		0.592				
832 		347			773 <u></u>			v 377		L (s)	14		11				
		011						011		C (s)	120		108				
l										practical y	0.795		0.808				
		1-								R.C. (%)	29%		37%		l		
		2															
				†	— сз												
A2	2 A1																
A 2	2 A1 Dp			<u></u>	C2												
A2 B1 B2 ↑ ↑	2 A1 Dp			<u> </u>	C2 C1												
	2 A1 Dp			!													
B1 B2	. Dp ▼			‡ -	— C1												
B1 B2	. Dp	/G = 10	G =		C1	6	G =		I/G =		G =		I/G =		G =		
B1 B2	. Dp	/G = 10 /G = /G = 6	G = G =		— C1		G = G = G =		I/G = I/G =		G = G = G =		I/G = I/G =		G = G = G =		

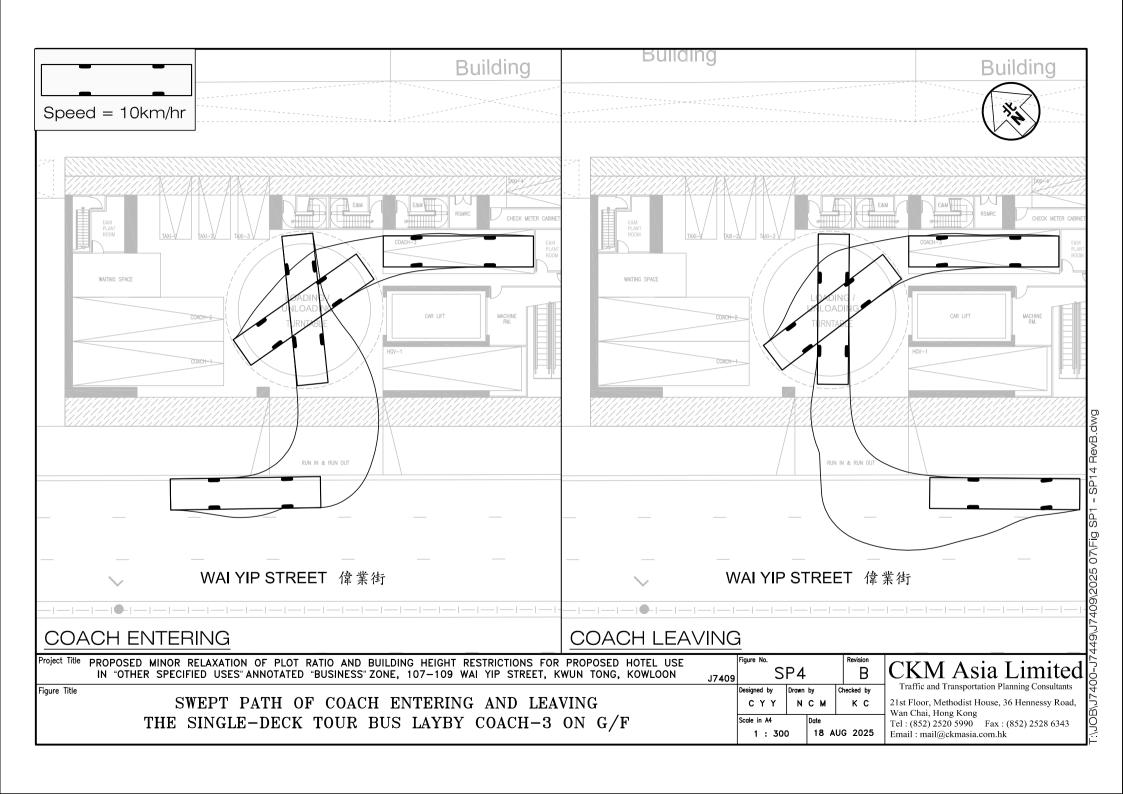

Junction:		reet / Hung To												-	Job Nu	mber:	
Scenario: Design Year:		Proposed Dev Designe						Checke	d By:				_	Date:	18 /		30 2025
	A		Dhara	01	Mildely ()	Darding (m)	0/ 11- 1:11	Tuesda - 0/	0-1 [AM Peak	Luciation	Orbination	Toronto a Of	0-4 5	PM Peak	It	O-litI
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical
_ai Yip Street S	SB	SA	A1	1	3.50				1965	450	0.229	0.229		1965	311	0.158	
		SA	A2	1	3.50				2105	483	0.229			2105	333	0.158	
_ai Yip Street N	NR	SA	B1	1	3.50				1965	405	0.206			1965	378	0.192	0 19
ar rip otreet i	10	SA	B2	1	3.50				2105	433	0.206			2105	404	0.192	0.10
		<u> </u>			0.00				2.00	.00	0.200			2.00		01.02	
Hung To Road	WB	LT	C1	2	3.50	15.0											
		LT+RT	C2*	2	3.50	18.0		100	1846	716	0.388	0.388	100	1846	742	0.402	0.40
		RT	C3	2	3.50	25.0											
pedestrian pha	se		Dp	1		min c	rossing	time =	7	sec	GM +	16	sec F	GM =	23	sec	
AM Traffic Flow (pcu/hr)		N	PM Traffic I	Flow (pcu/hr)			N	S=1940+1	00(W-3.25		S=2080+10		Note:		
			7						7	S _M =S÷(1+	1.5f/r)	S	S _M =(S-230)	÷(1+1.5f/r)	Assume and C3 a	that phas	es C1
	933		\			♦ 644			\		AM	Peak	PM	Peak		parking a	
		369						365			1+2		1+2			tor is appl	
		†						1		Sum y	0.617		0.594				
838		↓ 347			782 •			↓ 377		L (s)	14		11				
		J+1						511		C (s)	120		108				
1					I					practical y	0.795		0.808				
										R.C. (%)	29%		36%		L		
		2															
Į,	↓ 2 A1 ▲			t													
A2	2 A1			ţ	C3 C2												
B1 B2 ↑ ↑	*			Ţ	— C1												
]											
AM G =		I/G = 10	G =		I/G =	6	G =		I/G =		G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =		I/G = 6	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

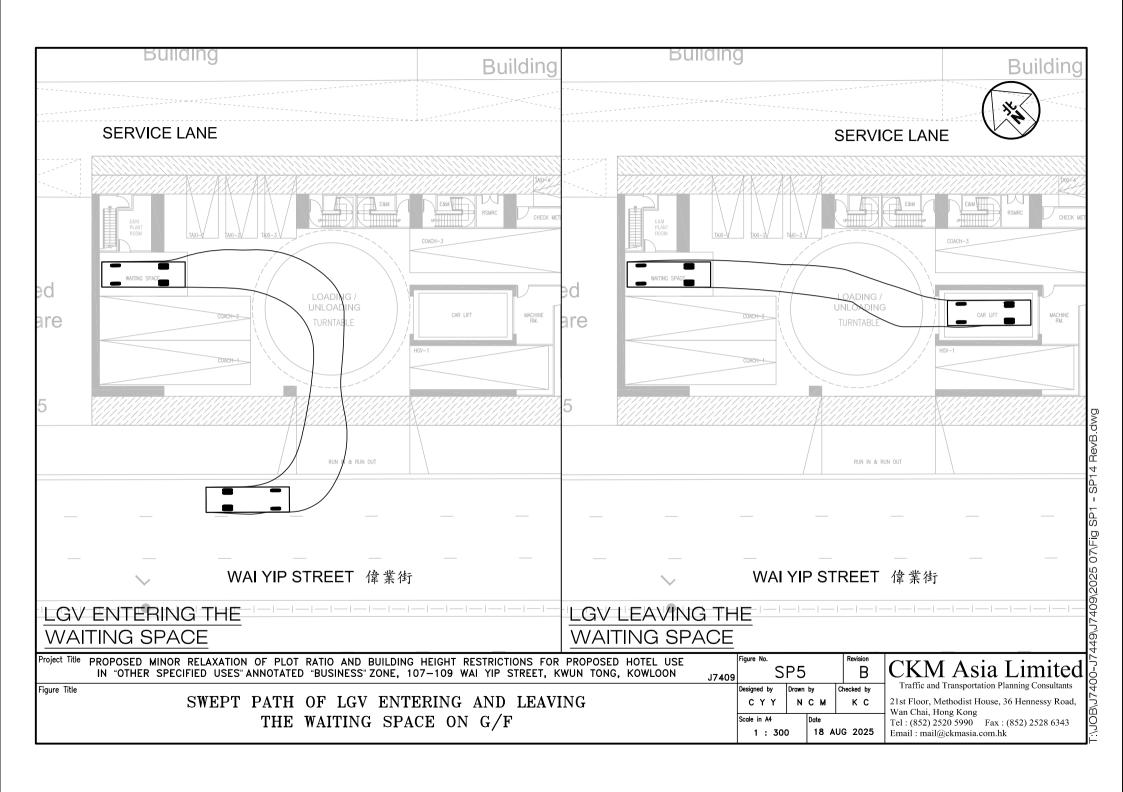


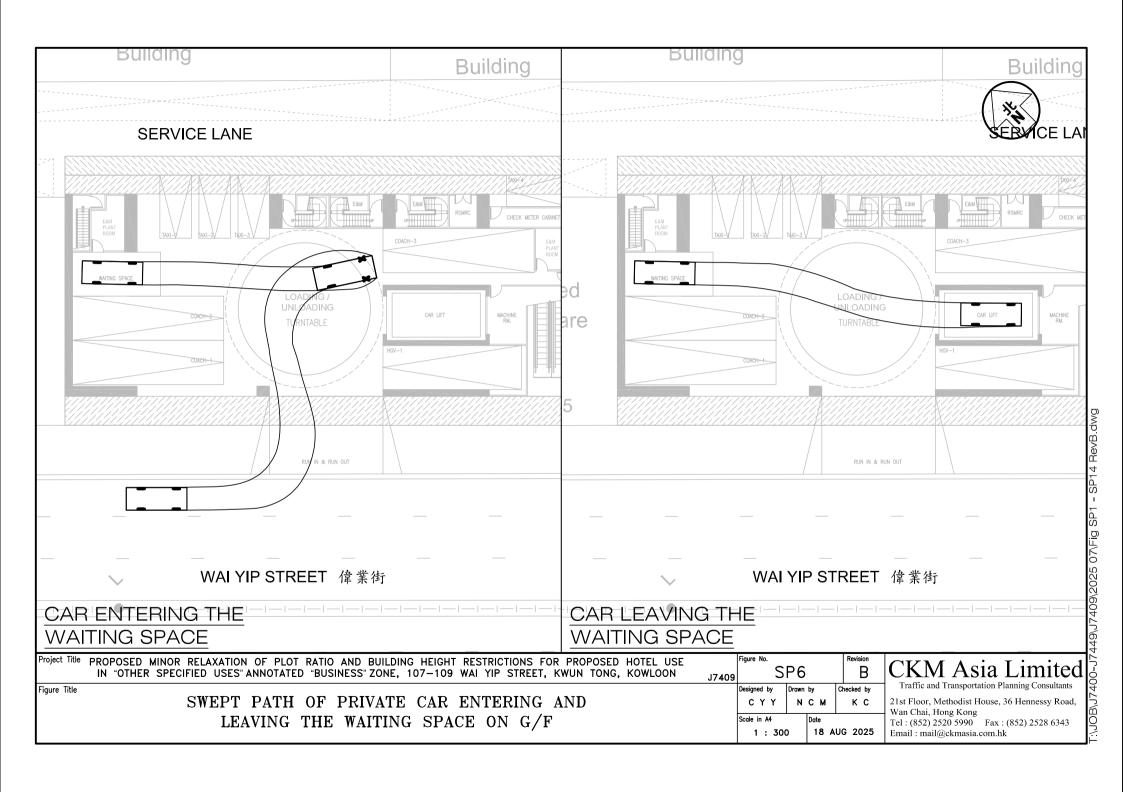


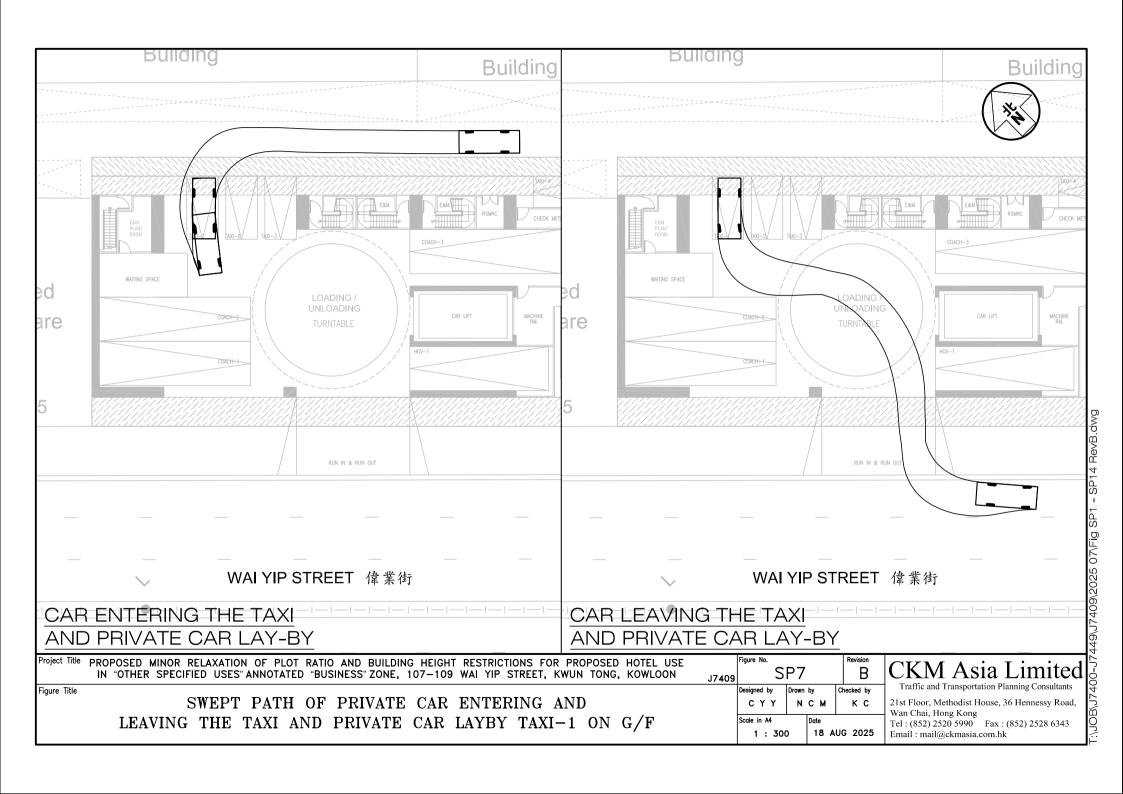


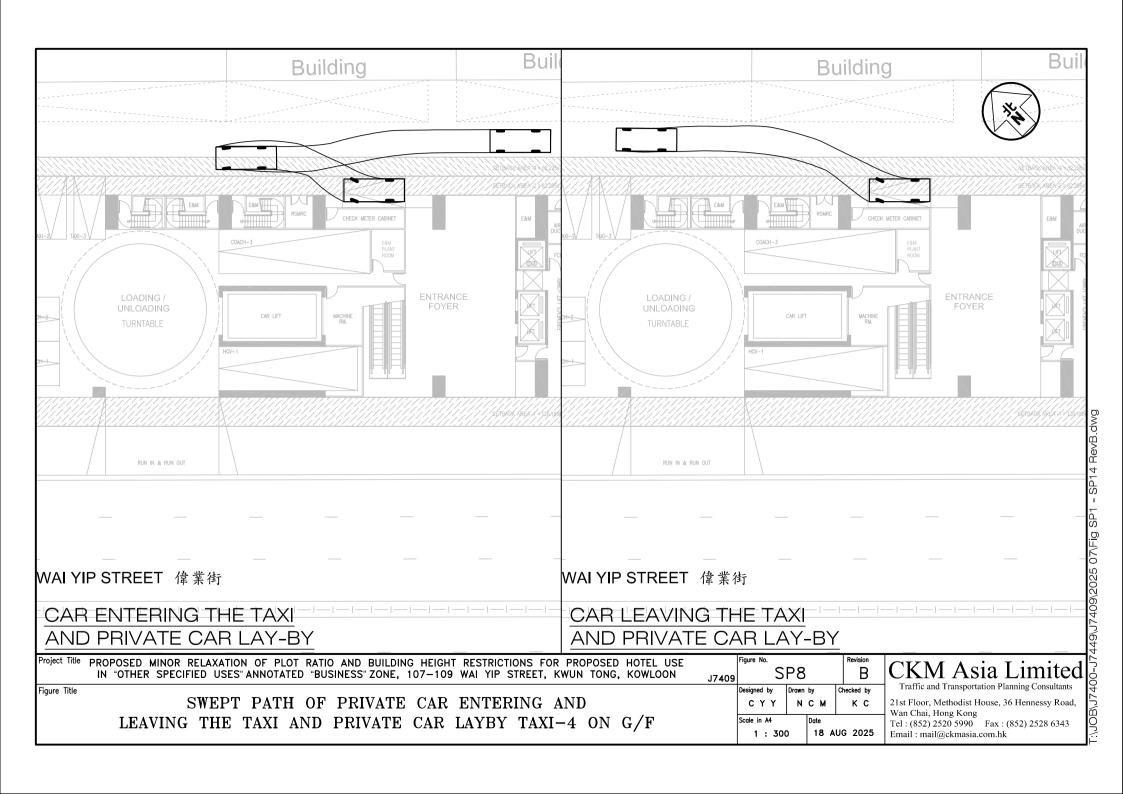


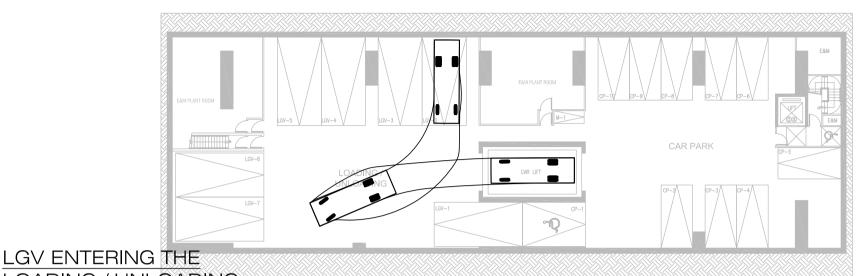


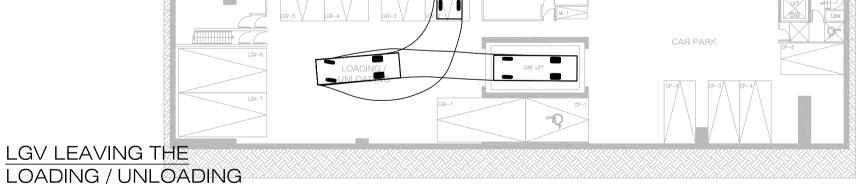












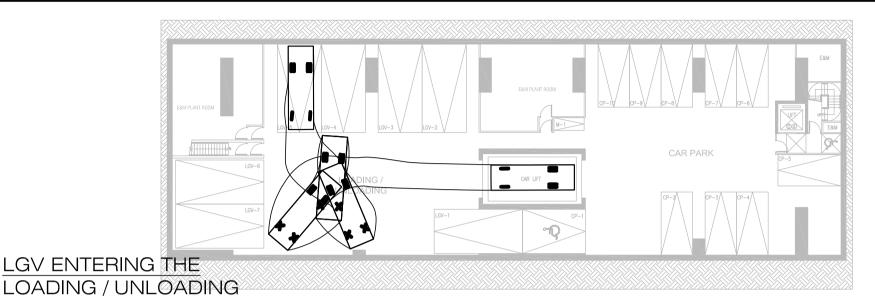
LOADING / UNLOADING

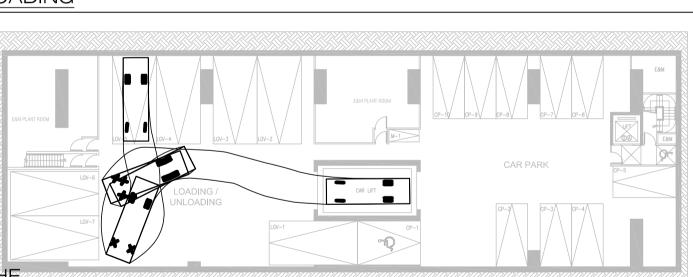
EAM PLAIT FOOM

EAM PLAIT FOOM

EDIT COP-9/ CP-9/ C

Project Title PROPOSED MINOR RELAXATION OF PLOT RATIO AND BUILDING HEIGHT RESTRICTIONS FOR PROPOSED HOTEL USE IN "OTHER SPECIFIED USES" ANNOTATED "BUSINESS" ZONE, 107-109 WAI YIP STREET, KWUN TONG, KOWLOON


Traffic and Transportation Planning Consultants


Figure Title

SWEPT PATH OF LGV ENTERING AND LEAVING THE LGV LOADING / UNLOADING BAY LGV-2 ON B1/F

21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong

Tel: (852) 2520 5990 Fax: (852) 2528 6343 Email: mail@ckmasia.com.hk

LGV LEAVING THE LOADING / UNLOADING

Project Title PROPOSED MINOR RELAXATION OF PLOT RATIO AND BUILDING HEIGHT RESTRICTIONS FOR PROPOSED HOTEL USE IN "OTHER SPECIFIED USES" ANNOTATED "BUSINESS" ZONE, 107-109 WAI YIP STREET, KWUN TONG, KOWLOON

J7409

SP10 Checked by

NCM

Scale in A4

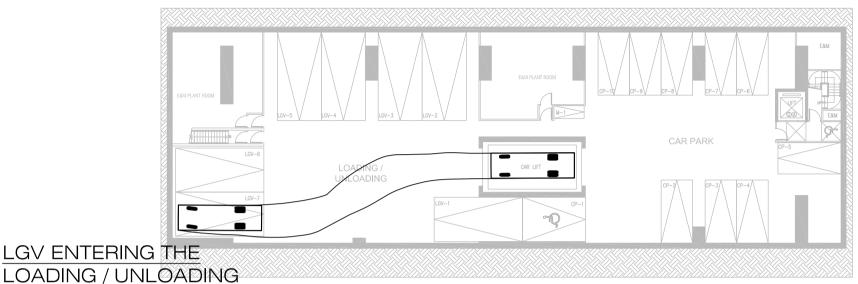
CYY

Figure No.

18 AUG 2025 1:300

CKM Asia Limited

Traffic and Transportation Planning Consultants


21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong

Tel: (852) 2520 5990 Fax: (852) 2528 6343

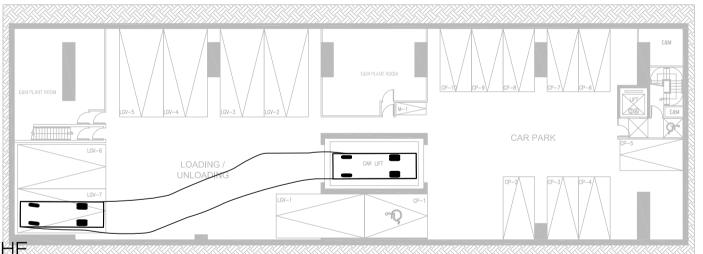

Email: mail@ckmasia.com.hk

Figure Title

SWEPT PATH OF LGV ENTERING AND LEAVING THE LGV LOADING / UNLOADING BAY LGV-5 ON B1/F

LGV LEAVING THE LOADING / UNLOADING

Project Title PROPOSED MINOR RELAXATION OF PLOT RATIO AND BUILDING HEIGHT RESTRICTIONS FOR PROPOSED HOTEL USE IN "OTHER SPECIFIED USES" ANNOTATED "BUSINESS" ZONE, 107-109 WAI YIP STREET, KWUN TONG, KOWLOON

SWEPT PATH OF LGV ENTERING AND LEAVING

THE LGV LOADING / UNLOADING BAY LGV-7 ON B1/F

HOTEL USE KOWLOON _{J7409} SP11 Revision B

rown by Checked by N C M K C 22

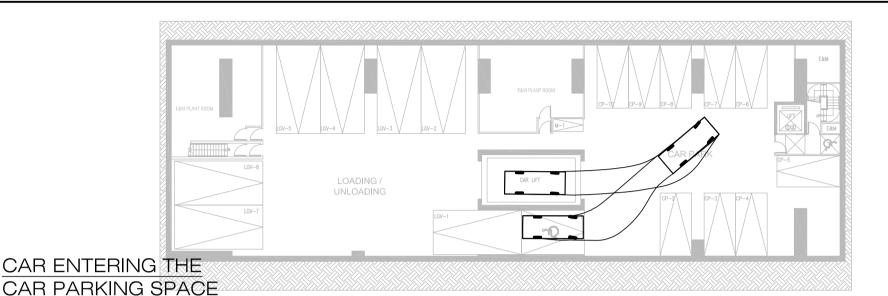
Scale in A4

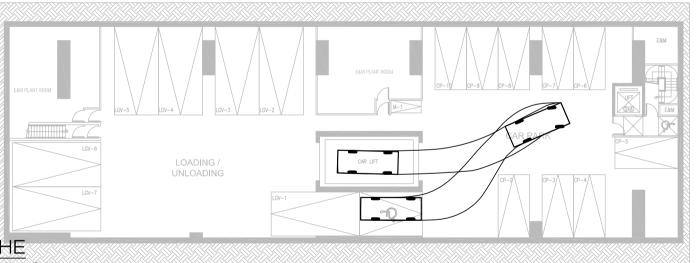
CYY

Figure No.

1 : 300 Date
1 8 AUG 2025

CKM Asia Limited


Traffic and Transportation Planning Consultants


21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong

Tel: (852) 2520 5990 Fax: (852) 2528 6343

Email: mail@ckmasia.com.hk

Figure Title

CAR LEAVING THE CAR PARKING SPACE

Figure Title

Project Title PROPOSED MINOR RELAXATION OF PLOT RATIO AND BUILDING HEIGHT RESTRICTIONS FOR PROPOSED HOTEL USE IN "OTHER SPECIFIED USES" ANNOTATED "BUSINESS" ZONE, 107-109 WAI YIP STREET, KWUN TONG, KOWLOON

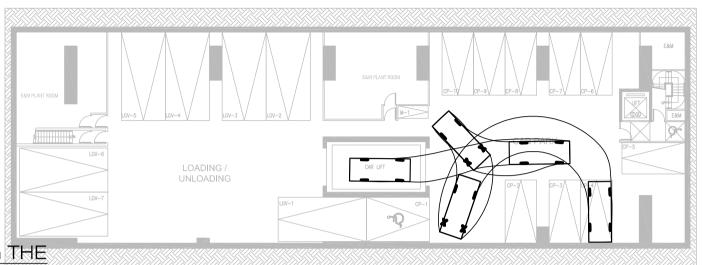
J7409

Figure No.

CYY

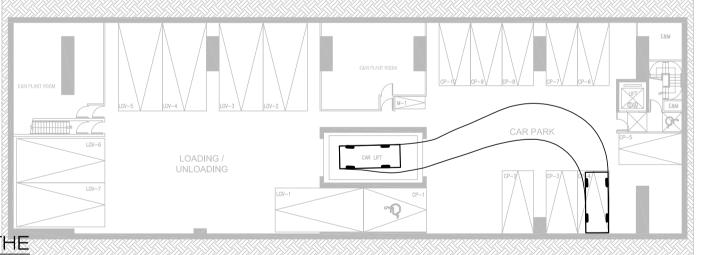
1:300

SP12 Checked by NCM


Traffic and Transportation Planning Consultants

Wan Chai, Hong Kong 18 AUG 2025

SWEPT PATH OF PRIVATE CAR ENTERING AND LEAVING THE CAR PARKING SPACE CP-1 ON B1/F


21st Floor, Methodist House, 36 Hennessy Road,

Tel: (852) 2520 5990 Fax: (852) 2528 6343 Email: mail@ckmasia.com.hk

CAR ENTERING THE CAR PARKING SPACE

CAR LEAVING THE CAR PARKING SPACE

Project Title PROPOSED MINOR RELAXATION OF PLOT RATIO AND BUILDING HEIGHT RESTRICTIONS FOR PROPOSED HOTEL USE IN "OTHER SPECIFIED USES" ANNOTATED "BUSINESS" ZONE, 107–109 WAI YIP STREET, KWUN TONG, KOWLOON

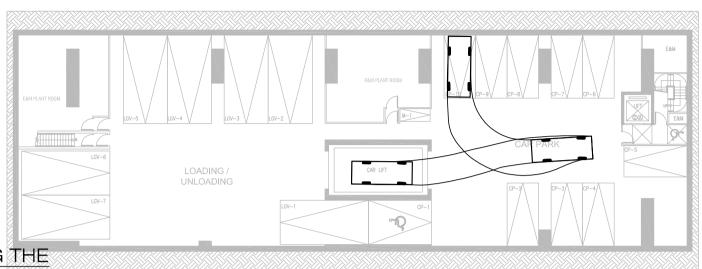
J7409

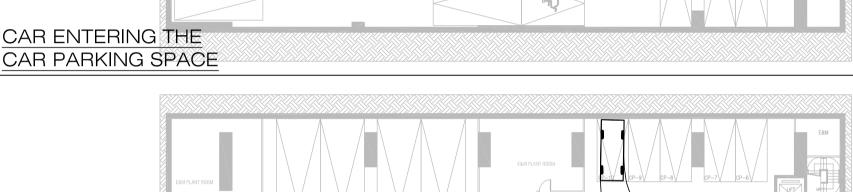
SP13 Checked by NCM

Traffic and Transportation Planning Consultants

Figure Title

SWEPT PATH OF PRIVATE CAR ENTERING AND LEAVING THE CAR PARKING SPACE CP-4 ON B1/F


CYY 18 AUG 2025 1:300


Figure No.

21st Floor, Methodist House, 36 Hennessy Road,

Wan Chai, Hong Kong Tel: (852) 2520 5990 Fax: (852) 2528 6343

Email: mail@ckmasia.com.hk

CAR LEAVING THE CAR PARKING SPACE

Project Title PROPOSED MINOR RELAXATION OF PLOT RATIO AND BUILDING HEIGHT RESTRICTIONS FOR PROPOSED HOTEL USE IN "OTHER SPECIFIED USES" ANNOTATED "BUSINESS" ZONE, 107-109 WAI YIP STREET, KWUN TONG, KOWLOON

Figure Title

SWEPT PATH OF PRIVATE CAR ENTERING AND LEAVING THE CAR PARKING SPACE CP-10 ON B1/F

LOADING /

	Figure No.	214	1		Revision B	
J7409	اد	1 -	+		ן ט	
	Designed by	Drawn	by	C	hecked by	
	CYY	N	СМ		КС	
	Scale in A4		Date			
	1 : 300)	18	ΑU	G 2025	

CKM Asia Limited

Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong

Tel: (852) 2520 5990 Fax: (852) 2528 6343 Email: mail@ckmasia.com.hk

Car Lift Analysis

Job Title
Proposed Minor Relaxation of Plot Ratio and Building Height Restrictions for
Proposed Hotel Use in "Other Specified Uses" annotated "Business" Zone, 107-109
Wai Yip Street, Kwun Tong

Ground floor to typical car park floor (m)	5.00
Average Speed (m/s)	0.50
Travel time (s)	10.00

Activity	Time (s)
Car lift travels from ground floor to typical car park floor	10
Lift door opens	5
Car exits lift in foward gear on typical car park floor	5
Car enters lift in reverse gear on typical car park floor	10
Door closes	5
Car lift travels from typical car park floor to ground floor	10
Lift door opens	5
Car exits lift in forward gear on ground floor	5
Car enters lift in reverse gear on ground floor	10
Door closes	5
<u>Tota</u>	<u>al</u> 70
Number of lift servers, k	1
Number of waiting space(s)	1
Cycle time ω (s)	70
Arrival rate λ (veh / hr)	18
Service rate μ of one lift server (veh / hr)	51

Number of Cars N	Probability of Exact N Cars in the Lift System	Probability of N Cars or Less in the Lift System	Probability of More Than N Cars in the Lift System
0	65.00%	65.00%	35.00%
1	22.75%	87.75%	12.25%
2	7.96%	95.71%	4.29%
3	2.79%	98.50%	1.50%
4	0.98%	99.47%	0.53%
5	0.34%	99.82%	0.18%
6	0.12%	99.94%	0.06%
7	0.04%	99.98%	0.02%

Conclusion

The probability of a vehicle arriving when 1 car lift and 1 waiting space are occupied is 4.29%.

Formulae: [A] [B] Floor Level (m) Distance No. of parking [A] * [B] from G/F spaces 8/F 7/F 6/F 5/F 4/F 3/F 2/F 1/F G/F 0.00 0.0 0 0 B₁/F -5.00 5.0 18 90 B2/F B3/F B4/F B5/F B6/F B7/F B8/F total parking typical floor distance spaces 5 18

Note:

k is the number of lift servers.

 λ is the arrival rate in vehicles per hour.

 μ is the service rate of a lift server in vehicles per hour.

N $1/N!*(\lambda/\mu)^{\Lambda}$ summation from N=0 to N=k-1

	(1)	our manor i
0	1	1
1	0	1
2	0	1
3	0	1
4	0	1
5	0	1
6	0	1
7	0	1
8	0	1
9	0	1
10	0	1

The assessment is based on the mutli-server queuing (M/M/N) theory, and the equations applied are listed below:

Probability of having exactly zero cars in the lift system:

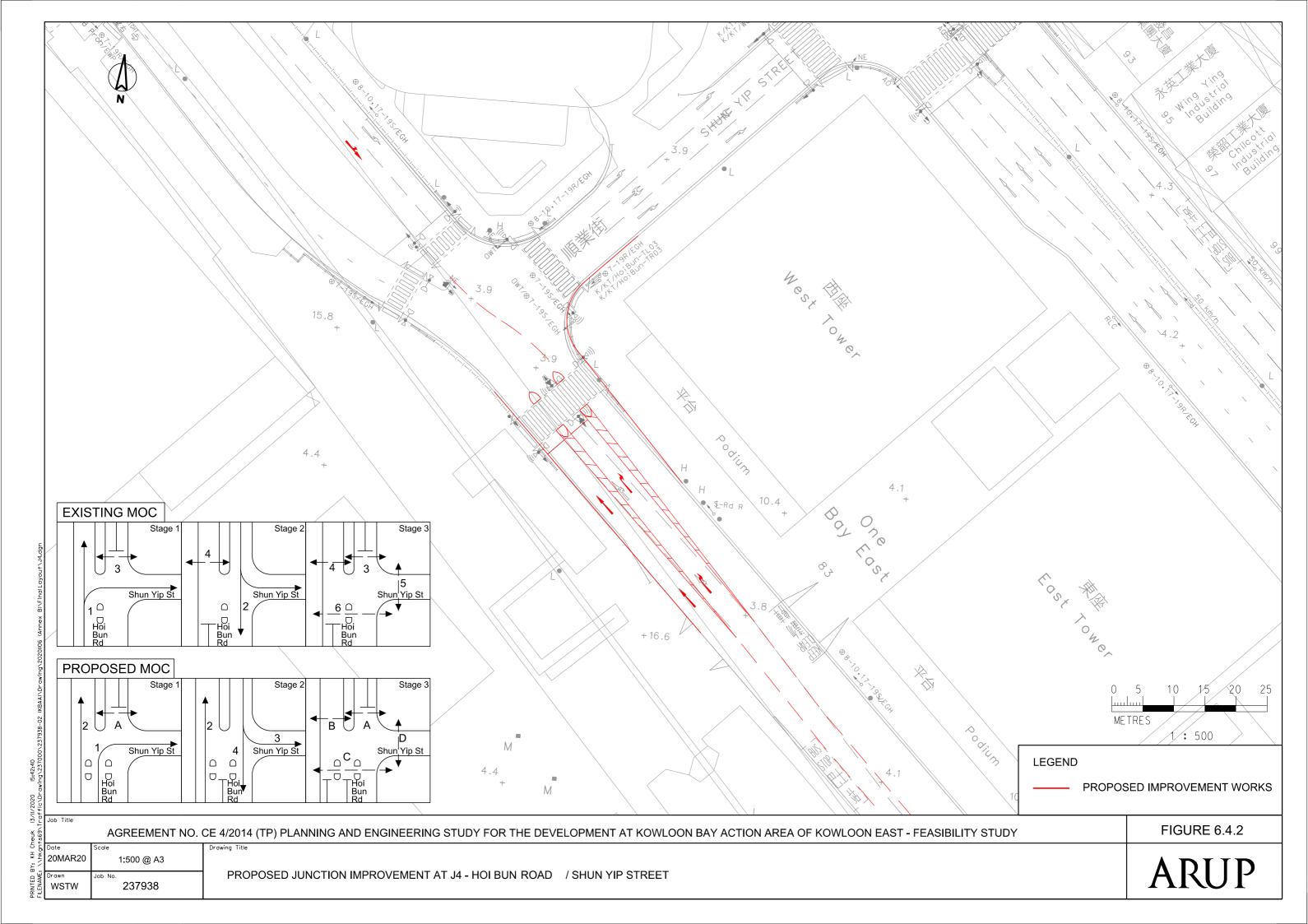
$$P(0) = \frac{1}{\left[\sum_{N=0}^{k-1} \frac{1}{N!} \left(\frac{\lambda}{\mu}\right)^{N}\right] + \frac{1}{k!} \left(\frac{\lambda}{\mu}\right)^{k} \frac{k\mu}{k\mu - \lambda}}$$

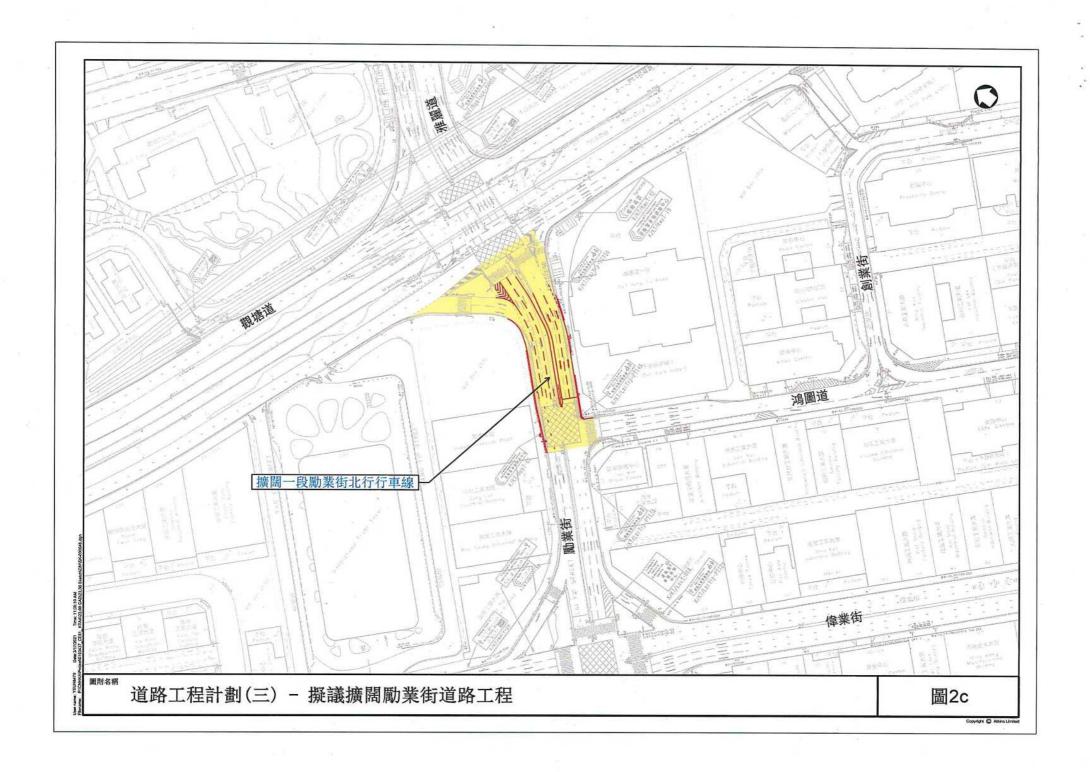
Probability of having exactly N cars in the lift system:

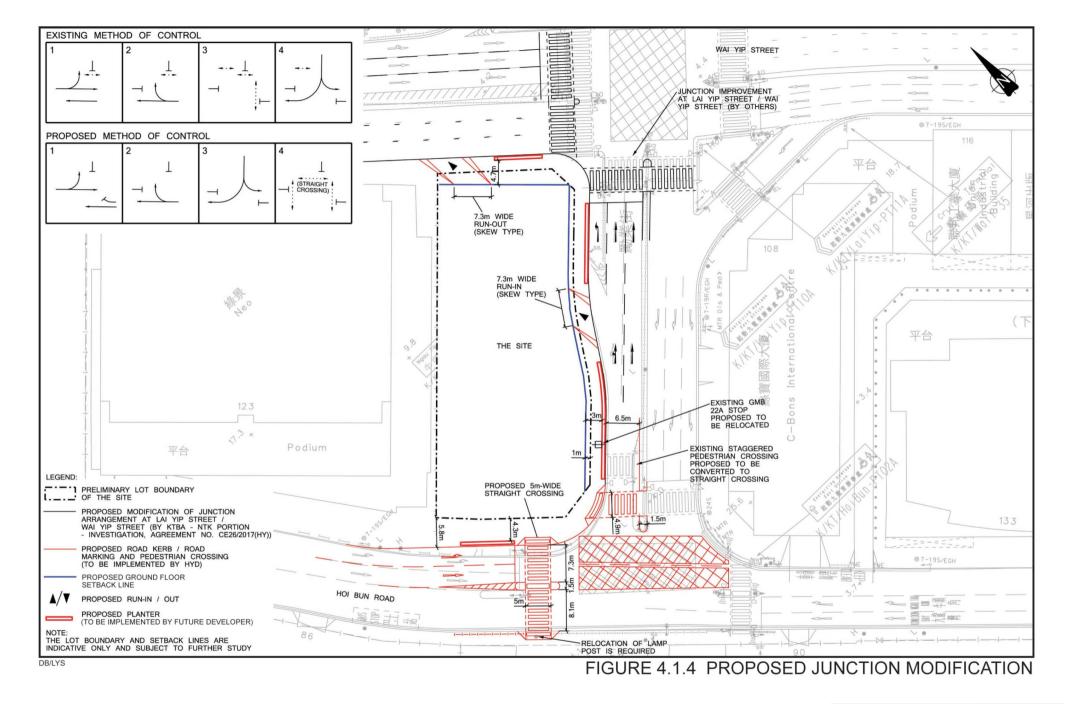
For N < k:

$$P(N) = \frac{1}{N!} \left(\frac{\lambda}{\mu}\right)^{N} P(0)$$

For $N \ge k$:


$$P(N) = \frac{1}{k!k^{N-k}} \left(\frac{\lambda}{\mu}\right)^{N} P(0)$$


k - -number of lift servers


λ - -arrival rate

μ - -service rate

(資料來源:由起動九龍東辦事處提供) (Source: Provided by Energizing Kowloon East Office) 參考編號 REFERENCE No. M/K14S/23/35 繪圖 DRAWING 5b