Appendix H

Updated Traffic Impact Assessment

19/06/2025

Reference number CHK50748310

SECTION 16 APPLICATION FOR PROPOSED FLAT, SHOP AND SERVICES AND EATING PLACE WITH MINOR RELAXATION OF PLOT RATIO AND BUILDING HEIGHT RESTRICTIONS IN "RESIDENTIAL (GROUP E)" ZONE AT NO. 4 TUNG YUEN STREET, YAU TONG, KOWLOON

TRAFFIC IMPACT ASSESSMENT REPORT

IDENTIFICATION TABLE		
Client/Project owner	China Resources Land (Overseas) Limited	
Project	Section 16 Application for Proposed Flat, Shop and Services and Eating Place with Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon	
Type of document	Traffic Impact Assessment Report	
Date	19/06/2025	
File name	No. 4 Tung Yuen Street Development Traffic Impact Assessment Report .docx	
Reference number	СНК50748310	

TABLE OF CONTENTS

1.	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	STUDY OBJECTIVE	1
1.3	REPORT STRUCTURE	1
2.	TRAFFIC CONTEXT	2
2.1	Existing Road Network	2
2.2	PUBLIC TRANSPORT SERVICES	2
2.3	JUNCTION OPERATIONAL PERFORMANCE	2
3.	THE REDEVELOPMENT	5
3.1	Development Parameter	5
3.2	INTERNAL TRAFFIC ARRANGEMENT	5
3.3	INTERNAL TRANSPORT FACILITY	6
4.	TRAFFIC FORECASTS	8
4.1	Forecasting Assumptions and Methodology	8
4.2	FORECASTING SCENARIOS	12
5.	TRAFFIC IMPACT ASSESSMENT	15
5.1	JUNCTION OPERATIONAL PERFORMANCE	15
6.	PUBLIC TRANSPORT ASSESSMENT	17
6.1	CURRENT PUBLIC TRANSPORT SERVICES IN THE VICINITY	17
6.2	Additional Traffic Demand from the Proposed Development and Other New Developments in the Vicinity	RESIDENTIAL
7.	CONCLUSION	20
7.1	Summary	20
7.2	CONCLUSION	20

Appendix A Public Transport Details and Servicing Schedules

Appendix B Junction Calculation Sheets

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon	CHK50748310
Traffic Impact Assessment Report	19/06/2025

LIST OF DRAWINGS

Drawing 1.1	Site Location Plan	1
Drawing 2.1	Existing Public Transport Services	2
Drawing 2.2	Identified Key Local Junctions	2
Drawing 2.3	Existing Junction Layout of Cha Kwo Ling / Lam Tin Interchange (A)	3
Drawing 2.4	Existing Junction Layout of Cha Kwo Ling Road / Yau Tong Road (B)	3
Drawing 2.5	Existing Junction Layout of Cha Kwo Ling Road / Ko Fai Road (C)	3
Drawing 2.6	Existing Junction Layout of Cha Kwo Ling Road / Ko Chiu Road (D)	3
Drawing 2.7	Existing Junction Layout of Lei Yue Mun Road / Ko Chiu Road (E)	3
Drawing 2.8	Existing Junction Layout of Lei Yue Mun Road / Yau Tong Road (F)	. 3
Drawing 2.9	Existing Junction Layout of Kai Tin Road / Lei Yue Mun Road (G)	3
Drawing 2.10	Existing Junction Layout of Wai Yip Street / Wai Fai Road (H)	3
Drawing 2.11	Existing Junction Layout of Lei Yue Mun Road / Slip Road to EHC (I)	. 3
Drawing 2.12	Existing Junction Layout of Cha Kwo Ling Road / Shung Shun Road (J)	3
Drawing 2.13	Existing Junction Layout of Shung Shun Road / Yan Yue Wai (K)	3
Drawing 2.14	Existing Junction Layout of Tung Yuen Street / Yan Yue Wai (L)	3
Drawing 2.15	Existing Junction Layout of Tung Yuen Street / Ko Fai Road (M)	3
Drawing 2.16	Year 2024 Observed Traffic Flows	3
Drawing 3.1	Master Layout Plan	5
Drawing 3.2	Development Ingress Route	5
Drawing 3.3	Development Egress Route	. 5
Drawing 3.4	Ground Floor Level Plan	6
Drawing 3.5	First Basement Level Plan	6
Drawing 3.6	Second Basement Level Plan	6
Drawing 4.1	Future Trunk Road T2	8
Drawing 4.2	Location of ATC Counting Stations in the Vicinity	9
Drawing 4.3	Development Traffic Flow	12
Drawing 4.4	Year 2035 Reference Traffic Flows	14
Drawing 4.5	Year 2035 Design Traffic Flows	14
Drawing 5.1	Planned Junction Layout of Cha Kwo Ling Road / Ko Fai Road (C)	15
Drawing 5.2	Planned Junction Layout of Cha Kwo Ling Road / Ko Chiu Road(D)	15
Drawing 5.3	Planned Road Widening Scheme Near the Junction of Lei Yue Mun Road / Slip Road EHC (I)	
Drawing 5.4	Suggested Junction Layout of Tung Yuen Street / Ko Fai Road (M)	15
Drawing 6.1	Location of the Public Transport Service in the Vicinity	17

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with	
Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group	CHK50748310
E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon	
Traffic Impact Assessment Report	19/06/2025

Drawing 6.2	Pedestrian Routes between the application site and the vicinity	17
-------------	---	----

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with	
Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group	CHK50748310
E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon	
Traffic Impact Assessment Report	19/06/2025

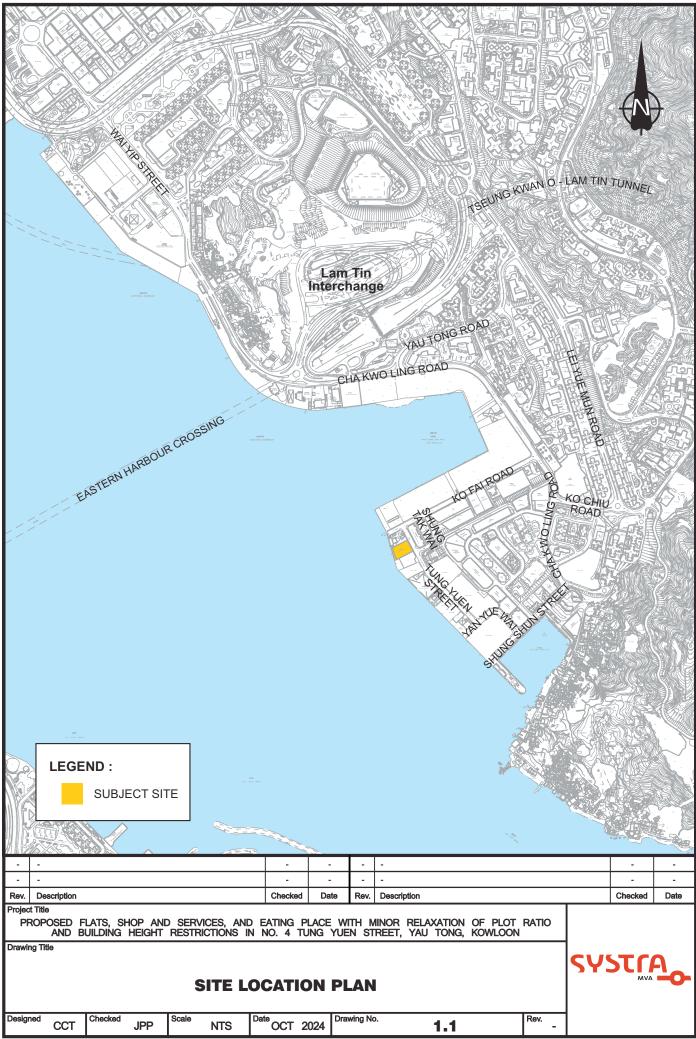
LIST OF TABLES

Table 2.1	Identified Key Local Junctions	3
Table 2.2	Current Junction Operational Performance	4
Table 3.1	Proposed Development Parameters	5
Table 3.2	Proposed Internal Transport Facility	6
Table 4.1	Hong Kong Resident Population between Year 2024 and Year 2046	8
Table 4.2	AADT of nearby ATC Traffic Counts between Years 2019 to 2023	9
Table 4.3	Projected Population of Kwun Tong District, 2021-2031	10
Table 4.4	Estimated Trip Generations of Nearby Planned Developments	11
Table 4.5	Estimated No. 4 Tung Yuen Street Redevelopment Traffic Trips	13
Table 4.6	Trip Generations of Current Land-use and Proposed Future Land-use	13
Table 5.1	Junction Operational Performance in Year 2035	16
Table 6.1	Existing Road-based Public Transport Services in the Vicinity (Peak Hour)	17
Table 6.2	Road-based Public Transport Services in the Vicinity in Design Year 2035 (Peak Hour)	17
Table 6.3	Modal Share of Kwun Tong District	18
Table 6.4	Calculation of Total Trips from Proposed Development and New Development in the Vicinity	18
Table 6.5	Surplus Capacity of the Bus and PLB Service in the Vicinity in Design Year 2035	19

1. INTRODUCTION

1.1 Background

- 1.1.1 The application site is located at No. 4 Tung Yuen Street, as indicated in **Drawing 1.1**. It is currently zoned "Residential (Group E)" ("R(E)") under the latest approved Cha Kwo Ling, Yau Tong, Lei Yue Mun Outline Zoning Plan (OZP) no. S/K15/27.
- 1.1.2 The application site is currently occupied by an industrial building, and is planned to be redeveloped into a residential-based development with shop & services, and eating place as No. 4 Tung Yuen Street Redevelopment.


1.2 Study Objective

- 1.2.1 The main objective of this study is to investigate the anticipated traffic impact of proposed No.4 Tung Yuen Street Redevelopment to the adjacent local road network, by performing the following tasks:
 - review the current traffic condition in the vicinity;
 - study the traffic related matters of the proposed MLP;
 - produce traffic forecasts on the adjacent local road network;
 - assess the traffic impact of this development scheme to the adjacent local road network and suggest mitigation measures, if applicable.

1.3 Report Structure

- 1.3.1 Following this introductory chapter, there are six further chapters.
 - Chapter 2 Traffic Context, review the current traffic condition in the vicinity;
 - Chapter 3 The Redevelopment, introduces the proposed No. 4 Tung Yuen Street Redevelopment scheme, planning parameters, internal transport facilities and etc.;
 - Chapter 4 Traffic Forecasts, describes the traffic forecasting methodology and presents the results;
 - Chapter 5 Traffic Impact Assessment, presents the assessment findings and suggests mitigation measures, if applicable;
 - Chapter 6 Public Transport, review the current public transport service in the vicinity, and analyse the public transport demand in the future; and,
 - Chapter 7 Summary and Conclusion, summarises the study findings and presents the conclusion accordingly.

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with			
Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group	CHK50748310		
E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon			
Traffic Impact Assessment Report	19/06/2025	Page	1

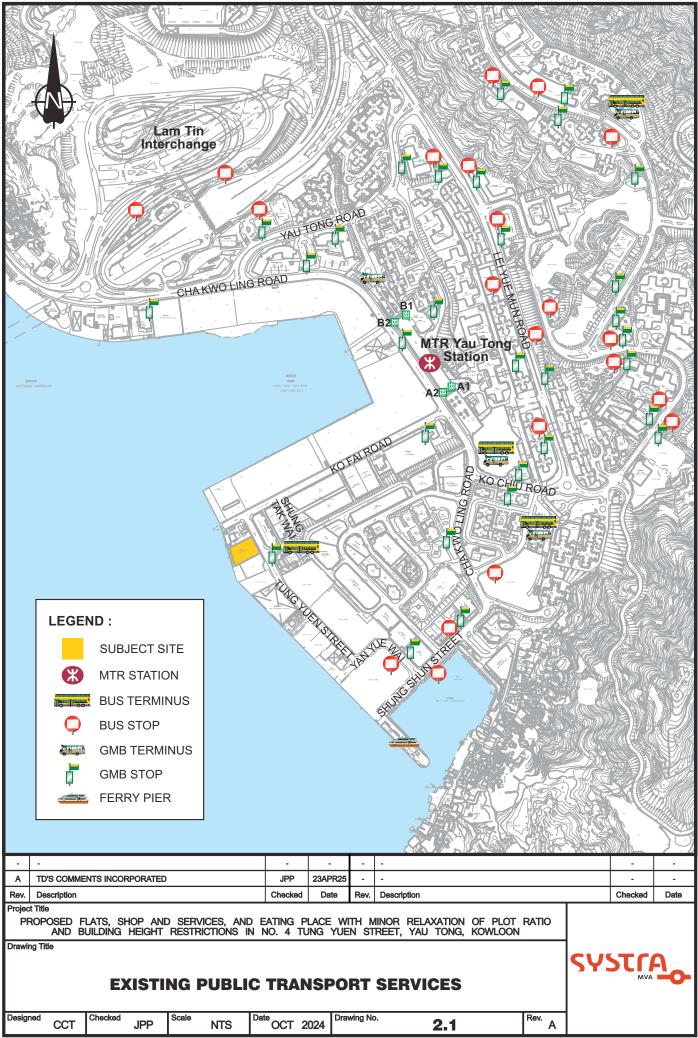
CHK50748310/TIA/F11.CDR/LLH/10OCT24

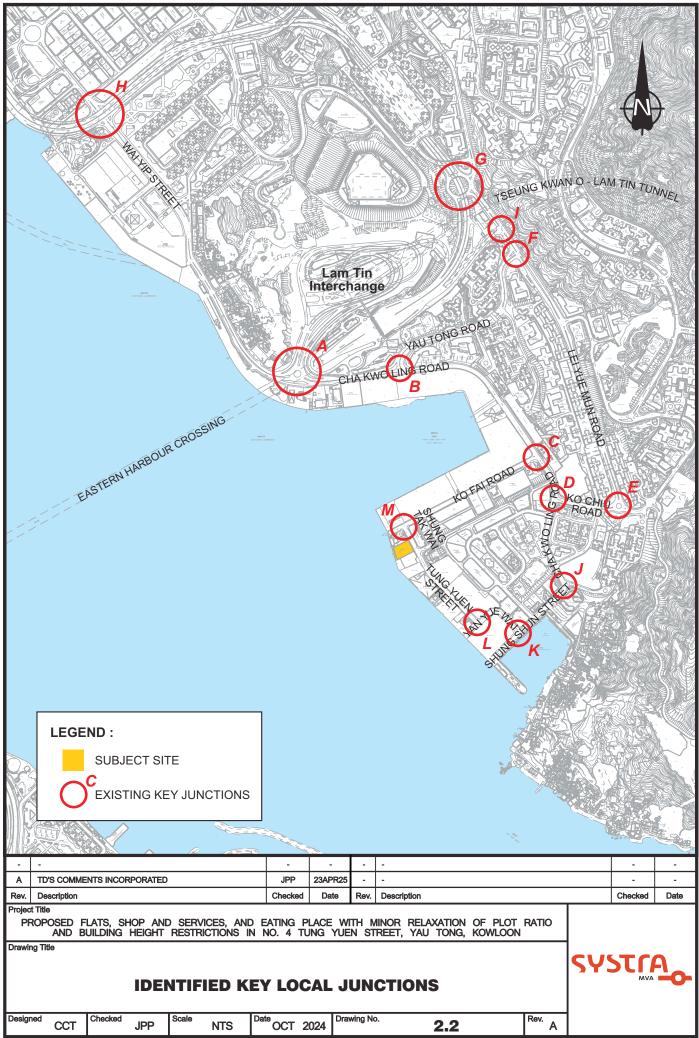
2

2. TRAFFIC CONTEXT

2.1 Existing Road Network

- 2.1.1 The application site is located at No. 4 Tung Yuen Street. The application site situates at the northwestern fringe of YTIA and is accessible from Tung Yuen Street. The site location is indicated in **Drawing 1.1**. The vehicular access routes of the application site are through Tung Yuen Street, Ko Fai Road, Cha Kwo Ling Road, Yau Tong Road, and Ko Chiu Road.
- 2.1.2 Cha Kwo Ling Road, a single 4-lane district distributor, is the main transport corridors of Yau Tong area to provide external linkage to Eastern Harbour Crossing (EHC), Tseung Kwan O Lam Tin Tunnel (TKO-LTT), Kwun Tong Bypass and Kwun Tong Road.
- 2.1.3 Yau Tong Road and Ko Chiu Road are both local distributors, linking up Lei Yue Mun Road and Cha Kwo Ling Road on the North and South respectively.
- 2.1.4 Tung Yuen Street and Ko Fai Road are both single 2-lane local distributors, connecting the application site to Yan Yue Wai and Cha Kwo Ling Road.


2.2 Public Transport Services

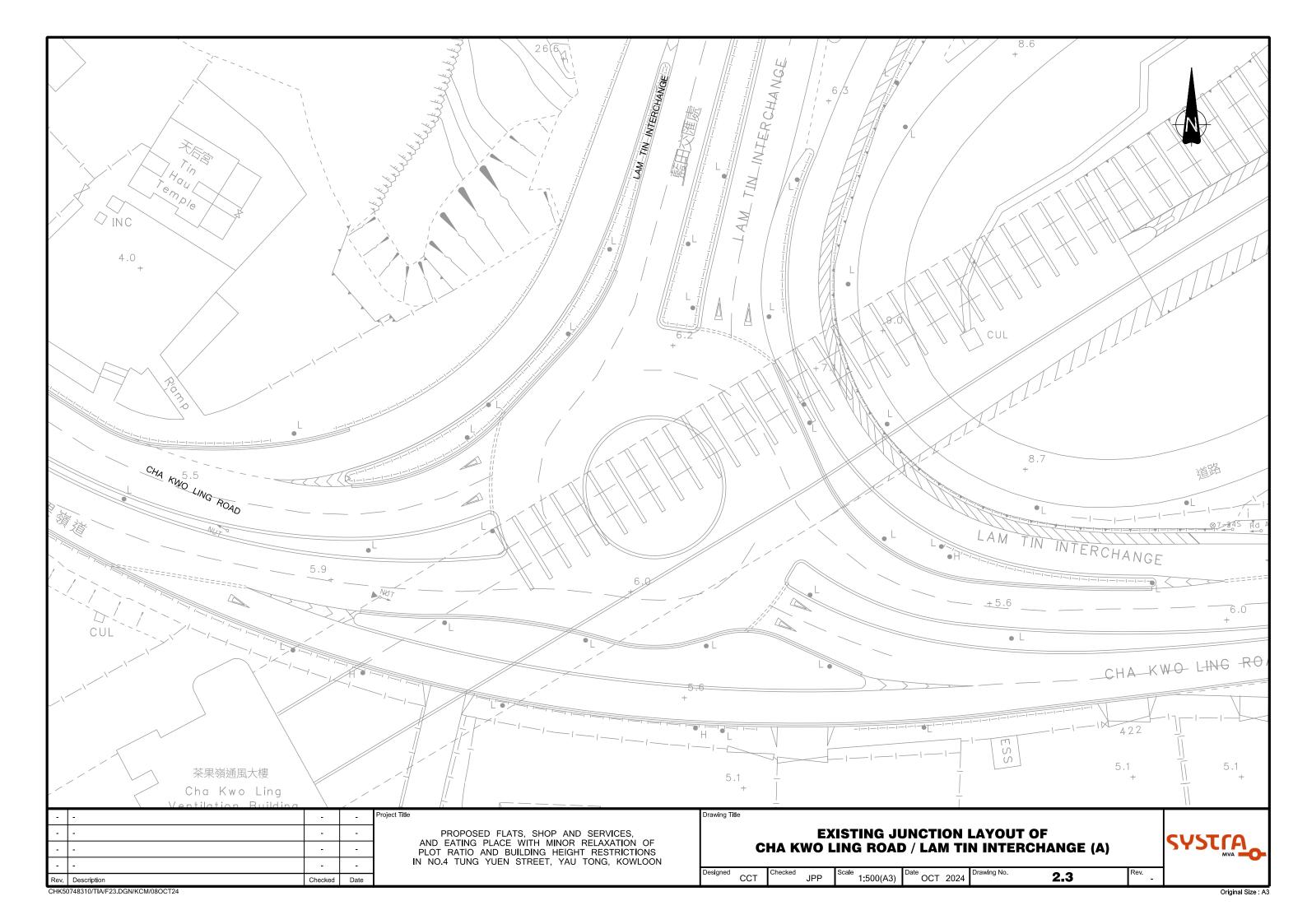

- 2.2.1 MTR Yau Tong Station is the nearest MTR station to the application site. It is located on the north-east of the application site across Cha Kwo Ling Road, and can be reached within 10 minutes of walk. Yau Tong MTR Station is the interchange station of Kwun Tong Line and Tseung Kwan O Line leading to Island Line.
- 2.2.2 There are two public transport interchanges (PTI) located at The Domain Mall and Lei Yue Mun Estate, near Ko Chiu Road, in the vicinity of the application site. There is one franchised bus route - 14X and one Green Minibus (GMB) route - 24, operating along Tung Yuen Street.
- 2.2.3 The nearby public transport services are indicated in **Drawing 2.1**, whilst their service details are summarised in **Appendix A**.

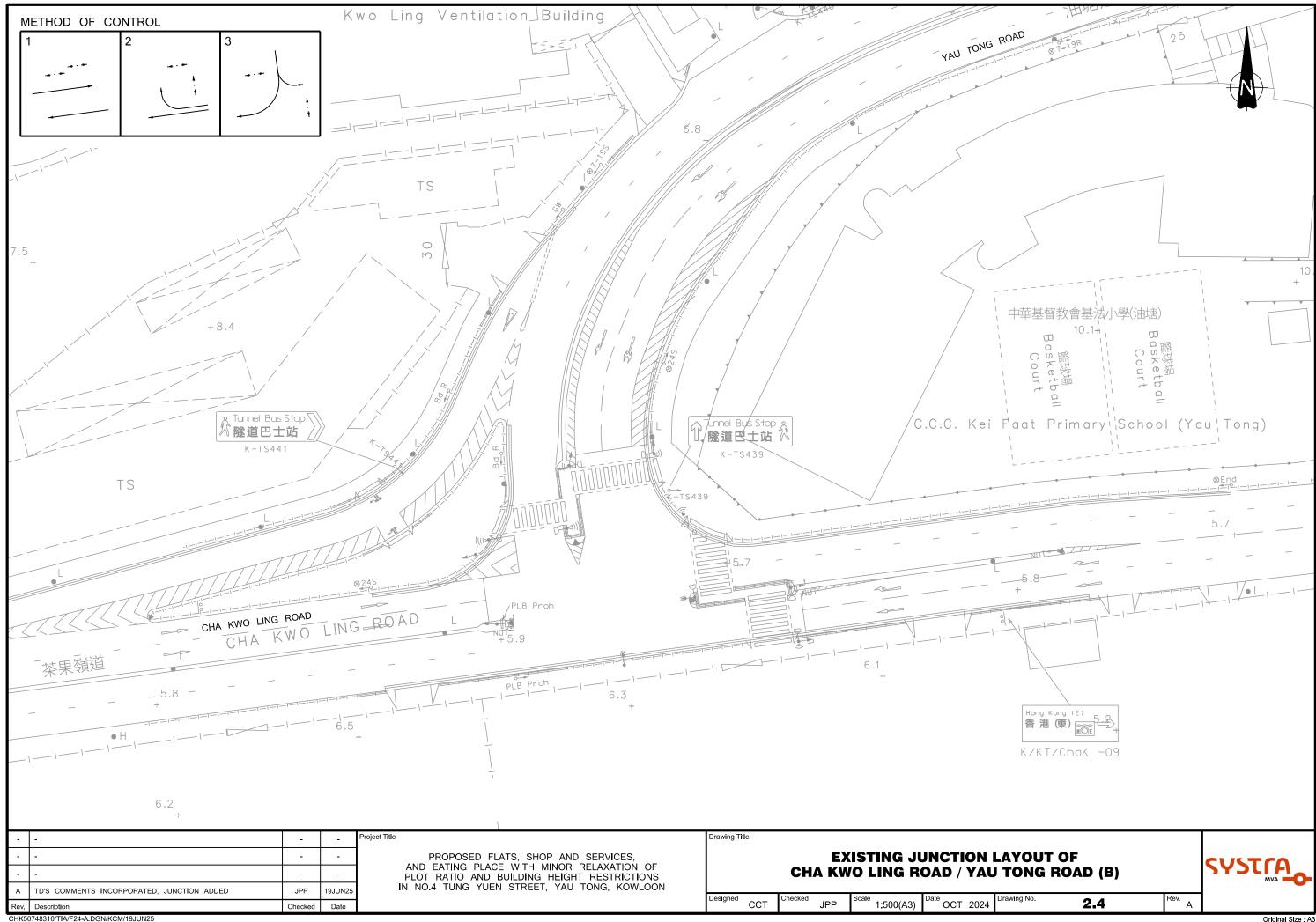
2.3 Junction Operational Performance

2.3.1 A total of thirteen key local junctions have been identified for assessment purpose in this study. The identified key local junctions, as listed in **Table 2.1**, are indicated in **Drawing 2.2**.

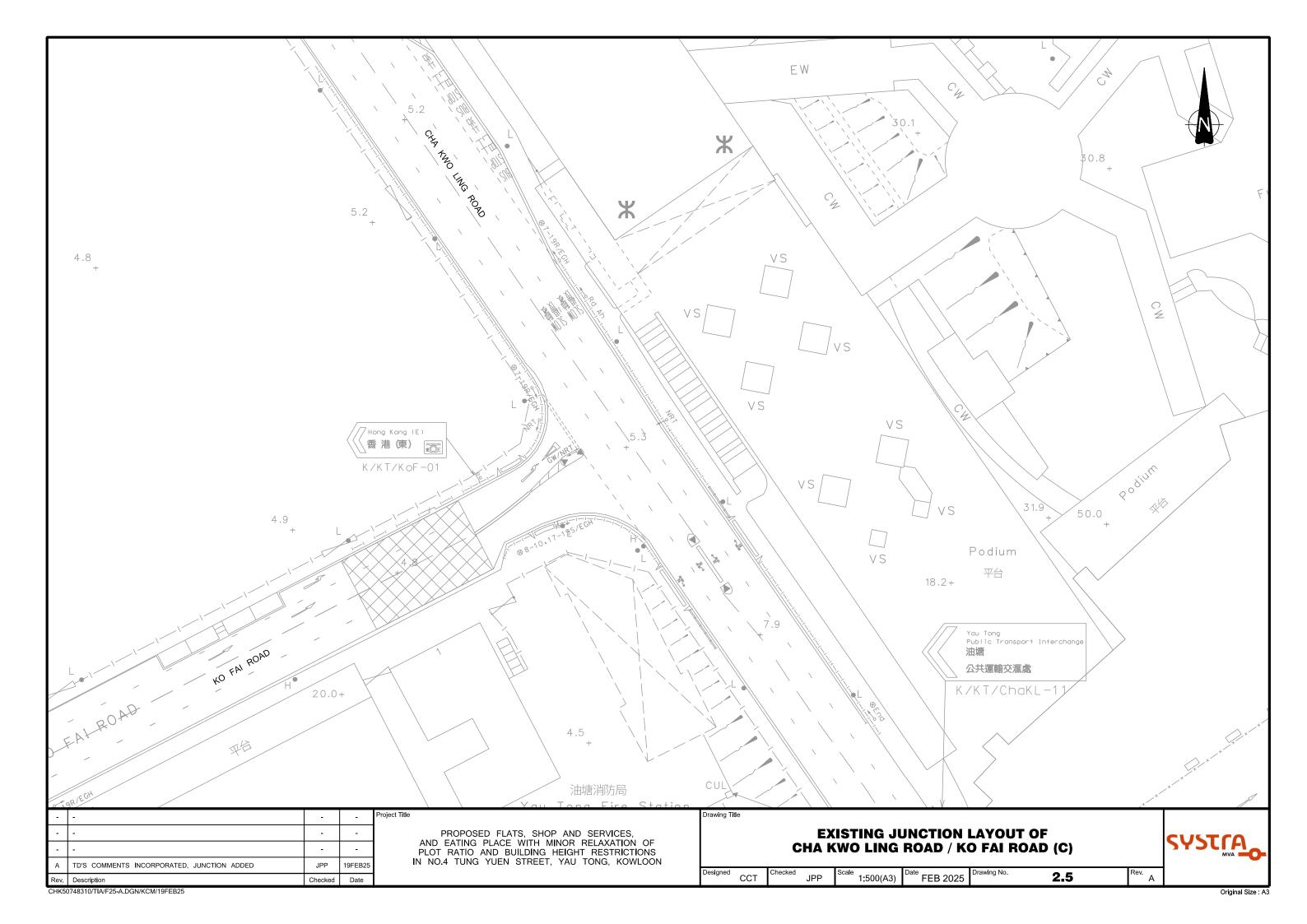
Section 16 Application for Proposed Flat, Shop and Services and Eating Place with Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon	СНК50748310	
Traffic Impact Assessment Report	19/06/2025	Page

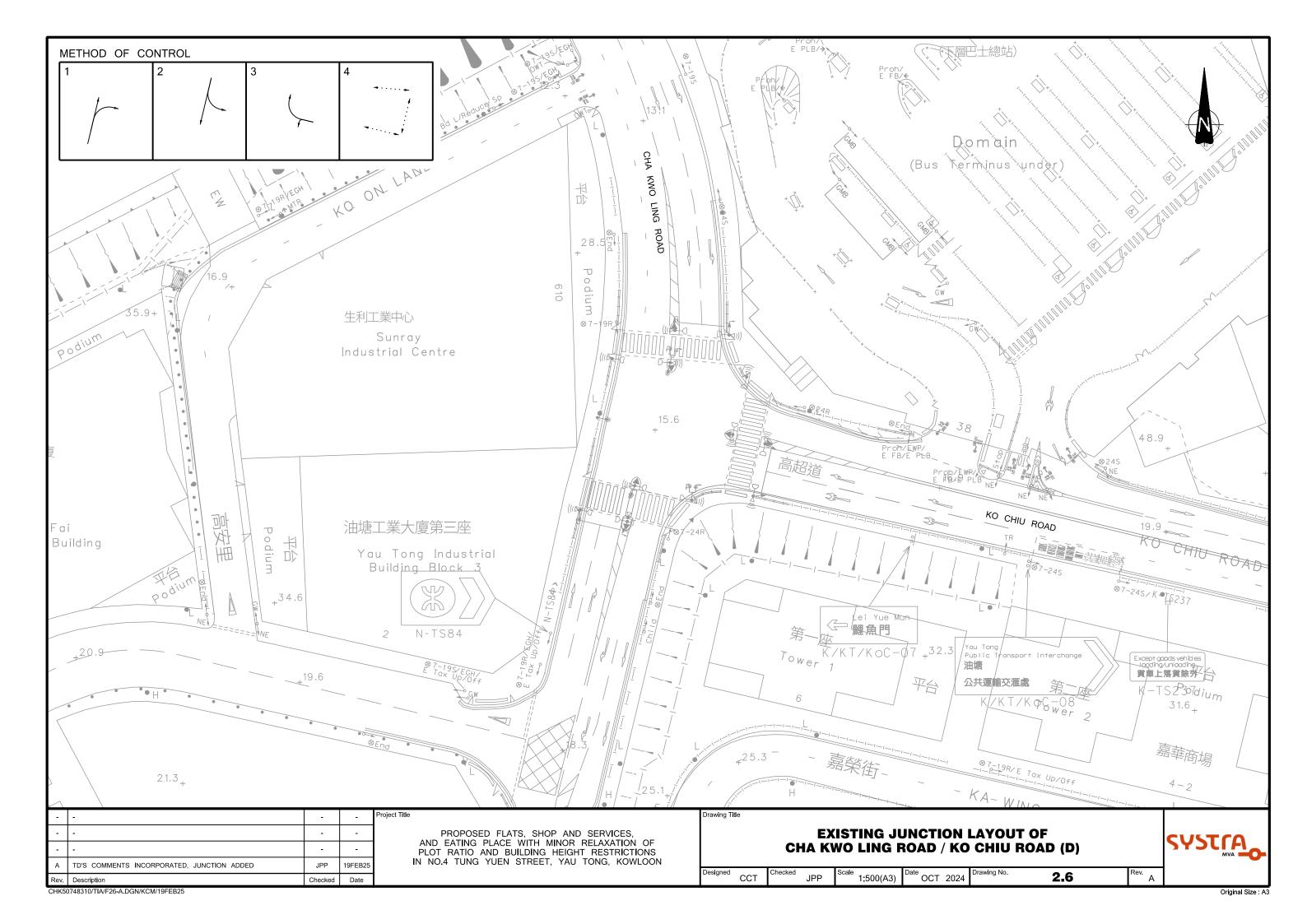
	Identified Key Local Junctions		
Ref. ⁽¹⁾	Junction	Control Method	Drawing No.
А	Cha Kwo Ling Road / Lam Tin Interchange	Roundabout	2.3
В	Cha Kwo Ling Road / Yau Tong Road	Signal	2.4
С	Cha Kwo Ling Road / Ko Fai Road	Priority	2.5
D	Cha Kwo Ling Road / Ko Chiu Road	Signal	2.6
E	Lei Yue Mun Road / Ko Chiu Road	Roundabout	2.7
F	Lei Yue Mun Road / Yau Tong Road	Signal	2.8
G	Kai Tin Road / Lei Yue Mun Road	Roundabout	2.9
Н	Wai Yip Street / Wai Fat Road	Signal	2.10
I	Lei Yue Mun Road / Slip Road to EHC	Signal	2.11
J	Cha Kwo Ling Road / Shung Shun Road	Priority	2.12
К	Shung Shun Road / Yan Yue Wai	Priority	2.13
L	Tung Yuen Street / Yan Yue Wai	Priority	2.14
М	Tung Yuen Street / Ko Fai Road	Priority	2.15

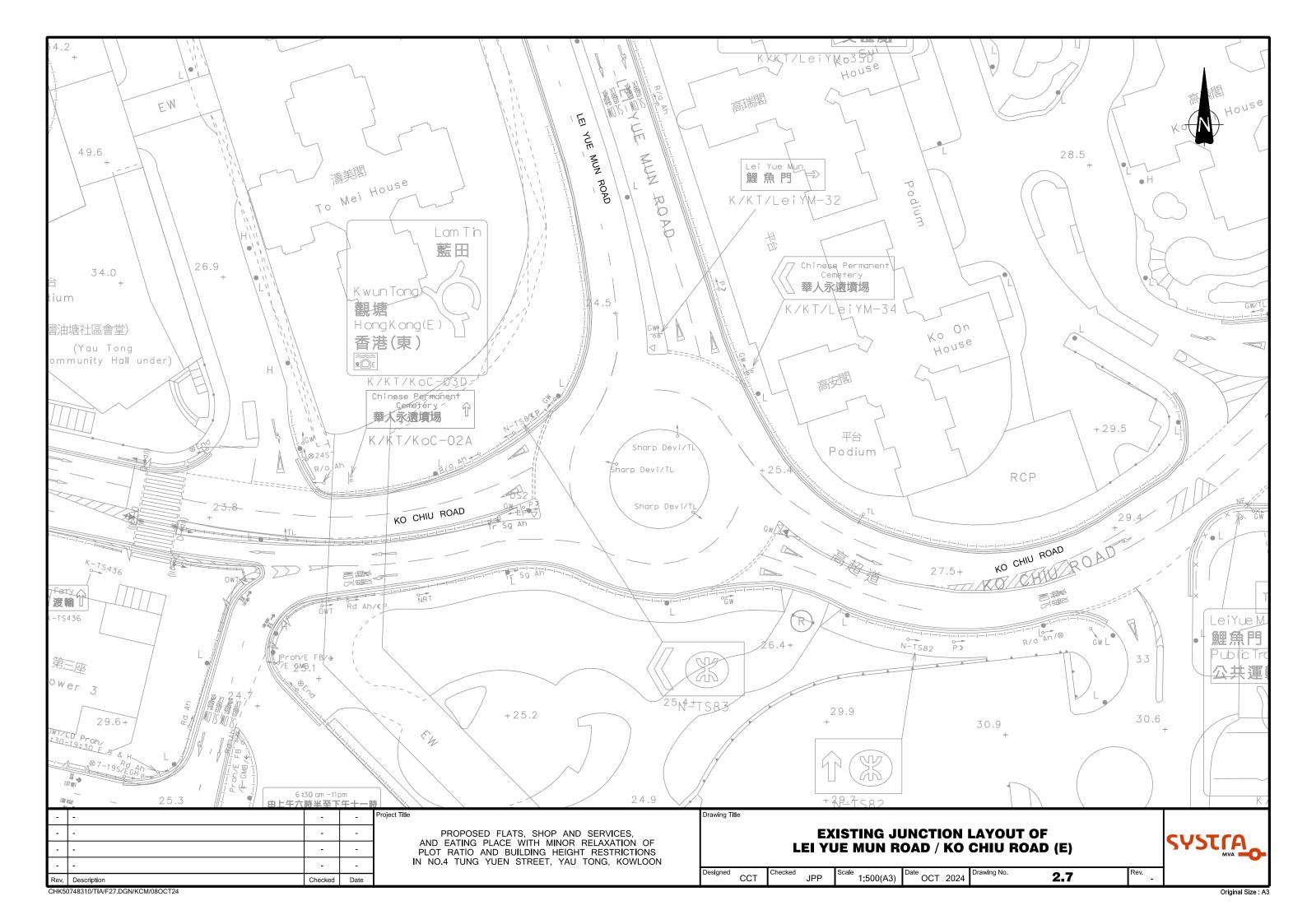

Table 2.1Identified Key Local Junctions

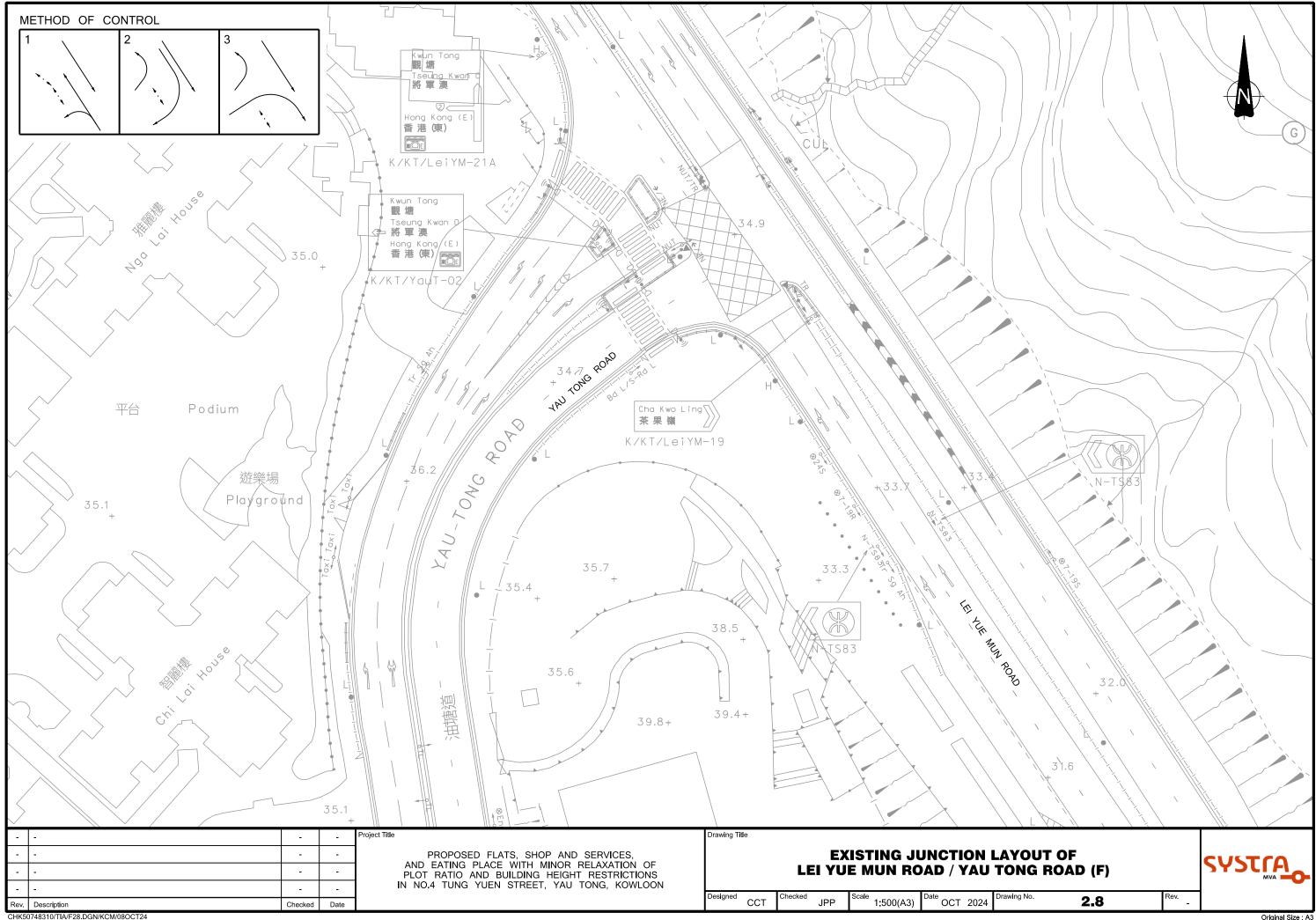

Remarks:

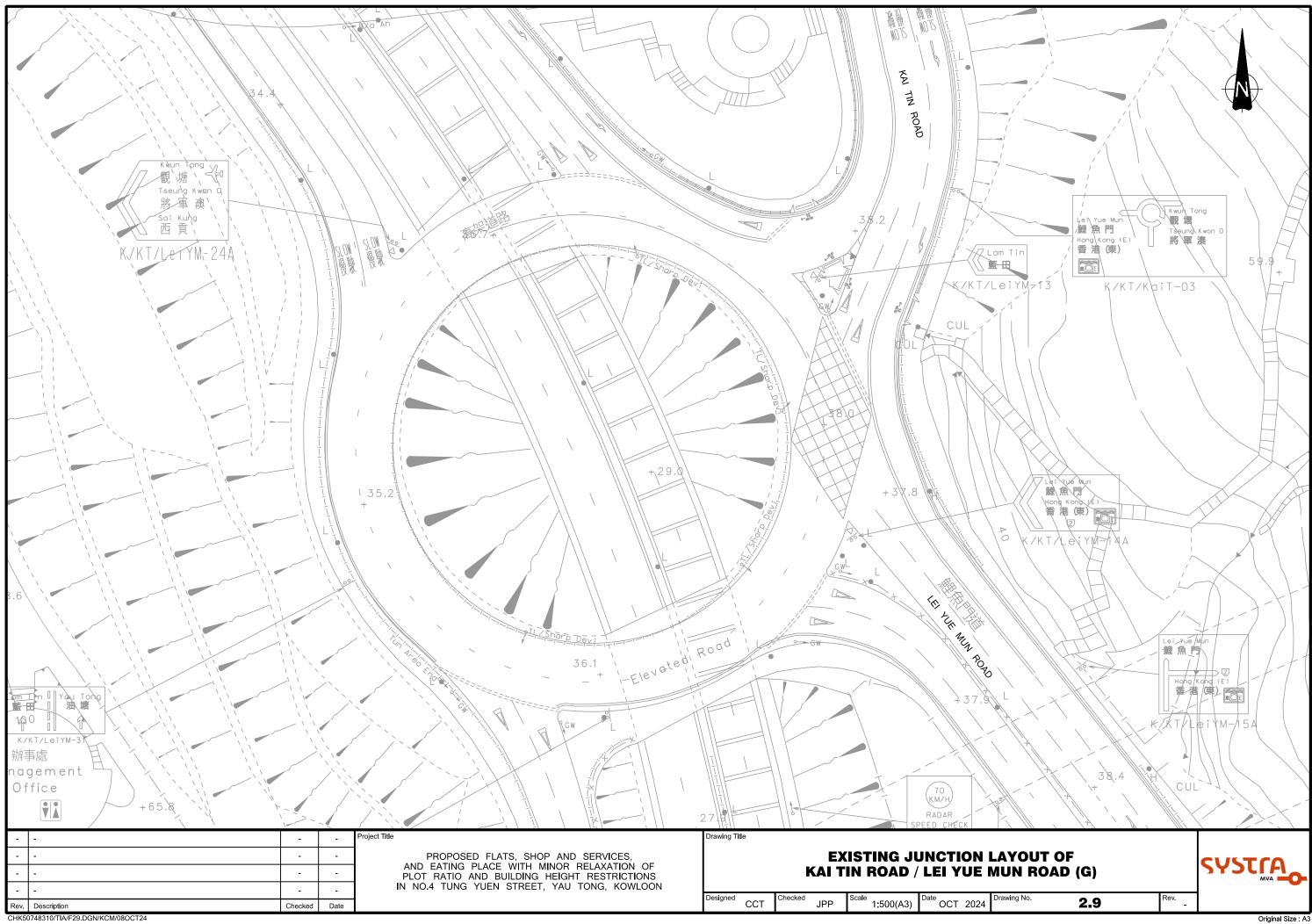
(1) Refer to Drawing 2.2.

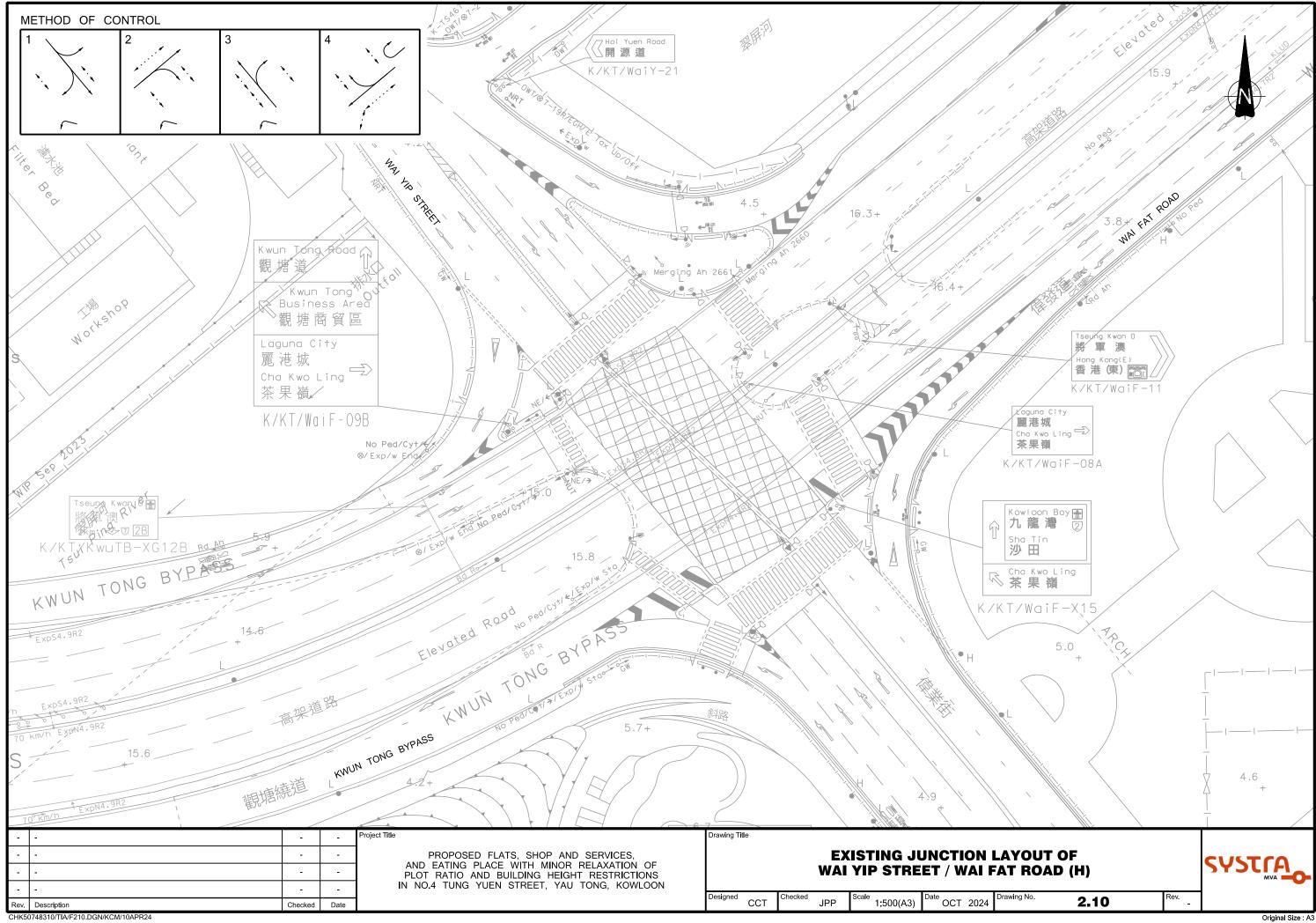

- 2.3.2 In order to establish the current peak hour traffic condition in the area, traffic surveys in the form of manual classified count were conducted at the identified key local junctions during the morning and evening peak hours of a typical weekday.
- 2.3.3 The traffic surveys were arranged and conducted during morning peak hours between 07:30 09:30 and the evening peak hours between 17:00 19:00 on 9th and 10th of September 2024. The survey results reveal that the weekday morning and evening peak hour occur during 08:15 09:15 and 17:00 18:00 respectively. The observed peak hour traffic flows are summarised in **Drawing 2.16**.
- 2.3.4 Junction capacity assessments have been conducted to evaluate the current operational performance of the identified key local junctions. The assessments would be validated with the site observations, such as queue length, by applying appropriate site factors and adjustments accordingly in order to reflect the actual site conditions. The assessment results are summarised in **Table 2.2**. The junction calculation sheets are attached in **Appendix B**.

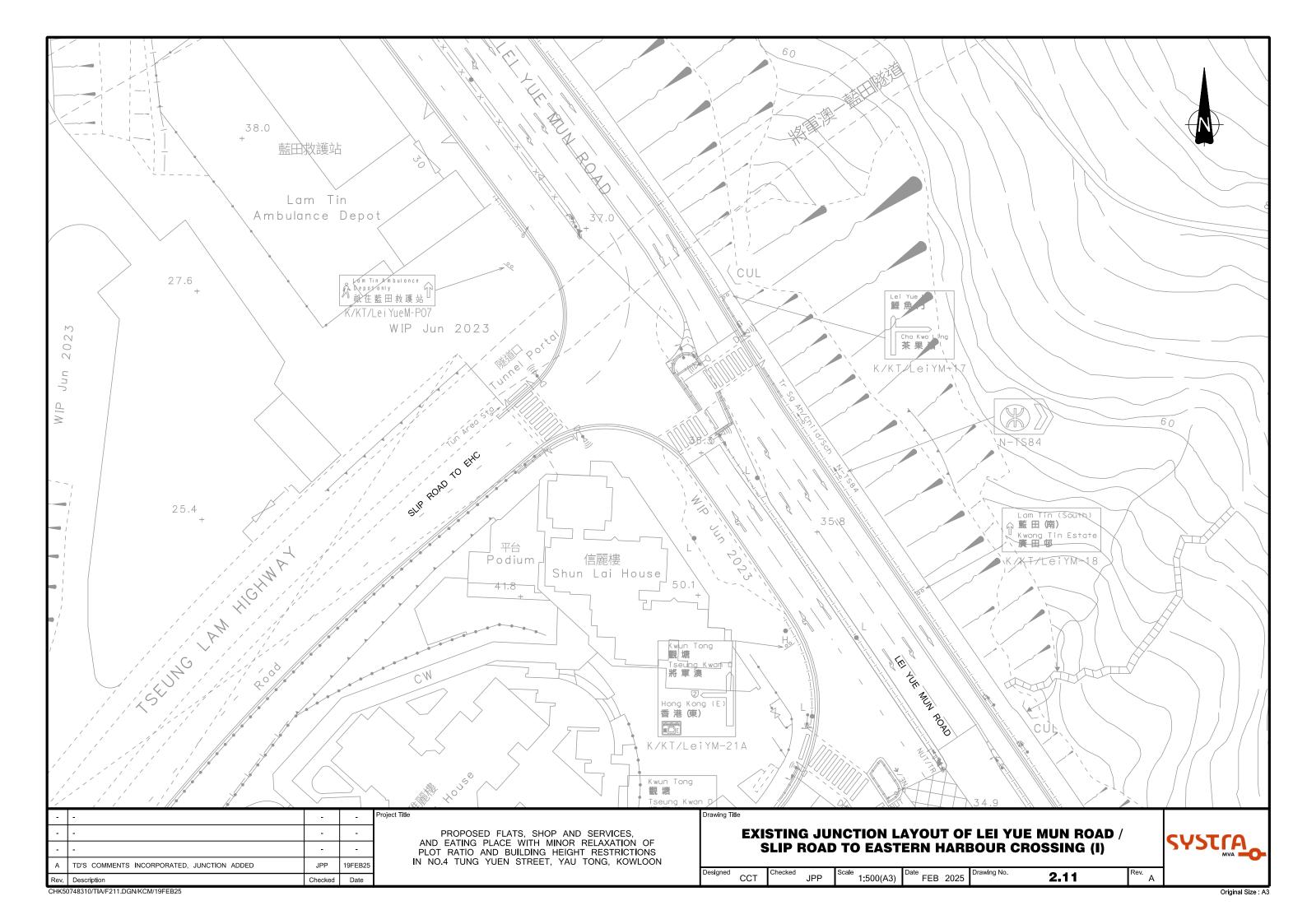

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon	CHK50748310	
Traffic Impact Assessment Report	19/06/2025	Page 3

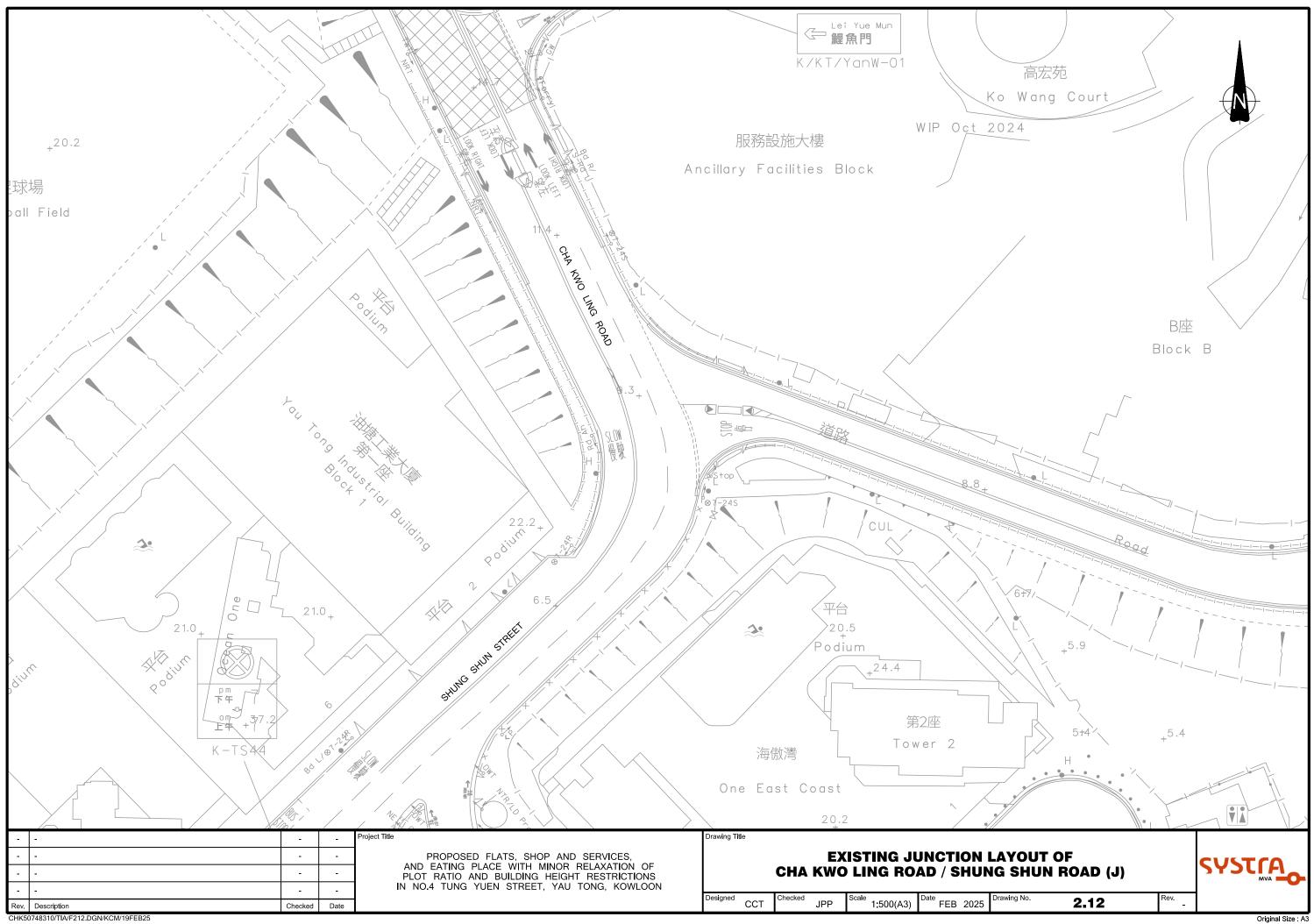


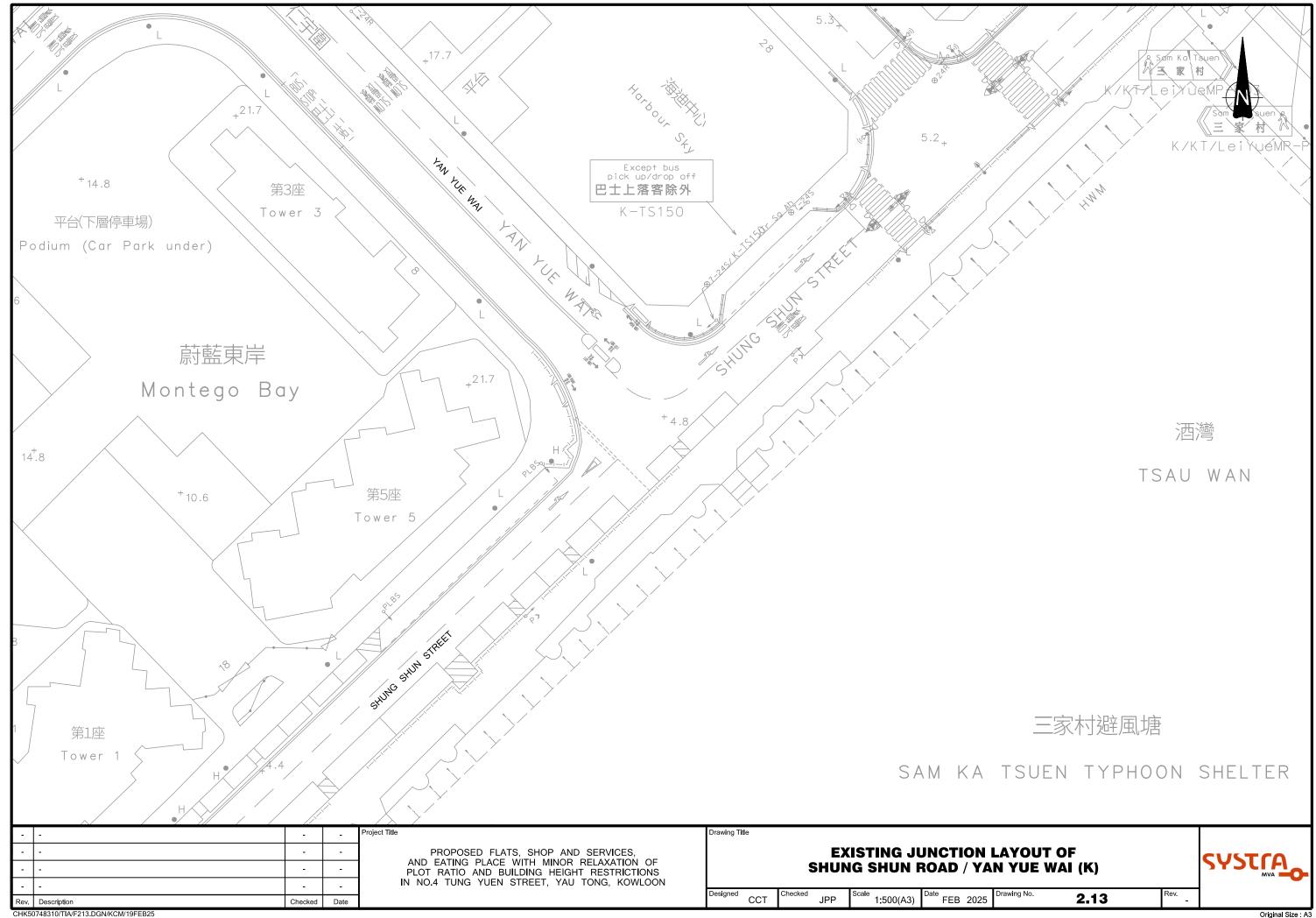




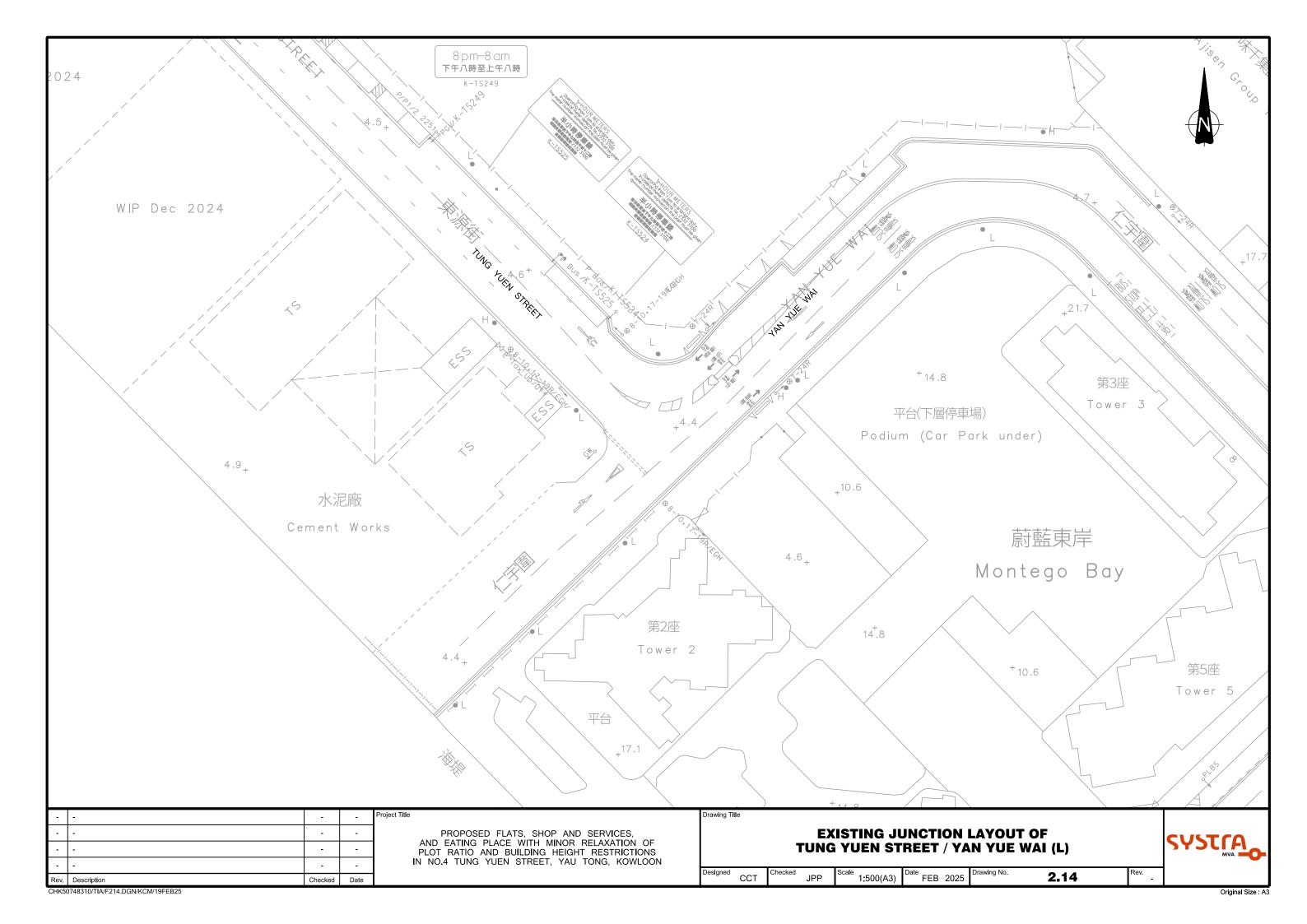


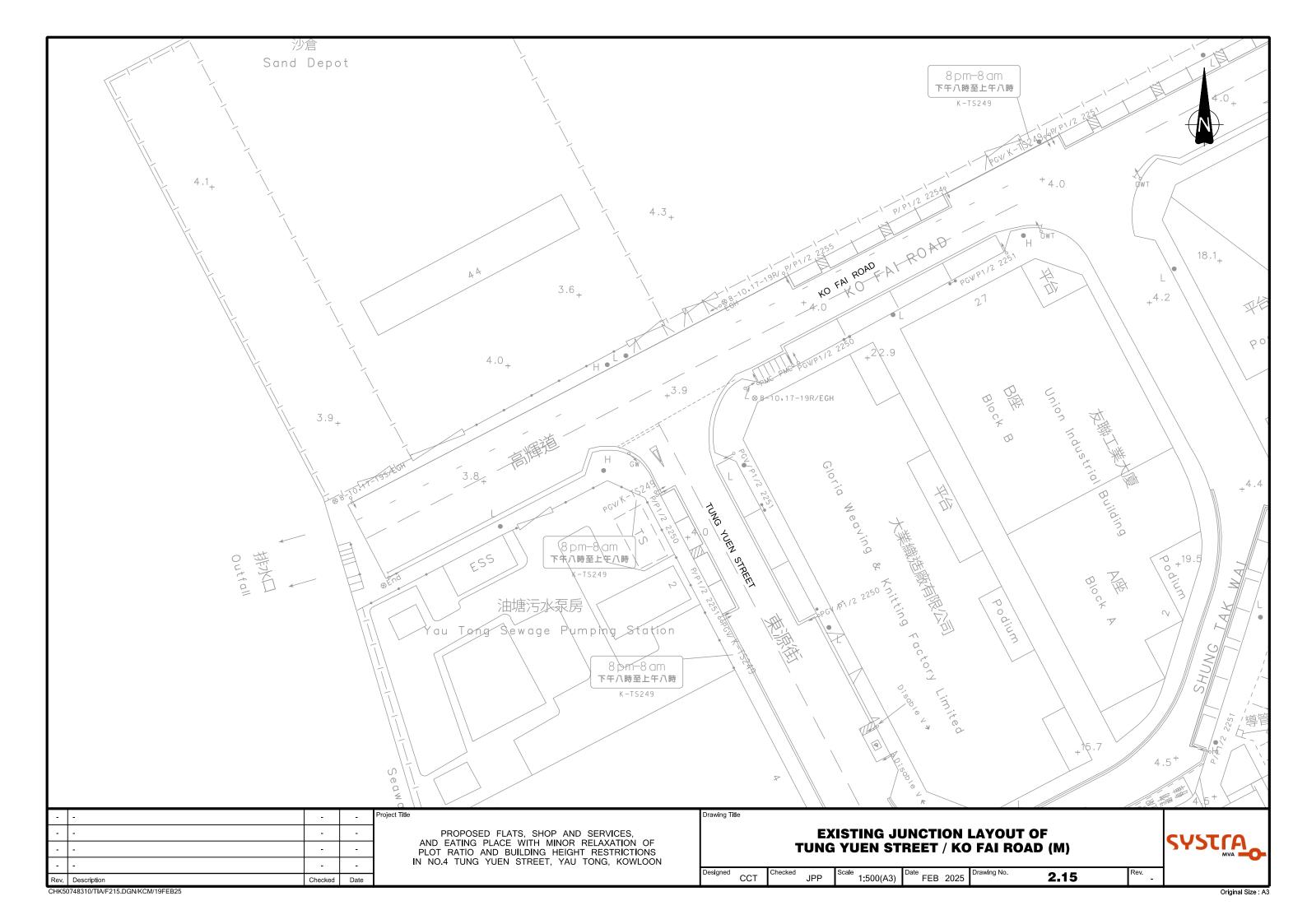

Original Size : A3

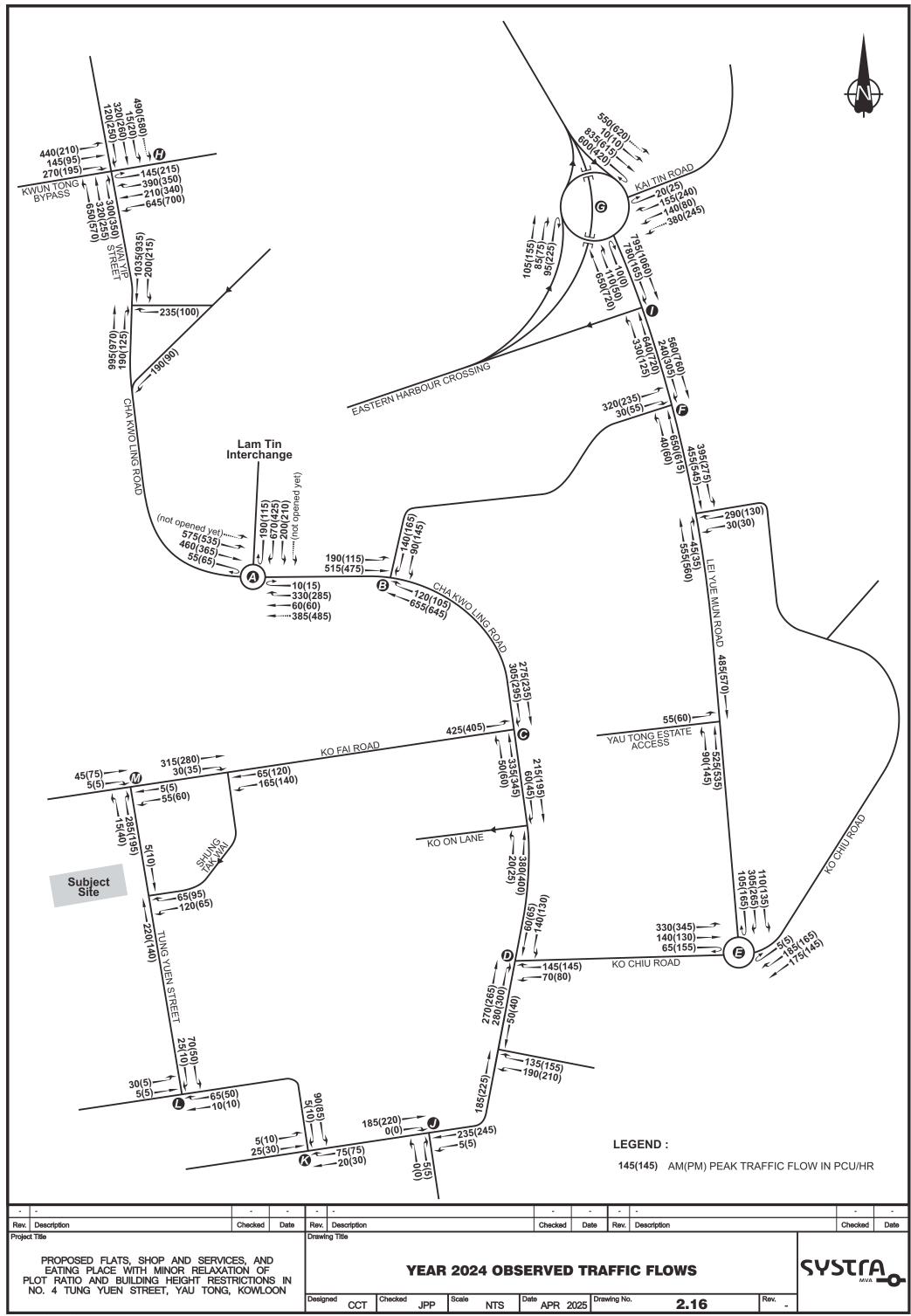



Origina	l Size	÷	A3

	()	
ring No.	20	




Original	Size	;	A3


YOUT OF YUE WAI (K)	B Rev.	
ISUEN T`	YPHOON	SHELTER
三家村教	壁風塘	

CHK50748310/TIA/F216.CDR/LLH/23APR25

Original Size : A3

Ref. (1)	lunction	RC	C/RFC ⁽²⁾
Kel/	Junction	AM Peak	PM Peak
А	Cha Kwo Ling Road / Lam Tin Interchange	0.43	0.33
В	Cha Kwo Ling Road / Yau Tong Road	>100%	>100%
С	Cha Kwo Ling Road / Ko Fai Road	0.67	0.64
D	Cha Kwo Ling Road / Ko Chiu Road	>100%	100%
E	Lei Yue Mun Road / Ko Chiu Road0.230.28		0.28
F	Lei Yue Mun Road / Yau Tong Road	>100%	>100%
G	Kai Tin Road / Lei Yue Mun Road	d / Lei Yue Mun Road 0.72 0.53	
Н	Wai Yip Street / Wai Fat Road	/ai Fat Road 64% 56%	
I	Lei Yue Mun Road / Slip Road to EHC	51%	>100%
J	Cha Kwo Ling Road / Shung Shun Road	0.10	0.12
К	Shung Shun Road / Yan Yue Wai	0.05	0.05
L	Tung Yuen Street / Yan Yue Wai	0.04	0.01
М	Tung Yuen Street / Ko Fai Road	0.65	0.50

Table 2.2	Current Junction Operational Performance
-----------	--

Remarks:

(1) Refer to Drawing 2.2.

(2) The operational performance of a signal junction is represented in Reserve Capacity (RC), which is defined as overloaded while the RC is less than 0%, The operational performance of a priority/roundabout is represented in Ratio to Flow Capacity (RFC), which is defined as overloaded if RFC over 1.00.

2.3.5 The assessment results indicate that all the identified key local junctions are operating within capacity during the weekday peak hour periods.

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with		
Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group	CHK50748310	
E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon		
Traffic Impact Assessment Report	19/06/2025	Page 4

5

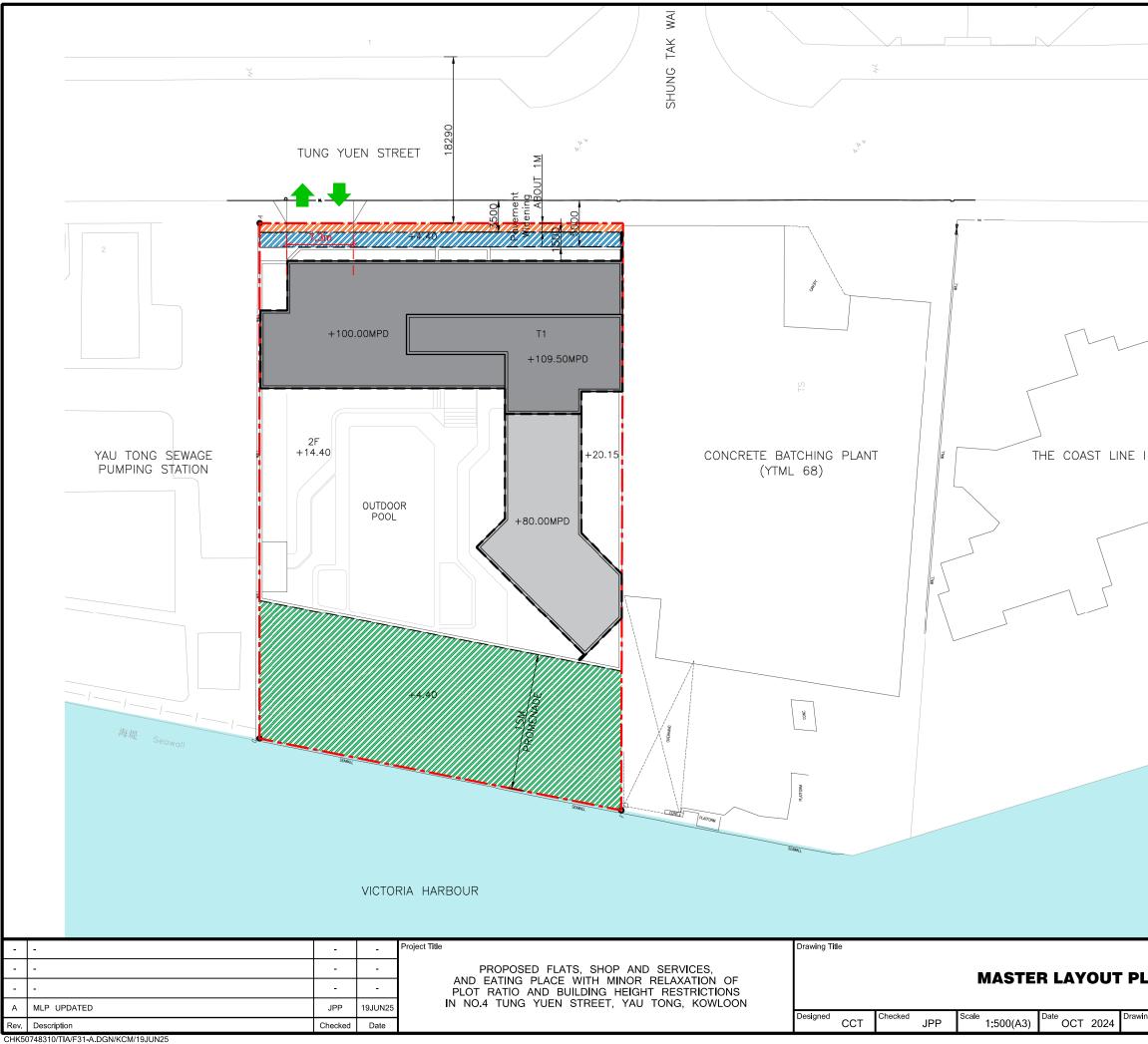
3. THE REDEVELOPMENT

3.1 Development Parameter

- 3.1.1 For the purpose of Section 16 planning application, No. 4 Tung Yuen Street is this TIA study area.
- 3.1.2 Currently, there is a 7-storey industrial building on the site, and the subject site has been rezoned as R(E). The current proposed development comprises a residential tower with clubhouse, shop and services, and eating place. The proposed main development parameters of the No. 4 Tung Yuen Street Redevelopment are summarised in **Table 3.1** and the master layout plan is shown in **Drawing 3.1**.

 Table 3.1
 Proposed Development Parameters

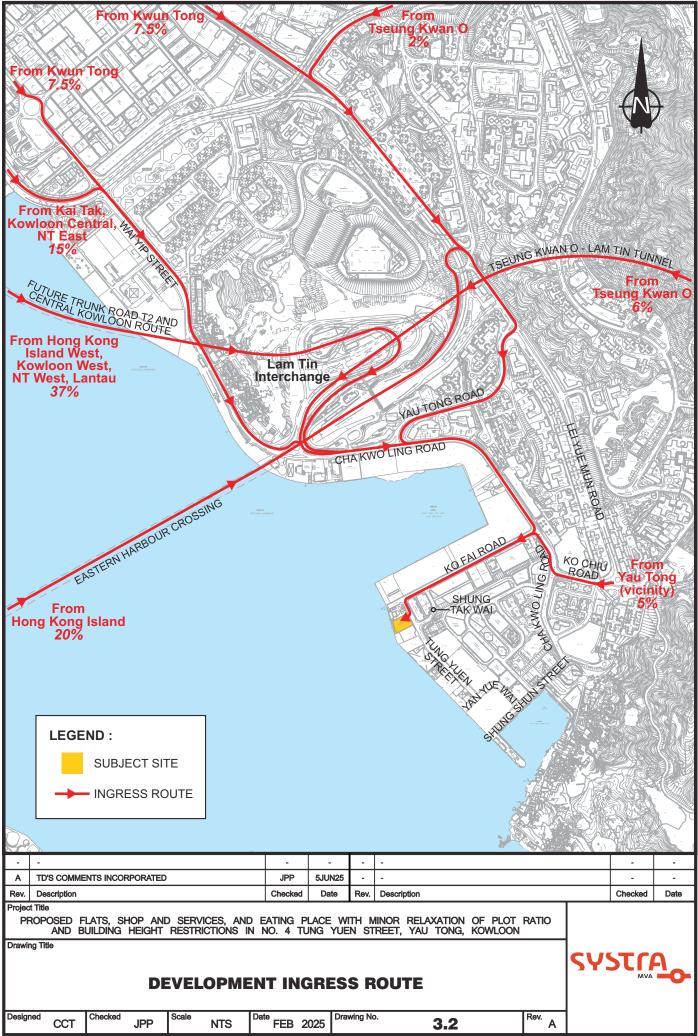
		Proposed MLP	
Site Area (m ²)		Approx. 2,419 m ²	
Total Plot Ratio		Not more than 6.9	
Total GFA (m²)		Not more than 16,691.1 m ²	
Key Development Para	meters		
Residential	no. of units	342	
Commercial – retail	GFA (m ²)	2,177.1	

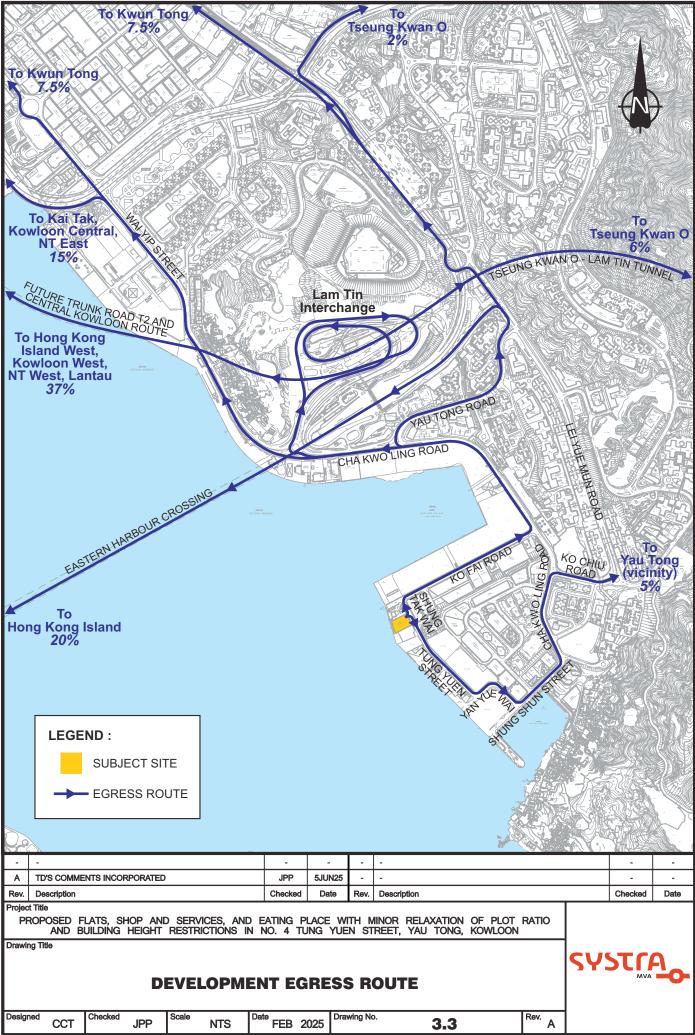

3.1.3 The No. 4 Tung Yuen Street Redevelopment would be completed in year 2032.

3.2 Internal Traffic Arrangement

Vehicular Access

- 3.2.1 Under the proposed MLP, there is one vehicular access of subject site and is located on Tung Yuen Street. The location of the vehicular accesses of No. 4 Tung Yuen Street Redevelopment under the proposed MLP are indicated in **Drawing 3.1**.
- 3.2.2 Vehicular Access to the Proposed Scheme is provided at Tung Yuen Street, which is a major road connecting to Ko Fai Road at its western end and to Shung Shun Street at its eastern end. The traffic going to/from Hong Kong Island would pass through Ko Fai Road priority junction / Cha Kwo Ling Road / Yau Tong Road / EHC or Ko Fai Road priority junction / Cha Kwo Ling Road / Yau Tong Road / EHC or Ko Fai Road priority junction / Cha Kwo Ling Road / Yau Tong Road / EHC or Ko Fai Road priority junction / Cha Kwo Ling Road / Lam Tin Interchange. For the traffic going to/from Tseung Kwan O, which would pass through Ko Fai Road priority junction / Cha Kwo Ling Road / Lam Tin Interchange or Ko Fai Road priority junction / Cha Kwo Ling Road / Lam Tin Interchange or Ko Fai Road priority junction / Cha Kwo Ling Road / Yau Tong Road / Lei Yue Mun Road. And the traffic can also pass through the Wai Yip street to Kwun Tong Action Area to/from Kwun Tong. The traffic ingress and egress routings of the site are illustrated in **Drawing Nos. 3.2 to 3.3**.


Section 16 Application for Proposed Flat, Shop and Services and Eating Place with Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon	СНК50748310	
Traffic Impact Assessment Report	19/06/2025	Page



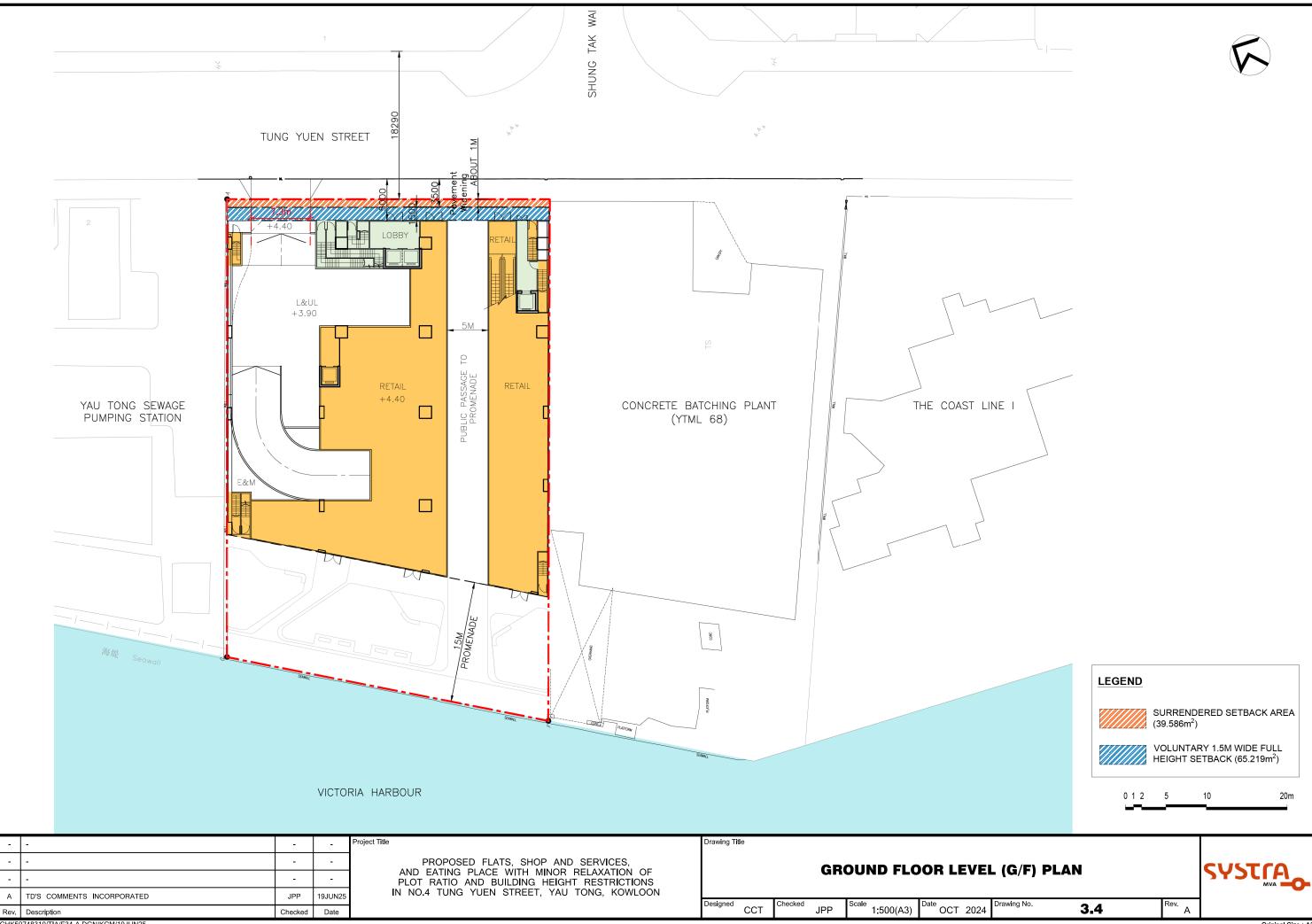
LEGEND SURRENDERED SETBACK AREA (39.586m²) VOLUNTARY 1.5M WIDE FULL VOLUNTARY 1.5M WIDE FULL VOLUNTARY WATERFRONT PROMENADE (NOT LESS THAN 608m²) +100mPD PORTION +80mPD PORTION 0 1 2 5 10 20m

PLAN			SYSTIA
wing No.	3.1	Rev. A	
			Original Size : A3

CHK50748310/TIA/F33-A.CDR/LLH/5JUN25

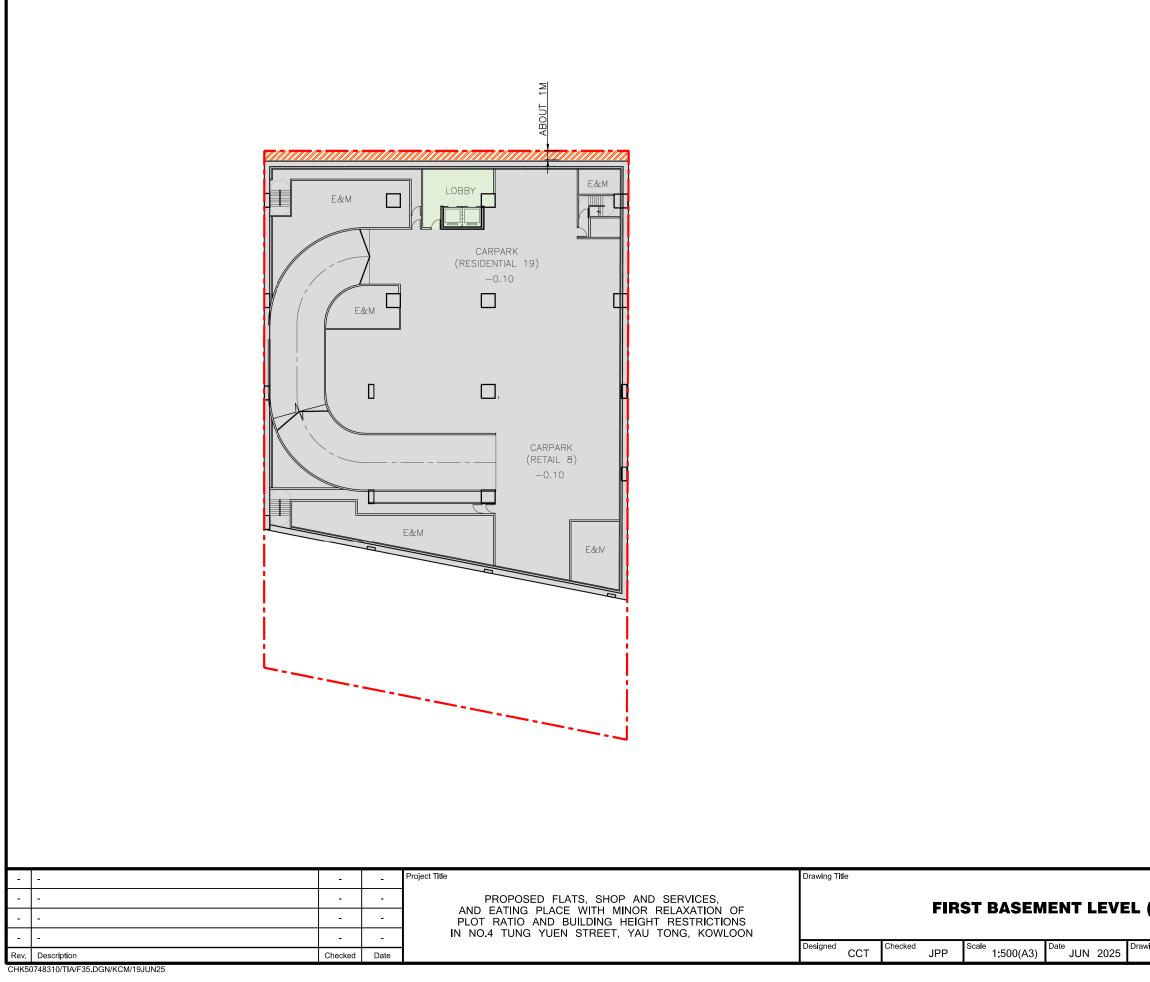
Internal Driveway

3.2.3 The vehicular accesses and the internal transport facilities are linked up by internal driveway. Car parking spaces are located at the two basement floors and the loading/unloading spaces are located at ground floor. There are total 66 private car parking spaces (included 2 accessible car parking spaces) and 3 loading/unloading bay (1 light goods vehicle space and 2 heavy goods vehicle spaces).


3.3 Internal Transport Facility

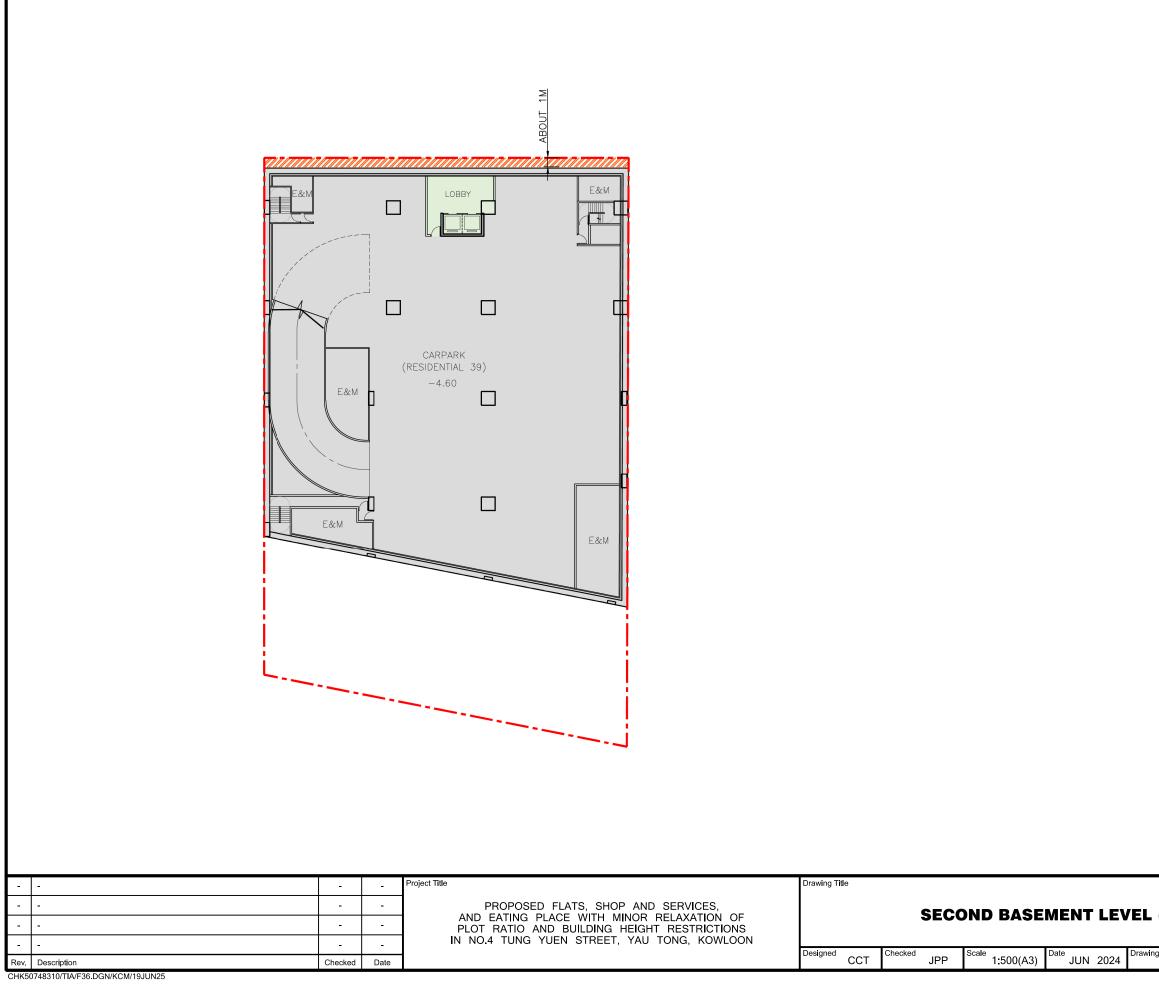
- 3.3.1 Provisions of internal transport facilities, including parking spaces, loading/unloading bays and etc., for No. 4 Tung Yuen Street Redevelopment are proposed in accordance with the relevant requirements stipulated in the latest Hong Kong Planning Standard Guideline (HKPSG). The location of loading/unloading bays, ramps and parking spaces area are shown in **Drawing 3.4** to **3.6**.
- 3.3.2 The proposed provisions have taken into consideration the factors of building function, residential flat mix and locality of No. 4 Tung Yuen Street Redevelopment. **Table 3.2** summarises the requirement and proposed provisions of internal transport facility of subject site.

Component	HKPSG Requirements ⁽¹⁾			ts ⁽¹⁾	Parameters	Provision Range	Proposed Provision			
Residential – 342	units									
Private Car Parking Space	GPS ⁽²⁾	R1 ⁽³⁾	R2 ⁽⁴⁾	R3 ⁽⁵⁾						
Flat Size (FS) ≤ 40m ²		0.5		P2-1 wh	139 units	9-16	9			
40m ² < FS ≤ 70m ²	1 space	1.2	1.0	R3=1,wh en 2.00< PR ≤	158 units	25-43	26			
70m ² < FS ≤ 100m ²	per 4-7	2.4		1.0	1.0	1.0	5.00; R3=0.90,	43 units	14-24	15
100m ² < FS ≤ 130m ²	units	4.1			when 5.00< PR	0 units	0	0		
130m ² < FS ≤ 160m ²		5.5	≤ 8.00	0 units	0	0				
FS >160m ²		7.0			2 units	2-3	3			
	Sub-total		Sub-total	342 units	50-86	<mark>53</mark>				
Visitor Parking Space	5 spaces per block		1 block	5	5					
				Sub-total	55-91	<mark>58</mark>				
Motorcycle Parking Space	1 space per 100-150 units		units	342 units	3-4	<mark>4</mark>				
Loading/Unload ing Bay		1 bay p	oer block		1 block	1	1 (HGV)			


 Table 3.2
 Proposed Internal Transport Facility

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with
Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group
E)" Zone at No. 4 Tung Yuen Street, Yau Tong, KowloonCHK50748310

CHK50748310/TIA/F34-A.DGN/KCM/19JUN25


Original Size : A3

	012	5	10	20m
(B1) PLAN			SY:	
wing No. 3.5		Rev.	-	
				Original Size · A3

SURRENDERED SETBACK AREA (39.586m²)

LEGEND

2) PLAN		SYST MA
3.6	Rev. -	
		Original Size : A

	Rev.	SYS	
012	5	10	20m
SURRENDERED SETBACK AREA (39.586m ²)			

LEGEND

Component	HKPSG Requir	Parameters	Provision Range	Proposed Provision			
Commercial – reta	Commercial – retail – 2,177m ²						
Private Car Parking Space	1 space per 150-300m ² GFA		2,177.1m ²	8-15	8		
Motorcycle Parking Space	5%-10% of total car	parking spaces	8-15 spaces	1-2	<mark>2</mark>		
Loading/Unload ing Bay	1 bay per 800-1,200m² GFA		2,177.1m ²	2-3	2 (1 for HGV and 1 for LGV)		
Total :	Total :						
	Car Pa	rking Space			<mark>66</mark>		
	TPDM Volume 6, Chapter 8.5:						
	Total No. of Car	Required	55-91	2			
	Parking Space in	Space for					
	Lot	Disabilities			2		
Reserved Space	1-50	1			(Included in		
for Disabilities	51-150	2	spaces	spaces 2			
	151-250	3			66 spaces)		
	251-350	4					
	351-450	5					
	Above 450 6						
	<mark>6</mark>						
	3						
	Loading/Unloading Bay						
	(2 for HGVs and 1 for						
	LGV)						

Remarks:

- (1) Provision requirements are based on the latest HKPSG Chapter 8, Section 7, unless specified otherwise.
- (2) GPS refers as Global Parking Standard.
- (3) R1 is the Demand Adjustment Ratio, subject to the corresponding unit size.
- (4) R2 is the Accessibility Adjustment Ratio, subject to the location of application site. Ratio of 1 is applied in this case, as the application site is not within the 500m-radius catchment of the nearest rail station.
- (5) R3 is the Domestic Plot Ratio.
- 3.3.3 **Table 3.2** suggests that the No. 4 Tung Yuen Street Redevelopment would provide 66 car parking spaces, in which 2 parking spaces would be reserved for disabilities. Besides, 6 motorcycle parking spaces and 3 loading/unloading bays (2 loading/unloading bays for HGVs and 1 loading/unloading bay for LGV) would be provided as ancillary transport facilities.

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon	CHK50748310	
Traffic Impact Assessment Report	19/06/2025	Page

4. TRAFFIC FORECASTS

4.1 Forecasting Assumptions and Methodology

<u>Design Year</u>

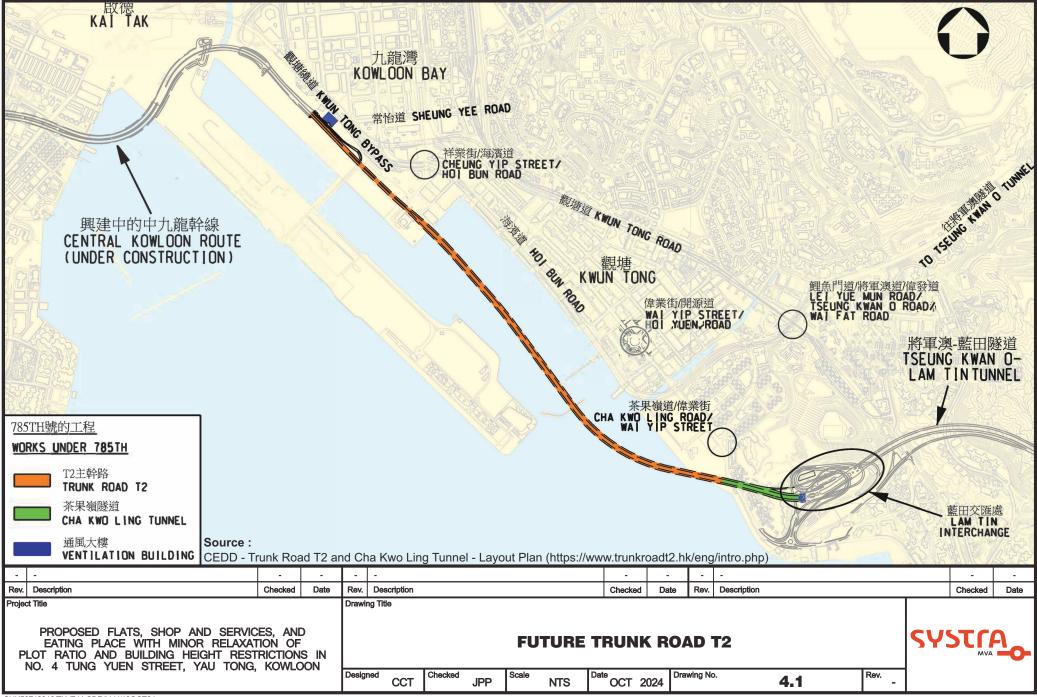
4.1.1 The tentative full occupation year of No. 4 Tung Yuen Street Redevelopment is year 2032. The design year of 2035, three years after full occupation, is therefore adopted in this study for forecasting and assessment purposes.

Future Road Network

- 4.1.2 Review of the Hong Kong Government planning documents reveals the one planned strategic highway structure in East Kowloon Trunk Road T2 in Kai Tak, which would affect the traffic circulation of Yau Tong area.
- 4.1.3 Trunk Road T2 is a dual two-lane trunk road of approximately 3 km long connecting Central Kowloon Route (CKR) leading to Western Harbour Crossing (WHC) on the West, and TKO-LTT leading to the Cross Bay Link on the East. Trunk Road T2 runs along South East Kowloon connecting CKR at its west and TKO-LTT at its east.
- 4.1.4 The major function of Trunk Road T2 is to relieve the internal traffic loading of East Kowloon. Trunk Road T2, together with CKR and TKO-LTT will form the Route 6 alignment in the strategic road network, providing an east-west express link across Kowloon to relief the existing heavily utilised road network in the Central and East Kowloon areas. Together with CKR, the tentative commissioning year of Trunk Road T2 is 2026.
- 4.1.5 The latest future planned Trunk Road T2 alignment is shown in **Drawing 4.1**.

<u>Traffic Growth Rate</u>

4.1.6 To estimate the year 2035 reference traffic flows in the local road network, an appropriate growth factor was identified for the area. The derivation of the growth rate is determined with reference to population data, historical growth trends and area planning data, which are summarised below.


Population Data (From The Census and Statistics Department (C&SD)

4.1.7 According to the Census and Statistics Department (C&SD), the Hong Kong resident population will increase to 8.19 million in 2046, and the average growth rate from years 2024 to 2046 is +0.38%. The Hong Kong Resident Population between Year 2024 and Year 2046 are summarised in Table 4.1.

Table 4.1	Hong Kong Resident Population between Year 2024 and Year 2046
-----------	---

Tuble 4.1	Thong Kong Kestaent Top	
	Year	Hong Kong Resident Population
	2024	7,526,800
	2030	7,777,100
	2032	7,862,100
	2035	7,987,900
	2040	8,137,300

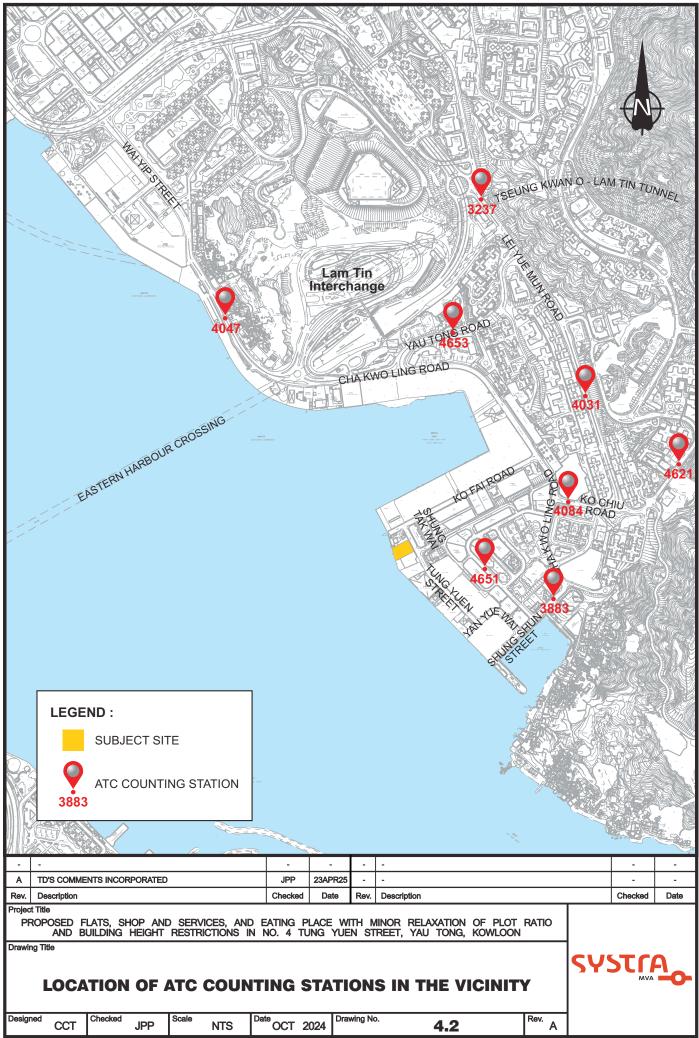
Section 16 Application for Proposed Flat, Shop and Services and Eating Place with Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group	CHK50748310	
E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon		
Traffic Impact Assessment Report	19/06/2025	Page 8

Year	Hong Kong Resident Population
2045	8,190,700
2046	8,190,400
Annual Growth Rate (p.a.) – 2046/2024	+0.38%

Historical Growth Trends

4.1.8 Reference has also been made to the historic records extracted in the latest Annual Traffic Census (ATC) published by Transport Department, the Average Annual Daily Traffic (AADT) of the nearby count station between Year 2019 and Year 2023 have been taken into account to establish the historical growth trend, the findings are summarised in **Table 4.2** and location of total 7 count stations are indicated in **Drawing 4.2**.

Table 4.2	AADT of nearby ATC Traffic Counts between Years 2019 to 2023
-----------	--


Road	Stn No.	Annual Average Daily Traffic (AADT)				Growth Rate (p.a.)	
	NO.	2019	2020	2021	2022	2023	2023/ 2019
Sze Shan St (Cha Kwo Ling Rd - Shung Shun St)	4651	1,270	1,260	1,500	1,500	1,630	+6.44%
Shung Shun Street & Yan Wing Street (Ko Chiu Road - Sam Ka Tsuen Ferry Pier)	3883	11,400*	10,670*	11,900	11,000	11,610	+0.46%
Ko Chiu Road (Cha Kwo Ling Road - Lei Yue Mun Road)	4084	12,170*	11,390*	11,880*	13,120	13,580	+2.78%
Ko Chiu Road (Lei Yue Mun Road - Lei Yue Mun Road)	4621	8,390	8,690	9,390	8,590	9,180	+2.28%
Lei Yue Mun Road (Ko Chiu Road - Ko Chiu Road)	4031	20,860*	19,530*	20,360*	20,290	20,260	-0.73%
Yau Tong Road (Lei Yue Mun Road - Cha Kwo Ling Road)	4653	6,830	7,010	8,170	7,440	7,820	+3.44%
Lei Yue Mun Rd (Ko Chiu Rd - Kai Tin Rd)	3237	36,970	34,600	36,080	34,380	39,660	+1.77%
Total		97,890	93,150	99,280	96,320	103,740	+1.46%

Note: (*) Estimated by Growth Factor.

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon

CHK50748310

19/06/2025

4.1.9 As suggested in **Table 4.2** above, the average annual growth rate of the AADT of the nearby count stations from Year 2019 to 2023 is +1.46% per annum.

Planning Data (From Working Group on Population Distribution Projections (WGPD)

4.1.10 Based on the projections of population distribution from Working Group on Population Distribution Projections (WGPD), the population from 2021 to 2031 for Kwun Tong District has been projected. The average annual growth rate from years 2023 to 2031 is illustrated in Table 4.3.

Table 4.5	able 4.5 Projected Population of Kwull rong District, 2021-2051						
	Year	Population					
	2021	673,200					
	2022	669,000					
	2023	670,800					
	2024	668,500					
	2025	675,400					
	2026	682,500					
	2027	682,700					
	2028	681,800					
	2029	693,100					
	2030	685,400					
	2031	690,700					
Gro	wth Rate (p.a.) – 2031/2023	+0.37%					

 Table 4.3
 Projected Population of Kwun Tong District, 2021-2031

4.1.11 In order to ensure the robust forecast scenario, the annual growth rate of +1.46% per annum derived from AADT of the nearby count stations from Year 2019 to 2023 is adopted, to produce the year 2035 traffic forecasts from the 2024 observed traffic flows.

Nearby Planned Developments

- 4.1.12 Large portion of Yau Tong industrial area is currently zoned into "CDA", "R(E)" and "C" uses in the latest Outline Zoning Plan (OZP) and a number of residential developments are being committed in the recent years. The substantial change of land use would have significant impact to the current local traffic pattern in the future year.
- 4.1.13 The planned and committed developments in Yau Tong area, as listed in **Table 4.4**, which would have traffic contribution to the road network in the vicinity, have been considered in the traffic forecast for the year 2035. The peak hour traffic trips of each developments are also summarised in **Table 4.4**.

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with		
Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group	CHK50748310	
E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon		
Traffic Impact Assessment Report	19/06/2025	Page 10

			Peak H	Peak Hour Traffic Trip (pcu/hr)			
Ref.	Development	Туре	AM	AM Peak		Peak	
			Gen	Att	Gen	Att	
1.	5 and 8 Tung Yuen Street, and adjoining Government Land ("CDA(1) Zone")	 Private Residential: 903 units ⁽¹⁾ 	37	12	14	24	
2.	Yau Tong Inland Lot s 4B and 9, Yau Tong Marine Lot 57 and adjoining Government Land, Tung Yuen Street ("CDA(3) Zone")	 Private Residential: 1,393 units ⁽¹⁾ 	57	19	21	38	
3.	Lei Yue Mun Estate Phase 4	 Public Housing: 2,021 units ⁽³⁾ GIC ⁽³⁾ 	97	75	57	70	
4.	New Kowloon Inland Lot No. 6593 at Ko Chiu Road	 Private: 634 units ⁽⁴⁾ Retail: 5,520m² GFA ⁽⁴⁾ 	57	39	35	42	
5.	New Kowloon Inland Lot No. 6602 at Ko Chiu Road (Yau Tong Ventilation Building Redevelopment)	 Private Residential: 748 units ⁽⁴⁾ 	53	31	21	27	
6.	Public Housing Development at Pik Wan Road	 Public Housing: 3,208 units ⁽⁴⁾ GIC ⁽⁴⁾ 	214	151	110	143	
7.	28 Sze Shan Street	 Private Residential: 92 units ⁽¹⁾ Retail: 2,061m² GFA ⁽¹⁾ 	24	15	15	20	
8.	Ex-Cha Kwo Ling Kaolin Mine Site (Phase 2 Development)	 Public Housing: 2,250 units ⁽⁵⁾ Primary School: 30 class ⁽⁶⁾ 	112	88	71	82	
9.	Various Lots and Adjoining Government Land at Yau Tong Bay, Yau Tong, Kowloon (Yau Tong Bay Development)	 Private Residential: 7,078 units ⁽¹⁾ Retail: 8,290m² GFA ⁽¹⁾ Hotel: 733 ⁽¹⁾ Kindergarten and GIC 	445	261	246	353	
10.	Redevelopment of Yau Tong Industrial Building Block 4	 Private Residential: 676 units ⁽⁴⁾ Commercial: 3,871.7m² GFA ⁽¹⁾ Day Care Centre for the Elderly ⁽⁴⁾ 	41	23	27	36	
11.	Redevelopment of Olympic Godown	 Private Residential 483 units ⁽¹⁾ Commercial: 3,587m² GFA ⁽¹⁾ 	28	14	18	25	
12.	Gloria Weaving & Knitting Factory Site	 Transitional Housing 224 units ⁽⁴⁾ 	9	7	5	6	

Table 4.4Estimated Trip Generations of Nearby Planned Developments

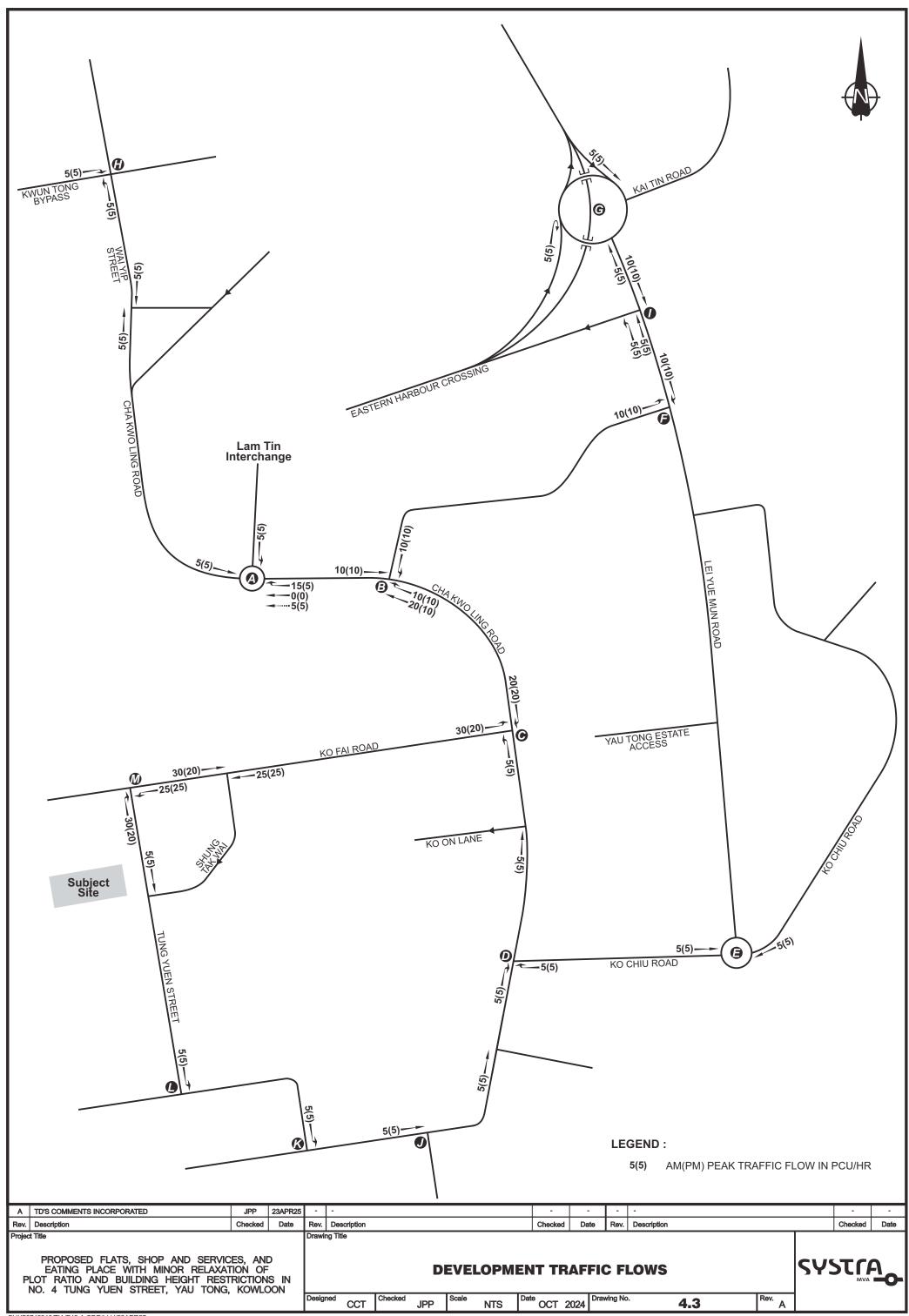
Section 16 Application for Proposed Flat, Shop and Services and Eating Place with Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon

	Development		Peak Hour Traffic Trip (pcu/hr)			
Ref.		Туре	AM Peak		PM Peak	
			Gen	Att	Gen	Att
13.	Public Housing Development at Cha Kwo Ling Village	 Public Housing: 4,500 units⁽¹⁾ Retail: 29,097.05 m² GFA⁽⁴⁾ 	97	90	140	166
14.	Proposed Commercial Development at Yau Tong Marine Lots 73 and 74 in Yau Tong Bay	 Retail: 2,560m² GFA⁽¹⁾ Office: 48,040 m² GFA⁽¹⁾ 	86	123	82	65
15.	Kwun Tong Action Area	 Retail: 17,000m² GFA⁽⁴⁾ Office: 62,600 m² GFA⁽⁴⁾ Cultural/Institutional uses: 1,700m² PTI: Approx. 7,050 m² 	147	198	152	134
16.	18 Tung Yuen Street	 Private Residential: 224 units ⁽¹⁾ 	35	14	13	19

Remarks:

(1) As extracted from the latest approved planning application.

- (2) As extracted from the Sale Brochure.
- (3) As extracted from the Planning Brief of Lei Yue Mun Estate Phase 4 published by Hong Kong Housing Authority
- (4) As extracted from newspaper articles / online information
- (5) As extracted from Public Housing Development at Ex-Cha Kwo Ling Kaolin Mine Site
- (6) As extracted from the Land Supply Initiatives, Paper No. 03/2017 from Task Force on Land Supply, Development Bureau and Planning Review on Development of Ex-Cha Kwo Ling Kaolin Mine Site Final Report (Quotation Ref.: PLNQ21/2011)


4.2 Forecasting Scenarios

4.2.1 The derived peak hour traffic trips of the subject site would be assigned onto the local road network in accordance with the observed traffic circulation pattern and the future planned road network described in **Section 4.1**. The distributions of the peak hour development traffic trips are shown in **Drawing 4.3**.

The Redevelopment Traffic Trips

4.2.2 The development peak hour traffic trips of the No. 4 Tung Yuen Street are estimated in accordance with the appropriate trip rates extracted from the latest T.P.D.M. Volume 1 Chapter 3 published by Transport Department with respect to the development parameters summarised in **Table 3.1**. The adopted trip rates and the estimated development traffic trips are summarised in **Table 4.5**.

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with		
Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group	CHK50748310	
E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon		
Traffic Impact Assessment Report	19/06/2025	Page 12

CHK50748310/TIA/F43-A.CDR/LLH/23APR25

Original Size : A3

	Peak Hour Traffic Trip (pcu/hr)				
	AM Peak PM Peak				
	Generation	Attraction	Generation	Attraction	
Subject Site					
Residential					
Average unit size (m ²)	43 m ²				
Trip rates (pcu/hr/flat) ⁽¹⁾	0.0718	0.0425	0.0286	0.037	
No. of units		34	12		
Trips (pcu/hr)	25	15	10	13	
Commercial – retail					
Trip rates (pcu/100m ² /hr) ⁽²⁾	0.2296	0.2434	0.3100	0.3563	
GFA (m ²)	2,177.1 m ²				
Trips (pcu/hr)	5	6	7	8	
Total	30	21	17	21	

Table 4.5	Estimated No. 4 Tung Yuen Street Redevelopment Traffic Trips

Remarks:

(1) Mean values of residential trip rates for the unit size of 60m² are adopted as the average unit size of the proposed scheme is around 43m².

(2) Mean values of trip rates are adopted.

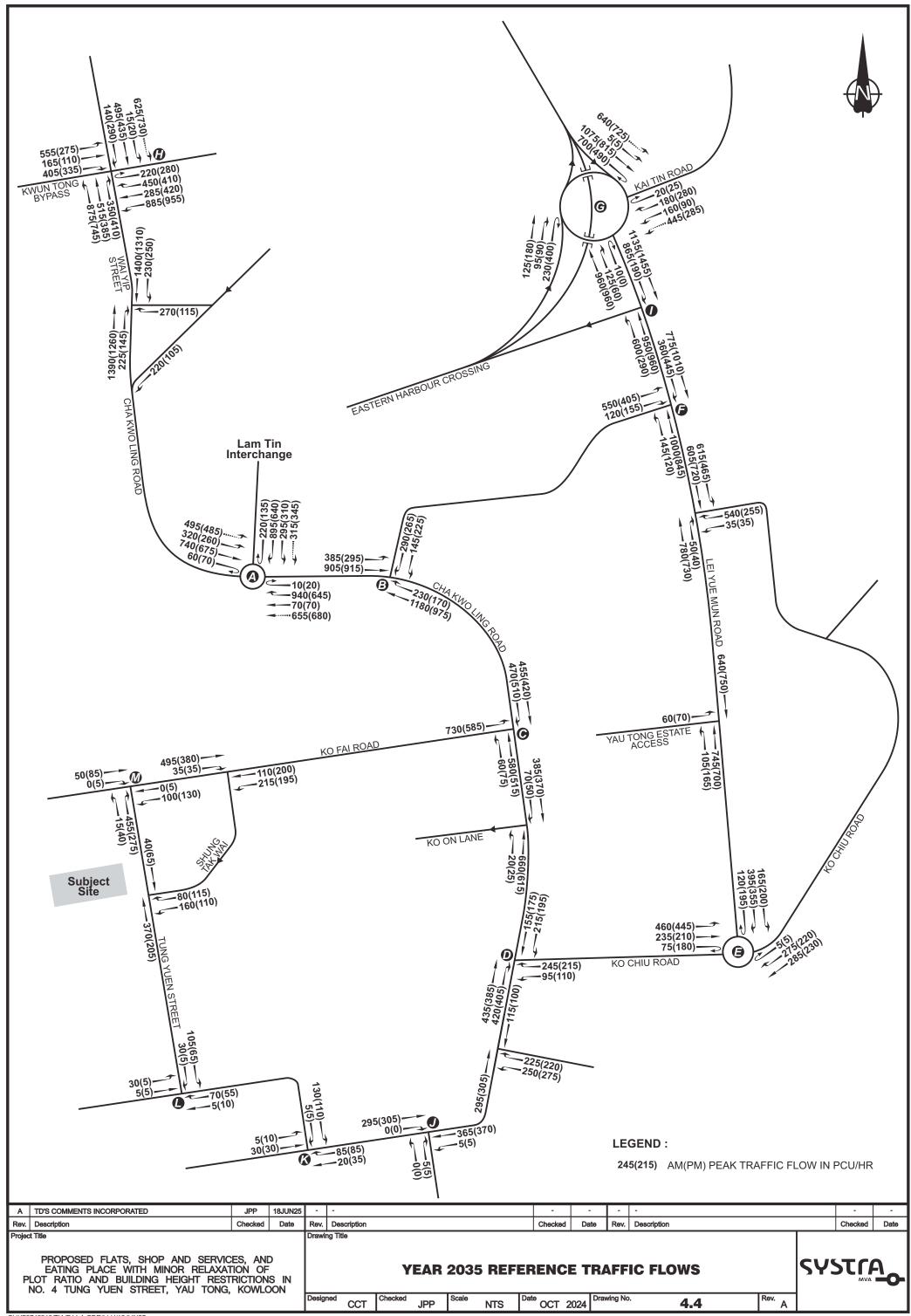
(3) Nominal traffic trips are adopted.

- 4.2.3 A two-way traffic trip generated by No. 4 Tung Yuen Street Redevelopment in 2035 will be 51 pcu/hr and 38 pcu/hr in the AM and PM peak respectively.
- 4.2.4 Currently, the industrial building on the site generate a two-way vehicles traffic trip of 8 pcu/hr and 9 pcu/hr during the AM and PM peak respectively. The current (2024) and future (2035) traffic trip of this site are summarised in **Table 4.6**.

Table 4.0 The Generations of Current Land-use and Proposed Future Land-use	Table 4.6	Trip Generations of Current Land-use and Proposed Future Land-use
--	-----------	---

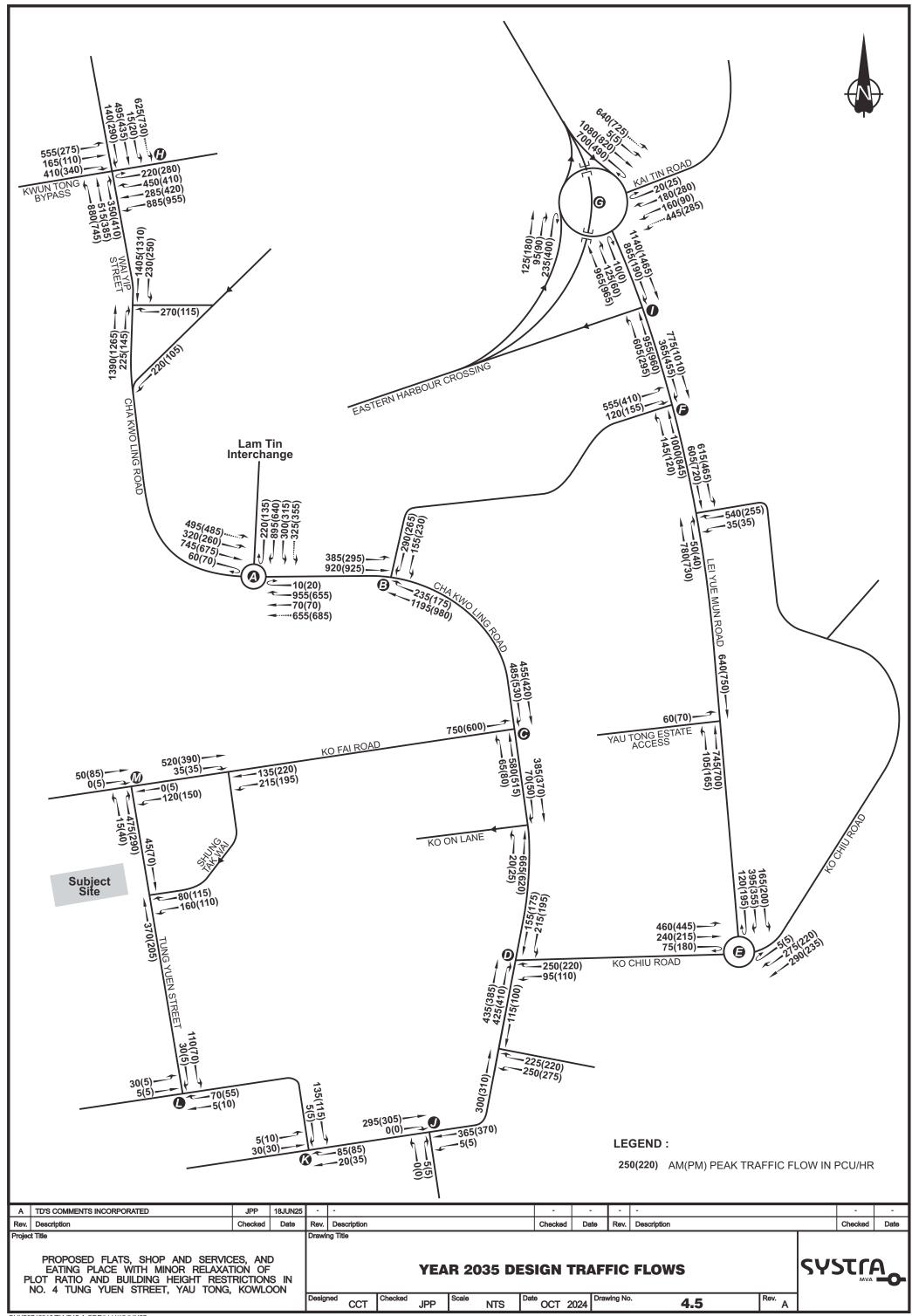
	fic Trip (pcu/hr)				
	AM Peak PM Peak				
	Generation	Attraction	Generation	Attraction	
Observed 2024	6	2	5	4	
Forecasts 2035	30	21	17	21	
Net Difference (Forecasts - Observed)	+24	+19	+12	+17	

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with			
Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group	CHK50748310		
E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon			
Traffic Impact Assessment Report	19/06/2025	Page	13



- 4.2.5 The result in **Table 4.6** reveals that the net difference is rather small in both peak hours. The proposed development will have little impact on the traffic of the vicinity in the peak hours.
- 4.2.6 The annual traffic growth rate and the nearby planned developments as discussed in Section4.1 would be considered to produce the year 2035 background traffic flows during the typical weekday morning and evening peak hours of the local road network.
- 4.2.7 The traffic trips of No. 4 Tung Yuen Street Redevelopment would be superimposed onto the background traffic flows to produce the anticipated year 2035 peak hour traffic flows for reference and design scenarios.
- 4.2.8 Based on an annual growth rate of +1.46% p.a. from 2024 to 2035, and the traffic generation of committed and potential developments is shown in **Table 4.4**. The reference traffic flows and design traffic flows in year 2035 as shown in **Drawing 4.4** and **Drawing 4.5** respectively.

2035 Reference Flows = 2024 Observed Traffic Flows + 2024-2035 background traffic growth + Committed Development Traffic


2035 Design Flows = 2024 Observed Traffic Flows + 2024-2035 background traffic growth -2024 Application Site Traffic Flows + Proposed Development Traffic Flows

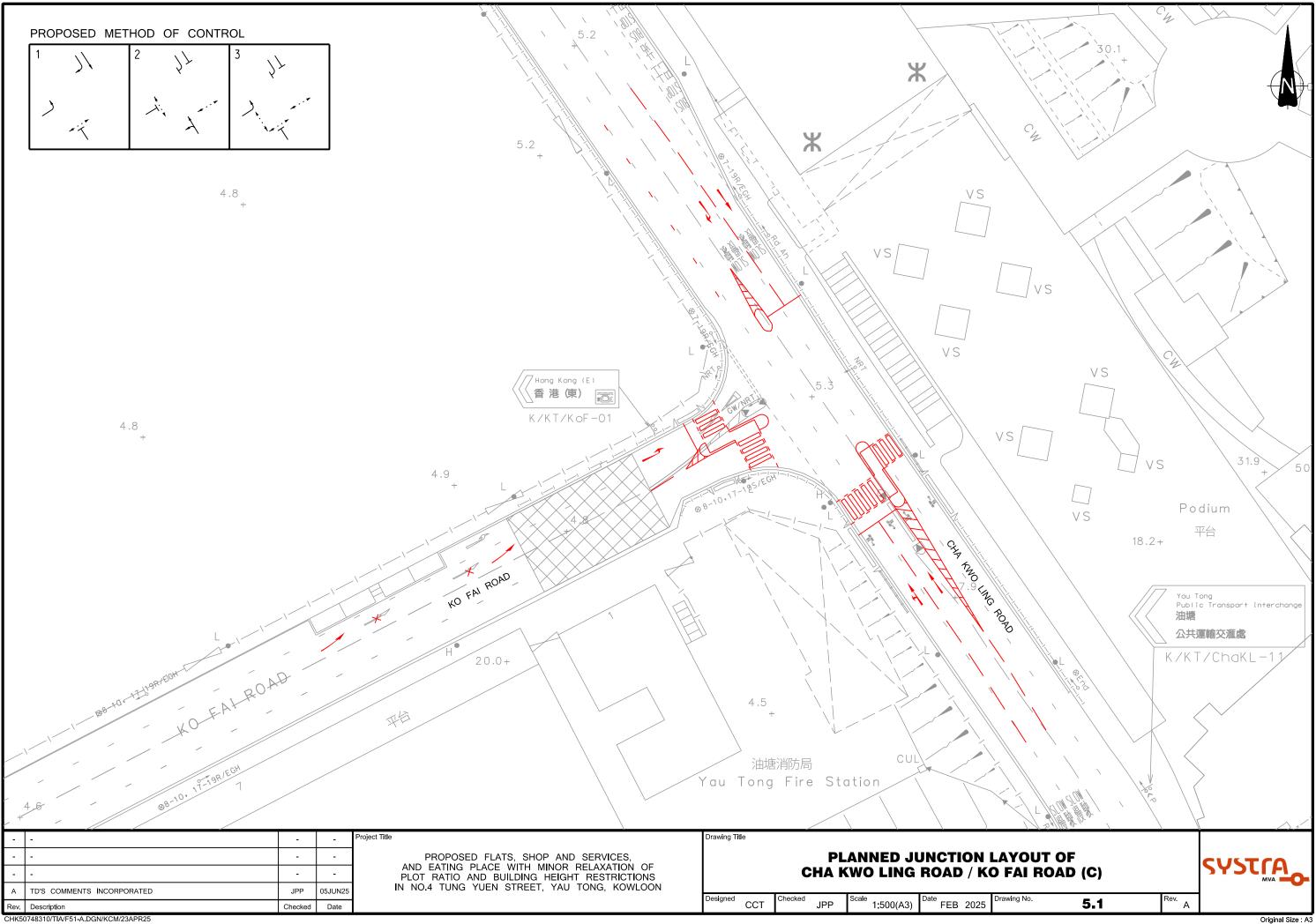
Section 16 Application for Proposed Flat, Shop and Services and Eating Place with		
Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group	CHK50748310	
E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon		
Traffic Impact Assessment Report	19/06/2025	Page 14

CHK50748310/TIA/F44-A.CDR/LLH/18JUN25

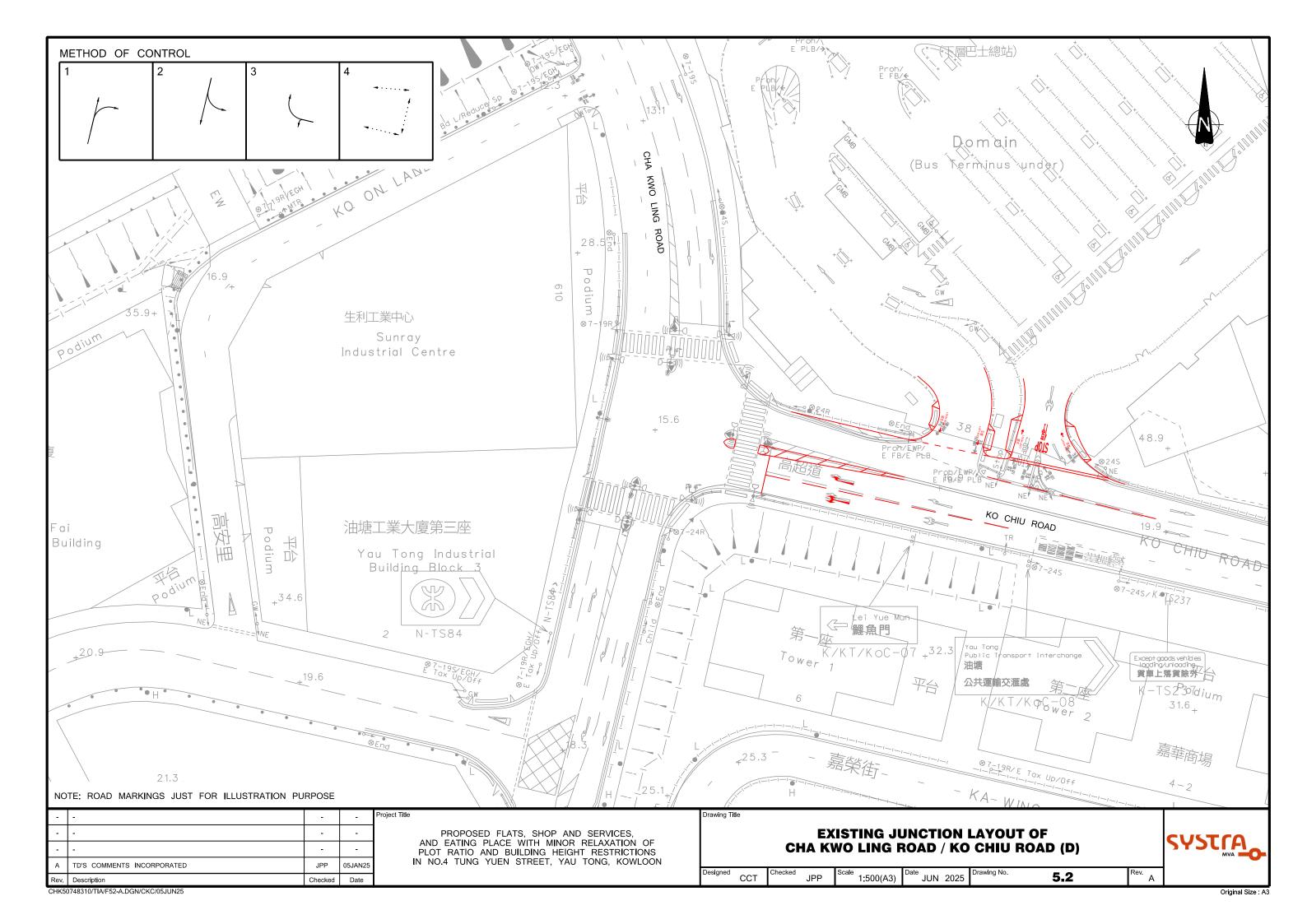
Original Size : A3

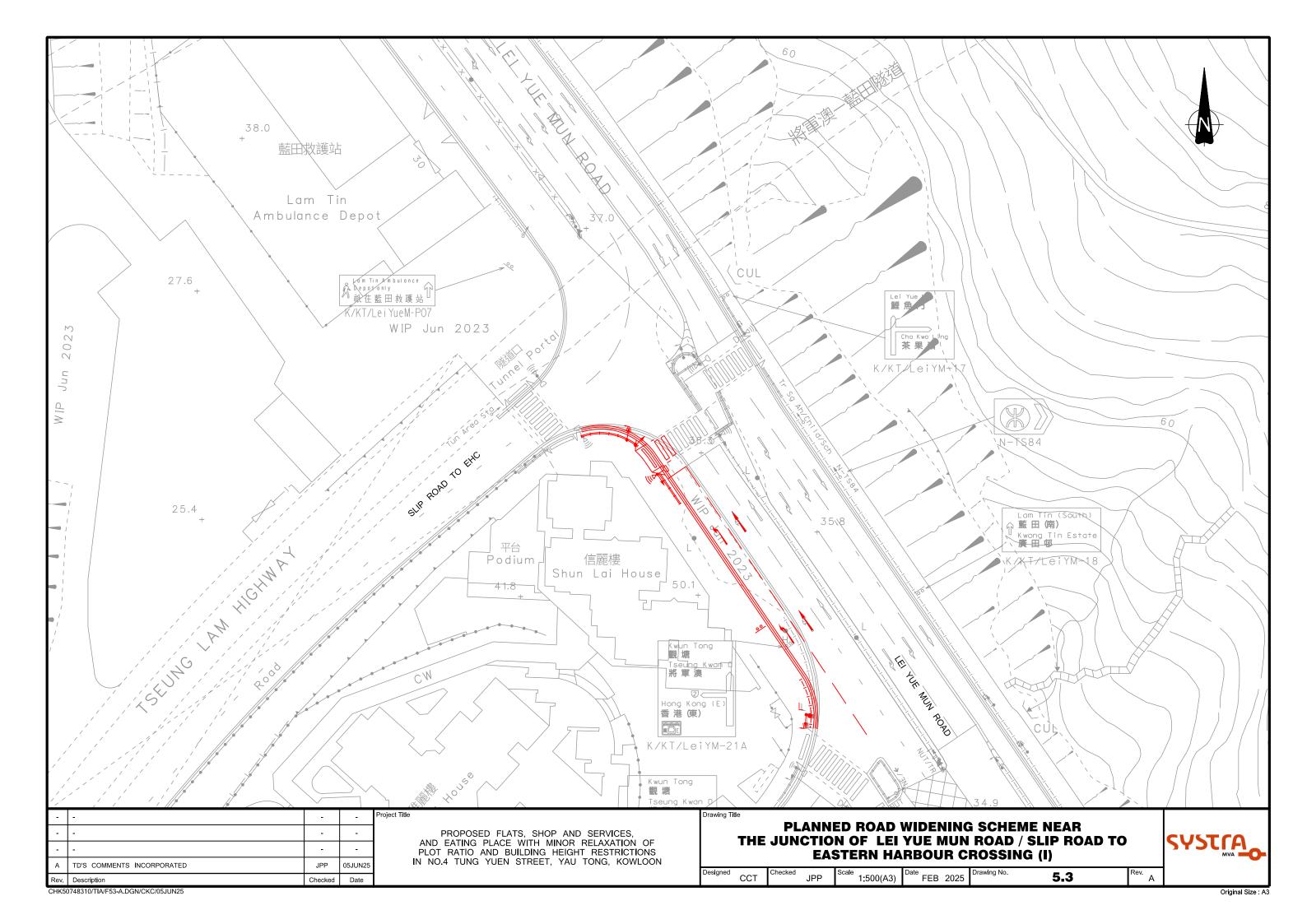
CHK50748310/TIA/F45-A.CDR/LLH/18JUN25

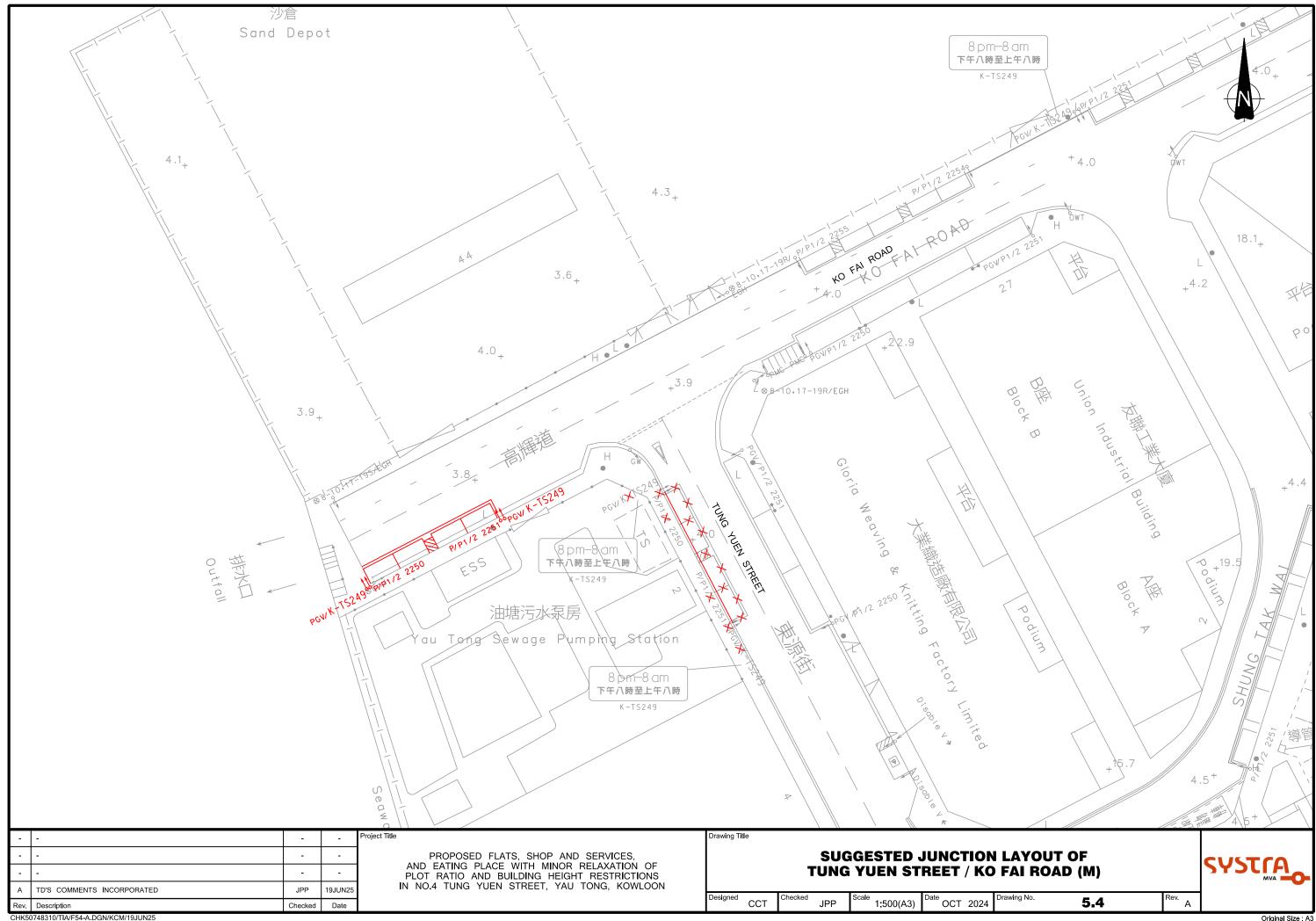
Original Size : A3



5. TRAFFIC IMPACT ASSESSMENT


5.1 Junction Operational Performance


- 5.1.1 The identified 13 key local junctions would be assessed in accordance with the anticipated year 2035 traffic flows for both reference and design scenarios in order to investigate the traffic impact of the proposed scheme with respect to the scenario without the subject development.
- 5.1.2 The J/O Cha Kwo Ling Road / Ko Fai Road (C) has been planned to be converted into a signalised junction under the previously approved Section 16 application of the Yau Tong Bay Comprehensive Development, the indicative planned junction layout is shown in **Drawing 5.1**.
- 5.1.3 The layout of J/O Cha Kwo Ling Road / Ko Chiu Road(D) has been modified according to the ongoing improvement works under the PWP Item No. B812CL. The indicative planned junction layout is shown in **Drawing 5.2**.
- 5.1.4 An additional traffic lane from Lei Yue Mun Road Northbound to Slip Road to EHC at J/O Lei Yue Mun Road / Slip Road to EHC (I) has been planned, as shown in **Drawing 5.3**.
- 5.1.5 For the J/O Tung Yuen Street / Ko Fai Road (M), the four current on-street parking spaces are proposed to be cancelled. The planned junction layout is shown in **Drawing 5.4**. And there is an ongoing sewage rising mains construction project along Ko Fai Road by the Drainage Services Department (PWP No. 4420DS), before which 4 on-street private car parking spaces were located west of the access of Yau Tong Sewage Pumping Station. The 4 spaces near the Northbound approach on Tung Yuen Street are believed to be relocated from Ko Fai Road due to the construction works. The project is expected to finish in mid-2026, so relocating these 4 spaces back to Ko Fai Road afterwards is reasonable, without lowering the capacity of Junction M.
- 5.1.6 The assessment results are summarised in **Table 5.1**. The junction calculation sheets are attached in **Appendix B**.


Section 16 Application for Proposed Flat, Shop and Services and Eating Place with Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon	CHK50748310		
Traffic Impact Assessment Report	19/06/2025	Page	15

Original Size : A3

Original Size : A3

		RC/RFC ⁽⁶⁾				
Ref. (1)	Junction	Refe	rence	Design		
		AM Peak	PM Peak	AM Peak	PM Peak	
Α	Cha Kwo Ling Road / Lam Tin Interchange	<mark>0.64</mark>	<mark>0.49</mark>	<mark>0.65</mark>	<mark>0.49</mark>	
В	Cha Kwo Ling Road / Yau Tong Road	<mark>18%</mark>	<mark>35%</mark>	<mark>16%</mark>	<mark>34%</mark>	
С	Cha Kwo Ling Road / Ko Fai Road ⁽²⁾	<mark>80%</mark>	<mark>79%</mark>	<mark>75%</mark>	<mark>74%</mark>	
D	Cha Kwo Ling Road / Ko Chiu Road ⁽³⁾	<mark>32%</mark>	<mark>40%</mark>	<mark>32%</mark>	<mark>39%</mark>	
E	Lei Yue Mun Road / Ko Chiu Road	<mark>0.36</mark>	<mark>0.39</mark>	<mark>0.36</mark>	<mark>0.39</mark>	
F	Lei Yue Mun Road / Yau Tong Road	<mark>84%</mark>	<mark>82%</mark>	<mark>84%</mark>	<mark>81%</mark>	
G	Kai Tin Road / Lei Yue Mun Road	<mark>0.94</mark>	<mark>0.71</mark>	<mark>0.94</mark>	<mark>0.71</mark>	
Н	Wai Yip Street / Wai Fat Road	<mark>17%</mark>	<mark>19%</mark>	<mark>16%</mark>	<mark>19%</mark>	
Ι	Lei Yue Mun Road / Slip Road to EHC ⁽⁴⁾	<mark>16%</mark>	<mark>107%</mark>	<mark>16%</mark>	<mark>106%</mark>	
J	Cha Kwo Ling Road / Shung Shun Road	<mark>0.16</mark>	<mark>0.17</mark>	<mark>0.16</mark>	<mark>0.17</mark>	
К	Shung Shun Road / Yan Yue Wai	<mark>0.07</mark>	<mark>0.06</mark>	<mark>0.07</mark>	<mark>0.06</mark>	
L	Tung Yuen Street / Yan Yue Wai	<mark>0.05</mark>	<mark>0.01</mark>	<mark>0.05</mark>	<mark>0.01</mark>	
М	Tung Yuen Street / Ko Fai Road ⁽⁵⁾	<mark>0.79</mark>	<mark>0.53</mark>	<mark>0.83</mark>	<mark>0.55</mark>	

Table 5.1	Junction Operational Performance in Year 2035
-----------	---

Remarks:

(1) Refer to **Drawing 2.2**;

(2) Junction Layout as shown in **Drawing 5.1**;

(3) Junction Layout as shown in **Drawing 5.2;**

(4) Junction Layout as shown in **Drawing 5.3**;

(5) Junction Layout as shown in **Drawing 5.4;**

(6) The operational performance of a signal junction is represented in Reserve Capacity (RC), which is defined as overloaded while the RC is less than 0%, The operational performance of a priority/roundabout is represented in Ratio to Flow Capacity (RFC), which is defined as overloaded if RFC over 1.00.

5.1.7 The results in **Table 5.1** indicate that the identified key junctions would operate within capacities with the Proposed Development in Year 2035, the operational performance of all key junctions would be similar for the reference and design scenarios in year 2035. Therefore, it is anticipated that the Proposed Development would not induce significant traffic impact to the surrounding road network.

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with			
Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group	CHK50748310		
E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon			
Traffic Impact Assessment Report	19/06/2025	Page	16

6. PUBLIC TRANSPORT ASSESSMENT

6.1 **Current Public Transport Services in the Vicinity**

Road-based public transport services, such as franchised buses and GMB are provided in the 6.1.1 vicinity of the proposed development. public transport occupancy surveys were conducted at Shung Tak Wai bus stop from 7:30-8:30 on 23th April 2025, to identify if there is surplus in the current public transport services. Details of the current services of franchised bus and GMB route and the survey results are listed in Table 6.1. Location of the public transport services in the vicinity are also shown in Drawing.6.1. And the pedestrian routes from subject site to nearby public transport facilities is shown in **Drawing. 6.2**.

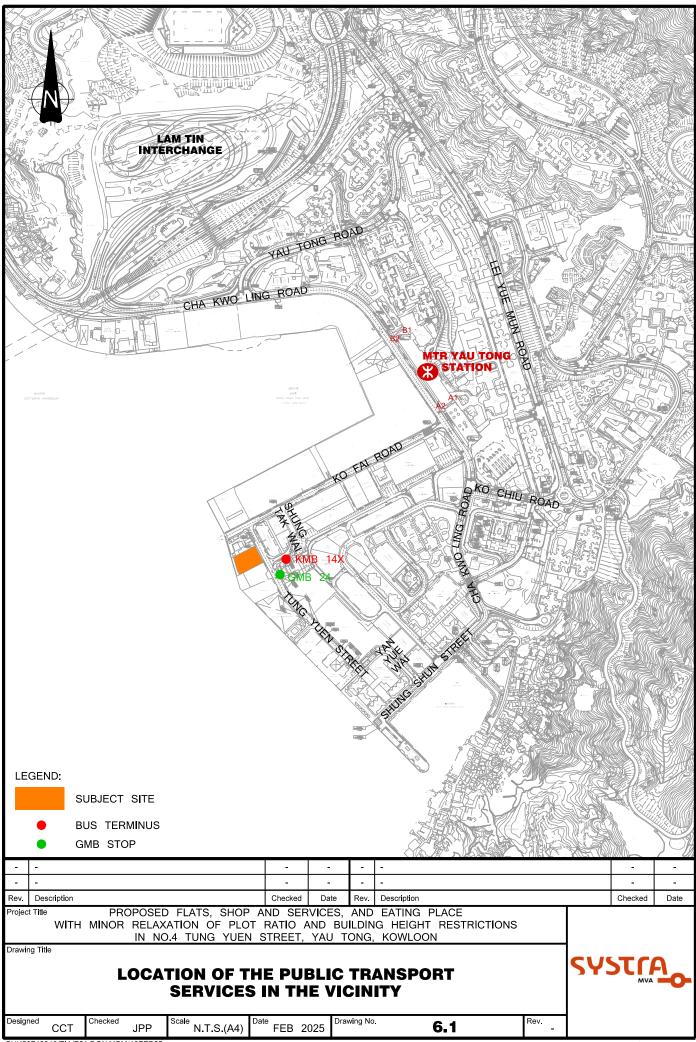
Table 6.1		Existing F	Road-based P	ublic Trans	port Services ir	n the Vicinit	y (Peak Hou	ır)	
Mode	Route No.	From	То	Observed Vehicular Trips per hour (A)	Passenger capacity per hour (B) ⁽¹⁾	Surveyed passengers on board arriving bus stop (C)	Total no. of Boarding Passengers (D)	Total no. of Alighting Passengers (E)	Surplus Capacity (B)–(C)– (D)+(E)
				To Tsim Sha	Tsui/Sam Ka	Tsuen/ Lam Tin			
Bus	14X	Shung Tak Wai	Tsim Sha Tsui	4	360	-	42	-	318
GMB	24	Lam Tin (Ping Tin PTI)	Sam Ka Tsuen Ferry/ Lam Tin (Ping Tin PTI)	6	96	24	2	0	70

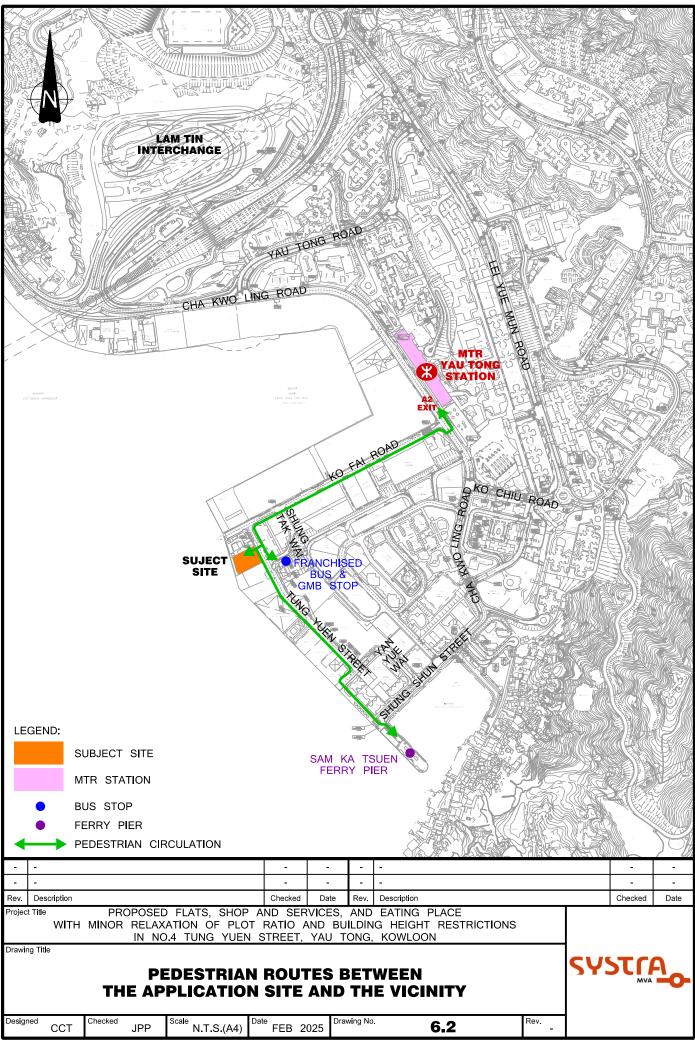
. . م ما ام s in the Misinity (Deals

Remarks:

Assume 16 passengers per GMB and 90 passengers per bus. (1)

6.2 Additional Traffic Demand from the Proposed Development and Other New **Residential Developments in the Vicinity**


To be consistent with the annual traffic growth rate from 2025 to 2035, a +1.46% p.a. growth 6.2.1 rate is applied to the 2025 surveyed passenger demand to estimate the 2035 reference demand for public transport. The detail of estimated passenger demand in design year 2035 are summarized in Table 6.2.


	Table 6.2 Road-based Public Transport Services in the Vicinity in Design Year 2035 (Peak Hour)								
Mode	Route No.	From	То	Observed Vehicular Trips per hour (A)	Passenger capacity per hour (B) ⁽¹⁾	Surveyed passengers on board arriving bus stop (F)=(C)*(1+G. F%) ¹⁰	Total no. of Boarding Passengers (G)=(D)*(1+ G.F%) ¹⁰	Total no. of Alighting Passengers (H)=(E)*(1+ G.F%) ¹⁰	Surplus Capacity (B)–(F)- (G)+(H)
				To Tsim Sha T	sui/Sam Ka Tsu	en/ Lam Tin			
Bus	14X	Shung Tak Wai	Tsim Sha Tsui	4	360	-	49	-	311
GMB	24	Lam Tin (Ping Tin PTI)	Sam Ka Tsuen Ferry/ Lam Tin (Ping Tin PTI)	6	96	28	3	0	65

Remarks:

Assume 16 passengers per GMB and 90 passengers per bus. (1)

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with		
Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group	CHK50748310	
E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon		
Traffic Impact Assessment Report	19/06/2025	Page 17

CHK50748310/TIA/F62.DGN/KCM/19FEB25

- 6.2.2 Furthermore, consideration should be given to public transportation demand arsing form nearby new developments that are expected to be occupied before the design year 2035. Three new developments has been identified in the vicinity, namely the Coast Line with 903 flats (the year of occupation starts in 2025), Yau Tong Bay Development with 7,078 flats, and Yau Tong Inland Lot s 4B and 9, Yau Tong Marine Lot 57 and adjoining Government Land, Tung Yuen Street ("CDA(3) Zone") with 1,393 flats. Since the year of occupation for the last two developments is still unknown for the public, the demand for road-based public transport is considered for the residents of The Coast Line and the proposed development.
- 6.2.3 Based on 2021 Population Census, the modal split of Kwun Tong District is shown in Table 6.3. As seen from the table below, the modal share of road-based public transport is about 30% for Bus, and 8% for Public Light Bus.

Table 6.3	Modal Share of Kwun Tong District

Mode	MTR	Bus	Public Light Bus	Private Car	Тахі	Others	Total
Modal Share	43%	30%	8%	3%	1%	15%	100%
Percentage							

- 6.2.4 Reference is also made to the 'Travel Characteristics Survey 2011 Report' as published by Transport Department to derive the estimated public transport demand due to the proposed development and other new developments.
- 6.2.5 The total trips generated from the proposed development and the new development are derived from development parameters and assumptions from the TCS report 2011. The calculation of total trips during peak hours is summarised in Table 6.4.

Table 6.4	Calculation of Total Trips from Proposed Development and New Development in the
Vicinity	,

Item	Proposed Development	New Development in the Vicinity
Nos. of units	342	<mark>903</mark>
Average household size	2.7 ppl/unit ⁽¹⁾	<mark>2.7 ppl/unit ⁽¹⁾</mark>
Total population	342*2.7=924	<mark>903*2.7=2,439</mark>
Trip rate per person	1.83 ⁽²⁾	<mark>1.83⁽²⁾</mark>
Daily trips generated from proposed development	924*1.83=1,691	<mark>2,439*1.83=4,462</mark>
% of Daily trips in peak hour	12% ⁽³⁾	<mark>12%⁽³⁾</mark>
Peak hour trips (two-way)	1,691*12%=203	<mark>4,462*12%=536</mark>
Peak hour trips (Generation) ⁽⁴⁾	203*0.9=183	<mark>536*0.9=482</mark>
Peak hour trips (Attraction)	203*0.1=20	<mark>536*0.1=54</mark>

Remarks:

- (1) The anticipated population is based on an assumption of 2.7 occupants per unit, according to Census and Statistics Department in April 2024.
- (2) Data extracted from TCS Report 2011
- (3) 12% in TCS Report 2011
- (4) For conservative approach, it is assumed that outbound trips will take up 90% and inbound trips for 10% during peak hour.

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with		
Vinor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group	CHK50748310	
E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon		
Fraffic Impact Assessment Report	19/06/2025	P

6.2.6 According to the peak hour trips of proposed development and nearby new development in Table 6.4, the trips of road-based public transport during peak hours in 2035 are shown Table 6.5. In the year 2035, about 200 trips will travel by bus, and 54 trips will travel by public light bus in the vicinity.

Mode	Bus	Public Light Bus (PLB)
%	30%	8%
Trips of proposed development	55	15
Trips of nearby new development	<mark>145</mark>	<mark>39</mark>
Surplus Capacity of the	<mark>311-55-145=111</mark>	<mark>65-15-39=11</mark>
Mode(According to Table 6.2)		

Table 6.5Surplus Capacity of the Bus and PLB Service in the Vicinity in Design Year 2035

6.2.7 The result in **Table 6.5** shows that the road-based public transport services can meet the future public transport demand in the vicinity in the design year 2035.

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon	CHK50748310	
Traffic Impact Assessment Report	19/06/2025	Page 19

7. CONCLUSION

7.1 Summary

- 7.1.1 The application site is currently zoned Residential (Group E)" ("R(E)") under the latest approved Cha Kwo Ling, Yau Tong, Lei Yue Mun Outline Zoning Plan (OZP) no. S/K15/27. The application site was intended to be re-developed into a residential-based development with shop and services, and eating place. The applicant's intention to propose more residential units and commercial services for the community.
- 7.1.2 Currently, the subject site is occupied by a 7-storey industrial building, which will be redeveloped into one residential block with 342 residential units, and a 2,177.1m² commercial area.
- 7.1.3 Provisions of internal ancillary transport facilities, including parking spaces, loading/unloading bays and etc., for the No. 4 Tung Yuen Street Redevelopment are proposed in accordance with the relevant requirements stipulated in the latest Hong Kong Planning Standard Guideline (HKPSG). The proposed provisions have taken into consideration the factors of building function, residential flat mix and locality of No. 4 Tung Yuen Street Redevelopment.
- 7.1.4 In order to review the traffic impact of the new developments on the vicinity, traffic surveys have been conducted to establish the current peak hour traffic condition in the vicinity.
- 7.1.5 The proposed Redevelopment would be completed in year 2032. The design year of 2035, three years after full occupation, is therefore adopted in this study for forecasting and assessment purposes. This study have considered the future strategic transport link Trunk Road T2, future local developments and the latest Government planning assumptions.
- 7.1.6 For the J/O Tung Yuen Street / Ko Fai Road (M), the 4 current on-street private parking spaces are proposed to be cancelled. And after finishing the sewage rising mains construction project, these 4 cancelled parking spaces are proposed to be relocated back to Ko Fai Road.
- 7.1.7 Assessment results revealed that the traffic condition would be more or less the same in both Reference and Design scenarios in Year 2035. The traffic impact due to the Proposed Redevelopment is considered insignificant and could be accommodated by the surrounding road network.
- 7.1.8 Public transport surveys have been conducted to establish the current peak hours traffic condition and anticipated future public transport demands. The assessment indicated that all the existing public transport services have sufficient capacity to cater for the additional demands due to the proposed development.

7.2 Conclusion

7.2.1 In view of the above, the proposed Redevelopment under this Section 16 application is considered acceptable in traffic term.

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with		
Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group	CHK50748310	
E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon		
Traffic Impact Assessment Report	19/06/2025	Page 20

Appendix A

Public Transport Details and Servicing Schedules

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with
Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group
E)" Zone at No. 4 Tung Yuen Street, Yau Tong, KowloonCHK50748310Traffic Impact Assessment Report19/06/2025Page21

Route No.	Destinations		Frequency (min)		
Franchised I	Franchised Bus				
6P	Lei Yue Mun Estate	Cheung Sha Wan (So Uk Estate)	3 scheduled service		
14	Lei Yue Mun Estate	China Ferry Terminal	15		
14D	Yau Tong	Choi Hung	5 scheduled service		
14H	Yau Tong	(CIRCULAR) Shun Lee	60		
14X	Yau Tong (Shung Tak Wai)	(CIRCULAR) Tsim Sha Tsui	15		
33	Yau Tong	Tsuen Wan West Station	20		
33B	Yau Tong	Tsuen Wan West Station	25		
62P	Tuen Mun Central	Lei Yue Mun Estate	8		
62X	Lei Yue Mun Estate	Siu Hong Station (South)	8		
88X	Ping Tin	(CIRCULAR) Fo Tan Chun Yeung Estate	20		
214	Yau Tong	Cheung Sha Wan (Kom Tsun Street)	12		
215P	Lam Tin (Kwong Tin Estate)	Kowloon Station	1 scheduled service		
216M	Lam Tin Station	(CIRCULAR) Yau Tong Station	15		
259D	Lei Yue Mun Estate	Tuen Mun (Lung Mun Oasis)	7		
603	Ping Tin	Central Ferry Piers	2 scheduled services		
603A	Ping Tin	Central Market	15		
603S	Ping Tin	Central (Guilman St)	3 scheduled service		
613	On Tai (West) (Wo Tai House)	Shau Kei Wan Bus Terminal	15		
A26	Yau Tong	Airport	30		
A26P	Yau Tong	Airport	2 scheduled service		
E22P	Yau Tong	AsiaWorld-Expo	3 scheduled service		
E22X	Yau Tong	AsiaWorld-Expo	3 scheduled service		
X42C	Yau Tong	Tsing Yi (Cheung Hang Estate)	1		
N26	Yau Tong	Tung Chung Station	3 scheduled service		
N214	Yau Tong	Mei Foo	2 scheduled service		
N216	Yau Tong	Hung Hom Station	20		
GMB					
23C	Laguna City	(CIRCULAR) Yau Tong Station	10		
24	Lam Tin (Ping Tin PTI)	(CIRCULAR) Sam Ka Tsuen FerryPier	6		
24M	Yau Tong PTI	Hing Tin (Pik Wan Road)	2		
76B	Yau Tong PTI	United Christian Hospital	20		
87	Lei Yue Mun Estate PTI	Kowloon Bay	20		
90A	Hong Kong Children's Hospital	Yau Tong (Yau Lai Estate)	10		

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with
Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group
E)" Zone at No. 4 Tung Yuen Street, Yau Tong, KowloonCHK50748310Traffic Impact Assessment Report19/06/2025

5 **Page** 22

Appendix B

Signal Calculation Sheets

Section 16 Application for Proposed Flat, Shop and Services and Eating Place with Minor Relaxation of Plot Ratio and Building Height Restrictions in "Residential (Group E)" Zone at No. 4 Tung Yuen Street, Yau Tong, Kowloon	CHK50748310	
Traffic Impact Assessment Report	19/06/2025	Page 23

574 574 574 574 574 574 51 1 m Rd (EB) 1 m Half Width (m) 1 m Half Width (m)	Job No.: CHK507	48310 Lam Tin Interch 188 669 ▲ ↓ ▲ ▲ 8.20 10.50 3.75 30.00 52.00 20.00 1,057	ange (SB) 200 L B 8.10 8.60 1.40 26.00 52.00 10.00	C 9.10 11.20 6.20 35.00 52.00	Cha Kwo Ling Ro Arm B	
nterchange (SB) Ling Rd (WB) Ling Rd (EB)	Arm A	Lam Tin Interch. 188 669 A A 8.20 10.50 3.75 30.00 52.00 20.00	200 L B 8.10 8.60 1.40 26.00 52.00	9.10 11.20 6.20 35.00 52.00	Cha Kwo Ling Ro Arm B	
Ling Rd (WB) Ling Rd (EB) 574 456 51	Arm A	Lam Tin Interch. 188 669 A A 8.20 10.50 3.75 30.00 52.00 20.00	200 L B 8.10 8.60 1.40 26.00 52.00	9.10 11.20 6.20 35.00 52.00	Cha Kwo Ling Ro Arm B	
Ling Rd (WB) Ling Rd (EB) 574 456 51		188 669 ▲ ▲ 8.20 10.50 3.75 30.00 52.00 20.00	200 L B 8.10 8.60 1.40 26.00 52.00	9.10 11.20 6.20 35.00 52.00	Arm B	d (WB)
574 456 51 Ling Rd (EB) Thalf Width (m) th (m) Length of Flare (m) flus (m) Circle Diameter (m) gle (degree) w (pcu/hour) ig Flow Across Entry (pcu/hour)		188 669 ▲ ▲ 8.20 10.50 3.75 30.00 52.00 20.00	200 L B 8.10 8.60 1.40 26.00 52.00	9.10 11.20 6.20 35.00 52.00	Arm B	d (WB)
574 456 51 Ling Rd (EB) thalf Width (m) tth (m) Length of Flare (m) tius (m) Circle Diameter (m) gle (degree) w (pcu/hour) ng Flow Across Entry (pcu/hour)		188 669 ▲ ▲ 8.20 10.50 3.75 30.00 52.00 20.00	200 L B 8.10 8.60 1.40 26.00 52.00	9.10 11.20 6.20 35.00 52.00	Arm B	d (WB)
456 51 Ling Rd (EB) h Half Width (m) th (m) Length of Flare (m) tius (m) Circle Diameter (m) gle (degree) w (pcu/hour) ng Flow Across Entry (pcu/hour)		188 669 ▲ ▲ 8.20 10.50 3.75 30.00 52.00 20.00	200 L B 8.10 8.60 1.40 26.00 52.00	9.10 11.20 6.20 35.00 52.00	Arm B	d (WB)
456 51 Ling Rd (EB) h Half Width (m) th (m) Length of Flare (m) tius (m) Circle Diameter (m) gle (degree) w (pcu/hour) ng Flow Across Entry (pcu/hour)		188 669 ▲ ▲ 8.20 10.50 3.75 30.00 52.00 20.00	200 L B 8.10 8.60 1.40 26.00 52.00	9.10 11.20 6.20 35.00 52.00	Arm B	d (WB)
456 51 Ling Rd (EB) h Half Width (m) th (m) Length of Flare (m) tius (m) Circle Diameter (m) gle (degree) w (pcu/hour) ng Flow Across Entry (pcu/hour)		188 669 ▲ ▲ 8.20 10.50 3.75 30.00 52.00 20.00	200 L B 8.10 8.60 1.40 26.00 52.00	9.10 11.20 6.20 35.00 52.00	Arm B	d (WB)
456 51 Ling Rd (EB) h Half Width (m) th (m) Length of Flare (m) tius (m) Circle Diameter (m) gle (degree) w (pcu/hour) ng Flow Across Entry (pcu/hour)	ENTRY ARM	8.20 10.50 3.75 30.00 52.00 20.00	8.10 8.60 1.40 26.00 52.00	9.10 11.20 6.20 35.00 52.00	Arm B	d (WB)
51 Ling Rd (EB) Thalf Width (m) th (m) Length of Flare (m) dius (m) Circle Diameter (m) gle (degree) w (pcu/hour) ng Flow Across Entry (pcu/hour)	ENTRY ARM	8.20 10.50 3.75 30.00 52.00 20.00	8.10 8.60 1.40 26.00 52.00	9.10 11.20 6.20 35.00 52.00		
n Half Width (m) dth (m) Length of Flare (m) dius (m) Circle Diameter (m) gle (degree) w (pcu/hour) ng Flow Across Entry (pcu/hour)	ENTRY ARM	8.20 10.50 3.75 30.00 52.00 20.00	8.10 8.60 1.40 26.00 52.00	9.10 11.20 6.20 35.00 52.00		
ith (m) Length of Flare (m) Iius (m) Circle Diameter (m) gle (degree) w (pcu/hour) ng Flow Across Entry (pcu/hour)	ENTRY ARM	8.20 10.50 3.75 30.00 52.00 20.00	8.10 8.60 1.40 26.00 52.00	9.10 11.20 6.20 35.00 52.00		
ith (m) Length of Flare (m) Iius (m) Circle Diameter (m) gle (degree) w (pcu/hour) ng Flow Across Entry (pcu/hour)		8.20 10.50 3.75 30.00 52.00 20.00	8.10 8.60 1.40 26.00 52.00	9.10 11.20 6.20 35.00 52.00		
ith (m) Length of Flare (m) Iius (m) Circle Diameter (m) gle (degree) w (pcu/hour) ng Flow Across Entry (pcu/hour)		10.50 3.75 30.00 52.00 20.00	8.60 1.40 26.00 52.00	11.20 6.20 35.00 52.00		
ith (m) Length of Flare (m) Iius (m) Circle Diameter (m) gle (degree) w (pcu/hour) ng Flow Across Entry (pcu/hour)		10.50 3.75 30.00 52.00 20.00	8.60 1.40 26.00 52.00	11.20 6.20 35.00 52.00		
ith (m) Length of Flare (m) Iius (m) Circle Diameter (m) gle (degree) w (pcu/hour) ng Flow Across Entry (pcu/hour)		10.50 3.75 30.00 52.00 20.00	8.60 1.40 26.00 52.00	11.20 6.20 35.00 52.00		
Length of Flare (m) Jius (m) Circle Diameter (m) gle (degree) w (pcu/hour) 19 Flow Across Entry (pcu/hour)		3.75 30.00 52.00 20.00	1.40 26.00 52.00	6.20 35.00 52.00		
lius (m) Circle Diameter (m) gle (degree) w (pcu/hour) ıg Flow Across Entry (pcu/hour)		30.00 52.00 20.00	26.00 52.00	35.00 52.00		
Circle Diameter (m) gle (degree) w (pcu/hour) g Flow Across Entry (pcu/hour)		52.00 20.00	52.00	52.00		
gle (degree) w (pcu/hour) ıg Flow Across Entry (pcu/hour)		20.00			1	
w (pcu/hour) ng Flow Across Entry (pcu/hour)			10.00			
ng Flow Across Entry (pcu/hour)		1,057		18.00		1
			396	1,081	1	1
		515	908	524		
r Factor		1.0	1.0	1.0		
V) / L Sharpness of flare		0.98	0.57	0.54		1
347 (A-30) - 0.978 (1/R - 0.05)		1.05	1.08	1.06		1
·V) / (1+2S))		8.98	8.33	10.11	1	
0-60) /10)						1
						1
						1
					1	
					1	
. (UC P)						1
		1057	390	1001		
Design Flow / Canad	city 0.43	0,43	0.20	0.39	1	
Total Entry Flows	2,534		0.20	0.35		
		I			1	I
)-e 2 5 / 5 (i0) /10) / (1+M)) 1 + 0.2*X2) Qc*P) Design Flow / Capar	50) / 10) / (1+M)) 1 + 0.2*X2) Qc*P) Design Flow / Capacity 0.43	io) /10) 0.45 2720 2720 1 + 0.2*X2) 0.79 Qc*P) 2431 Design Flow / Capacity 0.45 2720 0.79 2431 0.79 0.43	io)/10) 0.45 0.45 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	i0)/10) 0.45 0.45 0.45 i0)/10) 0.45 2720 2525 3063 i1.34 1.34 1.34 1.34 i + 0.2*X2) 0.79 0.75 0.85 Qc*P) 2431 1990 2779 1057 396 1081 Design Flow / Capacity 0.43 0.43 0.20	50) / 10) 0.45 0.45 0.45 '(1+M)) 1.34 1.34 1.34 1 + 0.2*X2) 0.79 0.75 0.85 Qc*P) 2431 1990 2779 Design Flow / Capacity 0.43 0.43 0.20 0.39

lob Title:	No. 4 Tung Yuen Street	TIA						
unction:	Cha Kwo Ling Road / La						Designed by:	SWY
cheme:	2024 Observed Flow Pl	M Peak					Checked by:	JPP
esign Year:	2024		Job No.: CHK5074	8310			Date: JUN, 20	25
rm A	Lam Tin Interchange (S	B)						
rm B	Cha Kwo Ling Rd (WB)							
rm C	Cha Kwo Ling Rd (EB)							
rm D								
rm E					(45)			
				am Tin Intercha	nge (SB) 206 L		Cha Kwo Ling Rc Arm B	(WB)
	531 365 61 Arm C Cha Kwo Ling Rd (EB)					<u> </u>	↓ 15 ↓ 285 ▲ 60	
			ENTRY ARM	A	В	С		
NPUT PARAM	IETERS							
/	Approach Half Width (m)		8.20	8.10	9.10		
	Entry Width (m)			8.20 10.50	8.10 8.60	9.10	1	
	Effective Length of Flar	re (m)		3.75	1.40	6.20		
R		e (iii)		30.00				
	Entry Radius (m)				26.00	35.00		
)	Inscribed Circle Diame	ter (m)		52.00	52.00	52.00		
1	Entry Angle (degree)			20.00	10.00	18.00	1	
2	Entry Flow (pcu/hour)			744	360	957		
lc	Circulating Flow Across	s Entry (pcu/hour)		441	599	416		
•	Peak Hour Factor			1.0	1.0	1.0		
OUTPUT PARA	METERS							
		Charpene f fl		0.00	0.57	0.54		
5	= 1.6 (E - V) / L	Sharpness of flare		0.98	0.57	0.54		
	= 1 - 0.00347 (A-30) - 0	.978 (1/R - 0.05)		1.05	1.08	1.06		
2	= V + ((E-V) / (1+2S))			8.98	8.33	10.11	1	
Λ	= EXP ((D-60)/10)			0.45	0.45	0.45	1	
	= 303 * X2			2720	2525	3063	1	
d	= 1 + (0.5 / (1+M))			1.34	1.34	1.34	1	
с	= 0.21*Td (1 + 0.2*X2)			0.79	0.75	0.85	1	
le	= K (F - Fc*Qc*P)			2492	2241	2877		
).p	= Q*P			744	360	957		
	- /-							
FC	= Qp / Qe	Design Flow / Capacity	0.33	0.30	0.16	0.33		
		Total Entry Flows	2,061					
							1	
							1	
							•	
		nce to T.P.D.M. Vol.2 Chp.4						

Job Title:	No. / Tung Vuon Street	τιλ						
unction:	No. 4 Tung Yuen Street Cha Kwo Ling Road / Lar						Designed by:	SWY
cheme:	2035 Reference Flow AN							JPP
Design Year:	2035		Job No.: CHK5074	8310			Date: JUN, 20	
Arm A	Lam Tin Interchange (SB)						
Arm B	Cha Kwo Ling Rd (NB)							
Arm C	Cha Kwo Ling Rd (SB)							
Arm D								
Arm E			Arm A	am Tin Intercha	mmo (CD)			
				220 895 بر با بر	295 L		Cha Kwo Ling Rd	(NB)
	320 740 60 Arm C Cha Kwo Ling Rd (SB)						Arm B	
				•	P	<u> </u>	1	
INPUT PARAN	AETEDS		ENTRY ARM	A	В	С		
V E L R D A Q Q C P OUTPUT PAR/ S K X2 M F Td Td F C Q p DFC	Approach Half Width (m Entry Width (m) Effective Length of Flare Entry Radius (m) Inscribed Circle Diamete Entry Angle (degree) Entry Flow (pcu/hour) Circulating Flow Across I Peak Hour Factor	r (m) er (m) Entry (pcu/hour) Sharpness of flare	0.64	8.20 10.50 3.75 30.00 52.00 20.00 1,410 810 1.0 0.98 1.05 8.98 0.45 2720 1.34 0.79 2186 1410 0.64	8.10 8.60 1.40 26.00 52.00 1,020 1,175 1.0 0.57 1.08 8.33 0.45 2525 1.34 0.75 1772 1020 0.58	9.10 11.20 6.20 35.00 18.00 1,120 1,120 1,170 1.0 0.54 1.06 10.11 0.45 3063 1.34 0.85 2193 1120 0.51		

Job Title:	No. 4 Tung Yuen Street	TIA						
unction:	Cha Kwo Ling Road / Lan						Designed by:	SWY
cheme:	2035 Reference Flow PM						Checked by:	JPP
esign Year:	2035		Job No.: CHK5074	8310			Date: JUN, 20	
rm A	Lam Tin Interchange (SB)						
ırm B	Cha Kwo Ling Rd (NB)							
rm C	Cha Kwo Ling Rd (SB)							
Arm D Arm E	260 675		Arm A	am Tin Intercha 135 640 و ي	inge (SB) 310 L		Cha Kwo Ling Rc Arm B [↑] 20 [↑] 645 [↑] 70	I (NB)
	70 Arm C Cha Kwo Ling Rd (SB)		ENTRY ARM	A	В	C	× 70	
NPUT PARAM	IETERS							
	Approach H-HMC-H			0.20	0.10	0.10		
/	Approach Half Width (m Entry Width (m)	1)		8.20 10.50	8.10 8.60	9.10 11.20		
	Effective Length of Flare	(m)		3.75	8.60 1.40	6.20		
R	Entry Radius (m)	(11)		30.00	26.00	35.00		
)	Inscribed Circle Diamete	er (m)		52.00	52.00	52.00	1	
,	Entry Angle (degree)			20.00	10.00	18.00	1	
ι 2	Entry Flow (pcu/hour)			1,085	735	1,005	1	
م کر	Circulating Flow Across I	Entry (ncu/hour)		765	845	800		
дс o	Peak Hour Factor	Life y (ped/fiour)		1.0	845 1.0	1.0		
OUTPUT PARA								
5	= 1.6 (E - V) / L	Sharpness of flare		0.98	0.57	0.54		
(= 1 - 0.00347 (A-30) - 0.9	978 (1/R - 0.05)		1.05	1.08	1.06	1	
2	= V + ((E-V) / (1+2S))			8.98	8.33	10.11		
Л	= EXP ((D-60) /10)			0.45	0.45	0.45	1	
	= 303 * X2			2720	2525	3063	1	
d	= 1 + (0.5 / (1+M))			1.34	1.34	1.34	1	
ic No	= 0.21*Td (1 + 0.2*X2)			0.79	0.75	0.85	1	
le De	= K (F - Fc*Qc*P)			2224	2041	2529		
ζþ	= Q*P			1085	735	1005		
FC	= Qp / Qe	Design Flow / Capacity	0.49	0.49	0.36	0.40		
		Total Entry Flows	2,825					
							1	
							·	1
								I
								1
			I					L

ob Title:	No. 4 Tung Yuen Street T	IA						
unction:	Cha Kwo Ling Road / Lan						Designed by:	SWY
cheme:	2035 Design Flow AM Pe							JPP
esign Year:	2035		Job No.: CHK5074	8310			Date: JUN, 20	25
rm A	Lam Tin Interchange (SB)							
rm B	Cha Kwo Ling Rd (NB)							
rm C	Cha Kwo Ling Rd (SB)							
rm D								
Irm E	320 743 60		Arm A	am Tin Intercha 220 895 م م	inge (SB) 296 L		Cha Kwo Ling Rd Arm B [↑] 10 [↑] 954 [↑] 70	(NB)
	60 ◀ Arm C Cha Kwo Ling Rd (SB)		ENTRY ARM	A	В	с		
NPUT PARAM	ETERS			~	B			
/	Approach Half Width (m Entry Width (m) Effective Length of Flare Entry Radius (m) Inscribed Circle Diamete Entry Angle (degree) Entry Flow (pcu/hour) Circulating Flow Across E Peak Hour Factor	(m) r (m) Entry (pcu/hour) Sharpness of flare		8.20 10.50 3.75 30.00 52.00 20.00 1,411 813 1.0 0.98 1.05 8.98 0.45 2720 1.34 0.79 2184 1411		9.10 11.20 6.20 35.00 18.00 1,123 1,184 1.0 0.54 1.06 10.11 0.45 3063 1.34 0.85 2181 1123		
DFC	= Qp / Qe	Design Flow / Capacity	0.65	0.65	0.58	0.52		
		Total Entry Flows	3,568					

No. 4 Tung Yuen Street							
Cha Kwo Ling Road / La						Designed by:	SWY
	Peak		0240				JPP
	2)	JOD NO.: CHK5074	8310			Date: JUN, 20	125
	В)						
Cha Kwo Ling Rd (SB)							
		Arma A	om Tin Interch				
			135 640 A A	311			
260 674 70 70 Arm C Cha Kwo Ling Rd (SB)					<u> </u>	Cha Kwo Ling Ru Arm B 20 653 70	э (NB)
				I	1	_	
FTERC		ENTRY ARM	A	В	С		
Entry Width (m) Effective Length of Flar Entry Radius (m) Inscribed Circle Diamet Entry Angle (degree) Entry Flow (pcu/hour) Circulating Flow Across Peak Hour Factor METERS = 1.6 (E - V) / L	e (m) eer (m) Entry (pcu/hour) Sharpness of flare	0.49	8.20 10.50 3.75 30.00 52.00 20.00 1,086 764 1.0 0.98 1.05 8.98 0.45 2720 1.34 0.79 2225 1086	8.10 8.60 1.40 26.00 52.00 10.00 743 845 1.0 0.57 1.08 8.33 0.45 2525 1.34 0.75 2041 743 0.36	9.10 11.20 6.20 35.00 52.00 18.00 1,004 808 1.0 0.54 1.06 10.11 0.45 3063 1.34 0.85 2522 1004		
= up / ue	Total Entry Flows	2,833	0.49	0.36	0.40		
	2035 Lam Tin Interchange (S Cha Kwo Ling Rd (NB) Cha Kwo Ling Rd (SB) Cha Kwo Ling Rd (SB) 674 70 Arm C Cha Kwo Ling Rd (SB) ETERS Approach Half Width (I Entry Width (m) Effective Length of Flar Entry Radius (m) Inscribed Circle Diamet Entry Flow (pcu/hour) Circulating Flow Across Peak Hour Factor METERS = 1.6 (E - V) / L = 1.0 00347 (A-30) - 0 = V + ((E-V) / (1+2S)) = EXP ((D-60) / 10) = 303 * X2 = 1 + (0.5 / (1+M)) = 0.21*Td (1 + 0.2*X2) = K (F - Fc*Qc*P) = Q*P	Lam Tin Interchange (SB) Cha Kwo Ling Rd (NB) Cha Kwo Ling Rd (SB) Cha Kwo Ling Rd (SB)	2035 Job No.: CHK5074: Lam Tin Interchange (SB) Cha Kwo Ling Rd (NB) Cha Kwo Ling Rd (SB) Arm A Arm A L 260	2035 Job No.: CHK50748310 Lam Tin Interchange (SB)	203 Job No.: CHK50748310 Lam Tin Interchange (SB) C. At Kwo Ling Rd (NB) Cha Kwo Ling Rd (SB) Arm A Lam Tin Interchange (SB)	203 Job No.: CHKS0748310 Lam Tin Interchange (SB)	2035 Job No.: CHKS0748310 Date: JUN, 2C Lam Tin Interchange (SB)

Junction: <u>Cha k</u>	FFIC SIGNALS CALCULATION											MVA HONG KONG LIMITED					
	Kwo Ling I	Road / Ya	au Tong	Road											Design Year:	2024	
Description: 2024	Observed	Flows									Designed E	Ву: <u>ССТ</u>			Checked By:	JPP	
	nts				Radius	s (m)	(%)	Pro. Tu	ning (%)		Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	AM Peak	PM Peak	AM Peak	PM Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Cha Kwo Ling Road (EB)	† †	B B	1 1	3.300 3.300						1945 2085	1945 2085	249 266	0.128 0.128	1	228 244	0.117 0.117	•
Yau Tong Road (SB)	۲ ۲	D D	3 3	4.500 4.000	17	15 12		80% / 20%	95% / 5%	1895 1915	1895 1915	113 114	0.060 0.060	0.060	152 154	0.080 0.080	0.080
Cha Kwo Ling Road	t	A	1,2	3.800						1995	1995	652	0.327	0.327	642	0.322	0.322
(WB)	ľ	С	2	3.000		13				1840	1840	118	0.064		103	0.056	
Pedestrian Crossing		Ep Fp Gp	1,2,4 2,4 4	MIN GRE MIN GRE MIN GRE	EN + FLA	SH =	5 5 5	+ + +	10 9 9	= = =	15 14 14						
		Hp	3,4	MIN GRE			5	+	5	=	10						
Notes:				Flow: (po	cu/hr)			\land			≜ ^N	Group	A,Hp	A,D	Group	A,Hp	A,D
							137(162)		90(144)			У	0.327	0.386	У	0.322	0.402
										118(103)	l l	L (sec)	17	9	L (sec)	17	9
					→ 5	515(472)				652(642) ◄		C (sec)	100	100	C (sec)	90	90
												y pract.	0.747	0.819	y pract.	0.730	0.810
												R.C. (%)	129%	112%	R.C. (%)	127%	101%
Stage / Phase Diagrams 1.	5			2.				3.				4.			5.		
	Gp	Ep >				Ер <	·->		Gp <>	人	D						
«	> <-									•	*						
<i><</i>	> <-						^										
< B	>				•		Fp↓				٨						
	→ ←	A									∧ Hp ↓						
	→ ←	A	I/G=		* (+			/G= 6 /G= 6			∧			/G= /G=			

TRAFFIC SIGN	AFFIC SIGNALS CALCULATION											MVA HONG KONG LIMITED					
Junction: Cha K	wo Ling I	Road / Ya	au Tong	Road				-							Design Year:	2035	
Description: 2035 F	Reference	e Flows									Designed E	Ву: <u>ССТ</u>			Checked By:	JPP	
	nts				Radiu	s (m)	(%) :	Pro. Tu	ning (%)		Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	AM Peak	PM Peak	AM Peak	PM Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Cha Kwo Ling Road (EB)	† †	B B	1 1	3.300 3.300						1945 2085	1945 2085	437 468	0.225 0.224	1	442 473	0.227 0.227	1
Yau Tong Road (SB)	+) جا	D D	3 3	4.500 4.000	17	15 12		67% / 33%	92% / 8%	1890 1915	1895 1915	216 219	0.114 0.114	0.114	244 246	0.129 0.128	0.129
Cha Kwo Ling Road (WB)	† _►	A C	1,2 2	3.800 3.000		13				1995 1840	1995 1840	1180 230	0.591 0.125	0.591	975 170	0.489 0.092	0.489
Pedestrian Crossing		Ep Fp Hp	1,2 2 1,3 3	MIN GRE MIN GRE MIN GRE	EEN + FL/ EEN + FL/	ASH = ASH =	5 5 5 5	+ + + +	10 9 9 5		15 14 14 10						
Notes:				Flow: (p	cu/hr)		290(265)		▶ 145(225)		N	Group y	_{А,Нр} 0.591	A,D 0.706	Group y	А,Нр 0.489	A,D 0.617
										230(170)	l	L (sec)	17	9	L (sec)	17	9
					• ;	905(915)				1180(975)		C (sec)	120 0.773	120 0.833	C (sec)	120 0.773	120 0.833
												y pract. R.C. (%)	31%	18%	y pract. R.C. (%)	58%	35%
Stage / Phase Diagrams	;			I				1						I	· · · · ·		1
	Gp > ←	Ер > А		2.		Ep ∢ C A	-> Fp↓	3.	Gp <>		□	4.			5.		
I/G= 5 I/G= 5			I/G= I/G=					I/G= 6			I/G=			I/G=			
1/G-0			//G=	I				11/6= 6			Date:			Junct	ion:		B

TRAFFIC SIGN	IALS	CALC	ULA	ΓΙΟΝ							Job No.:	CHK50748	3310		MVA HO		G LIMITE
unction: Cha ł	Kwo Ling I	Road / Ya	u Tong	Road				-							Design Year:	2035	
escription: 2035	Design Fl	ows						-			Designed E	Ву: <u>ССТ</u>			Checked By:	JPP	
	nts				Radius	s (m)	: (%)	Pro. Tu	ning (%)		Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	AM Peak	PM Peak	AM Peak	PM Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Cha Kwo Ling Road (EB)	Î Î Î	B B	1 1	3.300 3.300						1945 2085	1945 2085	443 474	0.228 0.227	1	445 478	0.229 0.229	
Yau Tong Road (SB)	↓ ↓	D D	3 3	4.500 4.000	17	15 12		70% / 30%	93% / 7%	1890 1915	1895 1915	220 223	0.116 0.116	0.116	245 248	0.129 0.130	0.129
Cha Kwo Ling Road (WB)	† Г*	A C	1,2 2	3.800 3.000		13				1995 1840	1995 1840	1194 235	0.598 0.128	0.598	980 172	0.491 0.093	0.491
Pedestrian Crossing		Ep Fp Gp Hp	1,2 2 1,3 3	MIN GRE MIN GRE MIN GRE	EN + FLA	ASH = ASH =	5 5 5 5	+++++++	10 9 9 5	= = =	15 14 14 10						
lotes:				Flow: (p	cu/hr)						≜ ^N	Group	A,Hp	A,D	Group	A,Hp	A,D
							290(265)		▶ 153(228)			У	0.598	0.715	У	0.491	0.621
										235(172)		L (sec)	17	9	L (sec)	17	9
						917(923)				1194(980)◀		C (sec) y pract.	120 0.773	120 0.833	C (sec) y pract.	120 0.773	120 0.833
												R.C. (%)	29%	16%	R.C. (%)	57%	34%
itage / Phase Diagram	s			1								1					
I. < В	Gp > <-	Ep ≯		2.	•	Ер <	> Fp ↓	3.	Gp ≮>	\checkmark	D >	4.			5.		
	←	A			•	A					∧ Hp ↓						
/G= 5 /G= 5	•	A	I/G= I/G=		•	A		I/G= 6 I/G= 6			Hp ↓ H/G=			I/G=			

Junction: Scheme:		o Ling Road / Ko F oserved Flows	ai Road (C)					igned by: SWY ecked by: JPP
Design Ye	ar: 2024			Job No.: CHK507	48310		Dat	
Arm A: Arm B:	Cha Kw Ko Fai R	o Ling Road (NB)						
Arm C:		o Ling Road (SB)						
	-							
Arm	۱C	AM	PM					
Cha Kw	vo Ling	273	233					
Road	(SB)	302	292					
					¥			
	=							
						AM	PM	Arm A
			←	─		332 48	341	Cha Kwo Ling Road
						40	56	(NB)
	-				•			
		AM	PM					
		425	404					
				I	I			
				Arm B Ko Fai Ro	ad			
GEOMETRY	/							
JEOMEIRI								
	d Width (n		W	12.30	Lane w	vidths (m)	w(b-a)	0.00
	eserve Widt of major rc	n (m) ad right turn	Wcr Y/N?	0.00 N			w(b-c) w(c-b)	3.80 2.87
		n minor arm	Y/N?	Y			()	
Visibility Di	stances (m	1)	Vr(b-a)	48	Calcul		D	0.57
			VI(b-a) Vr(b-c)	31 48	Param	eters	E F	0.948 0.848
			Vr(c-b)	26			Y	0.576
ANALYSIS							AM PEAK	PM PEAK
RAFFIC FL	OWS (pcu	/hr)	q(c-a) q(c-b)				273.35 301.95	233.4 291.7
			q(a-b)				48.1	56.1
			q(a-c)				331.8 0	341.5 0
			q(b-a) q(b-c)				425.25	404.1
			f				1.00	1.00
			o.".					
CAPACITIE	S (pcu/hr)		Q(b-ac)				636.831	634.3
			Q(c-b)				564.556	561.4
RFC's			c-b				0.53	0.52
			b-ac				0.67	0.64
RFC							0.67	0.64
							0.07	0.04
				ght of the respective s	treams			
		3.65))(1+0.0009(Vr(8.65))(1+0.0009(Vr(.0006(VI(b-a)-150))				
= (1+0.09	4(wc-b)-3.	.65))(1+0.0009(Vr(c						
(= 1-0.034		or traffic turning la	-					
		or traffic turning let		pacity of combined s	treams			
	Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+	ւալը-սյ շս	pucity of combined a	noums			

TRAFFIC SIGN	ALS (CALC	ULA	TION							Job No.:	CHK50748	3310		MVA HO	NG KONG	S LIMITED
lunction: Cha K	wo Ling F	Road / Ko	o Fai Ro	ad				-							Design Year	2035	
Description: 2035 F	Reference	e Flows									Designed I	By: <u>CCT</u>			Checked By	: JPP	
	ents				Radiu	s (m)	t (%)	Pro. Tu	rning (%)		Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	AM Peak	PM Peak	AM Peak	PM Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Cha Kwo Ling Road (SB)	† *	A A	1 1	3.300 3.300		15			I	1945 1895	1945 1895	455 470	0.234 0.248	0.248	420 510	0.216 0.269	0.269
Cha Kwo Ling Road (NB)	∗† †	B B	2 2	3.300 3.300	15			20%	27%	1910 2085	1895 2085	306 334	0.160 0.160	0.160	281 309	0.148 0.148	0.148
Ko Fai Road (EB)	*1	С	1,3	4.000	12.5			1		1800	1800	730	0.406		585	0.325	
Pedestrian Crossing		Ер	2,3	MIN GRE	EEN + FL	ASH =	5	÷	5	=	10						
		Fp Gp Hp	2 3 1,3	min gre Min gre Min gre	EEN + FL	ASH =	5 5 5	+ + +	5 5 6	= = =	10 10 11			÷			
Notes:				Flow: (pe	cu/hr)						<i>‡</i> ∾	Group	A,B,Gp	C,Fp	Group	C,Fp	A,B,Gp
							470(510)				Γ	y	0.408	0.406	y	0.325	0.417
					720(595)		470(510)	455(420)				L (sec)	17	19	L (sec)	19	17
					730(585)			580(515)				C (sec)	100	100	C (sec)	100	100
							60(75)	500(513)				y pract.	0.747	0.729	y pract.	0.729	0.747
												R.C. (%)	83%	80%	R.C. (%)	124%	79%
Stage / Phase Diagrams 1.	5			2.				3.				4.			5.		
c		A		Fp	<> ↓	ţ			C Gp	,							
<i>~</i>	>				Ň	в	<		✓ <-		>						
aH							Ep			Hp	Ep						
Hp I/G= I/G= 2			I/G= 5	j j		10	Ep	I/G= 5		Нр 10	Ep I/G= I/G=			I/G=			

		CALC									Job No.:	011100140					S LIMITE
unction: Cha ł	wo Ling	Road / Ko	o Fai Roa	ad											Design Year:	2035	
escription: 2035	Design Fl	ows									Designed E	Ву: <u>ССТ</u>			Checked By:	JPP	
	ents				Radiu	s (m)	ıt (%)	Pro. Tu	rning (%)		Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	AM Peak	PM Peak	AM Peak	PM Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical
Cha Kwo Ling Road (SB)	↑ *	A A	1 1	3.300 3.300		15			1	1945 1895	1945 1895	455 485	0.234 0.256	0.256	420 530	0.216 0.280	0.280
Cha Kwo Ling Road (NB)	≺† ↑	B B	2 2	3.300 3.300	15			20%	27%	1905 2085	1895 2085	306 335	0.161 0.161	0.161	282 310	0.149 0.149	0.149
Ko Fai Road (EB)	۹J	С	1,3	4.000	12.5			I		1800	1800	749	0.416		597	0.332	
edestrian Crossing		Ep Fp Gp Hp	2,3 2 3 1,3	MIN GRE MIN GRE MIN GRE MIN GRE	EN + FL EN + FL	ASH = ASH =	5 5 5 5	+ + +	5 5 6	= = =	10 10 10 11						*
otes:				Flow: (po	cu/hr)						1 N	Group	A,B,Gp	C,Fp	Group	C,Fp	A,B,G
											[≁] "	y	0.417	0.416	y	0.332	0.42
							485(530)	455(420)				L (sec)	17	19	L (sec)	19	17
					749(597)							C (sec)	100	100	C (sec)	100	100
							61(77)	580(515)					0.747	0.729		0.729	0.74
												y pract. R.C. (%)	79%	75%	y pract. R.C. (%)	120%	749
age / Phase Diagram	3																
с с Нр	~	A		2. Fp	<> •	в	< Ep		C ← Gp	∱ > <- Hp	Ep	4.			5.		
G=			I/G= 5			10		I/G= 5		10	I/G=			I/G=			
G= 2											I/G=			I/G=			

TRAFFIC SIGN	ALS (CALC	ULA	ΓΙΟΝ							Job No.:	: <u>CHK50748</u>	3310		MVA HO	NG KONO	G LIMITE
Junction: Cha K	wo Ling I	Road / Ko	o Chiu R	oad				_							Design Year	: 2024	
Description: 2024 C	Observed	Flows						_			Designed I	Ву: <u>ССТ</u>			Checked By	JPP	
	ints				Radi	us (m)	t (%)	Pro. Tu	rning (%)		Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	AM Peak	PM Peak	AM Peak	PM Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Cha Kwo Ling Road (NB)	ר ר*	A A	1 1	3.300 3.300		15				1945 1895	1945 1895	269 276	0.138 0.146	0.146	264 297	0.136 0.157	0.157
Cha Kwo Ling Road (SB)	¶ ↑	C C	2 2	3.000 3.600	15.5		4.7 4.7			1565 1780	1565 1780	136 60	0.087 0.034	0.087	128 65	0.082 0.037	0.082
Ko Chiu Road (WB)	* † *	B B	3 3	3.500 3.800	10	16 12		69% / 31%	75% / 25%	1735 1900	1730 1900	102 112	0.059 0.059	0.059	106 116	0.061 0.061	0.061
Pedestrian Crossing		Dp Ep Fp	4 4 4	min gre Min gre Min gre	EEN + FI	_ASH =	8 8 10	+ + +	7 7 8	= = =	15 15 18			·			×
Notes:				Flow: (p	cu/hr)						Ŧ ^N	Group	A,C,B,Dp	A,C,B,Fp	Group	A,C,B,Dp 0.300	A,C,B,Fp 0.300
								60(65)	136(128)	144(143)	•	у L (sec)	0.291 36	0.291	y L (sec)	36	40
								269(264)			>	C (sec)	120	120	C (sec)	120	120
									▶ 276(297)	70(79)	¥	y pract.	0.630	0.600	y pract.	0.630	0.600
												R.C. (%)	116%	106%	R.C. (%)	110%	100%
Stage / Phase Diagrams 1.	i			2.		1		3.				4.			5.		
							c ≯						Fp <i><</i> >				
^						¥			↑					A !			
A									¥	В			<> Dp	⊻ Ep			
I/G= 2 I/G= 2			I/G= 7					I/G= 6			I/G=		18 18	I/G=			
NG-2			1/0=7	<u> </u>				1//G= 0			Date		10	Junct	ion: wo Ling Road	14-01-5	D

YTT-SigCal.xlsm \ D_2024_Obs

TRAFFIC SIGN	ALS (CALC	ULA	TION							Job No.:	CHK50748	3310		MVA HO		
lunction: Cha K	wo Ling I	Road / Ko	o Chiu R	load				_							Design Year:	2035	
Description: 2035 F	Reference	e Flows						_			Designed E	Ву: <u>ССТ</u>			Checked By:	JPP	
	ints				Radiu	us (m)	t (%)	Pro. Tur	ning (%)		Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	AM Peak	PM Peak	AM Peak	PM Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Cha Kwo Ling Road (NB)	↑ Г*	A A	1 1	3.300 3.300		15				1945 1895	1945 1895	435 420	0.224 0.222	0.222	385 405	0.198 0.214	0.214
Cha Kwo Ling Road (SB)	¶ ↑	C C	2 2	3.000 3.600	15.5		4.7 4.7			1565 1780	1565 1780	215 155	0.137 0.087	0.137	195 175	0.125 0.098	0.125
Ko Chiu Road (WB)	*]*	B B	3 3	3.120 3.120	10	16 12		58% / 42%	71% / 29%	1710 1835	1700 1835	164 176	0.096 0.096	0.096	156 169	0.092 0.092	0.092
Pedestrian Crossing		Dp Ep Fp	4 4 4	Min gre Min gre Min gre	EEN + FL	ASH =	8 8 10	+ + +	7 7 8	= =	15 15 18						
lotes:				Flow: (p	cu/hr)			155(175) 435(385)	215(195)	245(215)		Group y L (sec) C (sec) y pract.	A,C,B,Dp 0.455 36 120 0.630	A.C.B.Fp 0.455 40 120 0.600	Group y L (sec) C (sec) y pract.	A,C,B,Dp 0.430 36 120 0.630	A,C,B,Fr 0.430 40 120 0.600
Stage / Phase Diagrams										95(110)		R.C. (%)	38%	32%	R.C. (%)	46%	40%
				2.			C ≯	3.	↑ ✓	B		4.	Fp ≮> ≪> Dp	∧ ↓ Ep	5.		
I/G= 2			I/G= 7					I/G= 6			I/G=		18	I/G=	⊥		
/G= 2			I/G= 7	r				I/G= 6			I/G= Date		18	I/G= Junct	ion: wo Ling Road		D

TRAFFIC SIGN	ALS	CALC	ULA	ΓΙΟΝ							Job No.:	CHK50748	3310		MVA HO		LIMITE
Junction: Cha K	wo Ling I	Road / Ko	o Chiu R	oad				_							Design Year:	2035	
Description: 2035 E	esign Fl	ows						-			Designed E	Ву: <u>ССТ</u>			Checked By:	JPP	
	nts				Radiu	us (m)	(%)	Pro. Tur	ning (%)		Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	AM Peak	PM Peak	AM Peak	PM Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Cha Kwo Ling Road (NB)	† [►	A A	1 1	3.300 3.300		15				1945 1895	1945 1895	435 422	0.224 0.223	0.223	385 406	0.198 0.214	0.214
Cha Kwo Ling Road (SB)	¶ ↑	C C	2 2	3.000 3.600	15.5		4.7 4.7			1565 1780	1565 1780	215 155	0.137 0.087	0.137	195 175	0.125 0.098	0.125
Ko Chiu Road (WB)	↓	B B	3 3	3.120 3.120	10	16 12		58% / 42%	70% / 30%	1710 1835	1700 1835	165 176	0.096 0.096	0.096	157 170	0.092 0.093	0.092
Pedestrian Crossing		Dp Ep Fp	4 4 4	min gre Min gre Min gre	EEN + FL	ASH =	8 8 10	+ + +	7 7 8	= =	15 15 18						
lotes:				Flow: (p	cu/hr)			155(175)	215(195)	246(217) 95(110)		Group y L (sec) C (sec) y pract.	A,C,B,Dp 0.456 36 120 0.630	A.C.B.Fp 0.456 40 120 0.600	Group y L (sec) C (sec) y pract.	A,C,B,Dp 0.431 36 120 0.630	A,C,B,Fp 0.431 40 120 0.600
								/				R.C. (%)	38%	32%	R.C. (%)	46%	39%
Stage / Phase Diagrams				2.			C ✦	3.	* 4	B		4.	Fp <> ←> Dp	∧ 	5.		
I/G= 2			I/G= 7					I/G= 6			I/G=		18	I/G=			
I/G= 2			I/G= 7					I/G= 6			I/G= Date		18	I/G= Juncti	on: wo Ling Road		

lob Title:	No. 4 Tung Yuen Street						Decigned by:	SM/V
unction: cheme:	Lei Yue Mun Road / Ko 2024 Observed Flow AN						Designed by: Checked by:	SWY JPP
esign Year:	2024 Observed Flow All	/I PEdK	Job No.: CHK5074	8310			Date: JUN, 2	
rm A	Lei Yue Mun Rd (SB)			0010			puter port, 2	
rm B	Ko Chiu Rd (WB)							
rm C	Ko Chiu Rd (EB)							
Arm D								
Arm E								
			Arm A L	ei Yue Mun Rd				
				103 304 ▲ ▲	108 L			
				-	-			
			7	<u>ل</u>				
								Ko Chiu Rd (W Arm B
	327						➡ 5	
	136						1 85	
	63 귝					-	▲ 174	
	Arm C Ko Chiu Rd (EB)							
	KO CIIIU KU (EB)							
			ENTRY ARM	Α	В	С		1
NPUT PARAMI	ETERS							
/	Approach Half Width (n	n)		7.43	6.50	6.70		
1	Entry Width (m)			9.60	8.50	9.76		
	Effective Length of Flare	e (m)		9.70	4.62	10.48		
R	Entry Radius (m)	()		40.00	19.00	49.50		
D A	Inscribed Circle Diamete	er (m)		38.70	38.70 65.00	38.70 40.00		
Q	Entry Angle (degree)			38.00 514	364	526		
Q Qc	Entry Flow (pcu/hour) Circulating Flow Across	Entry (ncu/hour)		203	469	292		
QC P	Peak Hour Factor	Entry (pcu/nour)		1.0	1.0	1.0		
				210	1.0	1.0		
OUTPUT PARA	METERS							
_	A C / F	c) (1)						1
5	= 1.6 (E - V) / L	Sharpness of flare		0.36	0.69	0.47		
< ()	= 1 - 0.00347 (A-30) - 0.	978 (1/K - 0.05)		1.00	0.88	0.99		1
K2	= V + ((E-V) / (1+2S))			8.69	7.34	8.28		
VI =	= EXP ((D-60) /10)			0.12 2634	0.12	0.12 2509		
īd	= 303 * X2 = 1 + (0.5 / (1+M))			2634 1.45	2224 1.45	1.45		
c	= 0.21*Td (1 + 0.2*X2)			0.83	0.75	0.81		
Qe	= 0.21 Tu (1+0.2 X2) = K (F - Fc*Qc*P)			2457	1640	2261		
l 2p	= Q*P			514	364	526		
FC	= Qp / Qe	Design Flow / Capacity	0.23	0.21	0.22	0.23		
		Total Entry Flows	1,404					
								1
								I
					1			
All the above f	ormulas are in accordan	ce to T.P.D.M. Vol.2 Chp.4	Sec 4.5.9					

ei Yue Mun Road / Ko Cl 024 Observed Flow PM						Designed by:	S/M/V
	Peak					Designed by: Checked by:	SWY JPP
024	r cuk	Job No.: CHK5074	8310			Date: JUN, 20	
ei Yue Mun Rd (SB)							
o Chiu Rd (WB)							
o Chiu Rd (EB)							
343↑		Arm A	ei Yue Mun Rd 165 262 ط عا	(SB) 135 L		<u> </u>	Ko Chiu Rd (W Arm B
129 - 155 - .rm C						164 143	
		ENTRY ARM	А	В	С		
ERS		Т					
ntry Width (m) ffective Length of Flare ntry Radius (m) nscribed Circle Diameter ntry Angle (degree) ntry Flow (pcu/hour) irculating Flow Across E	(m) · (m)		7.43 9.60 9.70 40.00 38.70 38.00 562 287	6.50 8.50 4.62 19.00 38.70 65.00 310 582	6.70 9.76 10.48 49.50 38.70 40.00 627 332		
			1.0	1.0	1.0		
1 - 0.00347 (A-30) - 0.9 V + ((E-V) / (1+2S)) EXP ((D-60) /10) 303 * X2 1 + (0.5 / (1+M)) 0.21*Td (1 + 0.2*X2) K (F - Fc*Qc*P)			0.36 1.00 8.69 0.12 2634 1.45 0.83 2388 562	0.69 0.88 7.34 0.12 2224 1.45 0.75 1565 310	0.47 0.99 8.28 0.12 2509 1.45 0.81 2229 627		
							ļ
		1,499	0.24	0.20	0.20		
	$129 \\ 155 \\ 155 \\ 100 Chiu Rd (EB)$	129 155 155 155 155 155 155 155 15	$\frac{343}{129}$ $\frac{1}{155}$ $\frac{1}{15}$	165 262 1 1 343 1 129 1 155 - io Chiu Rd (EB) ENTRY ARM A A ERS 50 spproach Half Width (m) 7.43 intry Width (m) 9.60 ffective Length of Flare (m) 9.70 intry Angle (degree) 38.70 intry Angle (degree) 38.00 intry Flow (pcu/hour) 562 irculating Flow Across Entry (pcu/hour) 287 ieak Hour Factor 1.0 TERS 1.00 V + ((E-V) / L Sharpness of flare 0.36 1 - 0.00347 (A-30) - 0.978 (1/R - 0.05) 1.00 V + ((E-V) / (1+2S)) 8.69 EXP (De60 /10) 0.12 303 * X2 2634 1 + (0.5 / (1+M)) 1.45 0.21*Tid (1 + 0.2*X2) 0.83 K (F - Fc*Qc*P)	Intervention Intervention Intervention 123	165 262 135 1 1 1 1 129 1 1 1 1 129 1 1 1 1 1 129 1 1 1 1 1 1 129 1	165 262 135 1 1 1 343 1 1 129 1 1 129 1 1 120 1 1 125 1 1 126 1 1 127 1 1 128 1 1 ENTRY ARM A B C RS ENTRY ARM A B C RS 1 approach Haif Width (m) 9.60 8.50 9.76 9.70 4.62 10.048 40.00 19.00 49.50 scribed Circle Diameter (m) ntry Angle (degree) 38.70 38.70 38.70 38.70 117 How (pcu/hour) 287 582 332 132 Lie (ft - V) / L Sharpness of flare 0.36 0.69 0.47 1.000347 (A-30) - 0.978 (L/R - 0.05) 1.00 0.88 0.99 14 (L/L + 0.12) 12 0.12 0.12

Junction:	No. 4 Tung Yuen Street 1							
	Lei Yue Mun Road / Ko C						Designed by:	SWY
Scheme:	2035 Reference Flow AM						Checked by:	JPP
Design Year:	2035		Job No.: CHK5074	8310			Date: JUN, 2	025
Arm A	Lei Yue Mun Rd (SB)							
Arm B	Ko Chiu Rd (WB)							
Arm C	Ko Chiu Rd (EB)							
Arm D								
Arm E			Arm A	ei Yue Mun Rd	(SB)			
	460						□ 5	Ko Chiu Rd (Wi Arm B
	Arm C Ko Chiu Rd (EB)						€ 275 ▲ 285	
INPUT PARAN	AFTERS		ENTRY ARM	A	В	С		
V E L R D A Q Q Q C P OUTPUT PAR S K X2 M F F T d FC Q e Qp DFC	Approach Half Width (m) Entry Width (m) Effective Length of Flare Entry Radius (m) Inscribed Circle Diamete Entry Angle (degree) Entry Flow (pcu/hour) Circulating Flow Across f Peak Hour Factor AMETERS = 1.6 (E - V) / L = 1 - 0.00347 (A-30) - 0.5 = V + ((E-V) / (1+2S)) = EXP ((D-60) / 10) = 303 * X2 = 1 + (0.5 / (1+M)) = 0.21*Td (1 + 0.2*X2) = K (F - Fc*Qc*P) = Q*P = Qp / Qe	(m) r (m) Entry (pcu/hour) Sharpness of flare	0.36	7.43 9.60 9.70 40.00 38.70 38.00 680 315 1.0 0.36 1.00 8.69 0.12 2634 1.45 0.83 2364 680	6.50 8.50 4.62 19.00 38.70 65.00 565 590 1.0 0.69 0.88 7.34 0.12 2224 1.45 0.75 1560 565 0.36	6.70 9.76 10.48 49.50 38.70 40.00 770 400 1.0 1.0 0.47 0.99 8.28 0.12 2509 1.45 0.81 2174 770 0.35		
		Total Entry Flows	2,015					

Job Title:	No. 4 Tung Yuen Street						Dest 11	CMO
unction:	Lei Yue Mun Road / Ko C						Designed by:	SWY
Scheme:	2035 Reference Flow PN			9210			Checked by:	JPP
Design Year:	2035		Job No.: CHK5074	0310			Date: JUN, 2	025
Arm A	Lei Yue Mun Rd (SB)							
Arm B	Ko Chiu Rd (WB)							
Arm C Arm D	Ko Chiu Rd (EB)							
Arm D Arm E								
			Arm A L	ei Yue Mun Rd	(SB)			
				195 355				Ko Chiu Rd (Wi Arm B
	445 210 180 Arm C Ko Chiu Rd (EB)						► 5 ▲ 220 ▲ 230	Arm B
			ENTRY ARM	A	В	С		1
INPUT PARAME	ETERS		ENTITY AND	~	5	с С		
v	Approach Half Width (m	ı)		7.43	6.50	6.70		
E	Entry Width (m)			9.60	8.50	9.76		
L	Effective Length of Flare	(m)		9.70	4.62	10.48		1
R	Entry Radius (m)			40.00	19.00	49.50		
D	Inscribed Circle Diamete	er (m)		38.70	38.70	38.70		
A	Entry Angle (degree)			38.00	65.00	40.00		1
Q	Entry Flow (pcu/hour)			750	455	835		1
Qc	Circulating Flow Across I	Entry (pcu/hour)		395	730	420		
P	Peak Hour Factor	· · · ·		1.0	1.0	1.0		1
OUTPUT PARAI	METERS							
S	= 1.6 (E - V) / L	Sharpness of flare		0.36	0.69	0.47		1
К	= 1 - 0.00347 (A-30) - 0.9	978 (1/R - 0.05)		1.00	0.88	0.99		1
X2	= V + ((E-V) / (1+2S))			8.69	7.34	8.28		
M	= EXP ((D-60)/10)			0.12	0.12	0.12	1	1
F	= 303 * X2			2634	2224	2509	1	1
Td	= 1 + (0.5 / (1+M))			1.45	1.45	1.45		1
Fc	= 0.21*Td (1 + 0.2*X2)			0.83	0.75	0.81		1
Qe	= K (F - Fc*Qc*P)			2298	1468	2158		1
Qp	= Q*P			750	455	835		
DFC	= Qp / Qe	Design Flow / Capacity	0.39	0.33	0.31	0.39		
		Total Entry Flows	2,040					
							1	
							1	
								1
								1
			ŀ		1			
					•			

Job Title:	No. 4 Tung Yuen Street T						Dealers 11	CMD/
Junction:	Lei Yue Mun Road / Ko C						Designed by:	SWY
cheme:	2035 Design Flow AM Pe						Checked by:	JPP
esign Year:	2035		Job No.: CHK5074	8310			Date: JUN, 20	025
Irm A	Lei Yue Mun Rd (SB)							
rm B	Ko Chiu Rd (WB)							
irm C	Ko Chiu Rd (EB)							
Arm D								
Arm E			Arm A .	ei Yue Mun Rd	(SB)			
	460↑						<u>↓</u> 5	Ko Chiu Rd (Wi Arm B
	237 75 Arm C Ko Chiu Rd (EB)						▲ 275 ★ 286	
			ENTRY ARM	А	В	С		
INPUT PARAM	IETERS							
V	Approach Half Width (m)		7.43	6.50	6.70		
E	Entry Width (m)	<i>·</i> · ·		9.60	8.50	9.76	1	1
L	Effective Length of Flare	(m)		9.70	4.62	10.48	1	
R	Entry Radius (m)			40.00	19.00	49.50	1	
D	Inscribed Circle Diamete	r (m)		38.70	38.70	38.70	1	
A	Entry Angle (degree)			38.00	65.00	40.00	1	
Q	Entry Flow (pcu/hour)			680	566	772	1	
Qc	Circulating Flow Across E	Entry (pcu/hour)		317	590	400	1	
Р	Peak Hour Factor			1.0	1.0	1.0		
OUTPUT PARA	METERS							
S	= 1.6 (E - V) / L	Sharpness of flare		0.36	0.69	0.47		
S K	= 1.6 (E - V) / L = 1 - 0.00347 (A-30) - 0.9			1.00	0.89	0.47	1	
X2	= V + ((E-V) / (1+2S))			8.69	7.34	8.28	1	
M	= EXP ((D-60) /10)			0.12	0.12	0.12	1	1
F	= 303 * X2			2634	2224	2509	1	
Td	= 303 X2 = 1 + (0.5 / (1+M))			1.45	1.45	1.45	1	
Fc	= 0.21*Td (1 + 0.2*X2)			0.83	0.75	0.81		
Qe	= 0.21 Tu (1 + 0.2 X2) = K (F - Fc*Qc*P)			2363	1560	2174	1	
Qp	= Q*P			680	566	772		
*	-							
DFC	= Qp / Qe	Design Flow / Capacity	0.36	0.29	0.36	0.36		
		Total Entry Flows	2,018					
								1

lun ation:	No. 4 Tung Yuen Stre						Design - d h	STM/M
unction:	Lei Yue Mun Road / I						Designed by:	SWY
cheme:	2035 Design Flow PN	/i Peak		0210			Checked by:	JPP
Design Year:	2035		Job No.: CHK50748	8310			Date: JUN, 2	025
Arm A	Lei Yue Mun Rd (SB)							
Arm B	Ko Chiu Rd (WB)							
Arm C	Ko Chiu Rd (EB)							
Arm D								
Arm E								
			Arm A L	ei Yue Mun Rd	(SB)			
				195 355	200			
				لم پ	لي ا			
			/	· · · · · ·				
			λ	へ				
								Ko Chiu Rd (WI
							-	Arm B
	445						5	
	211	A					t 220	
		•					▲ 232	
	Arm C							
	Ko Chiu Rd (EB)							
			ENTRY ARM	A	В	С		
INPUT PARAN	1ETERS							
v	Approach Half Width	n (m)		7.43	6.50	6.70		
E	Entry Width (m)			9.60	8.50	9.76		
L	Effective Length of F	lare (m)		9.70	4.62	10.48		
R	Entry Radius (m)			40.00	19.00	49.50		
D	Inscribed Circle Diam	actor (m)		38.70	38.70	38.70		
A	Entry Angle (degree)			38.00	65.00	40.00		
Q	Entry Flow (pcu/hou			750	457	836		
				396	730	420		
Qc P	Circulating Flow Acro	oss Entry (pcu/nour)						
P	Peak Hour Factor			1.0	1.0	1.0		
OUTPUT PARA	AMETERS							
S	= 1.6 (E - V) / L	Sharpness of flare		0.36	0.69	0.47		
К	= 1 - 0.00347 (A-30)			1.00	0.88	0.99		
X2	= V + ((E-V) / (1+2S))		8.69	7.34	8.28		
M	= EXP ((D-60) /10)			0.12	0.12	0.12		
F	= 303 * X2			2634	2224	2509		
Td	= 1 + (0.5 / (1+M))			1.45	1.45	1.45		1
Fc	= 0.21*Td (1 + 0.2*X	2)		0.83	0.75	0.81		
Qe	= K (F - Fc*Qc*P)			2297	1468	2158		
Qp	= Q*P			750	457	836		
DFC	= Qp / Qe	Design Flow / Capacity	0.39	0.33	0.31	0.39	1	İ
	- 41 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	Total Entry Flows	2,043		1	1	1	1
		iotal Lift y Hows	2,045		1	1		1
					1	1		1
					1	1		1
					1			
					1			1
					1			
					1			
					1			
			<u>`</u>		1			
					1			
					1			
					1			
					1			

TRAFFIC SIGNALS CALCULATION

Job No.: CHK50748310

MVA HONG KONG LIMITED

TRAFFIC SIGN	ALS (CALC	ULA	ΓΙΟΝ							Job No.:	CHK50748	3310		MVA HO	NG KONG	
Junction: Lei Yu	ie Mun R	oad / Ya	u Tong R	Road				_							Design Year:	2024	
Description: 2024 (Observed	Flows						_			Designed I	By: <u>CCT</u>			Checked By:	JPP	
			1	Ι				Ι		Revised	Saturation						
	nents				Rad	ius (m)	Gradient (%)	Pro. Tu	rning (%)		(pcu/hr)		AM Peak	1		PM Peak	1
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradie	AM Peak	PM Peak	AM Peak	PM Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Yau Tong Road (EB)	*] *] *	C C D	2,3 2,3 3	4.200 4.100 4.600	25 25	11.5	l		I	1920 2040 1960	1920 2040 1960	153 163 27	0.080 0.080 0.014	0.014	112 119 55	0.058 0.058 0.028	0.028
Lei Yue Mun Road (SB)	† * *	H B B	1,2,3 2 2	3.300 3.600 3.750		13.2 8.5				1945 1775 1810	1945 1775 1810	556 117 120	0.286 0.066 0.066	0.066	756 151 153	0.389 0.085 0.085	0.085
Lei Yue Mun Road (NB)	+↑ ↑	A A	1 1	3.850 3.900	10			12%	19%	1965 2145	1945 2145	329 359	0.167 0.167	0.167	319 352	0.164 0.164	0.164
Pedestrian Crossing		Ep Fp Gp	3 1,2 1	MIN GRI MIN GRI MIN GRI	EEN + F	LASH =	8 5 10	+ + +	8 5 10	= = =	16 10 20						
Notes:				Flow: (p	ocu/hr)						¥ »	Group y	а,с 0.247	A,B,D 0.248	Group y	A,C 0.222	A,B,D 0.277
							237(304)	556(756)				L (sec)	10	12	L (sec)	10	12
					316(231)		648(611)				C (sec)	130	130	C (sec)	110	110
					¥ 27(55)	40(60)					y pract.	0.831	0.817	y pract.	0.818	0.802
						,						R.C. (%)	236%	230%	R.C. (%)	268%	190%
Stage / Phase Diagrams 1.				2.				3.				4.			5.		
<> <> <	Gp Fp	↓ ^H			C	в	↓ ^H		C D Ep		н ,						
I/G= 5			I/G= 5	;				I/G= 5			I/G=			I/G=			
I/G= 5			1/0-0											Juncti			F

TRAFFIC SIGNALS CALCULATION

Job No.: CHK50748310

MVA HONG KONG LIMITED

TRAFFIC SIGN	NALS (CALC	ULAI	ΓΙΟΝ							Job No.:	CHK50748	3310		MVA HO	NG KONG	
Junction: Lei Y	'ue Mun R	oad / Ya	u Tong R	oad				-							Design Year:	2035	
Description: 2035	Reference	e Flows									Designed I	By: <u>CCT</u>			Checked By:	JPP	
	ts				Radi	us (m)	(%)	Pro. Tu	rning (%)		Saturation		AM Peak			PM Peak	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	AM Peak	PM Peak	AM Peak	PM Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Yau Tong Road (EB)	م ا ا	C C D	2,3 2,3 3	4.200 4.100 4.600	25 25	11.5			1	1920 2040 1960	1920 2040 1960	267 283 120	0.139 0.139 0.061	0.061	196 209 155	0.102 0.102 0.079	0.079
Lei Yue Mun Road (SB)	↑ * *	H B B	1,2,3 2 2	3.300 3.600 3.750		13.2 8.5				1945 1775 1810	1945 1775 1810	775 178 182	0.398 0.100 0.101	0.101	1010 220 225	0.519 0.124 0.124	0.124
Lei Yue Mun Road (NB)	+ ↑ ↑	A A	1 1	3.850 3.900	10			27%	26%	1925 2145	1925 2145	541 604	0.281 0.282	0.281	456 509	0.237 0.237	0.237
Pedestrian Crossing		Ep Fp Gp	3 1,2 1	min gre Min gre Min gre	EEN + FI	LASH =	8 5 10	+ + +	8 5 10	= =	16 10 20						
Notes:				Flow: (p	cu/hr)						-	Crown	10	4.0.0	Crown	A,C	4.0.0
											↓ N	Group y	A,C 0.420	A,B,D 0.443	Group y	0.339	A,B,D 0.441
							360(445)	775(1010)				L (sec)	10	12	L (sec)	10	12
					550(405)							C (sec)	130	130	C (sec)	110	110
							145(120)	1000(845)				y pract.	0.831	0.817	y pract.	0.818	0.802
					120(155)							R.C. (%)	98%	84%	R.C. (%)	141%	82%
Stage / Phase Diagram	IS			 _				 									
1. V	Gp	↓ ^H		2.	C Fp ↓	в	↓ ^H	3.	c D Ep		Н	4.			5.		
•	A		-1						·								
√ √G= 5 //G= 5	A		I/G= 5					I/G= 5	· .		I/G=			I/G=			

TRAFFIC SIGNALS CALCULATION

Job No.: CHK50748310

MVA HONG KONG LIMITED

TRAFFIC SIGN	IALS (CALC	ULA	ΓΙΟΝ							Job No.:	: <u>CHK50748</u>	<u>3310</u>		MVA HO	NG KONG	LIMITE
Junction: Lei Y	'ue Mun R	oad / Ya	u Tong R	load											Design Year:	2035	
Description: 2035	Design F	lows									Designed I	By: <u>CCT</u>			Checked By:	JPP	
	Its				Radi	us (m)	(%)	Pro. Tu	rning (%)		Saturation		AM Peak			PM Peak	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	AM Peak	PM Peak	AM Peak	PM Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Yau Tong Road (EB)	•] •] [*	C C D	2,3 2,3 3	4.200 4.100 4.600	25 25	11.5	1		1	1920 2040 1960	1920 2040 1960	269 286 120	0.140 0.140 0.061	0.061	197 210 155	0.103 0.103 0.079	0.079
Lei Yue Mun Road (SB)	† † †	H B B	1,2,3 2 2	3.300 3.600 3.750		13.2 8.5				1945 1775 1810	1945 1775 1810	775 180 183	0.398 0.101 0.101	0.101	1010 224 229	0.519 0.126 0.127	0.127
Lei Yue Mun Road (NB)	≁† ↑	A A	1 1	3.850 3.900	10			27%	26%	1925 2145	1925 2145	541 604	0.281 0.282	0.281	456 509	0.237 0.237	0.237
Pedestrian Crossing		Ep Fp Gp	3 1,2 1	MIN GRI MIN GRI MIN GRI	EEN + F	LASH =	8 5 10	+ + +	8 5 10	= = =	16 10 20						
Notes:				Flow: (p			363(453)	775(1010)			, Z N	Group y L (sec)	A,C 0.421 10	A,B,D 0.443 12	Group y L (sec)	A.C 0.340 10	A,B,D 0.443 12
					555(407) 120(155)		145(120)	1000(845)				C (sec) y pract. R.C. (%)	130 0.831 97%	130 0.817 84%	C (sec) y pract. R.C. (%)	110 0.818 141%	110 0.802 81%
Stage / Phase Diagram 1.	Gp	↓ H		2.	C	, B	↓ H	3.	c		н	4.			5.		
•	Fp				•				Ep	¥							
	Fp		I/G= 5		•			I/G= 5 I/G= 5	*	•	I/G= I/G=			/G= /G=			

Job Title:	No. 4 Tung Yuen Street T	ΊΑ						
Junction:	Kai Tin Road / Lei Yue M						Designed by:	ССТ
Scheme:	2024 Observed Flow AM							JPP
Design Year:	2024		Job No.: CHK5074	8310			Date: JUN, 20	
Arm A	Lei Yue Mun Road (SB)							
Arm B	Kai Tin Road (WB)							
Arm C	Lei Yue Mun Road (NB)							
Arm D	Easern Harbour Crossing	(NB)						
Arm E								
	Arm A Lei Yue 596 ▲	Mun Road (SB) 832 6 4			Arm B Kai Tin f 17 153 A V	Road (WB) 137 L	Arm C	Mun Road (NB)
	Arm D Easern Harbour Crossing	(NB)					► 8 ▲ 106 ► 645	
			ENTRY ARM	A	В	С	D	
INPUT PARAM	ETERS					-		
V E L R D A Q Q C P OUTPUT PARA S K X2 M F Td FC Q Q D FC	Approach Half Width (m) Effective Length of Flare Entry Width (m) Effective Length of Flare Entry Radius (m) Inscribed Circle Diamete Entry Angle (degree) Entry Flow (pcu/hour) Circulating Flow Across E Peak Hour Factor METERS = 1.6 (E - V) / L = 1 - 0.00347 (A-30) - 0.5 = V + ((E-V) / (1+2S)) = EXP ((D-60) / 10) = 303 * X2 = 1 + (0.5 / (1+M)) = 0.21*Td (1 + 0.2*X2) = K (F - Fc*Qc*P) = QP / Qe	(m) r (m) intry (pcu/hour) Sharpness of flare	0.72 2,782	6.30 7.20 5.18 61.00 80.00 28.00 1.434 309 1.0 0.28 1.04 6.88 7.39 2084 1.06 0.53 1997 1434 0.72	6.10 6.90 3.70 30.00 80.00 33.00 307 1,531 1.0 0.35 1.01 6.57 7.39 1992 1.06 0.52 1210 307 0.25	6.80 10.50 8.70 20.00 80.00 46.00 759 766 1.0 0.68 0.94 8.37 7.39 2535 1.06 0.59 1964 759 0.39	6.70 9.40 8.80 40.00 80.00 31.00 283 1,525 1.0 0.49 1.02 8.06 7.39 2443 1.06 0.58 1589 283 0.18	
	formulas are in accordanc							

In Road (G) Peak (NB) Viun Road (SB) 611 6 1 (NB) (NB) (NB) (NB) (nn) (m) (m) (m) (m)	ENTRY ARM	A 6.30 7.20 5.18 61.00 80.00 28.00	Arm B Kai Tin 22 237 ▲	Road (WB) 76 L 6.80 10.50 8.70 20.00 80.00	Designed by: Checked by: Date: JUN, 20	CCT JPP 25
(NB) Vlun Road (SB) 611 6 (NB) (NB) (m) (m)		A 6.30 7.20 5.18 61.00 80.00 28.00	22 237 ▲ ↓ ↓ 6.10 6.90 3.70 30.00 80.00	76 6.80 10.50 8.70 20.00	Lei Yue Arm C • 0 • 0 • 0 • 718 0 • 0 • 10 • 10 • 0 • 10 • 10	25
(NB) 611 6 4 4 (NB) (NB)		A 6.30 7.20 5.18 61.00 80.00 28.00	22 237 ▲ ↓ ↓ 6.10 6.90 3.70 30.00 80.00	76 6.80 10.50 8.70 20.00	Lei Yue Arm C	
(NB)	ENTRY ARM	6.30 7.20 5.18 61.00 80.00 28.00	22 237 ▲ ↓ ↓ 6.10 6.90 3.70 30.00 80.00	76 6.80 10.50 8.70 20.00	Arm C 0 50 718 0 50 718 0 6.70 9.40 8.80 40.00	Mun Road (NB)
(NB)	ENTRY ARM	6.30 7.20 5.18 61.00 80.00 28.00	22 237 ▲ ↓ ↓ 6.10 6.90 3.70 30.00 80.00	76 6.80 10.50 8.70 20.00	Arm C 0 50 718 0 50 718 0 6.70 9.40 8.80 40.00	Mun Road (NB)
(NB)	ENTRY ARM	6.30 7.20 5.18 61.00 80.00 28.00	22 237 ▲ ↓ ↓ 6.10 6.90 3.70 30.00 80.00	76 6.80 10.50 8.70 20.00	Arm C 0 50 718 0 50 718 0 6.70 9.40 8.80 40.00	Mun Road (NB)
(NB)	ENTRY ARM	6.30 7.20 5.18 61.00 80.00 28.00	22 237 ▲ ↓ ↓ 6.10 6.90 3.70 30.00 80.00	76 6.80 10.50 8.70 20.00	Arm C 0 50 718 0 50 718 0 6.70 9.40 8.80 40.00	Mun Road (NB)
611 6 (NB) (m) (m)	ENTRY ARM	6.30 7.20 5.18 61.00 80.00 28.00	22 237 ▲ ↓ ↓ 6.10 6.90 3.70 30.00 80.00	76 6.80 10.50 8.70 20.00	Arm C 0 50 718 0 50 718 0 6.70 9.40 8.80 40.00	Mun Road (NB)
611 6 (NB) (m) (m)	ENTRY ARM	6.30 7.20 5.18 61.00 80.00 28.00	22 237 ▲ ↓ ↓ 6.10 6.90 3.70 30.00 80.00	76 6.80 10.50 8.70 20.00	Arm C 0 50 718 0 50 718 0 6.70 9.40 8.80 40.00	Mun Road (NB)
(m) (m)	ENTRY ARM	6.30 7.20 5.18 61.00 80.00 28.00	6.10 6.90 3.70 30.00 80.00	6.80 10.50 8.70 20.00	Arm C 0 50 718 0 50 718 0 6.70 9.40 8.80 40.00	Mun Road (NB)
(m) · (m)	ENTRY ARM	6.30 7.20 5.18 61.00 80.00 28.00	6.10 6.90 3.70 30.00 80.00	6.80 10.50 8.70 20.00	6.70 9.40 8.80 40.00	
(m) · (m)		6.30 7.20 5.18 61.00 80.00 28.00	6.10 6.90 3.70 30.00 80.00	6.80 10.50 8.70 20.00	6.70 9.40 8.80 40.00	
(m) · (m)		7.20 5.18 61.00 80.00 28.00	6.90 3.70 30.00 80.00	10.50 8.70 20.00	9.40 8.80 40.00	
Sharpness of flare 78 (1/R - 0.05)		1,034 372 1.0 0.28 1.04	335 1,252 1.0 0.35 1.01	46.00 768 675 1.0 0.68 0.94	31.00 454 1,443 1.0 0.49 1.02	
		6.88	6.57	8.37	8.06	
		7.39	7.39	7.39	7.39	
		2084	1992	2535	2443	
		1.06	1.06	1.06	1.06	
		0.53			0.58	
		1034	335	/68	454	
Design Flow / Capacity	0.53	0.53	0.25	0.38	0.28	
Total Entry Flows	2,590					
					1	
				1	1	I
	Design Flow / Capacity Total Entry Flows		0.53 1963 1034 Design Flow / Capacity 0.53 0.53	0.53 0.52 1963 1355 1034 335 Design Flow / Capacity 0.53 0.53 0.25	0.53 0.52 0.59 1963 1355 2015 1034 335 768 Design Flow / Capacity 0.53 0.53 0.25 0.38	0.53 0.52 0.59 0.58 1963 1355 2015 1638 1034 335 768 454 Design Flow / Capacity 0.53 0.53 0.25 0.38 0.28

Job Title:	No. 4 Tung Yuen Street	TIA						
Junction:	Kai Tin Road / Lei Yue M						Designed by:	ССТ
Scheme:	2035 Reference Flow AN							JPP
Design Year:	2035		Job No.: CHK5074	8310			Date: JUN, 20	
Arm A	Lei Yue Mun Road (SB)							
Arm B	Kai Tin Road (WB)							
Arm C	Lei Yue Mun Road (NB)							
Arm D	Easern Harbour Crossing	g (NB)						
Arm E								
Arm E	Arm A Lei Yue 700 ▲	Mun Road (SB) 1075 5			Arm B Kai Tin 20 180 ▲ ◀	Road (WB) 160 1	Lei Yue Arm C	Mun Road (NB)
	Arm D Easern Harbour Crossing	g (NB)					125 960	
			ENTRY ARM	А	В	С	D	
INPUT PARAM	ETERS							
V	Approach Half Width (m			6 20	6 10	6 80	6 70	
V E	Approach Half Width (m	i)		6.30 7.20	6.10	6.80 10.50	6.70 9.40	
E L	Entry Width (m)	(m)			6.90	10.50		
-	Effective Length of Flare	: (111)		5.18	3.70	8.70	8.80	
R	Entry Radius (m)			61.00	30.00	20.00	40.00	
D	Inscribed Circle Diamete	er (m)		80.00	80.00	80.00	80.00	
А	Entry Angle (degree)			28.00	33.00	46.00	31.00	
Q	Entry Flow (pcu/hour)			1,780	360	1,095	450	
Qc	Circulating Flow Across	Entry (ncu/hour)		480	2,015	900	1,995	
QC P	Peak Hour Factor	Linery (peu/nour)		480 1.0	2,015	900	1,995	
				1.0	1.0	1.0	1.0	
OUTPUT PARA	METERS							
c	-16/E \/\/	Sharphore of flaga		0.20	0.35	0.60	0.40	
S	= 1.6 (E - V) / L	Sharpness of flare		0.28	0.35	0.68	0.49	
K	= 1 - 0.00347 (A-30) - 0.9	978 (1/R - 0.05)		1.04	1.01	0.94	1.02	
X2	= V + ((E-V) / (1+2S))			6.88	6.57	8.37	8.06	
м	= EXP ((D-60) /10)			7.39	7.39	7.39	7.39	
F	= 303 * X2			2084	1992	2535	2443	
Td	= 1 + (0.5 / (1+M))			1.06	1.06	1.06	1.06	
Fc	= 0.21*Td (1 + 0.2*X2)			0.53	0.52	0.59	0.58	
Qe	= K (F - Fc*Qc*P)			1903	959	1889	1310	
Qp	= Q*P			1780	360	1095	450	
						0		
DFC	= Qp / Qe	Design Flow / Capacity	0.94	0.94	0.38	0.58	0.34	
		Total Entry Flows	3,685					
					1	•		
					1			
					I			
					I			
					I			
					L			
	formulas are in accordanc							

Job Title: Junction: Scheme: Design Year: Arm A Arm B Arm C	No. 4 Tung Yuen Street Kai Tin Road / Lei Yue N							
Scheme: Design Year: Arm A Arm B Arm C							Designed by:	ССТ
Design Year: Arm A Arm B Arm C	2035 Reference Flow Pl							JPP
Arm A Arm B Arm C	2035		Job No.: CHK5074	8310			Date: JUN, 20	
Arm B Arm C	Lei Yue Mun Road (SB)							
Arm C	Kai Tin Road (WB)							
	Lei Yue Mun Road (NB)							
Arm D	Easern Harbour Crossin	g (NB)						
Arm E								
<u>Arm E</u>	Arm A Lei Yuu 490 a	e Mun Road (SB) 815 5 4			Arm B Kai Tin 25 280 ▲ J √	Road (WB) 90 4	Lei Yue Arm C	Mun Road (NB)
	400 400 Arm D Easern Harbour Crossin	g (NB)					 ▲ 60 ▲ 960 	
			ENTRY ARM	А	В	С	D	
INPUT PARAM	ETERS						1	
	A manage and the left to the here to	-)		6.20	C 10	6.00	6.70	
V	Approach Half Width (r	n)		6.30	6.10	6.80	6.70	
E	Entry Width (m)	- ()		7.20	6.90	10.50	9.40	
L _	Effective Length of Flar	e (m)		5.18	3.70	8.70	8.80	
R	Entry Radius (m)			61.00	30.00	20.00	40.00	
D	Inscribed Circle Diamet	er (m)		80.00	80.00	80.00	80.00	
A	Entry Angle (degree)	. ,		28.00	33.00	46.00	31.00	
Q	Entry Flow (pcu/hour)			1,310	395	1,020	670	
Qc	Circulating Flow Across	Entry (pcu/hour)		575	1,705	795	1,815	
Р	Peak Hour Factor			1.0	1.0	1.0	1.0	
OUTPUT PARA	METERS							
c		Charpeness of flore		0.28	0.25	0.69	0.40	
S	= 1.6 (E - V) / L	Sharpness of flare		0.28	0.35	0.68	0.49	
K	= 1 - 0.00347 (A-30) - 0	.978 (1/K - 0.05)		1.04	1.01	0.94	1.02	
X2	= V + ((E-V) / (1+2S))			6.88	6.57	8.37	8.06	
М	= EXP ((D-60) /10)			7.39	7.39	7.39	7.39	
F	= 303 * X2			2084	1992	2535	2443	
Td	= 1 + (0.5 / (1+M))			1.06	1.06	1.06	1.06	
Fc	= 0.21*Td (1 + 0.2*X2)			0.53	0.52	0.59	0.58	
Qe	= 0.21 Tu (1 + 0.2 A2) = K (F - Fc*Qc*P)			1851	1120	1948	1417	
Qp	$= Q^*P$			1310	395	1948	670	
~~				1310		1020	5,0	
DFC	= Qp / Qe	Design Flow / Capacity	0.71	0.71	0.35	0.52	0.47	
		Total Entry Flows	3,395					
							1	
							1	
							1	
		. <u> </u>						
	formular'	ce to T.P.D.M. Vol.2 Chp.4	1 Sec 4 5 0					

Job Title:	No. 4 Tung Yuen Street 1	TIA .						
Junction:	Kai Tin Road / Lei Yue M						Designed by:	ССТ
Scheme:	2035 Design Flow AM Pe						Checked by:	JPP
Design Year:	2035		Job No.: CHK5074	8310			Date: JUN, 20	
Arm A	Lei Yue Mun Road (SB)							
Arm B	Kai Tin Road (WB)							
Arm C	Lei Yue Mun Road (NB)							
Arm D	Easern Harbour Crossing	; (NB)						
Arm E								
Arm E	Arm A Lei Yue 700 ها	Mun Road (SB) 1078 5			Arm B Kai Tin I 20 180 ▲ √	Road (WB) 160 L	Arm C	Mun Road (NB)
	125 95 235 Arm D Easern Harbour Crossing	; (NB)					Image: 10 125 ■ 964	
			ENTRY ARM	А	В	С	D	
INPUT PARAM	ETERS							
V E L R D A Q Q Q C P OUTPUT PARA S K X2 M	Approach Half Width (m) Effective Length of Flare Entry Width (m) Effective Length of Flare Entry Radius (m) Inscribed Circle Diamete Entry Angle (degree) Entry Flow (pcu/hour) Circulating Flow Across E Peak Hour Factor METERS = 1.6 (E - V) / L = 1 - 0.00347 (A-30) - 0.5 V + ((E-V) / (1+25)) = EXP ((D-60) /10)	(m) r (m) Entry (pcu/hour) Sharpness of flare		6.30 7.20 5.18 61.00 80.00 28.00 1,783 485 1.0 0.28 1.04 6.88 7.39	6.10 6.90 3.70 30.00 80.00 33.00 360 2,023 1.0 0.35 1.01 6.57 7.39	6.80 10.50 8.70 20.00 80.00 46.00 1,099 900 1.0 .68 0.94 8.37 7.39	6.70 9.40 8.80 40.00 80.00 31.00 455 1,999 1.0 0.49 1.02 8.06 7.39	
F	= 303 * X2			2084	1992	2535	2443	
Td	= 1 + (0.5 / (1+M))			1.06	1.06	1.06	1.06	
Fc	= 0.21*Td (1 + 0.2*X2)			0.53	0.52	0.59	0.58	
Qe	= K (F - Fc*Qc*P)			1901	955	1889	1308	
Qp	= Q*P			1783	360	1099	455	
DFC	= Qp / Qe	Design Flow / Capacity	0.94	0.94	0.38	0.58	0.35	
		Total Entry Flows	3,697					
							<u>.</u>	

Job Title:	No. 4 Tung Yuen Street	TIA						
lunction:	Kai Tin Road / Lei Yue M						Designed by:	ССТ
cheme:	2035 Design Flow PM Pe							JPP
Design Year:	2035		Job No.: CHK5074	8310			Date: JUN, 20	
Arm A	Lei Yue Mun Road (SB)							
Arm B	Kai Tin Road (WB)							
Arm C	Lei Yue Mun Road (NB)							
Arm D	Easern Harbour Crossing	g (NB)						
Arm E								
Arm E	Arm A Lei Yue 490 ▲	Mun Road (SB) 819 5 4 L			Arm B Kai Tin I 25 280 ▲ √	Road (WB) 90 L	Arm C	Mun Road (NB)
	90 399 Arm D Easern Harbour Crossing	g (NB)					€ 60 ♥ 963	
INPUT PARAM	FTERS		ENTRY ARM	A	В	С	D	
V E L R D A Q Q C P OUTPUT PARA S K X2 M F Td Td F C Q Q D FC	Approach Half Width (m) Entry Width (m) Effective Length of Flare Entry Radius (m) Inscribed Circle Diamete Entry Angle (degree) Entry Flow (pcu/hour) Circulating Flow Across Peak Hour Factor METERS = 1.6 (E - V) / L = 1 - 0.00347 (A-30) - 0.2 = V + ((E-V) / (1+2S)) = EXP ((D-60) / 10) = 303 * X2 = 1 + (0.5 / (1+M)) = 0.21*Td (1 + 0.2*X2) = K (F - Fc*Qc*P) = Q*P = Qp / Qe	: (m) er (m) Entry (pcu/hour) Sharpness of flare	0.71 3,401	6.30 7.20 5.18 61.00 80.00 28.00 1,314 574 1.0 0.28 1.04 6.88 7.39 2084 1.06 0.53 1852 1314 0.71	6.10 6.90 3.70 30.00 80.00 33.00 395 1.708 1.0 0.35 1.01 6.57 7.39 1992 1.06 0.52 1118 395 0.35	6.80 10.50 8.70 20.00 80.00 46.00 1,023 795 1.0 0.68 0.94 8.37 7.39 2535 1.06 0.59 1948 1023 0.53	6.70 9.40 8.80 40.00 80.00 31.00 669 1,818 1.0 0.49 1.02 8.06 7.39 2443 1.06 0.58 1415 669 0.47	
		e to T.P.D.M. Vol.2 Chp.4					·	

TRAFFIC SIGN	IALS	CALC	ULA	ΓΙΟΝ							Job No.:	CHK50748	310		MVA HO		
lunction: <u>Wai</u> `	Yip Street	/ Wai Fa	at Road /	Kwun Ton	g Bypass	s									Design Year:	2024	
Description: 2024	Observed	Flows									Designed E	Ву: <u>ССТ</u>			Checked By:	JPP	
	ients				Radiu	us (m)	nt (%)	Pro. Tu	rning (%)		Saturation pcu/hr)		AM Peak	1		PM Peak	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	AM Peak	PM Peak	AM Peak	PM Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Wai Yip Street (SB)	 ↑ *	A A A	1 1 1	3.500 3.500 3.600	11	20		8%	14%	1945 2105 1965	1930 2105 1965	159 172 120	0.082 0.082 0.061		132 143 249	0.068 0.068 0.127	
Wai Yip Street (NB)	₹] *	F C C C	1,2,3 3 3 3	3.900 3.900 3.500 3.650	28	18.6 15		51%	80%	1905 2145 2020 1925	1905 2145 1975 1925	648 218 205 196	0.340 0.102 0.101 0.102	0.340	570 213 196 191	0.299 0.099 0.099 0.099	0.299
Kwun Tong Bypass (EB)	+ ↑	B B	2 2	3.650 4.100		27 23		35%	39%	2080 1815	2075 1815	218 191	0.105 0.105		152 133	0.073 0.073	
Wai Fat Road (WB)	7 7 7	D D E	4 4 4 4	3.650 3.650 3.000 9.550		25 19 6				1980 2000 1905 1085	1980 2000 1905 1085	209 198 188 141	0.106 0.099 0.099 0.130	0.130	337 179 170 212	0.170 0.090 0.089 0.195	0.195
Pedestrian Crossing		Gp Hp Jp Kp Mp	2 1,3,4 2,3 4 1,2,3 4 4	Min gre Min gre Min gre Min gre Min gre Min gre Min gre	EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH =	13 5 5 11 7 5 5	+ + + + +	12 9 10 10 13 10 5		25 14 15 21 20 15 10						
lotes:				Flow: (po		142(93)	120(249) 648(570)	318(257) 319(252)	► 13(18) ►300(348)	386(349) 209(337) ◀	141(212)	Group y L (sec) C (sec) y pract. R.C. (%)	A.B.C.D 0.394 17 140 0.791 101%	F,E 0.470 20 140 0.771 64%	Group y L (sec) C (sec) y pract. R.C. (%)	A.B.C.D 0.469 17 140 0.791 68%	F,E 0.495 20 140 0.771 56%
stage / Phase Diagram 1. ↓ ↓ F		A	∧ Кр	2.	Gp. B Ip F	< \		, Кр	Hp +p F	c	► Кр	4. Hp Mp <i>L</i> · [−]		Lp∧ ↓ D Jp	5.		
I/G= 5 I/G= 5			I/G= I/G=					I/G=			I/G=			I/G=			
G= 5			I/G=	I				I/G=	I		Date			Junct	ion: ip Street / Wai		(H)

TRAFFIC SIGN	FFIC SIGNALS CALCULATION N: Wai Yip Street / Wai Fat Road / Kwun Tong Bypass										Job No.:	CHK50748	<u>3310</u>		MVA HON		
unction: <u>Wai N</u>	/ip Street	/ Wai Fa	at Road /	Kwun Ton	g Bypass	6		-							Design Year:	2035	
escription: 2035	Referenc	e Flows						-			Designed E	Ву: <u>ССТ</u>			Checked By:	JPP	
	ents				Radiu	ıs (m)	ıt (%)	Pro. Tu	rning (%)		Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	AM Peak	PM Peak	AM Peak	PM Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Wai Yip Street (SB)		A A A	1 1 1	3.500 3.500 3.600	11	20		6%	9%	1950 2105 1965	1940 2105 1965	245 265 140	0.126 0.126 0.071	1	218 237 290	0.112 0.113 0.148	
Wai Yip Street (NB)	¶ 	F C C C	1,2,3 3 3 3	3.900 3.900 3.500 3.650	28	18.6 15		27%	60%	1905 2145 2060 1925	1905 2145 2005 1925	875 303 290 272	0.459 0.141 0.141 0.141	0.459	745 281 262 252	0.391 0.131 0.131 0.131	0.391
Kwun Tong Bypass (EB)	+∱ *]	B B	2 2	3.650 4.100		27 23		46%	54%	2065 1815	2060 1815	304 266	0.147 0.147		237 208	0.115 0.115	
Wai Fat Road (WB)	↑ ↑ ₩	D D E	4 4 4 4	3.650 3.650 3.000 9.550		25 19 6				1980 2000 1905 1085	1980 2000 1905 1085	285 230 220 220	0.144 0.115 0.115 0.203	0.203	420 210 200 280	0.212 0.105 0.105 0.258	0.258
Pedestrian Crossing		Gp Hp Jp Kp Lp	2,3 4	Min gre Min gre Min gre Min gre Min gre Min gre	EN + FL EN + FL EN + FL EN + FL EN + FL	ASH = ASH = ASH = ASH = ASH =	13 5 5 11 7 5 5	+ + + + +	12 9 10 10 13 10 5	= = = = =	25 14 15 21 20 15 10						
lotes:				Flow: (p		165(110)	140(290)) 875(745)	495(435) 515(385)	► 15(20) ►350(410)	450(410) 285(420) ◀	220(280)	Group y L (sec) C (sec) y pract. R.C. (%)	A.B.C.D 0.558 17 140 0.791 42%	F,E 0.662 20 140 0.771 17%	Group y L (sec) C (sec) y pract. R.C. (%)	A,B,C,D 0.606 17 140 0.791 31%	F,E 0.649 20 140 0.771 19%
tage / Phase Diagram I. F		A	^у Кр	2.	Gp. B Ip \v	¢		3.	Hp + 	c	• Кр	4. Hp Mp <i>L</i>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Lp∧ ↓ D D Jp	5.		
/G= 5 /G= 5			I/G= I/G=					I/G=			I/G=			I/G= I/G=			
			10	I				1.0			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 C C C C C C C C C C C C C C C C C C C		1	1		(Wun Tong

RAFFIC SIGN	IALS	CALC	ULA	ΓΙΟΝ							Job No.:	CHK50748	310		MVA HON		
unction: Wai Y	rip Street	/ Wai Fa	at Road /	Kwun Ton	g Bypass										Design Year:	2035	
escription: 2035	Design F	ows									Designed I	Ву: <u>ССТ</u>			Checked By:	JPP	
	ents				Radius	s (m)	t (%)	Pro. Tu	rning (%)		Saturation (pcu/hr)		AM Peak			PM Peak	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	AM Peak	PM Peak	AM Peak	PM Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical
Wai Yip Street (SB)	< ↑ ↑ *	A A A	1 1 1	3.500 3.500 3.600	11	20		6%	9%	1950 2105 1965	1940 2105 1965	245 265 140	0.126 0.126 0.071	I	218 237 290	0.112 0.113 0.148	I
Wai Yip Street (NB)	•] ↑ +	F C C C	1,2,3 3 3 3	3.900 3.900 3.500 3.650	28	18.6 15		27%	60%	1905 2145 2060 1925	1905 2145 2005 1925	880 303 290 272	0.462 0.141 0.141 0.141	0.462	742 281 262 252	0.390 0.131 0.131 0.131	0.390
Kwun Tong Bypass (EB)	+† *1	B B	2 2	3.650 4.100		27 23		46%	54%	2065 1815	2060 1815	305 268	0.148 0.148		239 210	0.116 0.116	
Wai Fat Road (WB)	↑ ↑ ₩	D D E	4 4 4 4	3.650 3.650 3.000 9.550		25 19 6				1980 2000 1905 1085	1980 2000 1905 1085	285 230 220 220	0.144 0.115 0.115 0.203	0.203	420 210 200 280	0.212 0.105 0.105 0.258	0.258
edestrian Crossing		Gp Hp Jp Kp Lp	2 1,3,4 2,3 4 1,2,3 4 4	Min Gre Min Gre Min Gre Min Gre Min Gre	EEN + FLA EEN + FLA	ASH = ASH = ASH = ASH = ASH =	13 5 5 11 7 5 5	+ + + + +	12 9 10 10 13 10 5	= = = = =	25 14 15 21 20 15 10						
otes:				Flow: (p		165(110)	140(290) 880(742)	495(435) 515(385)	► 15(20) ►350(410)	450(410) 285(420)	220(280)	Group y L (sec) C (sec) y pract. R.C. (%)	A,B,C,D 0.559 17 140 0.791 42%	F,E 0.665 20 140 0.771 16%	Group y L (sec) C (sec) y pract. R.C. (%)	A,B,C,D 0.607 17 140 0.791 30%	F,E 0.648 20 140 0.771 19%
÷ F		A	∧ Кр У	2.	Gp≺ B Ip↓ F			,Кр		c	► Кр	Mp ⊭́	, <	Lp, ↓ E D Jp	5.		
'G= 5 'G= 5			I/G=					I/G= I/G=			I/G=			I/G=			
· ·				· · ·							Date						(Wun Ton

TRAFFIC SIGN	ALS	CALC	ULA	ΓΙΟΝ							Job No.:	CHK50748	3310		MVA HO	NG KONG	S LIMITE
Junction: Lei Yu	ue Mun R	oad / Slip	o Road to	EHC											Design Year:	2024	
Description: 2024	Observed	Flows									Designed E	By: <u>CCT</u>			Checked By:	_JPP	
	ents				Radi	us (m)	ıt (%)	Pro. Tu	rning (%)		Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	AM Peak	PM Peak	AM Peak	PM Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Lei Yue Mun Road (SB)	† † *	A A C C	1,2,3 1,2,3 3,4 3,4	3.240 2.870 2.890 2.970		18 19				1940 2040 1760 1900	1940 2040 1760 1900	387 406 354 383	0.199 0.199 0.201 0.202	0.202	517 543 78 84	0.266 0.266 0.044 0.044	0.044
Lei Yue Mun Road (NB)	▲† †	B B	1 1	3.350 2.730	16.5			72%	31%	1830 2030	1895 2030	458 507	0.250 0.250	0.250	406 435	0.214 0.214	0.214
Pedestrian Crossing		Dp Ep Fp	2,3,4 4 2	min gre Min gre Min gre	EEN + FL	_ASH =	5 5 5	+ + +	7 7 8	= = =	12 12 13						*
Notes:				Flow: (p	cu/hr)						→ N N	Group y	B,Dp 0.250	B,Fp,C	Group	A,Ep 0.266	B,Fp,C 0.259
							737(162)	793(1060)				y L (sec)	19	29	L (sec)	19	29
								637(716)				C (sec)	120	120	C (sec)	120	120
							328(125)					y pract.	0.758	0.683	y pract.	0.758	0.683
												R.C. (%)	203%	51%	R.C. (%)	184%	164%
Stage / Phase Diagrams 1.	A			2.			A	3.		c	A	4.	¢		5.		
В	·			×	Fp ≺ Dp	->			<i><</i> Dp	>			< > Dp	> Ep			
I/G= 6			I/G= 1			13		I/G= 2			I/G=			I/G=			
I/G= 6			I/G= 1			13		I/G= 2			I/G= Date:			I/G= Junct			\bigcirc

TRAFFIC SIGNALS CALCULATION **MVA HONG KONG LIMITED** Job No.: CHK50748310 Junction: Lei Yue Mun Road / Slip Road to EHC Design Year: 2035 JPP 2035 Reference Flows Designed By: <u>CCT</u> Description: Checked By: **Revised Saturation** Radius (m) Pro. Turning (%) AM Peak PM Peak (%) Movements Flow (pcu/hr) Gradient Phase Stage Width Right Flow Flow Left Approach AM Peak PM Peak AM Peak PM Peak y Value Critical y y Value Critical y (pcu/hr) (pcu/hr) (m) Lei Yue Mun Road 1,2,3 3.240 1940 1940 553 0.285 709 0.365 A (SB) А 1,2,3 2.870 2040 2040 582 0.285 746 0.366 0.366 С 3,4 2.890 18 1760 1760 0.236 0.236 91 0.052 416 С 1900 1900 449 0.236 99 0.052 3.4 2.970 19 Lei Yue Mun Road В 3.500 10 1710 1710 600 0.351 0.351 290 0.170 в 1985 1985 470 0.237 475 0.239 (NB) 3.700 1 в 2.730 2030 2030 480 0.236 485 0.239 2,3,4 MIN GREEN + FLASH = Pedestrian Crossing Dp 5 7 12 + = + MIN GREEN + FLASH = 7 = * 5 Ep 4 12 * Fp 2 MIN GREEN + FLASH = 5 8 = 13 Notes: Flow: (pcu/hr) +Group B,Fp,C Group B,Dp B,Fp,C A,Ep v 0.351 0.587 У 0.291 0.366 865(190) 🗲 1135(1455) L (sec) 19 29 L (sec) 29 19 120 120 C (sec) 120 120 C (sec) 950(960) 600(290) y pract. 0.758 0.683 y pract. 0.683 0.758 R.C. (%) 116% 16% R.C. (%) 134% 107% Stage / Phase Diagrams 2. 1. 3. 4. 5. А С С А Fp *<---->* Ep <----> <----> <----> Dp Dp Dp I/G= 6 I/G= 10 13 I/G= 2 I/G= I/G= I/G= 3 I/G= I/G= I/G= 5 12 I/G= Lei Yue Mun Road / Slip Road to EHC Date:

19 Feb 2025

Junction: Lei Yue Mun Road / Slip Road to EHC Design Year: 2035 2035 Design Flows JPP Designed By: <u>CCT</u> Description: Checked By: **Revised Saturation** Radius (m) Pro. Turning (%) AM Peak PM Peak (%) Movements Flow (pcu/hr) Gradient Phase Stage Width Right Flow Flow Left Approach AM Peak PM Peak AM Peak PM Peak y Value Critical y y Value Critical y (pcu/hr) (pcu/hr) (m) Lei Yue Mun Road 1,2,3 3.240 1940 1940 555 0.286 713 0.368 A (SB) А 1,2,3 2.870 2040 2040 583 0.286 750 0.368 0.368 С 3,4 2.890 18 1760 1760 0.236 0.236 0.052 416 91 С 1900 1900 449 0.236 99 0.052 3.4 2.970 19 Lei Yue Mun Road В 3.500 10 1710 1710 601 0.351 0.351 294 0.172 в 1985 1985 472 0.238 474 0.239 (NB) 3.700 1 484 0.238 в 2.730 2030 2030 482 0.237 2,3,4 MIN GREEN + FLASH = Pedestrian Crossing Dp 5 7 12 + = + MIN GREEN + FLASH = 7 = * 5 Ep 4 12 * Fp 2 MIN GREEN + FLASH = 5 8 = 13 Notes: Flow: (pcu/hr) +Group B,Fp,C Group B,Dp B,Fp,C A,Ep v 0.351 0.588 У 0.291 0.368 865(190) 🗲 1138(1463) L (sec) 19 29 L (sec) 29 19 120 120 C (sec) 120 120 C (sec) 954(958) 601(294) y pract. 0.758 0.683 y pract. 0.683 0.758 R.C. (%) 116% 16% R.C. (%) 135% 106% Stage / Phase Diagrams 2. 1. 3. 4. 5. А С С А Fp *<---->* Ep <----> <----> <----> Dp Dp Dp I/G= 6 I/G= 10 13 I/G= 2 I/G= I/G= I/G= 3 I/G= I/G= I/G= 5 12 I/G=

TRAFFIC SIGNALS CALCULATION

Job No.: CHK50748310

MVA HONG KONG LIMITED

Lei Yue Mun Road / Slip Road to EHC

Date: 19 Feb 2025

Junction:		ing Shun Street (J)		Designed by: CCT
cheme: Design Ye	2024 Observed Flows	Job No.: CHK5074	48310	Checked by: JPP Date: Feb-25
Arm A:	Cha Kwo Ling Road	300 NO CHK30/2	48310	Ddie. Feb-23
Arm B:	Access Road to Lei Yue N	Aun Estate		
Arm C:	Shung Shun Street			
Arn	m C AM	PM		
	182	218		
Shung Sh	nun Street 0	0		
			↓	
			→	
			AM	PM Arm A
			232	244 5 Cha Kwo Ling Road
			•	
	AM 0	PM 0		
	3	3		
		I	I	
		Arm B Access Ro	oad to Lei Yue Mun Estate	
GEOMETR	Y		I	
Maior Roc	ad Width (m)	W 11.25	Lane widths (m) w(b	-a) 2.00
	eserve Width (m)	Wcr 0.00	w(b	
	of major road right turn	Y/N? Y	w(c	-b) 2.10
Combined	d stream on minor arm	Y/N ² Y		
Visibility D	Distances (m)	Vr(b-a) 41	Calculated D	0.832
		VI(b-a) 250	Parameters E	0.785
		Vr(b-c) 41 Vr(c-b) 26	F	0.782 0.612
ANALYSIS			AM PEA	K PM PEAK
	LOWS (pcu/hr)	q(c-a)	18	32.05 217.8
KAIIICII		q(c-b)	10	0 0
		q(a-b)		3 5
		q(a-c)	2	232.1 244.4
		q(b-a) q(b-c)		3 3 0 0
		f		0.00 0.00
	ES (pcu/hr)	Q(b-ac)	457	450.5
		Q(c-a)		1800 1800
		Q(c-b)		.768 539.3
RFC's		C-0		0.10 0.12
		c-b		0.00 0.00
		b-ac		0.01 0.01
				0.10 0.12
			I	0.10 0.12
RFC		s to the left or right of the respective s	streams	
	and Vr are visibility distances			
	and Vr are visibility distances 094(w(b-a)-3.65))(1+0.0009(Vr	r(b-a)-120))(1+0.0006(VI(b-a)-150))		
Where VI D = (1+0.0 E = (1+0.0	094(w(b-a)-3.65))(1+0.0009(Vr 94(w(b-c)-3.65))(1+0.0009(Vr	(b-c)-120))		
Where VI D = (1+0.0) E = (1+0.0) E = (1+0.0)	094(w(b-a)-3.65))(1+0.0009(Vr 94(w(b-c)-3.65))(1+0.0009(Vr 94(wc-b)-3.65))(1+0.0009(Vr(d	(b-c)-120))		
Vhere VI $D = (1+0.0)^{2}$ $= (1+0.0)^{2}$ $= (1+0.0)^{2}$ $Y = 1-0.03^{2}$	094(w(b-a)-3.65))(1+0.0009(Vr 94(w(b-c)-3.65))(1+0.0009(Vr 94(wc-b)-3.65))(1+0.0009(Vr 45W	(b-c)-120)) c-b)-120))		
Where VI = (1+0.0 = (1+0.0 = (1+0.0 = 1-0.03 = propor	094(w(b-a)-3.65))(1+0.0009(Vr 94(w(b-c)-3.65))(1+0.0009(Vr 94(wc-b)-3.65))(1+0.0009(Vr(d	(b-c)-120)) c-b)-120)) əft	treams	

Junction:		ing Shun Street (J)		Designed by: CCT
cheme: Design Ye	2035 Reference Flows ear: 2035	Job No.: CHK507483	310	Checked by: JPP Date: Feb-25
Arm A:	Cha Kwo Ling Road			
vrm B:	Access Road to Lei Yue A	Λun Estate		
Arm C:	Shung Shun Street			
Arn	n C AM	PM		
	292	302		
Shung Sh	un Street 0	0		
			↓	
			AM 362	PM Arm A 370
			362	5 Cha Kwo Ling Road
			·	
	AM	PM		
	0			
	3	3		
		I	I	
		Arm B Access Road	d to Lei Yue Mun Estate	
	w.			
GEOMETR	Y			
Maior Roc	ad Width (m)	W 11.25	Lane widths (m) w(b-c	2.00
	eserve Width (m)	Wcr 0.00	w(b-c	
	of major road right turn	Y/N? Y	w(c-b	2.10
Combined	d stream on minor arm	Y/N? Y		
Visibility D	istances (m)	Vr(b-a) 41	Calculated D	0.832
		VI(b-a) 250	Parameters E	0.785
		Vr(b-c) 41 Vr(c-b) 26	F Y	0.782 0.612
				0.012
ANALYSIS			AM PEAK	PM PEAK
			,	292 302
	LOWS (pcu/hr)	q(c-a) q(c-b)	2	0 0
		q(a-b)		3 5
		q(a-c)	3	362 370
		q(b-a)		3 3 0 0
		q(b-c) f	0	0 0 .00 0.00
		·	0.	
			100.1	100 417.4
CAPACIII	ES (pcu/hr)	Q(b-ac) Q(c-a)	420.1	199 417.4 300 1800
		Q(c-b)	519.1	
		с-а		.16 0.17
RFC's		c-b		.00 0.00
RFC's		b-ac	0	.01 0.01
RFC's				
			0	.16 0.17
RFC	and Vr are visibility distance	to the left or right of the respective stre		
		s to the left or right of the respective stre r(b-a)-120))(1+0.0006(V1(b-a)-150))		
RFC Where VI D = (1+0.0 E = (1+0.0	94(w(b-a)-3.65))(1+0.0009(V 94(w(b-c)-3.65))(1+0.0009(Vr	r(b-a)-120))(1+0.0006(VI(b-a)-150)) (b-c)-120))		
RFC Where VI D = (1+0.0 = (1+0.0) = (1+0.0 = (1+0.0) =)94(w(b-a)-3.65))(1+0.0009(V 94(w(b-c)-3.65))(1+0.0009(Vr 94(wc-b)-3.65))(1+0.0009(Vr(r(b-a)-120))(1+0.0006(VI(b-a)-150)) (b-c)-120))		
RFC Where VI $= (1+0.0)$ = (1+0.0) = (1+0.0) = (1+0.0) = (1+0.0))94(w(b-a)-3.65))(1+0.0009(V 94(w(b-c)-3.65))(1+0.0009(Vr 94(wc-b)-3.65))(1+0.0009(Vr 45W	r(b-a)-120))(1+0.0006(VI(b-a)-150)) (b-c)-120)) c-b)-120))		
FC Vhere VI $= (1+0.0)$ = (1+0.0) = (1+0.0) = (1+0.0) = 1-0.03 = proport)94(w(b-a)-3.65))(1+0.0009(V 94(w(b-c)-3.65))(1+0.0009(Vr 94(wc-b)-3.65))(1+0.0009(Vr(r(b-a)-120))(1+0.0006(V1(b-a)-150)) (b-c)-120)) c-b)-120)) eft	ams	

Junction:	Cha Kwo Ling Road / Shi	Jng Shun Street (J)		Designed by: CCT
cheme: Design Ye	2035 Design Flows	Job No.: CHK50748	8310	Checked by: JPP Date: Feb-25
Arm A:	Cha Kwo Ling Road	300 NO CHK30/40	8510	Ddie. Peb-23
Arm B:	Access Road to Lei Yue I	Nun Estate		
Arm C:	Shung Shun Street			
Δrn	n C AM	PM		
	294	303		
Shung Sh	un Street 0	0		
			↓	
			>	
			AM	PM Arm A
			362	370
			3	5 Cha Kwo Ling Roo
			*	
	AM	PM		
	0			
	3	3		
		-		
		Arm B Access Roo	ad to Lei Yue Mun Estate	
GEOMETR	Y			
	•			
	ad Width (m)	W 11.25		(b-a) 2.00
	eserve Width (m)	Wcr 0.00		(b-c) 2.00
	of major road right turn d stream on minor arm	Y/N? Y Y/N? Y	w	(c-b) 2.10
Combined		1/149		
Visibility D	istances (m)	Vr(b-a) 41	Calculated D	0.832
		VI(b-a) 250	Parameters E	0.785 0.782
		Vr(b-c) 41 Vr(c-b) 26	F Y	0.612
ANALYSIS			AM PE	AK PM PEAK
				204 202
IKAFFIC FL	LOWS (pcu/hr)	q(c-a) q(c-b)		294 303 0 0
		q(a-b)		3 5
		q(a-c)		362 370
		q(b-a)		3 3
		d(p-c)		0 0
		f		0.00 0.00
	ES (pcu/hr)	Q(b-ac)	4	19.966 417.3
CAPACITII		Q(c-a) Q(c-b)		1800 1800
CAPACITII			۰ ۲	19.138 517.4
CAPACITII				
CAPACITII				
CAPACITII RFC's		c-a		0.16 0.17
		c-a c-b		0.00 0.00
		c-a		
RFC's		c-a c-b		0.00 0.00
RFC's		c-a c-b		0.00 0.00 0.01 0.01
RFC's RFC Where VI		c-a c-b b-ac s to the left or right of the respective str	reams	0.00 0.00 0.01 0.01
RFC's RFC Where VI (D = (1+0.0	94(w(b-a)-3.65))(1+0.0009(V	c-a c-b b-ac s to the left or right of the respective str r(b-a)-120))(1+0.0006(VI(b-a)-150))	reams	0.00 0.00 0.01 0.01
RFC's RFC Where VI (D = (1+0.0 E = (1+0.05	94(w(b-a)-3.65))(1+0.0009(V 94(w(b-c)-3.65))(1+0.0009(Vi	c-a c-b b-ac s to the left or right of the respective str r(b-a)-120))(1+0.0006(VI(b-a)-150)) (b-c)-120))	reams	0.00 0.00 0.01 0.01
RFC's RFC D = (1+0.05 = (1+0.05 = (1+0.05)	194(w(b-a)-3.65))(1+0.0009(V 94(w(b-c)-3.65))(1+0.0009(V 94(wc-b)-3.65))(1+0.0009(Vr	c-a c-b b-ac s to the left or right of the respective str r(b-a)-120))(1+0.0006(VI(b-a)-150)) (b-c)-120))	reams	0.00 0.00 0.01 0.01
FC's FC Where VI (1) = (1+0.0) = (1+0.0) ' = 1-0.03(-)	194(w(b-a)-3.65))(1+0.0009(V 94(w(b-c)-3.65))(1+0.0009(Vr 94(wc-b)-3.65))(1+0.0009(Vr 45W	c-a c-b b-ac s to the left or right of the respective str r(b-a)-120))(1+0.0006(VI(b-a)-150)) (b-c)-120)) c-b)-120))	reams	0.00 0.00 0.01 0.01
FC's FC Vhere VI () = (1+0.0) = (1+0.0) = (1+0.0) = 1-0.03 = propor	194(w(b-a)-3.65))(1+0.0009(V 94(w(b-c)-3.65))(1+0.0009(V 94(wc-b)-3.65))(1+0.0009(Vr	c-a c-b b-ac s to the left or right of the respective str r(b-a)-120))(1+0.0006(V1(b-a)-150)) (b-c)-120)) c-b)-120))		0.00 0.00 0.01 0.01

Junction: Scheme:		n Street / Yan Y rved Flows						igned by: CCT ecked by: JPP
Design Ye	ar: 2024			Job No.: CHK5074	8310		Dat	
vrm A:		n Street (SB)						
vrm B: vrm C:	Yan Yue W	n Street (NB) /ai						
unite.	Turrie v							
Arm	n C	AM 88	PM 83					
Yan Yu	Je Wai	4	6					
					J			
					> `			
						AM	PM	Arm A
				── ←─		71	71	Shung Shun Stree
						17	29	(SB)
					¥			
		AM 4	PM					
		24	25	-+-+*				
				I	I			
				Arm B Shung Shu	n Street (NB)			
GEOMETRY	Ŷ	-						
Major Roa	ad Width (m)		W	10.60	Lane w	idths (m)	w(b-a)	2.41
Central Re	eserve Width		Wcr	1.80		. ,	w(b-c)	2.41
	of major road d stream on n		Y/N?	Y			w(c-b)	2.10
ompinec	a stream on m	ninor arm	Y/N?	Y				
/isibility Di	istances (m)		Vr(b-a)	99999	Calculo		D	74.59
			VI(b-a) Vr(b-c)	32 99999	Parame	eters	E F	80.3 0.798
			Vr(c-b)	47			Y	0.634
ANALYSIS							AM PEAK	PM PEAK
RAFFIC FL	LOWS (pcu/hr	.)	q(c-a)				87.5	83.3
			q(c-b)				3.6	5.5
			q(a-b)				17.2	29.15
			q(a-c) q(b-a)				70.9 24.15	71.1 25.05
			q(b-c)				3.6	6.8
			f				0.13	0.21
								48328
CAPACITIE	ES (pcu/hr)		Q(b-ac)				47550.9	
Capacitie	ES (pcu/hr)		Q(c-a)				1788.8	1783
CAPACITIE	ES (pcu/hr)							1783 576.3
Capacitie	ES (pcu/hr)		Q(c-a)				1788.8	
	ES (pcu/hr)		Q(c-a) Q(c-b)				1788.8 578.57	576.3
CAPACITIE RFC's	ES (pcu/hr)		Q(c-a) Q(c-b) 				1788.8 578.57 0.05	0.05
	ES (pcu/hr)		Q(c-a) Q(c-b) 				1788.8 578.57 0.05 0.01	576.3 0.05 0.01
	ES (pcu/hr)		Q(c-a) Q(c-b) 				1788.8 578.57 0.05	0.05
FC's	ES (pcu/hr)		Q(c-a) Q(c-b) 				1788.8 578.57 0.05 0.01	576.3 0.05 0.01
FC's			Q(c-a) Q(c-b) c-a c-b b-ac				1788.8 578.57 0.05 0.01 0.00	576.3 0.05 0.01 0.00
RFC's RFC Where VI of	and Vr are vis		Q(c-a) Q(c-b) c-a c-b b-ac to the left or rig	ht of the respective st	reams		1788.8 578.57 0.05 0.01 0.00	576.3 0.05 0.01 0.00
RFC's RFC Where VI (D = (1+0.0'	and Vr are vis 94(w(b-a)-3.6	5))(1+0.0009(Vr	Q(c-a) Q(c-b) 	pht of the respective st 0006(V1(b-a)-150))	reams		1788.8 578.57 0.05 0.01 0.00	576.3 0.05 0.01 0.00
RFC's RFC Where VI of D = (1+0.07 E = (1+0.07	and Vr are vis 94(w(b-a)-3.6 ?4(w(b-c)-3.6)		Q(c-a) Q(c-b) 		reams		1788.8 578.57 0.05 0.01 0.00	576.3 0.05 0.01 0.00
FC 's FC 's Where VI $d_{2} = (1+0.0)^{2}$ $= (1+0.09)^{2}$ $= (1+0.03)^{2}$	and Vr are vis 94(w(b-c)-3.6 24(w(b-c)-3.65 45W	5))(1+0.0009(Vr 5))(1+0.0009(Vr())(1+0.0009(Vr(c	Q(c-a) Q(c-b) c-a c-b b-ac to the left or rig (b-a)-120))(1+0.(b-c)-120)) :-b)-120))		reams		1788.8 578.57 0.05 0.01 0.00	576.3 0.05 0.01 0.00
FC's FC fc	and Vr are vis 94(w(b-a)-3.6 24(w(b-c)-3.65 44(wc-b)-3.65 45W tion of minor f	5))(1+0.0009(Vr 5))(1+0.0009(Vr(Q(c-a) Q(c-b) 				1788.8 578.57 0.05 0.01 0.00	576.3 0.05 0.01 0.00

Junction: Scheme:	Shung Shun Street / Yan 2035 Reference Flows				gned by: CCT cked by: JPP
Design Ye	ar: 2035	Job No.: CHK5074	18310	Date	
vrm A: vrm B:	Shung Shun Street (SB) Shung Shun Street (NB)				
Arm C:	Yan Yue Wai				
Arn	nC AM	РМ			
	130	110			
Yan Yu	Je Wai 5	5			
			\rightarrow V		
			AM	PM	Arm A
			<u>85</u> 20	85	Shung Shun Stree (SB)
				00	(00)
			•		
	AM	PM			
	<u>5</u> 30	30			
		30			
		I	I		
		Arm B Shung Shu	ın Street (NB)		
GEOMETR	Y				
	ıd Width (m) eserve Width (m)	W 10.60 Wcr 1.80	Lane widths (m)	w(b-a) w(b-c)	2.41 2.41
Blockage	of major road right turn	Y/N? Y		w(c-b)	2.10
Combined	d stream on minor arm	Y/N? Y			
/isibility Di	istances (m)	Vr(b-a) 99999 VI(b-a) 32	Calculated Parameters	D E	74.59 80.3
		Vr(b-c) 99999	Falameters	F	0.798
		Vr(c-b) 47		Y	0.634
ANALYSIS			A	M PEAK	PM PEAK
	_OWS (pcu/hr)	q(c-a)		130	110
		q(c-b)		5	5
		q(a-b) q(a-c)		20 85	35 85
		q(b-a)		85 30	30
		q(b-c)		5	10
		f		0.14	0.25
CAPACITIE	ES (pcu/hr)	Q(b-ac)		46967.9	48197
	,	Q(c-a)		1784.36	1784
		Q(c-b)		575.455	572.7
RFC's		C-0		0.07	0.06
		c-b		0.01	0.01
		b-ac		0.00	0.00
				0.07	0.06
FC					
		es to the left or right of the respective st /r(b-a)-120))(1+0.0006(VI(b-a)-150))	treams		
Where VI o D = (1+0.0 E = (1+0.09	94(w(b-c)-3.65))(1+0.0009(V				
Vhere VI () = (1+0.0) = (1+0.09) = (1+0.09)	94(w(b-c)-3.65))(1+0.0009(V 94(wc-b)-3.65))(1+0.0009(Vr				
/here VI (= (1+0.0) = (1+0.0) = (1+0.0) = 1-0.034	94(w(b-c)-3.65))(1+0.0009(V 94(wc-b)-3.65))(1+0.0009(Vr	(c-b)-120))			

lunction: Scheme:	Shung Shun Street / Yan 2035 Design Flows				Che	gned by: CCT cked by: JPP
Design Yea		Job No.: (HK50748310		Date	e: Feb-25
Arm A: Arm B:	Shung Shun Street (SB) Shung Shun Street (NB)					
Arm C:	Yan Yue Wai					
Arm	C AM	PM				
Yan Yue	• Wai 5	<u>111</u> 5	F			
ran rue		<u> </u>				
		_	\longrightarrow v			
						_
				AM	PM	Arm A
				<u>85</u> 20	85	Shung Shun Stree (SB)
			J	, 20		(30)
				r		
	AM	PM				
	5	10				
	30	30				
		Arm B Sh	ing Shun Street (N	IB)		
GEOMETRY						
Major Roac	I Width (m)	W 10.60		Lane widths (m)	w(b-a)	2.41
	erve Width (m)	Wcr 1.80			w(b-c)	2.41
	f major road right turn stream on minor arm	Y/N? Y			w(c-b)	2.10
√isibility Dist	tances (m)	Vr(b-a) 99999		Calculated	D	74.59
		VI(b-a) 32		Parameters	E	80.3
		Vr(b-c) 99999			F Y	0.798 0.634
		Vr(c-b) 47			ř	0.634
ANALYSIS					AM PEAK	PM PEAK
RAFFIC FIC	DWS (pcu/hr)	q(c-a)			132	111
		q(c-b)			5	5
		q(a-b)			20	35 85
		q(a-c) q(b-a)			85 30	85 30
		q(b-c)			5	10
		f			0.14	0.25
	(no) (hr)	$O(h, \alpha^{-1})$			4/0403	10100
CAPACITIES	(pcu/nr)	Q(b-ac) Q(c-a)			46948.1 1784.36	48188 1784
		Q(c-b)			575.455	572.7
RFC's		c-a			0.07	0.06
		c-b b-ac			0.01 0.00	0.01 0.00
RFC					0.07	0.06
Where VI a	nd Vr are visibility distance	s to the left or right of the resp	ctive streams			
) = (1+0.09	4(w(b-a)-3.65))(1+0.0009(V	r(b-a)-120))(1+0.0006(VI(b-a)-1				
	4(w(b-c)-3.65))(1+0.0009(V 4(wc-b)-3.65))(1+0.0009(Vr					
	HWC-DI-3.0311[1+0.0009[V[C-0]-120]]				
= (1+0.094 = 1-0.0345 = proportio						

unction: Tung Yuen Street / Y cheme: 2024 Observed Flow	'S	Cheo	gned by: CCT cked by: JPP
esign Year: 2024	Job No.: CHK5074	8310 Date	e: Feb-25
rm A: Yan Yue Wai (SB) rm B: Yan Yue Wai (NB)			
rm C: Tung Yuen Street			
			_
Arm C AM	PM		
70	49		
Tung Yuen Street 24	6		
		→ [₩]	
		*	_
		AM PM	Arm A
		<u>61 48</u> 6 8	Van Vuo Wai (SD)
			Yan Yue Wai (SB)
		•	_
AM	PM		
26	5		
2	5		
	Arm B Yan Yue W	(ai (NB)	
EOMETRY			
lajor Road Width (m)	W 12.30	Lane widths (m) w(b-a)	3.53
entral Reserve Width (m)	Wcr 1.60	w(b-c)	3.53
ockage of major road right turn ombined stream on minor arm	n Y/N? N Y/N? Y	w(c-b)	2.10
	1/199		
		Calculated D	02.00
isibility Distances (m)	Vr(b-a) 99999 VI(b-a) 23	Calculated D Parameters E	83.02 89.87
	Vr(b-c) 99999	F	0.797
	Vr(c-b) 46	Y	0.576
NALYSIS		AM PEAK	PM PEAK
RAFFIC FLOWS (pcu/hr)	q(c-a)	69.5	49
a a no neo no (poo, na)	q(c-b)	23.5	6
	d(a-p)	5.6	8
	q(a-c)	61.2	47.9 5
	q(b-a) q(b-c)	26	4.5
	f	0.93	0.47
APACITIES (pcu/hr)	Q(b-ac)	64477	58024
	Q(c-b)	582.961	584.8
			00.10
FC's	c-b	0.04	0.01
	b-ac	0.00	0.00
FC		0.04	0.01
(here)/(and)/r data the state			
	ances to the left or right of the respective st 109(Vr(b-a)-120))(1+0.0006(V1(b-a)-150))	reams	
= (1+0.094(w(b-c)-3.65))(1+0.00)			
= (1+0.094(wc-b)-3.65))(1+0.000			
= 1-0.0345W = proportion of minor traffic turn	ing left		

	(uen Street / Yan ` eference Flows					gned by: CCT cked by: JPP
Design Year: 2035			Job No.: CHK50748	310	Date	
	ue Wai (SB)					
	ue Wai (NB) (uen Street					
inic. Iong i	Ueri Sileei					
						_
Arm C	AM 105	PM				
Tung Yuen Street	30	5				
				↓		
			;	•		
						_
					M PM	Arm A
					70 <u>55</u> 5 10	Yan Yue Wai (SB)
			-	•		_
	AM	PM				
	30	5				
	5	5				
			A	-: ()))		
			Arm B Yan Yue Wa	ai (INB)		
GEOMETRY				•		
Agior Pogd Width	(m)	w	12.30	l ano widths (n	a) w(b a)	2.52
Major Road Width Central Reserve Wi		Wcr	1.60	Lane widths (n	n) w(b-a) w(b-c)	3.53 3.53
Blockage of major	road right turn	Υ/N [°]	Ν		w(c-b)	2.10
Combined stream	on minor arm	Y/N?	Y			
isibility Distances/	m)	Vr(b-a)	99999	Calculated	D	83.02
		VI(b-a) Vr(b-c)	23 99999	Parameters	E	89.87 0.797
		Vr(c-b)	46		Ý	0.576
ANALYSIS					AM PEAK	PM PEAK
ANALTSIS					AMPEAK	PMPEAK
RAFFIC FLOWS (pc	:u/hr)	q(c-a)			105	65
		q(c-b)			30	5
		q(a-b) q(a-c)			5 70	10 55
		q(b-a)			5	5
		q(b-c)			30	5
		f			0.86	0.50
					100/7	60100
CAPACITIES (pcu/h	1)	Q(b-ac)			62967	58139
		Q(c-b)			581.59	583.3
RFC's		c-b			0.05	0.01
		b-ac			0.00	0.00
RFC					0.05	0.01
			nt of the respective stre	eams		
Where VI and Vr ar			000(10-0)-150))			
Where VI and Vr ar) = (1+0.094(w(b-a	-3.65))(1+0.0009/V					
Where VI and Vr ar D = (1+0.094(w(b-a) = (1+0.094(w(b-c)) = (1+0.094(wc-b)-						
Vhere VI and Vr ar 0 = (1+0.094(w(b-a) = (1+0.094(w(b-c)) = (1+0.094(wc-b)- 1 = 1-0.0345W	3.65))(1+0.0009(Vr	(c-b)-120))				
/here VI and Vr ar = (1+0.094(w(b-a = (1+0.094(w(b-c) = (1+0.094(wc-b)- = 1-0.0345W = proportion of mi		(с-b)-120)) left	acity of combined stre	ams		

unction: Tung Yuen Stre cheme: 2035 Design Flo	eet / Yan Yue Wai (L) ows				gned by: CCT cked by: JPP
esign Year: 2035	Job	No.: CHK50748310		Date	
rm A: Yan Yue Wai (rm B: Yan Yue Wai (
rm B: Yan Yue Wai (rm C: Tung Yuen Stre					
Arm C A	AM PM				
1	07 66	\rightarrow			
Tung Yuen Street	30 5				
		`			
					_
			AM	PM	Arm A
	<hr/>	←	<u>70</u> 5	55	
			<u> </u>	10	Yan Yue Wai (SB)
			•		_
۵	AM PM				
	30 5	>			
	5 5	~			
	Arm B	Yan Yue Wai (NB)			
GEOMETRY					
1ajor Road Width (m)	W 12.3	0	Lane widths (m)	w(b-a)	3.53
Central Reserve Width (m)	Wcr 1.6)		w(b-c)	3.53
lockage of major road rig Combined stream on mino				w(c-b)	2.10
'isibility Distances (m)	Vr(b-a) 9999	0	Calculated	D	83.02
ISIDIITY DISTUTCES (TT)	VI(b-a) 23		Parameters	E	89.87
	Vr(b-c) 9999			F	0.797
	Vr(c-b) 46	-		Y	0.576
NALYSIS				AM PEAK	PM PEAK
RAFFIC FLOWS (pcu/hr)	q(c-a)			107	66
	q(c-b)			30	5
	q(a-b)			5	10
	q(a-c) q(b-a)			70 5	55 5
	q(b-c)			30	5
	f			0.86	0.50
				(00/0.0	50100
CAPACITIES (pcu/hr)	Q(b-ac)			62962.2	58132
	Q(c-b)			581.59	583.3
	~ h			0.05	0.01
FC's	c-b b-ac			0.05 0.00	0.01 0.00
FC				0.05	0.01
here VI and Vr are visibilit	ty distances to the left or right of the	respective streams			
) = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))(1+0.0006(VI(b				
= (1+0.094(w(b-c)-3.65))(1)					
$= 11 \pm 11 \pm 124 \pm 100$	+0.0009(Vr(c-b)-120))				
= 1-0.0345W					
		combined streams			

unction: cheme:	Tung Yuen Street / Ko F 2024 Observed Flows			Designed by: CCT Checked by: JPP
esign Yea		Job No.: CHK5	0748310	Date: Feb-25
rm A: rm B:	Ko Fai Road (WB) Tung Yuen Street			
rm C:	Ko Fai Road (EB)			
Arm	-	PM		
Ko Fai Roo	ad (EB) 2	75 4		
	. ,		\checkmark	
			\rightarrow	
		→ ←	AM 1	PM Arm A
			54	60 Ko Fai Road (WB)
			•	
	AM	PM		
	12	36		
	281	191		
			I	
		Arm B Tung Y	uen Street	
EOMETRY				
	d Width (m) serve Width (m)	W 10.70 Wcr 0.00		(b-a) 2.11 (b-c) 2.11
lockage o	of major road right turn	Y/N? N		(c-b) 3.37
Combined	stream on minor arm	Y/Nš A		
	h			0.701
ISIDIIITY DIS	tances (m)	Vr(b-a) 20 VI(b-a) 27	Calculated D Parameters E	0.721 0.778
		Vr(b-c) 20 Vr(c-b) 17	F Y	0.883 0.631
		Vr(c-b) 17	1	0.831
NALYSIS			AM PE	AK PM PEAK
RAFFIC FLC	DWS (pcu/hr)	q(c-a)		43.9 74.6
		q(c-b)		1.5 3.6 53.7 59.5
		q(a-b) q(a-c)		1.1 2.5
		d(p-a)	2	280.95 191.2
		q(b-c) f		12 36.2 0.04 0.16
CAPACITIES	S (pcu/hr)	Q(b-ac)	44	47.443 456.1
		Q(c-b)	64	46.839 645.4
RFC's		c-b		0.00 0.01
		b-ac		0.65 0.50
FC				0.65 0.50
/bor-\//		and to the left and the of "		
		es to the left or right of the respectiv Vr(b-a)-120))(1+0.0006(VI(b-a)-150))	e streams	
= (1+0.094	4(w(b-c)-3.65))(1+0.0009(Vr(b-c)-120))		
= (1+0.094 = 1-0.0345	4(wc-b)-3.65))(1+0.0009(\	'r(c-b)-120))		
	ow on of minor traffic turning	left		
= proponi				

Junction:	Tung Yuen Street / Ko Fa	i Road (M)				gned by: CCT
cheme: Design Yec	2035 Reference Flows ar: 2035	dol	No.: CHK50748310	l l	Cheo Date	cked by: JPP e: Feb-25
.rm A:	Ko Fai Road (WB)				ł	
vrm B:	Tung Yuen Street Ko Fai Road (EB)					
Arm C:	KO FAI KOAA (EB)					
Arm Ko Fai Ro	50	PM 85 5	→	Ţ		
		<u> </u>	→ ←	AM 0 100	РМ 5 130	Arm A Ko Fai Road (WB
	AM 15 455	PM 40 275 Arm B	→ Tung Yuen Stre	et		
GEOMETRY	,					
Central Re: Blockage o	d Width (m) serve Width (m) of major road right turn stream on minor arm	W 10. Wcr 0.0 Y/N? N Y/N? Y	00	Lane widths (m)	w(b-a) w(b-c) w(c-b)	2.11 2.11 3.37
√isibility Dis	stances (m)	Vr(b-a) 22 VI(b-a) 22 Vr(b-c) 24 Vr(c-b) 17	7	Calculated Parameters	D E F Y	0.721 0.778 0.883 0.631
ANALYSIS					AM PEAK	PM PEAK
RAFFIC FL	OWS (pcu/hr)	q(c-a) q(c-b) q(a-b) q(a-c) q(b-a) q(b-c) f			50 0 100 455 15 0.03	85 5 130 5 275 40 0.13
CAPACITIE	S (pcu/hr)	Q(b-ac) Q(c-b)			443.37 637.672	446.1 630.6
RFC's		c-b b-ac			0.00	0.01 0.71
		D-aC				
D = (1+0.09) E = (1+0.09)	and Vr are visibility distance 24(w(b-a)-3.65))(1+0.0009(V 4(w(b-c)-3.65))(1+0.0009(Vr 4(wc-b)-3.65))(1+0.0009(Vr 5W	′r(b-a)-120))(1+0.0006(VI(r(b-c)-120))		ns	1.06	0.71

Junction: Scheme:	Tung Yuen Street / Ko F 2035 Design Flows	ai Road (M)			gned by: CCT cked by: JPP
Design Ye		Job No.: CHK5	0748310	Date	
vrm A:	Ko Fai Road (WB)				
vrm B: vrm C:	Tung Yuen Street Ko Fai Road (EB)				
Arm	n C AM	PM			
	50	85			
Ko Fai Ro	oad (EB) 0	5			
			¥		
					_
			AM	PM	Arm A
		←	0	5	
			<u> </u>	14/	Ko Fai Road (WB)
			•		
	AM	PM			
	15	40			
	474	287			
		I			
		Arm B Tung Y	uen Street		
GEOMETRY	4				
JEOMEIR					
	id Width (m)	W 10.70	Lane widths (m)	w(b-a)	2.11
	eserve Width (m) of major road right turn	Wcr 0.00 Y/N? N		w(b-c) w(c-b)	2.11 3.37
	d stream on minor arm	Y/N? Y		(0.2)	0.07
∕isibility Di	stances (m)	Vr(b-a) 20	Calculated	D	0.721
		VI(b-a) 27 Vr(b-c) 20	Parameters	E	0.778 0.883
		Vr(c-b) 17		Y	0.631
ANALYSIS				AM PEAK	PM PEAK
ANALISIS				AMILAR	IMILAR
RAFFIC FL	OWS (pcu/hr)	q(c-a)		50 0	85 5
		q(c-b) q(a-b)		116	147
		q(a-c)		0	5
		q(b-a) q(b-c)		474 15	287 40
		f		0.03	0.12
CAPACITIES (pcu/hr)		Q(b-ac)		442.191	444.5
		Q(c-b)		634.427	627.1
RFC's		c-b		0.00	0.01
		b-ac		1.11	0.74
FC				1 11	0.74
				1.11	0.74
		es to the left or right of the respectiv	e streams		
	94(w(b-a)-3.65))(1+0.0009(94(w(b-c)-3.65))(1+0.0009()	Vr(b-a)-120))(1+0.0006(VI(b-a)-150)) /r(b-c)-120))			
= (1+0.09	24(wc-b)-3.65))(1+0.0009(V				
1-0.034	45W				
	tion of minor traffic turning		d atra anas		
	Q(b-c)*Q(b-a)/(1-f)*Q(b-a)	:)+f*Q(b-a) Capacity of combine			

Iunction: Tung Yuen Street / K scheme: 2035 Reference Flow	o Fai Road (M) vs (with improvement scheme)		igned by: CCT ecked by: JPP
Design Year: 2035	Job No.: CHK507		
Arm A: Ko Fai Road (WB)			
Arm B: Tung Yuen Street			
rm C: Ko Fai Road (EB)			
Arm C AM	PM		
Ko Fai Road (EB) 0	85 5		
		\rightarrow V	
		*	
		AM PM	Arm A
	→ <	0 5	
		100 130	Ko Fai Road (WB)
		•	
AM	PM		
<u>15</u> 455	275		
	I	I	
	Arm B Tung Yue	n Street	
GEOMETRY			
Aajor Road Width (m)	W 10.70	Lane widths (m) w(b-a)	5.18
Central Reserve Width (m)	Wcr 0.00	w(b-c)	5.18
Blockage of major road right turn		w(c-b)	3.37
Combined stream on minor arm	Y/N? Y		
/isibility Distances (m)	Vr(b-a) 20	Calculated D	0.964
	VI(b-a) 27 Vr(b-c) 20	Parameters E F	1.041 0.883
	Vr(c-b) 17	Ý	0.631
ANALYSIS		AM PEAK	PM PEAK
RAFFIC FLOWS (pcu/hr)	q(c-a)	50	85
	q(c-b)	0	5
	q(a-b)	100	130
	q(a-c) q(b-a)	0 455	5 275
	q(b-c)	15	40
	f	0.03	0.13
CAPACITIES (pcu/hr)	Q(b-ac)	592.974	596.7
		07, TO	(20.7
	Q(c-b)	637.672	630.6
RFC's	c-b	0.00	0.01
	b-ac	0.79	0.53
			0.50
		0.79	0.53
FC		streams	
	ances to the left or right of the respective s		
	ances to the left or right of the respective s 109(Vr(b-a)-120))(1+0.0006(VI(b-a)-150))		
Where VI and Vr are visibility disto D = (1+0.094(w(b-a)-3.65))(1+0.00 E = (1+0.094(w(b-c)-3.65))(1+0.000	09(Vr(b-a)-120))(1+0.0006(VI(b-a)-150)) 09(Vr(b-c)-120))		
Vhere VI and Vr are visibility dist 0 = (1+0.094(w(b-a)-3.65))(1+0.00 = (1+0.094(w(b-c)-3.65))(1+0.000 = (1+0.094(wc-b)-3.65))(1+0.000	09(Vr(b-a)-120))(1+0.0006(VI(b-a)-150)) 09(Vr(b-c)-120))		
/here VI and Vr are visibility dista = (1+0.094(w(b-a)-3.65))(1+0.00 = (1+0.094(w(b-c)-3.65))(1+0.00	09(Vr(b-a)-120))(1+0.0006(V1(b-a)-150)) 09(Vr(b-c)-120)) 9(Vr(c-b)-120))		

unction: Tung Yuen Street / Ko cheme: 2035 Design Flows (wit	Fai Road (M) h improvement scheme)		Designe Checke	ed by: CCT ed by: JPP
Design Year: 2035	Job No.: CHK5074	48310	Date:	Feb-25
rm A: Ko Fai Road (WB)			!	
Arm B: Tung Yuen Street				
rm C: Ko Fai Road (EB)				
Arm C AM	PM 85			
Ko Fai Road (EB) 0	5			
		→ *		
		AM	PM	Arm A
		0	5	Ko Fai Road (WB)
			14/	
		•		
AM	РМ			
15	40			
474	287			
	·	·		
	Arm B Tung Yuer	n Street		
GEOMETRY				
Najor Road Width (m) Central Reserve Width (m)	W 10.70 Wcr 0.00	Lane widths (m)	w(b-a) w(b-c)	5.18 5.18
lockage of major road right turn	Y/N? N		w(c-b)	3.37
Combined stream on minor arm	Y/N? Y			
/isibility Distances (m)	Vr(b-a) 20	Calculated	D	0.964
	VI(b-a) 27	Parameters	E	1.041
	Vr(b-c) 20 Vr(c-b) 17		F Y	0.883 0.631
	vi(C-D)		<u> </u>	0.001
NALYSIS		AN	N PEAK	PM PEAK
RAFFIC FLOWS (pcu/hr)	q(c-a)		50	85
	q(c-b)		0	5
	q(a-b)		116	147
	q(a-c) q(b-a)		0 474	5 287
	q(b-c)		15	40
	f		0.03	0.12
CAPACITIES (pcu/hr)	Q(b-ac)		591.398	594.5
	Q(c-b)		634.427	627.1
	a(0 2)		50	027.1
FC's	c-b		0.00	0.01
	b-ac		0.83	0.55
FC			0.83	0.55
		I		
Vhoro VI and Vr are visibility distan	ces to the left or right of the respective s	treams		
	$(v_1(D-d)-120))(1+0.0006(V1(D-d)-150))$			
D = (1+0.094(w(b-a)-3.65))(1+0.0009)				
<pre>b = (1+0.094(w(b-a)-3.65))(1+0.0009 = (1+0.094(w(b-c)-3.65))(1+0.0009 = (1+0.094(wc-b)-3.65))(1+0.0009(</pre>	(Vr(b-c)-120))			
$= (1+0.094(w(b-\alpha)-3.65))(1+0.0009)$ = (1+0.094(w(b-c)-3.65))(1+0.0009)	(Vr(b-c)-120)) Vr(c-b)-120))			