

Appendix C

Revised Traffic Impact Assessment

Application for Permission Under Section 16 of the Town Planning Ordinance (Cap. 131) for **Proposed Comprehensive Development including Flats, Retail and Community Facilities** and Minor Relaxation of Plot Ratio and Building Height **Restriction in "Comprehensive Development Area**" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung

Traffic Impact Assessment Report

Rev. B| September 2025

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 299277-02

Arup Hong Kong Limited Level 5 Festival Walk 80 Tat Chee Avenue Kowloon Tong Kowloon

Hong Kong www.arup.com

Contents

			Pag
1	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Objectives of this Report	2
	1.3	Scope of Study	2
	1.4	Structure of the Report	3
2	EXIST	ΓING TRAFFIC CONDITION	4
	2.1	Site Characteristics	4
	2.2	Existing Road Network	4
	2.3	Existing Junction and Link Performance	5
	2.4	Public Transport Facilities	7
	2.5	Existing Pedestrian Condition	8
3	THE S	SUBJECT DEVELOPMENT	10
	3.1	Development Schedule	10
	3.2	Vehicular Access Arrangement	11
	3.3	Internal Transport Facilities Provision	11
4		FFIC IMPACT ASSESSMENT (FULL DEVELOPMENT (POSED SCHEME)	OF 20
	4.1	Trip Generation and Attraction of Proposed Development	20
	4.2	Adjacent Developments	21
	4.3	Future Traffic Growth	22
	4.4	Assessment Scenarios	23
	4.5	Junction Capacity Assessment	24
	4.6	Link Capacity Assessment	24
	4.7	Future Occupancy of Public Transport Services	25
	4.8	Pedestrian Impact Assessment	30
5	TRAF	FIC IMPACT ASSESSMENT (INTERIM SCENARIO)	33
	5.2	Junction Capacity Assessment	34
	5.3	Link Capacity Assessment	35
	5.4	Public Transport Services – Interim Scenario	36
	5.5	Pedestrian Walking Condition – Interim Scenario	37
6	CONC	CLUSION	39
	6.1	Summary	39
	6.2	Conclusion	41

Figures	
Figure 1.1	Location of Application Site
Figure 2.1	Location of Surveyed Junctions in the Vicinity of Proposed
	Development
Figure 2.2	Year 2024 Existing Traffic Flow
Figure 2.3	Public Transport Facilities in the Vicinity of Proposed Development
Figure 2.4	Pedestrian Facilities Along Major Pedestrian Routes Junctions in the
_	Vicinity of Proposed Development
Figure 3.1	Master Layout Plan of Proposed Development
Figure 3.2	Proposed Vehicular Accesses of Proposed Development
Figure 3.3	Proposed Pedestrian Crossing and Bus Stop Relocation
Figure 3.4	Swept Path Analysis at Vehicular Access
Figure 3.5	Ingress Vehicular Routes of Proposed Development
Figure 3.6	Egress Vehicular Routes of Proposed Development
Figure 4.1	Year 2035 Reference Traffic Flow
Figure 4.2	Year 2035 Design Traffic Flow
Figure 4.3	Development Traffic Flow
Figure 4.4	Year 2035 Baseline Traffic Flow
Figure 4.5	Location of Pedestrian Facilities Along Major Pedestrian Routes in
	the Vicinity of Proposed Development
Figure 5.1	Year 2035 Interim Scenario A Traffic Flow
Figure 5.2	Year 2035 Interim Scenario B Traffic Flow
Figure 5.3	Year 2035 Interim Scenario C Traffic Flow

Appendix

Appendix A Junction Calculation Sheet
Appendix B Highlighted Plans of Internal

Appendix B Highlighted Plans of Internal Transport Provision

Appendix C Critical Swept Path Analysis

Appendix D Planned Junction Improvement Schemes

1 INTRODUCTION

1.1 Background

- 1.1.1 The Application Site falls within the "Comprehensive Development Area" zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung on the Approved Kwai Chung Outline Zoning Plan (OZP) No. S/KC/32. The location of application site is shown in **Figure 1.1**.
- 1.1.2 The Applicant submitted a S16 Planning Application No. A/KC/489 with a Master Layout Plan (MLP) covering the entire "CDA" zone with a pragmatic phasing strategy having due regard to the multiple land ownership pattern to increase certainty in realizing the planning intention of the whole "CDA" zone. The comprehensive development proposed in the Planning Application No. A/KC/489 (hereafter referred to as the "Approved Scheme"), comprises 14 residential blocks with an overall PR of not more than 5 and maximum BH of not more than +120mPD.
- 1.1.3 The Planning Application No. A/KC/489 was deliberated in the TPB Metro Planning Committee Meeting held on 14 July 2023 (the TPB Meeting). During the TPB meeting, TPB members raised concerns on the provision of social welfare facilities and retail shops, as quoted from the meeting minutes^[1]
 - "Some Members considered that retail facilities should be provided in the proposed development to cater for the daily needs of the future residents." and "Some Member shared the view that the provision of social welfare facilities in the proposed development was inadequate...".
 - "the development intensity of the proposed development could be increased for better land utilisation, e.g. provision of retail and more GIC facilities.".

After deliberation, the Planning Application No. A/KC/489 was approved with conditions.

[1] Minutes of 722nd Meeting of the Metro Planning Committee held at 9:00 a.m. on 14.7.2023

1.1.4 The Applicant takes the initiative to review the **Approved Scheme** and endeavours to take forward the provision of more of social welfare facilities and retail shops. The **Proposed Scheme**, keeping the phasing strategy adopted in the **Approved Scheme**, comprises 15 building blocks (including 14 building blocks with residential use) with domestic PR of not more than 6 and maximum BH of not more than +147.55mPD. Non-domestic PR of not more than 0.5 is designated for proposed retail shops, existing historical buildings, and social welfare facilities to nurture an inclusive and liveable community in the convenient location of Kwai Chung Area.

1.1.5 Arup Hong Kong Limited (Arup) was commissioned to carry out a Traffic Impact Assessment (TIA) report in support of the Section 16 application for the application site.

1.2 Objectives of this Report

1.2.1 The purpose of this report is to evaluate the potential traffic impact associated with the proposed residential development and community facilities, in support of the Section 16 application for the application site.

1.3 Scope of Study

- 1.3.1 The tasks for this TIA study are outlined as follows:
 - Carry out traffic surveys at critical junctions to appreciate current traffic condition;
 - Update the inventory regarding traffic circulation patterns, traffic conditions, as well as the constraints of the existing and future committed road network in the vicinity of the application site based on the latest information available;
 - Assess the volume of traffic likely to be generated by the proposed development;
 - Set up the reference scenario with reference to the **Approved Scheme** at the site location, i.e. reference scenario with an overall PR of not more than 5;
 - Identify the likely traffic generation should the application site be developed into proposed development;
 - Compare the above two traffic scenarios for evaluation of the likely traffic impact, if any, associated with the proposed development;
 - Assess future traffic condition, taking into account any future traffic growth, as well as the traffic generated by the proposed development and other planned/committed development, if any, to be built in the vicinity;
 - Review the access arrangement for the proposed development and to make recommendation;
 - Recommend car parking provisions and goods vehicle loading/unloading arrangements;
 - Carry out pedestrian surveys at pedestrian facilities in the vicinity to appreciate current walking condition;
 - Assess pedestrian walking condition, taking into account any future population and employment growth generated by the proposed

development and other planned/committed development, if any, to be built in the vicinity

- Assess utilization of public transport services, taking into account any future population and employment growth generated by the proposed development and other planned/committed development, if any, to be built in the vicinity; and
- Review the vehicular and pedestrian impact for the Interim Scenarios of the proposed developments to be developed by phases.

1.4 Structure of the Report

1.4.1 The structure of this TIA report is as follows:

Chapter	<u>Title</u>	<u>Aims</u>
1	Introduction	Provide project background and scope of the Study
2	Existing Traffic Condition	Review and appreciate the existing traffic condition
3	The Subject Development	Provide information of the Proposed Development
4	Traffic Impact Assessment (Full Development of Proposed Scheme)	Illustrate the results of Traffic Impact Assessment – full development of the CDA
5	Traffic Impact Assessment (Interim Scenario)	Illustrate the results of Traffic Impact Assessment – partial development of lots owned by the
6	Conclusion	applicant Summarize the findings of this Study

2 EXISTING TRAFFIC CONDITION

2.1 Site Characteristics

2.1.1 The application site is located in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung. It is bounded by existing village houses to the north, Lai King Hill Road to the south, Castle Peak Road – Kwai Chung to the east and Princess Margaret Hospital to the west. **Figure 1.1** shows the location and the environs of the application site.

2.2 Existing Road Network

- 2.2.1 The application site is well-served by a comprehensive road network to and from all districts. Some major roads in the vicinity of the application site are listed as follows:
 - Lai King Hill Road is district distributor, in single two-lane configuration. It connects Kwai Fuk Road to the north and Lai Wan Road to the south. Lai King Hill Road serves traffic between Kwai Chung, New Territories West and Kowloon.
 - Ching Cheung Road is an urban trunk road, in dual three-lane configuration running in east-west direction. It connects Kwai Chung Road to the north and Castle Peak Road to the south. It connects Kwai Chung and Kowloon.
 - Lai Wan Road is local distributor running in north-south direction.
 It connects Mei Lai Road to the north and a private road of Mei Foo Sun Chuen to the south.
 - Mei Lai Road is a district distributor with two traffic lanes in both traffic direction connecting Mei Foo Bus Terminus and Lai King Hill Road.
 - Castle Peak Road Kwai Chung is a primary distributor, dual twolane carriageway running north-south direction. It connects Tai Wo Interchange to the north and Ching Cheung Road to the south.

2.3 Existing Junction and Link Performance

2.3.1 To appreciate the existing traffic conditions, comprehensive classified traffic counts were conducted at the following identified key junctions in the vicinity of the application site. Locations of these surveyed junctions are listed below and shown in **Figure 2.1**.

J1	-	Lai King Hill Road / King Lai Path	(Signalized Junction)
J2	-	Lai King Hill Road / Chung Shan Terrance / Estate Road	(Signalized Junction)
Ј3	-	Lai King Hill Road / Kwai Chung Interchange	(Signalized Junction)
J4	-	Mei Lai Road / Lai Wan Road	(Signalized Junction)
J5	-	Mei Lai Road / Cheung Sha Wan Road	(Signalized Junction)
<mark>J6</mark>	-	Lai King Hill Road Pedestrian Crossing near Site Access	(Signalized Junction)

2.3.2 The counts were undertaken on 12th March 2024 during the periods of 07:00 – 10:00 and 17:00 – 20:00 hours. The morning and evening peak hours were found to be 07:45 – 08:45 and 17:30 – 18:30 respectively. The observed traffic flows during these peak hours are presented in **Figure 2.2**.

Junction Capacity Assessment

2.3.3 Junction capacity analysis was carried out at the identified key junctions in the vicinity of the application site. Results of the capacity assessment are shown in **Table 2.3.1** below and detailed calculations are appended in **Appendix A**.

Table 2.3.1 Year 2024 Existing Junction Performance

	T	TE.	Performance (1)		
	Junction	Туре	AM	PM	
J1	Lai King Hill Road / King Lai Path	Signalized	>100%	>100%	
Ј2	Lai King Hill Road / Ching Shan Terrance / Estate Road	Signalized	>100%	>100%	
Ј3	Lai King Hill Road / Kwai Chung Interchange	Signalized	29%	53%	
J4	Mei Lai Road / Lai Wan Road	Signalized	>100%	>100%	
J5	Mei Lai Road / Cheung Sha Wan Road	Signalized	64%	69%	
<mark>J6</mark>	Lai King Hill Road Pedestrian Crossing near Site Access	Signalized	>100%	>100%	

Notes:

2.3.4 Results of the analysis indicate that the identified key junctions in the vicinity of the application site are currently operating satisfactorily during both morning and evening peak hours.

⁽¹⁾ Figures shown represent "Reserve Capacity" (RC) in % for signalized junctions.

Link Capacity Assessment

- 2.3.5 The road link capacity assessment has also been carried out to examine the volume to capacity (V/C) ratio of the identified key road links. Locations of these identified key road links are shown in **Figure 2.1**.
- 2.3.6 Results of the capacity assessment are shown in **Table 2.3.2** below. The assessment framework for the road links is based on the ratio of surveyed traffic volume over the link capacity (V/C) to measure the utilization of the road link.

Table 2.3.2 Year 2024 Existing Link Performance (1)

Re	oad Link (2)	Direction	Direction Unit Link Capacity		Traffic	Flows	Volume/Capacity (V/C) Ratio		
				1	AM	PM	AM	PM	
	Lai King Hill Road		pcu/hr	2,390	1,090	1,085	0.46	0.45	
L1	(10m wide section)	Two-way	veh/hr	2,200	903	895	0.41	0.41	
	Lai King		pcu/hr	1,850	655	515	0.35	0.28	
L2	Hill Road (8m wide section)	Two-way	veh/hr	1,700	544	427	0.32	0.25	
	Lai King		pcu/hr	2,390	550	545	0.23	0.23	
L3	Hill Road (10m wide section)	Two-way	veh/hr	2,200	452	452	0.21	0.21	
	Lai King Hill Road		pcu/hr	2,390	700	675	0.29	0.28	
L4	(10m wide section)	Two-way	veh/hr	2,200	568	559	0.26	0.25	
	Kwai Chung		pcu/hr	2,800	885	525	0.32	0.19	
L5	Interchange (6.8m wide section)	NB	veh/hr	2,600	731	435	0.28	0.17	
	Kwai Chung		pcu/hr	1,400	425	575	0.30	0.41	
L6	Interchange (6m wide section)	SB	veh/hr	1,300	353	475	0.27	0.37	

Notes:

- (1) Link capacity estimated according to TPDM Vol.2 Ch.2.4, for single 2-lane carriageway (for L1 to L4 with road width of 8m and 10m) or for dual 2-lane carriageway (for L5 and L6 with road with of 6m and 6.8m). Data in terms of veh/hr and pcu/hr are converted according to survey pcu factor.
- (2) For conservative approach, the road links are assessed based on the greatest traffic flows at the road sections of corresponding roads within AOI.
- 2.3.7 Results of the analysis indicate that the accessed road link has sufficient link capacity to cater for the existing traffic flows.

2.4 Public Transport Facilities

2.4.1 The application site is served by various modes of public transport services as shown in **Figure 2.3**. The MTR Mei Foo Station is located about 500m from the application site, but it involves steep road and crossing footbridge at different level, which is estimated to be an 8-minute walking journey. There are also a number of franchised bus and Green Minibus (GMB) service routes operating within the surrounding road network. A summary of the public transport services operating in the vicinity of the application site is provided in **Table 2.4.1**.

Table 2.4.1 Existing Franchised Bus and GMB Services

Route No.	Origin / Destination	Peak Headway (mins)
Franchised	1 Bus	
6	Star Ferry ↔ Lai Chi Kok	8-20
30	Tsuen Wan (Allway Gardens) ↔ Cheung Sha Wan	25-30
32H	Cheung Shan ↔ Lai Chi Kok	60
42	Tsing Yi (Cheung Hong Estate) ↔ Shun Lee	15-20
45	Kowloon City Ferry ↔ Kwai Chung (Lai Yiu Estate)	25-30
46	Jordan (West Kowloon Station) ↔ Kwai Chung (Lai Yiu Estate)	20-30
46X	Hin Keng ↔ Mei Foo	5-12
171	Lai Chi Kok ↔ South Horizons	10-20
171A	Lei Tung Estate → Lai Chi Kok	Weekday special departures
171P	South Horizons → Lai Chi Kok	Weekday special departures
904	Lai Chi Kok ↔ Kennedy Town (Belcher Bay)	18-30
905	Lai Chi Kok ↔ Exhibition Centre Station	8-23
905A	Exhibition Centre Station → Lai Chi Kok	Weekday special departures
905P	Lai Chi Kok → Wan Chai (Harbour Road)	Weekday special departures
N171	Lai Chi Kok ↔ Ap Lei Chau Estate	Night services only
N241	Hung Hom Station ↔ Tsing Yi (Cheung Wang Estate)	Night services only
GMB		
90A	Kwai Chung Hospital ↔ Mei Foo Station	Weekday special departures
90M	Highland Park ひ Mei Foo Station	4-6 (circular)
90P	Princess Margaret Hospital ↔ Mei Foo Station	6-8
92M	Wah Yuen Chuen O Mei Foo Station	5-10 (circular)

2.4.2 In summary, the subject development would have good accessibility to the public transport services via adjacent road network and the existing MTR Mei Foo Station, despite steep road and crossing footbridge at different level.

2.5 Existing Pedestrian Condition

- 2.5.1 To appreciate the existing conditions, comprehensive pedestrian count surveys were conducted at the critical footpath in the vicinity, as shown in **Figure 2.4**. The pedestrian counts were undertaken on typical weekdays during the AM and PM peak periods on 12th March 2024.
- 2.5.2 In order to address the performance of the critical footpath, Level of Service (LOS) assessment of the critical footpath has been conducted.
- 2.5.3 LOS assessment is carried out based on the definitions presented in the Highways Capacity Manual 2000. **Table 2.5.1** shows the various LOS 'quantified' in terms of pedestrian flow rates.

Table 2.5.1 Level of Service (LOS) for Walkway

	Tuble 2.5.1 Level of Service (EoS) for Wanking								
LOS	Flow rate for Walkway (ped/min/m)	Description							
A	<u>≤</u> 16	Pedestrians basically move in desired paths without altering their movements in response to other pedestrians. Walking speeds are freely selected, and conflicts between pedestrians are unlikely.							
В	16 – 23	Sufficient space is provided for pedestrians to freely select their walking speeds, to bypass other pedestrians and to avoid crossing conflicts with others. At this level, pedestrians begin to be aware of other pedestrians and to respond to their presence in the selection of walking paths.							
С	23 – 33	Sufficient space is available to select normal walking speeds and to bypass other pedestrians primarily in unidirectional stream. Where reverse direction or crossing movement exists, minor conflicts will occur, and speed and volume will be somewhat lower.							
D	33 – 49	Freedom to select individual walking speeds and bypass other pedestrians is restricted. Where crossing or reverse-flow movements exist, the probability of conflicts is high and its avoidance requires changes of speed and position. The LOS provides reasonable fluid flow; however considerable friction and interactions between pedestrians are likely to occur.							
E	49 – 75	Virtually, all pedestrians would have their normal walking speeds restricted. At the lower range of this LOS, forward movement is possible only by shuffling. Space is insufficient to pass over slower pedestrians. Cross- and reverse-movement are possible only with extreme difficulties. Design volumes approach the limit of walking capacity with resulting stoppages and interruptions to flow.							
F	> 75	Walking speeds are severely restricted. Forward progress is made only by shuffling. There are frequent and unavoidable conflicts with other pedestrians. Cross- and reverse-movements are virtually impossible. Flow is sporadic and unstable. Space is more characteristic of queued pedestrians than of moving pedestrian streams.							

Source: Extracted from Exhibit 18-3 of Highway Capacity Manual (HCM) 2000

2.5.4 Footpaths with LOS A to C are considered as desirable with sufficient space for pedestrian to select normal walking speeds to bypass. For footpaths with LOS D represent freedom to select individual walking speeds and bypass other pedestrians is restricted. Unless there are any site constraints, improved measures should be sought for footpath with LOS D or poorer.

2.5.5 **Table 2.5.2** summarized the observed AM and PM peak pedestrian flow and LOS in surveyed footpath and crossing.

Table 2.5.2 Year 2024 Level of Service in AM and PM Peaks at Key Footpath

Footpath		Actual Width	Width Clear Width (1)		Two-way Peak Hourly Flow (ped/hr)		Flow Rate (2) (ped/min/m)		LOS (Level)	
		(m)	(m)	AM	PM	AM	PM	AM	PM	
F1	Lai King Hill Road Northern Footpath	2.5	1.5	90	55	1.2	0.7	A	A	
Fla	Lai King Hill Road Northern Footpath (at bus stop)	3.8	1.8	90	55	1.0	0.6	A	A	
F2	Lai King Hill Road Southern Footpath	2.8	1.8	225	140	2.5	1.6	A	A	
F2a	Lai King Hill Road Southern Footpath (at bus stop)	3.5	1.5	225	140	3.0	1.9	A	A	
F3	Wah Lai Path Footpath	9.5	8.5	220	130	0.5	0.3	A	A	

Notes:

- (1) Effective clear width = Actual width (on-site measurement) minus 0.5m dead width on both sides, and minus the width of passengers queuing at bus stops.
- (2) Pedestrian flow rates are computed based on effective clear width, with 1.2 peak factor applied for the peak minute flow rate.
- 2.5.6 The results presented in **Table 2.5.2** revealed that the walking condition on the critical footpath in the vicinity of the application site is satisfactory during both AM and PM peaks hours in Year 2024.

Table 2.5.3 Year 2024 Level of Service in AM and PM Peaks at Key Pedestrian Crossing

Crossing Facility		Clear Width		cle e (s)	Ti	een me ortion	Capa	strian city ⁽¹⁾ l/hr)	Two- Pedes Flow (2)	strian	Capa	ıme/ acity Ratio
		(m)	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
C1	Pedestrian Crossing Across Lai King Hill Road	6.2	90	90	19%	19%	2,240	2,240	145	90	0.07	0.04

Notes:

- (1) Crossing Capacity (ped/hr) = K (1,900 ped/m/hr) × Green Time Proportion × W (width of crossing)
- (2) Pedestrian flow rates are computed based on effective clear width, with 1.2 peak factor applied for the peak minute flow rate.
- 2.5.7 The results presented in **Table 2.5.3** revealed that the concerned pedestrian crossing facility is operating satisfactorily during both AM and PM peaks in Year 2024.

3 THE SUBJECT DEVELOPMENT

3.1 Development Schedule

- 3.1.1 The Applicant intends to develop the application site into residential use with community facilities. The proposed development will comprise 4 phases, namely as follows:
 - Phase 1A (P1A)
 - Phase 1B (P1B)
 - Remaining Phase A (RPA)
 - Remaining Phase B (RPB)
- 3.1.2 The proposed development will be constructed in phases and the entire development is envisaged to be completed by Year 2032.
- 3.1.3 The proposed development schedule is summarized in **Table 3.1.1**, and the master layout plan is presented in **Figures 3.1**.

Table 3.1.1 Proposed Development Parameters

Proposed	Site Area		Domestic					
Development	(sqm)	Non-domestic Facilities	Plot Ratio	No. of Blocks	Flat Mix			
		Home Care Services for Frail Elderly Persons (HCS for Frail Elderly Persons)			FS≤40m²	1,221		
Phase 1A	About	(4-team size non-kitchen based)Residential Care Home for the Elderly	6	5	40m ² <fs≤70m<sup>2</fs≤70m<sup>	651		
Filase IA	13,577.341	(RCHE) (100 places) • School Social Work Office (SSWO)	0	3	70m ² <fs≤100m<sup>2</fs≤100m<sup>	109		
		(Hong Kong Family Welfare Society) • Retail GFA: 2,285.323 sqm			Total	1,981		
		Neighbourhood Elderly Centre (NEC)			FS≤40m ²	910		
Phase 1B	About	Residential Care Home for the Elderly	6	2	40m ² <fs≤70m<sup>2</fs≤70m<sup>	485		
	10,111.772	(RCHE) (100 places)	Ŭ		70m ² <fs≤100m<sup>2</fs≤100m<sup>	81		
	About 7,934.713	• Retail GFA: 1,516.286 sqm			Total	1,476		
		60-place Day Care Centre for the Elderly (DE)	6		FS≤40m ²	714		
Remaining		Office Base of On-site Pre-school Rehabilitation Services (OPRS)		2	40m ² <fs≤70m<sup>2</fs≤70m<sup>	381		
Phase A		(Capacity: 125) 120-place Day Care Centre for the Elderly	0	2	70m ² <fs≤100m<sup>2</fs≤100m<sup>	63		
		(DE) (non-kitchen based) • Retail GFA: 1,437.357 sqm			Total	1,158		
		60-place Special Child Care Centre			FS≤40m ²	1,502		
Remaining	About	(SCCC) • Residential Care Home for the Elderly	6	5	40m ² <fs≤70m<sup>2</fs≤70m<sup>	801		
Phase B	16,689.341	(RCHE) (150 places) • Child Care Centre (CCC) (100 places)	· ·	3	70m ² <fs≤100m<sup>2</fs≤100m<sup>	134		
		Retail GFA: 832.970 sqm			Total	2,437		
					FS≤40m ²	4,347		
Total	About		6	14	40m ² <fs≤70m<sup>2</fs≤70m<sup>	2,318		
Total	48,313.167		6	14	70m ² <fs≤100m<sup>2</fs≤100m<sup>	387		
					Total	7,052		

3.2 Vehicular Access Arrangement

- 3.2.1 One vehicular access is proposed for the CDA site along Lai King Hill Road, entering the site via P1A as shown in Figure 3.2.
- The vehicular access will have conflict with the existing pedestrian crossing and bus stop on Lai King Hill Road Eastbound. It is proposed to shift the pedestrian crossing and the bus stop eastwards, to provide separation distance among the proposed pedestrian crossing, the proposed bus stop and the proposed vehicular access, as shown in **Figure 3.3**.
- 3.2.3 The swept path analysis for 12m-long coach at vehicular access is shown in Figure 3.4.
- 3.2.4 The major ingress and egress routes for vehicular traffic approaching and leaving the application site are illustrated in **Figure 3.5** and **Figure 3.6** respectively.

3.3 Internal Transport Facilities Provision

- 3.3.1 The internal transport facilities provision for the proposed residential development will be provided in accordance with the high-end requirements of Hong Kong Planning Standards and Guidelines (HKPSG).
- 3.3.2 There is no standard requirement of internal transport facilities provision for the proposed GIC facilities under HKPSG, corresponding internal transport facilities provision is recommended with reference to operational need of projects with similar use.
- 3.3.3 The internal transport facilities provision for the proposed development are summarized in **Table 3.3.1** to **Table 3.3.7** below.

Table 3.3.1 HKPSG Required Internal Transport Facilities Provision – P1A

Type of Development	1 aute	Low-end Requirement (nos.)	High-end Requirement (nos.)							
	Residential Parkin	g Spaces								
	Global Parking Standard (GPS)		1 car space per 4 – 7 flats		Flat No.					
			FS≤40 40 <fs≤70< td=""><td>0.5 1.2</td><td>1,221 651</td><td>78.49 100.44</td><td>137.36 175.77</td></fs≤70<>	0.5 1.2	1,221 651	78.49 100.44	137.36 175.77			
	Demand Adjustment	Flat Size	70 <fs≤100< td=""><td>2.4</td><td>109</td><td>33.63</td><td>58.86</td></fs≤100<>	2.4	109	33.63	58.86			
	Ratio (R1)	(FS) (m ² GFA)	100 <fs≤130< td=""><td>4.1</td><td>-</td><td>-</td><td>-</td></fs≤130<>	4.1	-	-	-			
	ļ	()	130 <fs≤160< td=""><td>5.5</td><td>-</td><td>-</td><td>-</td></fs≤160<>	5.5	-	-	-			
			FS>160 Total	7	1,981	212.57	371.99			
	Accessibility	Within a	500m-radius of rail station		0.75	212.37	3/1.99			
	Adjustment Ratio (R2)		500m-radius of rail station		1					
	()		0.00 <pr≤1.00< td=""><td></td><td>1.3</td><td>]</td><td></td></pr≤1.00<>		1.3]				
	Development	Domestic	1.00 <pr≤2.00< td=""><td></td><td>1.1</td><td>213</td><td>372</td></pr≤2.00<>		1.1	213	372			
	Intensity Adjustment Ratio (R3)	Plot Ratio (PR)	2.00 <pr≤5.00< td=""><td></td><td>1</td><td>213</td><td>312</td></pr≤5.00<>		1	213	312			
Private Housing) ` ´	(1 K)	5.00 <pr≤8.00 PR>8.00</pr≤8.00 		0.9	+				
Private nousing	<u>. </u>	†								
Total Flat nos.	Visitor Parking Sp	1								
1,981	5 visitor spaces per the Authority.	25	25							
Block Nos. 5		238 (inclusive accessible parking spaces)	397 (inclusive accessible parking spaces)							
	Accessible Parking Spaces									
	1 space for 1 – 50 to 2 spaces for 51 – 15 3 spaces for 151 – 2 4 spaces for 251 – 3 5 spaces for 351 – 4 6 spaces for above	3	5							
	Motorcycle Parkir 1 motorcycle parkir	. 14	20							
	L/UL Bay	17	20							
	Minimum of 1 load 800 flats or part the as determined by th	3	5							
	Private Car									
	1 car space per 150	$-300 \text{ m}^2 \text{ G}$	FA			8	16			
	Accessible Car Par	rking								
	1 space for total nur	mber of car i	parking spaces below 50			1	1			
Retail GFA:	Motorcycle									
2,285.323 sqm	5 to 10% of the total	1 provision 1	or private cars			1	2			
•	Loading/Unloadin	_	F-1				_ ~			
			ods vehicles for every 800 –	1200 m² (TE A	2	2			
		3 vay 101 g00	ous vehicles for every 800 –	1200 III- (JI A		3			
	LGV (65%)					1	2			
	HGV (35%)	1	1							

Table 3.3.2 HKPSG Required Internal Transport Facilities Provision – P1B

Type of Development			PSG Required Internal	r		Low-end	High-end Requirement (nos.)
	Residential Parkin	g Spaces					
	Global Parking Standard (GPS)		1 car space per 4 – 7 flats		Flat No.		
			FS≤40 40 <fs≤70< td=""><td>0.5 1.2</td><td>910 485</td><td>58.50 74.83</td><td>102.38 130.95</td></fs≤70<>	0.5 1.2	910 485	58.50 74.83	102.38 130.95
	Demand Adjustment	Flat Size (FS)	70 <fs≤100< td=""><td>2.4</td><td>81</td><td>24.99</td><td>43.74</td></fs≤100<>	2.4	81	24.99	43.74
	Ratio (R1)	$(m^2 GFA)$	100 <fs≤130< td=""><td>4.1</td><td>-</td><td>-</td><td>-</td></fs≤130<>	4.1	-	-	-
	}		130 <fs≤160 FS>160</fs≤160 	5.5 7	-	-	-
	<u> </u>		Total	/	1,476	158.32	277.07
	Accessibility	Within a	500m-radius of rail station	(0.75	100.02	2,,,,,,
	Adjustment Ratio (R2)	Outside a	500m-radius of rail station		1		
	(K2)		0.00 <pr≤1.00< td=""><td></td><td>1.3</td><td></td><td></td></pr≤1.00<>		1.3		
	Development	Domestic	1.00 <pr≤2.00< td=""><td></td><td>1.1</td><td>1.50</td><td>270</td></pr≤2.00<>		1.1	1.50	270
	Intensity Adjustment	Plot Ratio	2.00 <pr≤5.00< td=""><td></td><td>1</td><td>159</td><td>278</td></pr≤5.00<>		1	159	278
	Ratio (R3)	(PR)	5.00 <pr≤8.00 PR>8.00</pr≤8.00 		0.9 0.75		
Private Housing							
Total Flat nos.	Visitor Parking Sp	1					
1,476	5 visitor spaces per the Authority.	10	10				
Block Nos. 2		169 (inclusive accessible parking spaces)	288 (inclusive accessible parking spaces)				
	Accessible Parking						
	1 space for 1 – 50 to 2 spaces for 51 – 15 3 spaces for 151 – 2 4 spaces for 251 – 3 5 spaces for 351 – 4 6 spaces for above	3	4				
	Motorcycle Parkir		100 – 150 flats excluding n	on-residen	itial elements	. 10	15
	L/UL Bay	is space per	100 100 Hats excluding if	on residell	ciui cicinciits	10	1.0
	Minimum of 1 load 800 flats or part the as determined by th	2	2				
	Private Car						
	1 car space per 150	$-300 \text{ m}^2 \text{ G}$	FA			6	11
	Accessible Car Par	rking				•	
			parking spaces below 50			1	1
Retail GFA:	Motorcycle		. 01			<u> </u>	
1,516.286 sqm	5 to 10% of the total	1 provision t	For private cars			1	2
,	Loading/Unloadin	•	or private cars			1	<u> </u>
		2	2				
		g bay for goo	ods vehicles for every 800 –	1200 m² (JГA	2	2
	LGV (65%)					1	1
	HGV (35%)					1	1

Table 3.3.3 HKPSG Required Internal Transport Facilities Provision – RPA

Type of Development			PSG Required Internal	I		Low-end	High-end Requirement (nos.)				
	Residential Parkin	g Spaces									
	Global Parking Standard (GPS)		1 car space per 4 – 7 flats		Flat No.						
		Elet Size	FS≤40 40 <fs≤70< td=""><td>0.5 1.2</td><td>714 381</td><td>45.90 58.78</td><td>80.33 102.87</td></fs≤70<>	0.5 1.2	714 381	45.90 58.78	80.33 102.87				
	Demand Adjustment	Flat Size (FS)	70 <fs≤100< td=""><td>2.4</td><td>63</td><td>19.44</td><td>34.02</td></fs≤100<>	2.4	63	19.44	34.02				
	Ratio (R1)	(m ² GFA)	100 <fs≤130< td=""><td>4.1</td><td>-</td><td>-</td><td>-</td></fs≤130<>	4.1	-	-	-				
	}		130 <fs≤160 FS>160</fs≤160 	5.5 7	-	-	-				
			Total		1,158	124.12	217.22				
	Accessibility Adjustment Ratio	Within a	500m-radius of rail station		0.75	1					
	(R2)	Outside a	500m-radius of rail station		1						
	[0.00 <pr≤1.00< td=""><td></td><td>1.3</td><td></td><td></td></pr≤1.00<>		1.3						
	Development	Domestic Plot Ratio	1.00 <pr<2.00< td=""><td></td><td>1.1</td><td>125</td><td>218</td></pr<2.00<>		1.1	125	218				
	Intensity Adjustment Ratio (R3)	(PR)	2.00 <pr≤5.00 5.00<pr≤8.00< td=""><td></td><td>0.9</td><td>†</td><td></td></pr≤8.00<></pr≤5.00 		0.9	†					
Private Housing]									
	Visitor Parking Sp		l								
Total Flat nos. 1,158	5 visitor spaces per the Authority.	5 visitor spaces per block in addition to the recommendations, or as determined by the Authority.									
Block Nos. 2		135 (inclusive accessible parking spaces)	228 (inclusive accessible parking spaces)								
	Accessible Parking										
	1 space for 1 – 50 to 2 spaces for 51 – 15 3 spaces for 151 – 2 4 spaces for 251 – 3 5 spaces for 351 – 4 6 spaces for above	2	3								
	Motorcycle Parkir		100 – 150 flats excluding n	on reciden	tial alamants	. 8	12				
	L/UL Bay	ig space per	100 – 150 mais excluding in	on-residen	trai cicinciits	. 0	12				
	Minimum of 1 load 800 flats or part the as determined by th	2	2								
	Private Car										
	1 car space per 150	$-300 \text{ m}^2 \text{ G}$	FA			5	10				
	Accessible Car Par	rking									
	1 space for total nur	mber of car 1	parking spaces below 50			1	1				
Retail GFA:	Motorcycle										
1,437.357 sqm	· · · · · · · · · · · · · · · · · · ·	l provision f	for private cars			1	1				
_		5 to 10% of the total provision for private cars Loading/Unloading Bay									
	1 loading/unloading	GFA	2	2							
	LGV (65%)	, , - 55	/ /			1	1				
	HGV (35%)					1	1				
	(5576)					•					

Table 3.3.4 HKPSG Required Internal Transport Facilities Provision –RPB

Type of Development			PSG Required Internal	1		Low-end	High-end Requirement (nos.)
	Residential Parkin	g Spaces					
	Global Parking Standard (GPS)		1 car space per 4 – 7 flats		Flat No.		
			FS≤40 40 <fs≤70< td=""><td>0.5 1.2</td><td>1,502 801</td><td>96.56 123.58</td><td>168.98 216.27</td></fs≤70<>	0.5 1.2	1,502 801	96.56 123.58	168.98 216.27
	Demand Adjustment	Flat Size (FS)	70 <fs≤100< td=""><td>2.4</td><td>134</td><td>41.35</td><td>72.36</td></fs≤100<>	2.4	134	41.35	72.36
	Ratio (R1)	$(m^2 GFA)$	100 <fs≤130< td=""><td>4.1</td><td>-</td><td>-</td><td>-</td></fs≤130<>	4.1	-	-	-
	}		130 <fs≤160 FS>160</fs≤160 	5.5 7	-	-	-
			Total	,	2,437	261.49	457.61
	Accessibility	Within a	500m-radius of rail station	(0.75		
	Adjustment Ratio (R2)	Outside a	500m-radius of rail station		1		
	(1(2)		0.00 <pr≤1.00< td=""><td></td><td>1.3</td><td></td><td></td></pr≤1.00<>		1.3		
	Development	Domestic	1.00 <pr≤2.00< td=""><td></td><td>1.1</td><td>262</td><td>458</td></pr≤2.00<>		1.1	262	458
	Intensity Adjustment	Plot Ratio	2.00 <pr≤5.00< td=""><td></td><td>1</td><td>202</td><td>436</td></pr≤5.00<>		1	202	436
D. C. A. II C.	Ratio (R3)	(PR)	5.00 <pr≤8.00 PR>8.00</pr≤8.00 		0.9 0.75	1	
Private Housing							
Total Flat nos.	Visitor Parking Sp	1	T				
2,437	5 visitor spaces per the Authority.	25	25				
Block Nos. 5		287 (inclusive accessible parking spaces)	483 (inclusive accessible parking spaces)				
	Accessible Parking						
	1 space for 1 – 50 to 2 spaces for 51 – 15 3 spaces for 151 – 2 4 spaces for 251 – 3 5 spaces for 351 – 4 6 spaces for above 4	4	6				
	Motorcycle Parkin		100 150 G . 1 1'	* 1		17	25
	L/UL Bay	ig space per	100 – 150 flats excluding n	on-residen	uiai eiements	. 17	25
	Minimum of 1 load 800 flats or part the as determined by th	4	5				
	Private Car						
	1 car space per 150	- 300 m ² G	FA			3	6
	Accessible Car Par	rking				1	
			parking spaces below 50			1	1
Retail GFA:	Motorcycle					1	1
832.970 sqm	5 to 10% of the total	l provision	for private cars			1	1
•	Loading/Unloadin	_	private outs			1	1
			ods vehicles for every 800 –	12002 (TEΛ	1	2
		g day for goo	ous vehicles for every 800 –	1200 III (JI'A		
	LGV (65%)					1	1
	HGV (35%)					0	1

Table 3.3.5 Recommendation for Internal Transport Facilities Provision of the Proposed GIC Facilities

Site	Development	Facilities (Length × Width × min. Headroom)	Recommended Provision
	Home Care Services for Frail Elderly	Parking space for private light bus (8m × 3m × 3.3m)	1
	Persons (HCS for Frail Elderly Persons) (4-team size non-kitchen based)	Shared-use loading/unloading bay for private light bus with other welfare facilities (11m × 3.5m × 4.7m)	1
		Accessible car parking space (5m × 3.5m × 2.4m)	1
P1A	Residential Care Home for the Elderly	Light bus parking space (8m × 3m × 3.3m)	I
	(RCHE) (100 places)	Loading/unloading bay for LGV (7m × 3.5m × 3.6m)	I
		Private car / taxi pick-up/drop-off space (5m × 2.5m × 2.4m)	I
	School Social Work Office (SSWO) (Hong Kong Family Welfare Society)	N/A	N/A
		Accessible car parking space (5m × 3.5m × 2.4m)	1
	Residential Care Home for the Elderly	Light bus parking space (8m × 3m × 3.3m)	1
P1B	(RCHE) (100 places)	Loading/unloading bay for LGV (7m × 3.5m × 3.6m)	1
		Private car / taxi pick-up/drop-off space (5m × 2.5m × 2.4m)	1
	Neighbourhood Elderly Centre (NEC)	N/A	N/A
	Day Core Contro for the Elderly (DE)	Parking space for private light bus (8m × 3m × 3.3m)	3
	Day Care Centre for the Elderly (DE) (60 places)	Shared-use loading/unloading area for ambulance and private light bus (9m × 3m × 3.8m)	1
RPA	Office Base of On-site Pre-school Rehabilitation Services (OPRS) (125 places)	Parking Space for private light bus (8m × 3m × 3.3m)	1
	Day Care Centre for the Elderly (DE)	Parking space for private light bus (8m × 3m × 3.3m)	6
	(non-kitchen based) (120 places)	Shared-use loading/unloading area for ambulance and private light bus $(9m \times 3m \times 3.8m)$	1
	Special Child Care Centre (SCCC)	Parking space for 48-seater coach (12m × 3.5m × 3.8m)	1
	(60 places)	Loading/unloading bay for 48-seater coach (12m × 3.5m × 3.8m)	1
		Private car parking space (5m × 2.5m × 2.4m)	1
		Accessible car parking space (5m × 3.5m × 2.4m)	1
RPB	Residential Care Home for the Elderly (RCHE) (150 places)	Light bus parking space (8m × 3m × 3.3m)	1
		L/UL for LGV (7m × 3.5m × 3.6m)	1
		Private car / taxi pick-up/drop-off space (5m × 2.5m × 2.4m)	1
	Child Care Centre (CCC) (100 places)	Ambulance lay-by (9m × 3m × 3.8m)	1

Table 3.3.6 Transport Facilities Provision Summary Table

	Facilities	e 3.3.0	- Tulispoi				ired Provi				
Proposed Use	(Length × Width ×	P1		P 1	В	R	PA	RI	PB	(inclusive accessible parking spaces) (inclusive accessible parking spaces) 12 1 49 7 11 1 22 (inclusive accessible parking spaces) 4 2 4 4 4 4 4 4 3 4 4	
USC	min. Headroom)	Low-end	High-end	Low-end	High-end	Low-end	High-end	Low-end	High-end	Low-end	High-end
	Car parking space (5m × 2.5m × 2.4m) Including residential, visitor parking	238	397	169	288	135	228	287	483	(inclusive accessible parking	1,396 (inclusive accessible parking spaces)
Residential	$(5m \times 3.5m \times 2.4m)$	3	5	3	4	2	3	4	6	12	<u>18</u>
	Motorcycle $(2.4m \times 1m \times 2.4m)$	14	20	10	15	8	12	17	25	<u>49</u>	<u>72</u>
	Loading/unloading bay for HGV (11m × 3.5m × 4.7m)	3	5	2	2	2	2	4	5	<u>11</u>	<u>14</u>
	Car parking space (5m × 2.5m × 2.4m)	8	16	6	11	5	10	3	6	(inclusive accessible parking	43 (inclusive accessible parking spaces)
Retail	Accessible car parking space (5m × 3.5m × 2.4m)	1	1	1	1	1	1	1	1	<u>4</u>	<u>4</u>
	Motorcycle $(2.4m \times 1m \times 2.4m)$	1	2	1	2	1	1	1	1	<u>4</u>	<u>6</u>
	Loading/unloading bay for HGV (11m × 3.5m × 4.7m)	1	1	1	1	1	1	0	1	<u>3</u>	4
	Loading /unloading bay for LGV (7m × 3.5m × 3.6m)	1	2	1	1	1	1	1	1	<u>4</u>	<u>5</u>
	Car parking space (5m × 2.5m × 2.4m)	-	-				-	1 (R0	CHE)	<u> </u>	<u>l</u>
	Accessible parking spaces (5m × 3.5m × 2.4m)	1 (RC	CHE)	1 (RCHE)			-	1 (RCHE)		<u>.</u>	3
	Private car / taxi pick- up/drop-off space (5m × 2.5m × 2.4m)	1 (RC	CHE)	1 (RCHE)		-		1 (RCHE)			<u>3</u>
	L/UL bay for LGV (7m × 3.5m × 3.6m)	1 (RC	CHE)	1 (R0	1 (RCHE)		-		CHE)	<u>3</u>	
	Parking space for private light bus (8m × 3m × 3.3m)	1 (RC 1 (HCS Elderly 1	for Frail	1 (R0	1 (RCHE)		9 (DE) 1 (OPRS)		CHE)	<u>1</u>	4
GIC Facilities	Shared-use L/UL bay for private light bus with other welfare facilities (11m × 3.5m × 4.7m)	1 (HCS Elderly l			-	-		-		<u>1</u>	<u>l</u>
	Ambulance lay-by (9m × 3m × 3.8m)				-	,	-	1 (C	CCC)		<u>l</u>
	Shared-use L/UL bay for ambulance and private light bus (9m × 3m × 3.8m)				-	2 (DE)		-		į	<u>2</u>
	Parking space for 48- seater coach (12m × 3.5m × 3.8m)		-		-	-		1 (SCCC)			<u>1</u>
	L/UL bay for 48-seater coach (12m × 3.5m × 3.8m)	-	-		-		-	1 (SCCC)		1	

3.3.4 The proposed internal transport facilities for each phase of the proposed development will be self-contained within the respective phasing boundary. Highlighted plans of internal transport are shown in **Appendix B** and swept path analysis at critical movement are shown in **Appendix C**.

Car Parking Space Provision

- 3.3.5 A total of 1,396 nos. car parking spaces (including 18 nos. accessible car parking spaces) for residential development and another 43 nos. car parking spaces (including 4 nos. accessible car parking spaces) for retail use as per HKPSG high-end requirements will be provided in the basement levels, which will be accessed via the corresponding car-ramp for each site.
- 3.3.6 A total of 4 nos. car parking spaces (including 3 nos. accessible car parking spaces) will be provided on ground floor for GIC Facilities according to the schedule of accommodation from Social Welfare Department.

Visitor Car Parking Provision

3.3.7 A total of 70 nos. visitor car parking spaces (part of total 1,396 nos. private car parking provision), as per HKPSG high-end requirements will be provided in the basement levels, which will be accessed via the corresponding car-ramp for each site.

Motorcycle Parking Space Provision

3.3.8 A total of 72 nos. motorcycle parking spaces for residential development and another 6 nos. motorcycle parking spaces for retail use as per HKPSG high-end requirements will be provided in the basement levels, which will be accessed via the corresponding car-ramp for each site.

Private Car / Taxi Pick-up / Drop-off Provision

3.3.9 A total of 3 nos. private car/taxi pick-up/drop-off spaces will be provided on ground floor for GIC Facilities according to the schedule of accommodation from Social Welfare Department.

Goods Vehicle Loading / Unloading Bay Provision

- 3.3.10 A total of 14 nos. HGV loading/unloading bays for residential development and another 4 nos. HGV loading/unloading bays and 5 nos. LGV loading/unloading bays for retail use as per HKPSG high-end requirement will be provided on ground floor.
- 3.3.11 A total of 3 nos. LGV loading/unloading bays will be provided on ground floor for GIC Facilities according to the schedule of accommodation from Social Welfare Department.

Parking Space and Loading / Unloading Bay Provision for Private Light Bus

3.3.12 A total of 15 nos. parking spaces, 1 no. loading / unloading bay to be shared with other welfare facilities, and 2 nos. loading / unloading bay to be shared-used with ambulance, for private light bus, will be provided on ground floor according to the schedule of accommodation from Social Welfare Department.

<u>Parking Space and Loading / Unloading Bay Provision for</u> <u>Ambulance</u>

3.3.13 A total of 1 no. lay-by for ambulance exclusively will be provided on ground floor according to the schedule of accommodation from Social Welfare Department.

Parking Space and Loading / Unloading Bay Provision for Coach

1 no. parking space and 1 no. loading / unloading bay for coach will be provided on ground floor according to the schedule of accommodation from Social Welfare Department.

4 TRAFFIC IMPACT ASSESSMENT (FULL DEVELOPMENT OF PROPOSED SCHEME)

4.1 Trip Generation and Attraction of Proposed Development

4.1.1 The likely amount of traffic generated and attracted by the proposed development was calculated based on "Traffic Rates for Non-Residential Developments at 95% Confidence Level" adopted in the Transport Planning and Design Manual (TPDM) Vol.1 Table 1 of Annex D. The adopted rate and associated trip are shown in **Table 4.1.1**.

Table 4.1.1 Adopted Trip Generation and Attraction Rates for the Proposed Development

Davidonment	AM	Peak	PM Peak			
Development	Generation	Attraction	Generation	Attraction		
Private Housing: High-Density / R(A) (pcu/hr/flat) (1)	0.0718	0.0425	0.0286	0.0370		
Private Housing: High-Density / R(A) (pcu/hr/flat) (2)	0.0888	0.0515	0.0356	0.0480		
Private Housing: High-Density / R(B) (pcu/hr/flat) (3)	0.1887	0.0942	0.0862	0.1214		
Retail (pcu/hr/100m ² GFA) ⁽⁴⁾	0.2296	0.2434	0.3100	0.3563		

Notes:

- (1) Trip Rate based on "Traffic Rates for Residential Developments at 95% Confidence Level" in the Transport Planning and Design Manual (TPDM) Vol.1 Table 1, for average flat size 60m²
- (2) Trip Rate based on "Traffic Rates for Residential Developments at 95% Confidence Level" in the Transport Planning and Design Manual (TPDM) Vol.1 Table 1, for average flat size 70m².
- (3) Trip Rate based on "Traffic Rates for Residential Developments at 95% Confidence Level" in the Transport Planning and Design Manual (TPDM) Vol.1 Table 1, for average flat size 100m².
- (4) Trip Rate based on "Traffic Rates for Non-Residential Developments at 95% Confidence Level" in the Transport Planning and Design Manual (TPDM) Vol.1 Table 2.
- 4.1.2 The traffic generation and attraction trips for the design scenarios in Year 2035 is estimated in **Table 4.1.2**.

Table 4.1.2 Traffic Generation and Attraction of Proposed Development (pcu/hr)

Proposed	D		Al	М	PI	M
Development	Development Pa	irameters	Generation	Attraction	Generation	Attraction
	FS≤40m ²	1,221	88	52	35	45
Phase 1A	40m ² <fs≤70m<sup>2</fs≤70m<sup>	651	58	34	23	31
	70m ² <fs≤100m<sup>2</fs≤100m<sup>	109	21	10	9	13
	Retail: 2,285.323 s	qm	5	6	7	8
		Sub-total	172	102	74	97
	$FS \leq 40m^2$	910	65	39	26	34
	$40\text{m}^2 < FS \le 70\text{m}^2$	485	43	25	17	23
Phase 1B	$70\text{m}^2 < FS \le 100\text{m}^2$	81	15	8	7	10
	Retail: 1,516.286 s	qm	3	4	5	5
		Sub-total	126	76	55	72
	$FS \leq 40m^2$	714	51	30	20	26
D	$40m^2 < FS \le 70m^2$	381	34	20	14	18
Remaining Phase A	$70\text{m}^2 < FS \le 100\text{m}^2$	63	12	6	5	8
Thase II	Retail: 1,437.357 s	qm	3	3	4	5
		Sub-total	100	59	43	57
	$FS \leq 40m^2$	1,502	108	64	43	56
D	$40m^2 < FS \le 70m^2$	801	71	41	29	38
Remaining Phase B	$70m^2 < FS \le 100m^2$	134	25	13	12	16
Tituse D	Retail: 832.970 sq1	n	2	2	3	3
		Sub-total	206	120	87	113
Proposed Feed	er Service (1)		12	12	0	0
	Total		<u>616</u>	<u>369</u>	<u>259</u>	<u>339</u>

Note:

4.1.3 As indicated in **Table 4.1.2**, the total trip generated by the proposed development would be around 985 pcu/hr and 598 pcu/hr (two-way) during the AM and PM peak periods respectively.

4.2 Adjacent Developments

4.2.1 In addition to the development flow, the traffic generated and attracted by adjacent major planned/committed developments in the vicinity of the proposed development, including redevelopment of Princess Margret Hospital and Kwai Chung Hospital (S16 planning application No. A/KC/451), expansion of Princess Margaret Hospital Lai King Building, redevelopment of Salvation Army Lai King Home, and private residential development at Lai Kong Street were taken into account for the traffic forecast.

⁽¹⁾ Details of proposed feeder service refer to Section 4.7.

4.3 Future Traffic Growth

4.3.1 The proposed development is targeted for completion in Year 2032. In order to assess the traffic impact of the development-related traffic on the adjacent road network, Year 2035 (i.e. 3 years after completion) is adopted as the design year of the study.

Annual Traffic Census

4.3.2 Reference was made to Annual Traffic Census (ATC) on annual average daily traffic (AADT) at counting stations in the vicinity of the proposed development and the corresponding traffic flows are summarized in **Table 4.3.1** below.

Table 4.3.1	Annual Average Growth Rate by ATC
--------------------	-----------------------------------

Station No.	2017 AADT	2018 AADT	2019 AADT	2020 AADT	2021 AADT	2022 AADT	2023 AADT	Annual Average Growth Rate from 2017 to 2023
5443	6,720	6,820	7,590	7,590	7,880	7,800	8,060	+3.08%
4623	10,140	10,260	10,310	10,160	10,610	9,070	9,500	-1.08%
3859	16,090	16,300	14,920	14,400	15,860	13,880	14,920	-1.25%
4628	3,520	3,680	3,580	3,500	4,050	3,720	3,940	+1.90%
5476	10,890	11,190	11,430	12,210	11,870	11,450	12,930	+2.90%
4003	56,220	57,820	57,520	54,350	56,080	53,180	56,820	+0.18%
Total	103,580	106,070	105,350	102,210	106,350	99,100	106,170	+0.41%

4.3.3 The ATC historic data indicates a growth of traffic in recent years in the region with around +0.41% p.a.

Territorial Population and Employment Data Matrix (TPEDM)

4.3.4 Reference was also made to 2019-based TPEDM published by Planning Department. **Table 4.3.2** below summarizes the estimated and projected population and employment data as well as their respective annual average growth rate of Kwai Chung District in 2019, 2026 and 2031.

Table 4.3.2 Annual Average Growth Rate by TPEDM

Year	2019	2026	2031
Population	319,150	315,800	319,700
Employment	195,950	192,350	183,600
TOTAL	515,100	508,150	503,300
_	-0.19%	-0.19%	
Annual Average Growth Rate	(from 2019 to 2026)	(from 2026 to 2031)	

- 4.3.5 From the table above, the annual average growth rates from 2019 to 2026 and from 2026 to 2031 are -0.19% and -0.19% respectively based on population and employment data.
- 4.3.6 For conservative purpose, growth rate of +0.5% p.a. is selected to produce the traffic forecasts for 2024 2035.

4.4 Assessment Scenarios

4.4.1 To evaluate the associated traffic impact likely to be induced by the proposed development, two scenarios were analysed and compared. The first scenario (i.e. Year 2035 Reference Scenario) assumed the existing land lot to be developed as the **Approved Scheme** overall PR of not more than 5, whereas the second scenario (i.e. Year 2035 Design Scenario) assumed that the **Proposed Scheme** with domestic PR of not more than 6 and non-domestic PR of not more than 0.5 is in place.

Scenario 1

Year 2035 Reference Scenario

= Year 2024 observed traffic flows \times growth factor during the period of Year 2024 - 2035

plus traffic generations of adjacent major planned/committed developments in the vicinity

plus trips generated and attracted by the **Approved Scheme** overall PR of not more than 5 (Planning Application No. A/KC/489)

Scenario 2

Year 2035 Design Scenario

= Year 2024 observed traffic flows \times growth factor during the period of Year 2024 - 2035

plus traffic generations of adjacent major planned/committed developments in the vicinity

plus trips generated and attracted by **Proposed Scheme** with domestic PR of not more than 6 and non-domestic PR of not more than 0.5

- 4.4.2 The forecasted traffic flows for the above two scenarios are presented in **Figures 4.1** to **4.2** respectively. The development traffic flows are also presented in **Figure 4.3**.
- 4.4.3 Additional **Baseline Scenario** at the design Year 2035, with traffic generations of adjacent major planned/committed developments in the vicinity but without trips generated and attracted by the development under A/KC/489, is setup as supplementary information for comparison. The forecasted traffic flows are presented in **Figure 4.4**.

4.5 Junction Capacity Assessment

Junction capacity assessment was carried out at the identified key junctions for Year 2035 Reference and Design scenarios. Assessment results are summarized in **Table 4.5.1** below and the detailed calculations are appended in **Appendix A**.

Table 4.5.1 Year 2035 Future Junction Performance

					Perforn	nance (1)		
	Junction	Type	2035 B	aseline	2035 Re	ference	2035 Design	
			AM	PM	AM	PM	AM	PM
J1	Lai King Hill Road / King Lai Path	Signalized	>100%	>100%	>100%	>100%	>100%	>100%
J2	Lai King Hill Road / Ching Shan Terrance / Estate Road	Signalized	>100%	>100%	>100%	>100%	>100%	>100%
J3_a	Lai King Hill Road / Kwai Chung Interchange (2)	Signalized	21%	46%	3%	29%	-2%	20%
J3_b	Lai King Hill Road / Kwai Chung Interchange (3)	Signalized	<mark>17%</mark>	<mark>47%</mark>	15%	<mark>32%</mark>	15%	<mark>26%</mark>
J3_c	Lai King Hill Road / Kwai Chung Interchange (4)	Signalized	18%	44%	15%	29%	15%	25%
J4	Mei Lai Road/ Lai Wan Road	Signalized	>100%	>100%	>100%	>100%	>100%	>100%
J5	Mei Lai Road/ Cheung Sha Wan Road	Signalized	56%	60%	38%	50%	34%	48%
<mark>J6</mark>	Lai King Hill Road Pedestrian Crossing near Site Access	Signalized	>100%	>100%	>100% (5)	>100% (5)	>100% (5)	>100% (5)

Notes:

- (1) Figures shown represent "Reserve Capacity" (RC) in % for signalized junctions.
- (2) J3 under existing junction configuration.
- (3) J3 with TD planned improvement works.
- (4) The junction modification scheme in approved planning application (No. A/KC/489) is incorporated for assessment.
- (5) J6 with the proposed Lai King Hill Road and pedestrian crossing rearrangement.
- 4.5.2 The above results reveal that the identified key junctions would operate within capacity with the proposed development in Year 2035, with the implementation of the government planned improvement works, or the junction modification scheme in approved planning application (No. A/KC/489). It is anticipated that proposed development would not induce adverse traffic impact to the surrounding road network. TD's planned improvement scheme and the approved junction modification scheme is shown in **Appendix D** for reference. The implementation of the approved junction scheme of the planning application (No. A/KC/489) would be subject to future traffic impact assessment.

4.6 Link Capacity Assessment

4.6.1 Link capacity assessment was carried out at the identified road links for Year 2035 Reference and Design scenarios. Assessment results are summarized in **Table 4.6.1** below.

Table 4.6.1 Year 2031 Future Link Performance (1)

						Traf	fic Flo	ws (pc	u/hr)			Vo		Capac Ratio		
	Road Link ⁽²⁾	Direction	Unit	Link Capacity		eline ario	2035 Reference		2035 Design		Baseline Scenario		2035 Reference		2035 Design	
					AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
L1	Lai King Hill Road	T	pcu/hr	2,390	1,160	1,145	1,712	1,475	1,855	1,562	0.49	0.48	0.72	0.62	0.78	0.65
LI	(10m wide section)	Two-way	veh/hr	2,200	955	946	1,419	1,227	1,529	1,299	0.43	0.43	0.65	0.56	0.70	0.59
L2	Lai King Hill Road	T	pcu/hr	1,850	695	540	1,247	870	1,390	957	0.38	0.29	0.67	0.47	0.75	0.52
L2	(8m wide section)	Two-way	veh/hr	1,700	575	450	1,035	725	1,144	799	0.34	0.26	0.61	0.43	0.67	0.47
L3	Lai King Hill Road	Two-way	pcu/hr	2,390	580	575	1,132	905	1,275	992	0.24	0.24	0.47	0.38	0.53	0.42
L3	Lai King Hill Road (10m wide section)		veh/hr	2,200	477	477	937	752	1,046	826	0.22	0.22	0.43	0.34	0.48	0.38
τ.4	Lai King Hill Road	Т	pcu/hr	2,390	725	710	960	853	1,014	888	0.30	0.30	0.40	0.36	0.42	0.37
L4	(10m wide section)	Two-way	veh/hr	2,200	601	591	798	713	844	743	0.27	0.27	0.36	0.32	0.38	0.34
	Kwai Chung	ND	pcu/hr	2,800	935	555	1,123	729	1,165	773	0.33	0.20	0.40	0.26	0.42	0.28
L5	Interchange (6.8m wide section)	NB	veh/hr	2,600	773	460	930	605	965	642	0.30	0.18	0.36	0.23	0.37	0.25
	Kwai Chung	G.D.	pcu/hr	1,400	450	610	775	742	843	778	0.32	0.44	0.55	0.53	0.60	0.56
L6	Interchange (6m wide section)	SB	veh/hr	1,300	373	501	643	613	699	642	0.29	0.39	0.49	0.47	0.54	0.49

Notes:

- (1) Link capacity estimated according to TPDM Vol.2 Ch.2.4, for single 2-lane carriageway (for L1 to L4 with road width of 8m and 10m) or for dual 2-lane carriageway (for L5 and L6 with road with of 6m and 6.8m). Data in terms of veh/hr and pcu/hr are converted according to survey pcu factor.
- (2) For conservative approach, the road links are assessed based on the greatest traffic flows at the road sections of corresponding roads within AOI.
- 4.6.2 As shown in the table above, the identified road section would continue to have sufficient link capacity to cater for the future traffic demand with the proposed development by Year 2035. The proposed development would not induce adverse traffic impact to the surrounding road network.

4.7 Future Occupancy of Public Transport Services

- 4.7.1 The Proposed Development is targeted for completion in Year 2032. In order to assess the likely impact induced by the Proposed Development on public transport connection in Year 2035 (i.e. 3 years after the target completion year of the Proposed Development) is adopted as the design year of the public transport assessment, which is in line with the design year adopted in traffic impact assessment.
- 4.7.2 Increase in demand on public transport service is anticipated due to the Proposed Development, the anticipated population of the Proposed Development is approximately 19,038. According to "Travel Characteristics Survey (TCS) 2011" published by Transport Department, the daily mechanised trip rate is 1.83 trips per person and the morning peak and evening peak accounted for about 12% and 10% of the daily trips. Considering this travel pattern in TCS 2011, it is estimated that the proposed development would generate a total of 4,181 pax/hr (i.e. 19,038 × 1.83 × 0.12) and 3,484 pax/hr (i.e. 19,038 × 1.83 × 0.10) during the morning peak hour and evening peak hour

respectively. The anticipated trips generated is summarized in **Table 4.7.1** below.

Table 4.7.1 Passenger Trips Generated from Proposed Development

Development Par	Development Parameters									
No. of Flats 7,052 flats										
Population	19,03	8 (1)								
D 1 H = T : C (2)	AM	PM								
Peak Hours Trip Generation (2)	4,181 pax/hr	3,484 pax/hr								

Notes:

- Person Per Occupied Flat (PPOF) of 2.7 is assumed to be based on the 2021 census of Kwai Tsing District.
- (2) According to "Travel Characteristics Survey (TCS) 2011" published by Transport Department, the daily mechanized trip rate is 1.83 trips per person and the morning peak and evening peak accounted for about 12% and 10% of the daily trips.
- 4.7.3 With reference to "2021 Population Census" published by Census and Statistics Department, the modal split of working population in Kwai Tsing District Council District and the corresponding passenger demand from the proposed development are estimated as summarized in **Table 4.7.2**.

Table 4.7.2 Modal Split and Passenger Demand from The Proposed Development

Mode of Transport	Proportion	Passenger Demand from Proposed Development (pax/hr)				
		AM	PM			
MTR	40.0%	1,673	1,394			
Bus	30.1%	1,258	1048			
GMB	10.0%	417	347			
PV & Taxi	4.7%	198	165			
On foot	10.5%	439	366			
Others	4.7%	196	163			
Total	100%	4,181	3,484			
Total in Public Transport	80.1%	3,348	2,789			

- 4.7.4 According to the above table, it is estimated that the total passenger demand of public transport associated with the proposed development in the morning peak hour and evening peak hour would be approx. 3,348 pax/hr and 2,789 pax/hr respectively
- 4.7.5 To evaluate the associated impact likely to be induced by the Proposed Development on public transport, the future occupancy of public transport services with the Proposed Development where the estimated bus passengers, GMB passenger and MTR passenger demand associated with the Proposed Development are taken into account. It is also assumed that all passenger heading to Lai King or Mei Foo MTR station will take bus/GMB for interchange, therefore inclusive as the road-based public transport demand for conservative assessment purpose.
- 4.7.6 Similar to the traffic forecast, a growth rate of +0.5% p.a. is adopted for projecting the existing bus passenger demand to Year 2035 demand.

4.7.7 Occupancy surveys for the existing public transport were carried out on 12th March 2024 during the periods of 07:00 – 10:00 and 17:00 – 20:00 hours at the public transport facilities in the vicinity. The survey results and the peak hour trips of franchised bus and GMB routes in the vicinity are presented in **Table 4.7.3**.

Table 4.7.3 Peak Hour Trips of Franchised Bus and GMB routes

Route No.	Origin / D	estination	Observ Hour	ed Peak Trips s/hr) PM		tal erved	Obse	pancy		acity
KAU'	WA KENG BUS ST	OP (LAI KING HI					AIVI	I IVI	Alvi	F IVI
	hised Bus									
30	Allway Gardens	Cheung Sha Wan	1	2	90	180	11%	11%	80	160
32H	Cheung Shan	Lai Chi Kok	-	1	-	76	1	5%	-	72
42	Tsing Yi (Cheung Hong Estate)	Shun Lee	3	3	398	383	17%	20%	332	308
45	Lai Yiu	Kowloon City Ferry B/T	2	2	250	250	28%	37%	179	158
46	Lai Yiu	Jordan (West Kowloon Station)	3	4	339	501	36%	27%	218	368
46X	Hin Keng	Mei Foo	7	6	953	817	8%	11%	881	726
GMB										
90M	Highland Park	Mei Foo Station	5	5	89	83	38%	46%	55	45
90P	Princess Margaret Hospital	Mei Foo Station	21	17	372	299	15%	82%	317	53
92M	Wah Yuen Chuen	Mei Foo Station	5	4	80	64	36%	42%	51	37
KAU	WA KENG BUS ST	OP (LAI KING HI	LL ROA	D WEST	r BO U	ND)				
Franc	hised Bus	,								
30	Cheung Sha Wan	Allway Gardens	1	2	68	158	9%	6%	62	149
32H	Lai Chi Kok	Cheung Shan	ı	1	ı	76	ı	11%	ı	68
42	Shun Lee	Tsing Yi (Cheung Hong Estate)	3	3	396	411	9%	7%	359	381
45	Kowloon City Ferry B/T	Lai Yiu	2	2	250	250	10%	10%	225	226
46	Jordan (West Kowloon Station)	Lai Yiu	3	2	340	215	7%	7%	315	199
46X	Mei Foo	Hin Keng	7	9	943	1228	13%	3%	820	1188
GMB										
90M	Mei Foo Station	Highland Park	6	4	99	67	74%	61%	26	26
90P	Mei Foo Station	Princess Margaret Hospital	18	13	309	223	86%	35%	43	144
92M	Mei Foo Station	Wah Yuen Chuen	5	3	80	48	64%	83%	29	8

Route No.	Origin / D	Hour	ed Peak Trips s/hr)	Total Observed Capacity		Observed Occupancy Rate (%)		Remaining Capacity		
			AM	PM	AM	PM	AM	PM	AM	PM
LAI C	HI KOK BUS TER	MINUS								
Franc	hised Bus									
6	Lai Chi Kok	ai Chi Kok Star Ferry		5	631	676	19%	10%	513	611
171	Lai Chi Kok	South Horizons	4	6	543	813	6%	1%	510	808
904	Lai Chi Kok	Lai Chi Kok Kennedy Town (Belcher Bay)		3	268	375	3%	1%	260	373
905	Lai Chi Kok	Chi Kok Exhibition Centre Station			826	702	6%	0%	777	700
905P	Lai Chi Kok	Wan Chai (Harbour Road)	2	-	273	-	3%	-	266	-

- 4.7.8 The distance from the subject site to Lai Chi Kok Bus Terminus is approximate 350m which is within a reasonable walking distance. According to the interview survey conducted in July 2022, approx. 35% of residents of Kau Wa Keng Old Village and Kau Wa Keng San Tsuen are currently using the franchise bus service at the Lai Chi Kok Bus Terminus. The composition 65% and 35% of estimated public transport demand would use the public transport services at Lai King Hill Road and Lai Chi Kok Bus Terminus respectively.
- 4.7.9 For conservative assessment purpose, only one traffic bound of the bus routes at the enroute stop at the Kau Wa Keng Bus Stop with Lai Chi Kok Bus Terminus are taken into account for the public transport assessment. The assessment results in AM and PM Peak are summarized in **Table 4.7.4** and **Table 4.7.5** below respectively.

Table 4.7.4 Year 2035 Public Transport Occupancy and Public Transport Demand Associated with the Proposed Development in AM Peak

				2035 Desig	gn Scenario				
Public Transport	On-street (Easth	Facilities ound)	On-street Facilities (Westbound)			Kok Bus ninus	PT Demand Generated by Proposed Development (1)		
Service			Total Spare Capacity	No. of trips	Total Spare Capacity	On-street Facilities	Lai Chi Kok Bus Terminus		
Franchised Bus	16	1,690	16	1,781					
GMB	31	423	29	98	19	2,326	2,176	1,172	
Total	47	2,113	45	1,879					

Note:

 It is assumed that all passengers heading to Lai King or Mei Foo MTR station will take bus/GMB for interchange for conservative assessment of the public transport demand.

Table 4.7.5 Year 2035 Public Transport Occupancy and Public Transport Demand Associated with the Proposed Development in PM Peak

				2035 Desig	gn Scenario				
Public Transport	On-street Facilities (Eastbound)		On-street Facilities (Westbound)			Kok Bus ninus	PT Demand Generated by Proposed Development (1)		
Service	No. of trips	Total Spare Capacity	No. of trips	Total Spare Capacity	No. of trips	Total Spare Capacity	On-street Facilities	Lai Chi Kok Bus Terminus	
Franchised Bus	18	1,792	19	2,211					
GMB	26	135	20	178	19	2,492	1,813	976	
Total	44	1,927	39	2,389					

Note:

4.7.10 Referring to **Table 4.7.4** and **Table 4.7.5** above, the results reveal that the overall spare capacity of the assessed franchised bus and GMB routes would not be adequate to cater for the public transport demand associated with Proposed Development in the AM Peak Hour.

Proposal of Feeder Service

- 4.7.11 According to the **Table 4.7.4** and **Table 4.7.5**, it is estimated that the passenger demand of public transport associated with the proposed development on street facilities would be approximate 2,176 pax/hr in the AM peak hour, which would overload the existing public service, with the available spare capacity of approximate 1,879 pax/hr (WB) and 2,113 pax/hr (EB) in the AM peak hour. Since there is less spare capacity on the WB traffic, WB is selected for comparison for conservative purpose.
- 4.7.12 To cater for the shortage in public transport services, the applicant proposed to provide feeder services to the nearby MTR station or bus interchange and to minimise adverse impact to the existing public transport services. Feeder service from the application site to Lai King Station is proposed. Detail of the proposed feeder service is summarized below in **Table 4.7.6.** The layby for the feeder service is shown in the MLP in drawing **Figure 3.1**.

Table 4.7.6 Proposed Feeder Service for the Application Site

Item	AM	PM			
Routing	To/from Application	Site and nearby MTR			
Routing	Station / Bus Interchange				
Average Handing Capacity	50 Pass	sengers			
	10 minutes				
Headway	(subject to road	-			
	traffic condition)				
Level of Service in Peak Hour	6 trips/hr	=			
Hourly Capacity	Approx. 300 pax/hr	=			

4.7.13 The proposed feeder service would provide adequate capacity (approx. 300 pax/hr in the AM peak) to cater for the exceeded peak hour passenger trip generation (approx. 297 pax/hr).

It is assumed that all passengers heading to Lai King or Mei Foo MTR station will take bus/GMB for interchange for conservative assessment of the public transport demand.

4.7.14 Subject to the actual demand, the proposed feeder service could be reviewed and adjusted accordingly.

4.8 Pedestrian Impact Assessment

Pedestrian Generation

4.8.1 Similar to **Chapter 4.7 Section 4.7.2**, pedestrian generation from the Proposed Development for AM and PM Peak is estimated with reference to "Travel Characteristics Survey (TCS) 2011" published by Transport Department and "2021 Population Census" published by Census and Statistics Department. The pedestrian generation is shown in **Table 4.8.1** below.

Table 4.8.1 Pedestrian Generation by the Proposed Development

Pedestrian Generation (ppl/hr) (1)								
AM Peak PM Peak								
3,787	3,155							

Note:

 Pedestrian generation by the Proposed Development is assumed to be people who will take MTR, road-based transport and walk. The pedestrian trip generation and attraction been derived based on the modal split in **Table 4.7.2**.

Assessment Scenarios

- 4.8.2 Similar to the traffic impact assessment, Year 2035 is adopted as the design year of pedestrian assessment. Annual growth rate of +0.5% p.a. is adopted to produce the pedestrian forecasts for 2024 2035 to derive Year 2035 peak hour background pedestrian flows. Additionally, the future pedestrian volumes generated by the proposed development are taken into account for Year 2035 pedestrian flows.
- 4.8.3 Similarly, to evaluate the associated pedestrian impact likely to be induced by the proposed development, two scenarios were analysed and compared.
- 4.8.4 The first scenario (i.e. Year 2035 Reference Scenario) refers to the future pedestrian flows assumed the existing land lot to be developed as the **Approved Scheme** overall PR of not more than 5, while the second scenario (i.e. Year 2035 Design Scenario) refers to the future pedestrian flow with the **Proposed Scheme** with domestic PR of not more than 6 and non-domestic PR of not more than 0.5 is in place.
- 4.8.5 As mentioned in **Chapter 3.2**, it is proposed to shift the pedestrian crossing due to conflict with proposed western vehicular access of the Proposed Development.
- 4.8.6 Having considered the location of public transport facilities, it is expected the pedestrians generated by the development would mainly pass through the pedestrian crossing at Lai King Hill Road, then access to the bus stops at Lai King Hill Road westbound or to the Mei Foo MTR Station via Lai Yan Court. The assumed route for pedestrian flow generated and the locations of assessed pedestrian facilities are shown in **Figure 4.5**.

Performance of Pedestrian Facilities in Year 2035

- 4.8.7 In order to address the performance of the concerned pedestrian facilities, Level of Service (LOS) assessment of the critical footpaths have been conducted for Year 2035 Reference and Design Scenarios.
- 4.8.8 **Table 4.8.2** to **Table 4.8.5** summarized the peak pedestrian flow and the pedestrian assessment results at the critical footpaths under the Year 2035 Reference and Design Scenarios.

Table 4.8.2 Design Year 2035 Level of Service in AM and PM Peaks along Key Footpath under Reference Scenario

Footpath		Actual Width	Effective Clear Width (1)	Hourl	ay Peak y Flow l/hr)		Rate (2) nin/m)	L((Le	OS vel)
		(m)	(m)	AM	PM	AM	PM	AM	PM
F1(W)	Lai King Hill Road Northern Footpath	<mark>4.5</mark>	3.5	2,265	765	12.9	<mark>4.4</mark>	A	A
F1(E)	Lai King Hill Road Northern Footpath	2	1	<mark>780</mark>	670	15.6	13.4	A	A
F2	Lai King Hill Road Southern Footpath	2.8	1.8	1,715	1,260	19.1	14.0	В	A
F3	Wa Lai Path Footpath	9.5	8.5	1,290	1,030	3.0	2.4	A	A

Notes:

- (1) Effective clear width = Actual width (on-site measurement) minus 0.5m dead width on both sides, and minus the width of passengers queuing at bus stops.
- (2) Pedestrian flow rates are computed based on effective clear width, with 1.2 peak factor applied for the peak minute flow rate.

Table 4.8.3 Design Year 2035 Level of Service in AM and PM Peaks along Key Pedestrian Crossing under Reference Scenario

	Crossing Facility	Width T		Cycle Time (s)		Green Time Proportion		Pedestrian Capacity ⁽¹⁾ (ped/hr)		Two-way Pedestrian Flow ⁽²⁾ (ped/hr)		ıme/ acity Ratio
	racinty (m)		AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
C1	Pedestrian Crossing Across Lai King Hill Road	6.2	<mark>90</mark>	90	20%	20%	2,360	2,360	1,715	1,260	0.73	0.53

Notes:

- (1) Crossing Capacity (ped/hr) = K (1,900 ped/m/hr) × Green Time Proportion × W (width of crossing)
- (2) Pedestrian flow rates are computed based on effective clear width, with 1.2 peak factor applied for the peak minute flow rate.

Table 4.8.4 Design Year 2035 Level of Service in AM and PM Peaks along Key Footpath under Design Scenario

			(m) WIGUI (*)		Clear Width ⁽¹⁾	Hourl	ay Peak y Flow l/hr)		Rate (2) nin/m)	LOS (Level)	
		(111)	(m)	AM	PM	AM	PM	AM	PM		
F1(W)	Lai King Hill Road Northern Footpath	4.5	3.5	2,700	1,145	15.4	12.5	В	A		
F1(E)	Lai King Hill Road Northern Footpath	2	1	920	735	18.4	14.7	B	A		
F2	Lai King Hill Road Southern Footpath	2.8	1.8	2,010	1,625	22.3	18.1	В	В		
F3	Wa Lai Path Footpath	9.5	8.5	1,500	1,195	3.5	2.8	A	A		

Notes:

- Effective clear width = Actual width (on-site measurement) minus 0.5m dead width on both sides, and minus the width of passengers queuing at bus stops.
- (2) Pedestrian flow rates are computed based on effective clear width, with 1.2 peak factor applied for the peak minute flow rate.

Table 4.8.5 Design Year 2035 Level of Service in AM and PM Peaks along Key Pedestrian Crossing under Design Scenario

	Crossing Clear Width		Width Time (s)		Green Time Proportion		Pedestrian Capacity ⁽¹⁾ (ped/hr)		Two-way Pedestrian Flow ⁽²⁾ (ped/hr)		Volume/ Capacity (V/C) Ratio	
racinty		(m)	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
C1	Pedestrian Crossing Across Lai King Hill Road	6.2	90	90	20%	20%	2,360	2,360	2,010	1,625	0.85	0.69

Notes:

- Crossing Capacity (ped/hr) = K (1,900 ped/m/hr) × Green Time Proportion × W (width of crossing)
- (2) Pedestrian flow rates are computed based on effective clear width, with 1.2 peak factor applied for the peak minute flow rate.
- 4.8.9 As shown in the tables above, the assessed footpaths and pedestrian crossing would be operating with desirable walking conditions at LOS "A" to "B" and V/C ratio less than 0.9 under both Reference and Design Scenario in Year 2035. The pedestrian facilities would hence be adequate to cater for the additional pedestrian demand generated from the Proposed Development in design Year 2035.

5 TRAFFIC IMPACT ASSESSMENT (INTERIM SCENARIO)

- As the applicant is currently not the only land owner of this Application Site, phased development of this Application Site is proposed with Phase 1A, Phase 1B developments to be developed by the Applicant. The implementation of the Remaining Phases A and B will be subject to actual development plan by third-parties.
- Interim traffic assessment is conducted to reveal the traffic impact with only completion and population intake of the proposed Phase 1A, Phase 1B developments to be developed by the Applicant, and the development of Remaining Phase A and Remaining Phase B by third-parties.

Assessment Scenarios

5.1.3 To evaluate the associated traffic impact likely to be induced by the partial completion of the site, interim scenarios assuming the phased development are set up as below

Interim Scenario A, assuming only completion of P1A & P1B

Year 2035 Interim Scenario A

= Year 2024 observed traffic flows \times growth factor during the period of Year 2024 - 2035

plus traffic generations of adjacent major planned/committed developments in the vicinity

plus trip generation and attraction of the proposed P1A and P1B

Interim Scenario B, assuming only completion of P1A & P1B & RPA

Year 2035 Interim Scenario B

= Year 2035 Interim Scenario A

plus trip generation and attraction of Remaining Phase A

Interim Scenario C, assuming only completion of P1A & P1B & RPB

Year 2035 Interim Scenario C

= Year 2035 Interim Scenario A

plus trip generation and attraction of Remaining Phase B

Trip Generation and Attraction

5.1.4 The traffic generation and attraction trips for the interim scenarios in Year 2035 is summarized in **Table 5.1.1**.

Table 5.1.1 Traffic Generation and Attraction of Proposed Residential Development (pcu/hr)

Duanaged Development	A	M	PM		
Proposed Development	Gen	Att	Gen	Att	
Phase 1A	172	102	74	97	
Phase 1B	126	76	55	72	
Remaining Phase A	100	59	43	57	
Remaining Phase B	206	120	87	113	
Interim Scenario A (P1A+P1B)	298	178	<u>129</u>	<u>169</u>	
Interim Scenario B (P1A+P1B+RPA) (1)	398	237	<u>172</u>	226	
Interim Scenario C (P1A+P1B+RPB) (1)	504	298	216	282	

- As indicated in **Table 5.1.1**, the total trip generated by the proposed development in the morning and evening peak would be around 476 pcu/hr and 298 pcu/hr (two-way) under Interim Scenario A, 635 pcu/hr and 398 pcu/hr (two-way) under Interim Scenario B, and 802 pcu/hr and 498 pcu/hr (two-way) under Interim Scenario C respectively.
- 5.1.6 The forecasted traffic flows for the above assessment scenario are presented in **Figures 5.1** to **Figure 5.3**.

5.2 **Junction Capacity Assessment**

Junction capacity assessment was carried out at the identified key junctions for Year 2035 Interim Scenario A, Interim Scenario B and Interim Scenario C. Assessment results for the key junctions are summarized in **Table 5.2.1** below and the detailed calculations are appended in **Appendix A**.

Table 5.2.1 Year 2035 Future Junction Performance

Junction			Scena	rio A	Scena	rio B	Scenario C		
		Type	Perform	ance (1)	Perforn	nance (1)	Performance (1)		
		AM		PM	AM	PM	AM	PM	
J1	Lai King Hill Road / King Lai Path	Signalized	>100%	>100%	>100%	>100%	>100%	>100%	
J2	Lai King Hill Road / Ching Shan Terrance / Estate Road	Signalized	>100%	>100%	>100%	>100%	>100%	>100%	
J3_a	Lai King Hill Road / Kwai Chung Interchange ⁽²⁾	Signalized	13%	42%	8%	35%	2%	27%	
J3_b	Lai King Hill Road / Kwai Chung Interchange ⁽³⁾	Signalized	16%	43%	15%	37%	15%	31%	
J3_c	Lai King Hill Road / Kwai Chung Interchange ⁽⁴⁾	Signalized	16%	39%	15%	34%	15%	30%	
J4	Mei Lai Road/ Lai Wan Road	Signalized	>100%	>100%	>100%	>100%	>100%	>100%	
J5	Mei Lai Road/ Cheung Sha Wan Road	Signalized	45%	54%	41%	52%	37%	50%	
<mark>J6</mark>	Lai King Hill Road Pedestrian Crossing near Site Access (5)	Signalized	>100%	>100%	>100%	>100%	>100%	>100%	

Notes:

- (1) Figures shown represent "Reserve Capacity" (RC) in % for signalized junctions.
- (2) J3 under existing junction configuration.
- (3) J3 with TD planned improvement works.
- (4) The junction modification scheme in approved planning application (No. A/KC/489) is incorporated for assessment.
- (5) J6 with the proposed Lai King Hill Road and pedestrian crossing rearrangement.

The above results reveal that for all Interim Scenarios, all identified key junctions would operate within capacity in Year 2035, with implementation of the government planned improvement works, or the junction modification scheme in approved planning application (No. A/KC/489). The implementation of the approved junction scheme of the planning application (No. A/KC/489) would be subject to future traffic impact assessment.

5.3 Link Capacity Assessment

5.3.1 Link capacity assessment was carried out at the identified road links for Year 2035 Interim Scenarios. Assessment results are summarized in **Table 5.3.1** below.

_	Tuble close Team 2000 Facult Emilia Citioninance															
					Traffic Flows (pcu/hr)					Volume/Capacity (V/C) Ratio						
Road Link ⁽²⁾		Direction	Unit	Link Capacity	Interim Scenario A		Interim Scenario B		Interim Scenario C		Interim Scenario A		Interim Scenario B		Interim Scenario C	
					AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
L1 La (10	Lai King Hill Road	Two-way	pcu/hr	2,390	1,517	1,356	1,628	1,425	1,744	1,495	0.63	0.57	0.68	0.60	0.73	0.63
	(10m wide section)		veh/hr	2,200	1,246	1,124	1,340	1,183	1,435	1,241	0.57	0.51	0.61	0.54	0.65	0.56
L2	Lai King Hill Road (8m wide section)	Two-way	pcu/hr	1,850	1,052	751	1,163	820	1,279	890	0.57	0.41	0.63	0.44	0.69	0.48
			veh/hr	1,700	863	627	955	685	1,052	743	0.51	0.37	0.56	0.40	0.62	0.44
L3	Lai King Hill Road (10m wide section)	Two-way	pcu/hr	2,390	937	786	1,048	855	1,164	925	0.39	0.33	0.44	0.36	0.49	0.39
			veh/hr	2,200	765	654	857	712	954	770	0.35	0.30	0.39	0.32	0.43	0.35
L4	Lai King Hill Road (10m wide section)	T	pcu/hr	2,390	869	800	916	830	967	859	0.36	0.33	0.38	0.35	0.40	0.36
		1 wo-way	veh/hr	2,200	722	668	762	694	804	718	0.33	0.30	0.35	0.32	0.37	0.33
L5	Kwai Chung	n NB	pcu/hr	2,800	1050	666	1088	702	1127	738	0.38	0.24	0.39	0.25	0.40	0.26
	Interchange (6.8m wide section)		veh/hr	2,600	869	552	901	582	933	612	0.33	0.21	0.35	0.22	0.36	0.24
L6	Kwai Chung	SB	pcu/hr	1,400	644	694	709	722	778	751	0.46	0.50	0.51	0.52	0.56	0.54
	Interchange (6m wide section)		veh/hr	1,300	534	571	588	595	645	619	0.41	0.44	0.45	0.46	0.50	0.48

Table 5.3.1 Year 2035 Future Link Performance (1)

Notes:

- (1) Link capacity estimated according to TPDM Vol.2 Ch.2.4, for single 2-lane carriageway (for L1 to L4 with road width of 8m and 10m) or for dual 2-lane carriageway (for L5 and L6 with road with of 6m and 6.8m). Data in terms of veh/hr and pcu/hr are converted according to survey pcu factor.
- (2) For conservative approach, the road links are assessed based on the greatest traffic flows at the road sections of corresponding roads within AOI.
- 5.3.2 As shown in the table above, the identified road section would continue to have sufficient link capacity to cater for the future traffic demand with the proposed development by Year 2035. The proposed development would not induce adverse traffic impact to the surrounding road network during the interim stage.

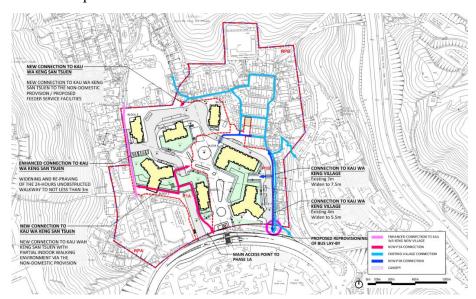
5.4 Public Transport Services – Interim Scenario

5.4.1 The increase in demand on public transport service under the Interim Scenarios are estimated with the same methodology as presented in **Chapter 4.7** and summarized in **Table 5.4.1** below.

Table 5.4.1 Passenger Trips Generated from Proposed Development in Interim Scenario

	Interim So	cenario A	Interim So	cenario B	Interim Scenario C			
No. of Flats	3,457	flats	4,615	flats	5,894 flats			
Population (1)	9,33	33	12,4	.59	15,912			
Peak Hours	AM	PM	AM	PM	AM	PM		
Passenger Trip Generation (2) (pax/hr)	2,050	1,708	2,736	2,280	3,495	2,912		
Passenger Demand from Proposed Development for On-street Facilities (pax/hr)	1,067	889	1,424	1,187	1,819	1,516		
Total Spare Capacity for On- Street Facilities (EB)	2,113	1,927	2,113	1,927	2,113	1,927		
Total Spare Capacity for On- Street Facilities (WB)	1,879	2,389	1,879	2,389	1,879	2,389		

Notes:


- (1) Person Per Occupied Flat (PPOF) of 2.7 is assumed to be based on the 2021 census of Kwai Tsing District.
- (2) According to "Travel Characteristics Survey (TCS) 2011" published by Transport Department, the daily mechanized trip rate is 1.83 trips per person and the morning peak and evening peak accounted for about 12% and 10% of the daily trips.
- Referring to **Table 5.4.1** above, the results reveal that the overall spare capacity of the assessed franchised bus and GMB routes would be adequate to cater for the public transport demand associated with Proposed Development in the AM and PM peak hours under Interim Scenarios A, B, and C.

5.5 Pedestrian Walking Condition – Interim Scenario

5.5.1 In **Chapter 4.8**, it is revealed that under the ultimate stage, the assessed footpaths and pedestrian crossing would be operating with desirable walking conditions. The pedestrian facilities would hence be adequate to cater for the additional pedestrian demand generated from the P1A and P1B of the Proposed Development.

Additional Pedestrian Enhancements

In view that the residents living in existing Kau Wa Keng Old Village and Kau Wa Keng San Tsuen will be using the existing footpaths adjacent to the boundary of P1A and P1B to/from Lai King Hill Road, the Applicant would take the opportunity of the Phase 1A, Phase 1B accessibility for these two existing villages. Widened public access will be provided at all times. **Diagram 1** below illustrated the proposed additional pedestrian enhancement.

Diagram 1 Proposed Additional Pedestrian Enhancements

- Kau Wa Keng San Tsuen is currently accessible from Lai King Hill Road via the existing footpath along the nullah at the western fringe of the P1A and RPA. In the Interim Scenario, the footpath section within P1A is proposed to be widened from the existing 1.5 m width to not less than 3m wide (through zone) in accordance with the Hong Kong Planning Standards and Guidelines (HKPSG) width standard for footpaths/walkways in rural land use, and to be open for public access at all times and connects with the existing footpath within RPA.
- 5.5.4 In addition, new connections to Kau Wa Keng San Tsuen with partial indoor walking environment via the non-domestic provision and the proposed feeder service facilities will be provided within P1A.
- 5.5.5 The existing walkway to Kau Wa Keng Old Village from Lai King Hill Road falls entirely within RPB, which is currently 2m in width at the narrowest section. In the Interim Scenario, voluntary setbacks will be provided along the eastern boundary of P1B such that the walkway will be widened from the current minimum of 2m to a minimum of 5.5 m.

To further enhance walkability of pedestrians to/from Kau Wa Keng Old Village, widening / improvement existing staircase or new ramp at the or Kau Wa Keng Old Village access will be provided. Street furniture and landscaping features such as path lighting and tree planting will be provided along the widened part of walkway within P1B.

5.5.6 With the above additional pedestrian enhancement, it is expected that the performance of the existing pedestrian facilities would be maintained if not improved.

6 CONCLUSION

6.1 Summary

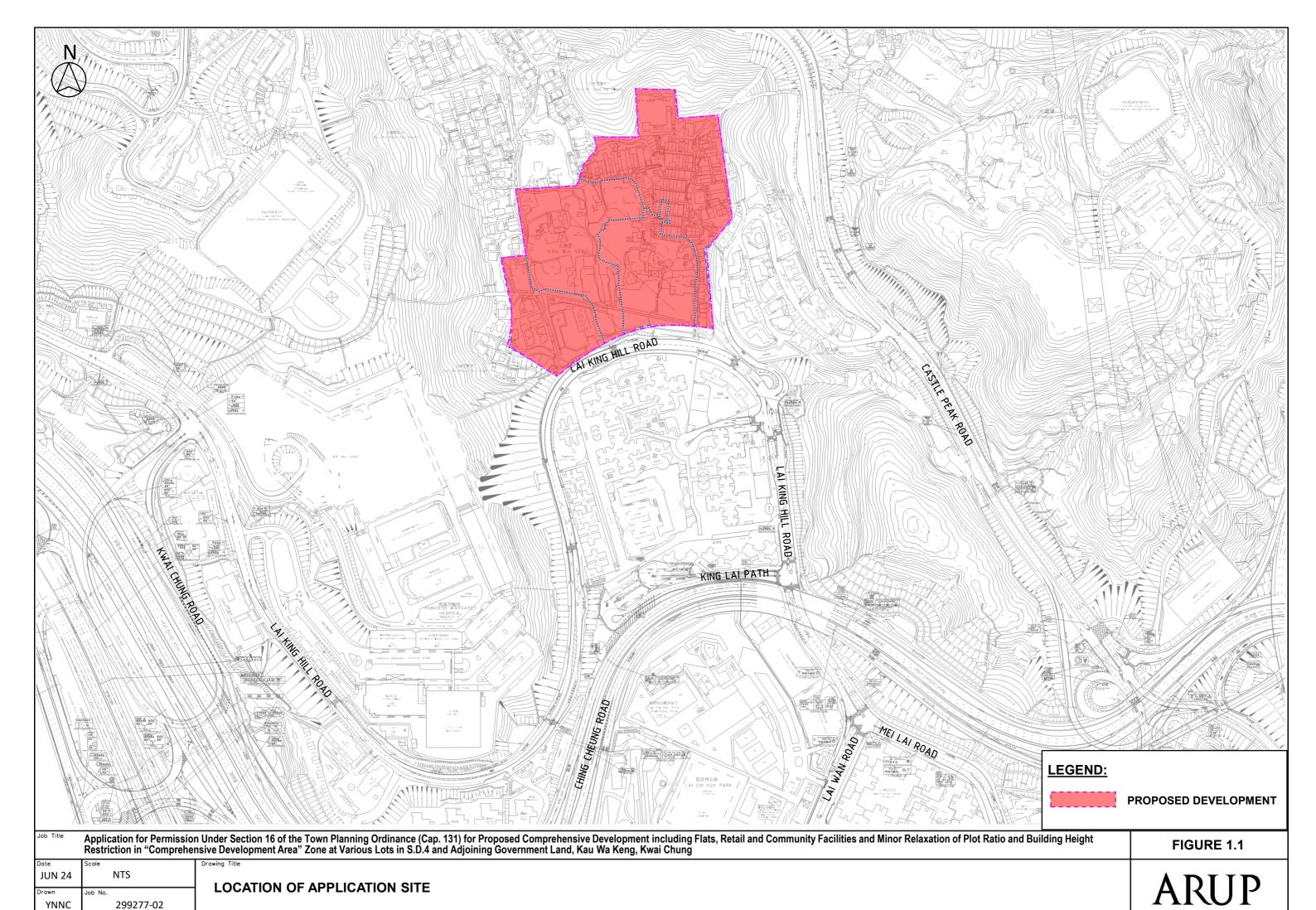
- 6.1.1 The Application Site falls within the "Comprehensive Development Area" zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung on the Approved Kwai Chung Outline Zoning Plan (OZP) No. S/KC/32.
- 6.1.2 The Applicant submitted a S16 Planning Application No. A/KC/489. The comprehensive development proposed in the Planning Application No. A/KC/489 ("**Approved Scheme**"), comprises 14 residential blocks with an overall PR of not more than 5 and maximum BH of not more than +120mPD.
- 6.1.3 The Planning Application No. A/KC/489 was deliberated in the TPB Metro Planning Committee Meeting held on 14 July 2023 (the TPB Meeting). During the TPB meeting, TPB members raised concerns on the provision of social welfare facilities and retail shops, as quoted from the meeting minutes^[1]
 - "Some Members considered that retail facilities should be provided in the proposed development to cater for the daily needs of the future residents." and "Some Member shared the view that the provision of social welfare facilities in the proposed development was inadequate...".
 - "the development intensity of the proposed development could be increased for better land utilisation, e.g. provision of retail and more GIC facilities.".

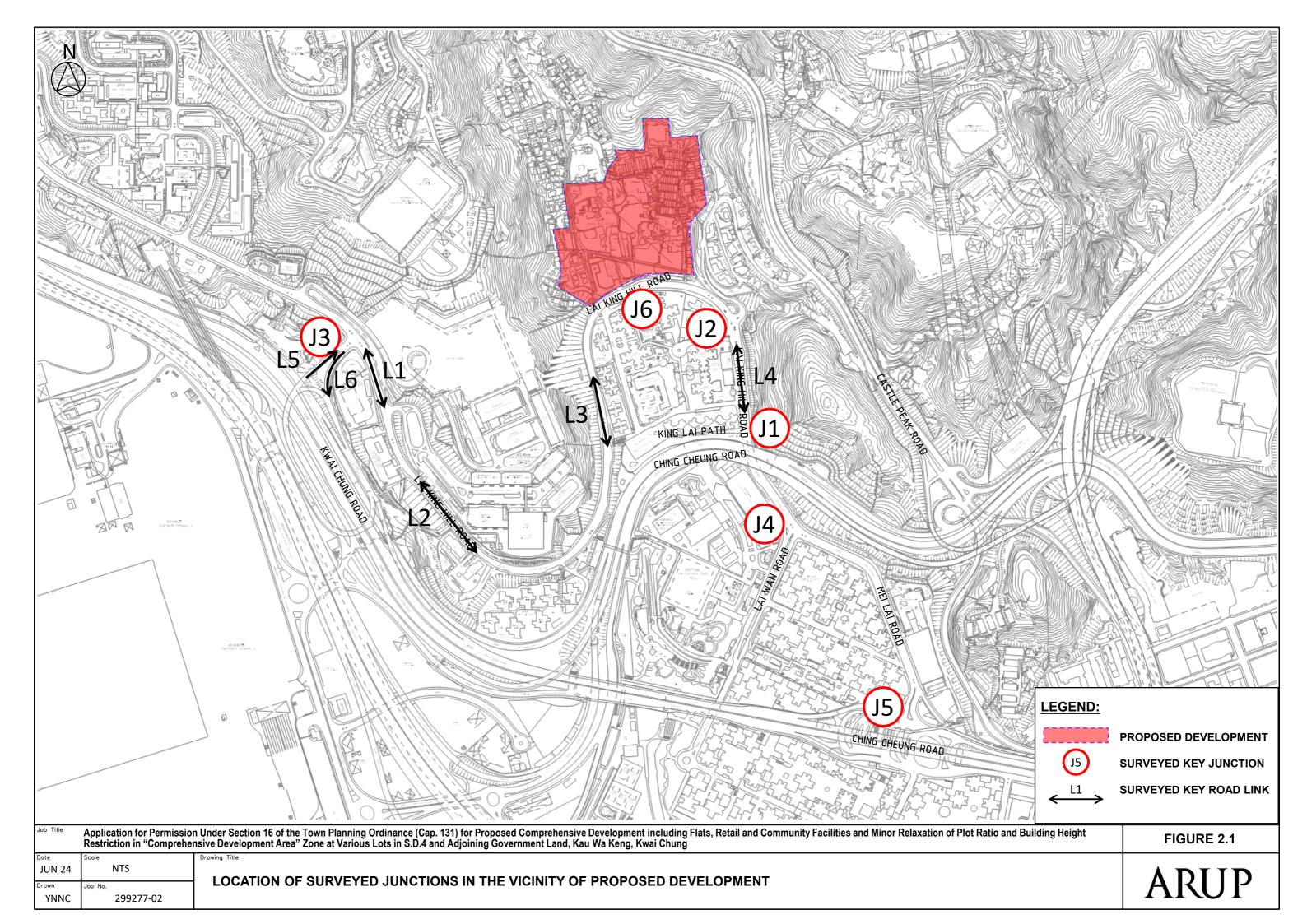
After deliberation, the Planning Application No. A/KC/489 was approved with conditions.

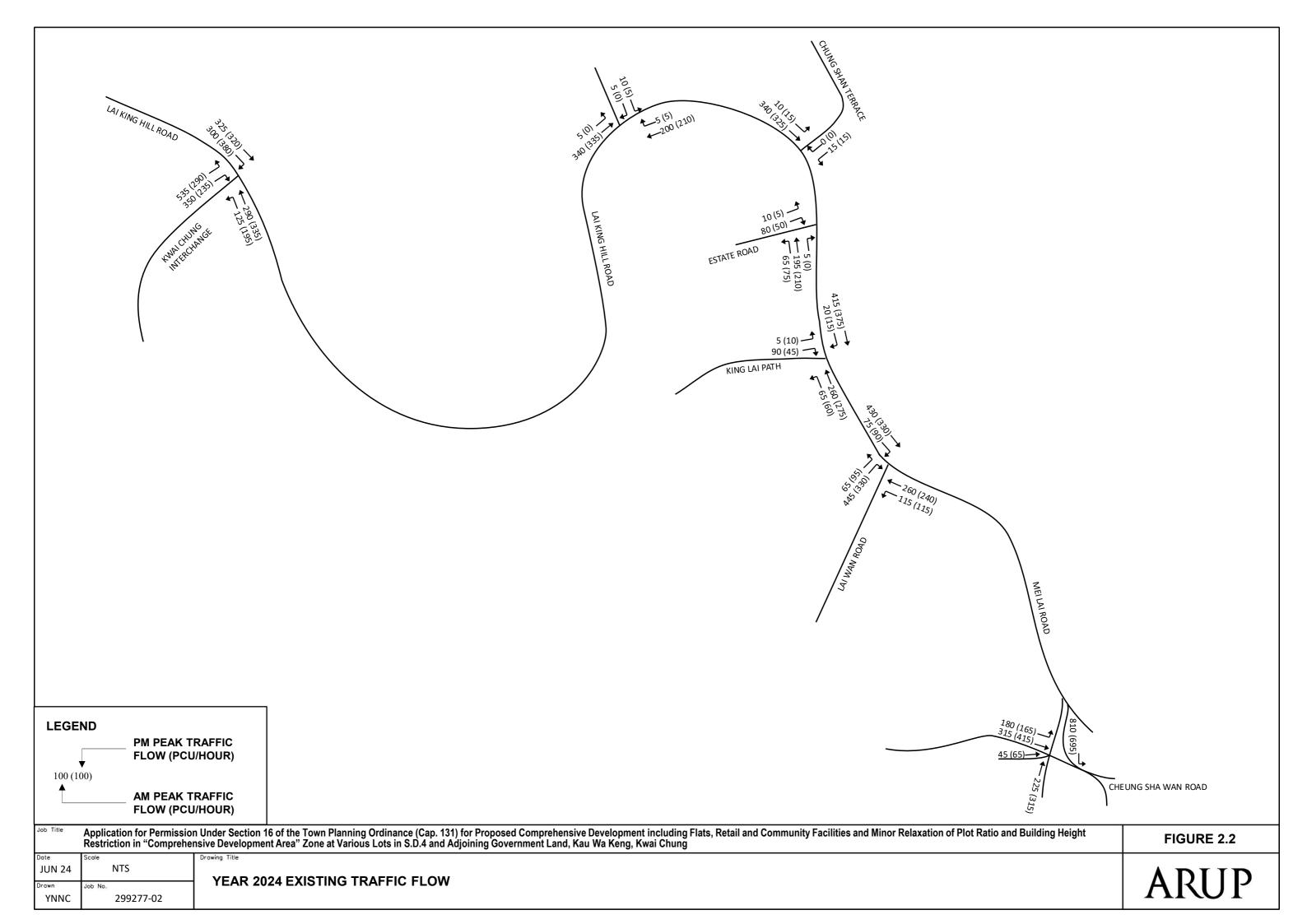
[1] Minutes of 722nd Meeting of the Metro Planning Committee held at 9:00 a.m. on 14.7.2023

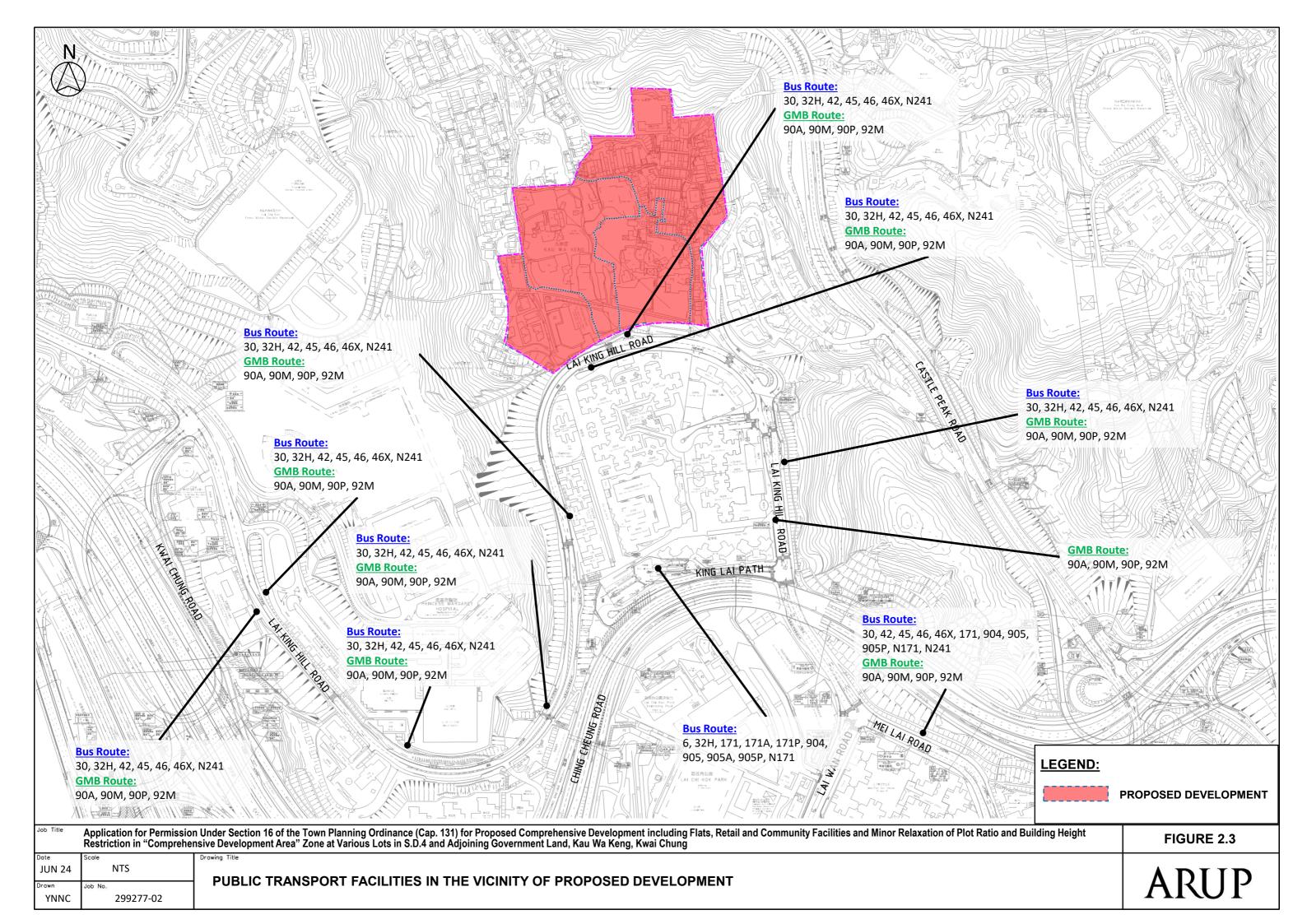
- 6.1.4 The Applicant takes the initiative to review the **Approved Scheme** and endeavours to take forward the provision of more of social welfare facilities and retail shops. The **Proposed Scheme**, keeping the phasing strategy adopted in the **Approved Scheme**, comprises 15 building blocks (including 14 building blocks with residential use) with domestic PR of not more than 6 and maximum BH of not more than +147.55mPD. Non-domestic PR of not more than 0.5 is designated for proposed retail shops, existing historical buildings, and social welfare facilities to nurture an inclusive and liveable community in the convenient location of Kwai Chung Area.
- 6.1.5 A Traffic Impact Assessment (TIA) study was carried out to evaluate the likely traffic impact associated with the proposed development, in support of the Section 16 application for the application site.
- 6.1.6 The proposed provision of internal parking and servicing facilities for each site of the subject development is in full compliance with the HKPSG requirements and will be self-contained within the respective

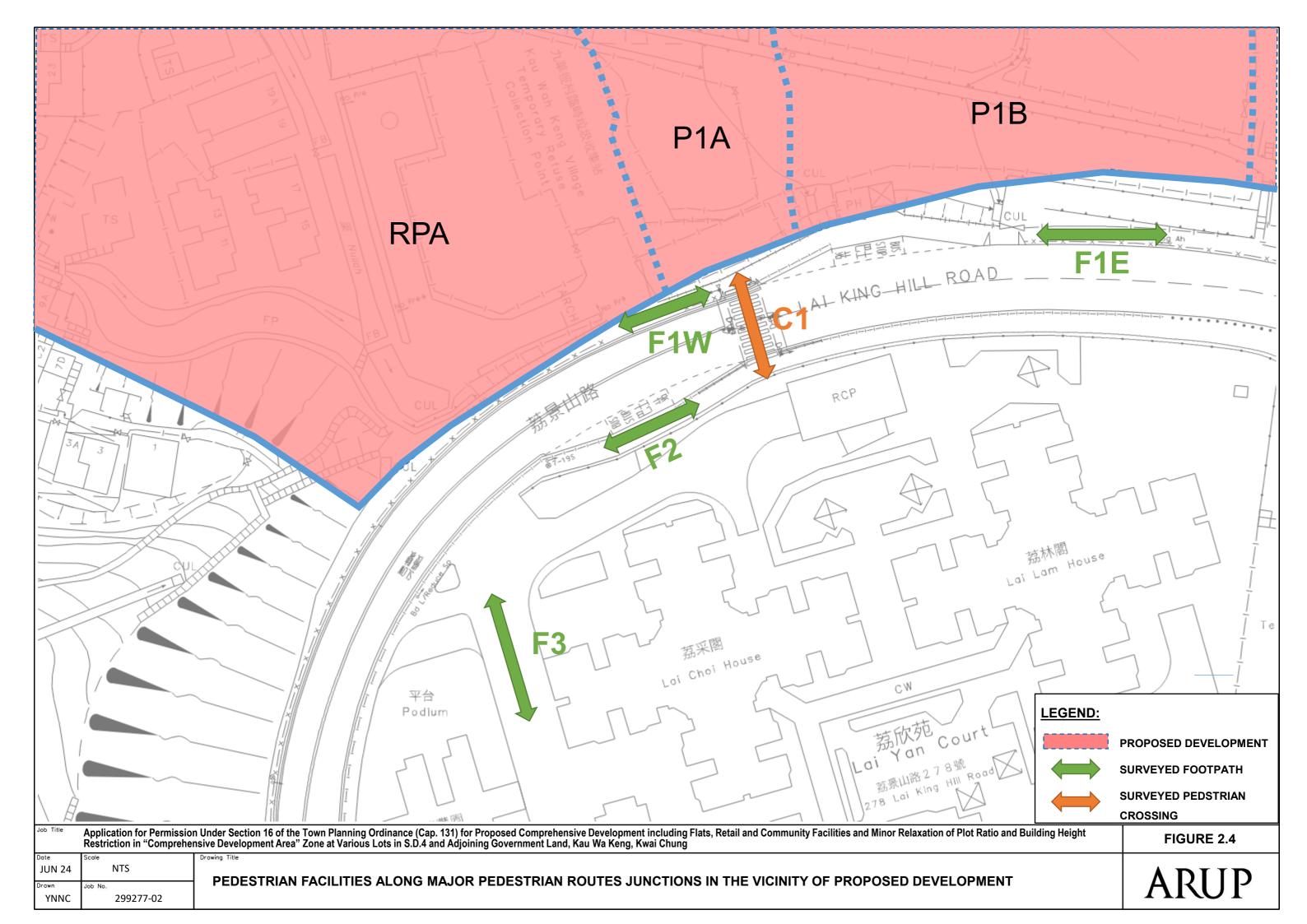
- site boundary. Vehicles will access to/from each site of the subject development through the vehicular access at Lai King Hill Road.
- 6.1.7 The identified key junctions in the vicinity were assessed with respect to traffic generation of the proposed development upon Year 2035 (3 years after the target Completion Year 2032), taking into account the traffic generation by the major planned/recently constructed developments in the vicinity.
- 6.1.8 Traffic impact assessment scenarios were set up for the proposed development, namely Year 2035 Reference scenario (the existing land lot to be developed as the **Approved Scheme** overall PR of not more than 5) and Year 2035 Design scenario (the existing land lot to be developed as the **Proposed Scheme** with domestic PR of not more than 6 and non-domestic PR of not more than 0.5 is in place).
- 6.1.9 The junction assessment results revealed that the identified key junctions would operate within capacity with the proposed development in Year 2035, with the implementation of the government planned improvement works, or the junction modification scheme in approved planning application (No. A/KC/489). It is anticipated that the implication to the road network with the proposed development would be minimal.
- 6.1.10 Assessment results also revealed that the identified key road links would continue to operate within capacity under both Reference and Design scenarios with the proposed development by Year 2035.
- 6.1.11 Based on the public transport utilization assessment, the results reveal that the overall spare capacity of the assessed franchised bus and GMB routes would not be adequate to cater for the public transport demand associated with Proposed Development.
- 6.1.12 To cater for the shortage in public transport services, the applicant proposed to provide feeder services to the nearby MTR station or bus interchange to minimise adverse impact to the existing public transport services. Feeder service from the application site to Lai King Station is proposed. Detail of the proposed feeder service is discussed in **Chapter 4.7**.
- 6.1.13 Pedestrian impact assessment has been conducted and the walking condition on the critical footpath in vicinity of the application site is desirable during both AM and PM peaks in Year 2035. No adverse pedestrian impact will be generated by the proposed development.
- 6.1.14 Interim traffic assessment is conducted to reveal the traffic impact with only completion and population intake of the proposed Phase 1A, Phase 1B developments to be developed by the Applicant, and the development of Remaining Phase A and Remaining Phase B by third-parties.
- 6.1.15 The interim junction assessment results revealed that all identified key junctions would operate within capacity with the completion and population intake of Remaining Phase A and Remaining Phase B, with the implementation of the government planned improvement works, or

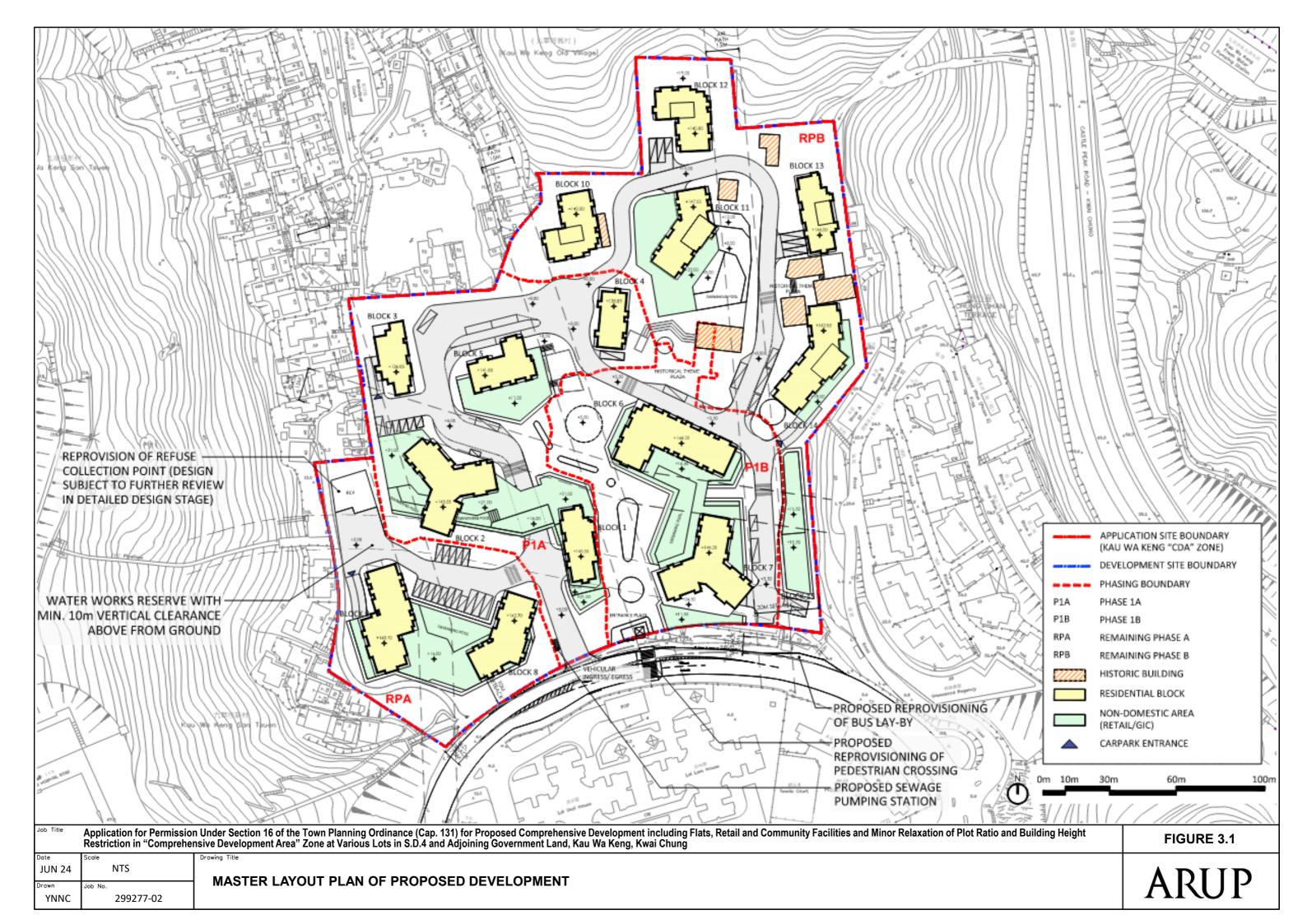

- the implementation of the junction modification scheme in approved planning application (No. A/KC/489).
- 6.1.16 The interim link capacity assessment results revealed that the identified key road links would continue to operate within capacity under interim scenarios with the proposed development by Year 2035.
- 6.1.17 It is viewed that both the public transport services and the pedestrian facilities would be sufficient to cater for the pedestrian demand in the interim scenarios given that it had be assessed that there is no capacity issue in the ultimate stage.
- 6.1.18 Additional pedestrian enhancement schemes have been proposed to improve the accessibility and walking condition for the residents living in existing Kau Wa Keng Old Village and Kau Wa Keng San Tsuen. With the additionally proposed pedestrian enhancements, it is expected that the performance of the existing pedestrian facilities would be maintained if not improved.

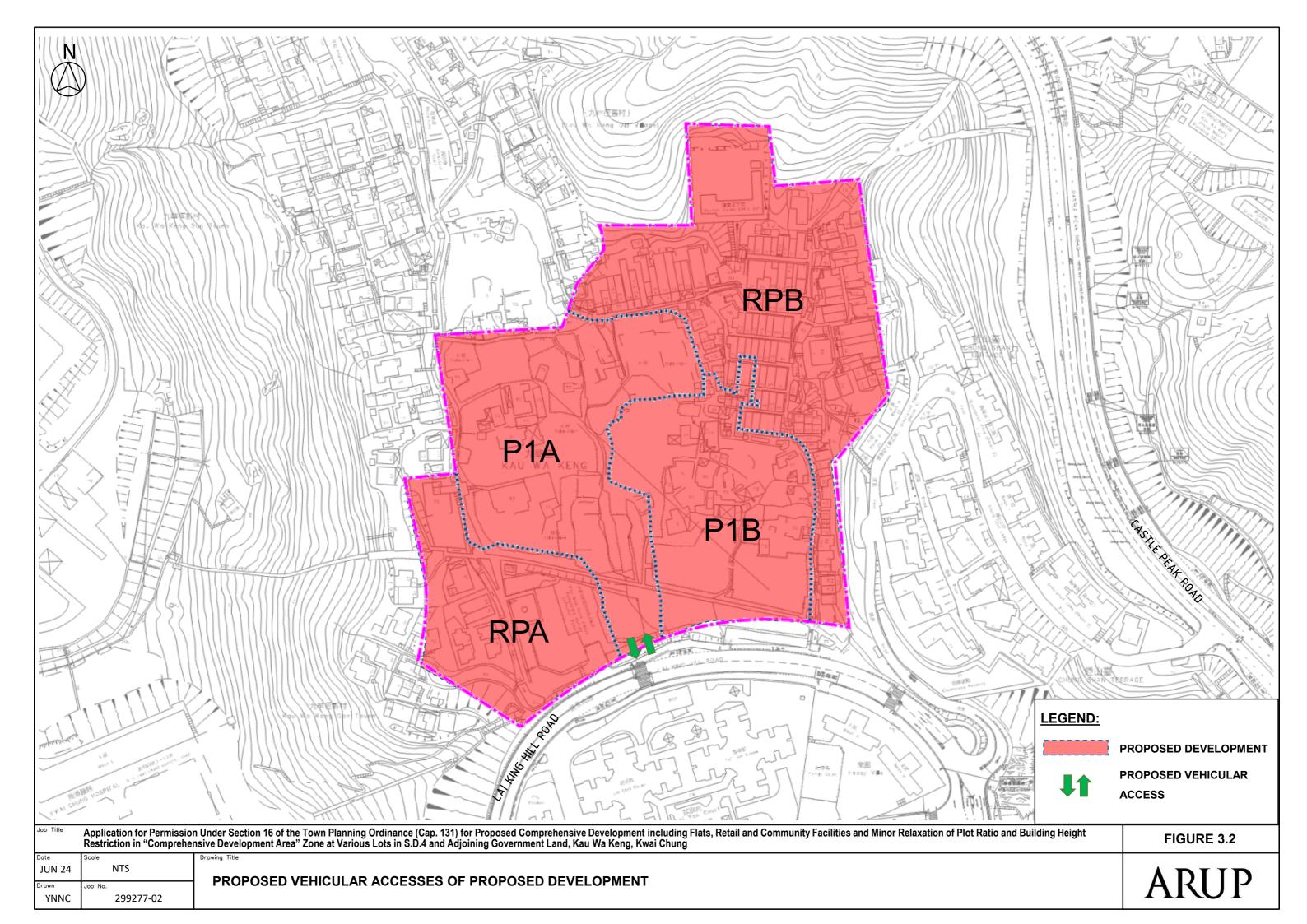

6.2 Conclusion

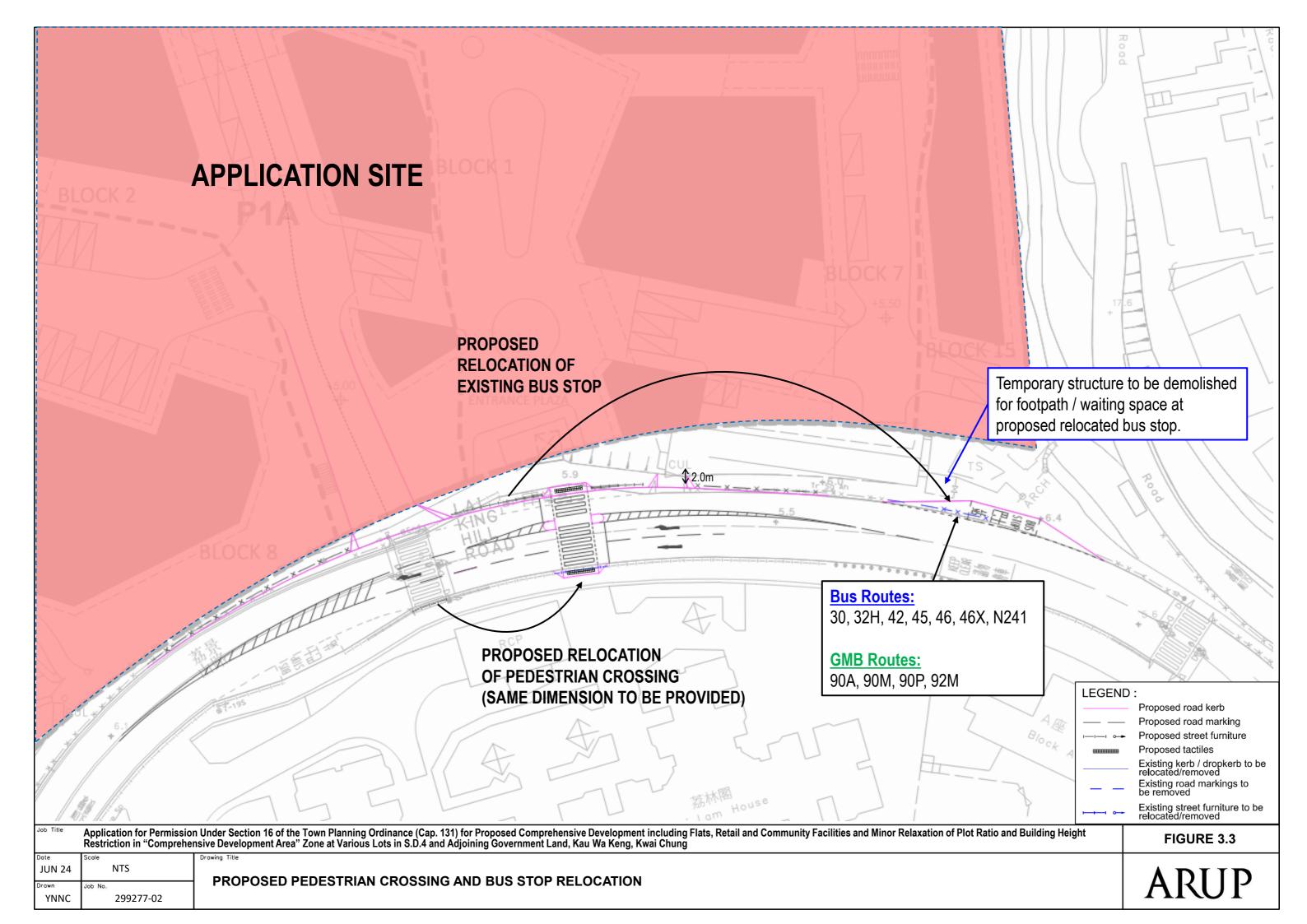

6.2.1 It could be concluded that the proposed development will not induce insurmountable traffic impact on the surrounding road network and thus is feasible from the traffic engineering point of view.

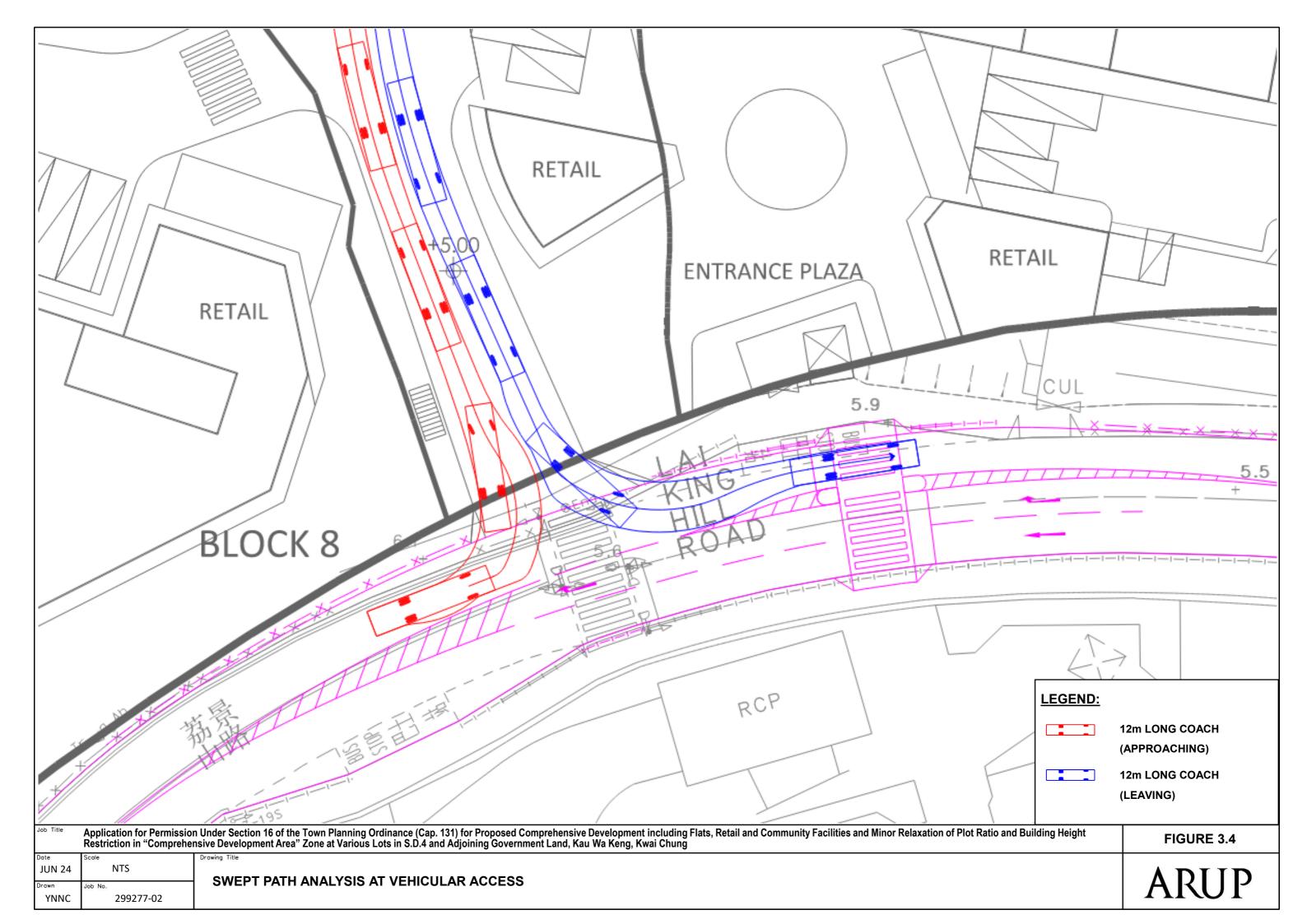

Application for Permission Under Section 16 of the Town Planning Ordinance (Cap. 131) for Proposed Comprehensive Development including Flats, Retail and Community Facilities and Minor Relaxation of Plot Ratio and Building Height Restriction in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung Traffic Impact Assessment Report

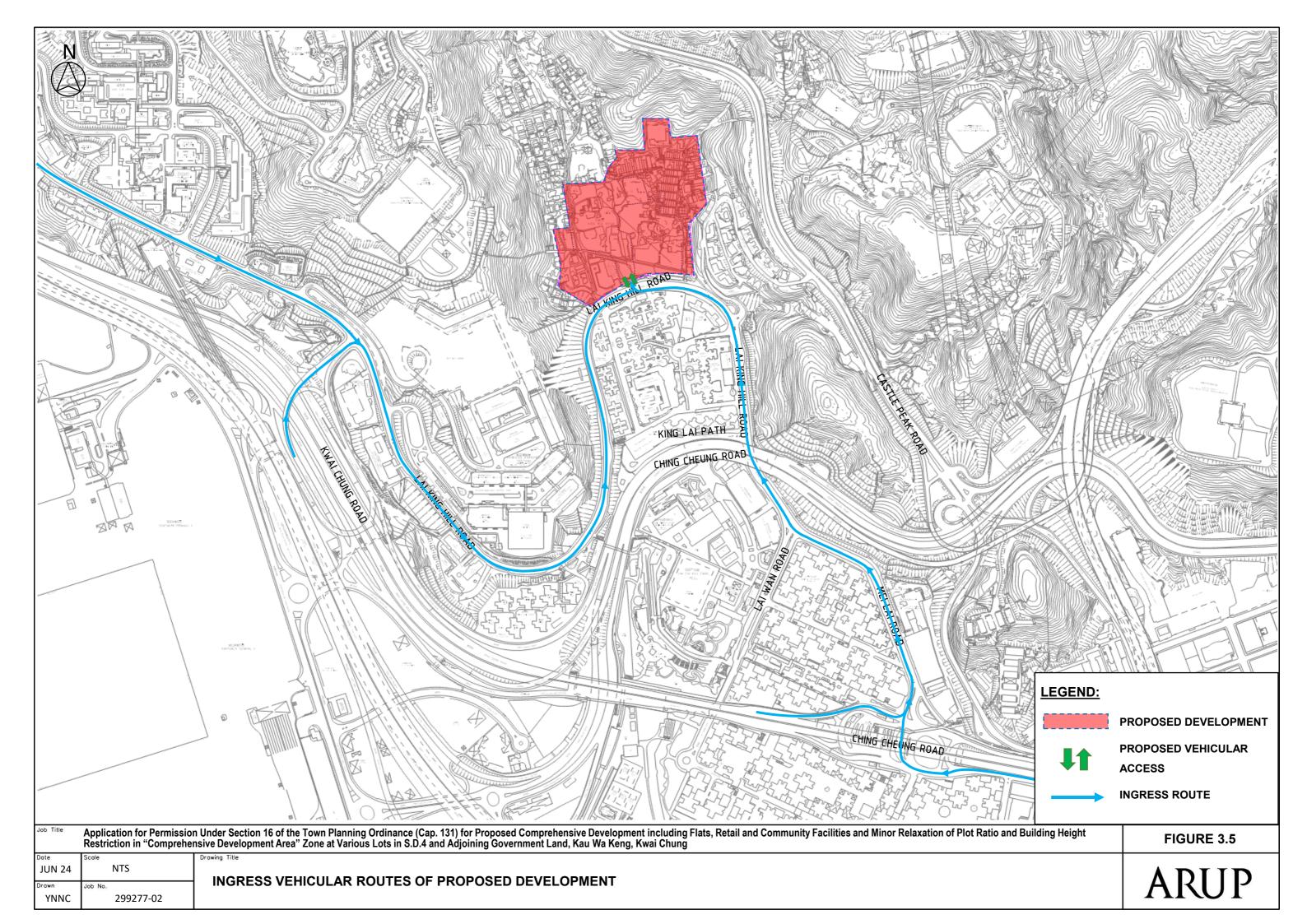

Figures

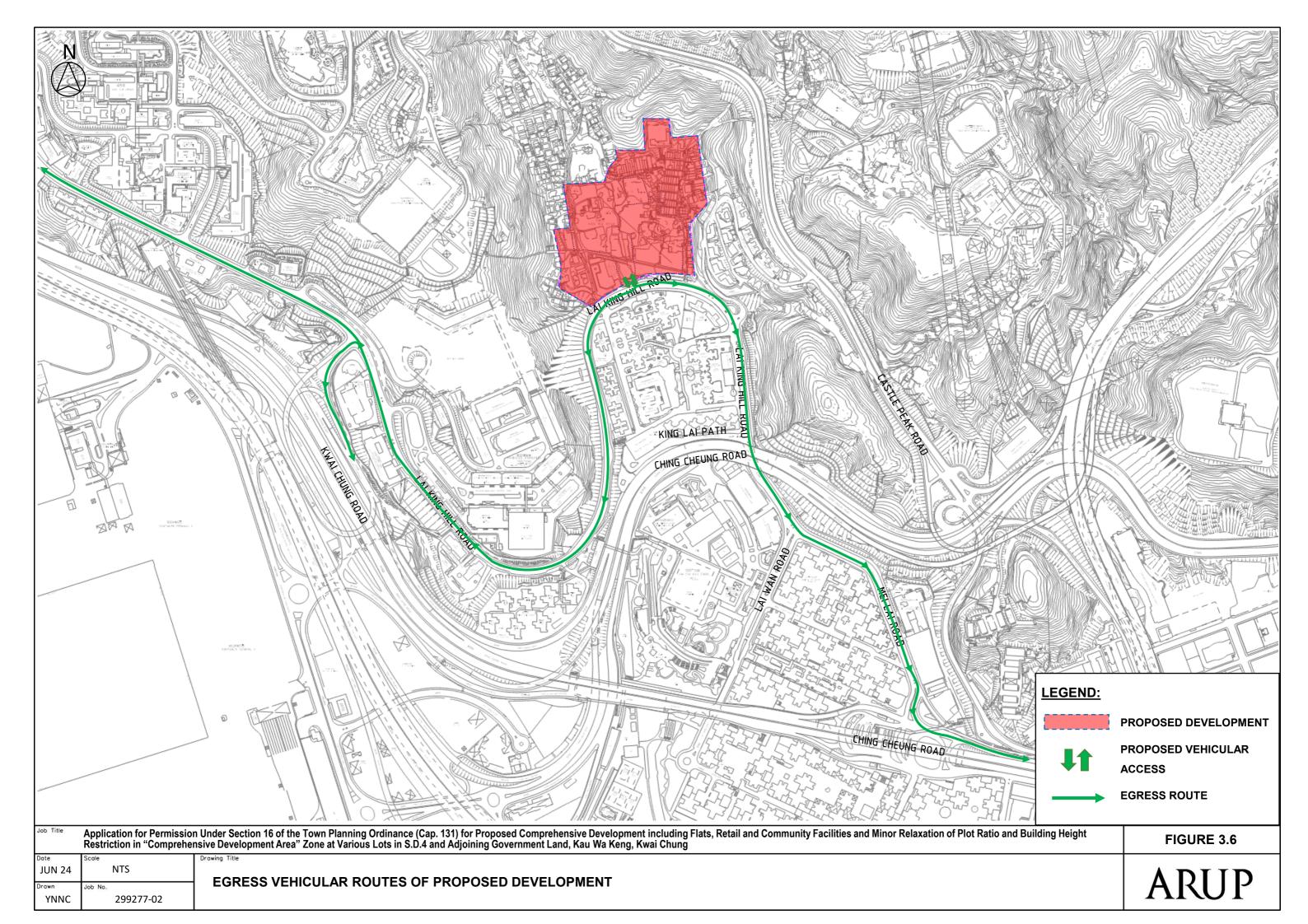


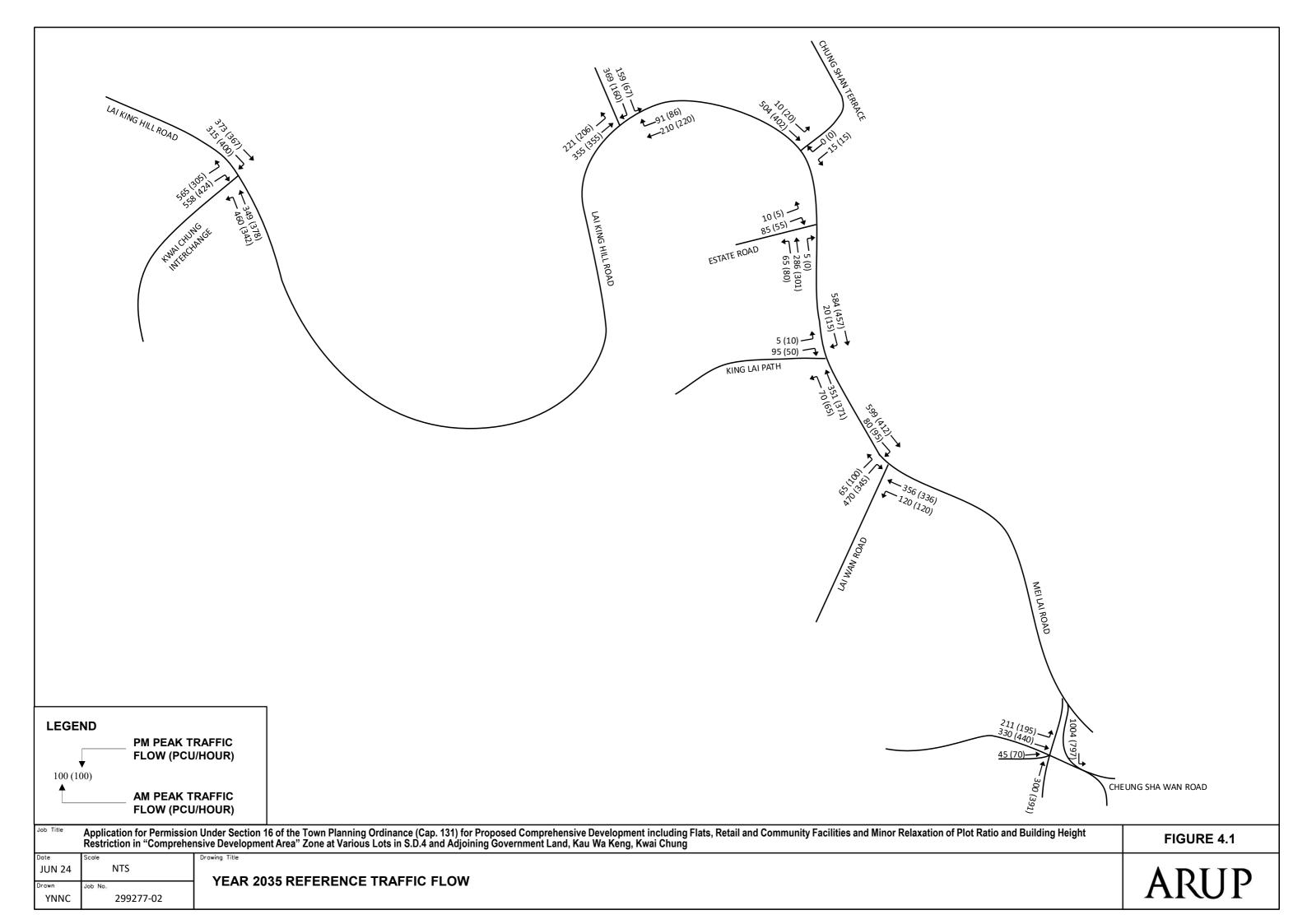


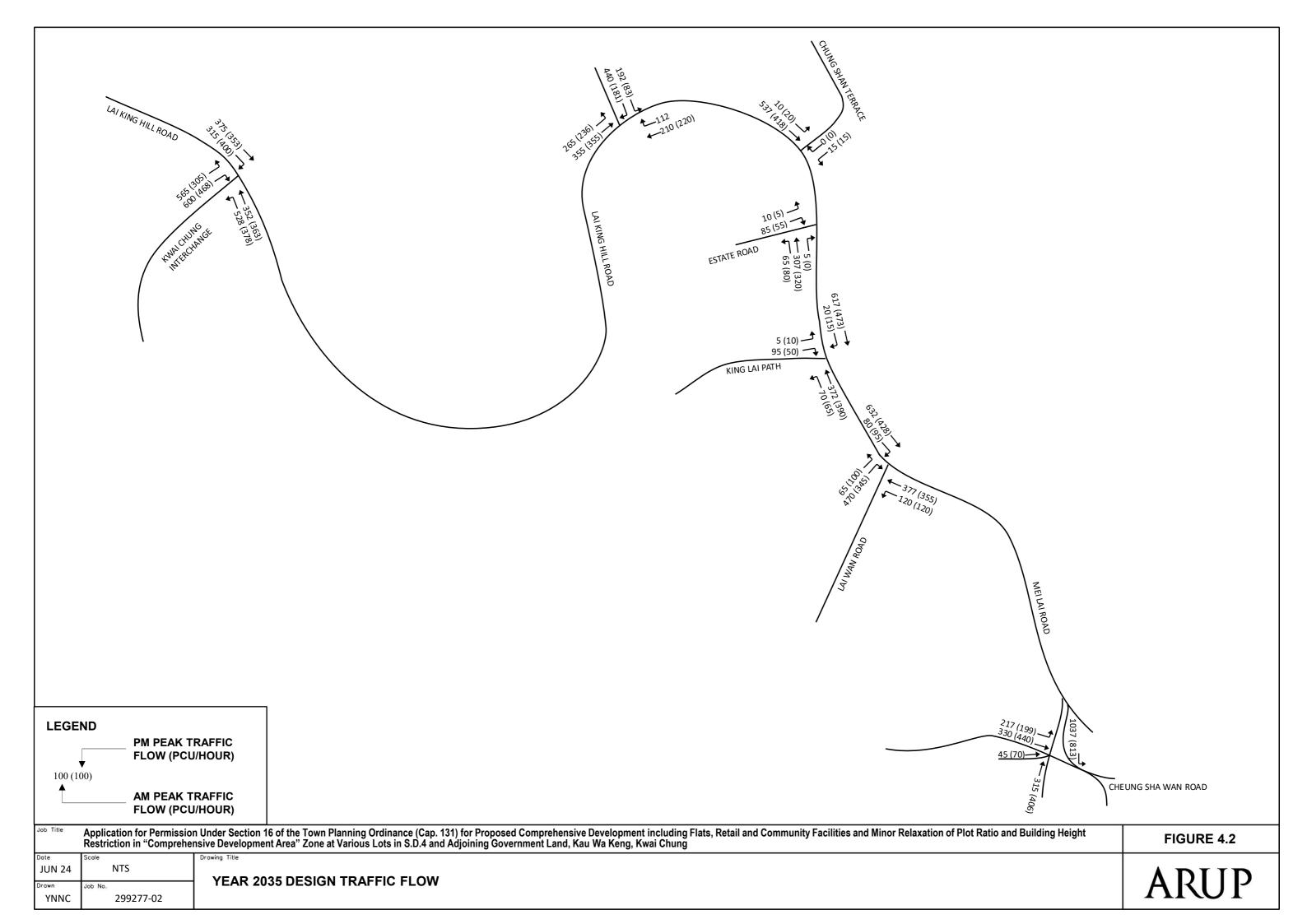


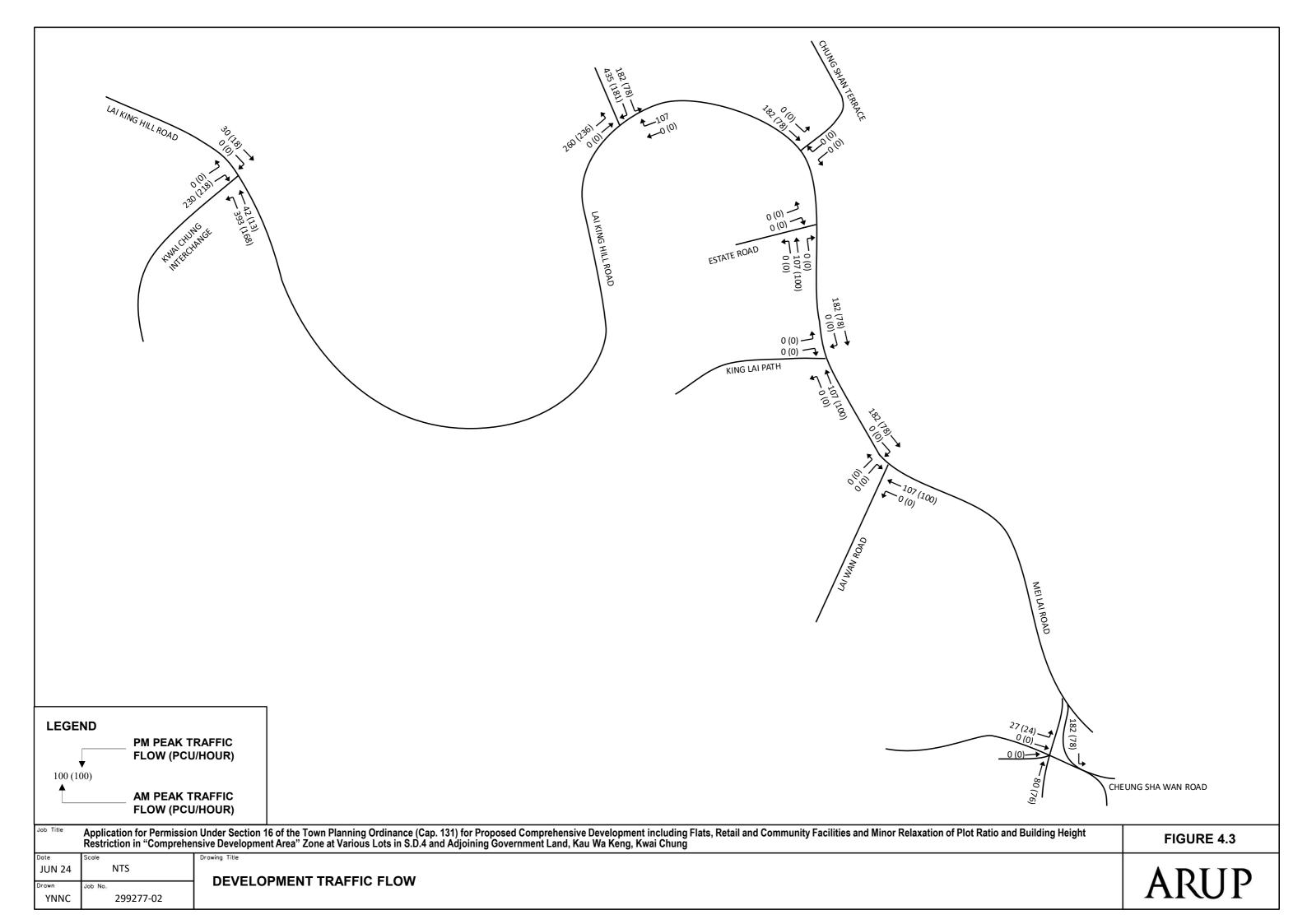


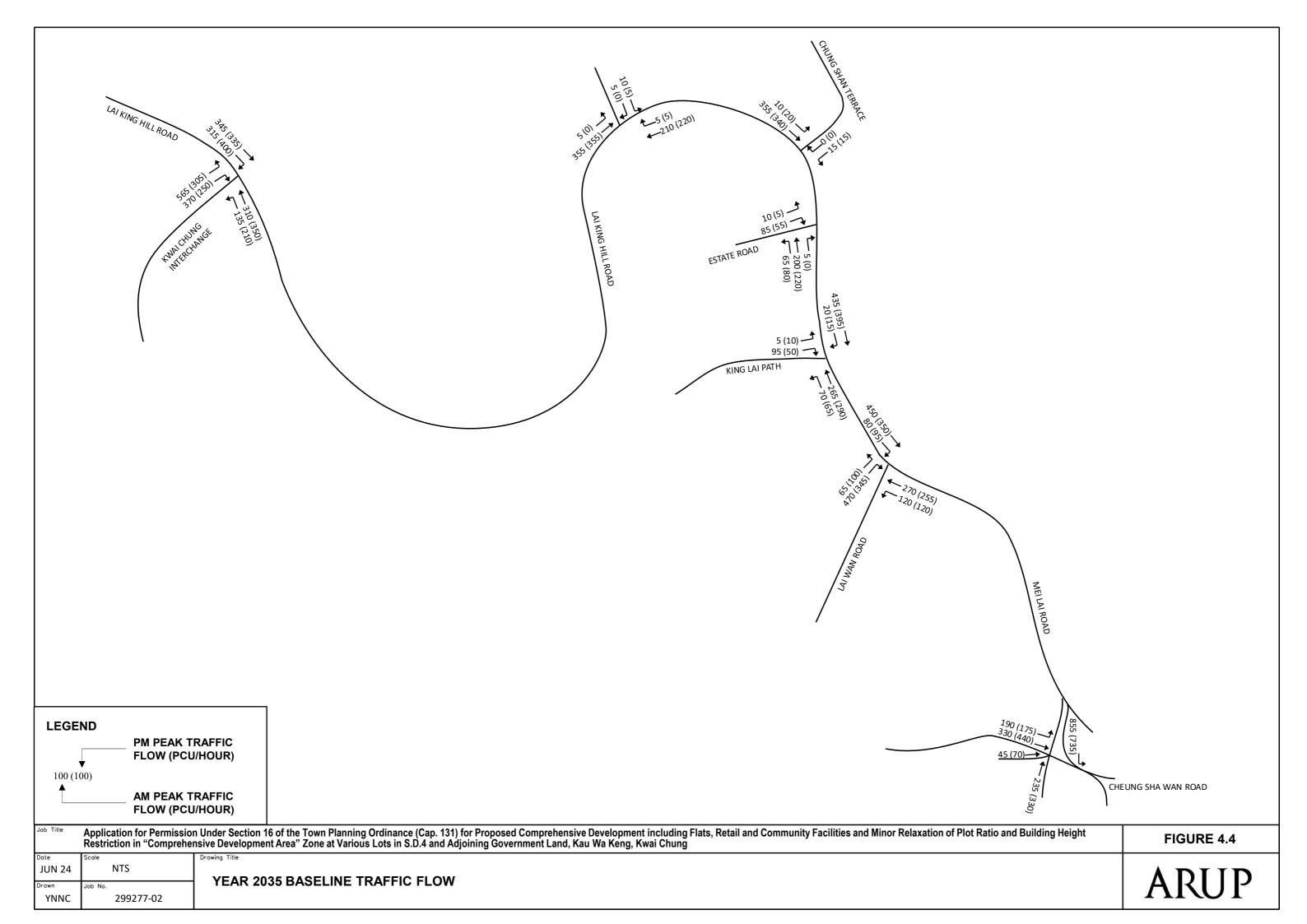


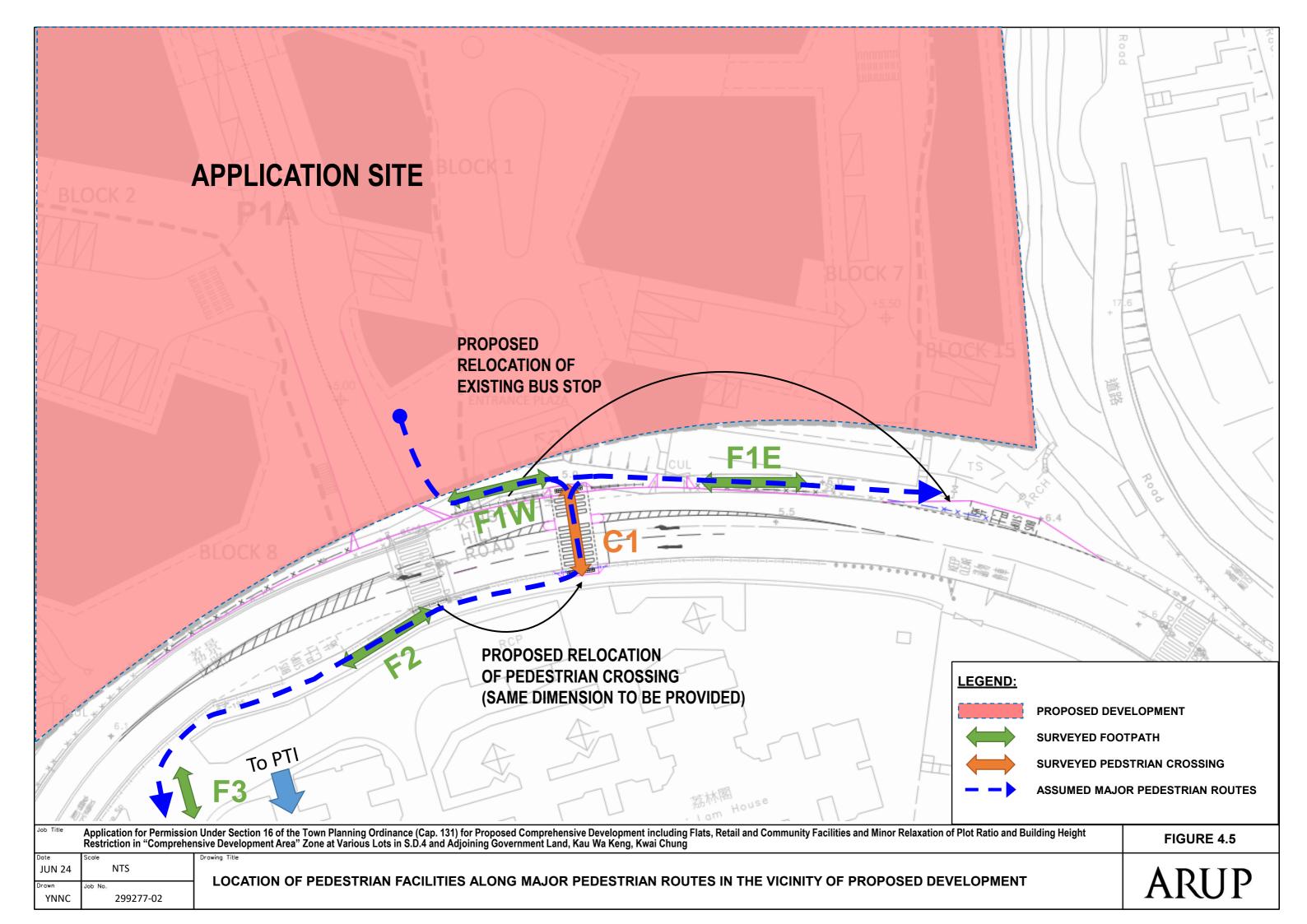


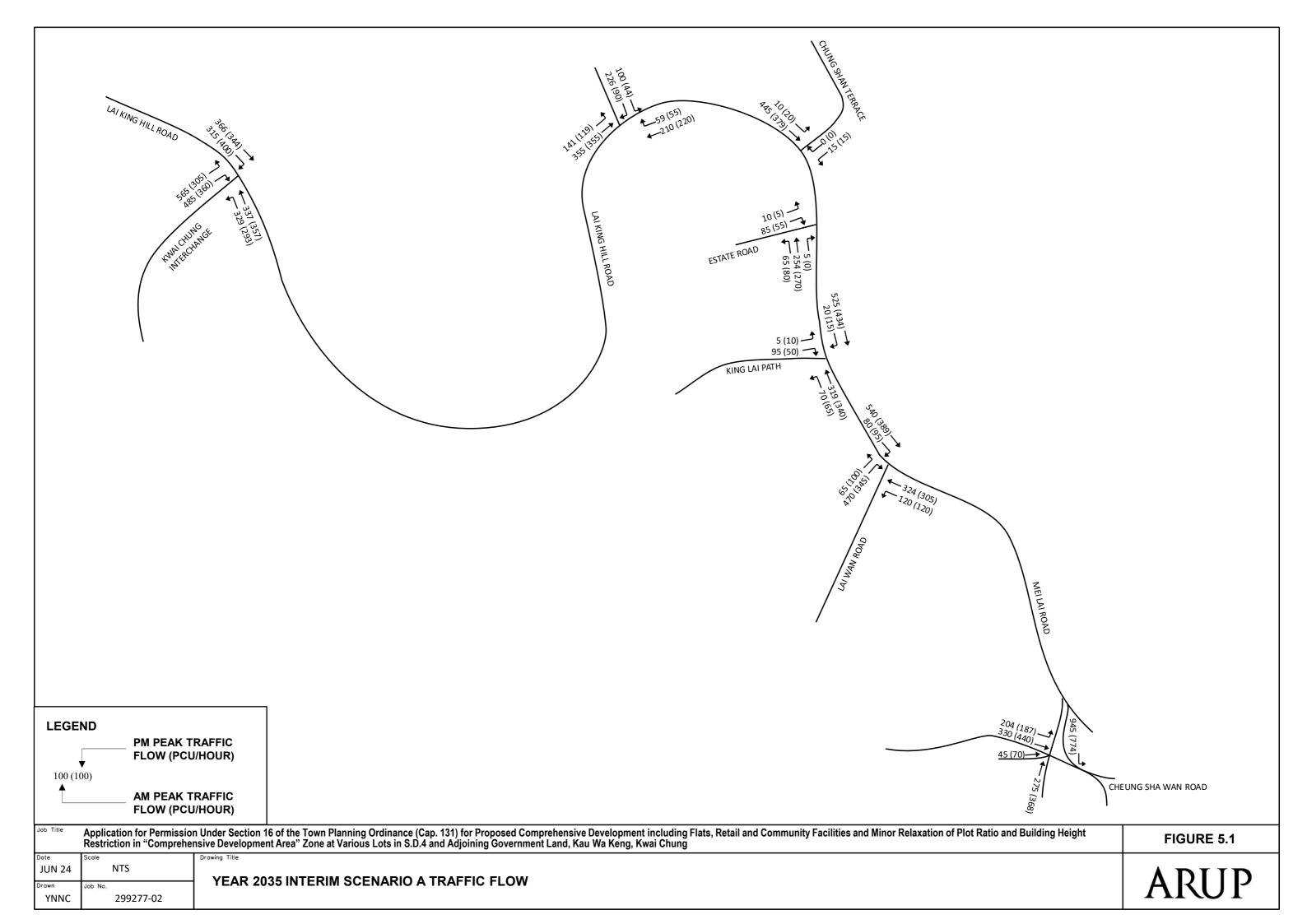


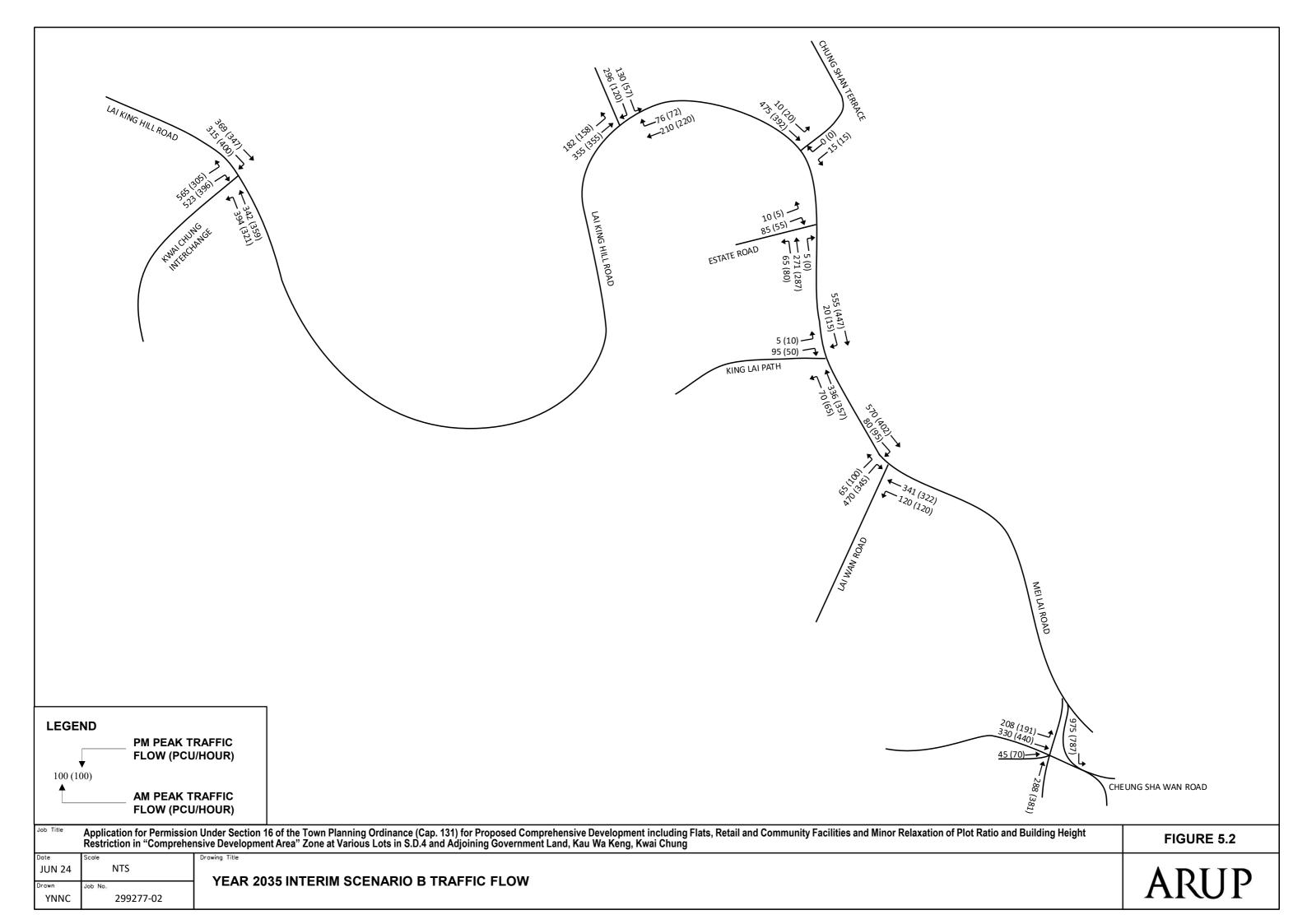


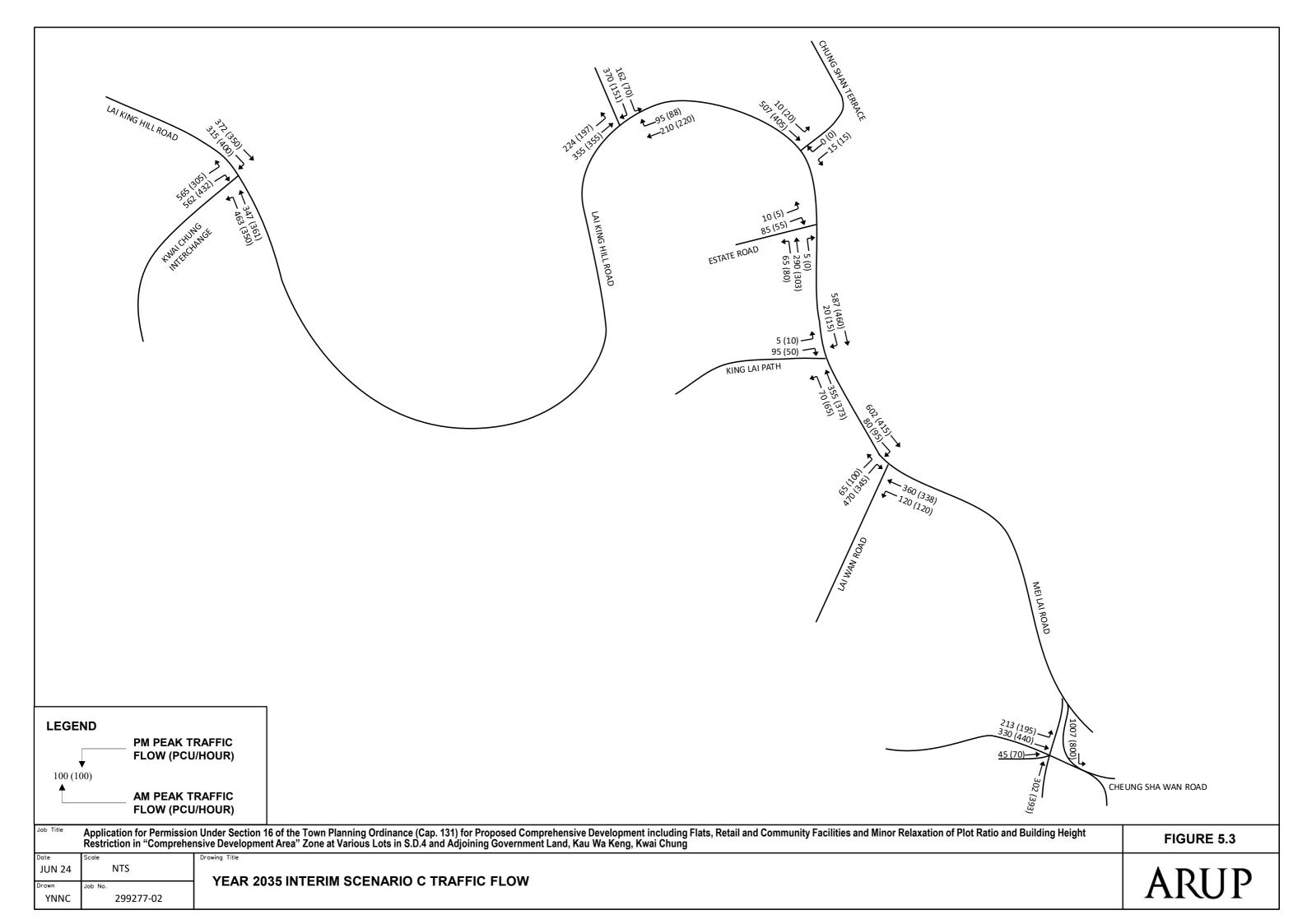


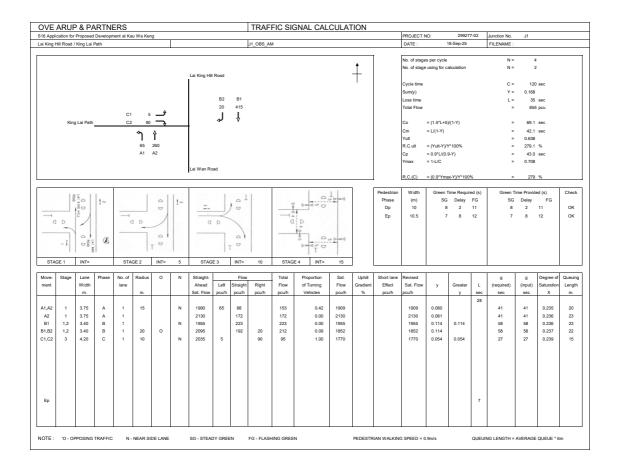


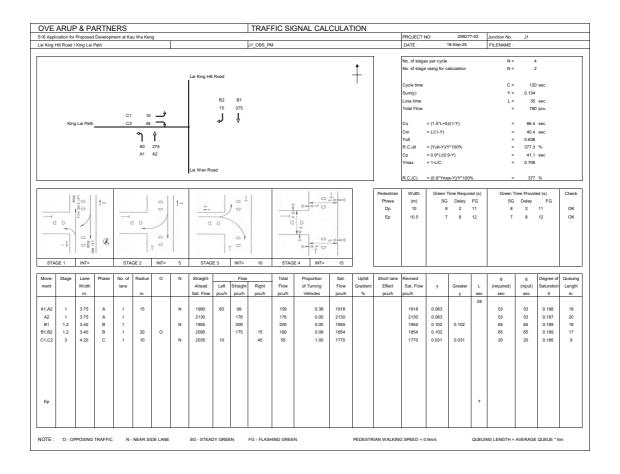




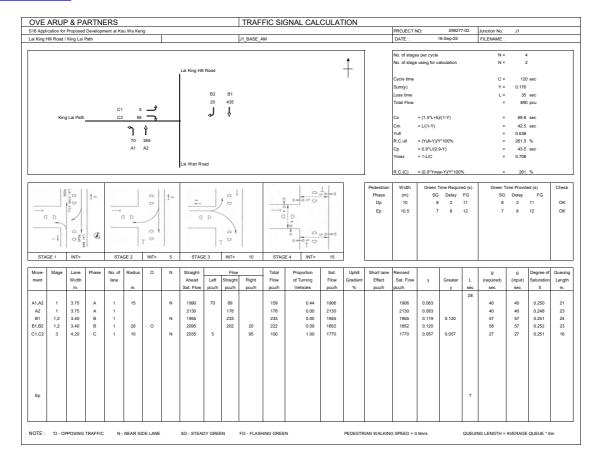


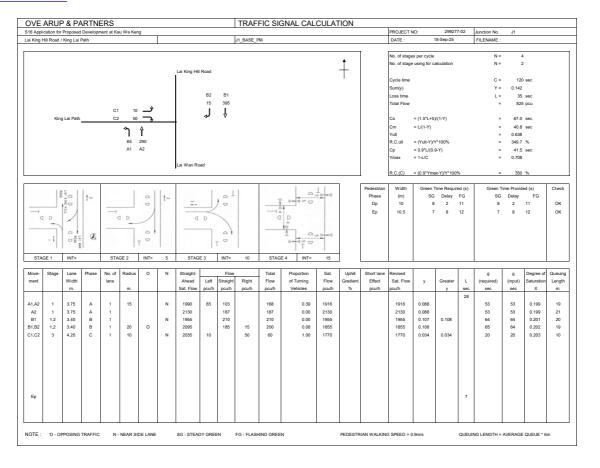


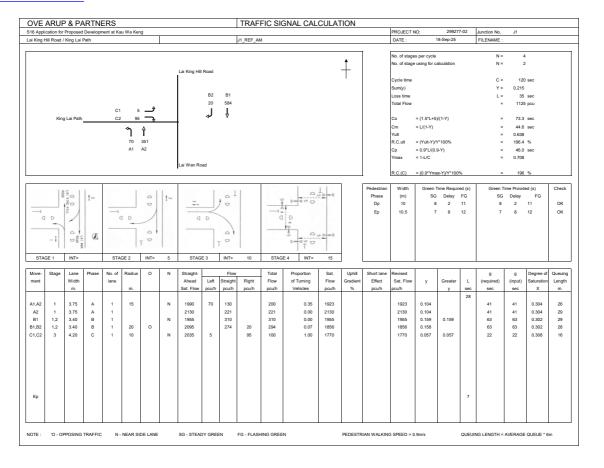


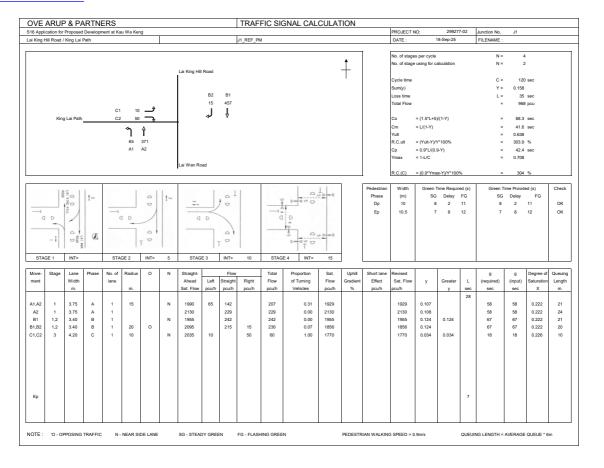

Appendix A

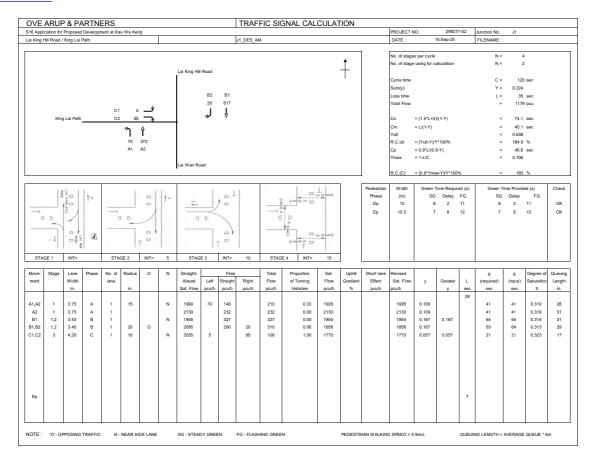
Junction Calculation Sheets

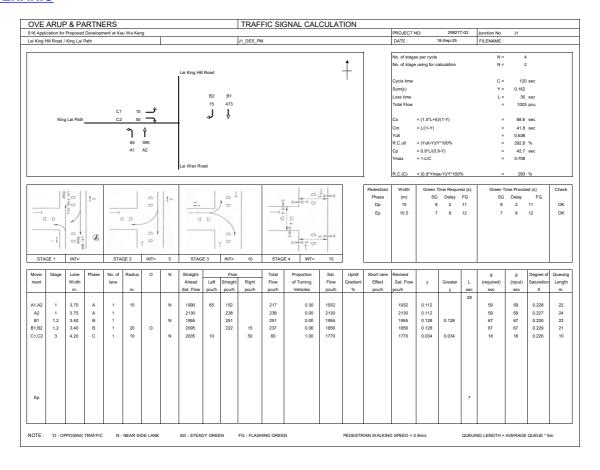

J1 - YEAR 2024 - AM TRAFFIC FLOW

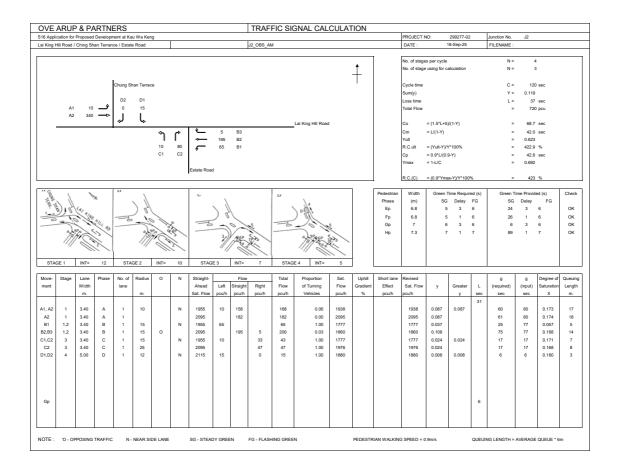

J1 - YEAR 2024 - PM TRAFFIC FLOW

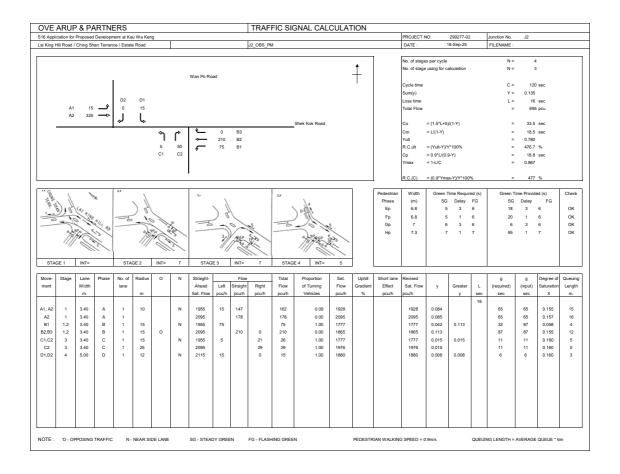

J1 - YEAR 2035 - AM TRAFFIC FLOW BASELINE SCENARIO

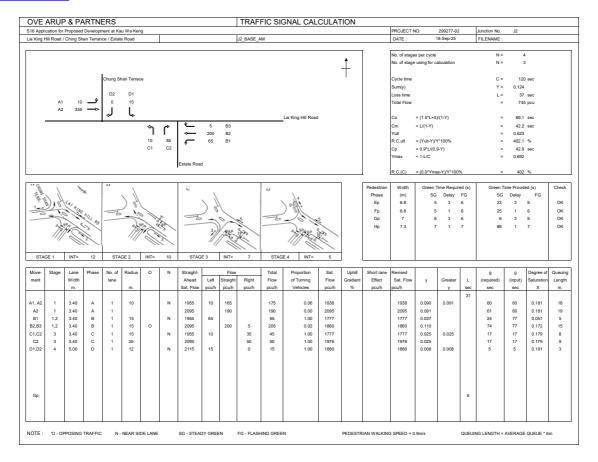

J1 - YEAR 2035 - PM TRAFFIC FLOW BASELINE SCENARIO

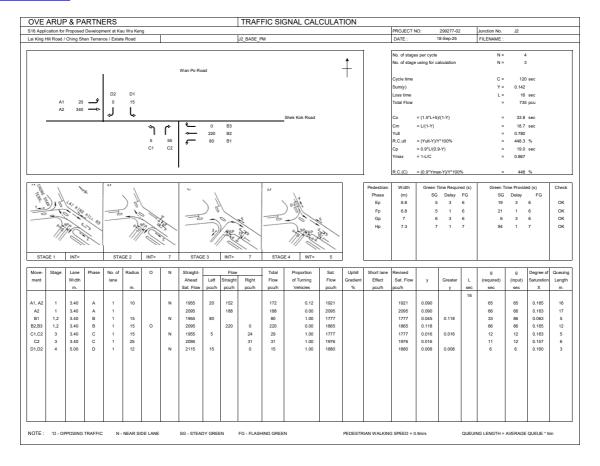

J1 - YEAR 2035 - AM TRAFFIC FLOW REFERENCE SCENARIO

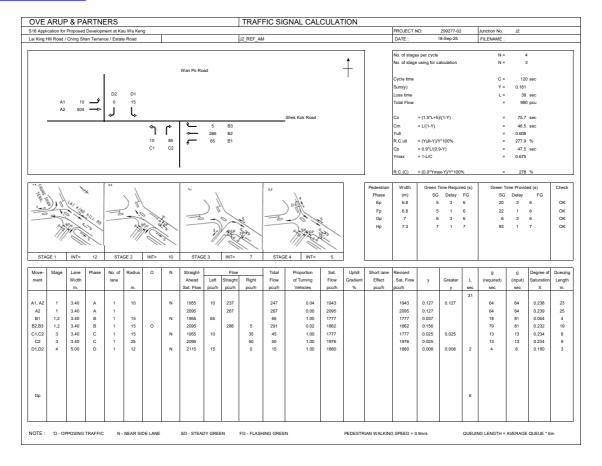

J1 - YEAR 2035 - PM TRAFFIC FLOW REFERENCE SCENARIO

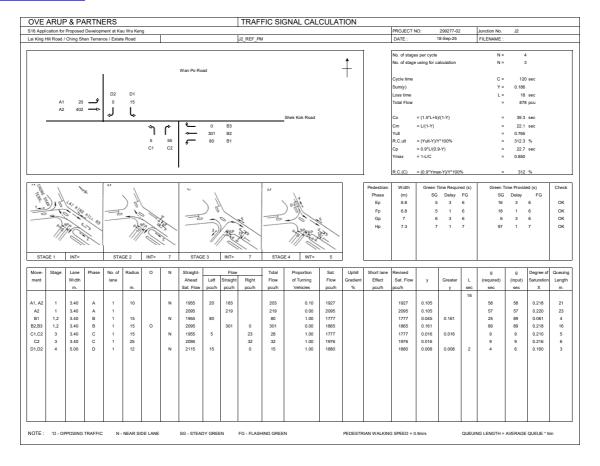

J1 - YEAR 2035 - AM TRAFFIC FLOW DESIGN SCENARIO

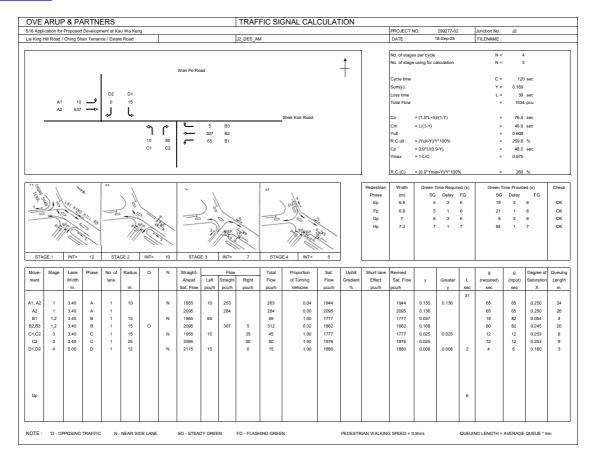

J1 - YEAR 2035 - PM TRAFFIC FLOW DESIGN SCENARIO

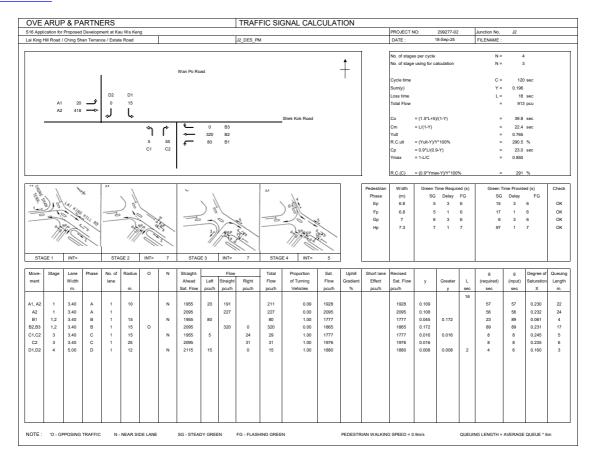

J2 - YEAR 2024 - AM TRAFFIC FLOW

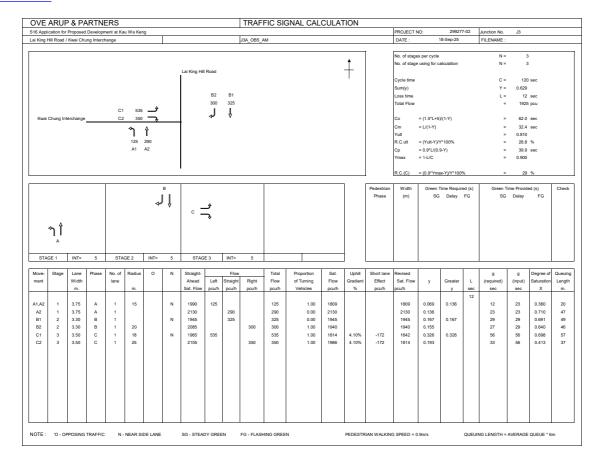

J2 - YEAR 2024 - PM TRAFFIC FLOW

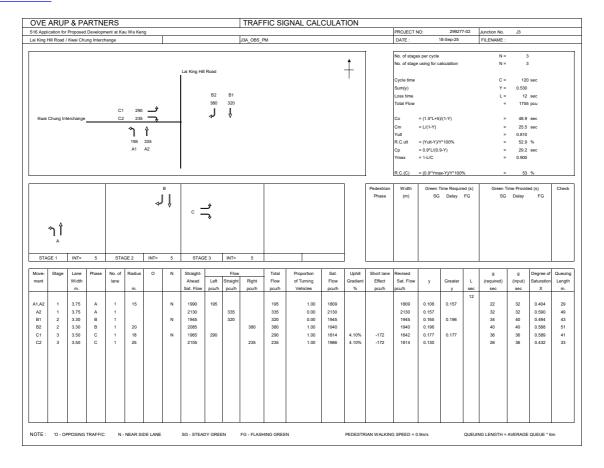

<u>J2 - YEAR 2035 - AM TRAFFIC FLOW</u> BASELINE SCENARIO

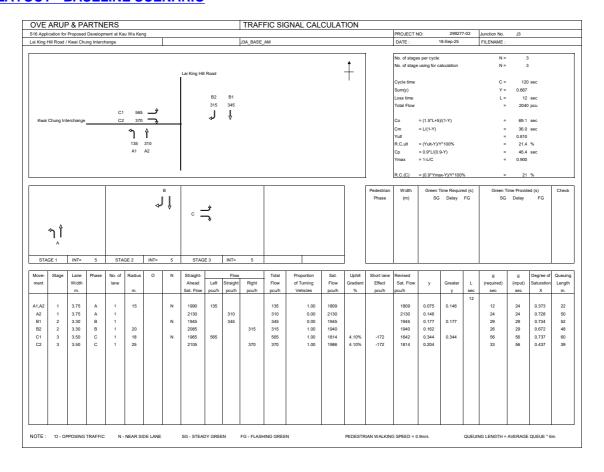

<u>J2 - YEAR 2035 - PM TRAFFIC FLOW</u> BASELINE SCENARIO

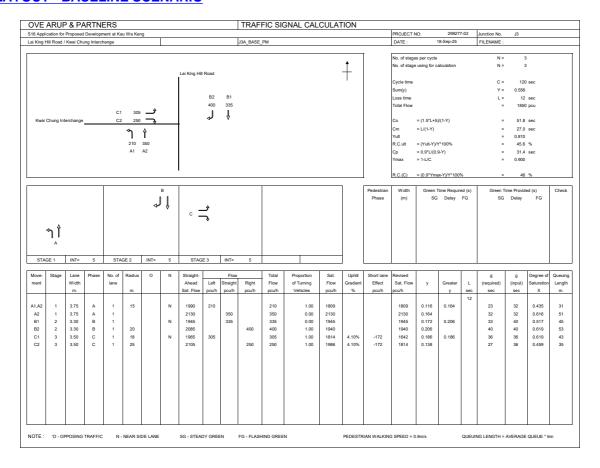

J2 - YEAR 2035 - AM TRAFFIC FLOW REFERENCE SCENARIO

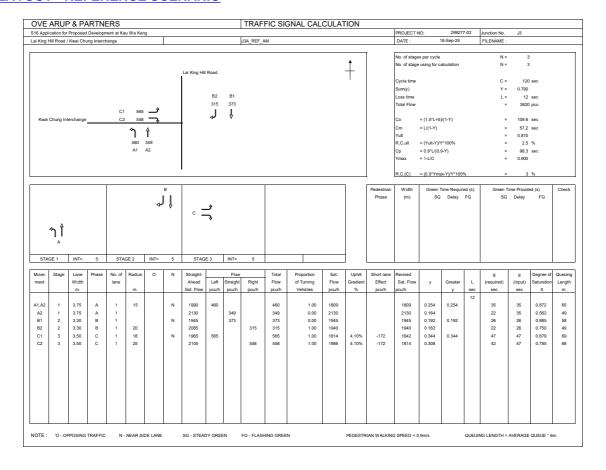

<u>J2 - YEAR 2035 - PM TRAFFIC FLOW</u> REFERENCE SCENARIO

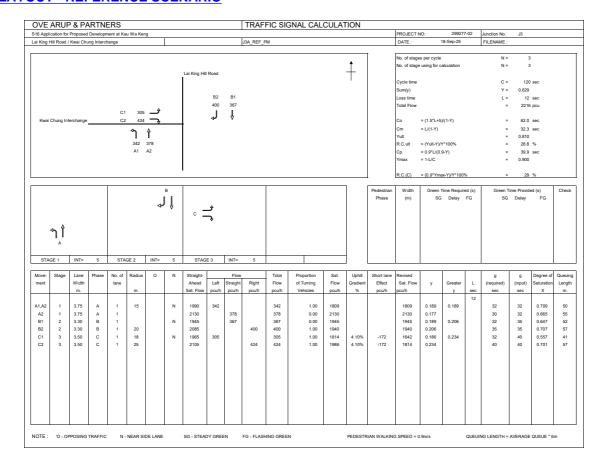

<u>J2 - YEAR 2035 - AM TRAFFIC FLOW</u> DESIGN SCENARIO

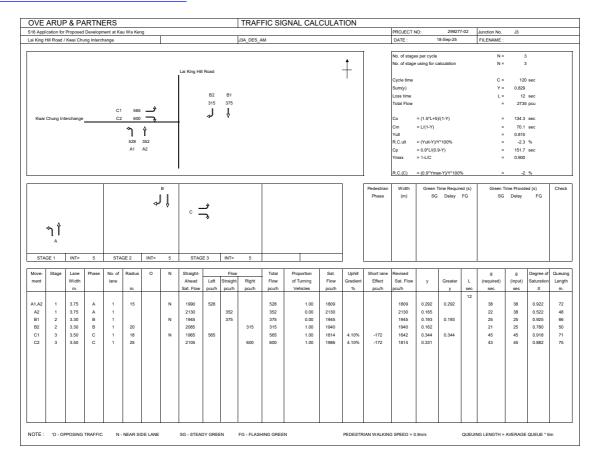

<u>J2 - YEAR 2035 - PM TRAFFIC FLOW</u> DESIGN SCENARIO

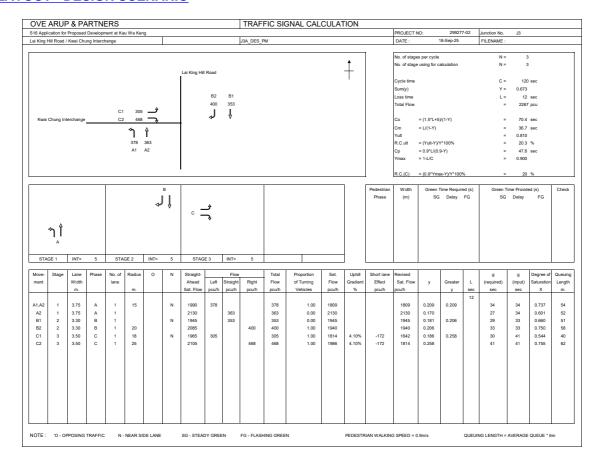

<u>J3 - YEAR 2024 - AM TRAFFIC FLOW</u> EXISTING LAYOUT

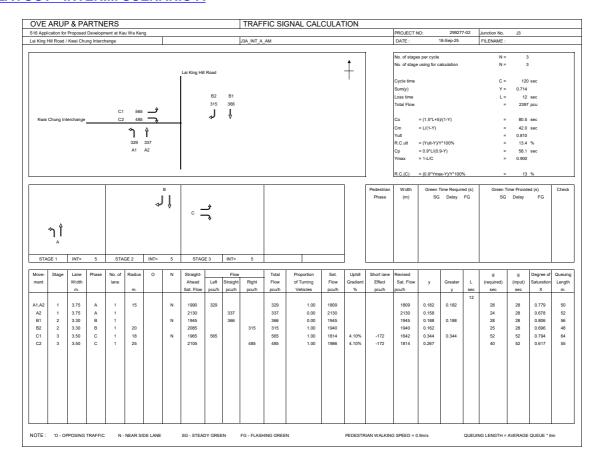

<u>J3 - YEAR 2024 - PM TRAFFIC FLOW</u> EXISTING LAYOUT

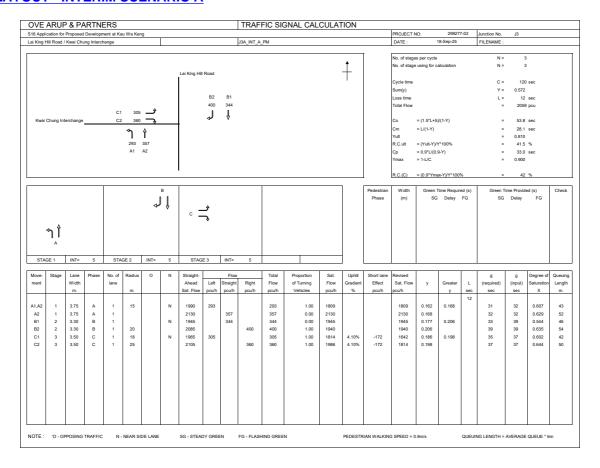

<u>J3 - YEAR 2035 - AM TRAFFIC FLOW</u> EXISTING LAYOUT - BASELINE SCENARIO

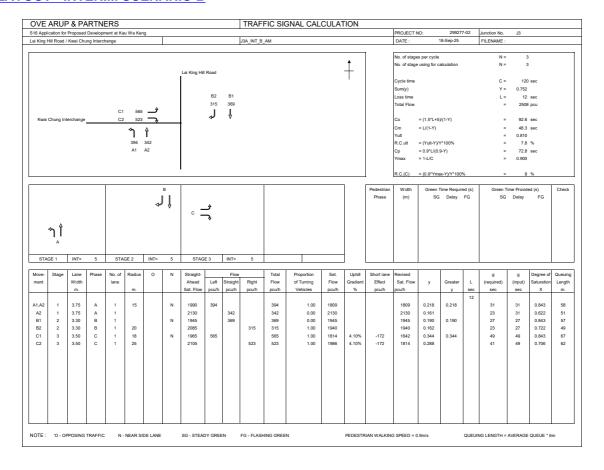

<u>J3 - YEAR 2035 - PM TRAFFIC FLOW</u> EXISTING LAYOUT - BASELINE SCENARIO

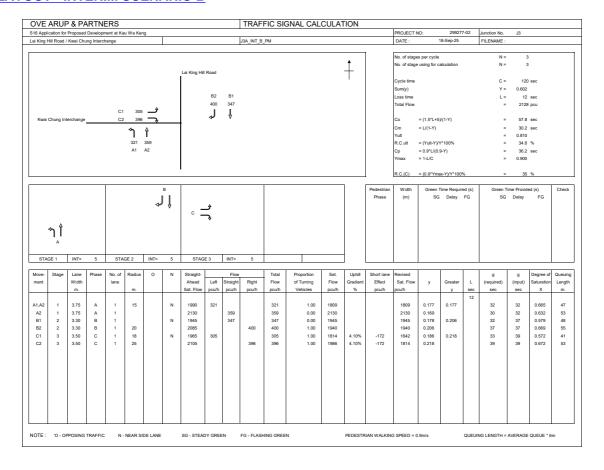

<u>J3 - YEAR 2035 - AM TRAFFIC FLOW</u> EXISTING LAYOUT - REFERENCE SCENARIO

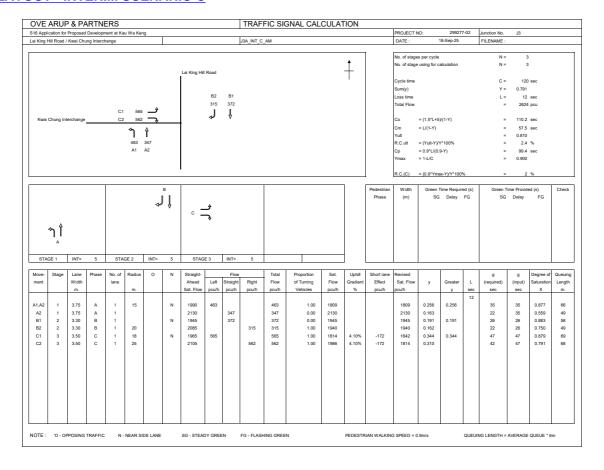

<u>J3 - YEAR 2035 - PM TRAFFIC FLOW</u> EXISTING LAYOUT - REFERENCE SCENARIO

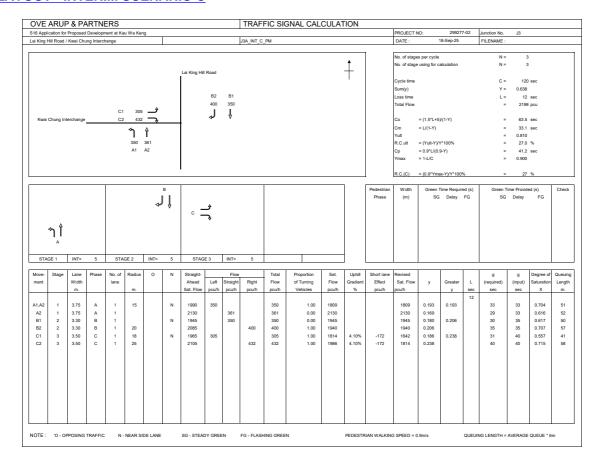

<u>J3 - YEAR 2035 - AM TRAFFIC FLOW</u> EXISTING LAYOUT - DESIGN SCENARIO


<u>J3 - YEAR 2035 - PM TRAFFIC FLOW</u> EXISTING LAYOUT - DESIGN SCENARIO

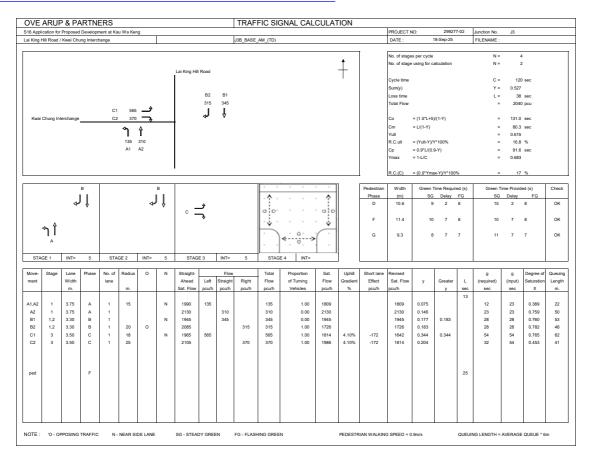

<u>J3 - YEAR 2035 - AM TRAFFIC FLOW</u> EXISTING LAYOUT - INTERIM SCENARIO A


<u>J3 - YEAR 2035 - PM TRAFFIC FLOW</u> EXISTING LAYOUT - INTERIM SCENARIO A


<u>J3 - YEAR 2035 - AM TRAFFIC FLOW</u> EXISTING LAYOUT - INTERIM SCENARIO B


<u>J3 - YEAR 2035 - PM TRAFFIC FLOW</u> EXISTING LAYOUT - INTERIM SCENARIO B

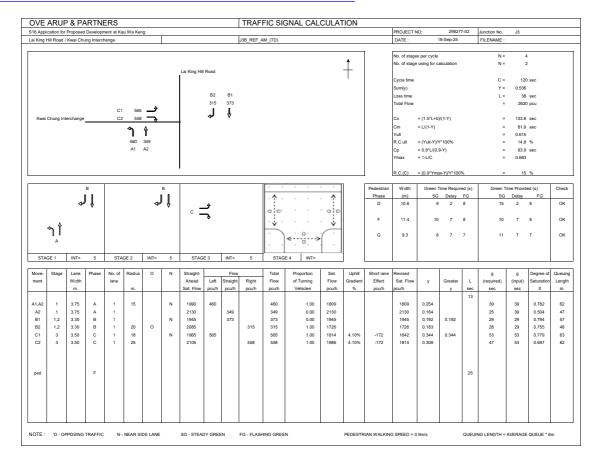
<u>J3 - YEAR 2035 - AM TRAFFIC FLOW</u> EXISTING LAYOUT - INTERIM SCENARIO C



<u>J3 - YEAR 2035 - PM TRAFFIC FLOW</u> EXISTING LAYOUT - INTERIM SCENARIO C

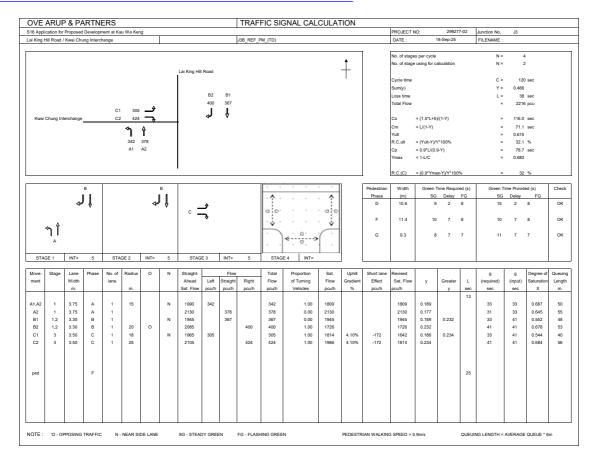
J3 - YEAR 2035 - AM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - BASELINE SCENARIO

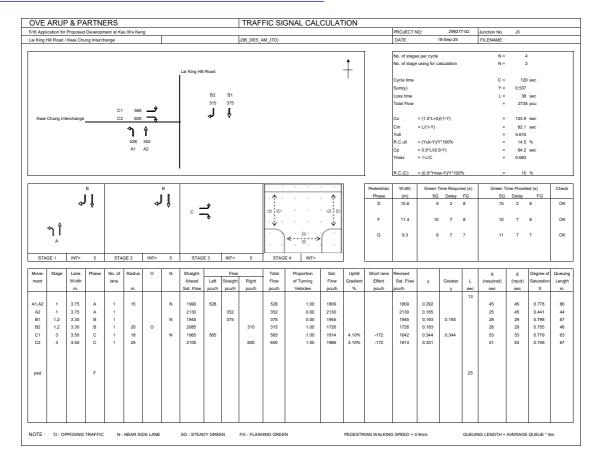

J3 - YEAR 2035 - PM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - BASELINE SCENARIO

		Proposed Kwai Chu	ing Interch		id TVG TCC	9					J3B_BASE	PM_(TD)					PROJECT DATE :		29927 18-Sep-25		Junction No. FILENAME :	J3		
															1			es per cycle e using for c	alculation		N = N =	4		
								Lai King Hill	Road						1		Cycle time				C =		sec	
																	Sum(y)				Y =	0.418		
									B2 400	B1							Loss time				L =		sec	
				C1	305				400	335							Total Flow					1850	pcu	
Kwai	Chung In	erchange		C2					Ų	Ą							Co	= (1.5*L+5	V(1-Y)			106.5	sec	
					4	٨											Cm	= L/(1-Y)				65.2	sec	
					1	î											Yult					0.615		
						350											R.C.ult	= (Yult-Y)/	r*100%			47.3	%	
					A1	A2											Ср	= 0.9*L/(0.	9-Y)			70.9	sec	
																	Ymax	= 1-L/C				0.683		
																	R.C.(C)	= (0.9*Yms	x-Y)/Y*100	%		47	%	
			В				В								1	Pedestrian	Width	Green '	Time Requir	ed (s)	Green Ti	me Provid	ed (s)	Chec
		1	1				1 1					٠.		. ^		Phase	(m)	SG		FG	SG	Delay	FG	
		4	, Î			4	, ∯	c =	و			a .p.				D	10.6	9	2	8	15	2	8	OK
	. Δ							· -	•			. 🗼 .		. 🗼		F	11.4	10	7	8	10	7	8	ОК
1										«····»			G	9.3	8	7	7	11	7	7	ОК			
STA	GE 1	INT=	5	STA	GE 2	INT=	5	STAG	E 3	INT=	5	STAG	E 4 INT=											
ove-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised				g	9	Degree of	Queuii
nent		Width		lane				Ahead	Left	Straight	Right	Flow	of Turning	Flow	Gradient	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Leng
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h		у	sec	sec	sec	х	m.
																				13				
,A2	1	3.75	A	1	15		N	1990	210	250		210	1.00	1809			1809	0.116			23	32	0.435	31
A2 31	1,2	3.75	A B	1			N	2130 1945		350 335		350 335	0.00	2130 1945			2130 1945	0.164 0.172	0.232		32 34	32 46	0.616 0.449	51 41
32	1,2	3.30	В	1	20	0		2085		555	400	400	1.00	1726			1726	0.172	0.202		46	46	0.605	49
01	3	3.50	С	1	18		N	1965	305			305	1.00	1814	4.10%	-172	1642	0.186	0.186		36	36	0.619	43
22	3	3.50	С	1	25			2105			250	250	1.00	1986	4.10%	-172	1814	0.138			27	36	0.459	35
ed			F																	25				
					L	<u> </u>						<u> </u>		<u> </u>	<u> </u>		L				<u> </u>		L	Щ.


J3 - YEAR 2035 - AM TRAFFIC FLOW

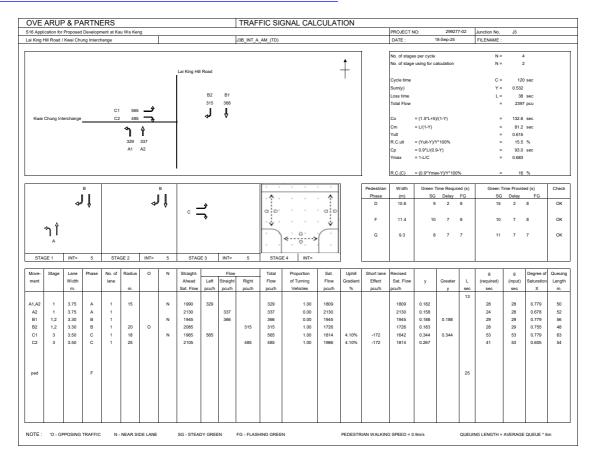
TD PLANNED JUNCTION ARRAGEMENT - REFERENCE SCENARIO


J3 - YEAR 2035 - PM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - REFERENCE SCENARIO

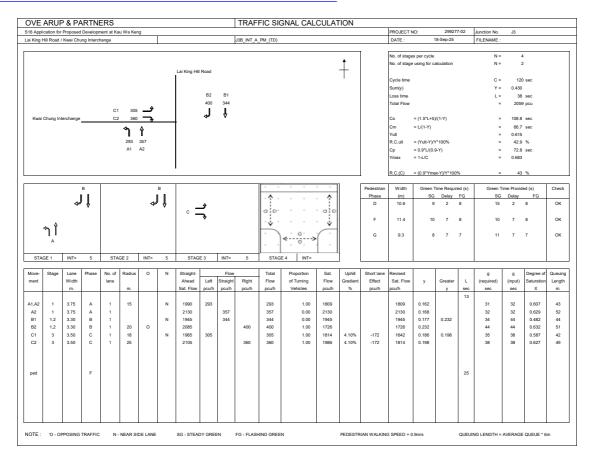
J3 - YEAR 2035 - AM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - DESIGN SCENARIO

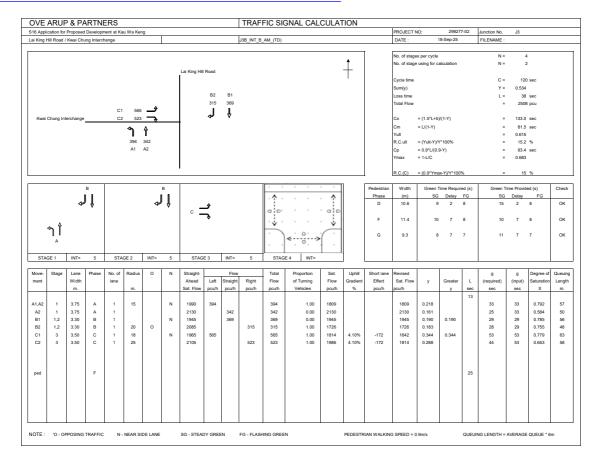

J3 - YEAR 2035 - PM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - DESIGN SCENARIO

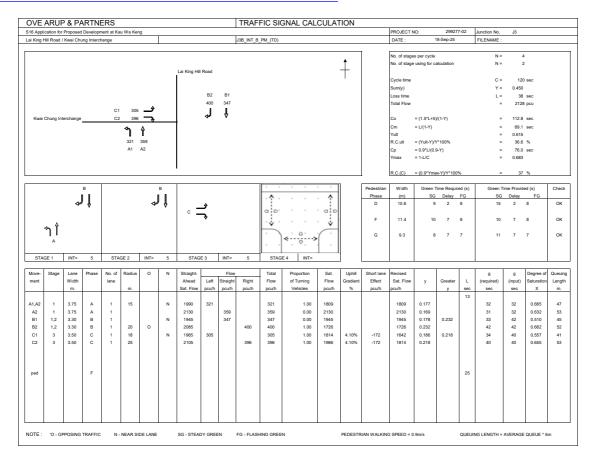
S16 Application for Proposed Development at Kau Wa Keng al King Hill Road / Kwai Chung Interchange J38											PROJECT NO: J3B_DES_PM_(TD) DATE:								29927 18-Sep-25	7-02	Junction No. FILENAME:	J3		
King	IIII ROBU /	Kwai Chu	ng interci	nange							J3B_DES_	PM_(1D)					DATE:		10-3ep-23		FILENAME:			
								Lai King Hill	Deed						1		No. of stage	es per cycle e using for c			N = N =	2		
								Lai King Hii	Road								Cycle time				C =	120	sec	
																	Sum(y)				Y =	0.490		
									B2	B1							Loss time				L=	38	sec	
					305	4			400	353							Total Flow					2267	pcu	
Kwai	Chung Int	erchanne		C1 C2					J	Ŷ							Co	= (1.5*L+5	V(1-V)			121.5	eer	
rwai	Criding IIII	eichange		C2				ł									Cm	= L/(1-Y)	y(1-1)				sec	
						Ŷ											Yult	- 5(1-1)				0.615		
					378	363											R.C.ult	= (Yult-Y)/	Y*100%			25.6	%	
					A1	A2											Ср	= 0.9*L/(0.	9-Y)				sec	
																	Ymax	= 1-L/C				0.683		
																	R.C.(C)	= (0.9*Yms	ax-Y)/Y*100	%		26	%	
															1		150.00							
			В				В							. ^		Pedestrian Phase	Width (m)	Green SG	Time Requir Delay	ed (s) FG	Green T SG	me Provid Delay	ed (s) FG	Chec
		له	Ţ			4	Î		Δ			· 🕆 ·		·		D	10.6	9		8	15	2	8	OK
			•				•	с _	_			a b.		. 0 0										
									÷			- į		. 🗼		F	11.4	10	7	8	10	7	8	ОК
↑ ↑					ı				ı			< <u>o</u> >			G	9.3	8	7	7	11	7	7	ОК	
STA	GE 1	INT=	5	STA	GE 2	INT=	5	STAG	E 3	INT=	5	STAG	E 4 INT=		J									
love-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised				g	g	Degree of	Queui
nent		Width		lane				Ahead	Left	Straight	Right	Flow	of Turning	Flow	Gradient	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Leng
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h		у	sec 13	sec	sec	Х	m.
1,A2	1	3.75	Α	1	15		N	1990	378			378	1.00	1809			1809	0.209			35	35	0.716	54
A2	1	3.75	Α	1				2130		363		363	0.00	2130			2130	0.170			29	35	0.584	51
B1	1,2	3.30	В	1			N	1945		353		353	0.00	1945			1945	0.181	0.232		30	39	0.558	48
B2 C1	1,2	3.30	В	1	20 18	0		2085	205		400	400	1.00	1726	4.400*	470	1726	0.232	0.258		39 31	39 43	0.713	54
C1 C2	3	3.50 3.50	c	1	18 25		N	1965 2105	305		468	305 468	1.00	1814 1986	4.10% 4.10%	-172 -172	1642 1814	0.186 0.258	0.258		31 43	43 43	0.518	39 60
-	-		-	1													1						1	30
			F																	25				
oed			-																	25				
		ı		1	1		l			1				1			1		1	1	1			


J3 - YEAR 2035 - AM TRAFFIC FLOW

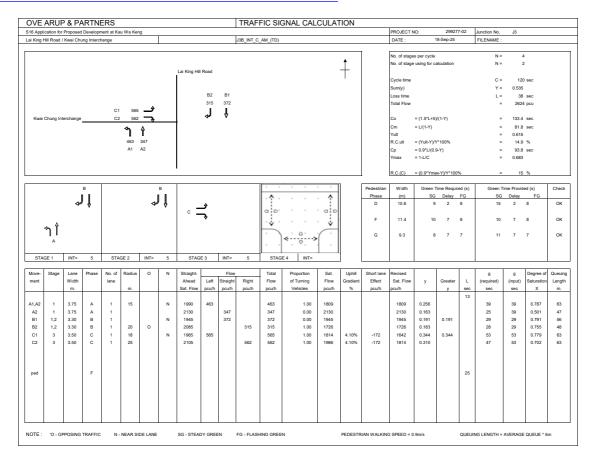
TD PLANNED JUNCTION ARRAGEMENT - INTERIM SCENARIO A


J3 - YEAR 2035 - PM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - INTERIM SCENARIO A


J3 - YEAR 2035 - AM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - INTERIM SCENARIO B


J3 - YEAR 2035 - PM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - INTERIM SCENARIO B

J3 - YEAR 2035 - AM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - INTERIM SCENARIO C

J3 - YEAR 2035 - PM TRAFFIC FLOW

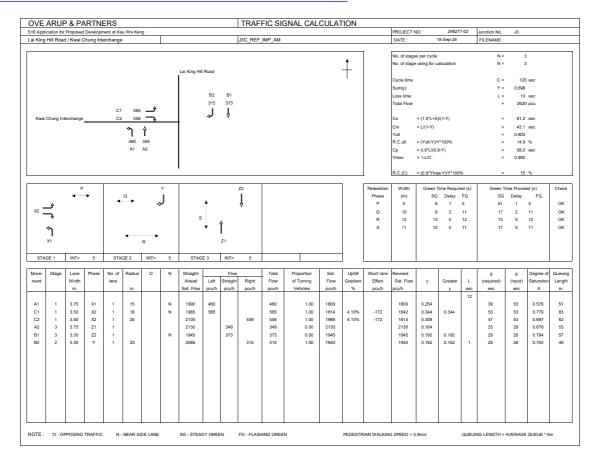
TD PLANNED JUNCTION ARRAGEMENT - INTERIM SCENARIO C

									13B_II41_C	PM_(TD)					DATE:		18-Sep-25		FILENAME :			
						Lai King Hill	Rood						1			es per cycle e using for c	alculation		N = N =	4		
						Lai King riii	rodu						1		Cycle time Sum(y)				C =		sec	
							B2	B1							Loss time				L=	38	sec	
				4			400	350							Total Flow					2198	pcu	
rchange							J	Ą							Co	= (1.5*L+5	V(1-Y)			117.0	sec	
															Cm	= L/(1-Y)	,,,,					
			ו	T											Yult					0.615		
				361											R.C.ult							
			A1	A2													9-Y)				sec	
															HINEX	- I-L/G				0.083		
															R.C.(C)	= (0.9*Yms	x-Y)/Y*100	%	-	31	%	
E	3]	Pedestrian	Width							Chec
لہ	1			لہ	1					· 🕆 ·		· 💠										OK
•	٧			•	٧	c =	و -			a b.		0 0			10.0		-		10	-		0.1
						_	*			- ij -		. ;		F	11.4	10	7	8	10	7	8	ОК
										<u> </u>	«····»			G	9.3	8	7	7	11	7	7	ОК
											. 0.											
INT=	5	STA	GE 2	INT=	5	STAG	3	INT=	5	STAG	E 4 INT=		J									
Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised				g	g	Degree of	Queui
Width		lane				Ahead	Left	Straight	Right	Flow	of Turning	Flow	Gradient	Effect	Sat. Flow	У	Greater	L	(required)	(input)	Saturation	Leng
m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h		У		sec	sec	X	m.
3.75	Α	1	15		N	1990	350			350	1.00	1809			1809	0.193			34	34	0.683	50
3.75	Α	1				2130		361		361	0.00	2130			2130	0.169			30	34	0.598	52
3.30	В	1			N	1945		350		350	0.00	1945			1945	0.180	0.232		31	40	0.540	47
				0	N		305		400				4 1094	-172			0.238					53 40
3.50	c	1	25		IN	2105	303		432	432	1.00	1986	4.10%	-172	1814	0.100	0.230		42	42	0.680	56
	F																	25				
	Lane Width m. 3.75 3.75 3.30 3.30 3.50 3.50	B B With the state of the state	B B STAN INT* 5 STAN Inn* S S STAN Inn* S STAN Inn* S S S S S S S S S S S S S S S S S S	NTe 5 STAGE 2	NT 5 STAGE 2 INT	NT S STAGE 2 NT S	NT* 5 STAGE 2 INT* 5 STAGE	C1 305	C1 305	C1 305	C1 305	C1 305 350 361	STAGE 2 INT* 5 STAGE 3 INT* 5 STAGE 4 INT*	NT S STAGE 2 INT S STAGE 3 INT S STAGE 4 INT	C1 305 350 361 350 361 350 361	Sumply Lose times	B	C1 305	B	B2 B1	Sumple S	State Phase No. of Radius Sit Note Sit Sit

J3 - YEAR 2035 - AM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - BASELINE SCENARIO

	cation for Hill Road	_		erchange		9					J3C BASE	IMP AM					PROJECT I DATE :		29927 18-Sep-25	7-02	Junction No. FILENAME :	J3		
															1		No. of stage No. of stage		alculation		N = N =	3		
								Lai King Hill	Road						Т		Cycle time				C =	120	sec .	
																	Sum(y)				Y =	0.684	sec	
									B2	B1							Loss time				L=	12	sec	
									315	345							Total Flow				-	2040	pcu	
Marie I	Chung Int			C1 C2		\preceq			J	Ŷ							Co	= (1.5*L+5	1/4 30			70.0	sec	
Kwai	Chung Int	erchange		C2													Cm	= (1.5°L+5) = L/(1-Y)	V(1-Y)			72.8		
					ኀ	Ŷ											Yult	= D(1-1)				0.810		
					135	310											R.C.ult	= (Yult-Y)/	/*100%			18.4		
					A1	A2											Ср	= 0.9*L/(0.	9-Y)			50.0	sec	
																	Ymax	= 1-L/C			-	0.900		
																	R.C.(C)	= (0.9*Yms	x-Y\/Y*100	96		18	%	
															1			10.0 1100						
		₽			_		Y				Z2					Pedestrian	Width		Time Requir			me Provid		Chec
		•	•	4	Q	_	J				Ţ					Phase P	(m) 5	SG 6		FG 5	SG 52	Delay 1	FG 5	ОК
x2 -	ث					4	-				٧					Q.	10	6		11	17	2	11	OK
-	→							s								R	12	13		12	13	5	12	OK
	4								÷ '	Î						S	11	12	5	11	16	5	11	OK
	, I				4	·····				7.														
	X1					R				Z1														
STA	GE 1	INT=	5	STA	GE 2	INT=	5	STAGI	E 3	INT=	5													
										•			,											
love-	Stage	Lane Width	Phase	No. of lane	Radius	0	N	Straight-	1.0	Flow	Disk	Total	Proportion	Sat.	Uphill	Short lane Effect	Revised			١.	g (t)	g	Degree of	
nent		width m.		lane	m.			Ahead Sat. Flow	Left pcu/h	Straight pcu/h	Right pcu/h	Flow pcu/h	of Turning Vehicles	Flow pcu/h	Gradient %	pcu/h	Sat. Flow pcu/h	у	Greater v	L sec	(required) sec	(input) sec	Saturation X	Leng m.
								Out. 1 low	pouri	pouri	pourn	pourn	Veriloido	pourn	~	pouri	pouri		,	12	500	500		111.
A1	1	3.75	X1	1	15		N	1990	135			135	1.00	1809			1809	0.075			12	54	0.166	15
C1	1	3.50	X2	1	18		N	1965	565			565	1.00	1814	4.10%	-172	1642	0.344	0.344		54	54	0.765	62
C2 A2	1 3	3.50	X2 Z1	1	25			2105 2130		310	370	370 310	1.00	1986 2130	4.10%	-172	1814 2130	0.204			32 23	54 28	0.453	41 48
m2 B1	3	3.75	Z2				N	1945		345		345	0.00	1945			1945	0.146	0.177		28	28	0.760	53
B2	2	3.30	Y	1	20			2085		040	315	315	1.00	1940			1940	0.162	0.162		26	26	0.750	49
		<u> </u>	<u> </u>	<u> </u>	ь—							l					l		l	L				

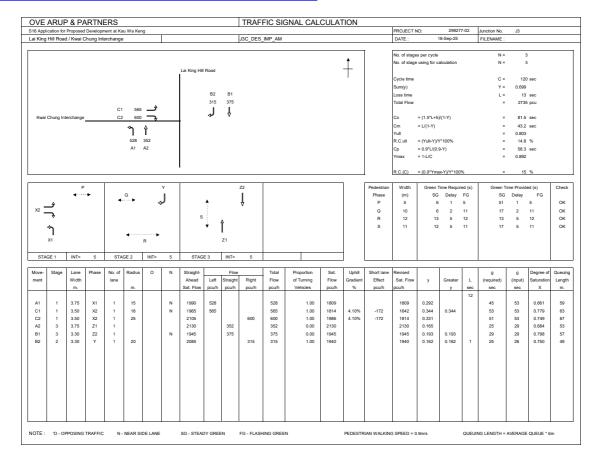

J3 - YEAR 2035 - PM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - BASELINE SCENARIO

6 Appl i Kina		_		erchange		9					J3C BASE	IMP PM					PROJECT DATE :		29927 18-Sep-25	7-02	Junction No. FILENAME:	J3		
rung	Tim Trouc	27 Teman C	mung in	cruninge							000_0/00						DATE:				TILLIOUNE.			
															1		No. of stage No. of stage				N = N =	3		
							1	Lai King Hill	Road								Cycle time				C =	120) sec	
																	Sum(y)				Y =	0.564	, 500	
									B2	B1							Loss time				L=	12	sec	
						Δ			400	335							Total Flow					1850) pcu	
Marie I	Chung Int			C1 C2					J	Ŷ							Co	= (1.5*L+5	W4 M			50.0	sec	
rwai	Chung int	erchange		U2													Cm	= (1.5°L+5 = L/(1-Y)	y(1-T)			27.5		
					ኅ	î											Yult	- 0(1-1)				0.810		
					210	350											R.C.ult	= (Yult-Y)/	Y*100%			43.6		
					A1	A2											Ср	= 0.9*L/(0.	9-Y)				sec	
																	Ymax	= 1-L/C				0.900		
																	R.C.(C)	= (0.9*Yms	ax-Y)/Y*100	%		44	%	
		P		1			Y				Z2	ı			1	Pedestrian	Width	Green '	Time Requir	red (s)	Green T	ime Provid	ed (s)	Chec
		4			Q		i				ī					Phase	(m)	SG		FG (s)	SG	Delay	FG (S)	0.000
_	وُ			4		4	J		†		Ŷ					Р	5	6	1	5	34	1	5	ОК
X2 _	_							s								Q	10	6		11	30	2	11	ОК
	. •							8	1	4						R S	12	13		12	26	5	12	OK
	ግ				4				•	I						8	11	12	5	11	21	5	11	OK
	X1					R				Z1														
STA	GE 1	INT=	5	STA	GE 2	INT=	5	STAGI	E 3	INT=	5				İ									
love-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised				g	g	Degree of	Queuii
nent		Width		lane				Ahead	Left	Straight	Right	Flow	of Turning	Flow	Gradient	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Leng
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h		у	sec	sec	sec	х	m.
A1	1	3.75	X1	1	15		N	1990	210			210	1.00	1809			1809	0.116		12	22	36	0.387	29
A1 C1	1	3.75	X1 X2	1	15		N	1990	305			305	1.00	1814	4.10%	-172	1642	0.116	0.186		36	36	0.619	43
C2	1	3.50	X2	1	25			2105	500		250	250	1.00	1986	4.10%	-172	1814	0.138	0.100		26	36	0.459	35
A2	3	3.75	Z1	1				2130		350		350	0.00	2130			2130	0.164			31	33	0.598	51
31	3	3.30	Z2	-1			N	1945		335		335	0.00	1945			1945	0.172	0.172		33	33	0.626	49
32	2	3.30	Y	1	20			2085			400	400	1.00	1940			1940	0.206	0.206		39	39	0.635	54
		<u> </u>		<u> </u>						L		<u> </u>		L		l	L	1	L	-			Ь	
										N		IING GREE						0.9m/s			NG LENGTH =			

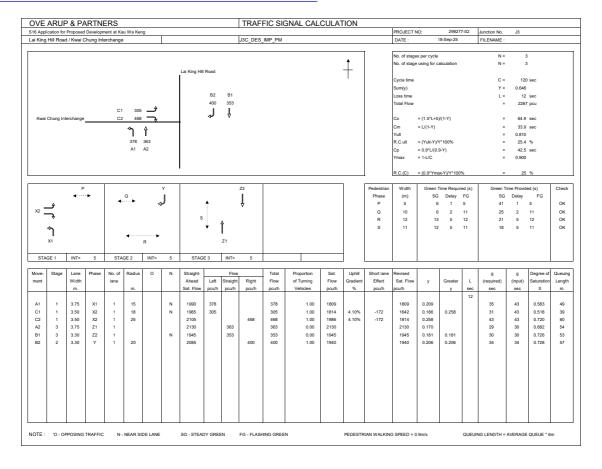
J3 - YEAR 2035 - AM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - REFERENCE SCENARIO


J3 - YEAR 2035 - PM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - REFERENCE SCENARIO

		_		erchange	u Wa Ken	9					J3C REF	IMP PM					PROJECT I		29927 18-Sep-25	7-02	Junction No.	J3		
															†		No. of stage No. of stage		alculation		N = N =	3		
								Lai King Hill	Road						T		Cycle time				C =	120) sec	
																	Sum(y)				Y =	0.629		
									B2	B1							Loss time				L=	12	sec	
									400	367							Total Flow				-	2216	3 рси	
Marie 1	Chung Int			C1 C2					J	Ŷ							Co	= (1.5*L+5	W4 30			64.0	sec	
Kwai	Chung Int	erchange		C2													Cm	= (1.5°L+5) = L/(1-Y)	V(1-Y)			32.3		
					ኀ	Ŷ											Yult	= D(1-1)				0.810		
					342	378											R.C.ult	= (Yult-Y)/	/*100%			28.8		
					A1	A2											Ср	= 0.9*L/(0.	9-Y)			39.8	sec	
																	Ymax	= 1-L/C			-	0.900		
																	R.C.(C)	= (0.9*Yms	x-Y)/Y*100	%		29	%	
		P		ı			· ·				70	ı			İ	Dedeated	1871-00	O *	n D '	-d (-)	o =	P '	-4 (-)	01
		4			Q		Y				Z2					Pedestrian Phase	Width (m)	Green	Time Requir Delay	ea (s) FG	Green II	me Provid Delay	ea (s) FG	Chec
	4			4		4	J		+		Ŷ					Р	5	6		5	38		5	ОК
X2	Ξ															Q	10	6	2	11	26	2	11	ОК
	*							S		۵						R	12	13		12	22	5	12	OK
	ኅ								*	l						S	11	12	5	11	20	5	11	OK
	X1				4	> R				Z1														
STA	GE 1	INT=	5	STA	GE 2	INT=	5	STAG	E 3	INT=	5													
ove-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised				g	9	Degree of	Queui
nent	otago	Width	11111111	lane	radios	·		Ahead	Left	Straight	Right	Flow	of Turning	Flow	Gradient	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Leng
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h	,	у	sec	sec	sec	x	m.
																				12				
A1	1	3.75	X1	1	15		N	1990	342			342	1.00	1809			1809	0.189			32	40	0.567	46
C1 C2	1	3.50 3.50	X2 X2	1	18 25		N	1965 2105	305		424	305 424	1.00	1814 1986	4.10%	-172 -172	1642 1814	0.186	0.234		32 40	40 40	0.557	41 57
A2	3	3.75	Z1	1	20			2130		378	424	378	0.00	2130	4.1076	12	2130	0.177			30	32	0.665	55
B1	3	3.30	Z2	1			N	1945		367		367	0.00	1945			1945	0.189	0.189		32	32	0.708	54
32	2	3.30	Y	1	20			2085			400	400	1.00	1940			1940	0.206	0.206		35	35	0.707	57
		<u></u>	<u></u>	<u></u>																				
	'0 0	POSING	TDACEIC	M	NEAR SID	DELANE		SG - STEAD	V CDEE	IN.		IING GREE				IAN WALKING		Om/o			IG LENGTH = .	AVEDACE	OHEHE * C	im


J3 - YEAR 2035 - AM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - DESIGN SCENARIO

J3 - YEAR 2035 - PM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - DESIGN SCENARIO

J3 - YEAR 2035 - AM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - INTERIM SCENARIO A

6 Application i King Hill											J3C_INT_	A_IMP_AN	1				PROJECT :		18-Sep-25		Junction No. FILENAME :	J3		
															†			es per cycle e using for c	alculation		N = N =	3		
								Lai King Hill	Road						\top		Cycle time				C =	120	sec	
																	Sum(y)				Y =	0.695		
									B2	B1							Loss time				L =		sec	
				C1	565	4			315	366							Total Flow					2397	pcu	
Kwai Chu	ng Inter	rchange		C2					Ų	Ą							Со	= (1.5*L+5	V(1-Y)			80.3	sec	
																	Cm	= L/(1-Y)				42.6		
					- 1	Î											Yult				-	0.803		
						337											R.C.ult	= (Yult-Y)/				15.5		
					A1	A2											Ср	= 0.9*L/(0.1	9-Y)			57.0	sec	
																	Ymax	= 1-L/C				0.892		
																	R.C.(C)	= (0.9*Yms	x-Y)/Y*100	%		16	%	
		P					Y				Z2				1	Pedestrian	Width	Green 1	Time Requir	ed (s)	Green T	me Provid	ed (s)	Chec
		∢	+		Q		1				1					Phase	(m)	SG		FG	SG	Delay	FG	
ثــ				4		4	٧		1		♦					P	5	6		5	51		5	OK
ຶ ¬								s								Q	10	6		11	17	2	11	OK
								3	į	Ŷ						R S	12 11	13		12 11	13 17	5	12	OK OK
ຶ່ງ					4				•	I						3		12	3		.,	,		OK
X1						R				Z1														
STAGE 1		INT=	5	CTA	GE 2	INT=	5	STAG	E 2	INT=	5													
STAGE		1141-	3	317	OE 2	1141-	,	SIAG	EJ	1141-	,	1			1		1							
	age	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised				g	g	Degree of	Queui
ient		Width m.		lane	m.			Ahead Sat. Flow	Left pcu/h	Straight pcu/h	Right pcu/h	Flow pcu/h	of Turning Vehicles	Flow pcu/h	Gradient %	Effect pcu/h	Sat. Flow pcu/h	У	Greater	L sec	(required) sec	(input) sec	Saturation X	Leng m.
	-	m.			m.			Sat. Flow	pcu/n	pcu/n	pcu/n	pcu/n	venicies	pcu/n	76	pcu/n	pcu/n	.	У	12	sec	sec	^	m.
A1	1	3.75	X1	1	15		N	1990	329			329	1.00	1809			1809	0.182			28	53	0.412	37
	1	3.50	X2	1	18		N	1965	565			565	1.00	1814	4.10%	-172	1642	0.344	0.344		53	53	0.779	63
	1	3.50	X2	1	25			2105		227	485	485	1.00	1986	4.10%	-172	1814	0.267			41	53	0.605	54
	3	3.75	Z1 Z2	1			N	2130 1945		337 366		337 366	0.00	2130 1945			2130 1945	0.158	0.188		24 29	29 29	0.655	51 56
	2	3.30	Y	1	20			2085		550	315	315	1.00	1940			1940	0.162	0.162	1	25	26	0.750	49
			TRAFFIC		NEAR SII			SG - STEAL			FG - FLASH					IAN WALKING							QUEUE * 6	

J3 - YEAR 2035 - PM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - INTERIM SCENARIO A

		_		nent at Ka erchange	u Wa Ken	g					J3C INT	A IMP PM	1				PROJECT I		29927 18-Sep-25	7-02	Junction No. FILENAME:	J3		
rung	T IIII T COLL	27 Teman C	anding in	cronunge							000_1111_	<u></u>	•				DATE:				TILLIOUNE.			
															1		No. of stage No. of stage		alculation		N = N =	3		
								Lai King Hill	Road						Τ		Cycle time				C =	120) sec	
																	Sum(y)				Y =	0.582		
									B2	B1							Loss time				L=	12	sec	
						Δ			400	344							Total Flow					2059	9 pcu	
Kumi	Chung Int	ombonao		C1 C2		=			J	Ŷ							Co	= (1.5*L+5	W/4 V0			55.0	sec	
rwai	Chung ini	erchange		U2													Cm	= (1.5 L+5) = L/(1-Y)	P(1-T)			28.7		
					ኀ	î											Yult	- 5(1-1)				0.810		
						357											R.C.ult	= (Yult-Y)/	/*100%			39.3	%	
					A1	A2											Ср	= 0.9*L/(0.	9-Y)				sec	
																	Ymax	= 1-L/C				0.900		
																	R.C.(C)	= (0.9*Yms	x-Y)/Y*100	%		39	%	
		P					Y				Z2				1	Pedestrian	Width	Green 1	Time Requir	ed (s)	Green T	me Provid	ed (s)	Chec
		4			Q		i				ī					Phase	(m)	SG		FG	SG	Delay	FG	
	وُ			4		4	J		†		Ŷ					P	5	6	1	5	35	1	5	OK
X2 _	_							s								Q	10	6		11	29	2	11	OK
	. *							5		4						R	12 11	13		12 11	25 21	5	12	OK OK
	۲ŋ xı				4	>			•] Z1							"	12	5	"	21	5	"	UK.
STA	GE 1	INT=	5	STA	GE 2	INT=	5	STAG	E 3	INT=	5													
																					1			
ove- nent	Stage	Lane Width	Phase	No. of lane	Radius	0	N	Straight- Ahead	Left	Flow Straight	Right	Total Flow	Proportion of Turning	Sat. Flow	Uphill Gradient	Short lane Effect	Revised Sat. Flow		Greater	L	g (required)	g (input)	Degree of Saturation	Queui
ieni		m.		iane	m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h	У	Greater	sec	(required) sec	(input) sec	X	m.
									F	promise.	P==	F		pan		p-a			,	12				
A1	1	3.75	X1	1	15		N	1990	293			293	1.00	1809			1809	0.162			30	37	0.525	41
C1	1	3.50	X2	1	18		N	1965	305			305	1.00	1814	4.10%	-172	1642	0.186	0.198		34	37	0.602	42
C2 A2	1 3	3.50	X2 Z1	1	25			2105 2130		357	360	360 357	1.00	1986 2130	4.10%	-172	1814 2130	0.198			37 31	37 33	0.644	50 52
H2 B1	3	3.75	Z2	1			N	1945		344		344	0.00	1945			1945	0.100	0.177		33	33	0.643	50
32	2	3.30	Y	1	20			2085			400	400	1.00	1940			1940	0.206	0.206		38	38	0.651	55
														_						_				
are :	'0 - 0	POSING	TRAFFIC	N -	NEAR SIE	DE LANE		SG - STEAD	Y GREE	N	FG - FLASH	IING GREE	N		PEDESTR	IAN WALKING	SPEED = 0	0.9m/s		QUEUII	NG LENGTH =	AVERAGE	QUEUE * 6	im

J3 - YEAR 2035 - AM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - INTERIM SCENARIO B

	cation for Hill Road	_		erchange		9					J3C INT	B IMP AM	1				PROJECT I		29927 18-Sep-25	7-02	Junction No. FILENAME:	J3		
															†		No. of stage No. of stage				N = N =	3		
								Lai King Hill	Road						Т		Cycle time				C =	120) sec	
																	Sum(y)				Y =	0.696		
									B2	B1							Loss time				L=	13	sec	
					565	۵			315	369							Total Flow					2508	3 pcu	
Kwai	Chung Int	erchanne		C1 C2		=			J	Ą							Co	= (1.5*L+5	V(1-V)			80.7	sec	
rtwai	Criding IIII	eichange		U2		, +											Cm	= L/(1-Y)	y(1-1)				sec	
					ኀ	î											Yult	_()				0.803		
						342											R.C.ult	= (Yult-Y)/				15.3		
					A1	A2											Ср	= 0.9*L/(0.	9-Y)			57.4		
																	Ymax	= 1-L/C				0.892		
								1									R.C.(C)	= (0.9*Yms	ax-Y)/Y*100	%		15	%	
		Р					Υ				Z2				1	Pedestrian	Width	Green '	Time Requir	ed (s)	Green T	ime Provid	ed (s)	Chec
		◄	->	_	Q _		1				1					Phase	(m)	SG		FG	SG	Delay	FG	
₍₂ -	ثـ			٠,		4	9		1		₽					P	5	6		5	51		5	OK
~ -	⊸							s								Q R	10 12	13		11 12	17	2	11 12	OK OK
	45								÷	î						s	11	12		11	17	5	11	ОК
	ı				4																			
	X1					R				Z1														
STA	GE 1	INT=	5	STA	GE 2	INT=	5	STAGI	E 3	INT=	5				1									
ove- nent	Stage	Lane Width	Phase	No. of lane	Radius	0	N	Straight- Ahead	Left	Flow Straight	Right	Total Flow	Proportion of Turning	Sat. Flow	Uphill Gradient	Short lane Effect	Revised Sat. Flow	l	Greater	L	g (required)	g (input)	Degree of Saturation	Queui
nent		width m.		lane	m.			Sat. Flow	Leπ pcu/h	straight pcu/h	pcu/h	pcu/h	of Turning Vehicles	pcu/h	Gradient %	pcu/h	Sat. Flow pcu/h	У	Greater	sec	(required) sec	(input) sec	Saturation	Leng m.
									p	promise.	para	p==:::		pau		P	p==		,	12				
A1	1	3.75	X1	-1	15		N	1990	394			394	1.00	1809			1809	0.218			33	53	0.493	44
C1 C2	1	3.50	X2 X2	1	18 25		N	1965 2105	565		523	565 523	1.00	1814 1986	4.10% 4.10%	-172 -172	1642 1814	0.344	0.344		53 44	53 53	0.779	63 58
A2	3	3.75	Z1	1	25			2105		342	523	342	0.00	2130	4.10%	-112	1814 2130	0.288			44 25	29	0.664	58
31	3	3.30	Z2	1			N	1945		369		369	0.00	1945			1945	0.190	0.190		29	29	0.785	56
32	2	3.30	Y	-1	20			2085			315	315	1.00	1940			1940	0.162	0.162	1	25	26	0.750	49
_			l	l	ш					L		l		L		L							l	Ь—

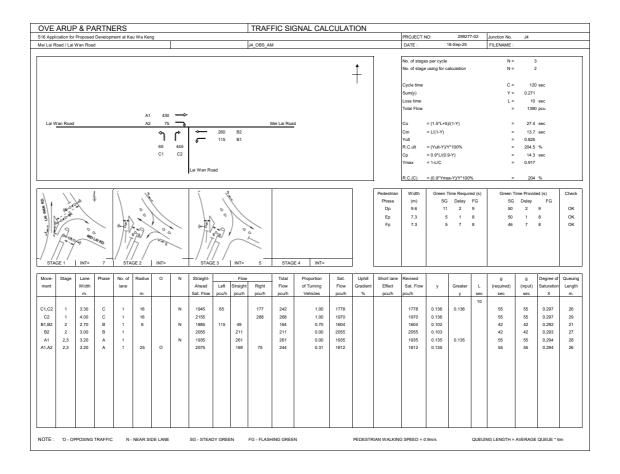
J3 - YEAR 2035 - PM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - INTERIM SCENARIO B

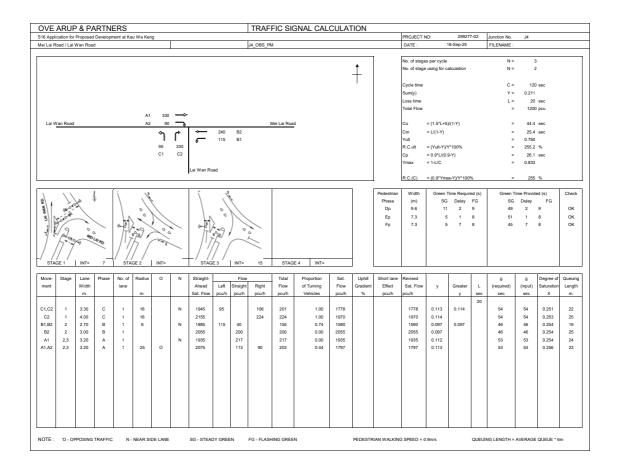
6 Appl		_		erchange		9					J3C INT	R IMP DA	ı				PROJECT I		29927 18-Sep-25	7-02	Junction No. FILENAME:	J3		
rung	TIIII TKOGC	a / ikwai k	anding int	ercriange							330_1141_	D_IIVIF_F N					DATE.		10-0cp-20		FILEHOWIE .			
															1		No. of stage No. of stage				N = N =	3		
							1	Lai King Hill	Road								Cycle time				C =	120	sec	
																	Sum(y)				Y =	0.603	500	
									B2	B1							Loss time				L=	12	sec	
						۵			400	347							Total Flow					2128	pcu	
Marie I	Chung Int			C1 C2		\preceq			J	Ą							Co	= (1.5*L+5	W4 M			57.0	sec	
rwai	Chung int	erchange		U2													Cm	= (1.5°L+5 = L/(1-Y)	y(1-T)			30.2		
					ኀ	Ŷ											Yult	- 5(1-1)				0.810		
					321	359											R.C.ult	= (Yult-Y)/	Y*100%			34.3		
					A1	A2											Ср	= 0.9*L/(0.	9-Y)			36.4	sec	
																	Ymax	= 1-L/C				0.900		
																	R.C.(C)	= (0.9*Yma	x-Y)/Y*100	%		34	%	
															1	-					1			
		₽			Q		Y				Z2					Pedestrian Phase	Width (m)	Green SG	Time Requir Delay	ed (s) FG	Green T SG	ime Provid Delay	ed (s) FG	Chec
	Δ	•	•	4	····•	4	J		*		Ţ					P	5	6		5	37		5	ОК
X2 _	_										*					Q	10	6	2	11	28	2	11	ОК
	÷							S		Δ						R	12	13	5	12	24	5	12	ОК
	ኅ								*	I						s	11	12	5	11	20	5	11	OK
	X1				4	>				Z1														
STA	GE 1	INT=	5	STA	GE 2	INT=	5	STAG	E 3	INT=	5													
love-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised			I	g	g	Degree of	Queuii
nent		Width		lane		-		Ahead	Left	Straight	Right	Flow	of Turning	Flow	Gradient	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Lengt
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h		у	sec	sec	sec	х	m.
		0.75		١.	15		N	4000	321			204	4.00	4000			1809	0.177		12	20	20	0.546	43
A1 C1	1	3.75	X1 X2	1	15		N	1990 1965	321			321 305	1.00	1809 1814	4.10%	-172	1642	0.177	0.218		32 33	39 39	0.546	43
C2	1	3.50	X2	1	25			2105	230		396	396	1.00	1986	4.10%	-172	1814	0.218	2.210		39	39	0.672	53
A2	3	3.75	Z1	1				2130		359		359	0.00	2130			2130	0.169			30	32	0.632	53
B1	3	3.30	Z2	1			N	1945		347		347	0.00	1945			1945	0.178	0.178		32	32	0.669	51
32	2	3.30	Y	1	20			2085			400	400	1.00	1940			1940	0.206	0.206		37	37	0.669	55
_		I	I	I	ь—					ı		l		L	L	l	L	<u> </u>	L		l		<u> </u>	<u> </u>
																		0.9m/s			NG LENGTH =			

J3 - YEAR 2035 - AM TRAFFIC FLOW

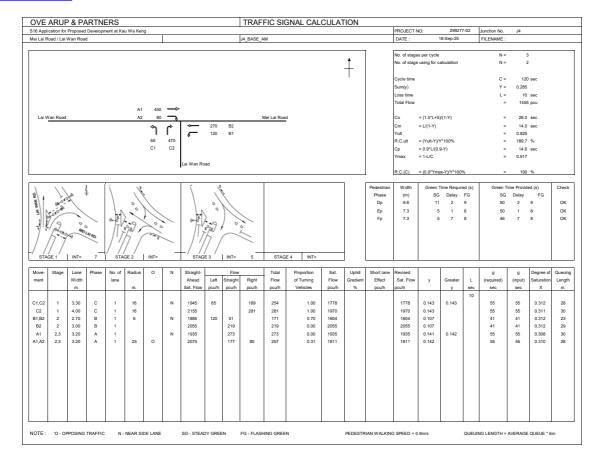
PROPOSED JUNCTION IMPROVEMENT - INTERIM SCENARIO C

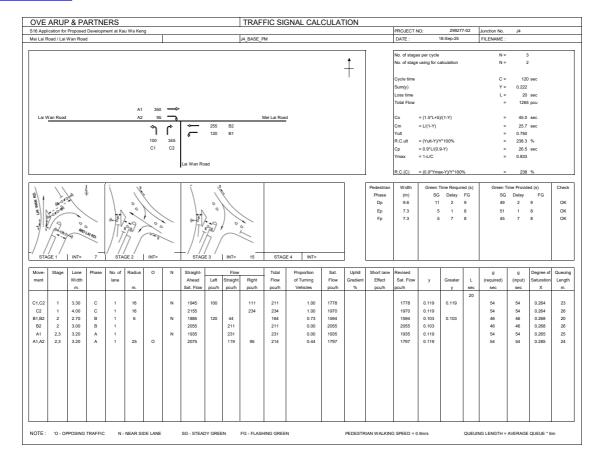

		_		nent at Ka erchange	u Wa Ken	g					J3C INT	: IMP AN	1				PROJECT I		29927 18-Sep-25	7-02	Junction No.	J3		
rung	TIIII TOO	17 Kwai C	anding int	ercriange							330_1141_	2_IIVIIAIN					DATE.		10-0cp-20		FILEIOWIE .			
															1		No. of stage No. of stage		alculation		N = N =	3		
								Lai King Hill	Road						Τ		Cycle time				C =	120	sec .	
																	Sum(y)				Y =	0.698	500	
									B2	B1							Loss time				L=	13	sec	
						Δ			315	372							Total Flow					2624	pcu	
Marie I	Chung Int			C1 C2		\preceq			J	Ŷ							Co	= (1.5*L+5	W4 30			04.4	sec	
rwai	Chung ini	erchange		U2													Cm	= (1.5 L+5) = L/(1-Y)	p(1-T)			43.0		
					ኀ	î											Yult	- 5(1-1)				0.803		
					463	347											R.C.ult	= (Yult-Y)/Y	/*100%			15.0		
					A1	A2											Ср	= 0.9*L/(0.	9-Y)			57.9	sec	
																	Ymax	= 1-L/C				0.892		
																	R.C.(C)	= (0.9*Yms	x-Y)/Y*100	%		15	%	
		P		ı —			Y				Z2				1	Pedestrian	Width	Croon 7	Timo Poquir	nd (n)	Croop T	ime Provid	od (a)	Chec
		→			Q						1					Pedestrian	(m)	SG	Time Requir Delay	FG (S)	SG	Delay	FG (8)	Cnec
	4			4		4	J		+		Ŷ					P	5	6	1	5	51	1	5	OK
X2	Ξ.															Q	10	6		11	17	2	11	OK
	•							S		4						R	12	13		12	13	5	12	OK
	ጎ ×1				4	>			•] Z1						S	11	12	5	11	17	5	11	OK
						ĸ																		
STA	GE 1	INT=	5	STA	GE 2	INT=	5	STAG	E 3	INT=	5				ļ									
love-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised				g	g	Degree of	Queui
nent		Width		lane				Ahead	Left	Straight	Right	Flow	of Turning	Flow	Gradient	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Leng
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h		у	sec	sec	sec	х	m.
A1	1	3.75	X1	1	15		N	1990	463			463	1.00	1809			1809	0.256		12	39	53	0.579	52
01	1	3.50	X2	1	18		N	1965	565			565	1.00	1814	4.10%	-172	1642	0.344	0.344		53	53	0.779	63
C2	1	3.50	X2	1	25			2105			562	562	1.00	1986	4.10%	-172	1814	0.310			48	53	0.702	63
A2	3	3.75	Z1	-1				2130		347		347	0.00	2130			2130	0.163			25	29	0.674	53
31	3	3.30	Z2	1			N	1945		372		372	0.00	1945			1945	0.191	0.191	١.	29	29	0.791	56
32	2	3.30	Y	1	20			2085			315	315	1.00	1940			1940	0.162	0.162	1	25	26	0.750	49
						•																		
TE -	0 - 0	POSING	TRAFFIC	N -	NEAR SID	DE LANE		SG - STEAD	Y GREE	N	FG - FLASH	ING GREE	N		PEDESTR	IAN WALKING	SPEED = 0	.9m/s		QUEUIN	NG LENGTH =	AVERAGE	QUEUE * 6	m

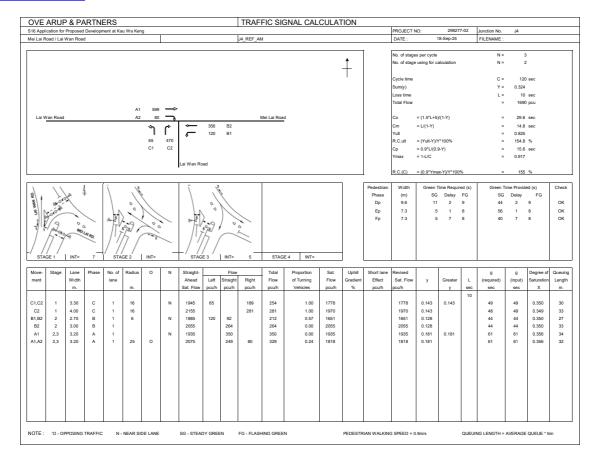
J3 - YEAR 2035 - PM TRAFFIC FLOW

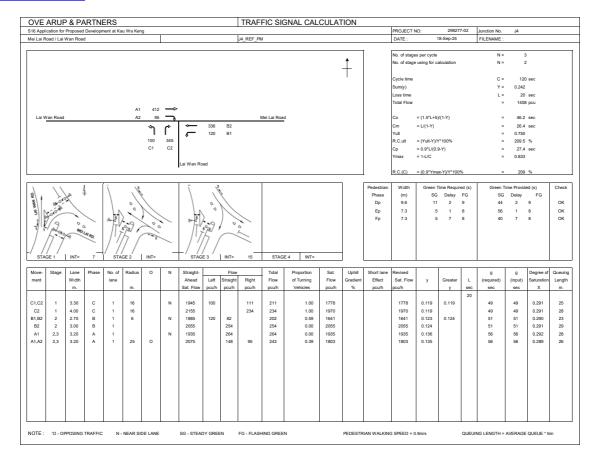

PROPOSED JUNCTION IMPROVEMENT - INTERIM SCENARIO C

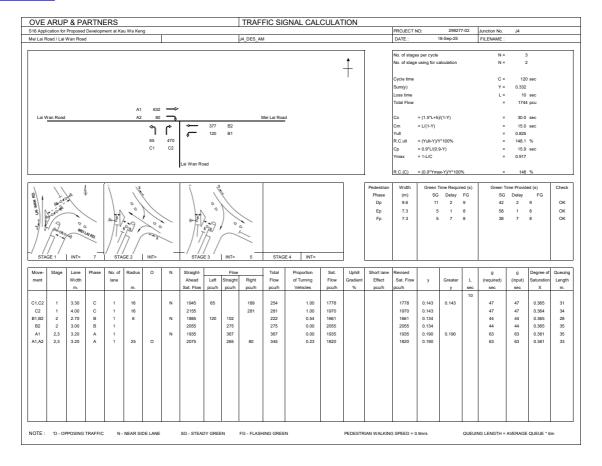
		_		nent at Ka erchange	u Wa Ken	g					J3C INT	C IMP PA	1				PROJECT DATE :		29927 18-Sep-25	r=02	Junction No. FILENAME :	J3		
rang	TIIII TOO	a / Itwai C	anding into	ercriange							330_1141_	O_IIVIIF_FIN	'				DATE.		о-оср-20		FILEIOWIE .			
																Ī	No. of stage	es per cycle			N =	3	3	
															Î		No. of stage	e using for c	alculation		N =	3	3	
							1	Lai King Hill	Road						Т		0				C =	400) sec	
																	Cycle time Sum(y)				Y =	0.624		
									B2	B1							Loss time				L=		sec	
									400	350							Total Flow					2198	3 рси	
				C1					J	Î														
Kwai	Chung In	erchange		C2	432	⊸			•	•							Co	= (1.5*L+5	V(1-Y)			61.2		
					ኅ	Ŷ											Cm Yult	= L/(1-Y)				31.9 0.810		
					350	361												= (Yult-Y)/Y	r*100%			29.7		
						A2											Ср	= 0.9*L/(0.				39.2		
																	Ymax	= 1-L/C				0.900		
																I	R.C.(C)	= (0.9*Yms	x-Y)/Y*100	%	-	30	%	
		Р					Υ				Z2				1	Pedestrian	Width	Green 1	Time Requir	ed (s)	Green T	me Provid	ed (s)	Chec
		∢	•		Q _		1				1					Phase	(m)	SG	Delay	FG	SG	Delay	FG	
	ثــ			1		<	9		†		♦					Р	5	6		5	39		5	OK
X2 _	¬,							s								Q R	10	6 13		11	27	2	11	OK OK
										Ŷ						s s	12 11	13		12 11	23 19	5	12 11	OK
	ገ				4					l														OI.
	X1					R				Z1														
-												-			1									
STA	GE 1	INT=	5	STA	GE 2	INT=	5	STAG	E 3	INT=	5	l			J		l	l			1			L
love-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised				g	g	Degree of	Queui
nent		Width		lane				Ahead	Left	Straight	Right	Flow	of Turning	Flow	Gradient	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	Lengt
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h	ļ	У	sec	sec	sec	Х	m.
A1	1	3.75	X1	1	15		N	1990	350			350	1.00	1809			1809	0.193		12	33	41	0.566	46
C1	1	3.50	X2	1	18		N	1965	305			305	1.00	1814	4.10%	-172	1642	0.186	0.238		32	41	0.544	40
C2	1	3.50	X2	1	25			2105			432	432	1.00	1986	4.10%	-172	1814	0.238			41	41	0.697	57
A2	3	3.75	Z1	1				2130		361		361	0.00	2130			2130	0.169			29	31	0.656	54
B1	3	3.30	Z2	1			N	1945		350		350	0.00	1945			1945	0.180	0.180		31	31	0.697	52
B2	2	3.30	Y	1	20			2085			400	400	1.00	1940			1940	0.206	0.206		36	36	0.687	56
	L	L	L	L	ь—					Ц		<u> </u>		L	Ь	L	<u> </u>	ļ	<u> </u>	Ь—			!	Ь—
												IING GREE				IAN WALKING					NG LENGTH =			

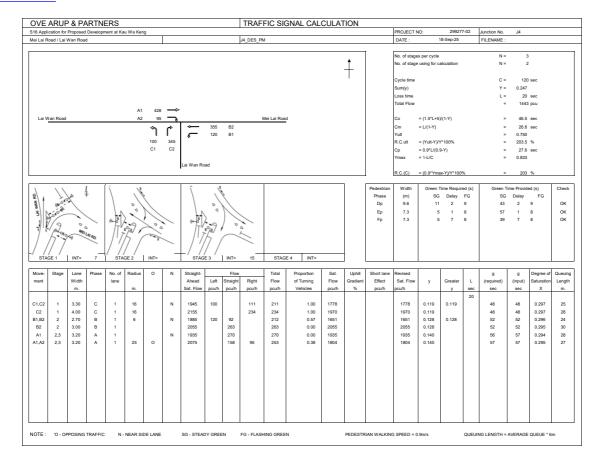

J4 - YEAR 2024 - AM TRAFFIC FLOW

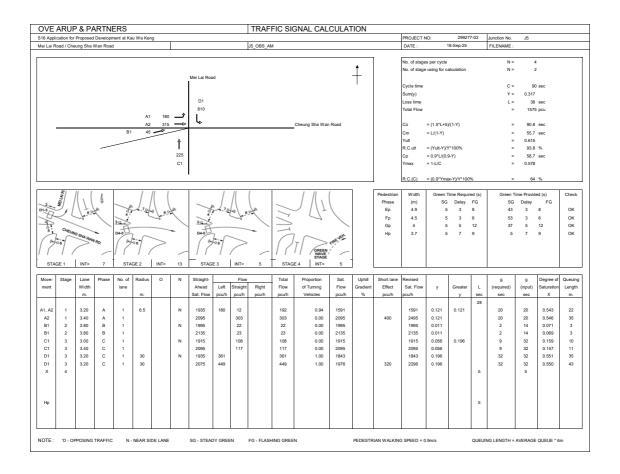

J4 - YEAR 2024 - PM TRAFFIC FLOW

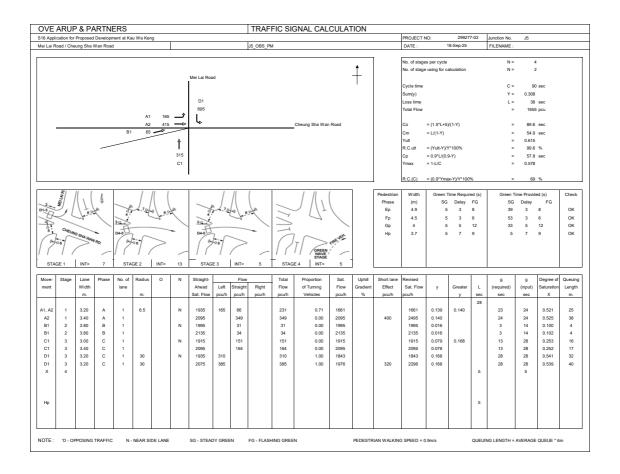

J4 - YEAR 2035 - AM TRAFFIC FLOW BASELINE SCENARIO

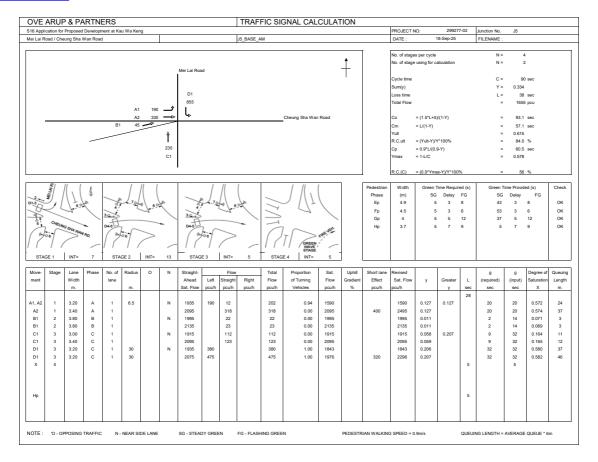

J4 - YEAR 2035 - PM TRAFFIC FLOW BASELINE SCENARIO

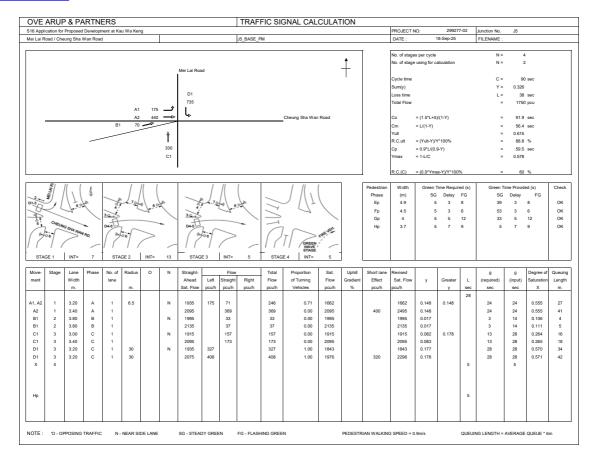

J4 - YEAR 2035 - AM TRAFFIC FLOW REFERENCE SCENARIO

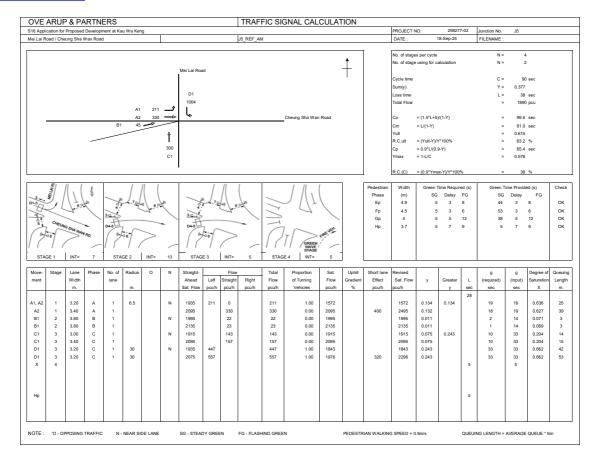

J4 - YEAR 2035 - PM TRAFFIC FLOW REFERENCE SCENARIO

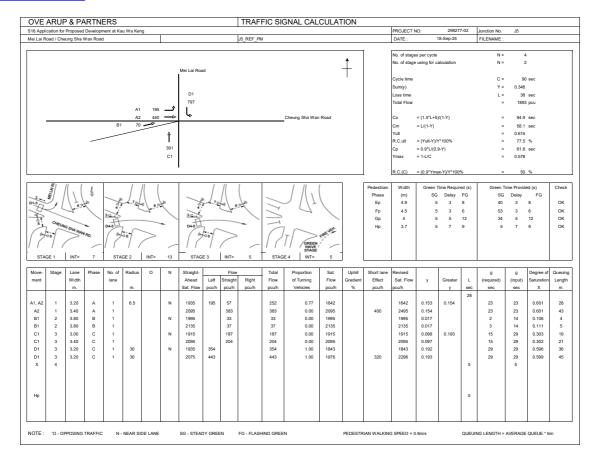

<u>J4 - YEAR 2035 - AM TRAFFIC FLOW</u> DESIGN SCENARIO

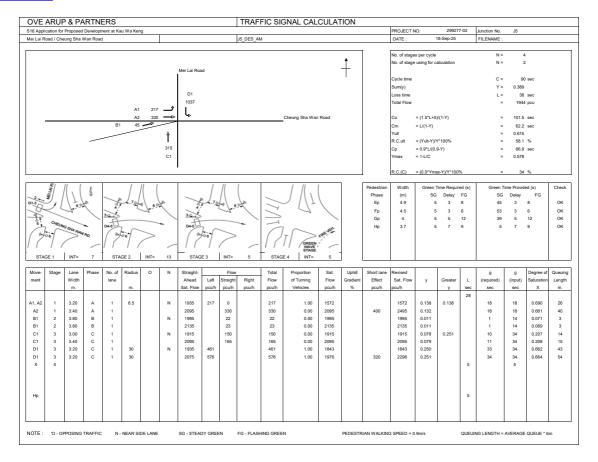

<u>J4 - YEAR 2035 - PM TRAFFIC FLOW</u> DESIGN SCENARIO

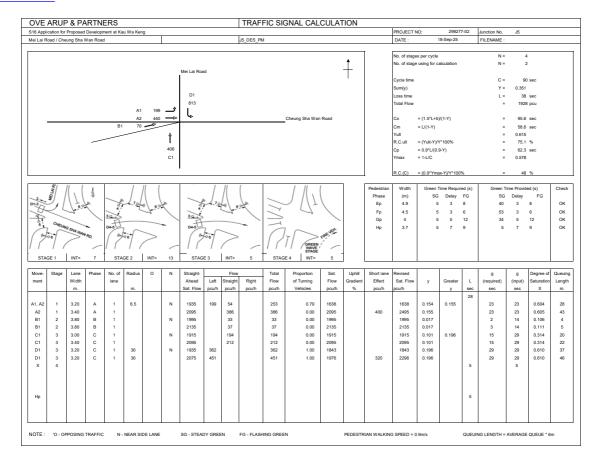

J5 - YEAR 2024 - AM TRAFFIC FLOW

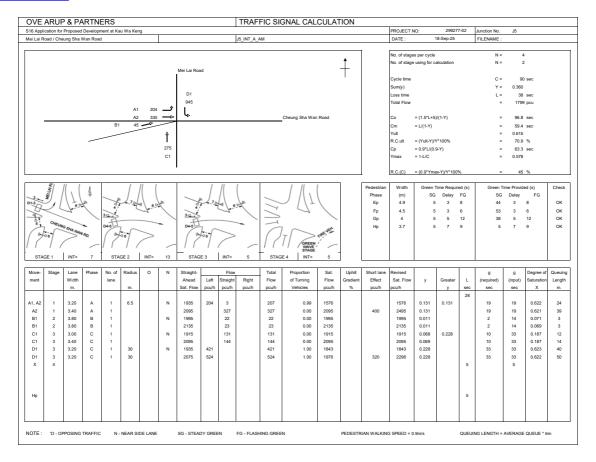

J5 - YEAR 2024 - PM TRAFFIC FLOW

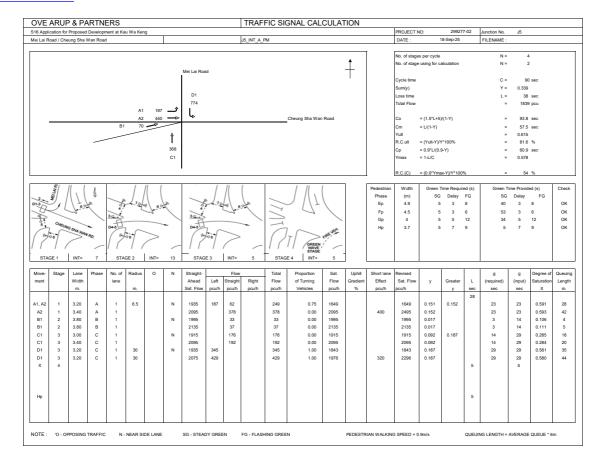

<u>J5 - YEAR 2035 - AM TRAFFIC FLOW</u> BASELINE SCENARIO

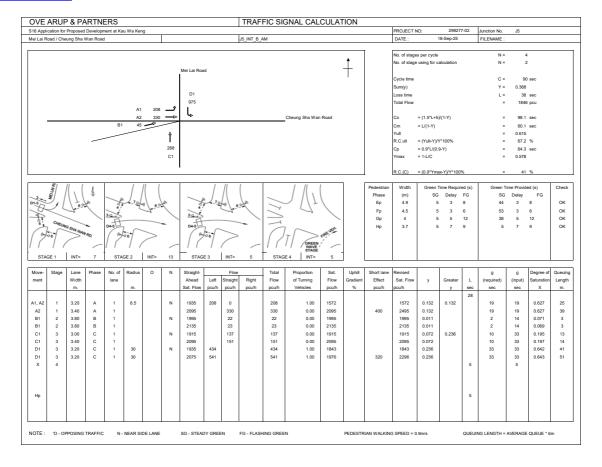

<u>J5 - YEAR 2035 - PM TRAFFIC FLOW</u> BASELINE SCENARIO

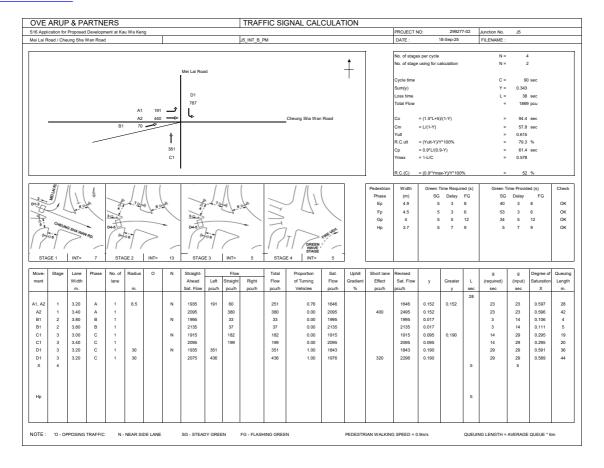

J5 - YEAR 2035 - AM TRAFFIC FLOW REFERENCE SCENARIO

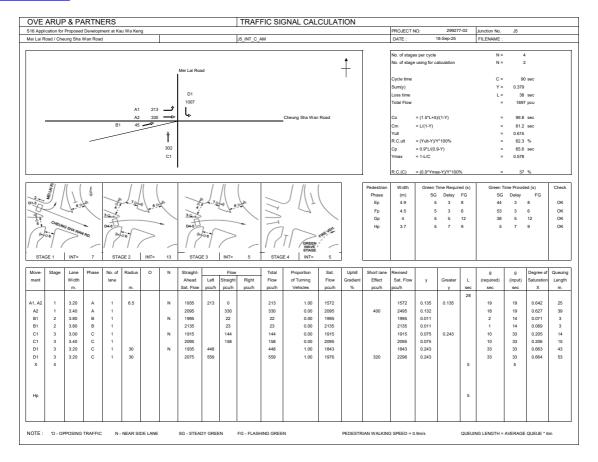

<u>J5 - YEAR 2035 - PM TRAFFIC FLOW</u> REFERENCE SCENARIO

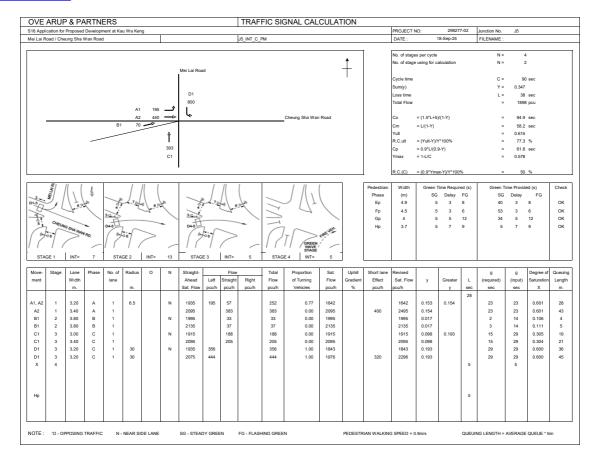

J5 - YEAR 2035 - AM TRAFFIC FLOW DESIGN SCENARIO


J5 - YEAR 2035 - PM TRAFFIC FLOW DESIGN SCENARIO


J5 - YEAR 2035 - AM TRAFFIC FLOW INTERIM SCENARIO A

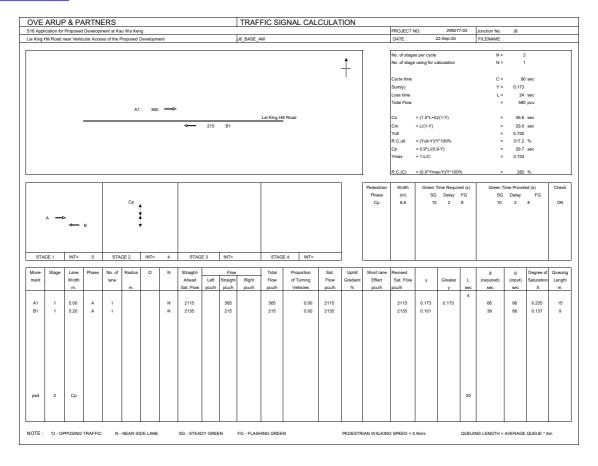

J5 - YEAR 2035 - PM TRAFFIC FLOW INTERIM SCENARIO A


J5 - YEAR 2035 - AM TRAFFIC FLOW INTERIM SCENARIO B

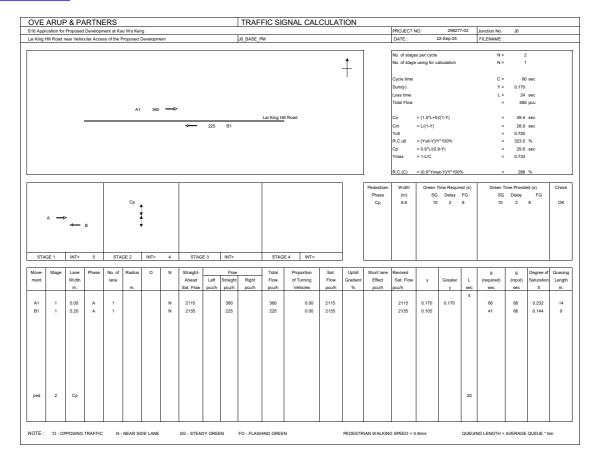

J5 - YEAR 2035 - PM TRAFFIC FLOW INTERIM SCENARIO B

J5 - YEAR 2035 - AM TRAFFIC FLOW INTERIM SCENARIO C

J5 - YEAR 2035 - PM TRAFFIC FLOW INTERIM SCENARIO C


J6 - YEAR 2024 - AM TRAFFIC FLOW

		_				_					IC ODG A									7-02	Junction No.	J6		
i King F	ill Road r	ear venic	ular Acce	ss of the i	Proposed I	Developm	ent				J6_OBS_A	М					DATE:		22-5ep-25		FILENAME :			
_																Ī	No. of stage	es per cycle			N =	2		
															1		No. of stage	e using for c	alculation		N =	1		
																	Cycle time				C =	90	sec	
																	Sum(y)				Y =	0.165		
																	Loss time				L=	24	sec	
						250	_										Total Flow					555	pcu	
					Α.	330	-					Lai King H	ill Road				Co	= (1.5*L+5)/(1-Y)			49.1	sec	
				Solution Security sec																				
				PROJECT NO: 209277-02 Janction No: J6																				
				PROJECT NO 299277-02 Jacoton No. J6																				
																			9-Y)				sec	
																	Ymax	= 1-L/C				0.733		
																l	R.C.(C)	= (0.9*Yms	ax-Y)/Y*100	%		299	%	
																	Width							Chec
																							FG	
					Ср	4										Ср	8.6	10	2	8	10	2	8	OK
					,	Ť																		
	A -	` →	B			1																		
			-																					
STA	3E 1	INT=	5	STA	GE 2	INT=	4	STAG	E 3	INT=		STAG	E 4 INT=											
ove-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised				g	g	Degree of	Queui
ent	-	Width		lane					Left	Straight	Right	Flow		Flow	Gradient	Effect	Sat. Flow	у	Greater	L			Saturation	Leng
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h	1	у		sec	sec	х	m.
A1	1	5.00					N	2115		350		350	0.00	2115			2115	0.165	0.165	4	66	66	0.226	14
B1	1	5.20																	0.105				0.131	8
-1		3.20	^	l '			14	2133		200		203	0.00	2130			2133	0.050			30	00	0.131	°
	2	Ср																		20				
ed	2			l	1	1																		
ed	2																							
ed	2																							


J6 - YEAR 2024 - PM TRAFFIC FLOW

M		_				_					10 ODO									7-02	Junction No.	J6		
King I	Hill Road	near Vehic	cular Acce	ss of the F	Proposed I	Developm	ent				J6_OBS_PI	VI					DATE :		22-Sep-25		FILENAME :			
																Ī	No. of stage	es per cycle			N =	2	2	
															1		No. of stage	using for c	alculation		N =	1	ı	
																	Cycle time				C =	90) sec	
																					Y =	0.161		
																	Loss time				L=	24	sec	
						240	_										Total Flow					555	5 pcu	
					A1	340	_					Lai King H	ill Road				Co	= (1.5*L+5)/(1-Y)			48.9	sec	
								—	215	B1			-				Cm					28.6	sec	
				At 340 → Lai King Hill Road Co = (1.5*L+5)(1-7) 2.5																				
				PROJECT NO: 29877-02 Janction No. J6	%																			
																			9-Y)					
																	Ymax	= 1-L/C				0.733		
																	R.C.(C)	= (0.9*Yma	9x-Y)/Y*100	%		311	%	
															1	Pedestrian	Width	Green '	Time Requir	red (s)	Green T	ime Provid	ed (s)	Chec
																							FG	O I ACC
					Ср											Ср							8	OK
					1	Ţ.																		
	A -				4																			
		—	В		,	•																		
STA	GE 1	INT=	5	STA	GE 2	INT=	4	STAG	E 3	INT=		STAG	E 4 INT=]	L								
	0		Ph	No. of	Dod.	_		Charleta	_	F1		Total	Describes	0-4	11-50	Chart land	During			_			D 1	
ove- nent	Stage	Lane Width	PTIASE		radius	0	N		Left	_	Right							v	Greater	١,			Degree of Saturation	Queui
-crit		m.		ialle	m.													,	y				X	m.
A1	1	5.00	Α	1									0.00						0.161			66	0.219	14
	1	5.20	Α	1			N	2135		215		215	0.00	2135			2135	0.101			41	66	0.137	9
31	l																							
31																								
31			1																					
B1				1	1																			
31									1	1														
31													1	1										
31																								I
31																								
31																								
B1	2	Ср																		20				
	2	Ср																		20				
	2	Ср																		20				

<u>J6 - YEAR 2035 - AM TRAFFIC FLOW</u> BASELINE SCENARIO

J6 - YEAR 2035 - PM TRAFFIC FLOW BASELINE SCENARIO

J6 - YEAR 2035 - AM TRAFFIC FLOW REFERENCE SCENARIO

		_			au Wa Ker	_											PROJECT		29927	7-02	Junction No.	J6		
King	Hill Road I	near Vehic	ular Acce	ss of the F	Proposed I	Developm	nent				J6_REF_A	И					DATE :	-	22-Sep-25		FILENAME :			
															t	Ī	No. of stage				N = N =	2		
															Ť									
																	Cycle time Sum(y)				C =) sec	
																	Loss time				L=		sec	
							_										Total Flow				-	815	5 pcu	
					A1	514	\rightarrow					Lai King H	ill Road				Со	= (1.5*L+5	V/1-V)			55.0	sec	
								<u>_</u>	91	B2		Lui reng ri					Cm	= L/(1-Y)	,()				sec	
								←	210	B1							Yult				-			
																	R.C.ult	= (Yult-Y)/				182.3	% sec	
																	Cp Ymax	= 0.9*L/(0. = 1-L/C	9-Y)			33.5 0.733		
																1	R.C.(C)	= (0.9*Yma	ax-Y)/Y*100	%	-	159	%	
																Pedestrian	Width		Time Requir			ime Provid		Chec
					Ср											Phase Cp	(m) 8.6	SG 10		FG 8	SG 10	Delay 2	FG 8	ОК
						1										Op	0.0	10	-			-		O.
	A -	۰ ۵			- 2																			
		≒	В		,	•																		
STA	GE 1	INT=	5	STA	GE 2	INT=	4	STAG	E 3	INT=		STAG	E 4 INT=		J									
ove-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised				g	g	Degree of	Queui
nent		Width		lane				Ahead	Left	Straight	Right	Flow	of Turning	Flow	Gradient	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	_
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h		У	sec 4	sec	sec	х	m.
A1	1	4.00	Α	1			N	2015		514		514	0.00	2015			2015	0.255	0.255		66	66	0.348	21
B1	1	3.00	A	1			N	1915		210		210	0.00	1915			1915	0.110			28	66	0.150	8
32	1	3.00	Α	1	10			2055			91	91	1.00	1787			1787	0.051			13	66	0.069	4
					1	l	1													20				
ed	2	Ср											l	l		1				1	1		1	1
ed	2	Ср																						
oed	2	Ср																						
	2 'O - OI				NEAR SI			SG - STEAL			FG - FLASI					RIAN WALKIN					NG LENGTH =			

J6 - YEAR 2035 - PM TRAFFIC FLOW REFERENCE SCENARIO

6 Appl	ARUF ication for				u Wa Ker	ng						5 01	GNAL CAL	COLIT			PROJECT I	NO:	29927	7-02	Junction No.	J6		
King	Hill Road i	near Vehic	cular Acce	ss of the F	Proposed I	Developm	ent				J6_REF_P	И					DATE:		22-Sep-25		FILENAME :			
															†	Ī	No. of stage				N = N =	:		
															Т		Cycle time				C =	0) sec	
																	Sum(y)				Y =			
																	Loss time				L =	24	sec	
																	Total Flow				-	72	В рси	
					A1	422	\Rightarrow					Lai King H	ill Road				Co	= (1.5*L+5	W(1-V)			51.0	sec	
								ŧ_	86	B2		Lai King H	iii rodu					= L/(1-Y)	y(1-1)				sec	
								—	220	B1							Yult					0.720		
																		= (Yult-Y)/				243.8		
																	Ср	= 0.9*L/(0.	9-Y)				sec	
																	Ymax	= 1-L/C				0.733		
																l	R.C.(C)	= (0.9*Yms	ax-Y)/Y*100	%		215	%	
															1	Pedestrian	Width	Green '	Time Requir	ed (s)	Green T	ime Provid	led (s)	Chec
																Phase	(m)	SG	Delay	FG	SG	Delay	FG	
					Ср											Ср	8.6	10	2	8	10	2	8	OK
					1																			
	A -	_	В		- 7	Ţ																		
		_																						
STA	OF 4	INT=	5	STA	05.0	INT=	4	STAG	F 0	INT=		STAG	E4 INT=		1									
SIM	GE I	IIN1=	5	SIA	GE Z	INI=	4	STAG	ES	INI=		SIAG	E4 INI=		J		1	1			1			
Nove-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised				g	g	Degree of	Queui
nent		Width		lane				Ahead	Left	Straight	Right	Flow	of Turning	Flow	Gradient	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h		у	sec 4	sec	sec	Х	m.
A1	1	4.00	А	1			N	2015		422		422	0.00	2015			2015	0.209	0.209	-	66	66	0.286	17
B1	1	3.00	А	1			N	1915		220		220	0.00	1915			1915	0.115			36	66	0.157	9
B2	1	3.00	A	1	10			2055			86	86	1.00	1787			1787	0.048			15	66	0.066	3
		ı																						
					1	l																		
									l	1	1												1	
ped	2	Ср																		20				
ped	2	Ср																		20				
oed	2	Ср																		20				
	2				NEAR SI			SG - STEAL			FG - FLASI					RIAN WALKIN					NG LENGTH =			

J6 - YEAR 2035 - AM TRAFFIC FLOW DESIGN SCENARIO

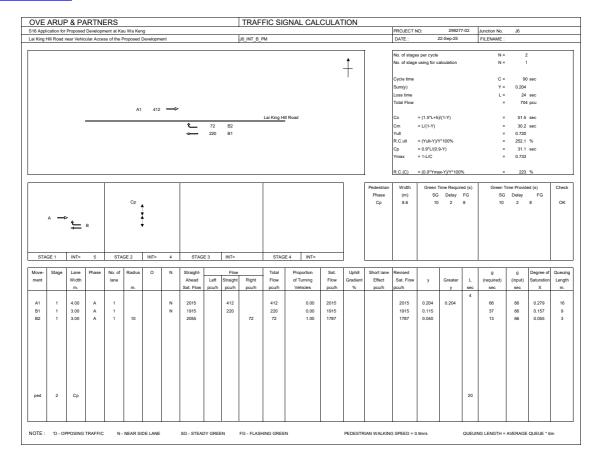
16 Applicati			RTNI		u Wa Ken	g					IRAF	110 31	GNAL CAL	CULAI	IION		PROJECT	4O:	29927	7-02	Junction No.	J6		
i King Hill F		_				_	ent				J6_DES_A	И					DATE :		22-Sep-25		FILENAME :			
															†		No. of stage		alculation		N = N =	1		
																	Cycle time				C =	90) sec	
																	Sum(y)				Y =			
																	Loss time				L=		sec	
					A1	547	→										Total Flow					869	9 pcu	
												Lai King H	ill Road				Co	= (1.5*L+5	V(1-Y)		-	56.3	sec	
								<u> </u>	112	B2								= L/(1-Y)					sec	
								—	210	B1							Yult					0.720		
																		= (Yult-Y)/ = 0.9*L/(0.				165.2 34.4		
																	Cp Ymax	= 0.9°L/(0. = 1-L/C	D=1)			0.733		
																	R.C.(C)	= (0.9*Yms	ix-Y)/Y*100	%	-	143	%	
																Pedestrian	Width		Time Requir			ime Provid		Chec
					Ср											Phase Cp	(m) 8.6	SG 10		FG 8	SG 10		FG 8	ОК
					4											СР	0.0		-		10	-	-	- OK
Α	→	≒			1	[
		≒	В		1	,																		
STAGE	, 1	INT=	5	STA	GE 2	INT=	4	STAG	F 3	INT=		STAG	E 4 INT=		1									
CIAGE			3	3170	0.1		*	SING				SIAC	- INI-		1		L				1			
	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised				g	g	Degree of	
nent		Width		lane				Ahead	Left	Straight	Right	Flow	of Turning	Flow	Gradient	Effect	Sat. Flow	У	Greater	L	(required)	(input)	Saturation	
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h		у	sec 4	sec	sec	х	m.
	1	4.00	Α	1			N	2015		547		547	0.00	2015			2015	0.271	0.271		66	66	0.370	22
	1	3.00	Α	1			N	1915		210		210	0.00	1915			1915	0.110			27	66	0.150	8
			A	1	10			2055			112	112	1.00	1787			1787	0.063			15	66	0.085	4
	1	3.00																						
	1	3.00													1	1	1				1			
	1	3.00																						
	1	3.00																						
	1	3.00																						
	1	3.00																						
	1	3.00																						
	1	3.00																						
B2																				20				
B2	2	Ср																		20				
B2																				20				
B2																				20				

J6 - YEAR 2035 - PM TRAFFIC FLOW DESIGN SCENARIO

	ARUF ication for				au Wa Ker	ng					HVAF	1000	GNAL CAL	CULAI	IIOIN		PROJECT	NO:	29927	7-02	Junction No.	J6		
		_			Proposed I	_	ent				J6_DES_P	И					DATE :		22-Sep-25		FILENAME :			
															†		No. of stage		alculation		N = N =	5		
																	Cycle time				C =	90	sec	
																	Sum(y)				Y =	0.217		
																	Loss time				L =		sec	
					A1	438	→										Total Flow					763	pcu	
					///	400						Lai King H	ill Road				Co	= (1.5*L+5	V(1-Y)			52.4	sec	
								Ĺ	105	B2			•					= L/(1-Y)				30.7	sec	
								←	220	B1							Yult					0.720		
																		= (Yult-Y)/				231.2		
																	Cp Ymax	= 0.9*L/(0.9 = 1-L/C	9-Y)			31.6 0.733		
																	ADILL	- 1400				0.733		
																l	R.C.(C)	= (0.9*Yms	x-Y)/Y*100	%		204	%	
]	Pedestrian	Width	Green 1	Time Requir	ed (s)	Green T	ime Provid	ed (s)	Chec
																Phase	(m)			FG	SG	Delay	FG	
					Ср	•										Ср	8.6	10	2	8	10	2	8	OK
	A -	>				Ì																		
		₽	В		,	÷																		
		•																						
STA	GF 1	INT=	5	STA	GE 2	INT=	4	STAG	F 3	INT=		STAG	E4 INT=		1									
love-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised				g	9	Degree of	
nent		Width m.		lane	m.			Ahead Sat. Flow	Left pcu/h	Straight pcu/h	Right pcu/h	Flow pcu/h	of Turning Vehicles	Flow pcu/h	Gradient %	Effect pcu/h	Sat. Flow pcu/h	У	Greater y	L sec	(required) sec	(input) sec	Saturation X	Leng m.
		m.			m.			Sat. Flow	pcu/n	pcu/n	pcu/n	pcum	venicies	pcu/n	70	pcu/n	pcu/n		У	sec 4	sec	sec	^	m.
A1	1	4.00	Α	1			N	2015		438		438	0.00	2015			2015	0.217	0.217		66	66	0.296	18
B1	1	3.00	Α	-1			N	1915		220		220	0.00	1915			1915	0.115			35	66	0.157	9
B2	1	3.00	Α	1	10			2055			105	105	1.00	1787			1787	0.059			18	66	0.080	4
																				1				
	2	Ср																		20				
ped		1																						
ed												1	ı		1	1	1	1	1	1				1
ed															ļ									
	'O - O'	PPOSING	TRAFFIC	N-	NEAR SI	DE LANE		SG - STEAL	DY GREE	EN .	FG - FLASI	IING GREE	N		PEDESTR	IAN WALKING	S SPEED = 0).9m/s		QUEUII	NG LENGTH =	AVERAGE	QUEUE * 6	Sm

J6 - YEAR 2035 - AM TRAFFIC FLOW INTERIM SCENARIO A

16 Appl	ication for	Proposed			u Wa Ker	ng					TINAL	1 10 31	GNAL CAL	JULAI	ION		PROJECT	NO:	29927	7-02	Junction No.	J6		
	Hill Road i	_				_	ent				J6_INT_A_	AM					DATE :		22-Sep-25		FILENAME :			
															t		No. of stage				N = N =	5		
																	Cycle time				C =	90) sec	
																	Sum(y)				Y =			
																	Loss time				L=		sec	
					A1	455	→										Total Flow					724	pcu pcu	
					Α.	400	-					Lai King H	ill Road				Co	= (1.5*L+5	SV(1-Y)			53.0	sec	
								€	59	B2			-					= L/(1-Y)			-		sec	
								←	210	B1							Yult				-	0.720		
																		= (Yult-Y)/						
																	Cp Ymax	= 0.9*L/(0. = 1-L/C	.u-1)			32.0 0.733	sec	
																						200		
																l	R.C.(C)	= (0.9*Yms	ax-Y)/Y*100	%	-	192	%	
]	Pedestrian	Width	Green '	Time Requir	ed (s)	Green T	ime Provid	ed (s)	Chec
					_											Phase	(m)			FG	SG		FG	
					Ср	•										Ср	8.6	10	2	8	10	2	8	OK
	A -	>																						
		≒	В		•	•																		
STA	GE 1	INT=	5	STA	GE 2	INT=	4	STAG	E 3	INT=		STAG	E 4 INT=											
																F	L				ı			
love- nent	Stage	Lane Width	Phase	No. of lane	Radius	0	N	Straight- Ahead	Left	Flow Straight	Right	Total Flow	Proportion of Turning	Sat. Flow	Uphill Gradient	Short lane Effect	Revised Sat. Flow	у	Greater	L	g (required)	g (input)	Degree of Saturation	
		m.		iune	m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h	,	у	sec	sec	sec	X	m.
																				4				
A1 B1	1	4.00 3.00	A	1			N N	2015 1915		455 210		455 210	0.00	2015 1915			2015 1915	0.226	0.226		66 32	66 66	0.308	18
	1	3.00	A	1	10		IN	2055		210	59	59	1.00	1787			1787	0.033			10	66	0.150	2
B2	l																							
32		1																						
B2				1	1																			
32								1	1															
B2														1	1	1			1	1	1		1	
B2																								
B2																								
B2																								
	2	Ср																		20				
B2	2	Ср																		20				
	2	Ср																		20				
	2	Ср																		20				


J6 - YEAR 2035 - PM TRAFFIC FLOW INTERIM SCENARIO A

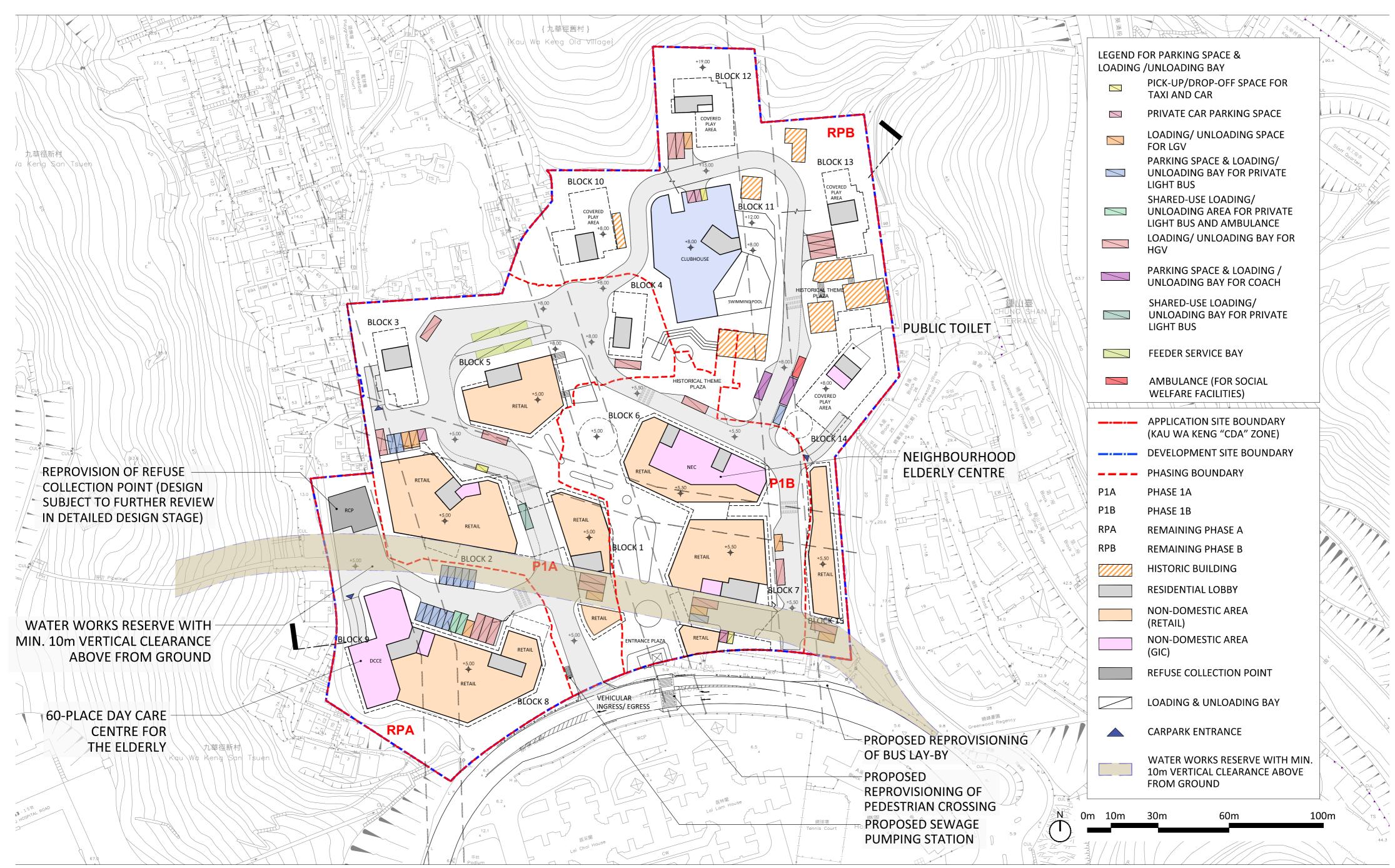
	ARUF		ARTNI d Developr								TRAF	FIC SI	SNAL CAL	CULAT	ION		PROJECT N		29927	7.00	Junction No.	J6		
		_	ular Acce			_	ent				J6 INT A F	PM					DATE:		29927 22-Sep-25	-52	FILENAME :	JO		
																_								
															1		No. of stage No. of stage		alculation		N = N =	1		
																	Cycle time				C =	90	sec	
																	Sum(y)				Y =	0.198		
																	Loss time				L=	24	sec	
																	Total Flow					674	pcu	
					A1	399	\Rightarrow					Lai King H	II Dood				Со	= (1.5*L+5	W/4 V)			51.1		
								÷	55	B2		Lai King H	ii rodu					= L/(1-Y)	p(1-1)			29.9		
								<u></u>	220	B1							Yult	- 5(1-1)				0.720	500	
																	R.C.ult	= (Yult-Y)/	r*100%			263.6	%	
																		= 0.9*L/(0.	9-Y)			30.8	sec	
																	Ymax	= 1-L/C				0.733		
																	R.C.(C)	= (0.9*Yms	x-Y)/Y*100	%		233	%	
				l				I								Pedestrian	Width	Croon 7	Time Require	od (a)	Croop T	ime Provid	ad (a)	Chec
																Pedestnan	(m)			ea (s) FG	Green I SG	Delay	FG (s)	Che
					Ср											Ср	8.6	10		8	10		8	OF
						:																		
	A -	> 4			4	ļ.																		
		^ =	В		,	*																		
STA	3E 1	INT=	5	STA	GE 2	INT=	4	STAG	E 3	INT=		STAG	E 4 INT=											
								r								r								
love-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised			١.	g	g	Degree of	
nent		Width m.		lane	m.			Ahead Sat. Flow	Left pcu/h	Straight pcu/h	Right pcu/h	Flow pcu/h	of Turning Vehicles	Flow pcu/h	Gradient %	Effect pcu/h	Sat. Flow pcu/h	у	Greater y	L sec	(required) sec	(input) sec	Saturation X	Leng m.
								Cut. 1 ION	pourii	pouri	pourn	pourn	Veriloido	poum	~	pouri	pouri		,	4	500	500		
A1	1	4.00	Α	1			N	2015		399		399	0.00	2015			2015	0.198	0.198		66	66	0.270	16
B1	1	3.00	Α	-1			N	1915		220		220	0.00	1915			1915	0.115			38	66	0.157	9
B2	1	3.00	Α	-1	10			2055			55	55	1.00	1787			1787	0.031			10	66	0.042	2
ped	2	Ср																		20				
	-	- Op																						
		1																						Ш.
ar.	10. 01	PPOCINO	TRAFFIC		NEAR SI	DELANE		SG - STEAL	ov oper		FG - FLASH	IINO ODEE			DEDECTO	IAN WALKING	0.00550 - 0	0/-		OUTUU	NG LENGTH =	AVED 405	OUEUE + C	

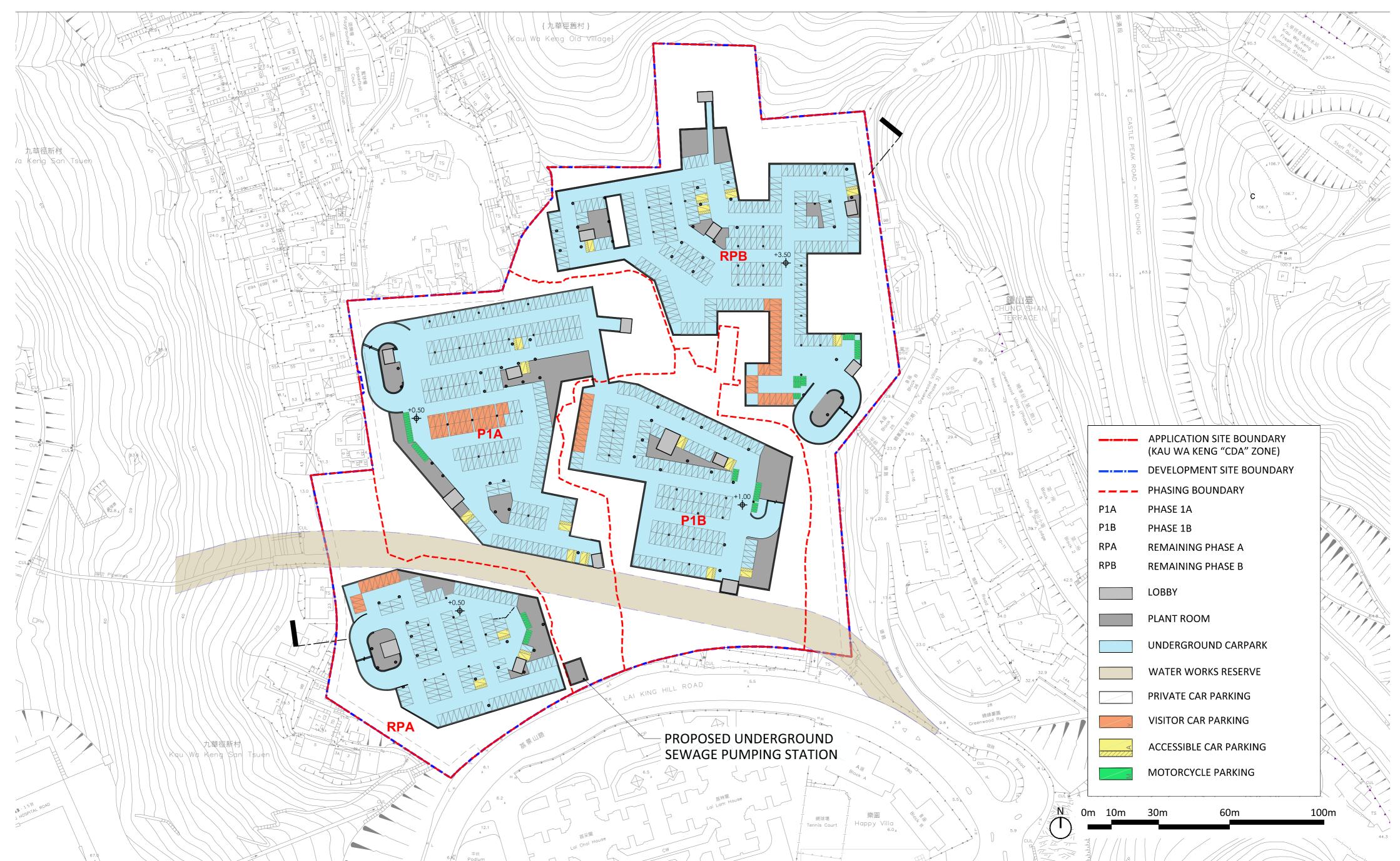
J6 - YEAR 2035 - AM TRAFFIC FLOW INTERIM SCENARIO B

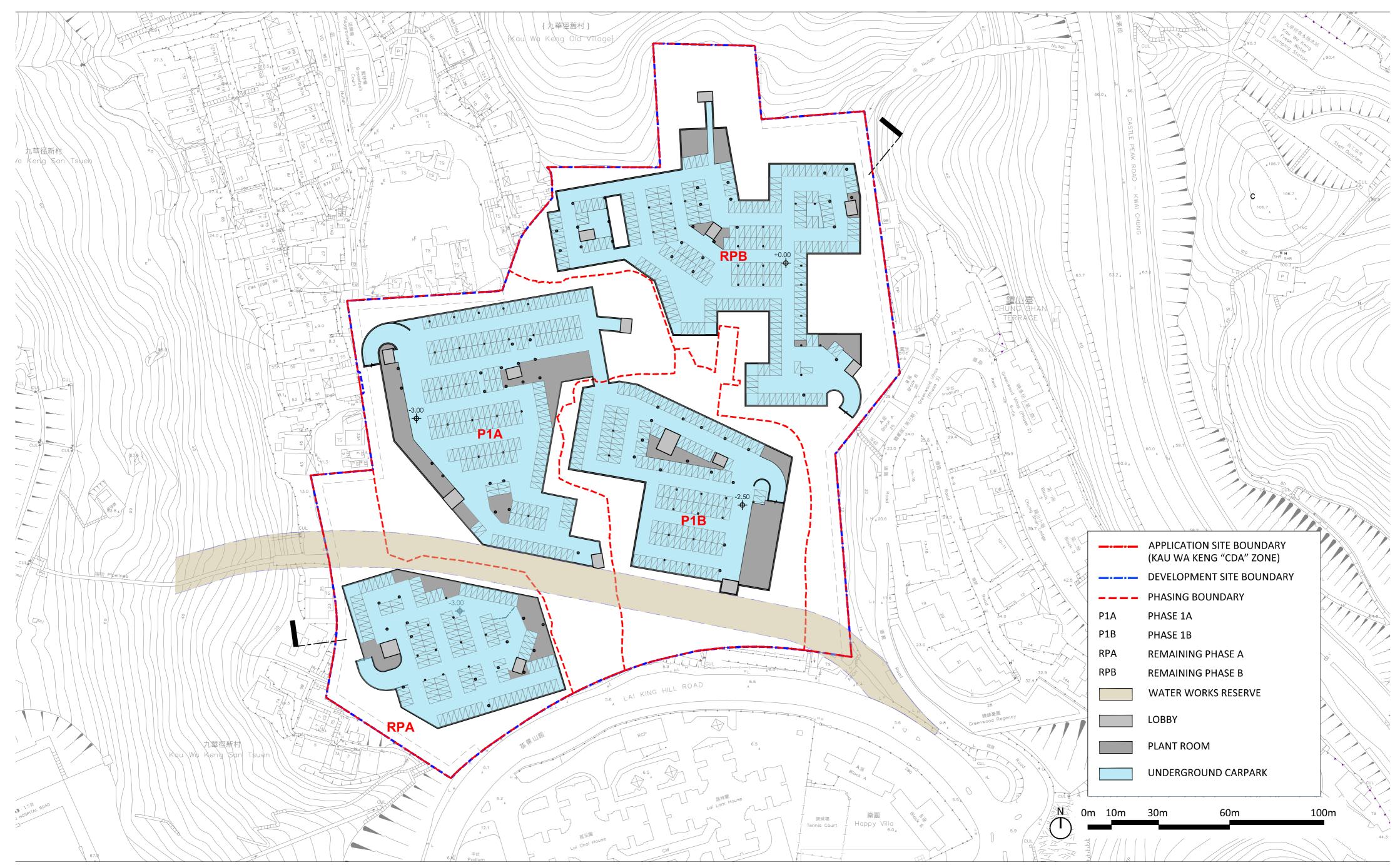
	ARUF ication for				u Wa Ker	ng					IRAF	1000	GNAL CAL	CULAI	ION		PROJECT	NO:	29927	7-02	Junction No.	J6		
		_			Proposed I	_	ent				J6_INT_B_	AM					DATE :		22-Sep-25		FILENAME :			
															1		No. of stage				N = N =	5		
															ı		Cycle time Sum(y)				C =	0.241	sec	
																	Loss time				L=		sec	
																	Total Flow						pcu	
					A1	485	\Rightarrow					Lai King H	ill Road				Co	= (1.5*L+5)/(1-Y)			54.0	sec	
								Ĵ	76	B2			•				Cm	= L/(1-Y)				31.6	sec	
								—	210	B1							Yult					0.720		
																		= (Yult-Y)/				199.1		
																	Cp Ymax	= 0.9*L/(0. = 1-L/C	9-Y)			32.8 0.733		
																	R.C.(C)		ax-Y)/Y*100			174		
								1							1	l .					,			
																Pedestrian Phase	Width (m)		Time Requir Delay	ed (s) FG	Green T SG	ime Provid Delay	ed (s) FG	Chec
					Ср											Ср	8.6	10		8	10		8	ОК
	A -	>			3																			
	^ -	<u></u>	В		-	Ţ																		
		_																						
STA	05.4	INT=	5	CTA	GE 2	INT=	4	STAG	F 0	INT=		STAG	E4 INT=											
317	GE I	1141-	- 3	SIA	GE 2	1141-	-	31/10		1141-		SIAG	E4 IN1-		1			l						
love-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised				g	g	Degree of	
nent		Width		lane				Ahead	Left	Straight	Right	Flow	of Turning	Flow	Gradient	Effect	Sat. Flow	У	Greater	L	(required)	(input)	Saturation	
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h		у	sec 4	sec	sec	х	m.
A1	1	4.00	Α	1			N	2015		485		485	0.00	2015			2015	0.241	0.241		66	66	0.328	19
B1	1	3.00	Α	1			N	1915		210		210	0.00	1915			1915	0.110			30	66	0.150	8
B2	1	3.00	Α	1	10			2055			76	76	1.00	1787			1787	0.043			12	66	0.058	3
		Ср																		20				
ped	2			T	1																			
oed	2															1	1							
oed	2																							
	'O - OI		TRAFFIC	N-	NEAR SI	DELANE		SG - STEAL	OY GREE	-N	FG - FLASI	ING GREE	N.		PEDESTR	IAN WALKING	S SPEED = 0) 9m/s		OUFUI	NG LENGTH =	AVERAGE	OUFUE*6	im

J6 - YEAR 2035 - PM TRAFFIC FLOW INTERIM SCENARIO B

J6 - YEAR 2035 - AM TRAFFIC FLOW INTERIM SCENARIO C

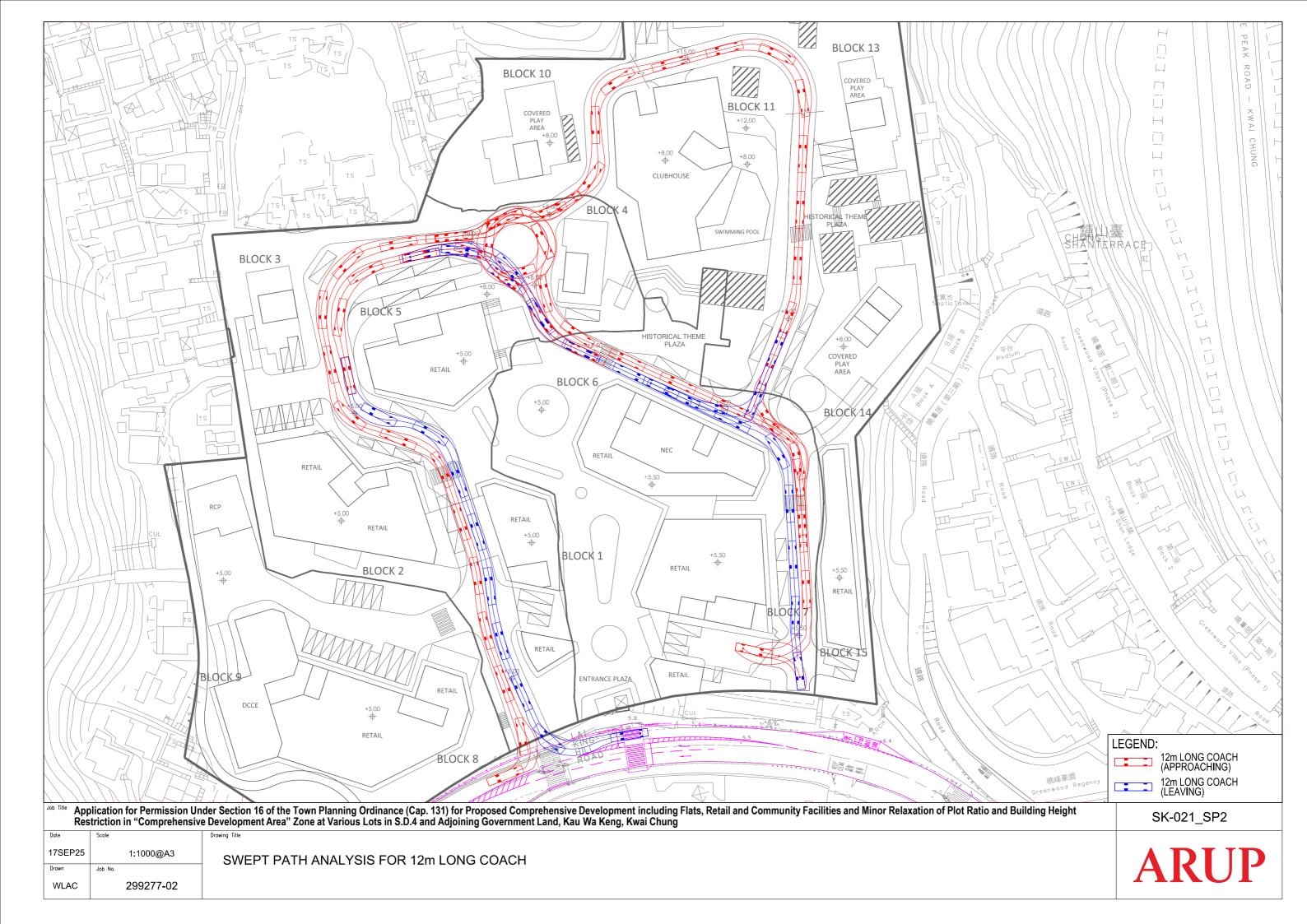

16 Applicati			RTN		u Wa Ker	ng					IRAF	110 31	GNAL CAL	CULAI	IION		PROJECT	4O:	29927	7-02	Junction No.	J6		
i King Hill F		_				_	nent				J6_INT_C_	AM					DATE :		22-Sep-25		FILENAME :			
															†		No. of stage		alculation		N = N =	2		
																	Cycle time				C =	90) sec	
																	Sum(y)				Y =	0.257		
																	Loss time				L=		sec	
					A1	517	-										Total Flow					822	2 pcu	
												Lai King H	ill Road				Co	= (1.5*L+5	V(1-Y)		-	55.2	sec	
								<u> </u>	95	B2								= L/(1-Y)					sec	
								─	210	B1							Yult					0.720		
																	R.C.ult Cp	= (Yult-Y)/ = 0.9*L/(0.				180.6	% sec	
																		= 1-L/C	5-1)			0.733		
																				.,				
																	R.C.(C)	= (0.9*Yms	x-Y y Y*100	%		157	%	
																Pedestrian	Width		Time Requir			ime Provid		Chec
					Ср											Phase Cp	(m) 8.6	SG 10		FG 8	SG 10	Delay 2	FG 8	ОК
					- " <u>1</u>	•										ОР	0.0		-		10	-		
Α	→	≒																						
		≒	В		•	•																		
																1								
																1								
STAGE	1	INT=	5	STA	GE 2	INT=	4	STAG	E 3	INT=		STAG	E 4 INT=		1									
ove- St	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised			I	g	g	Degree of	Queui
nent S	nage	Width	riiase	lane	radius	0	IN.	Ahead	Left	Straight	Right	Flow	of Turning	Flow	Gradient	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h	Ĺ	у	sec	sec	sec	x	m.
A1	1	4.00	А	1			N	2015		517		517	0.00	2015			2015	0.257	0.257	4	66	66	0.350	21
	1	3.00	Ā	1			N	1915		210		210	0.00	1915			1915	0.110	0.237		28	66	0.150	8
	1	3.00	A	1	10			2055			95	95	1.00	1787			1787	0.053			14	66	0.072	4
																1								
																1								
																1								
	- 1															1								
					1											1								
									1	1		1	l							1	1		1	1
ped	2	Ср																		20				
ped	2	Ср																		20				
ed	2	Ср																		20				
ed	2	Ср																		20				

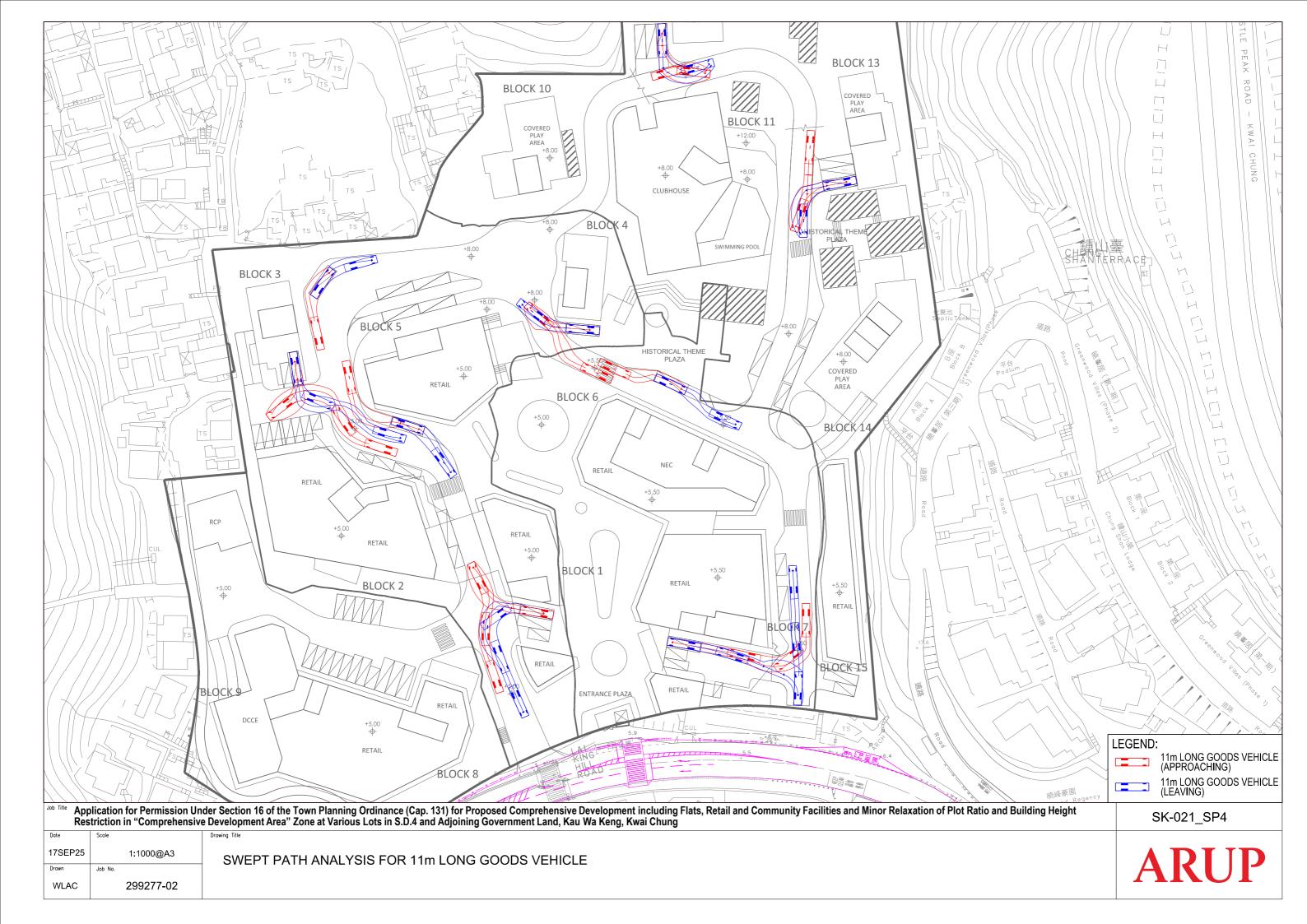

J6 - YEAR 2035 - PM TRAFFIC FLOW INTERIM SCENARIO C

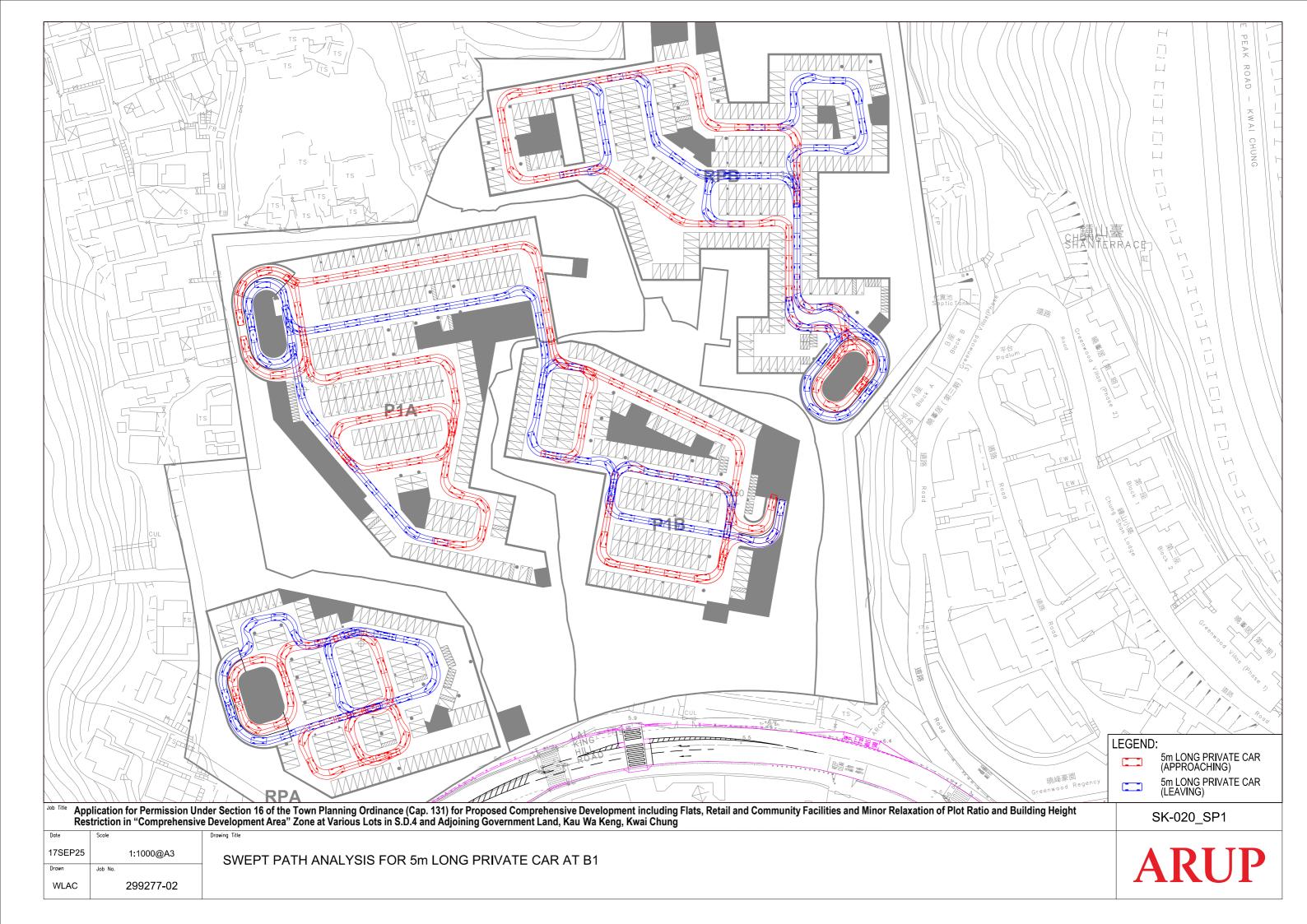

		% P/									TRAF	FIC SI	GNAL CAL	CULA	ΓΙΟN		T				1			
		_			au Wa Kei Proposed	_	ent				J6 INT C	PM					PROJECT I		29927 22-Sep-25	7-02	Junction No. FILENAME :	J6		
					,																			
															1		No. of stage No. of stage				N = N =	1		
																	Cycle time				C =	90) sec	
																	Sum(y)				Y =			
																	Loss time				L=		sec	
					A1	425	\Rightarrow										Total Flow					733	3 pcu	
					^	423	-					Lai King H	ill Road				Co	= (1.5*L+5)/(1-Y)			52.0	sec	
								Ĵ	88	B2			-				Cm	= L/(1-Y)				30.4	sec	
								←	220	B1							Yult					0.720		
																	R.C.ult Cp	= (Yult-Y)/ = 0.9*L/(0.				241.4		
																		= 1-L/C	J-1,			0.733		
																	R.C.(C)	= (0.0*V	ax-Y)/Y*100	ev.		213	ar.	
															,		n.u.(u)	- (U.9 YM)	ax-1 ji 1 - 100	70		213	76	
																Pedestrian	Width		Time Requir			ime Provid		Check
					Ср											Phase Cp	(m) 8.6	SG 10		FG 8	SG 10	Delay 2	FG 8	ок
						1																		
	A -	> 4				Ĭ																		
		\$	В			*																		
STA	SE 1	INT=	5	STA	GE 2	INT=	4	STAG	E 3	INT=		STAG	E 4 INT=		J									
love-	Stage	Lane	Phase	No. of	Radius	0	N	Straight-		Flow		Total	Proportion	Sat.	Uphill	Short lane	Revised				g	g	Degree of	Queuing
nent		Width		lane				Ahead	Left	Straight	Right	Flow	of Turning	Flow	Gradient	Effect	Sat. Flow	у	Greater	L	(required)	(input)	Saturation	
		m.			m.			Sat. Flow	pcu/h	pcu/h	pcu/h	pcu/h	Vehicles	pcu/h	%	pcu/h	pcu/h		у	sec 4	sec	sec	Х	m.
A1	1	4.00	Α	1			N	2015		425		425	0.00	2015			2015	0.211	0.211		66	66	0.288	17
B1	1	3.00	Α	- 1			N	1915		220		220	0.00	1915			1915	0.115			36	66	0.157	9
32	1	3.00	Α	1	10			2055			88	88	1.00	1787			1787	0.049			15	66	0.067	4
	2	Ср																		20				
ed			l																					
ped								1	ı	1			1							1	1		1	
ed																								
ed																								

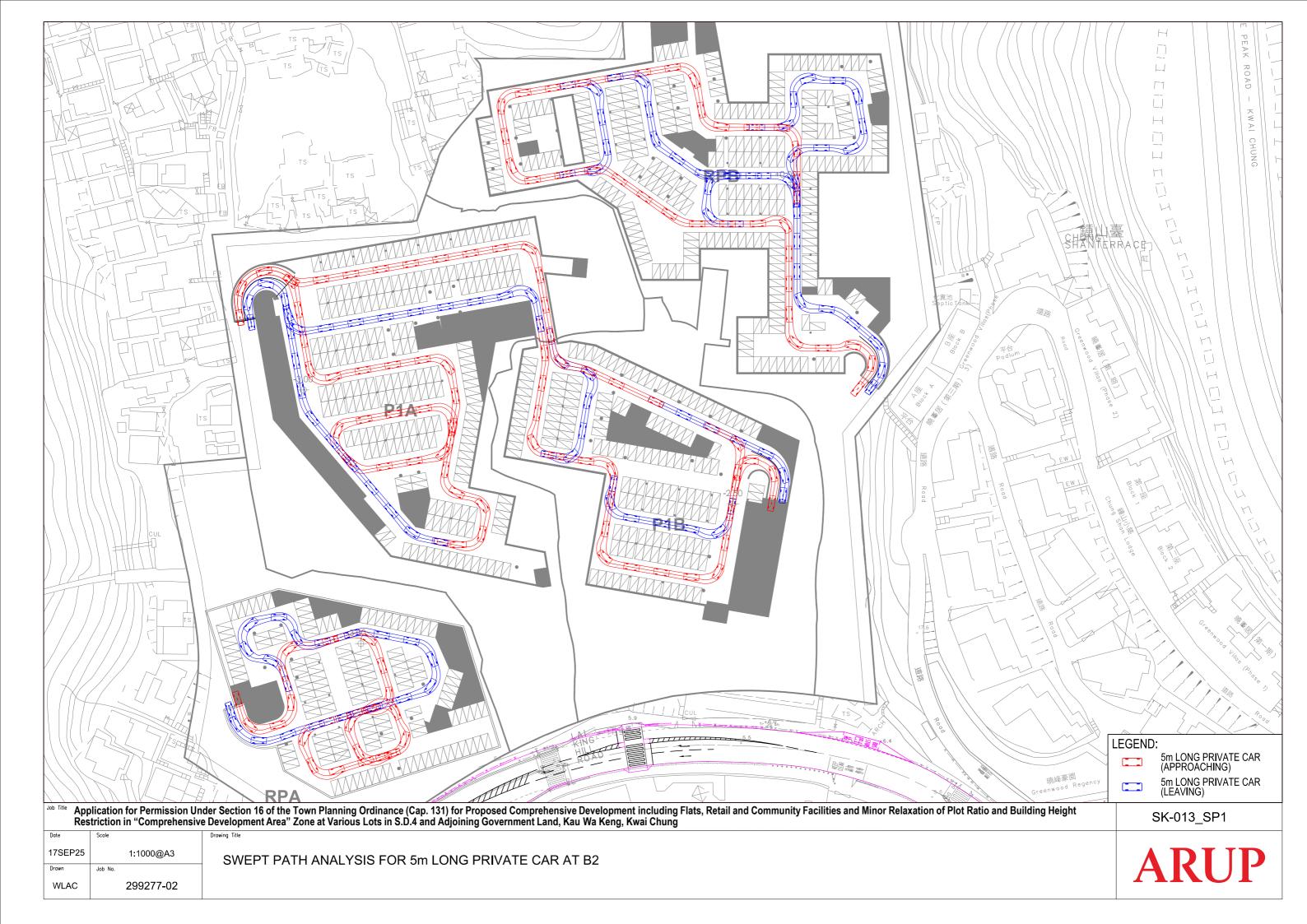
Appendix B

Highlighted Plans of Internal Transport Provision

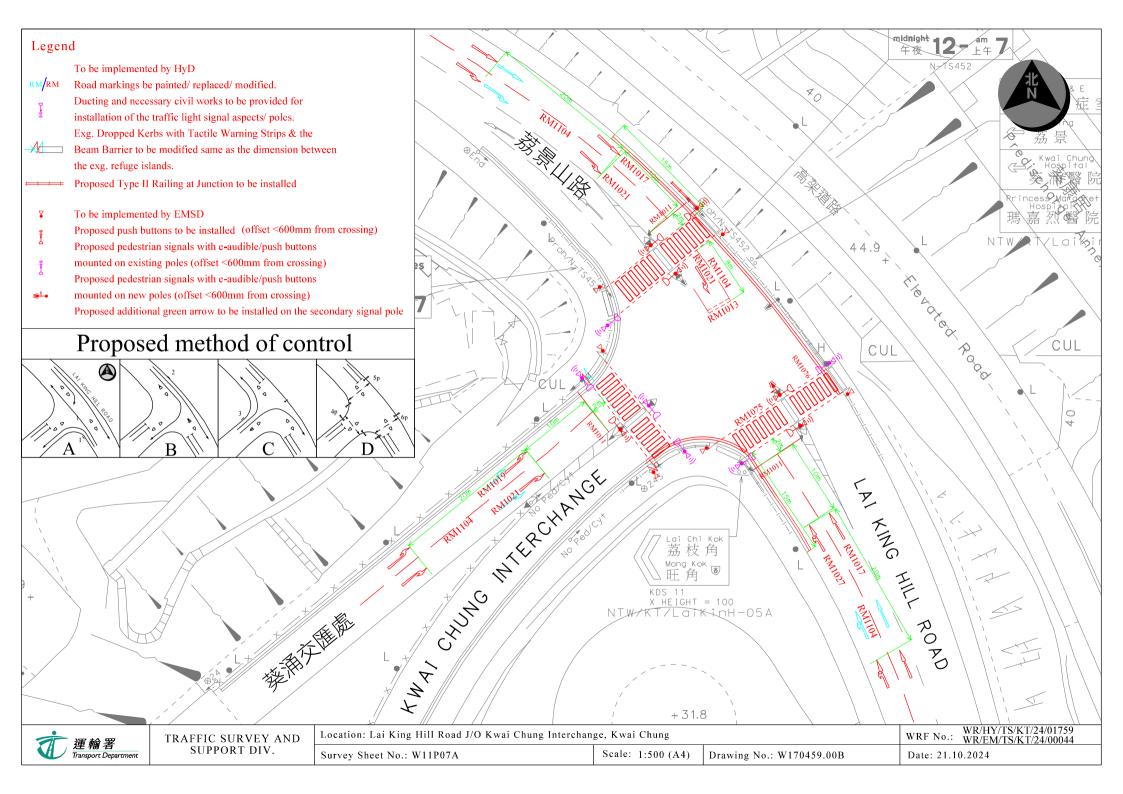


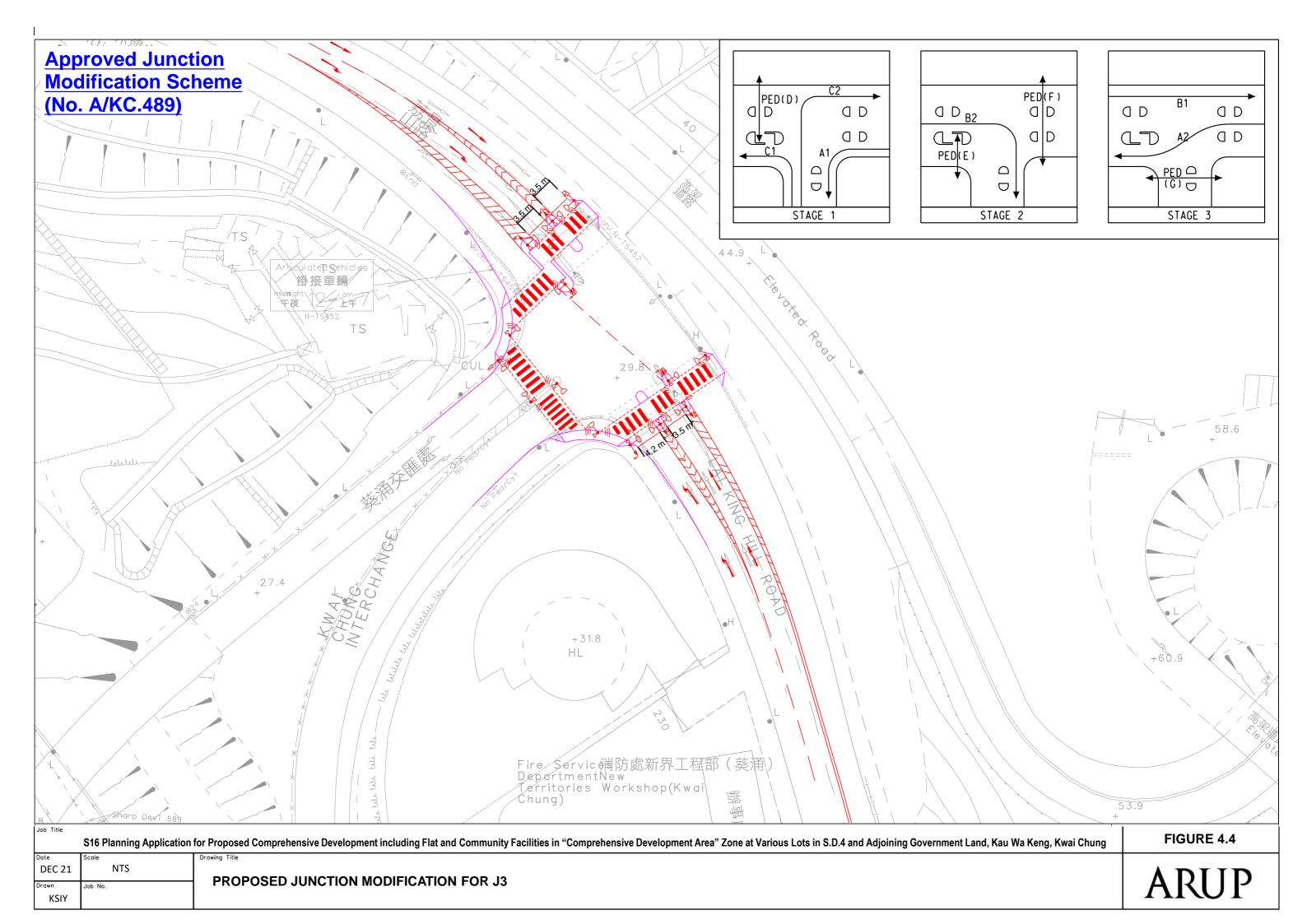





Appendix C

Critical Swept Path Analysis





Appendix D

Planned Junction Improvement Schemes

