

ARUP

Appendix C

Revised Traffic Impact Assessment

Application for Permission Under Section 16 of the Town Planning Ordinance (Cap. 131) for Proposed Comprehensive Development including Flats, Retail and Community Facilities and Minor Relaxation of Plot Ratio and Building Height Restriction in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung

**Application for Permission Under
Section 16 of the Town Planning
Ordinance (Cap. 131) for
Proposed Comprehensive
Development including Flats,
Retail and Community Facilities
and Minor Relaxation of Plot
Ratio and Building Height
Restriction in “Comprehensive
Development Area” Zone at
Various Lots in S.D.4 and
Adjoining Government Land, Kau
Wa Keng, Kwai Chung**

Traffic Impact Assessment Report

Rev. E | January 2026

This report takes into account the particular instructions and requirements of our client.

It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 299277-02

Contents

	Page
1 INTRODUCTION	1
1.1 Background	1
1.2 Objectives of this Report	2
1.3 Scope of Study	2
1.4 Structure of the Report	3
2 EXISTING TRAFFIC CONDITION	4
2.1 Site Characteristics	4
2.2 Existing Road Network	4
2.3 Existing Junction and Link Performance	5
2.4 Public Transport Facilities	7
2.5 Existing Pedestrian Condition	8
3 THE SUBJECT DEVELOPMENT	10
3.1 Development Schedule	10
3.2 Vehicular Access Arrangement	11
3.3 Internal Transport Facilities Provision	11
4 TRAFFIC IMPACT ASSESSMENT (FULL DEVELOPMENT OF PROPOSED SCHEME)	20
4.1 Trip Generation and Attraction of Proposed Development	20
4.2 Adjacent Developments	21
4.3 Future Traffic Growth	22
4.4 Assessment Scenarios	23
4.5 Junction Capacity Assessment	24
4.6 Link Capacity Assessment	24
4.7 Future Occupancy of Public Transport Services	25
4.8 Pedestrian Impact Assessment	32
5 TRAFFIC IMPACT ASSESSMENT (INTERIM SCENARIO)	35
5.2 Junction Capacity Assessment	36
5.3 Link Capacity Assessment	37
5.4 Public Transport Services – Interim Scenario	38
5.5 Pedestrian Walking Condition – Interim Scenario	40
6 CONCLUSION	42
6.1 Summary	42
6.2 Conclusion	44

Figures

Figure 1.1 Location of Application Site
Figure 2.1 Location of Surveyed Junctions in the Vicinity of Proposed Development
Figure 2.2 Year 2024 Existing Traffic Flow
Figure 2.3 Public Transport Facilities in the Vicinity of Proposed Development
Figure 2.4 Pedestrian Facilities Along Major Pedestrian Routes Junctions in the Vicinity of Proposed Development
Figure 3.1 Master Layout Plan of Proposed Development
Figure 3.2 Proposed Vehicular Accesses of Proposed Development
Figure 3.3 Proposed Pedestrian Crossing and Bus Stop Relocation
Figure 3.4 Swept Path Analysis at Vehicular Access
Figure 3.5 Ingress Vehicular Routes of Proposed Development
Figure 3.6 Egress Vehicular Routes of Proposed Development
Figure 4.1 Year 2035 Reference Traffic Flow
Figure 4.2 Year 2035 Design Traffic Flow
Figure 4.3 Development Traffic Flow
Figure 4.4 Year 2035 Baseline Traffic Flow
Figure 4.5 Bold-up Plan of Proposed Feeder Service Pick-up/ Drop-off Space
Figure 4.6 Queuing Assessment at Lai King Hill Road Roadside Bus Stop
Figure 4.7 Location of Pedestrian Facilities Along Major Pedestrian Routes in the Vicinity of Proposed Development
Figure 5.1 Year 2035 Interim Scenario A Traffic Flow
Figure 5.2 Year 2035 Interim Scenario B Traffic Flow
Figure 5.3 Year 2035 Interim Scenario C Traffic Flow

Appendix

Appendix A Junction Calculation Sheet
Appendix B Highlighted Plans of Internal Transport Provision
Appendix C Critical Swept Path Analysis
Appendix D Planned Junction Improvement Schemes

1 INTRODUCTION

1.1 Background

1.1.1 The Application Site falls within the "Comprehensive Development Area" zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung on the Approved Kwai Chung Outline Zoning Plan (OZP) No. S/KC/32. The location of application site is shown in **Figure 1.1**.

1.1.2 The Applicant submitted a S16 Planning Application No. A/KC/489 with a Master Layout Plan (MLP) covering the entire "CDA" zone with a pragmatic phasing strategy having due regard to the multiple land ownership pattern to increase certainty in realizing the planning intention of the whole "CDA" zone. The comprehensive development proposed in the Planning Application No. A/KC/489 (hereafter referred to as the "**Approved Scheme**"), comprises 14 residential blocks with an overall PR of not more than 5 and maximum BH of not more than +120mPD.

1.1.3 The Planning Application No. A/KC/489 was deliberated in the TPB Metro Planning Committee Meeting held on 14 July 2023 (the TPB Meeting). During the TPB meeting, TPB members raised concerns on the provision of social welfare facilities and retail shops, as quoted from the meeting minutes^[1]

- *"Some Members considered that retail facilities should be provided in the Proposed Development to cater for the daily needs of the future residents." and "Some Member shared the view that the provision of social welfare facilities in the Proposed Development was inadequate...".*
- *"the development intensity of the Proposed Development could be increased for better land utilisation, e.g. provision of retail and more GIC facilities.".*

After deliberation, the Planning Application No. A/KC/489 was approved with conditions.

[1] Minutes of 722nd Meeting of the Metro Planning Committee held at 9:00 a.m. on 14.7.2023

1.1.4 The Applicant takes the initiative to review the **Approved Scheme** and endeavours to take forward the provision of more of social welfare facilities and retail shops. The **Proposed Scheme**, keeping the phasing strategy adopted in the **Approved Scheme**, comprises 15 building blocks (including 14 building blocks with residential use) with domestic PR of not more than 6 and maximum BH of not more than +147.55mPD. Non-domestic PR of not more than 0.5 is designated for proposed retail shops, existing historical buildings, and social welfare facilities to nurture an inclusive and liveable community in the convenient location of Kwai Chung Area.

1.1.5 Arup Hong Kong Limited (Arup) was commissioned to carry out a Traffic Impact Assessment (TIA) report in support of the Section 16 application for the application site.

1.2 Objectives of this Report

1.2.1 The purpose of this report is to evaluate the potential traffic impact associated with the proposed residential development and community facilities, in support of the Section 16 application for the application site.

1.3 Scope of Study

1.3.1 The tasks for this TIA study are outlined as follows:

- Carry out traffic surveys at critical junctions to appreciate current traffic condition;
- Update the inventory regarding traffic circulation patterns, traffic conditions, as well as the constraints of the existing and future committed road network in the vicinity of the application site based on the latest information available;
- Assess the volume of traffic likely to be generated by the Proposed Development;
- Set up the reference scenario with reference to the **Approved Scheme** at the site location, i.e. reference scenario with an overall PR of not more than 5;
- Identify the likely traffic generation should the application site be developed into Proposed Development;
- Compare the above two traffic scenarios for evaluation of the likely traffic impact, if any, associated with the Proposed Development;
- Assess future traffic condition, taking into account any future traffic growth, as well as the traffic generated by the Proposed Development and other planned/committed development, if any, to be built in the vicinity;
- Review the access arrangement for the Proposed Development and to make recommendation;
- Recommend car parking provisions and goods vehicle loading/unloading arrangements;
- Carry out pedestrian surveys at pedestrian facilities in the vicinity to appreciate current walking condition;
- Assess pedestrian walking condition, taking into account any future population and employment growth generated by the Proposed

Development and other planned/committed development, if any, to be built in the vicinity

- Assess utilization of public transport services, taking into account any future population and employment growth generated by the Proposed Development and other planned/committed development, if any, to be built in the vicinity; and
- Review the vehicular and pedestrian impact for the Interim Scenarios of the Proposed Developments to be developed by phases.

1.4 Structure of the Report

1.4.1 The structure of this TIA report is as follows:

<u>Chapter</u>	<u>Title</u>	<u>Aims</u>
1	Introduction	Provide project background and scope of the Study
2	Existing Traffic Condition	Review and appreciate the existing traffic condition
3	The Subject Development	Provide information of the Proposed Development
4	Traffic Impact Assessment (Full Development of Proposed Scheme)	Illustrate the results of Traffic Impact Assessment – full development of the CDA
5	Traffic Impact Assessment (Interim Scenario)	Illustrate the results of Traffic Impact Assessment – partial development of lots owned by the applicant
6	Conclusion	Summarize the findings of this Study

2 EXISTING TRAFFIC CONDITION

2.1 Site Characteristics

2.1.1 The application site is located in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung. It is bounded by existing village houses to the north, Lai King Hill Road to the south, Castle Peak Road – Kwai Chung to the east and Princess Margaret Hospital to the west. **Figure 1.1** shows the location and the environs of the application site.

2.2 Existing Road Network

2.2.1 The application site is well-served by a comprehensive road network to and from all districts. Some major roads in the vicinity of the application site are listed as follows:

- Lai King Hill Road is district distributor, in single two-lane configuration. It connects Kwai Fuk Road to the north and Lai Wan Road to the south. Lai King Hill Road serves traffic between Kwai Chung, New Territories West and Kowloon.
- Ching Cheung Road is an urban trunk road, in dual three-lane configuration running in east-west direction. It connects Kwai Chung Road to the north and Castle Peak Road to the south. It connects Kwai Chung and Kowloon.
- Lai Wan Road is local distributor running in north-south direction. It connects Mei Lai Road to the north and a private road of Mei Foo Sun Chuen to the south.
- Mei Lai Road is a district distributor with two traffic lanes in both traffic direction connecting Mei Foo Bus Terminus and Lai King Hill Road.
- Castle Peak Road – Kwai Chung is a primary distributor, dual two-lane carriageway running north-south direction. It connects Tai Wo Interchange to the north and Ching Cheung Road to the south.

2.3 Existing Junction and Link Performance

2.3.1 To appreciate the existing traffic conditions, comprehensive classified traffic counts were conducted at the following identified key junctions in the vicinity of the application site. Locations of these surveyed junctions are listed below and shown in **Figure 2.1**.

J1	- Lai King Hill Road / King Lai Path	(Signalized Junction)
J2	- Lai King Hill Road / Chung Shan Terrance / Estate Road	(Signalized Junction)
J3	- Lai King Hill Road / Kwai Chung Interchange	(Signalized Junction)
J4	- Mei Lai Road / Lai Wan Road	(Signalized Junction)
J5	- Mei Lai Road / Cheung Sha Wan Road	(Signalized Junction)
J6	- Lai King Hill Road Pedestrian Crossing near Site Access	(Signalized Junction)

2.3.2 The counts were undertaken on 12th March 2024 during the periods of 07:00 – 10:00 and 17:00 – 20:00 hours. The AM and PM peak hours were found to be 07:45 – 08:45 and 17:30 – 18:30 respectively. The observed traffic flows during these peak hours are presented in **Figure 2.2**.

Junction Capacity Assessment

2.3.3 Junction capacity analysis was carried out at the identified key junctions in the vicinity of the application site. Results of the capacity assessment are shown in **Table 2.3.1** below and detailed calculations are appended in **Appendix A**.

Table 2.3.1 Year 2024 Existing Junction Performance

Junction	Type	Performance ⁽¹⁾	
		AM	PM
J1 Lai King Hill Road / King Lai Path	Signalized	>100%	>100%
J2 Lai King Hill Road / Ching Shan Terrance / Estate Road	Signalized	>100%	>100%
J3 Lai King Hill Road / Kwai Chung Interchange	Signalized	29%	53%
J4 Mei Lai Road / Lai Wan Road	Signalized	>100%	>100%
J5 Mei Lai Road / Cheung Sha Wan Road	Signalized	64%	69%
J6 Lai King Hill Road Pedestrian Crossing near Site Access	Signalized	>100%	>100%

Note:

(1) Figures shown represent "Reserve Capacity" (RC) in % for signalized junctions.

2.3.4 Results of the analysis indicate that the identified key junctions in the vicinity of the application site are currently operating satisfactorily during both AM and PM peak hours.

Link Capacity Assessment

2.3.5 The road link capacity assessment has also been carried out to examine the volume to capacity (V/C) ratio of the identified key road links. Locations of these identified key road links are shown in **Figure 2.1**.

2.3.6 Results of the capacity assessment are shown in **Table 2.3.2** below. The assessment framework for the road links is based on the ratio of surveyed traffic volume over the link capacity (V/C) to measure the utilization of the road link.

Table 2.3.2 Year 2024 Existing Link Performance ⁽¹⁾

Road Link ⁽²⁾		Direction	Unit	Link Capacity	Traffic Flows		Volume/Capacity (V/C) Ratio	
					AM	PM	AM	PM
L1	Lai King Hill Road (10m wide section)	Two-way	pcu/hr	2,390	1,090	1,085	0.46	0.45
			veh/hr	2,200	903	895	0.41	0.41
L2	Lai King Hill Road (8m wide section)	Two-way	pcu/hr	1,850	655	515	0.35	0.28
			veh/hr	1,700	544	427	0.32	0.25
L3	Lai King Hill Road (10m wide section)	Two-way	pcu/hr	2,390	550	545	0.23	0.23
			veh/hr	2,200	452	452	0.21	0.21
L4	Lai King Hill Road (10m wide section)	Two-way	pcu/hr	2,390	700	675	0.29	0.28
			veh/hr	2,200	568	559	0.26	0.25
L5	Kwai Chung Interchange (6.8m wide section)	NB	pcu/hr	2,800	885	525	0.32	0.19
			veh/hr	2,600	731	435	0.28	0.17
L6	Kwai Chung Interchange (6m wide section)	SB	pcu/hr	1,400	425	575	0.30	0.41
			veh/hr	1,300	353	475	0.27	0.37

Notes:

- (1) Link capacity estimated according to TPDM Vol.2 Ch.2.4, for single 2-lane carriageway (for L1 to L4 with road width of 8m and 10m) or for dual 2-lane carriageway (for L5 and L6 with road width of 6m and 6.8m). Data in terms of veh/hr and pcu/hr are converted according to survey pcu factor.
- (2) For conservative approach, the road links are assessed based on the greatest traffic flows at the road sections of corresponding roads within AOI.

2.3.7 Results of the analysis indicate that the accessed road link has sufficient link capacity to cater for the existing traffic flows.

2.4 Public Transport Facilities

2.4.1 The application site is served by various modes of public transport services as shown in **Figure 2.3**. The MTR Mei Foo Station is located about 500m from the application site, but it involves steep road and crossing footbridge at different level, which is estimated to be an 8-minute walking journey. There are also a number of franchised bus and Green Minibus (GMB) service routes operating within the surrounding road network. A summary of the public transport services operating in the vicinity of the application site is provided in **Table 2.4.1**.

Table 2.4.1 Existing Franchised Bus and GMB Services

Route No.	Origin / Destination	Peak Headway (mins)
Franchised Bus		
6	Star Ferry ↔ Lai Chi Kok	8-20
30	Tsuen Wan (Allway Gardens) ↔ Cheung Sha Wan	25-30
32H	Cheung Shan ↔ Lai Chi Kok	60
42	Tsing Yi (Cheung Hong Estate) ↔ Shun Lee	15-20
45	Kowloon City Ferry ↔ Kwai Chung (Lai Yiu Estate)	25-30
46	Jordan (West Kowloon Station) ↔ Kwai Chung (Lai Yiu Estate)	20-30
46X	Hin Keng ↔ Mei Foo	5-12
171	Lai Chi Kok ↔ South Horizons	10-20
171A	Lei Tung Estate → Lai Chi Kok	Weekday special departures
171P	South Horizons → Lai Chi Kok	Weekday special departures
904	Lai Chi Kok ↔ Kennedy Town (Belcher Bay)	18-30
905	Lai Chi Kok ↔ Exhibition Centre Station	8-23
905A	Exhibition Centre Station → Lai Chi Kok	Weekday special departures
905P	Lai Chi Kok → Wan Chai (Harbour Road)	Weekday special departures
N171	Lai Chi Kok ↔ Ap Lei Chau Estate	Night services only
N241	Hung Hom Station ↔ Tsing Yi (Cheung Wang Estate)	Night services only
GMB		
90A	Kwai Chung Hospital ↔ Mei Foo Station	Weekday special departures
90M	Highland Park ↕ Mei Foo Station	4-6 (circular)
90P	Princess Margaret Hospital ↔ Mei Foo Station	6-8
92M	Wah Yuen Chuen ↕ Mei Foo Station	5-10 (circular)

2.4.2 In summary, the subject development would have good accessibility to the public transport services via adjacent road network and the existing MTR Mei Foo Station, despite steep road and crossing footbridge at different level.

2.5 Existing Pedestrian Condition

2.5.1 To appreciate the existing conditions, comprehensive pedestrian count surveys were conducted at the critical footpath in the vicinity, as shown in **Figure 2.4**. The pedestrian counts were undertaken on typical weekdays during the AM and PM peak periods on 12th March 2024.

2.5.2 In order to address the performance of the critical footpath, Level of Service (LOS) assessment of the critical footpath has been conducted.

2.5.3 LOS assessment is carried out based on the definitions presented in the Highways Capacity Manual 2000. **Table 2.5.1** shows the various LOS 'quantified' in terms of pedestrian flow rates.

Table 2.5.1 Level of Service (LOS) for Walkway

LOS	Flow rate for Walkway (ped/min/m)	Description
A	≤ 16	Pedestrians basically move in desired paths without altering their movements in response to other pedestrians. Walking speeds are freely selected, and conflicts between pedestrians are unlikely.
B	16 – 23	Sufficient space is provided for pedestrians to freely select their walking speeds, to bypass other pedestrians and to avoid crossing conflicts with others. At this level, pedestrians begin to be aware of other pedestrians and to respond to their presence in the selection of walking paths.
C	23 – 33	Sufficient space is available to select normal walking speeds and to bypass other pedestrians primarily in unidirectional stream. Where reverse direction or crossing movement exists, minor conflicts will occur, and speed and volume will be somewhat lower.
D	33 – 49	Freedom to select individual walking speeds and bypass other pedestrians is restricted. Where crossing or reverse-flow movements exist, the probability of conflicts is high and its avoidance requires changes of speed and position. The LOS provides reasonable fluid flow; however considerable friction and interactions between pedestrians are likely to occur.
E	49 – 75	Virtually, all pedestrians would have their normal walking speeds restricted. At the lower range of this LOS, forward movement is possible only by shuffling. Space is insufficient to pass over slower pedestrians. Cross- and reverse-movement are possible only with extreme difficulties. Design volumes approach the limit of walking capacity with resulting stoppages and interruptions to flow.
F	> 75	Walking speeds are severely restricted. Forward progress is made only by shuffling. There are frequent and unavoidable conflicts with other pedestrians. Cross- and reverse-movements are virtually impossible. Flow is sporadic and unstable. Space is more characteristic of queued pedestrians than of moving pedestrian streams.

Source: Extracted from Exhibit 18-3 of Highway Capacity Manual (HCM) 2000

2.5.4 Footpaths with LOS A to C are considered as desirable with sufficient space for pedestrian to select normal walking speeds to bypass. For footpaths with LOS D represent freedom to select individual walking speeds and bypass other pedestrians is restricted. Unless there are any site constraints, improved measures should be sought for footpath with LOS D or poorer.

2.5.5 **Table 2.5.2** summarized the observed AM and PM peak pedestrian flow and LOS in surveyed footpath and crossing.

Table 2.5.2 Year 2024 Level of Service in AM and PM Peaks at Key Footpath

Footpath		Actual Width (m)	Effective Clear Width ⁽¹⁾ (m)	Two-way Peak Hourly Flow (ped/hr)		Flow Rate ⁽²⁾ (ped/min/m)		LOS (Level)	
				AM	PM	AM	PM	AM	PM
F1 (W)	Lai King Hill Road Northern Footpath	2.5	1.5	90	55	1.2	0.7	A	A
F1 (E)	Lai King Hill Road Northern Footpath	2	1	77	66	1.5	1.3	A	A
F2	Lai King Hill Road Southern Footpath	2.8	1.8	225	140	2.5	1.6	A	A
F3	Wah Lai Path Footpath	9.5	8.5	220	130	0.5	0.3	A	A

Notes:

- (1) Effective clear width = Actual width (on-site measurement) minus 0.5m dead width on both sides, and minus the width of passengers queuing at bus stops.
- (2) Pedestrian flow rates are computed based on effective clear width, with 1.2 peak factor applied for the peak minute flow rate.

2.5.6 The results presented in **Table 2.5.2** revealed that the walking condition on the critical footpath in the vicinity of the application site is satisfactory during both AM and PM peaks hours in Year 2024.

Table 2.5.3 Year 2024 Level of Service in AM and PM Peaks at Key Pedestrian Crossing

Crossing Facility	Clear Width (m)	Cycle Time (s)		Green Time Proportion		Pedestrian Capacity ⁽¹⁾ (ped/hr)		Two-way Pedestrian Flow ⁽²⁾ (ped/hr)		Volume/Capacity (V/C) Ratio		
		AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	
C1	Pedestrian Crossing Across Lai King Hill Road	6.2	90	90	19%	19%	2,240	2,240	145	90	0.06	0.04

Notes:

- (1) Crossing Capacity (ped/hr) = $K (1,900 \text{ ped/m/hr}) \times \text{Green Time Proportion} \times W (\text{width of crossing})$
- (2) Pedestrian flow rates are computed based on effective clear width, with 1.2 peak factor applied for the peak minute flow rate.

2.5.7 The results presented in **Table 2.5.3** revealed that the concerned pedestrian crossing facility is operating satisfactorily during both AM and PM peaks in Year 2024.

3 THE SUBJECT DEVELOPMENT

3.1 Development Schedule

3.1.1 The Applicant intends to develop the application site into residential use with community facilities. The Proposed Development will comprise 4 phases, namely as follows:

- Phase 1A (P1A)
- Phase 1B (P1B)
- Remaining Phase A (RPA)
- Remaining Phase B (RPB)

3.1.2 The Proposed Development will be constructed in phases and the entire development is envisaged to be completed by Year 2032.

3.1.3 The Proposed Development schedule is summarized in **Table 3.1.1**, and the master layout plan is presented in **Figures 3.1**.

Table 3.1.1 Proposed Development Parameters

Proposed Development	Site Area (sqm)	Non-domestic Facilities	Domestic		
			Plot Ratio	No. of Blocks	Flat Mix
Phase 1A	About 13,577.341	<ul style="list-style-type: none"> • Home Care Services for Frail Elderly Persons (HCS for Frail Elderly Persons) (4-team size non-kitchen based) • Residential Care Home for the Elderly (RCHE) (100 places) • School Social Work Office (SSWO) (Hong Kong Family Welfare Society) • Retail GFA: 2,285.323 sqm 	6	5	FS≤40m ²
					1,221
					40m ² <FS≤70m ²
					651
Phase 1B	About 10,111.772	<ul style="list-style-type: none"> • Neighbourhood Elderly Centre (NEC) • Residential Care Home for the Elderly (RCHE) (100 places) • Retail GFA: 1,516.286 sqm 	6	2	70m ² <FS≤100m ²
					109
					Total
					1,981
Remaining Phase A	About 7,934.713	<ul style="list-style-type: none"> • 60-place Day Care Centre for the Elderly (DE) • Office Base of On-site Pre-school Rehabilitation Services (OPRS) (Capacity: 125) • 120-place Day Care Centre for the Elderly (DE) (non-kitchen based) • Retail GFA: 1,437.357 sqm 	6	2	FS≤40m ²
					910
					40m ² <FS≤70m ²
					485
Remaining Phase B	About 16,689.341	<ul style="list-style-type: none"> • 60-place Special Child Care Centre (SCCC) • Residential Care Home for the Elderly (RCHE) (150 places) • Child Care Centre (CCC) (100 places) • Retail GFA: 832.970 sqm 	6	5	70m ² <FS≤100m ²
					81
					Total
					1,476
Total	About 48,313.167		6	14	FS≤40m ²
					714
					40m ² <FS≤70m ²
					381
					70m ² <FS≤100m ²
					63
					Total
					1,158
					FS≤40m ²
					1,502
					40m ² <FS≤70m ²
					801
					70m ² <FS≤100m ²
					134
					Total
					2,437
					FS≤40m ²
					4,347
					40m ² <FS≤70m ²
					2,318
					70m ² <FS≤100m ²
					387
					Total
					7,052

3.2 Vehicular Access Arrangement

- 3.2.1 One vehicular access is proposed for the CDA site along Lai King Hill Road, entering the site via P1A as shown in **Figure 3.2**.
- 3.2.2 The vehicular access will have conflict with the existing pedestrian crossing and bus stop on Lai King Hill Road Eastbound. It is proposed to shift the pedestrian crossing and the bus stop eastwards, to provide separation distance among the proposed pedestrian crossing, the proposed bus stop and the proposed vehicular access, as shown in **Figure 3.3**.
- 3.2.3 The swept path analysis for 12m-long coach at vehicular access is shown in **Figure 3.4**.
- 3.2.4 The major ingress and egress routes for vehicular traffic approaching and leaving the application site are illustrated in **Figure 3.5** and **Figure 3.6** respectively.

3.3 Internal Transport Facilities Provision

- 3.3.1 The internal transport facilities provision for the proposed residential development will be provided in accordance with the high-end requirements of Hong Kong Planning Standards and Guidelines (HKPSG).
- 3.3.2 There is no standard requirement of internal transport facilities provision for the proposed GIC facilities under HKPSG, corresponding internal transport facilities provision is recommended with reference to operational need of projects with similar use.
- 3.3.3 The internal transport facilities provision for the Proposed Development is summarized in **Table 3.3.1** to **Table 3.3.7** below.

Table 3.3.1 HKPSG Required Internal Transport Facilities Provision – P1A

Type of Development	HKPSG Standard				Low-end Requirement (nos.)	High-end Requirement (nos.)
Residential Parking Spaces						
Global Parking Standard (GPS)	1 car space per 4 – 7 flats			Flat No.		
Demand Adjustment Ratio (R1)	Flat Size (FS) (m ² GFA)	FS≤40	0.5	1,221	78.49	137.36
		40<FS≤70	1.2	651	100.44	175.77
		70<FS≤100	2.4	109	33.63	58.86
		100<FS≤130	4.1	-	-	-
		130<FS≤160	5.5	-	-	-
		FS>160	7	-	-	-
	Total		1,981	212.57	371.99	
Accessibility Adjustment Ratio (R2)	Within a 500m-radius of rail station		0.75			
	Outside a 500m-radius of rail station		1			
Development Intensity Adjustment Ratio (R3)	Domestic Plot Ratio (PR)	0.00<PR≤1.00	1.3			
		1.00<PR≤2.00	1.1			
		2.00<PR≤5.00	1			
		5.00<PR≤8.00	0.9			
		PR>8.00	0.75			
Parking Requirement = GPS × R1 × R2 × R3						
Visitor Parking Spaces						
Total Flat nos. 1,981	5 visitor spaces per block in addition to the recommendations, or as determined by the Authority.			25	25	
Block Nos. 5	Total Parking Car Parking Spaces			238 <i>(inclusive accessible parking spaces)</i>	397 <i>(inclusive accessible parking spaces)</i>	
Accessible Parking Spaces						
Retail GFA: 2,285.323 sqm	1 space for 1 – 50 total number of car parking space in the lot; 2 spaces for 51 – 150 total number of car parking space in the lot; 3 spaces for 151 – 250 total number of car parking space in the lot; 4 spaces for 251 – 350 total number of car parking space in the lot; 5 spaces for 351 – 450 total number of car parking space in the lot; 6 spaces for above 450 total number of car parking space in the lot			3	5	
	Motorcycle Parking Spaces			14	20	
	1 motorcycle parking space per 100 – 150 flats excluding non-residential elements.					
	L/UL Bay			3	5	
	Minimum of 1 loading / unloading bay for goods vehicles within the site for every 800 flats or part thereof, subject to a minimum of 1 bay for each housing block or as determined by the Authority.					
Private Car						
	1 car space per 150 – 300 m ² GFA			8	16	
Accessible Car Parking						
	1 space for total number of car parking spaces below 50			1	1	
Motorcycle						
	5 to 10% of the total provision for private cars			1	2	
Loading/Unloading Bay						
	1 loading/unloading bay for goods vehicles for every 800 – 1200 m ² GFA			2	3	
	LGV (65%)			1	2	
	HGV (35%)			1	1	

Table 3.3.2 HKPSG Required Internal Transport Facilities Provision – P1B

Type of Development	HKPSG Standard				Low-end Requirement (nos.)	High-end Requirement (nos.)		
Residential Parking Spaces								
Global Parking Standard (GPS)	1 car space per 4 – 7 flats			Flat No.				
Demand Adjustment Ratio (R1)	Flat Size (FS) (m ² GFA)	FS≤40	0.5	910	58.50	102.38		
		40<FS≤70	1.2	485	74.83	130.95		
		70<FS≤100	2.4	81	24.99	43.74		
		100<FS≤130	4.1	-	-	-		
		130<FS≤160	5.5	-	-	-		
		FS>160	7	-	-	-		
Total			1,476	158.32	277.07			
Private Housing	Accessibility Adjustment Ratio (R2)	Within a 500m-radius of rail station		0.75				
		Outside a 500m-radius of rail station		1				
	Development Intensity Adjustment Ratio (R3)	Domestic Plot Ratio (PR)	0.00<PR≤1.00	1.3				
			1.00<PR≤2.00	1.1				
			2.00<PR≤5.00	1				
			5.00<PR≤8.00	0.9				
			PR>8.00	0.75				
Parking Requirement = GPS × R1 × R2 × R3								
Visitor Parking Spaces								
Total Flat nos. 1,476	5 visitor spaces per block in addition to the recommendations, or as determined by the Authority.			10	10			
Block Nos. 2	Total Parking Car Parking Spaces			169 <i>(inclusive accessible parking spaces)</i>	288 <i>(inclusive accessible parking spaces)</i>			
Accessible Parking Spaces								
Retail GFA: 1,516.286 sqm	1 space for 1 – 50 total number of car parking space in the lot; 2 spaces for 51 – 150 total number of car parking space in the lot; 3 spaces for 151 – 250 total number of car parking space in the lot; 4 spaces for 251 – 350 total number of car parking space in the lot; 5 spaces for 351 – 450 total number of car parking space in the lot; 6 spaces for above 450 total number of car parking space in the lot			3	4			
	Motorcycle Parking Spaces			10	15			
	1 motorcycle parking space per 100 – 150 flats excluding non-residential elements.							
	L/UL Bay			2	2			
	Minimum of 1 loading / unloading bay for goods vehicles within the site for every 800 flats or part thereof, subject to a minimum of 1 bay for each housing block or as determined by the Authority.							
Private Car								
Retail GFA: 1,516.286 sqm	1 car space per 150 – 300 m ² GFA			6	11			
	Accessible Car Parking							
	1 space for total number of car parking spaces below 50			1	1			
	Motorcycle			1	2			
	5 to 10% of the total provision for private cars							
	Loading/Unloading Bay							
1 loading/unloading bay for goods vehicles for every 800 – 1200 m ² GFA			2	2				
LGV (65%)			1	1				
HGV (35%)			1	1				

Table 3.3.3 HKPSG Required Internal Transport Facilities Provision – RPA

Type of Development	HKPSG Standard				Low-end Requirement (nos.)	High-end Requirement (nos.)				
Residential Parking Spaces										
Global Parking Standard (GPS)	1 car space per 4 – 7 flats			Flat No.						
Demand Adjustment Ratio (R1)	Flat Size (FS) (m ² GFA)	FS≤40	0.5	714	45.90	80.33				
		40<FS≤70	1.2	381	58.78	102.87				
		70<FS≤100	2.4	63	19.44	34.02				
		100<FS≤130	4.1	-	-	-				
		130<FS≤160	5.5	-	-	-				
		FS>160	7	-	-	-				
Total			1,158	124.12	217.22					
Private Housing	Accessibility Adjustment Ratio (R2)	Within a 500m-radius of rail station		0.75						
		Outside a 500m-radius of rail station		1						
	Development Intensity Adjustment Ratio (R3)	Domestic Plot Ratio (PR)	0.00<PR≤1.00	1.3						
			1.00<PR≤2.00	1.1						
			2.00<PR≤5.00	1						
			5.00<PR≤8.00	0.9						
			PR>8.00	0.75						
Parking Requirement = GPS × R1 × R2 × R3										
Visitor Parking Spaces										
Total Flat nos. 1,158	5 visitor spaces per block in addition to the recommendations, or as determined by the Authority.			10	10					
Block Nos. 2	Total Parking Car Parking Spaces			135 <i>(inclusive accessible parking spaces)</i>	228 <i>(inclusive accessible parking spaces)</i>					
Accessible Parking Spaces										
Retail GFA: 1,437.357 sqm	1 space for 1 – 50 total number of car parking space in the lot; 2 spaces for 51 – 150 total number of car parking space in the lot; 3 spaces for 151 – 250 total number of car parking space in the lot; 4 spaces for 251 – 350 total number of car parking space in the lot; 5 spaces for 351 – 450 total number of car parking space in the lot; 6 spaces for above 450 total number of car parking space in the lot			2	3					
	Motorcycle Parking Spaces			8	12					
	1 motorcycle parking space per 100 – 150 flats excluding non-residential elements.									
	L/UL Bay									
	Minimum of 1 loading / unloading bay for goods vehicles within the site for every 800 flats or part thereof, subject to a minimum of 1 bay for each housing block or as determined by the Authority.			2	2					
	Private Car									
1 car space per 150 – 300 m ² GFA				5	10					
Accessible Car Parking										
1 space for total number of car parking spaces below 50				1	1					
Motorcycle										
5 to 10% of the total provision for private cars				1	1					
Loading/Unloading Bay										
1 loading/unloading bay for goods vehicles for every 800 – 1200 m ² GFA				2	2					
LGV (65%)				1	1					
HGV (35%)				1	1					

Table 3.3.4 HKPSG Required Internal Transport Facilities Provision –RPB

Type of Development	HKPSG Standard				Low-end Requirement (nos.)	High-end Requirement (nos.)		
Residential Parking Spaces								
Global Parking Standard (GPS)	1 car space per 4 – 7 flats			Flat No.				
Demand Adjustment Ratio (R1)	Flat Size (FS) (m ² GFA)	FS≤40	0.5	1,502	96.56	168.98		
		40<FS≤70	1.2	801	123.58	216.27		
		70<FS≤100	2.4	134	41.35	72.36		
		100<FS≤130	4.1	-	-	-		
		130<FS≤160	5.5	-	-	-		
		FS>160	7	-	-	-		
Total			2,437	261.49	457.61			
Private Housing	Accessibility Adjustment Ratio (R2)	Within a 500m-radius of rail station		0.75				
		Outside a 500m-radius of rail station		1				
	Development Intensity Adjustment Ratio (R3)	Domestic Plot Ratio (PR)	0.00<PR≤1.00	1.3				
			1.00<PR≤2.00	1.1				
			2.00<PR≤5.00	1				
			5.00<PR≤8.00	0.9				
			PR>8.00	0.75				
Parking Requirement = GPS × R1 × R2 × R3								
Visitor Parking Spaces								
Total Flat nos. 2,437	5 visitor spaces per block in addition to the recommendations, or as determined by the Authority.			25	25			
Block Nos. 5	Total Parking Car Parking Spaces			287 <i>(inclusive accessible parking spaces)</i>	483 <i>(inclusive accessible parking spaces)</i>			
Accessible Parking Spaces								
Retail GFA: 832.970 sqm	1 space for 1 – 50 total number of car parking space in the lot; 2 spaces for 51 – 150 total number of car parking space in the lot; 3 spaces for 151 – 250 total number of car parking space in the lot; 4 spaces for 251 – 350 total number of car parking space in the lot; 5 spaces for 351 – 450 total number of car parking space in the lot; 6 spaces for above 450 total number of car parking space in the lot			4	6			
	Motorcycle Parking Spaces			17	25			
	1 motorcycle parking space per 100 – 150 flats excluding non-residential elements.							
	L/UL Bay			4	5			
	Minimum of 1 loading / unloading bay for goods vehicles within the site for every 800 flats or part thereof, subject to a minimum of 1 bay for each housing block or as determined by the Authority.							
Private Car								
Retail GFA: 832.970 sqm	1 car space per 150 – 300 m ² GFA			3	6			
	Accessible Car Parking							
	1 space for total number of car parking spaces below 50			1	1			
	Motorcycle			1	1			
	5 to 10% of the total provision for private cars							
	Loading/Unloading Bay							
1 loading/unloading bay for goods vehicles for every 800 – 1200 m ² GFA			1	2				
LGV (65%)			1	1				
HGV (35%)			0	1				

Table 3.3.5 Recommendation for Internal Transport Facilities Provision of the Proposed GIC Facilities

Site	Development	Facilities (Length x Width x min. Headroom)	Recommended Provision
P1A	Home Care Services for Frail Elderly Persons (HCS for Frail Elderly Persons) (4-team size non-kitchen based)	Parking space for private light bus (8m x 3m x 3.3m)	1
		Shared-use loading/unloading bay for private light bus with other welfare facilities (11m x 3.5m x 4.7m)	1
	Residential Care Home for the Elderly (RCHE) (100 places)	Accessible car parking space (5m x 3.5m x 2.4m)	1
		Light bus parking space (8m x 3m x 3.3m)	1
		Loading/unloading bay for LGV (7m x 3.5m x 3.6m)	1
		Private car / taxi pick-up/drop-off space (5m x 2.5m x 2.4m)	1
		N/A	N/A
P1B	Residential Care Home for the Elderly (RCHE) (100 places)	Accessible car parking space (5m x 3.5m x 2.4m)	1
		Light bus parking space (8m x 3m x 3.3m)	1
		Loading/unloading bay for LGV (7m x 3.5m x 3.6m)	1
		Private car / taxi pick-up/drop-off space (5m x 2.5m x 2.4m)	1
		N/A	N/A
	Neighbourhood Elderly Centre (NEC)	N/A	N/A
RPA	Day Care Centre for the Elderly (DE) (60 places)	Parking space for private light bus (8m x 3m x 3.3m)	3
		Shared-use loading/unloading area for ambulance and private light bus (9m x 3m x 3.8m)	1
	Office Base of On-site Pre-school Rehabilitation Services (OPRS) (125 places)	Parking Space for private light bus (8m x 3m x 3.3m)	1
	Day Care Centre for the Elderly (DE) (non-kitchen based) (120 places)	Parking space for private light bus (8m x 3m x 3.3m)	6
		Shared-use loading/unloading area for ambulance and private light bus (9m x 3m x 3.8m)	1
	Special Child Care Centre (SCCC) (60 places)	Parking space for 48-seater coach (12m x 3.5m x 3.8m)	1
		Loading/unloading bay for 48-seater coach (12m x 3.5m x 3.8m)	1
RPB	Residential Care Home for the Elderly (RCHE) (150 places)	Private car parking space (5m x 2.5m x 2.4m)	1
		Accessible car parking space (5m x 3.5m x 2.4m)	1
		Light bus parking space (8m x 3m x 3.3m)	1
		L/UL for LGV (7m x 3.5m x 3.6m)	1
		Private car / taxi pick-up/drop-off space (5m x 2.5m x 2.4m)	1
	Child Care Centre (CCC) (100 places)	Ambulance lay-by (9m x 3m x 3.8m)	1

Table 3.3.6 Transport Facilities Provision Summary Table

Proposed Use	Facilities (Length x Width x min. Headroom)	HKPSG Required Provision									
		P1A		P1B		RPA		RPB		Total	
		Low-end	High-end	Low-end	High-end	Low-end	High-end	Low-end	High-end	Low-end	High-end
Residential	Car parking space (5m x 2.5m x 2.4m) <i>Including residential, visitor parking</i>	238	397	169	288	135	228	287	483	<u>829</u> <i>(inclusive accessible parking spaces)</i>	<u>1,396</u> <i>(inclusive accessible parking spaces)</i>
	Accessible car parking space (5m x 3.5m x 2.4m)	3	5	3	4	2	3	4	6	<u>12</u>	<u>18</u>
	Motorcycle (2.4m x 1m x 2.4m)	14	20	10	15	8	12	17	25	<u>49</u>	<u>72</u>
	Loading/unloading bay for HGV (11m x 3.5m x 4.7m)	3	5	2	2	2	2	4	5	<u>11</u>	<u>14</u>
Retail	Car parking space (5m x 2.5m x 2.4m)	8	16	6	11	5	10	3	6	<u>22</u> <i>(inclusive accessible parking spaces)</i>	<u>43</u> <i>(inclusive accessible parking spaces)</i>
	Accessible car parking space (5m x 3.5m x 2.4m)	1	1	1	1	1	1	1	1	<u>4</u>	<u>4</u>
	Motorcycle (2.4m x 1m x 2.4m)	1	2	1	2	1	1	1	1	<u>4</u>	<u>6</u>
	Loading/unloading bay for HGV (11m x 3.5m x 4.7m)	1	1	1	1	1	1	0	1	<u>3</u>	<u>4</u>
	Loading /unloading bay for LGV (7m x 3.5m x 3.6m)	1	2	1	1	1	1	1	1	<u>4</u>	<u>5</u>
GIC Facilities	Car parking space (5m x 2.5m x 2.4m)	-	-	-	-	-	-	1 (RCHE)	-	<u>1</u>	
	Accessible parking spaces (5m x 3.5m x 2.4m)	1 (RCHE)	1 (RCHE)	1 (RCHE)	1 (RCHE)	1 (RCHE)	1 (RCHE)	1 (RCHE)	-	<u>3</u>	
	Private car / taxi pick-up/drop-off space (5m x 2.5m x 2.4m)	1 (RCHE)	1 (RCHE)	1 (RCHE)	1 (RCHE)	1 (RCHE)	1 (RCHE)	1 (RCHE)	-	<u>3</u>	
	L/UL bay for LGV (7m x 3.5m x 3.6m)	1 (RCHE)	1 (RCHE)	1 (RCHE)	1 (RCHE)	1 (RCHE)	1 (RCHE)	1 (RCHE)	-	<u>3</u>	
	Parking space for private light bus (8m x 3m x 3.3m)	1 (RCHE) 1 (HCS for Frail Elderly Persons)	1 (RCHE)	1 (RCHE)	9 (DE) 1 (OPRS)	1 (RCHE)	1 (RCHE)	1 (RCHE)	-	<u>14</u>	
	Shared-use L/UL bay for private light bus with other welfare facilities (11m x 3.5m x 4.7m)	1 (HCS for Frail Elderly Persons)	-	-	-	-	-	-	-	<u>1</u>	
	Ambulance lay-by (9m x 3m x 3.8m)	-	-	-	-	-	1 (CCC)	1 (CCC)	-	<u>1</u>	
	Shared-use L/UL bay for ambulance and private light bus (9m x 3m x 3.8m)	-	-	-	2 (DE)	2 (DE)	-	-	-	<u>2</u>	
	Parking space for 48-seater coach (12m x 3.5m x 3.8m)	-	-	-	-	-	1 (SCCC)	1 (SCCC)	-	<u>1</u>	
	L/UL bay for 48-seater coach (12m x 3.5m x 3.8m)	-	-	-	-	-	1 (SCCC)	1 (SCCC)	-	<u>1</u>	

3.3.4 The proposed internal transport facilities for each phase of the Proposed Development will be self-contained within the respective phasing boundary. Highlighted plans of internal transport are shown in **Appendix B** and swept path analysis at critical movement are shown in **Appendix C**.

Car Parking Space Provision

3.3.5 A total of 1,396 nos. car parking spaces (including 18 nos. accessible car parking spaces) for residential development and another 43 nos. car parking spaces (including 4 nos. accessible car parking spaces) for retail use as per HKPSG high-end requirements will be provided in the basement levels, which will be accessed via the corresponding car-ramp for each site.

3.3.6 A total of 4 nos. car parking spaces (including 3 nos. accessible car parking spaces) will be provided on ground floor for GIC Facilities according to the schedule of accommodation from Social Welfare Department.

Visitor Car Parking Provision

3.3.7 A total of 70 nos. visitor car parking spaces (part of total 1,396 nos. private car parking provision), as per HKPSG high-end requirements will be provided in the basement levels, which will be accessed via the corresponding car-ramp for each site.

Motorcycle Parking Space Provision

3.3.8 A total of 72 nos. motorcycle parking spaces for residential development and another 6 nos. motorcycle parking spaces for retail use as per HKPSG high-end requirements will be provided in the basement levels, which will be accessed via the corresponding car-ramp for each site.

Private Car / Taxi Pick-up / Drop-off Provision

3.3.9 A total of 3 nos. private car/taxi pick-up/drop-off spaces will be provided on ground floor for GIC Facilities according to the schedule of accommodation from Social Welfare Department.

Goods Vehicle Loading / Unloading Bay Provision

3.3.10 A total of 14 nos. HGV loading/unloading bays for residential development and another 4 nos. HGV loading/unloading bays and 5 nos. LGV loading/unloading bays for retail use as per HKPSG high-end requirement will be provided on ground floor.

3.3.11 A total of 3 nos. LGV loading/unloading bays will be provided on ground floor for GIC Facilities according to the schedule of accommodation from Social Welfare Department.

Parking Space and Loading / Unloading Bay Provision for Private Light Bus

3.3.12 A total of 15 nos. parking spaces, 1 no. loading / unloading bay to be shared with other welfare facilities, and 2 nos. loading / unloading bay to be shared-used with ambulance, for private light bus, will be provided on ground floor according to the schedule of accommodation from Social Welfare Department.

Parking Space and Loading / Unloading Bay Provision for Ambulance

3.3.13 A total of 1 no. lay-by for ambulance exclusively will be provided on ground floor according to the schedule of accommodation from Social Welfare Department.

Parking Space and Loading / Unloading Bay Provision for Coach

3.3.14 1 no. parking space and 1 no. loading / unloading bay for coach will be provided on ground floor according to the schedule of accommodation from Social Welfare Department.

4 TRAFFIC IMPACT ASSESSMENT (FULL DEVELOPMENT OF PROPOSED SCHEME)

4.1 Trip Generation and Attraction of Proposed Development

4.1.1 The likely amount of traffic generated and attracted by the Proposed Development was calculated based on "Traffic Rates for Non-Residential Developments at 95% Confidence Level" adopted in the Transport Planning and Design Manual (TPDM) Vol.1 Table 1 of Annex D. The adopted rate and associated trip are shown in **Table 4.1.1**.

Table 4.1.1 Adopted Trip Generation and Attraction Rates for the Proposed Development

Development	AM Peak		PM Peak	
	Generation	Attraction	Generation	Attraction
Private Housing: High-Density / R(A) (pcu/hr/flat) ⁽¹⁾	0.0718	0.0425	0.0286	0.0370
Private Housing: High-Density / R(A) (pcu/hr/flat) ⁽²⁾	0.0888	0.0515	0.0356	0.0480
Private Housing: High-Density / R(B) (pcu/hr/flat) ⁽³⁾	0.1887	0.0942	0.0862	0.1214
Retail (pcu/hr/100m ² GFA) ⁽⁴⁾	0.2296	0.2434	0.3100	0.3563

Notes:

- (1) Trip Rate based on "Traffic Rates for Residential Developments at 95% Confidence Level" in the Transport Planning and Design Manual (TPDM) Vol.1 Table 1, for average flat size 60m²
- (2) Trip Rate based on "Traffic Rates for Residential Developments at 95% Confidence Level" in the Transport Planning and Design Manual (TPDM) Vol.1 Table 1, for average flat size 70m².
- (3) Trip Rate based on "Traffic Rates for Residential Developments at 95% Confidence Level" in the Transport Planning and Design Manual (TPDM) Vol.1 Table 1, for average flat size 100m².
- (4) Trip Rate based on "Traffic Rates for Non-Residential Developments at 95% Confidence Level" in the Transport Planning and Design Manual (TPDM) Vol.1 Table 2.

4.1.2 The traffic generation and attraction trips for the design scenarios in Year 2035 is estimated in **Table 4.1.2**.

Table 4.1.2 Traffic Generation and Attraction of Proposed Development (pcu/hr)

Proposed Development	Development Parameters	AM		PM	
		Generation	Attraction	Generation	Attraction
Phase 1A	FS≤40m ²	1,221	88	52	35
	40m ² <FS≤70m ²	651	58	34	23
	70m ² <FS≤100m ²	109	21	10	9
	Retail: 2,285.323 sqm		5	6	7
	Sub-total	172	102	74	97
Phase 1B	FS≤40m ²	910	65	39	26
	40m ² <FS≤70m ²	485	43	25	17
	70m ² <FS≤100m ²	81	15	8	7
	Retail: 1,516.286 sqm		3	4	5
	Sub-total	126	76	55	72
Remaining Phase A	FS≤40m ²	714	51	30	20
	40m ² <FS≤70m ²	381	34	20	14
	70m ² <FS≤100m ²	63	12	6	5
	Retail: 1,437.357 sqm		3	3	4
	Sub-total	100	59	43	57
Remaining Phase B	FS≤40m ²	1,502	108	64	43
	40m ² <FS≤70m ²	801	71	41	29
	70m ² <FS≤100m ²	134	25	13	12
	Retail: 832.970 sqm		2	2	3
	Sub-total	206	120	87	113
Proposed Feeder Service⁽¹⁾		12	12	0	0
	Total	616	369	259	339

Note:

(1) Details of proposed feeder service refer to Section 4.7.

4.1.3 As indicated in **Table 4.1.2**, the total trip generated by the Proposed Development would be around 985 pcu/hr and 598 pcu/hr (two-way) during the AM and PM peak periods respectively.

4.2 Adjacent Developments

4.2.1 In addition to the development flow, the traffic generated and attracted by adjacent major planned/committed developments in the vicinity of the Proposed Development, including redevelopment of Princess Margret Hospital and Kwai Chung Hospital (S16 planning application No. A/KC/451), expansion of Princess Margaret Hospital Lai King Building, redevelopment of Salvation Army Lai King Home, and private residential development at Lai Kong Street were taken into account for the traffic forecast.

4.3 Future Traffic Growth

4.3.1 The Proposed Development is targeted for completion in Year 2032. In order to assess the traffic impact of the development-related traffic on the adjacent road network, Year 2035 (i.e. 3 years after completion) is adopted as the design year of the study.

Annual Traffic Census

4.3.2 Reference was made to Annual Traffic Census (ATC) on annual average daily traffic (AADT) at counting stations in the vicinity of the Proposed Development and the corresponding traffic flows are summarized in **Table 4.3.1** below.

Table 4.3.1 Annual Average Growth Rate by ATC

Station No.	2017 AADT	2018 AADT	2019 AADT	2020 AADT	2021 AADT	2022 AADT	2023 AADT	Annual Average Growth Rate from 2017 to 2023
5443	6,720	6,820	7,590	7,590	7,880	7,800	8,060	+3.08%
4623	10,140	10,260	10,310	10,160	10,610	9,070	9,500	-1.08%
3859	16,090	16,300	14,920	14,400	15,860	13,880	14,920	-1.25%
4628	3,520	3,680	3,580	3,500	4,050	3,720	3,940	+1.90%
5476	10,890	11,190	11,430	12,210	11,870	11,450	12,930	+2.90%
4003	56,220	57,820	57,520	54,350	56,080	53,180	56,820	+0.18%
Total	103,580	106,070	105,350	102,210	106,350	99,100	106,170	+0.41%

4.3.3 The ATC historic data indicates a growth of traffic in recent years in the region with around +0.41% p.a.

Territorial Population and Employment Data Matrix (TPEDM)

4.3.4 Reference was also made to 2019-based TPEDM published by Planning Department. **Table 4.3.2** below summarizes the estimated and projected population and employment data as well as their respective annual average growth rate of Kwai Chung District in 2019, 2026 and 2031.

Table 4.3.2 Annual Average Growth Rate by TPEDM

Year	2019	2026	2031
Population	319,150	315,800	319,700
Employment	195,950	192,350	183,600
TOTAL	515,100	508,150	503,300
Annual Average Growth Rate	-0.19% (from 2019 to 2026)	-0.19% (from 2026 to 2031)	

4.3.5 From the table above, the annual average growth rates from 2019 to 2026 and from 2026 to 2031 are -0.19% and -0.19% respectively based on population and employment data.

4.3.6 For conservative purpose, growth rate of **+0.5% p.a.** is selected to produce the traffic forecasts for 2024 – 2035.

4.4 Assessment Scenarios

4.4.1 To evaluate the associated traffic impact likely to be induced by the Proposed Development, two scenarios were analysed and compared. The first scenario (i.e. Year 2035 Reference Scenario) assumed the existing land lot to be developed as the **Approved Scheme** overall PR of not more than 5, whereas the second scenario (i.e. Year 2035 Design Scenario) assumed that the **Proposed Scheme** with domestic PR of not more than 6 and non-domestic PR of not more than 0.5 is in place.

Scenario 1

Year 2035 Reference Scenario

= Year 2024 observed traffic flows \times growth factor during the period of Year 2024 – 2035

plus traffic generations of adjacent major planned/committed developments in the vicinity

plus trips generated and attracted by the **Approved Scheme** overall PR of not more than 5 (Planning Application No. A/KC/489)

Scenario 2

Year 2035 Design Scenario

= Year 2024 observed traffic flows \times growth factor during the period of Year 2024 – 2035

plus traffic generations of adjacent major planned/committed developments in the vicinity

plus trips generated and attracted by **Proposed Scheme** with domestic PR of not more than 6 and non-domestic PR of not more than 0.5

4.4.2 The forecasted traffic flows for the above two scenarios are presented in **Figures 4.1 to 4.2** respectively. The development traffic flows are also presented in **Figure 4.3**.

4.4.3 Additional **Baseline Scenario** at the design Year 2035, with traffic generations of adjacent major planned/committed developments in the vicinity but without trips generated and attracted by the development under A/KC/489, is setup as supplementary information for comparison. The forecasted traffic flows are presented in **Figure 4.4**.

4.5 Junction Capacity Assessment

4.5.1 Junction capacity assessment was carried out at the identified key junctions for Year 2035 Reference and Design scenarios. Assessment results are summarized in **Table 4.5.1** below and the detailed calculations are appended in **Appendix A**.

Table 4.5.1 Year 2035 Future Junction Performance

Junction	Type	Performance ⁽¹⁾					
		2035 Baseline		2035 Reference		2035 Design	
		AM	PM	AM	PM	AM	PM
J1	Lai King Hill Road / King Lai Path	Signalized	>100%	>100%	>100%	>100%	>100%
J2	Lai King Hill Road / Ching Shan Terrance / Estate Road	Signalized	>100%	>100%	>100%	>100%	>100%
J3_a	Lai King Hill Road / Kwai Chung Interchange ⁽²⁾	Signalized	21%	46%	3%	29%	-2%
J3_b	Lai King Hill Road / Kwai Chung Interchange ⁽³⁾	Signalized	7%	24%	-13%	5%	-17%
J3_c	Lai King Hill Road / Kwai Chung Interchange ⁽⁴⁾	Signalized	18%	44%	15%	29%	15%
J4	Mei Lai Road/ Lai Wan Road	Signalized	>100%	>100%	>100%	>100%	>100%
J5	Mei Lai Road/ Cheung Sha Wan Road	Signalized	56%	60%	38%	50%	34%
J6	Lai King Hill Road Pedestrian Crossing near Site Access	Signalized	>100%	>100%	>100% ⁽⁵⁾	>100% ⁽⁵⁾	>100% ⁽⁵⁾

Notes:

- (1) Figures shown represent "Reserve Capacity" (RC) in % for signalized junctions.
- (2) J3 under existing junction configuration.
- (3) J3 with TD planned improvement works.
- (4) The junction modification scheme in approved planning application (No. A/KC/489) is incorporated for assessment.
- (5) J6 with the proposed Lai King Hill Road and pedestrian crossing rearrangement.

4.5.2 The above results reveal that the identified key junctions would operate within capacity with the Proposed Development in Year 2035, with the implementation of the junction modification scheme in approved planning application (No. A/KC/489) for J3. It is anticipated that Proposed Development would not induce adverse traffic impact to the surrounding road network, **the junction improvement works at J3 will be implemented before the completion and population intake of any phase of the Application Site.**

4.5.3 For J3, the TD's planned improvement scheme and the approved junction modification scheme is shown in **Appendix D** for reference.

4.6 Link Capacity Assessment

4.6.1 Link capacity assessment was carried out at the identified road links for Year 2035 Reference and Design scenarios. Assessment results are summarized in **Table 4.6.1** below.

Table 4.6.1 Year 2031 Future Link Performance ⁽¹⁾

Road Link ⁽²⁾	Direction	Unit	Link Capacity	Traffic Flows (pcu/hr)						Volume/Capacity (V/C) Ratio						
				Baseline Scenario		2035 Reference		2035 Design		Baseline Scenario		2035 Reference		2035 Design		
				AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	
L1	Lai King Hill Road (10m wide section)	Two-way	pcu/hr	2,390	1,160	1,145	1,712	1,475	1,855	1,562	0.49	0.48	0.72	0.62	0.78	0.65
			veh/hr	2,200	955	946	1,419	1,227	1,529	1,299	0.43	0.43	0.65	0.56	0.70	0.59
L2	Lai King Hill Road (8m wide section)	Two-way	pcu/hr	1,850	695	540	1,247	870	1,390	957	0.38	0.29	0.67	0.47	0.75	0.52
			veh/hr	1,700	575	450	1,035	725	1,144	799	0.34	0.26	0.61	0.43	0.67	0.47
L3	Lai King Hill Road (10m wide section)	Two-way	pcu/hr	2,390	580	575	1,132	905	1,275	992	0.24	0.24	0.47	0.38	0.53	0.42
			veh/hr	2,200	477	477	937	752	1,046	826	0.22	0.22	0.43	0.34	0.48	0.38
L4	Lai King Hill Road (10m wide section)	Two-way	pcu/hr	2,390	725	710	960	853	1,014	888	0.30	0.30	0.40	0.36	0.42	0.37
			veh/hr	2,200	601	591	798	713	844	743	0.27	0.27	0.36	0.32	0.38	0.34
L5	Kwai Chung Interchange (6.8m wide section)	NB	pcu/hr	2,800	935	555	1,123	729	1,165	773	0.33	0.20	0.40	0.26	0.42	0.28
			veh/hr	2,600	773	460	930	605	965	642	0.30	0.18	0.36	0.23	0.37	0.25
L6	Kwai Chung Interchange (6m wide section)	SB	pcu/hr	1,400	450	610	775	742	843	778	0.32	0.44	0.55	0.53	0.60	0.56
			veh/hr	1,300	373	501	643	613	699	642	0.29	0.39	0.49	0.47	0.54	0.49

Notes:

- (1) Link capacity estimated according to TPDM Vol.2 Ch.2.4, for single 2-lane carriageway (for L1 to L4 with road width of 8m and 10m) or for dual 2-lane carriageway (for L5 and L6 with road width of 6m and 6.8m). Data in terms of veh/hr and pcu/hr are converted according to survey pcu factor.
- (2) For conservative approach, the road links are assessed based on the greatest traffic flows at the road sections of corresponding roads within AOI.

4.6.2 As shown in the table above, the identified road section would continue to have sufficient link capacity to cater for the future traffic demand with the Proposed Development by Year 2035. The Proposed Development would not induce adverse traffic impact to the surrounding road network.

4.7 Future Occupancy of Public Transport Services

4.7.1 The Proposed Development is targeted for completion in Year 2032. In order to assess the likely impact induced by the Proposed Development on public transport connection, Year 2035 (i.e. 3 years after the target completion year of the Proposed Development) is adopted as the design year of the public transport assessment, which is in line with the design year adopted in traffic impact assessment.

Existing and Future Baseline Demand (w/o Proposed Development)

4.7.2 Occupancy surveys for the existing public transport were carried out on 12th March 2024 during the periods of 07:00 – 10:00 and 17:00 – 20:00 hours at the public transport facilities in the vicinity. The survey results and **estimated baseline demand** of franchised bus and GMB routes in the vicinity are presented in **Table 4.7.1**. Similar to the traffic forecast, a growth rate of **+0.5% p.a.** is adopted for projecting the **baseline passenger demand** to Year 2035, **without** demand generated by the **Proposed Development**.

Table 4.7.1 Peak Hour Trips & Passenger Demand of Franchised Bus and GMB Routes (without the Proposed Development)

Route No.	Origin / Destination	(a) Observed Peak Hour Trips (trips/hr)		(b) Observed Total Capacity		(c) Observed Occupancy Rate (%)		(d) = (b) × (c) Year 2024 Existing Passenger Demand		(e) = (d) × +0.5% p.a. Year 2035 Projected Passenger Demand		(f) = (e) ÷ (b) Year 2035 Projected Occupancy Rate (%)		
		AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	
KAU WA KENG BUS STOP (LAI KING HILL ROAD EAST BOUND)														
Franchised Bus														
30	Allway Gardens	Cheung Sha Wan	1	2	135	193	10%	10%	14	19	14	20	10%	10%
32H	Cheung Shan	Lai Chi Kok	-	1	-	59	-	5%	-	3	-	3	-	5%
42	Tsing Yi (Cheung Hong Estate)	Shun Lee	3	3	398	387	15%	20%	60	77	63	81	16%	21%
45	Lai Yiu	Kowloon City Ferry B/T	2	2	250	250	25%	30%	63	75	66	79	26%	32%
46	Lai Yiu	Jordan (West Kowloon Station)	3	4	315	500	35%	25%	110	125	116	132	37%	26%
46X	Hin Keng	Mei Foo	7	6	959	786	10%	10%	96	79	101	83	11%	11%
OVERALL TRIPS & DEMANDS			16	18	2057	2175	-	-	343	378	360	398	-	-
GMB														
90M	Highland Park	Mei Foo Station	5	5	80	80	35%	40%	28	32	29	33	36%	41%
90P	Princess Margaret Hospital	Mei Foo Station	21	17	336	272	15%	80%	50	218	52	230	15%	85%
92M	Wah Yuen Chuen	Mei Foo Station	5	4	80	64	35%	40%	28	26	29	27	36%	42%
OVERALL TRIPS & DEMANDS			31	26	496	416	-	-	106	276	110	290	-	-
KAU WA KENG BUS STOP (LAI KING HILL ROAD WEST BOUND)														
Franchised Bus														
30	Cheung Sha Wan	Allway Gardens	1	2	90	158	10%	5%	9	8	9	8	10%	5%
32H	Lai Chi Kok	Cheung Shan	-	1	-	59	-	10%	-	6	-	6	-	10%
42	Shun Lee	Tsing Yi (Cheung Hong Estate)	3	3	398	411	10%	7%	40	29	42	30	11%	7%
45	Kowloon City Ferry B/T	Lai Yiu	2	2	250	250	10%	10%	25	25	26	26	10%	10%
46	Jordan (West Kowloon Station)	Lai Yiu	3	2	375	250	10%	10%	38	25	40	26	11%	10%
46X	Mei Foo	Hin Keng	7	9	959	1233	15%	5%	144	62	152	65	16%	5%
OVERALL TRIPS & DEMANDS			16	19	2072	2361	-	-	256	155	269	161	-	-
GMB														
90M	Mei Foo Station	Highland Park	6	4	96	64	75%	60%	72	38	76	40	79%	63%
90P	Mei Foo Station	Princess Margaret Hospital	18	13	288	208	85%	35%	245	73	258	77	90%	37%
92M	Mei Foo Station	Wah Yuen Chuen	5	3	80	48	60%	80%	48	38	50	40	63%	83%
OVERALL TRIPS & DEMANDS			29	20	464	320	-	-	365	149	384	157	-	-
LAI CHI KOK BUS TERMINUS														
Franchised Bus														
6	Lai Chi Kok	Star Ferry	5	5	685	685	20%	10%	137	69	144	72	21%	11%
171	Lai Chi Kok	South Horizons	4	6	548	822	5%	1%	27	8	28	8	5%	1%
904	Lai Chi Kok	Kennedy Town (Belcher Bay)	2	3	274	411	5%	1%	14	4	14	4	5%	1%
905	Lai Chi Kok	Exhibition Centre Station	6	5	822	685	5%	0%	41	0	43	0	5%	0%
905P	Lai Chi Kok	Wan Chai (Harbour Road)	2	-	274	-	5%	-	14	-	14	-	5%	-
OVERALL TRIPS & DEMANDS			19	19	2603	2603	-	-	233	81	243	84	-	-

Note: Observed data with growth incorporated.

4.7.3 The spare capacity that are available to accommodate new demand from the Proposed Development is summarised by each public transport facility in the vicinity in **Table 4.7.2** below:

Table 4.7.2 Year 2035 Spare Capacity Available for the Proposed Development

Location	Overall Trips ⁽¹⁾		(a) Peak Capacity ⁽¹⁾		(b) Future Baseline Demand ⁽¹⁾		(c) = (a) - (b) Spare Capacity	
	AM	PM	AM	PM	AM	PM	AM	PM
KAU WA KENG BUS STOP (LAI KING HILL ROAD WEST BOUND)								
Bus	16	18	2057	2175	360	398	1697	1777
GMB	31	26	496	416	110	290	386	126
KAU WA KENG BUS STOP (LAI KING HILL ROAD EAST BOUND)								
Bus	16	19	2072	2361	269	161	1803	2200
GMB	29	20	464	320	384	157	80	163
LAI CHI KOK BUS TERMINUS								
Bus	19	19	2603	2603	243	84	2360	2519

Notes:

(1) From Table 4.7.3

Future Public Transport Demand Generated by the Proposed Development

4.7.4 Increase in demand on public transport service is anticipated due to the Proposed Development, the anticipated population of the Proposed Development is approximately 19,038. According to “Travel Characteristics Survey (TCS) 2011” published by Transport Department, the daily mechanised trip rate is 1.83 trips per person and the AM and PM peak accounted for about 12% and 10% of the daily trips. Considering this travel pattern in TCS 2011, it is estimated that the Proposed Development would generate a total of 4,181 pax/hr (i.e. $19,038 \times 1.83 \times 0.12$) and 3,484 pax/hr (i.e. $19,038 \times 1.83 \times 0.10$) during the AM and PM peak hour respectively. The anticipated trips generated is summarized in **Table 4.7.3** below.

Table 4.7.3 Passenger Trips Generated from the Proposed Development

Development Parameters		
No. of Flats	7,052 flats	
Population	19,038 ⁽¹⁾	
Peak Hours Trip Generation ⁽²⁾	AM	PM
	4,181 pax/hr	3,484 pax/hr

Notes:

(1) Person Per Occupied Flat (PPOF) of 2.7 is assumed to be based on the 2021 census of Kwai Tsing District.

(2) According to "Travel Characteristics Survey (TCS) 2011" published by Transport Department, the daily mechanized trip rate is 1.83 trips per person, while the AM and PM peak accounted for about 12% and 10% of the daily trips.

4.7.5 With reference to the transport modal split of working population in Kwai Tsing District Council District, as reported in the “2021 Population Census” published by the Census and Statistics Department, the corresponding passenger demand from the Proposed Development are summarized in **Table 4.7.4**.

Table 4.7.4 Modal Split and Passenger Demand from the Proposed Development

Mode of Transport	Proportion (1)	Passenger Demand from Proposed Development (pax/hr)	
		AM	PM
MTR	40.0%	1,673	1,394
Bus	30.1%	1,258	1,048
GMB	10.0%	417	347
PV & Taxi	4.7%	198	165
On foot	10.5%	439	366
Others	4.7%	196	163
Total	100%	4,181	3,484
Total in Public Transport	80.1%	3,348	2,789

Notes:

(1) For a conservative assessment purpose, it is assumed that all passengers heading to Lai King or Mei Foo MTR station will take bus or GMB services for interchange, therefore these are included as the road-based public transport demand.

4.7.6 According to the above table, it is estimated that the total passenger demand of public transport associated with the Proposed Development in the AM and PM peak hour would be approx. 3,348 pax/hr and 2,789 pax/hr respectively.

Public Transport Demand Allocation at Adjacent Public Transport Facilities

4.7.7 The subject site is located approx. 350m from Lai Chi Kok Bus Terminus, which is considered a reasonable walking distance. According to the interview survey conducted in March 2024, approx. 35% of residents of Kau Wa Keng Old Village and Kau Wa Keng San Tsuen are currently using the franchise bus service at the Lai Chi Kok Bus Terminus. A composition 65% and 35% of the estimated public transport demand would use services at Lai King Hill Road and Lai Chi Kok Bus Terminus respectively.

4.7.8 With reference to the portfolio of workplace of Kwai Chung residents to different destinations (i.e. the New Territories, Kowloon and Hong Kong Island), as reported in the "2021 Population Census", the passenger direction split by public transport mode from the Proposed Development is estimated in Table 4.7.5.

Table 4.7.5 Portfolio of Workplace of Kwai Chung Residents to Different Destinations and Directional Split on Lai King Hill Road

Main Mode of Transport to Place of Work	Number of Persons		
	MTR	Bus	PLB
Work in the same district	3,170	6,983	4,761
Work in another district (Hong Kong Island)	23,751	5,740	793
Work in another district (Kowloon)	28,903	15,666	2,104
Work in another district (New Towns)	8,833	18,939	9,128
Work in another district (Other areas in the New Territories)	4,518	4,681	442
<i>Sub-Total</i>	69,175	52,009	17,228
Directional Split on Lai King Hill Road Westbound	20,512	24,099	10,538
	30%	46%	61%
Directional Split on Lai King Hill Road Eastbound	48,663	27,910	6,690
	70%	54%	39%

4.7.9 By taking the estimated passenger demand for each transport mode from **Table 4.7.4**, and applying the directional split provided in **Table 4.7.5**, the adequacy results in AM and PM Peak are summarized in **Table 4.7.6**.

Table 4.7.6 Passenger Demand from Proposed Development Allocation the Adjacent Public Transport Facility

Location	(a) Spare Capacity Available for the Proposed Development ⁽¹⁾		(b) Overall Demand from the Proposed Development ⁽²⁾		(c) = (a) - (b) Adequacy	
	AM	PM	AM	PM	AM	PM
KAU WA KENG BUS STOP (LAI KING HILL ROAD WEST BOUND)						
Bus	1697	1777	702	585	995	1192
GMB	386	126	254	212	132	-86
KAU WA KENG BUS STOP (LAI KING HILL ROAD EAST BOUND)						
Bus	1803	2200	1203	1002	600	1198
GMB	80	163	163	135	-83	28
LAI CHI KOK BUS TERMINUS						
Bus	2360	2519	1026	855	1334	1664

Notes:

(1) From **Table 4.7.4**.

(2) It is assumed that all passengers heading to Lai King or Mei Foo MTR station will take bus/GMB for interchange for conservative assessment of the public transport demand.

4.7.10 The results reveal that the spare capacity of the assessed franchised bus will be adequate to cater for the public transport demand associated with Proposed Development in both AM and PM Peak Hour.

4.7.11 The spare capacity of the assessed GMB routes would be inadequate to cater for the public transport demand associated with Proposed

Development in the on Eastbound in the AM Peak Hour and Westbound in the PM Peak Hour.

Proposal of Feeder Service

4.7.12 According to the **Table 4.7.6**, it is estimated that the GMB demand associated with the Proposed Development would overload the existing GMB service on Lai King Hill Road.

4.7.13 To cater for the shortage in public transport services, the applicant proposed to provide feeder services to the nearby MTR station or bus interchange and to minimise adverse impact to the existing public transport services. Feeder service from the application site to Lai King Station is proposed. To allow planning flexibility subject to the actual road situation, the feasible type of vehicle can be franchised bus / GMB. Detail of the proposed feeder service is summarized below in **Table 4.7.7**. The bold-up plan of the proposed feeder service pick-up/drop-off space is shown in the MLP in drawing **Figure 4.5**.

Table 4.7.7 Proposed Feeder Service for the Application Site

Item	Proposed Feeder Service (by GMB)	Flexibility Review on Feeder Service (by Franchised Bus)		
Routing	To/from Application Site and nearby MTR Station / Bus Interchange			
Average Handing Capacity	19 Passengers	90 Passengers		
Headway	10 - 15 minutes (subject to road traffic condition)		60 minutes (subject to road traffic condition)	
Level of Service in Peak Hour	5 trips/hr		1 trips/hr	
Hourly Capacity	Approx. 95 pax/hr		Approx. 90 pax/hr	
<i>Shortfall in PT services⁽¹⁾</i>	83 pax/hr	86 pax/hr	83 pax/hr	86 pax/hr

Notes:

(1) From **Table 4.7.5**.

4.7.14 The proposed feeder service would provide adequate capacity for approximate 95 pax/hr or 90 pax/hr in the AM and PM peak hour, to cater for the exceeded peak hour passenger trip generation for an approximate 83 pax/hr and 86 pax/hr in the AM and PM peak hour respectively.

4.7.15 Subject to the actual demand, the proposed feeder service could be reviewed and adjusted accordingly.

Queuing Space Assessment

4.7.16 In view of the additional public transport demand, a queuing space assessment has been carried out to evaluate the impact on the existing bus and GMB stops at Lai King Hill Road, and at the proposed internal feeder pick-up/drop-off space within development. The queuing assessment results are shown in **Figure 4.6** and **Table 4.7.8**.

Table 4.7.8 Queuing Assessment at Lai King Hill Road Roadside Bus Stop

	AM	PM
KAU WA KENG BUS STOP (LAI KING HILL ROAD WEST BOUND)		
Roadside Bus Stop PT Demand ⁽¹⁾	956	797
Peak Hour Bus Trip ⁽²⁾	16	18
Ave. Waiting Passengers	60	45
Observed Peak Waiting Passengers	5	3
Waiting Area at Bus Stop	80	
Average Pedestrian Space	1.23	1.67
LOS Level	A	A
KAU WA KENG BUS STOP (LAI KING HILL ROAD EAST BOUND)		
Roadside Bus Stop PT Demand ⁽¹⁾	1366	1137
Peak Hour Bus Trip ⁽²⁾	16	19
Ave. Waiting Passengers	86	60
Observed Peak Waiting Passengers	14	3
Waiting Area at Bus Stop	85	
Average Pedestrian Space	0.85	1.34
LOS Level	C	A
INTERNAL FEEDER PICKUP DROPOFF WITHIN DEVELOPMENT		
Demand for Feeder Service ⁽³⁾	83 pax/hr	86 pax/hr
Peak Hour Bus Trip ⁽³⁾	5	5
Ave. Waiting Passengers	17	18
Waiting Area at Bus Stop	72	
Average Pedestrian Space	4.24	4.00
LOS Level	A	A

Notes:

(1) From **Table 4.7.6**, including GMB

(2) From **Table 4.7.2**

(3) From **Table 4.7.7**

4.7.17 Referring to **Table 4.7.8** above, the results reveal that the queuing space at both traffic direction of the Kau Wa Keng Bus Stop, and the internal feeder pick-up/drop-off space within development will be adequate to cater for the public transport demand associated with Proposed Development in both AM and PM Peak Hour.

4.8 Pedestrian Impact Assessment

Pedestrian Generation

4.8.1 Similar to **Chapter 4.7 Section 4.7.2**, pedestrian generation from the Proposed Development for AM and PM Peak is estimated with reference to "Travel Characteristics Survey (TCS) 2011" published by Transport Department and "2021 Population Census" published by Census and Statistics Department. The pedestrian generation is shown in **Table 4.8.1** below.

Table 4.8.1 Pedestrian Generation by the Proposed Development

Pedestrian Generation (ppl/hr) ⁽¹⁾	
AM Peak	PM Peak
3,787	3,155

Note:

(1) Pedestrian generation by the Proposed Development is assumed to be people who will take MTR, road-based transport and walk. The pedestrian trip generation and attraction been derived based on the modal split in **Table 4.7.2**.

Assessment Scenarios

4.8.2 Similar to the traffic impact assessment, Year 2035 is adopted as the design year of pedestrian assessment. Annual growth rate of **+0.5% p.a.** is adopted to produce the pedestrian forecasts for 2024 – 2035 to derive Year 2035 peak hour background pedestrian flows. Additionally, the future pedestrian volumes generated by the Proposed Development are taken into account for Year 2035 pedestrian flows.

4.8.3 Similarly, to evaluate the associated pedestrian impact likely to be induced by the Proposed Development, two scenarios were analysed and compared.

4.8.4 The first scenario (i.e. Year 2035 Reference Scenario) refers to the future pedestrian flows assumed the existing land lot to be developed as the **Approved Scheme** overall PR of not more than 5, while the second scenario (i.e. Year 2035 Design Scenario) refers to the future pedestrian flow with the **Proposed Scheme** with domestic PR of not more than 6 and non-domestic PR of not more than 0.5 is in place.

4.8.5 As mentioned in **Chapter 3.2**, it is proposed to shift the pedestrian crossing due to conflict with proposed western vehicular access of the Proposed Development.

4.8.6 Having considered the location of public transport facilities, it is expected the pedestrians generated by the development would mainly pass through the pedestrian crossing at Lai King Hill Road, then access to the bus stops at Lai King Hill Road westbound or to the Mei Foo MTR Station via Lai Yan Court. The assumed route for pedestrian flow generated and the locations of assessed pedestrian facilities are shown in **Figure 4.7**.

Performance of Pedestrian Facilities in Year 2035

4.8.7 In order to address the performance of the concerned pedestrian facilities, Level of Service (LOS) assessment of the critical footpaths have been conducted for Year 2035 Reference and Design Scenarios.

4.8.8 **Table 4.8.2 to Table 4.8.5** summarized the peak pedestrian flow and the pedestrian assessment results at the critical footpaths under the Year 2035 Reference and Design Scenarios.

Table 4.8.2 Design Year 2035 Level of Service in AM and PM Peaks along Key Footpath under Reference Scenario

Footpath		Actual Width (m)	Effective Clear Width ⁽¹⁾ (m)	Two-way Peak Hourly Flow (ped/hr)		Flow Rate ⁽²⁾ (ped/min/m)		LOS (Level)	
				AM	PM	AM	PM	AM	PM
F1(W)	Lai King Hill Road Northern Footpath	4.5	3.5	2,265	765	12.9	4.4	A	A
F1(E)	Lai King Hill Road Northern Footpath	2	1	780	670	15.6	13.4	A	A
F2	Lai King Hill Road Southern Footpath	2.8	1.8	1,715	1,260	19.1	14.0	B	A
F3	Wa Lai Path Footpath	9.5	8.5	1,290	1,030	3.0	2.4	A	A

Notes:

- (1) Effective clear width = Actual width (on-site measurement) minus 0.5m dead width on both sides, and minus the width of passengers queuing at bus stops.
- (2) Pedestrian flow rates are computed based on effective clear width, with 1.2 peak factor applied for the peak minute flow rate.

Table 4.8.3 Design Year 2035 Level of Service in AM and PM Peaks along Key Pedestrian Crossing under Reference Scenario

Crossing Facility	Clear Width (m)	Cycle Time (s)		Green Time Proportion		Pedestrian Capacity ⁽¹⁾ (ped/hr)		Two-way Pedestrian Flow ⁽²⁾ (ped/hr)		Volume/Capacity (V/C) Ratio		
		AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	
C1	Pedestrian Crossing Across Lai King Hill Road	6.2	90	90	20%	20%	2,360	2,360	1,715	1,260	0.73	0.53

Notes:

- (1) Crossing Capacity (ped/hr) = $K (1,900 \text{ ped/m/hr}) \times \text{Green Time Proportion} \times W (\text{width of crossing})$
- (2) Pedestrian flow rates are computed based on effective clear width, with 1.2 peak factor applied for the peak minute flow rate.

Table 4.8.4 Design Year 2035 Level of Service in AM and PM Peaks along Key Footpath under Design Scenario

Footpath		Actual Width (m)	Effective Clear Width ⁽¹⁾ (m)	Two-way Peak Hourly Flow (ped/hr)		Flow Rate ⁽²⁾ (ped/min/m)		LOS (Level)	
				AM	PM	AM	PM	AM	PM
F1(W)	Lai King Hill Road Northern Footpath	4.5	3.5	2,700	1,145	15.4	12.5	B	A
F1(E)	Lai King Hill Road Northern Footpath	2	1	920	735	18.4	14.7	B	A
F2	Lai King Hill Road Southern Footpath	2.8	1.8	2,010	1,625	22.3	18.1	B	B
F3	Wa Lai Path Footpath	9.5	8.5	1,500	1,195	3.5	2.8	A	A

Notes:

- (1) Effective clear width = Actual width (on-site measurement) minus 0.5m dead width on both sides, and minus the width of passengers queuing at bus stops.
- (2) Pedestrian flow rates are computed based on effective clear width, with 1.2 peak factor applied for the peak minute flow rate.

Table 4.8.5 Design Year 2035 Level of Service in AM and PM Peaks along Key Pedestrian Crossing under Design Scenario

Crossing Facility	Clear Width (m)	Cycle Time (s)		Green Time Proportion		Pedestrian Capacity ⁽¹⁾ (ped/hr)		Two-way Pedestrian Flow ⁽²⁾ (ped/hr)		Volume/Capacity (V/C) Ratio		
		AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	
C1	Pedestrian Crossing Across Lai King Hill Road	6.2	90	90	20%	20%	2,360	2,360	2,010	1,625	0.85	0.69

Notes:

- (1) Crossing Capacity (ped/hr) = $K (1,900 \text{ ped/m/hr}) \times \text{Green Time Proportion} \times W (\text{width of crossing})$
- (2) Pedestrian flow rates are computed based on effective clear width, with 1.2 peak factor applied for the peak minute flow rate.

4.8.9 As shown in the tables above, the assessed footpaths and pedestrian crossing would be operating with desirable walking conditions at LOS "A" to "B" and V/C ratio less than 0.9 under both Reference and Design Scenario in Year 2035. The pedestrian facilities would hence be adequate to cater for the additional pedestrian demand generated from the Proposed Development in design Year 2035.

5 TRAFFIC IMPACT ASSESSMENT (INTERIM SCENARIO)

5.1.1 As the applicant is currently not the only land owner of this Application Site, phased development of this Application Site is proposed with Phase 1A, Phase 1B developments to be developed by the Applicant. The implementation of the Remaining Phases A and B will be subject to actual development plan by third-parties.

5.1.2 Interim traffic assessment is conducted to reveal the traffic impact with only completion and population intake of the proposed Phase 1A, Phase 1B developments to be developed by the Applicant, and the development of Remaining Phase A and Remaining Phase B by third-parties.

Assessment Scenarios

5.1.3 To evaluate the associated traffic impact likely to be induced by the partial completion of the site, interim scenarios assuming the phased development are set up as below

Interim Scenario A, assuming only completion of P1A & P1B

Year 2035 Interim Scenario A

= Year 2024 observed traffic flows \times growth factor during the period of Year 2024 – 2035

plus traffic generations of adjacent major planned/committed developments in the vicinity

plus trip generation and attraction of the proposed P1A and P1B

Interim Scenario B, assuming only completion of P1A & P1B & RPA

Year 2035 Interim Scenario B

= Year 2035 Interim Scenario A

plus trip generation and attraction of Remaining Phase A

Interim Scenario C, assuming only completion of P1A & P1B & RPB

Year 2035 Interim Scenario C

= Year 2035 Interim Scenario A

plus trip generation and attraction of Remaining Phase B

Trip Generation and Attraction

5.1.4 The traffic generation and attraction trips for the interim scenarios in Year 2035 is summarized in **Table 5.1.1**.

Table 5.1.1 Traffic Generation and Attraction of Proposed Residential Development (pcu/hr)

Proposed Development	AM		PM	
	Gen	Att	Gen	Att
Phase 1A	172	102	74	97
Phase 1B	126	76	55	72
Remaining Phase A	100	59	43	57
Remaining Phase B	206	120	87	113
Interim Scenario A (P1A+P1B)	298	178	129	169
Interim Scenario B (P1A+P1B+RPA) ⁽¹⁾	398	237	172	226
Interim Scenario C (P1A+P1B+RPB) ⁽¹⁾	504	298	216	282

5.1.5 As indicated in **Table 5.1.1**, the total trip generated by the Proposed Development in the AM and PM peak would be around 476 pcu/hr and 298 pcu/hr (two-way) under Interim Scenario A, 635 pcu/hr and 398 pcu/hr (two-way) under Interim Scenario B, and 802 pcu/hr and 498 pcu/hr (two-way) under Interim Scenario C respectively.

5.1.6 The forecasted traffic flows for the above assessment scenario are presented in **Figures 5.1** to **Figure 5.3**.

5.2 Junction Capacity Assessment

5.2.1 Junction capacity assessment was carried out at the identified key junctions for Year 2035 Interim Scenario A, Interim Scenario B and Interim Scenario C. Assessment results for the key junctions are summarized in **Table 5.2.1** below and the detailed calculations are appended in **Appendix A**.

Table 5.2.1 Year 2035 Future Junction Performance

Junction	Type	Scenario A		Scenario B		Scenario C	
		Performance ⁽¹⁾		Performance ⁽¹⁾		Performance ⁽¹⁾	
		AM	PM	AM	PM	AM	PM
J1	Lai King Hill Road / King Lai Path	Signalized	>100%	>100%	>100%	>100%	>100%
J2	Lai King Hill Road / Ching Shan Terrance / Estate Road	Signalized	>100%	>100%	>100%	>100%	>100%
J3_a	Lai King Hill Road / Kwai Chung Interchange ⁽²⁾	Signalized	13%	42%	8%	35%	2%
J3_b	Lai King Hill Road / Kwai Chung Interchange ⁽³⁾	Signalized	-4%	15%	-9%	10%	-13%
J3_c	Lai King Hill Road / Kwai Chung Interchange ⁽⁴⁾	Signalized	16%	39%	15%	34%	15%
J4	Mei Lai Road/ Lai Wan Road	Signalized	>100%	>100%	>100%	>100%	>100%
J5	Mei Lai Road/ Cheung Sha Wan Road	Signalized	45%	54%	41%	52%	37%
J6	Lai King Hill Road Pedestrian Crossing near Site Access ⁽⁵⁾	Signalized	>100%	>100%	>100%	>100%	>100%

Notes:

(1) Figures shown represent "Reserve Capacity" (RC) in % for signalized junctions.

(2) J3 under existing junction configuration.

- (3) J3 with TD planned improvement works.
- (4) The junction modification scheme in approved planning application (No. A/KC/489) is incorporated for assessment.
- (5) J6 with the proposed Lai King Hill Road and pedestrian crossing rearrangement.

5.2.2 The above results reveal that for all Interim Scenarios, all identified key junctions would operate within capacity in Year 2035, with implementation of the junction modification scheme in approved planning application (No. A/KC/489) for J3. The junction improvement works at J3 will be implemented before the completion and population intake of any phase of the Application Site.

5.3 Link Capacity Assessment

5.3.1 Link capacity assessment was carried out at the identified road links for Year 2035 Interim Scenarios. Assessment results are summarized in **Table 5.3.1** below.

Table 5.3.1 Year 2035 Future Link Performance ⁽¹⁾

Road Link ⁽²⁾	Direction	Unit	Link Capacity	Traffic Flows (pcu/hr)						Volume/Capacity (V/C) Ratio						
				Interim Scenario A		Interim Scenario B		Interim Scenario C		Interim Scenario A		Interim Scenario B		Interim Scenario C		
				AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	
L1	Lai King Hill Road (10m wide section)	Two-way	pcu/hr	2,390	1,517	1,356	1,628	1,425	1,744	1,495	0.63	0.57	0.68	0.60	0.73	0.63
			veh/hr	2,200	1,246	1,124	1,340	1,183	1,435	1,241	0.57	0.51	0.61	0.54	0.65	0.56
L2	Lai King Hill Road (8m wide section)	Two-way	pcu/hr	1,850	1,052	751	1,163	820	1,279	890	0.57	0.41	0.63	0.44	0.69	0.48
			veh/hr	1,700	863	627	955	685	1,052	743	0.51	0.37	0.56	0.40	0.62	0.44
L3	Lai King Hill Road (10m wide section)	Two-way	pcu/hr	2,390	937	786	1,048	855	1,164	925	0.39	0.33	0.44	0.36	0.49	0.39
			veh/hr	2,200	765	654	857	712	954	770	0.35	0.30	0.39	0.32	0.43	0.35
L4	Lai King Hill Road (10m wide section)	Two-way	pcu/hr	2,390	869	800	916	830	967	859	0.36	0.33	0.38	0.35	0.40	0.36
			veh/hr	2,200	722	668	762	694	804	718	0.33	0.30	0.35	0.32	0.37	0.33
L5	Kwai Chung Interchange (6.8m wide section)	NB	pcu/hr	2,800	1050	666	1088	702	1127	738	0.38	0.24	0.39	0.25	0.40	0.26
			veh/hr	2,600	869	552	901	582	933	612	0.33	0.21	0.35	0.22	0.36	0.24
L6	Kwai Chung Interchange (6m wide section)	SB	pcu/hr	1,400	644	694	709	722	778	751	0.46	0.50	0.51	0.52	0.56	0.54
			veh/hr	1,300	534	571	588	595	645	619	0.41	0.44	0.45	0.46	0.50	0.48

Notes:

- (1) Link capacity estimated according to TPDM Vol.2 Ch.2.4, for single 2-lane carriageway (for L1 to L4 with road width of 8m and 10m) or for dual 2-lane carriageway (for L5 and L6 with road width of 6m and 6.8m). Data in terms of veh/hr and pcu/hr are converted according to survey pcu factor.
- (2) For conservative approach, the road links are assessed based on the greatest traffic flows at the road sections of corresponding roads within AOI.

5.3.2 As shown in the table above, the identified road section would continue to have sufficient link capacity to cater for the future traffic demand with the Proposed Development by Year 2035. The Proposed Development would not induce adverse traffic impact to the surrounding road network during the interim stage.

5.4 Public Transport Services – Interim Scenario

5.4.1 The increase in demand on public transport service under the Interim Scenarios are estimated with the same methodology as presented in **Chapter 4.7** and summarized in **Table 5.4.1** below.

Table 5.4.1 Passenger Trips Generated from Proposed Development in Interim Scenario

	Interim Scenario A		Interim Scenario B		Interim Scenario C	
No. of Flats	3,457 flats		4,615 flats		5,894 flats	
Population ⁽¹⁾	9,333		12,459		15,912	
Peak Hours Passenger Trip Generation ⁽²⁾ (pax/hr)	AM	PM	AM	PM	AM	PM
	2,050	1,708	2,736	2,280	3,495	2,912
Passenger Demand for MTR (40%)	820	683	1,094	912	1,398	1,165
Passenger Demand for Bus (30.1%)	617	514	824	686	1,052	877
Passenger Demand for GMB (10%)	205	171	274	228	350	291
KAU WA KENG BUS STOP (LAI KING HILL ROAD WEST BOUND)						
Bus	344	287	460	383	587	489
GMB	125	104	167	139	213	178
KAU WA KENG BUS STOP (LAI KING HILL ROAD EAST BOUND)						
Bus	590	491	787	656	1005	838
GMB	80	67	107	89	137	113
LAI CHI KOK BUS TERMINUS						
Bus	503	419	671	559	858	715

Notes:

- (1) Person Per Occupied Flat (PPOF) of 2.7 is assumed to be based on the 2021 census of Kwai Tsing District.
- (2) According to "Travel Characteristics Survey (TCS) 2011" published by Transport Department, the daily mechanized trip rate is 1.83 trips per person, while the AM and PM peak accounted for about 12% and 10% of the daily trips.

Table 5.4.2 Adequacy of Passenger Demand from Proposed Development Allocation the Adjacent Public Transport Facility in Interim Scenario

Location	Spare Capacity Available for the Proposed Development ⁽¹⁾		Adequacy in Interim Scenario A		Adequacy in Interim Scenario B		Adequacy in Interim Scenario C	
	AM	PM	AM	PM	AM	PM	AM	PM
KAU WA KENG BUS STOP (LAI KING HILL ROAD WEST BOUND)								
Bus	1697	1777	1353	1490	1237	1394	1110	1288
GMB	386	126	261	22	219	-13	173	-52
KAU WA KENG BUS STOP (LAI KING HILL ROAD EAST BOUND)								
Bus	1803	2200	1213	1709	1016	1544	798	1362
GMB	80	163	0	96	-27	74	-57	50
LAI CHI KOK BUS TERMINUS								
Bus	2360	2519	1857	2100	1689	1960	1502	1804

Notes:

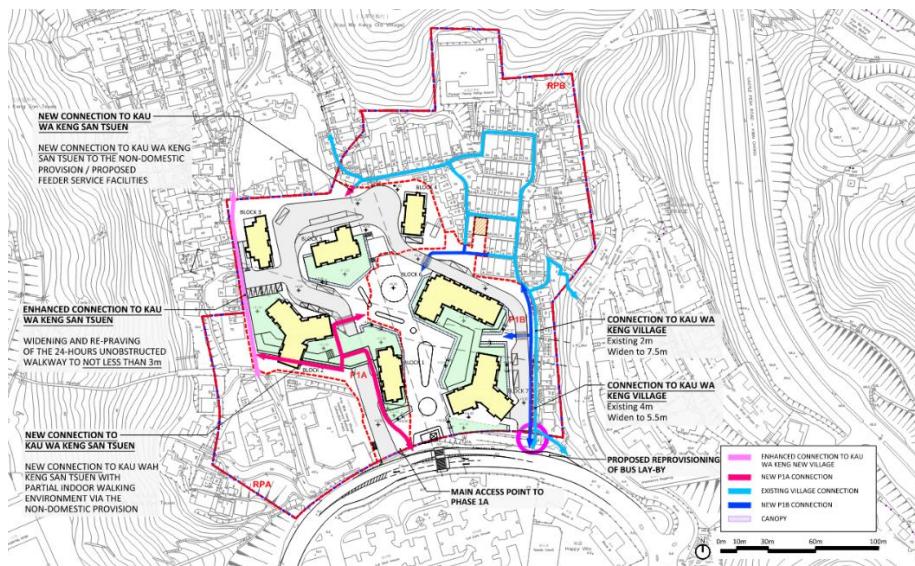
- (1) From Table 4.7.3

5.4.2 Referring to **Table 5.4.1** and **Table 5.4.2** above, the results reveal that the spare capacity of the assessed franchised bus will be adequate to cater for the public transport demand associated with Proposed Development in both AM and PM Peak Hour under all interim Scenarios A, B and C, and the spare capacity of the assessed GMB routes would be inadequate to cater for the public transport demand associated with Proposed Development in the on Eastbound in the AM Peak Hour and Westbound in the PM Peak Hour under Interim Scenarios A, B, and C.

5.4.3 Similar to **Chapter 4.7**, to cater for the shortage in public transport services, the applicant proposed to provide feeder services to the nearby MTR station or bus interchange and to minimise adverse impact to the existing public transport services. Feeder service from the application site to Lai King Station is proposed. To allow planning flexibility subject to the actual road situation, the feasible type of vehicle can be franchised bus / GMB. Detail of the proposed feeder service is summarized below in **Table 5.4.3**.

Table 5.4.3 Proposed Feeder Service for the Application Site

Item	AM	PM	AM	PM
Routing	To/from Application Site and nearby MTR Station / Bus Interchange			
Type of vehicle	GMB			
Average Handing Capacity	19 Passengers			
Headway	15 minutes (subject to road traffic condition)		60 minutes (subject to road traffic condition)	
Level of Service in Peak Hour	4 trips/hr		1 trip/hr	
Hourly Capacity	Approx. 76 pax/hr		Approx. 90 pax/hr	


5.4.4 The proposed feeder service would provide adequate capacity for approximate 76 pax/hr or 90 pax/hr in the AM and PM peak hour, to cater for the exceeded peak hour passenger trip generation in the Interim Scenarios. Subject to the actual demand, the proposed feeder service could be reviewed and adjusted accordingly.

5.5 Pedestrian Walking Condition – Interim Scenario

5.5.1 In **Chapter 4.8**, it is revealed that under the ultimate stage, the assessed footpaths and pedestrian crossing would be operating with desirable walking conditions. The pedestrian facilities would hence be adequate to cater for the additional pedestrian demand generated from the P1A and P1B of the Proposed Development.

Additional Pedestrian Enhancements

5.5.2 In view that the residents living in existing Kau Wa Keng Old Village and Kau Wa Keng San Tsuen will be using the existing footpaths adjacent to the boundary of P1A and P1B to/from Lai King Hill Road, the Applicant would take the opportunity of the Phase 1A, Phase 1B accessibility for these two existing villages. Widened public access will be provided at all times. **Diagram 1** below illustrated the proposed additional pedestrian enhancement.

Diagram 1 Proposed Additional Pedestrian Enhancements

5.5.3 Kau Wa Keng San Tsuen is currently accessible from Lai King Hill Road via the existing footpath along the nullah at the western fringe of the P1A and RPA. In the Interim Scenario, the footpath section within P1A is proposed to be widened from the existing 1.5 m width to not less than 3m wide (through zone) in accordance with the Hong Kong Planning Standards and Guidelines (HKPSG) width standard for footpaths/walkways in rural land use, and to be open for public access at all times and connects with the existing footpath within RPA.

5.5.4 In addition, new connections to Kau Wa Keng San Tsuen with partial indoor walking environment via the non-domestic provision and the proposed feeder service facilities will be provided within P1A.

5.5.5 The existing walkway to Kau Wa Keng Old Village from Lai King Hill Road falls entirely within RPB, which is currently 2m in width at the narrowest section. In the Interim Scenario, voluntary setbacks will be provided along the eastern boundary of P1B such that the walkway will be widened from the current minimum of 2m to a minimum of 5.5 m.

To further enhance walkability of pedestrians to/from Kau Wa Keng Old Village, widening / improvement existing staircase or new ramp at the or Kau Wa Keng Old Village access will be provided. Street furniture and landscaping features such as path lighting and tree planting will be provided along the widened part of walkway within P1B.

5.5.6 With the above additional pedestrian enhancement, it is expected that the performance of the existing pedestrian facilities would be maintained if not improved.

6 CONCLUSION

6.1 Summary

6.1.1 The Application Site falls within the "Comprehensive Development Area" zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung on the Approved Kwai Chung Outline Zoning Plan (OZP) No. S/KC/32.

6.1.2 The Applicant submitted a S16 Planning Application No. A/KC/489. The comprehensive development proposed in the Planning Application No. A/KC/489 ("Approved Scheme"), comprises 14 residential blocks with an overall PR of not more than 5 and maximum BH of not more than +120mPD.

6.1.3 The Planning Application No. A/KC/489 was deliberated in the TPB Metro Planning Committee Meeting held on 14 July 2023 (the TPB Meeting). During the TPB meeting, TPB members raised concerns on the provision of social welfare facilities and retail shops, as quoted from the meeting minutes^[1]

- *"Some Members considered that retail facilities should be provided in the Proposed Development to cater for the daily needs of the future residents." and "Some Member shared the view that the provision of social welfare facilities in the Proposed Development was inadequate...".*
- *"the development intensity of the Proposed Development could be increased for better land utilisation, e.g. provision of retail and more GIC facilities.".*

After deliberation, the Planning Application No. A/KC/489 was approved with conditions.

[1] Minutes of 722nd Meeting of the Metro Planning Committee held at 9:00 a.m. on 14.7.2023

6.1.4 The Applicant takes the initiative to review the **Approved Scheme** and endeavours to take forward the provision of more of social welfare facilities and retail shops. The **Proposed Scheme**, keeping the phasing strategy adopted in the **Approved Scheme**, comprises 15 building blocks (including 14 building blocks with residential use) with domestic PR of not more than 6 and maximum BH of not more than +147.55mPD. Non-domestic PR of not more than 0.5 is designated for proposed retail shops, existing historical buildings, and social welfare facilities to nurture an inclusive and liveable community in the convenient location of Kwai Chung Area.

6.1.5 A Traffic Impact Assessment (TIA) study was carried out to evaluate the likely traffic impact associated with the Proposed Development, in support of the Section 16 application for the application site.

6.1.6 The proposed provision of internal parking and servicing facilities for each site of the subject development is in full compliance with the HKPSG requirements and will be self-contained within the respective

site boundary. Vehicles will access to/from each site of the subject development through the vehicular access at Lai King Hill Road.

6.1.7 The identified key junctions in the vicinity were assessed with respect to traffic generation of the Proposed Development upon Year 2035 (3 years after the target Completion Year 2032), taking into account the traffic generation by the major planned/recently constructed developments in the vicinity.

6.1.8 Traffic impact assessment scenarios were set up for the Proposed Development, namely Year 2035 Reference scenario (the existing land lot to be developed as the **Approved Scheme** overall PR of not more than 5) and Year 2035 Design scenario (the existing land lot to be developed as the **Proposed Scheme** with domestic PR of not more than 6 and non-domestic PR of not more than 0.5 is in place).

6.1.9 The junction assessment results revealed that the identified key junctions would operate within capacity with the Proposed Development in Year 2035, with the implementation of the junction modification scheme in approved planning application (No. A/KC/489). It is anticipated that the implication to the road network with the Proposed Development would be minimal.

6.1.10 Assessment results also revealed that the identified key road links would continue to operate within capacity under both Reference and Design scenarios with the Proposed Development by Year 2035.

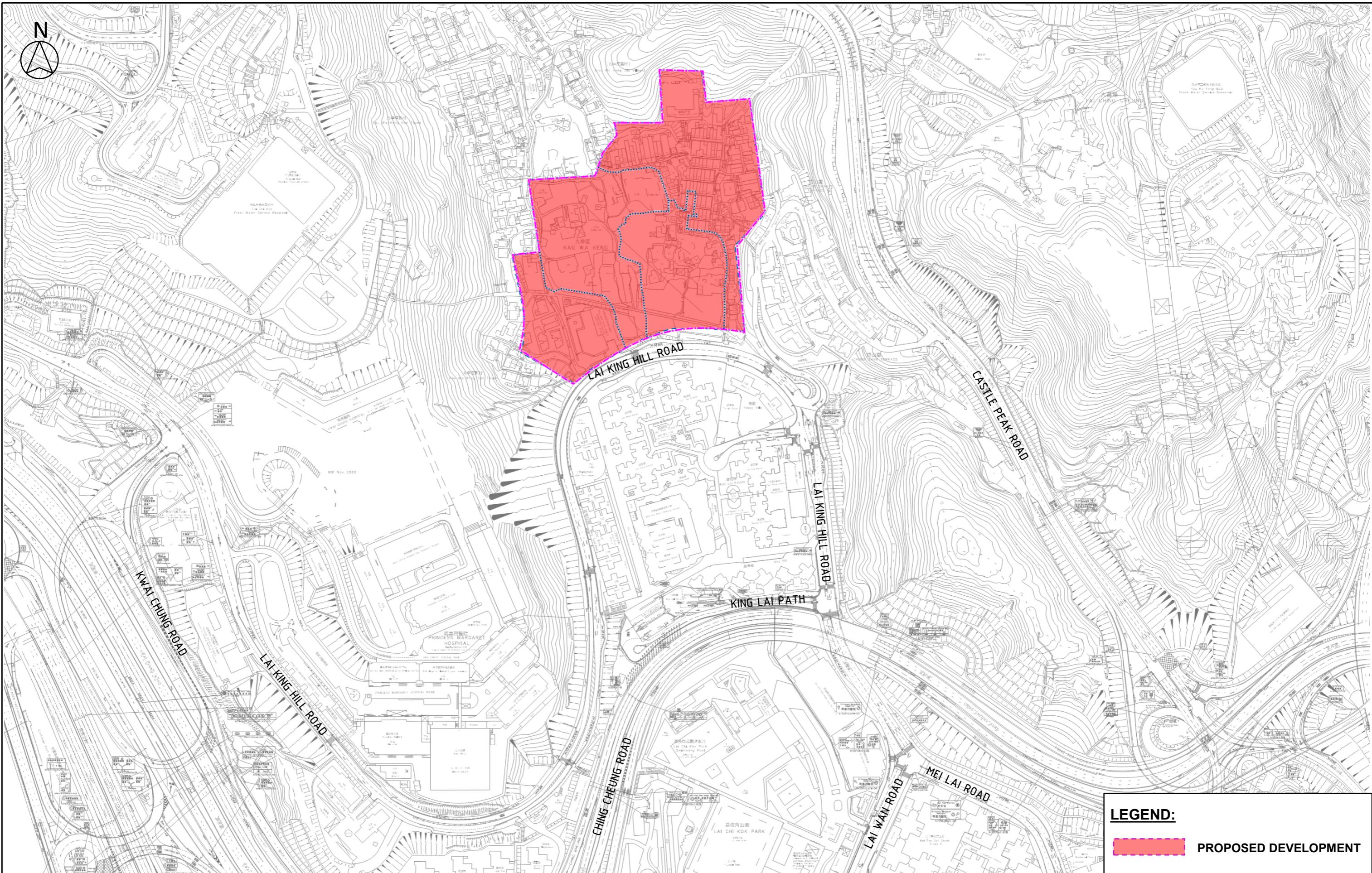
6.1.11 Based on the public transport utilization assessment, the results reveal that the overall spare capacity of the assessed franchised bus and GMB routes would not be adequate to cater for the public transport demand associated with Proposed Development.

6.1.12 To cater for the shortage in public transport services, the applicant proposed to provide feeder services to the nearby MTR station or bus interchange to minimise adverse impact to the existing public transport services. Feeder service from the application site to Lai King Station is proposed. Detail of the proposed feeder service is discussed in **Chapter 4.7**.

6.1.13 Pedestrian impact assessment has been conducted and the walking condition on the critical footpath in vicinity of the application site is desirable during both AM and PM peaks in Year 2035. No adverse pedestrian impact will be generated by the Proposed Development.

6.1.14 Interim traffic assessment is conducted to reveal the traffic impact with only completion and population intake of the proposed Phase 1A, Phase 1B developments to be developed by the Applicant, and the development of Remaining Phase A and Remaining Phase B by third-parties.

6.1.15 The interim junction assessment results revealed that all identified key junctions would operate within capacity with the completion and population intake of Remaining Phase A and Remaining Phase B, with the implementation of the junction modification scheme in approved planning application (No. A/KC/489).


- 6.1.16 The interim link capacity assessment results revealed that the identified key road links would continue to operate within capacity under interim scenarios with the Proposed Development by Year 2035.
- 6.1.17 It is viewed that both the public transport services and the pedestrian facilities would be sufficient to cater for the pedestrian demand in the interim scenarios given that it had be assessed that there is no capacity issue in the ultimate stage.
- 6.1.18 Additional pedestrian enhancement schemes have been proposed to improve the accessibility and walking condition for the residents living in existing Kau Wa Keng Old Village and Kau Wa Keng San Tsuen. With the additionally proposed pedestrian enhancements, it is expected that the performance of the existing pedestrian facilities would be maintained if not improved.

6.2 Conclusion

- 6.2.1 It could be concluded that the Proposed Development will not induce insurmountable traffic impact on the surrounding road network and thus is feasible from the traffic engineering point of view.

Figures

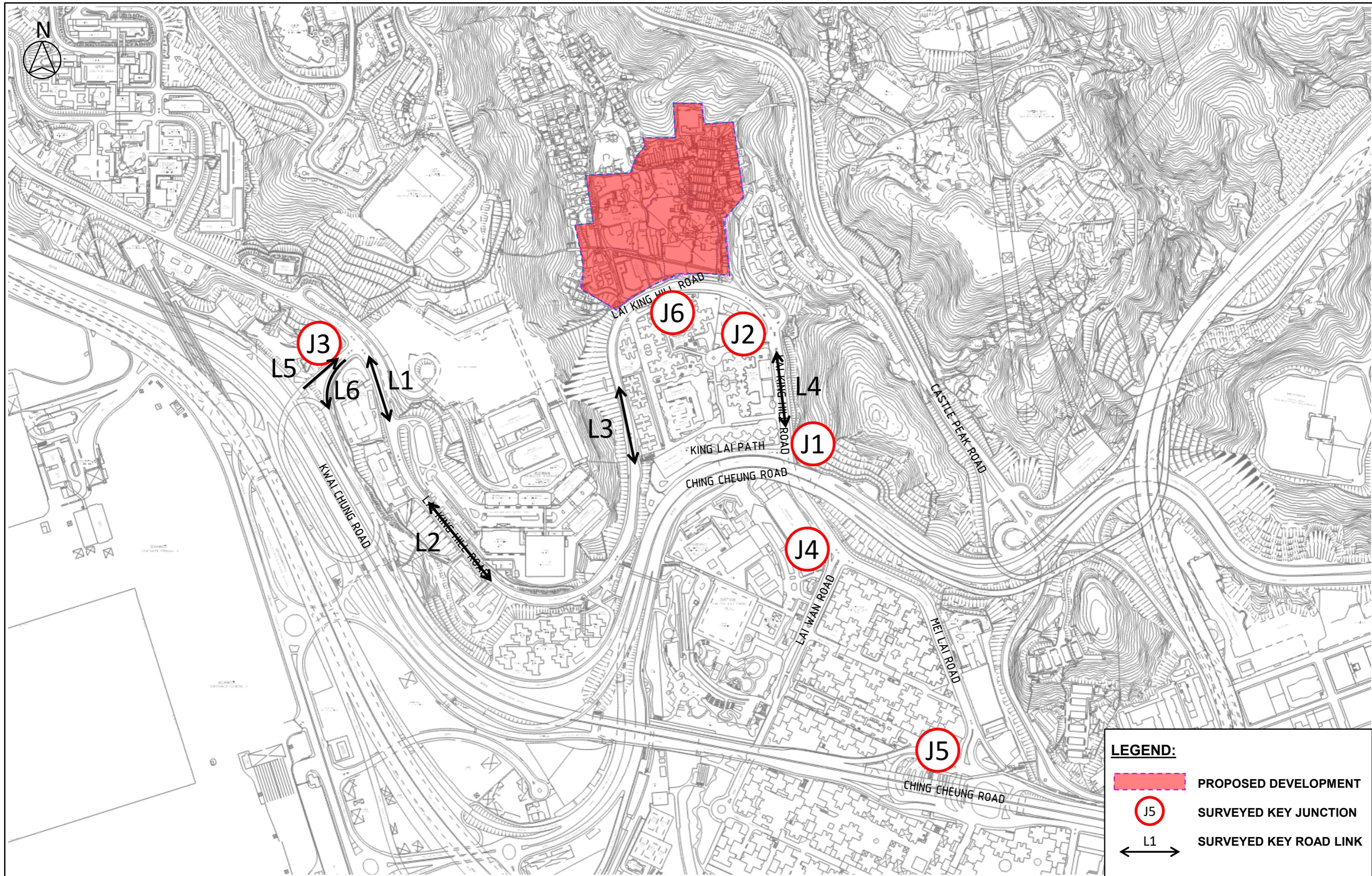
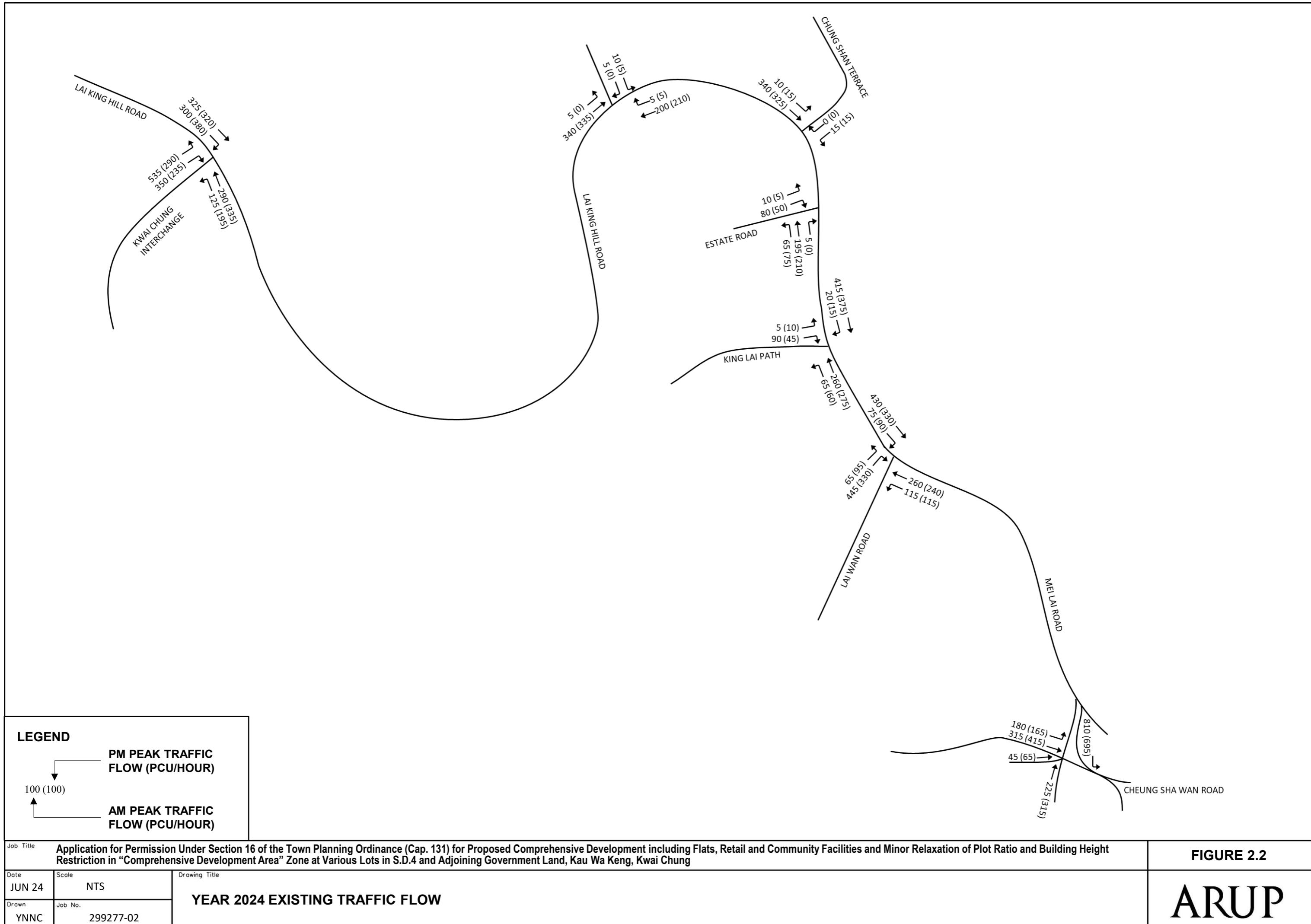

Job Title **Application for Permission Under Section 16 of the Town Planning Ordinance (Cap. 131) for Proposed Comprehensive Development including Flats, Retail and Community Facilities and Minor Relaxation of Plot Ratio and Building Height Restriction in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung**

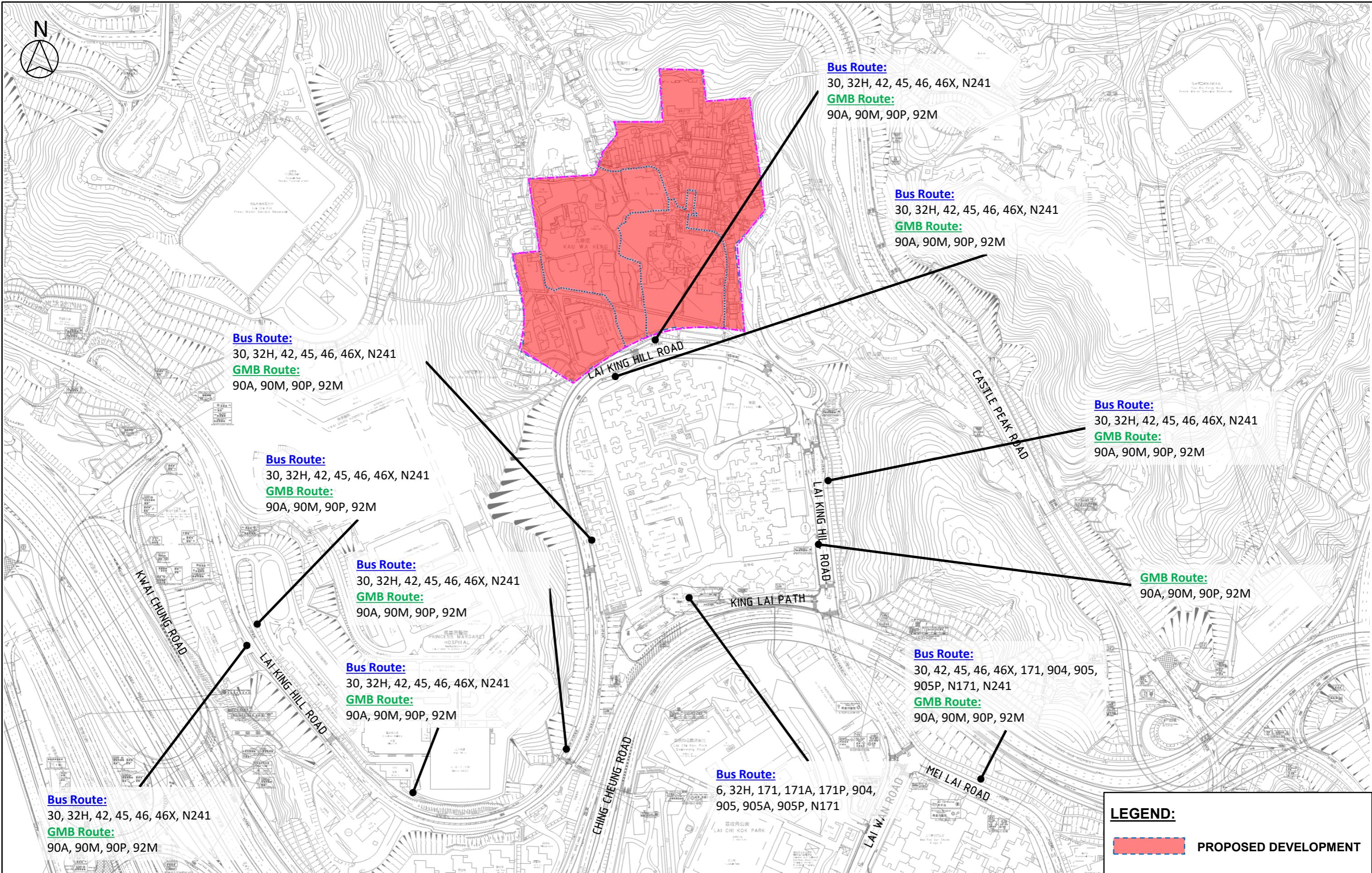
FIGURE 1.1

Date	Scale	Drawing Title
JUN 24	NTS	
Drawn YNNC	Job No. 299277-02	

LOCATION OF APPLICATION SITE

ARUP


Job Title Application for Permission Under Section 16 of the Town Planning Ordinance (Cap. 131) for Proposed Comprehensive Development including Flats, Retail and Community Facilities and Minor Relaxation of Plot Ratio and Building Height Restriction in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung


FIGURE 2.1

Date	Scale	Drawing Title
JUN 24	NTS	
Drawn	Job No.	299277-02

LOCATION OF SURVEYED JUNCTIONS IN THE VICINITY OF PROPOSED DEVELOPMENT

ARUP

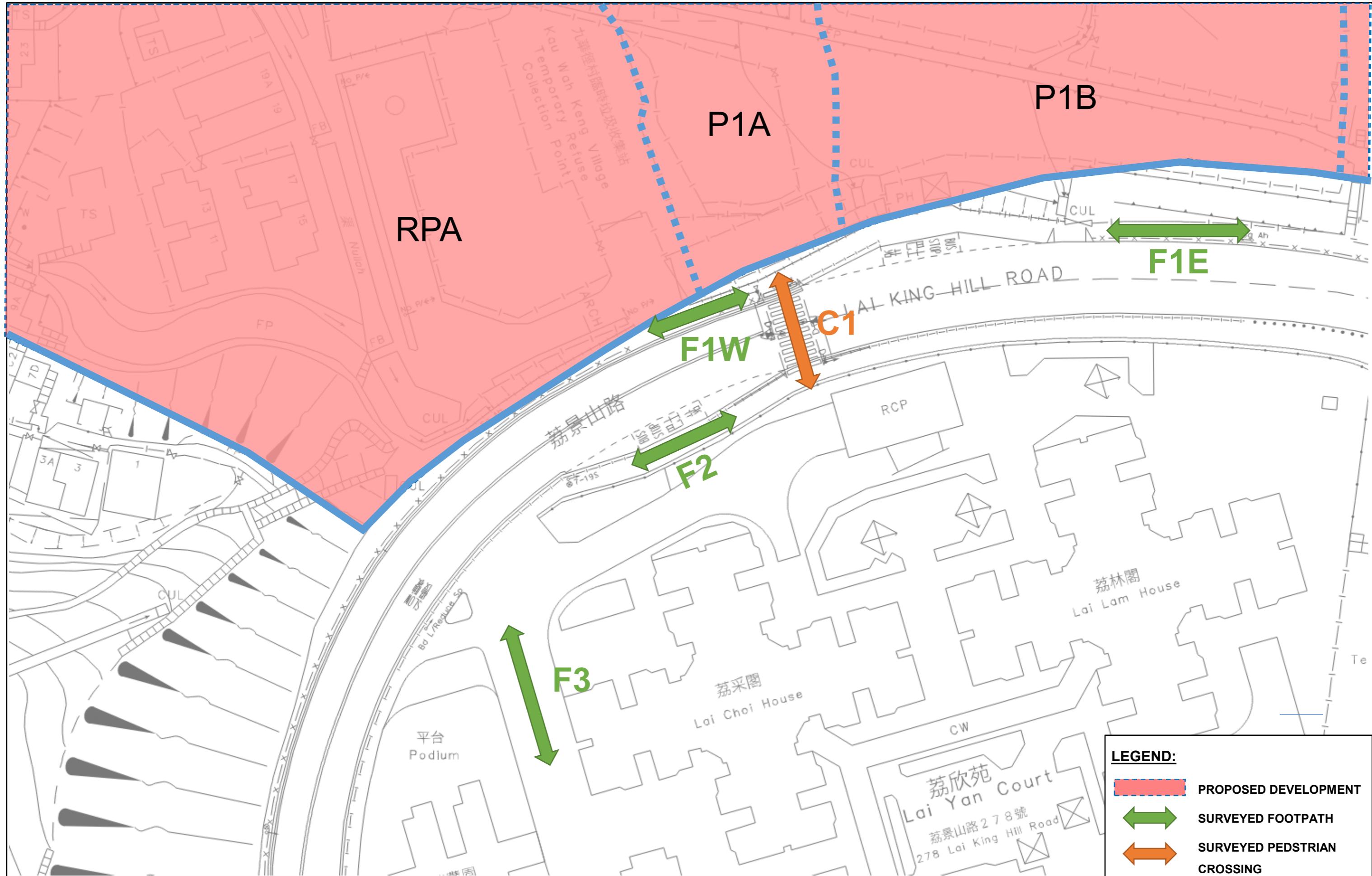
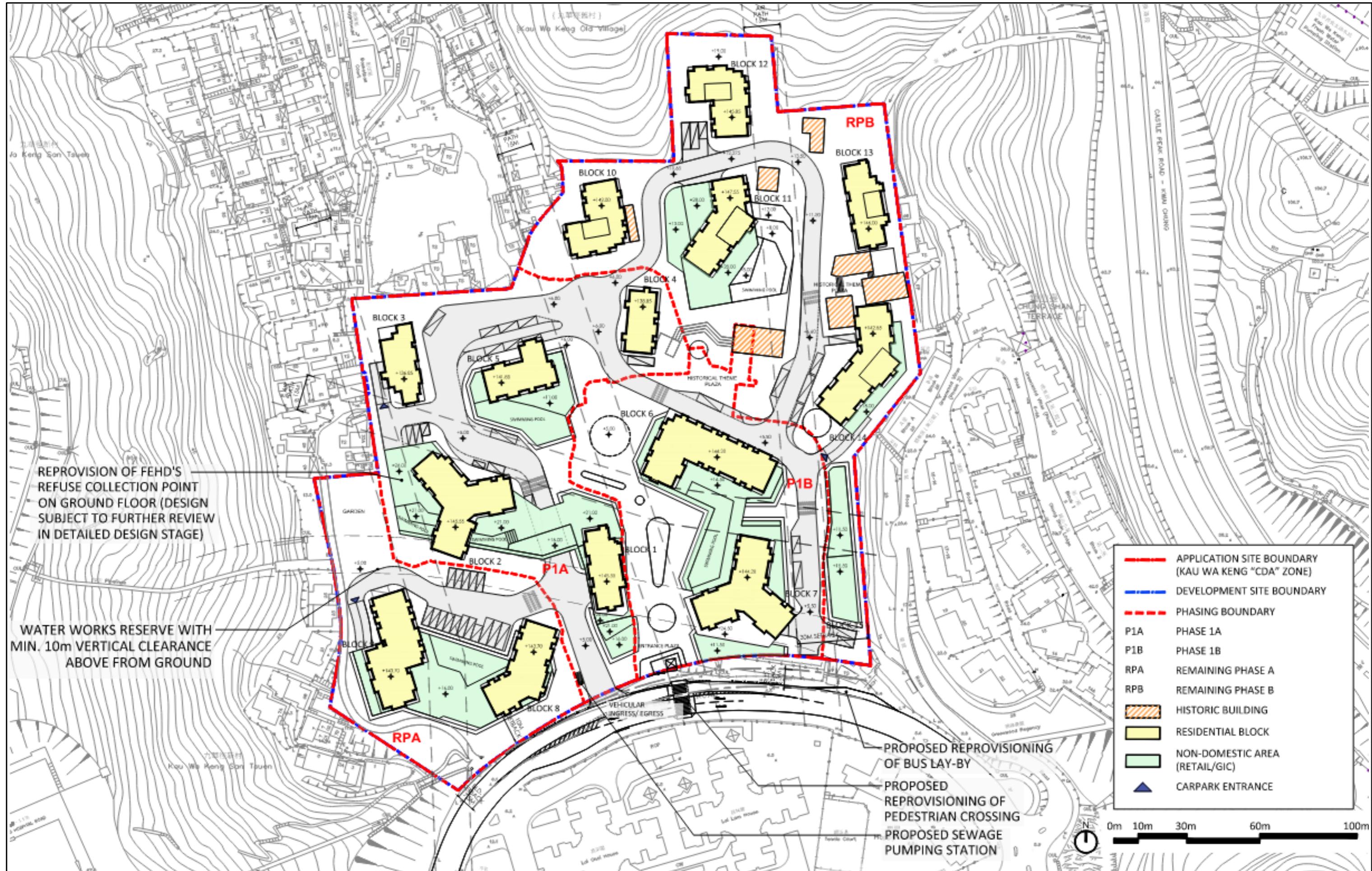
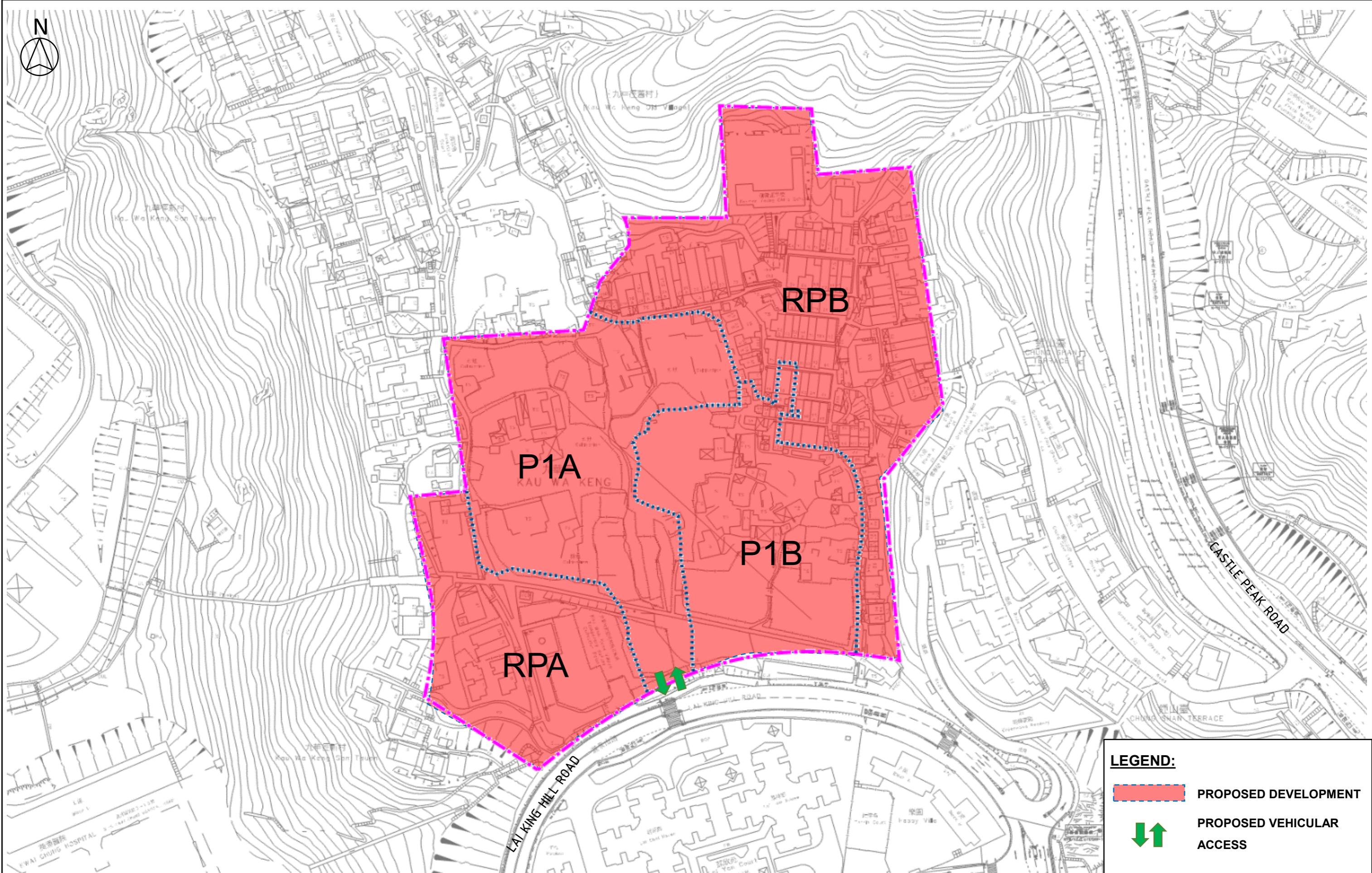

Job Title Application for Permission Under Section 16 of the Town Planning Ordinance (Cap. 131) for Proposed Comprehensive Development including Flats, Retail and Community Facilities and Minor Relaxation of Plot Ratio and Building Height Restriction in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung

FIGURE 2.3


Date	Scale	Drawing Title
JUN 24	NTS	
Drawn	Job No.	299277-02

PUBLIC TRANSPORT FACILITIES IN THE VICINITY OF PROPOSED DEVELOPMENT

ARUP



Date	Scale	Drawing Title		
JUN 24	NTS			
Drawn	Job No.			
YNNC	299277-02	PEDESTRIAN FACILITIES ALONG MAJOR PEDESTRIAN ROUTES JUNCTIONS IN THE VICINITY OF PROPOSED DEVELOPMENT		
ARUP				

Date	Scale	Drawing Title
JUN 24	NTS	
Drawn YNNC	Job No. 299277-02	

ARUP

Job Title Application for Permission Under Section 16 of the Town Planning Ordinance (Cap. 131) for Proposed Comprehensive Development including Flats, Retail and Community Facilities and Minor Relaxation of Plot Ratio and Building Height Restriction in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung

FIGURE 3.2

Date	Scale	Drawing Title
JUN 24	NTS	
Drawn YNNC	Job No. 299277-02	

PROPOSED VEHICULAR ACCESSES OF PROPOSED DEVELOPMENT

ARUP

APPLICATION SITE

PROPOSED RELOCATION OF EXISTING BUS STOP

Temporary structure to be demolished for footpath / waiting space at proposed relocated bus stop.

PROPOSED RELOCATION OF PEDESTRIAN CROSSING (SAME DIMENSION TO BE PROVIDED)

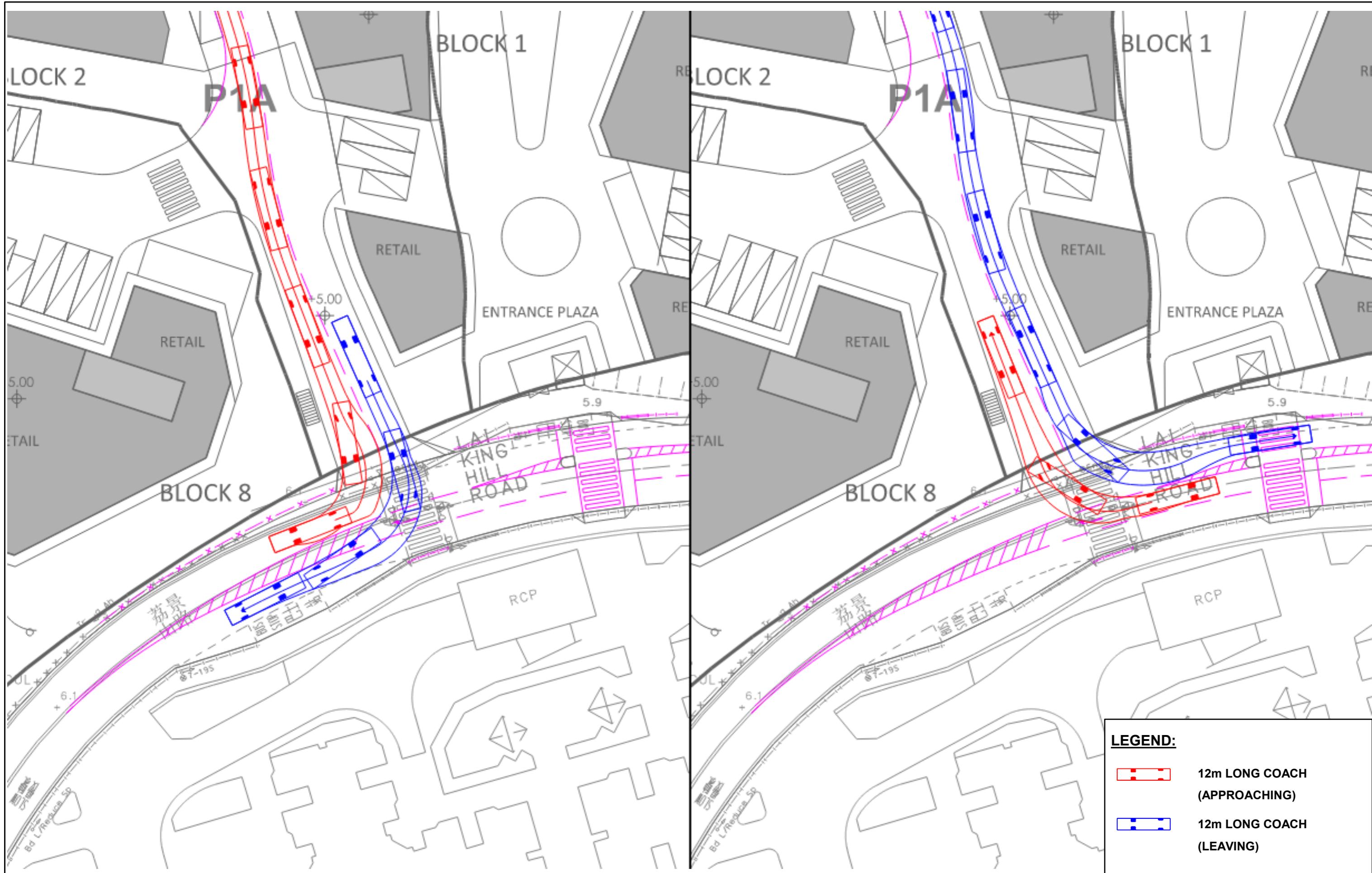
Bus Routes:
30, 32H, 42, 45, 46, 46X, N241

GMB Routes:
90A, 90M, 90P, 92M

LEGEND :

- Proposed road kerb
- Proposed road marking
- Proposed street furniture
- Proposed tactiles
- Existing kerb / dropkerb to be relocated/removed
- Existing road markings to be removed
- Existing street furniture to be relocated/removed

Job Title Application for Permission Under Section 16 of the Town Planning Ordinance (Cap. 131) for Proposed Comprehensive Development including Flats, Retail and Community Facilities and Minor Relaxation of Plot Ratio and Building Height Restriction in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung


FIGURE 3.3

Date JUN 24
Drawn YNNC

Scale NTS
Job No. 299277-02

PROPOSED PEDESTRIAN CROSSING AND BUS STOP RELOCATION

ARUP

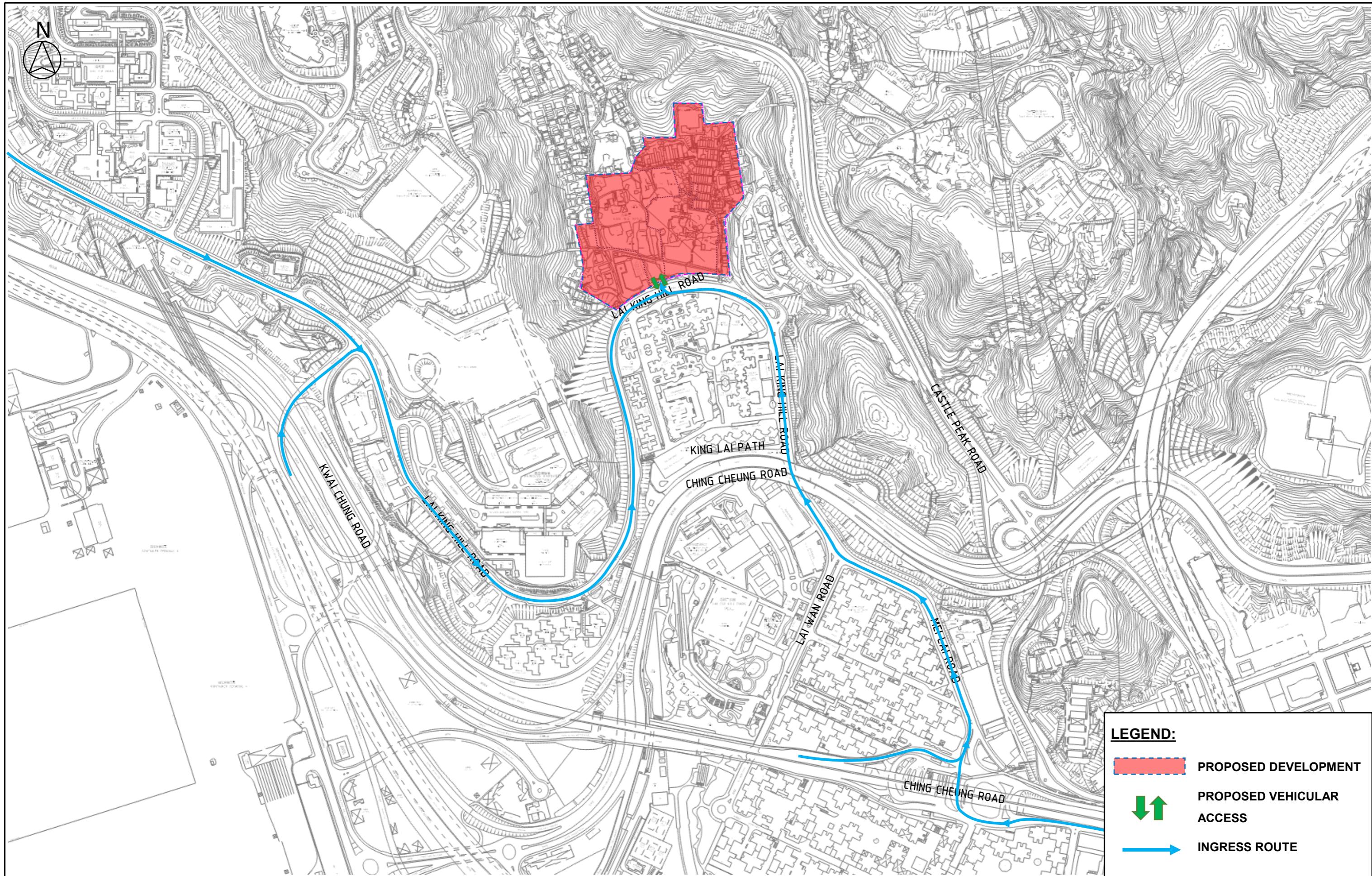

Job Title Application for Permission Under Section 16 of the Town Planning Ordinance (Cap. 131) for Proposed Comprehensive Development including Flats, Retail and Community Facilities and Minor Relaxation of Plot Ratio and Building Height Restriction in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung

FIGURE 3.4

Date	Scale	Drawing Title
JUN 24	NTS	
Drawn	Job No.	299277-02

SWEPT PATH ANALYSIS AT VEHICULAR ACCESS

ARUP

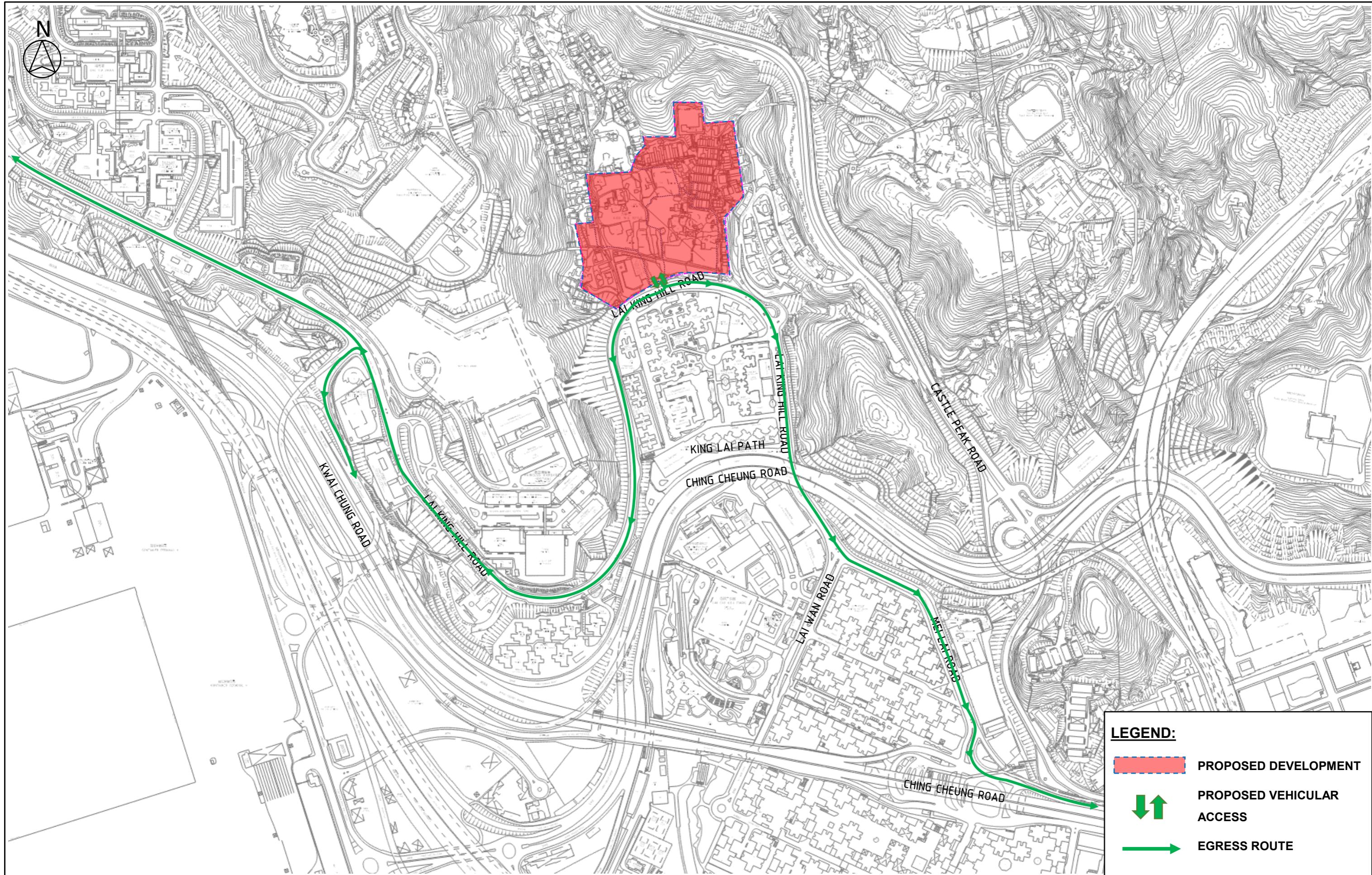
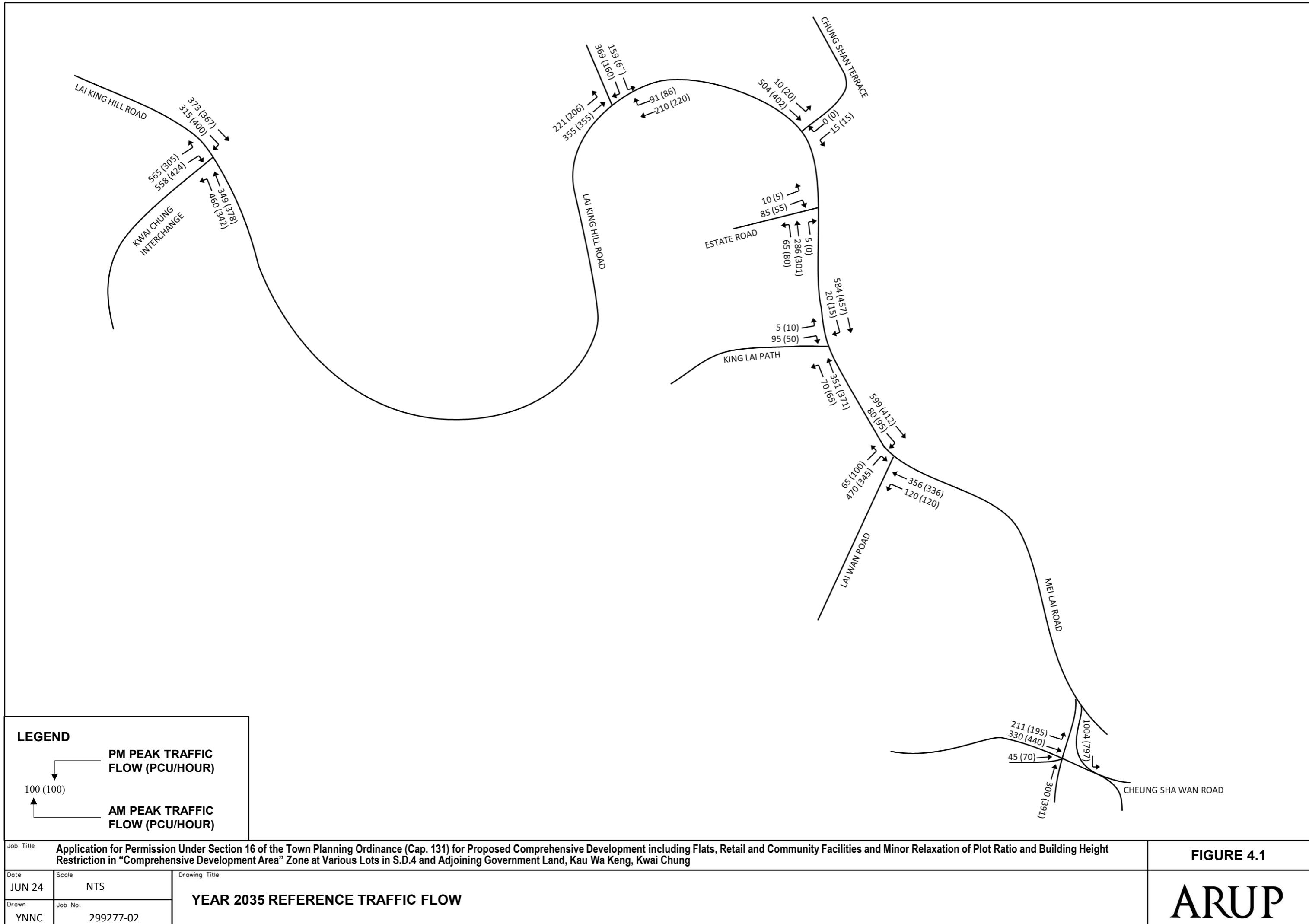

Job Title Application for Permission Under Section 16 of the Town Planning Ordinance (Cap. 131) for Proposed Comprehensive Development including Flats, Retail and Community Facilities and Minor Relaxation of Plot Ratio and Building Height Restriction in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung

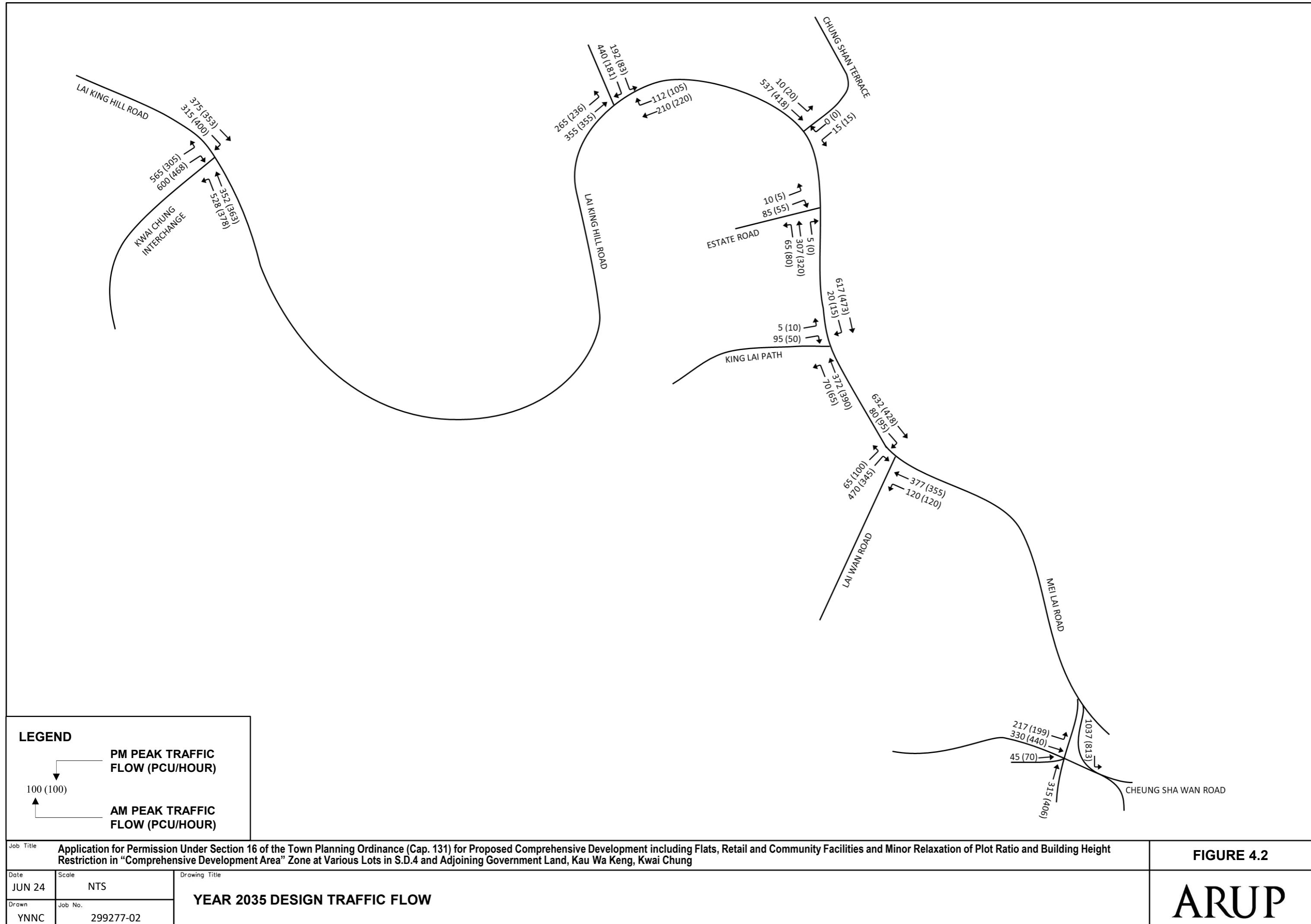
FIGURE 3.5

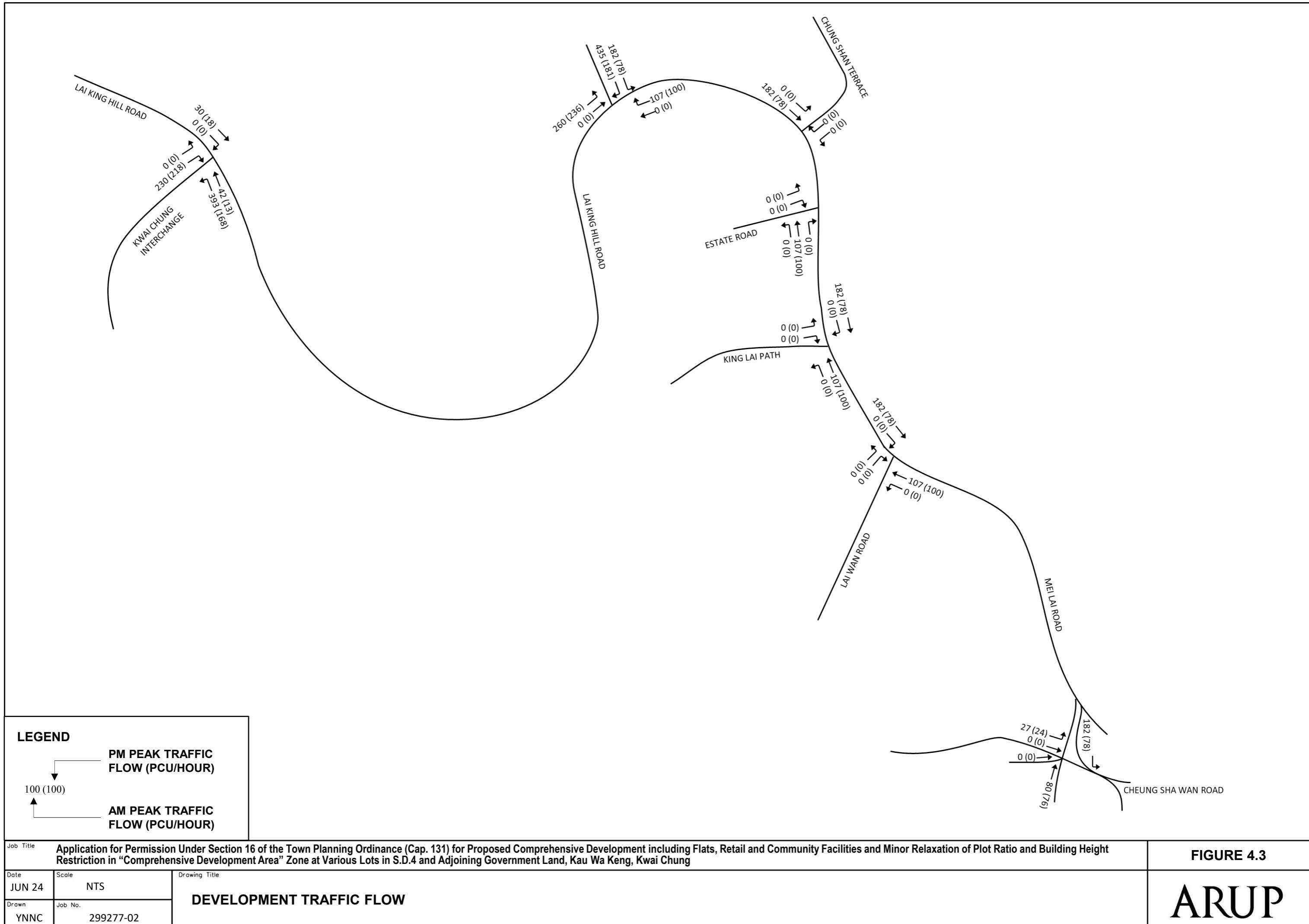
Date	Scale	Drawing Title
JUN 24	NTS	
Drawn YNNC	Job No. 299277-02	

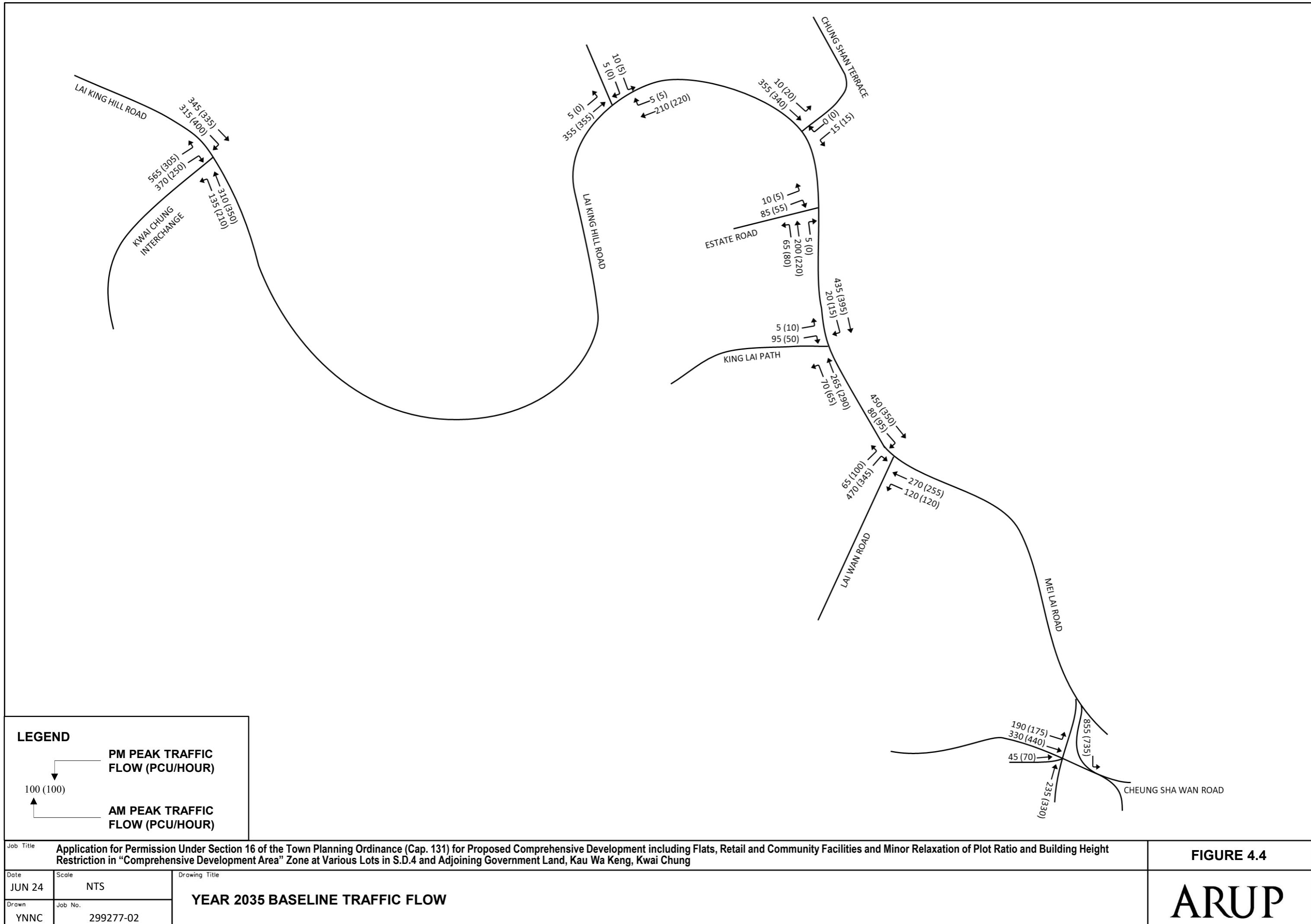
INGRESS VEHICULAR ROUTES OF PROPOSED DEVELOPMENT

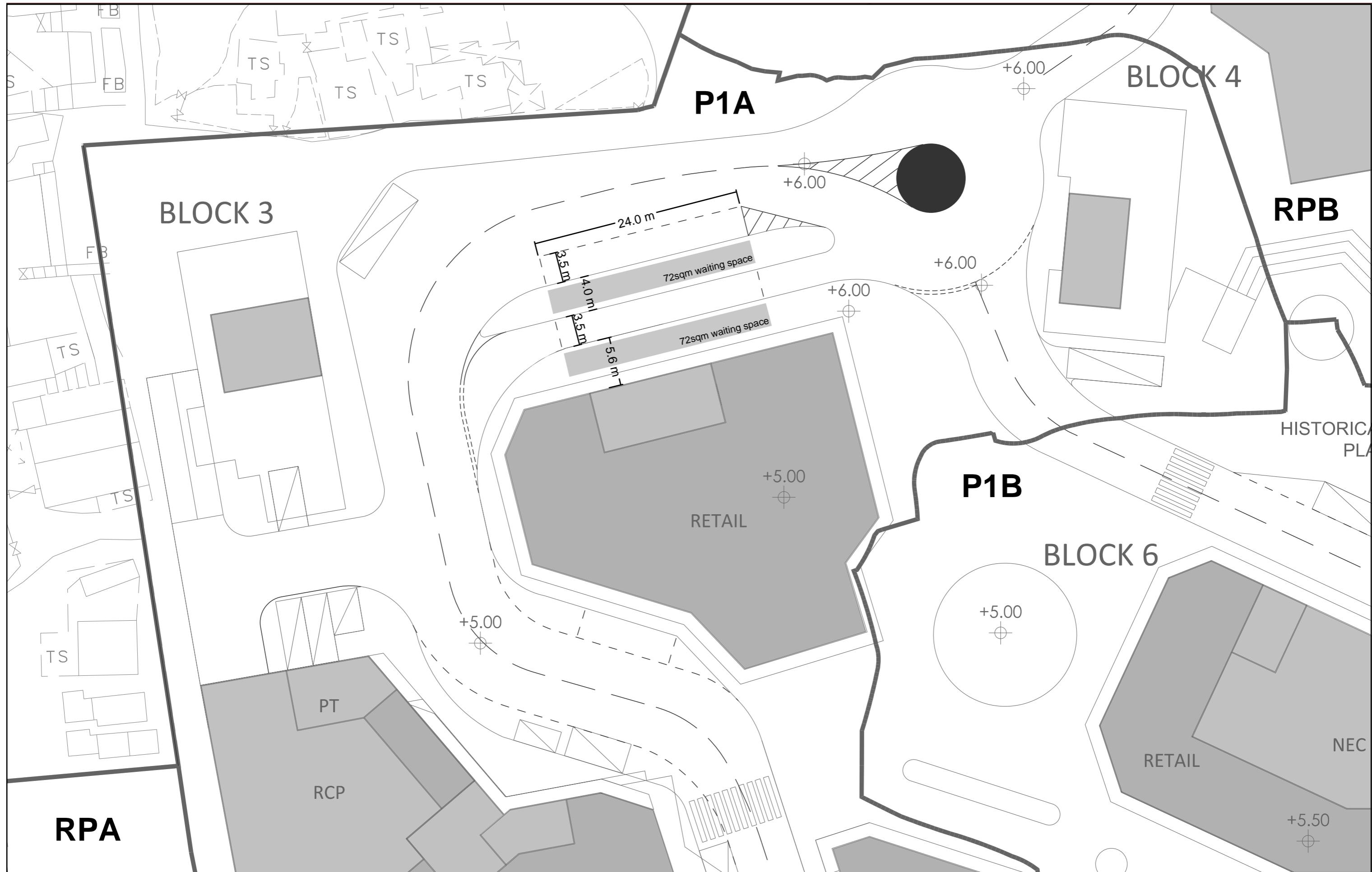
ARUP

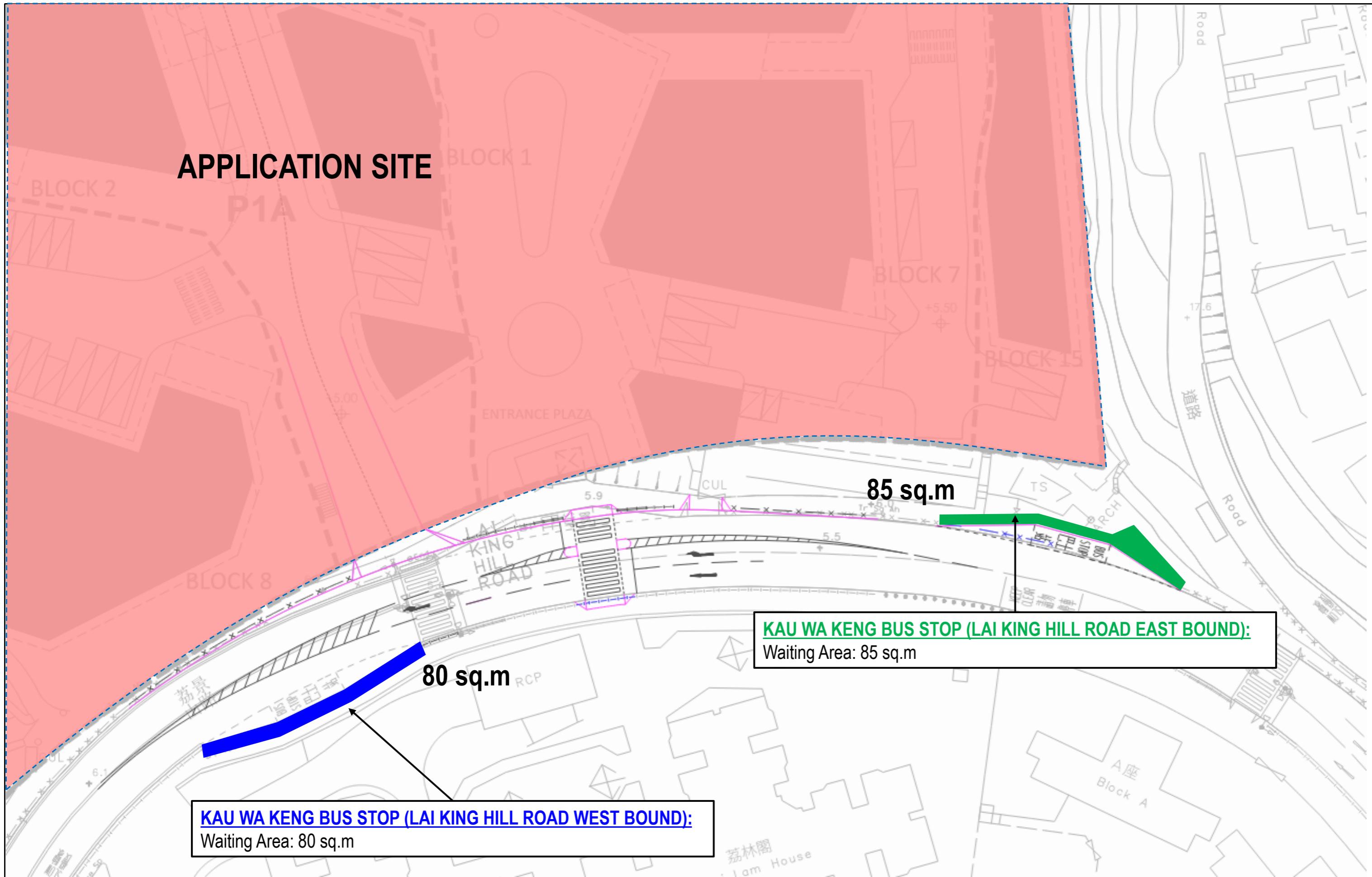

Job Title Application for Permission Under Section 16 of the Town Planning Ordinance (Cap. 131) for Proposed Comprehensive Development including Flats, Retail and Community Facilities and Minor Relaxation of Plot Ratio and Building Height Restriction in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung


FIGURE 3.6


Date	Scale	Drawing Title
JUN 24	NTS	
Drawn	Job No.	299277-02


EGRESS VEHICULAR ROUTES OF PROPOSED DEVELOPMENT


ARUP

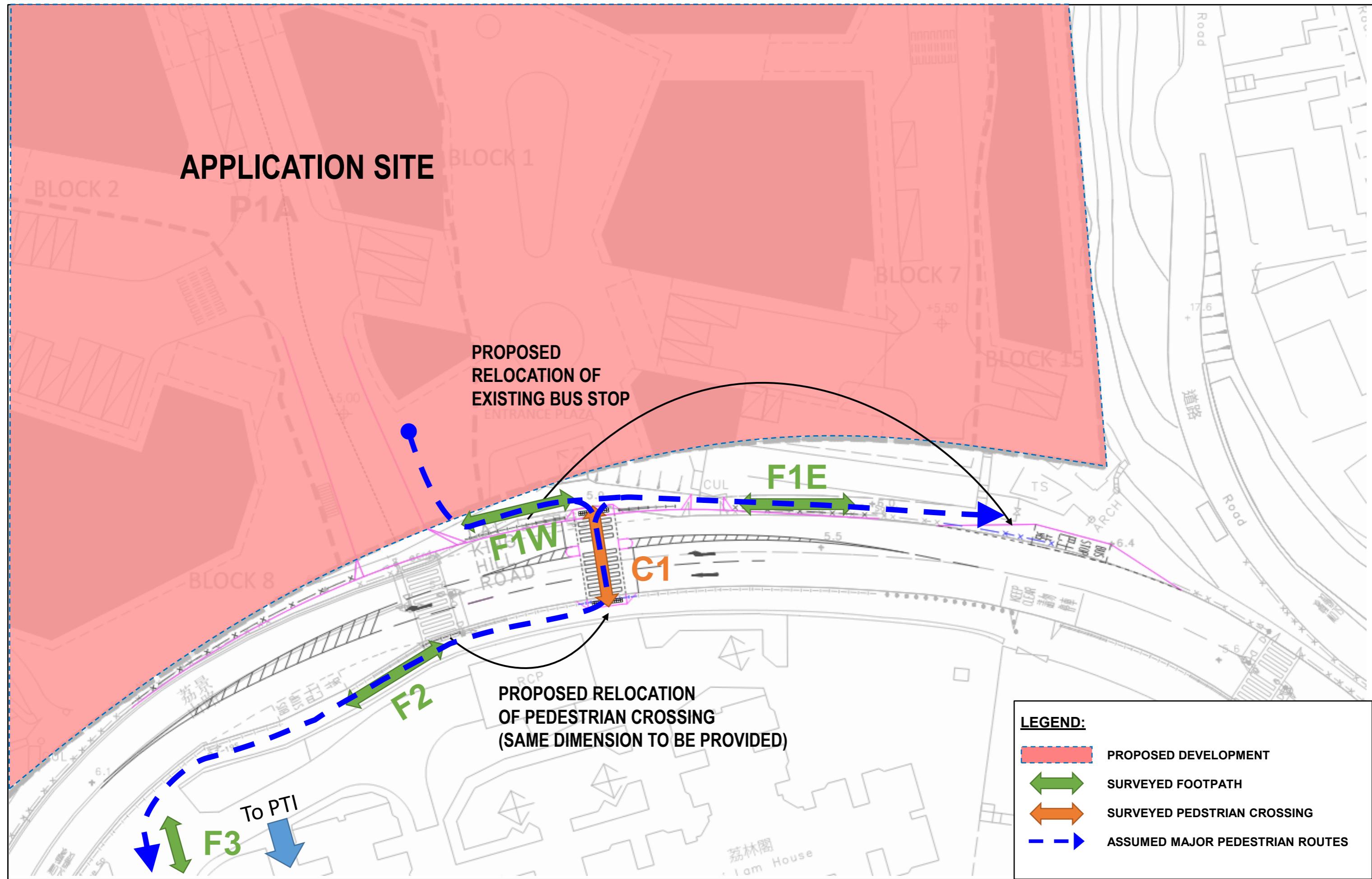

Job Title Application for Permission Under Section 16 of the Town Planning Ordinance (Cap. 131) for Proposed Comprehensive Development including Flats, Retail and Community Facilities and Minor Relaxation of Plot Ratio and Building Height Restriction in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung

Date	Scale	Drawing Title
JUN 24	NTS	
Drawn	Job No.	299277-02

BOLD-UP PLAN OF PROPOSED FEEDER SERVICE PICK-UP/ DROP-OFF SPACE

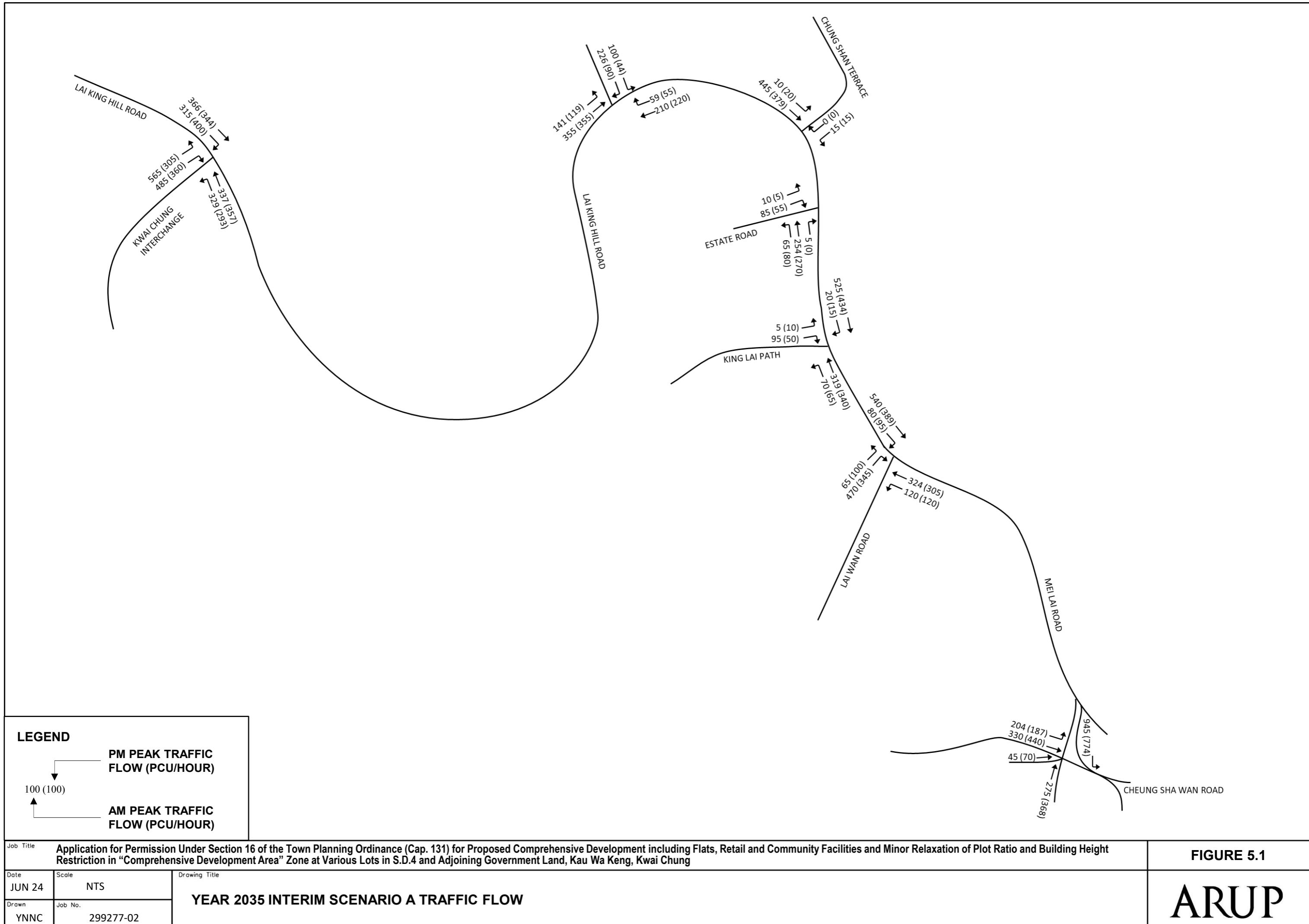
FIGURE 4.5

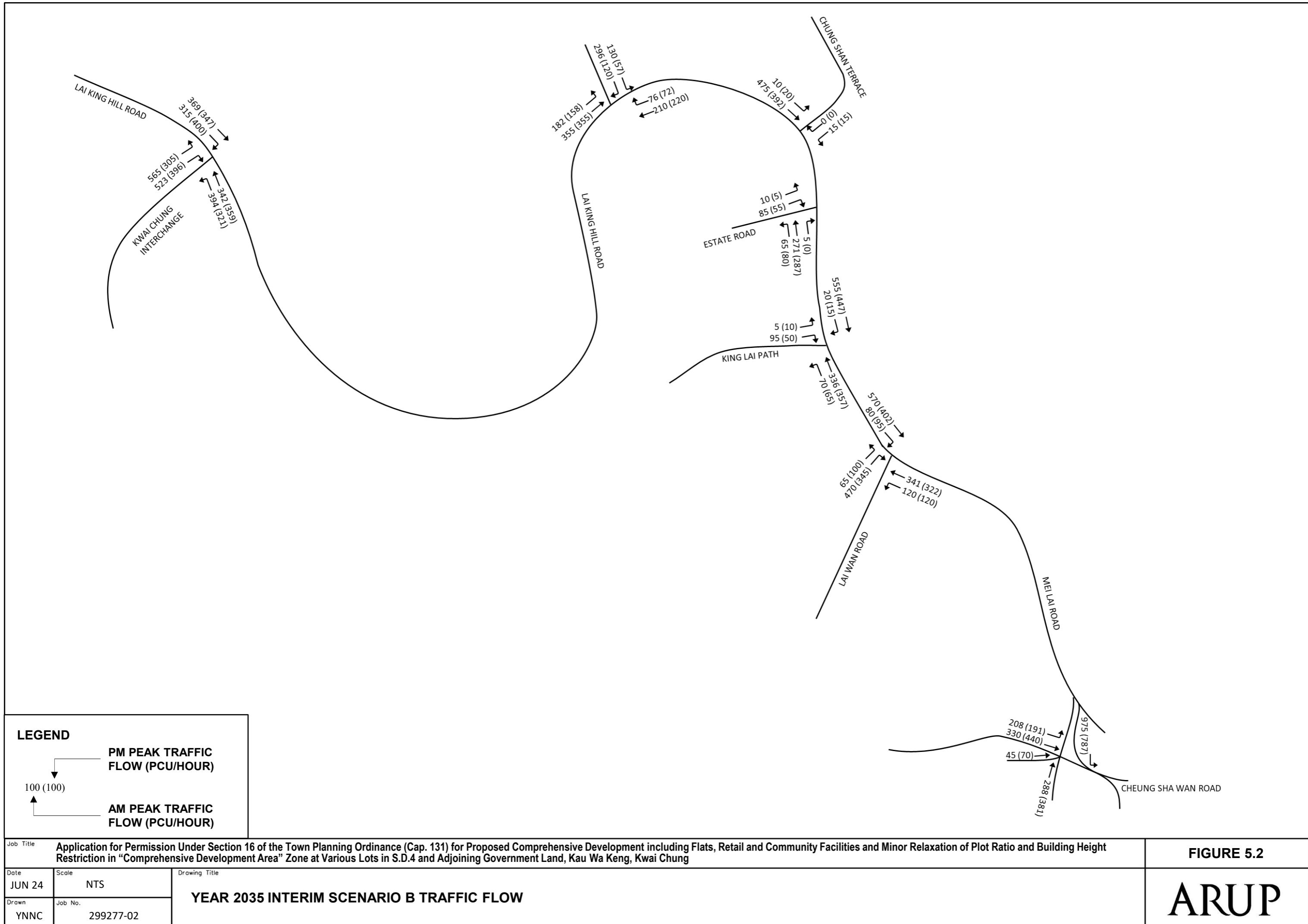
ARUP

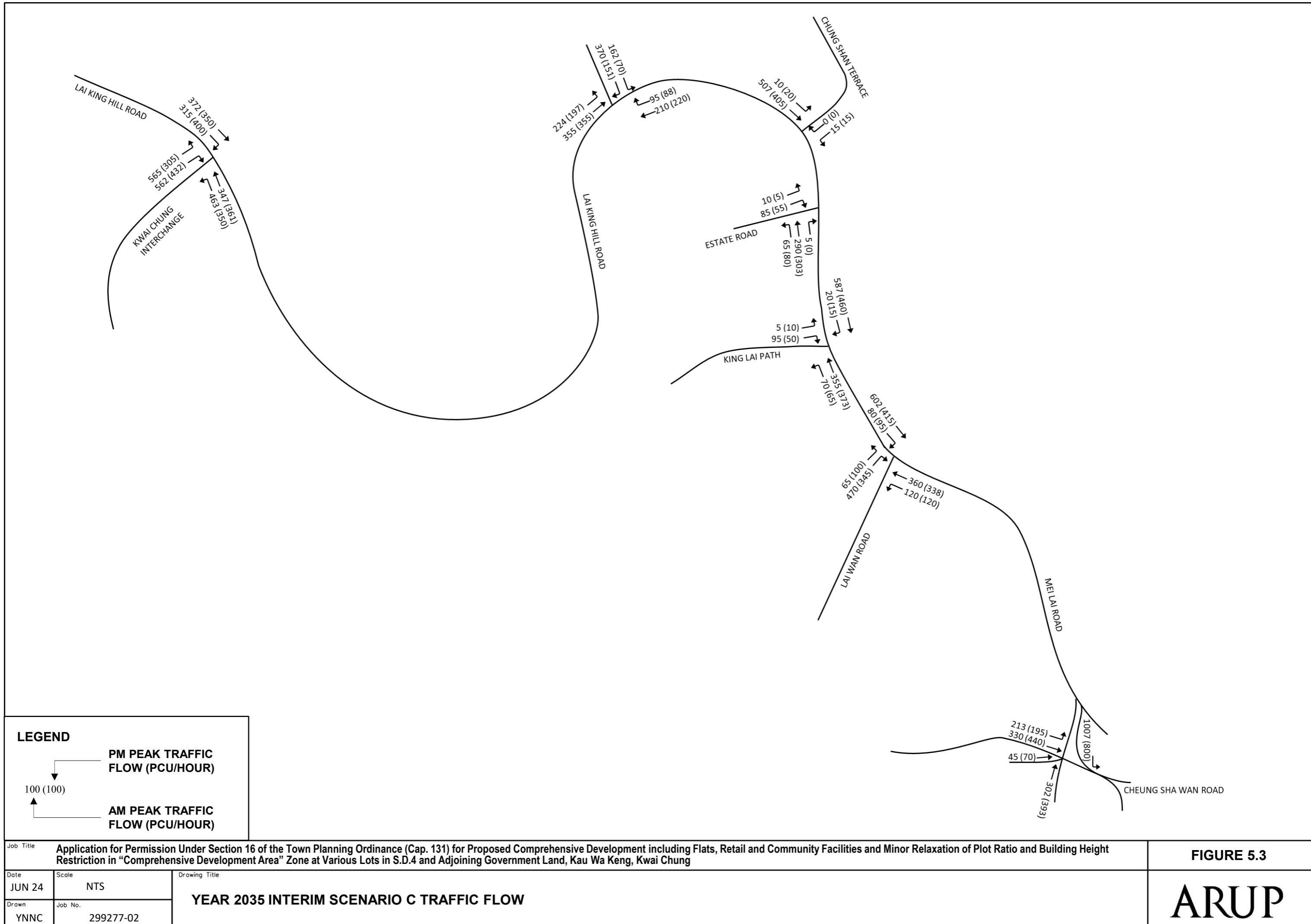


Job Title Application for Permission Under Section 16 of the Town Planning Ordinance (Cap. 131) for Proposed Comprehensive Development including Flats, Retail and Community Facilities and Minor Relaxation of Plot Ratio and Building Height Restriction in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung

FIGURE 4.6


Date	Scale	Drawing Title
JUN 24	NTS	
Drawn YNNC	Job No. 299277-02	QUEUING ASSESSMENT AT LAI KING HILL ROAD ROADSIDE BUS STOP


ARUP



Date	Scale	Drawing Title		
JUN 24	NTS			
Drawn	Job No.			
YNNC	299277-02	LOCATION OF PEDESTRIAN FACILITIES ALONG MAJOR PEDESTRIAN ROUTES IN THE VICINITY OF PROPOSED DEVELOPMENT		

ARUP

Appendix A

Junction Calculation Sheets

J1 - YEAR 2024 - AM TRAFFIC FLOW

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																																																																																																																																																											
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.	299277-02		Junction No.	J1																																																																																																																																																							
Lai King Hill Road / King Lai Path												DATE :	18-Sep-25		FILENAME :																																																																																																																																																								
												No. of stages per cycle N = 4 No. of stage using for calculation N = 2																																																																																																																																																											
												Cycle time C = 120 sec Sum(Y) Y = 0.168 Loss time L = 35 sec Total Flow = 855 pcu																																																																																																																																																											
												$C_o = (1.5'L+5)(1-Y)$ $C_m = L(1-Y)$ $Y_{ult} = (Y_{ult}-Y)*100\%$ $R.C.ult = 0.279.1\%$ $C_p = 0.43.0$ $Y_{max} = 1.0/C$ $R.C.(C) = 0.279$																																																																																																																																																											
												$C_o = (1.5'L+5)(1-Y)$ $C_m = L(1-Y)$ $Y_{ult} = (Y_{ult}-Y)*100\%$ $R.C.ult = 0.279.1\%$ $C_p = 0.43.0$ $Y_{max} = 1.0/C$ $R.C.(C) = 0.279$																																																																																																																																																											
												<table border="1"> <thead> <tr> <th>Pedestrian Phase</th> <th>Width (m)</th> <th>Green Time Required (s)</th> <th>Green Time Provided (s)</th> <th>Check</th> </tr> </thead> <tbody> <tr> <td>Dp</td> <td>10</td> <td>SG 8 Delay 2 FG 11</td> <td>SG 8 Delay 2 FG 11</td> <td>OK</td> </tr> <tr> <td>Ep</td> <td>10.5</td> <td>SG 7 Delay 8 FG 12</td> <td>SG 7 Delay 8 FG 12</td> <td>OK</td> </tr> </tbody> </table>				Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)	Check	Dp	10	SG 8 Delay 2 FG 11	SG 8 Delay 2 FG 11	OK	Ep	10.5	SG 7 Delay 8 FG 12	SG 7 Delay 8 FG 12	OK																																																																																																																																									
Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)	Check																																																																																																																																																																			
Dp	10	SG 8 Delay 2 FG 11	SG 8 Delay 2 FG 11	OK																																																																																																																																																																			
Ep	10.5	SG 7 Delay 8 FG 12	SG 7 Delay 8 FG 12	OK																																																																																																																																																																			
<table border="1"> <thead> <tr> <th>Movement</th> <th>Stage</th> <th>Lane Width</th> <th>Phase</th> <th>No. of lane</th> <th>Radius</th> <th>O</th> <th>N</th> <th>Straight-Ahead Sat. Flow</th> <th>Left Sat. Flow</th> <th>Right Sat. Flow</th> <th>Total Flow</th> <th>Proportion of Turning Vehicles</th> <th>Sat. Flow Gradient</th> <th>Uphill Gradient</th> <th>Short lane Effect</th> <th>Revised Sat. Flow</th> <th>y</th> <th>Greater</th> <th>L</th> <th>g (required)</th> <th>g (input)</th> <th>Degree of Saturation</th> <th>Queuing Length</th> </tr> </thead> <tbody> <tr> <td>A1,A2</td> <td>1</td> <td>3.75</td> <td>A</td> <td>1</td> <td>15</td> <td></td> <td>N</td> <td>1990</td> <td>65</td> <td>88</td> <td>153</td> <td>0.42</td> <td>1909</td> <td>0.080</td> <td></td> <td>28</td> <td></td> <td>41</td> <td>41</td> <td>0.235</td> <td>20</td> </tr> <tr> <td>A2</td> <td>1</td> <td>3.75</td> <td>A</td> <td>1</td> <td></td> <td></td> <td>N</td> <td>2130</td> <td></td> <td>172</td> <td>172</td> <td>0.00</td> <td>2130</td> <td>0.081</td> <td></td> <td></td> <td>41</td> <td>41</td> <td>0.236</td> <td>23</td> </tr> <tr> <td>B1</td> <td>1.2</td> <td>3.40</td> <td>B</td> <td>1</td> <td></td> <td>O</td> <td>N</td> <td>1955</td> <td></td> <td>223</td> <td>223</td> <td>0.00</td> <td>1955</td> <td>0.114</td> <td>0.114</td> <td></td> <td>58</td> <td>58</td> <td>0.236</td> <td>23</td> </tr> <tr> <td>B1,B2</td> <td>1.2</td> <td>3.40</td> <td>B</td> <td>1</td> <td>20</td> <td></td> <td>N</td> <td>2095</td> <td></td> <td>192</td> <td>20</td> <td>0.09</td> <td>1852</td> <td></td> <td></td> <td></td> <td>58</td> <td>58</td> <td>0.237</td> <td>22</td> </tr> <tr> <td>C1,C2</td> <td>3</td> <td>4.20</td> <td>C</td> <td>1</td> <td>10</td> <td></td> <td>N</td> <td>2035</td> <td>5</td> <td>90</td> <td>95</td> <td>1.00</td> <td>1770</td> <td>0.054</td> <td>0.054</td> <td></td> <td>27</td> <td>27</td> <td>0.239</td> <td>15</td> </tr> <tr> <td>Ep</td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table>												Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead Sat. Flow	Left Sat. Flow	Right Sat. Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Uphill Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length	A1,A2	1	3.75	A	1	15		N	1990	65	88	153	0.42	1909	0.080		28		41	41	0.235	20	A2	1	3.75	A	1			N	2130		172	172	0.00	2130	0.081			41	41	0.236	23	B1	1.2	3.40	B	1		O	N	1955		223	223	0.00	1955	0.114	0.114		58	58	0.236	23	B1,B2	1.2	3.40	B	1	20		N	2095		192	20	0.09	1852				58	58	0.237	22	C1,C2	3	4.20	C	1	10		N	2035	5	90	95	1.00	1770	0.054	0.054		27	27	0.239	15	Ep																	7								
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead Sat. Flow	Left Sat. Flow	Right Sat. Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Uphill Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length																																																																																																																																																
A1,A2	1	3.75	A	1	15		N	1990	65	88	153	0.42	1909	0.080		28		41	41	0.235	20																																																																																																																																																		
A2	1	3.75	A	1			N	2130		172	172	0.00	2130	0.081			41	41	0.236	23																																																																																																																																																			
B1	1.2	3.40	B	1		O	N	1955		223	223	0.00	1955	0.114	0.114		58	58	0.236	23																																																																																																																																																			
B1,B2	1.2	3.40	B	1	20		N	2095		192	20	0.09	1852				58	58	0.237	22																																																																																																																																																			
C1,C2	3	4.20	C	1	10		N	2035	5	90	95	1.00	1770	0.054	0.054		27	27	0.239	15																																																																																																																																																			
Ep																	7																																																																																																																																																						
NOTE : 'O' - OPPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN												PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m																																																																																																																																																											

J1 - YEAR 2024 - PM TRAFFIC FLOW

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION												
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.	299277-02	Junction No.	J1									
Lai King Hill Road / King Lai Path												DATE :	18-Sep-25	FILENAME :										
												No. of stages per cycle N = 4 No. of stage using for calculation N = 2												
												Cycle time C = 120 sec Sum(Y) Y = 0.134 Loss time L = 35 sec Total Flow = 780 pcu												
												$C_e = (1.5'L+5)(1-Y)$ $C_m = L(1-Y)$ $Y_{ult} = (Y_{ult}-Y)*100\%$ $R.C.ult = 0.91(0.9-Y)$ $C_p = 0.91(0.9-Y)$ $Y_{max} = 1/C$ $R.C.(C) = (0.9^*Y_{max}^*Y)*100\%$												
												$= 66.4 \text{ sec}$ $= 40.4 \text{ sec}$ $= 0.638$ $= 377.3 \%$ $= 41.1 \text{ sec}$ $= 0.708$ $= 377 \%$												
STAGE 1		INT=		STAGE 2		INT= 5		STAGE 3		INT= 10		STAGE 4		INT= 15										
Pedestrian Phase	Width (m)	Green Time Required (s)		Green Time Provided (s)		SG Delay		FG		SG Delay		FG		Check										
Dp	10	8	2	11	8	2	11	7	8	12	7	8	12	OK										
Ep	10.5	7	8	12	7	8	12							OK										
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead Sat. Flow	Left Sat. Flow	Straight Sat. Flow	Right Sat. Flow	Total Flow Vehicles	Proportion of Turning Vehicles	Sat. Flow Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L sec	g (required)	g (input)	Degree of Saturation	Queuing Length	
A1,A2	1	3.75	A	1	15		N	1990	60	99		159	0.38	1918		1918	0.083		28		53	53	0.188	18
A2	1	3.75	A	1			N	2130		176		176	0.00	2130		2130	0.083			53	53	0.187	20	
B1	1,2	3.40	B	1		O	N	1955		200		200	0.00	1955		1955	0.102	0.102		65	65	0.189	18	
B1,B2	1,2	3.40	B	1	20		N	2095		175	15	190	0.08	1854		1854	0.102			65	65	0.189	17	
C1,C2	3	4.20	C	1	10		N	2035	10	45	55	1.00	1770		1770	0.031	0.031		20	20	0.186	9		
Ep																		7						
NOTE : 'O - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN												PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m												

J1 - YEAR 2035 - AM TRAFFIC FLOW

BASELINE SCENARIO

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng | PROJECT NO: 299277-02 | Junction No. J1

Lai King Hill Road / King Lai Path | DATE: 18-Sep-25 | FILENAME: J1_BASE_AM

No. of stages per cycle N = 4
No. of stage using for calculation N = 2

Cycle time C = 120 sec
Sum(y) Y = 0.176

Loss time L = 35 sec
Total Flow = 890 pcu

Co = $(1.5'L+5)(1-Y)$ = 69.8 sec
Cm = $L/(1-Y)$ = 42.5 sec
Yult = 0.638

R.C.ult = $(Yult-Y)^*100\%$ = 261.5 %
Cp = $0.9^*L/(0.9-Y)$ = 43.5 sec
Ymax = $0.1/C$ = 0.708

R.C.(C) = $(0.9^*Ymax-Y)^*100\%$ = 261. %

Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)			Check		
Dp	SG	Delay	FG	SG	Delay	FG		
Ep	10	8	2	11	7	8	12	OK

STAGE 1 INT= STAGE 2 INT= 5 STAGE 3 INT= 10 STAGE 4 INT= 15

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1,A2	1	3.75	A	1	15		N	1990	70	89		159	0.44	1906		1906	0.083		28	40	40	0.250	21	
A2	1	3.75	A	1			N	2130		176		176	0.00	2130		2130	0.083			40	40	0.248	23	
B1	1,2	3.40	B	1		O		1965		233		233	0.00	1965		1965	0.119	0.120		57	57	0.251	24	
B1,B2	1,2	3.40	B	1	20			2095		202	20	222	0.09	1852		1852	0.120			58	57	0.252	23	
C1,C2	3	4.20	C	1	10		N	2035	5	95		100	1.00	1770		1770	0.057	0.057		27	27	0.251	16	
Ep																			7					

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J1 - YEAR 2035 - PM TRAFFIC FLOW

BASELINE SCENARIO

OVE ARUP & PARTNERS **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng **PROJECT NO.** 299277-02 **Junction No.** J1

Lai King Hill Road / King Lai Path **DATE:** 18-Sep-25 **FILENAME:** J1_BASE_PM

Lai King Hill Road

No. of stages per cycle N = 4
No. of stage using for calculation N = 2

Cycle time C = 120 sec
Sum(Y) Y = 0.142
Loss time L = 35 sec
Total Flow = 825 pcu

Co = $(1.5'L+S)(1-Y)$ = 67.0 sec
Gm = $L/(1-Y)$ = 40.8 sec
Yfull = 0.638
R.C.ult = $(Yult-Y)^*100\%$ = 349.7 %
Cp = $0.9'L/(0.9-Y)$ = 41.5 sec
Ymax = $1/LC$ = 0.708
R.C.(C) = $(0.9^*Ymax-Y)^*100\%$ = 350 %

Pedestrian Phase **Width (m)** **Green Time Required (s)** **Green Time Provided (s)** **Check**

Phase	Dp	SG	Delay	FG	SG	Delay	FG	OK
Ep	10.5	8	2	11	7	8	12	OK

STAGE 1 INT= **STAGE 2 INT=** 5 **STAGE 3 INT=** 10 **STAGE 4 INT=** 15

Movement **Stage** **Lane Width m.** **Phase** **No. of lane** **Radius m.** **O** **N** **Straight-Ahead Sat. Flow** **Flow** **Total Flow** **Proportion of Turning Vehicles** **Sat. Flow pcu/h** **Uphill Gradient %** **Short lane Effect pcu/h** **Revised Sat. Flow pcu/h** **y** **Greater y** **L sec** **g (required) sec** **g (input) sec** **Degree of Saturation X** **Queuing Length m.**

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.	
A1,A2	1	3.75	A	1	15		N	1990	65	103		168	0.39	1916			1916	0.088		53	53	0.199	19
A2	1	3.75	A	1			N	2130		187		187	0.00	2130			2130	0.088		53	53	0.199	21
B1	1,2	3.40	B	1		O		1955		210		210	0.00	1955			1955	0.107	0.108	64	64	0.201	20
B1,B2	1,2	3.40	B	1	20			2095	185	15		200	0.08	1855			1855	0.108		65	64	0.202	19
C1,C2	3	4.20	C	1	10		N	2035	10	50		60	1.00	1770			1770	0.034	0.034	20	20	0.203	10
Ep																			7				

NOTE : 'O' - OPPPOSING TRAFFIC **N** - NEAR SIDE LANE **SG** - STEADY GREEN **FG** - FLASHING GREEN **PEDESTRIAN WALKING SPEED = 0.9m/s** **QUEUING LENGTH = AVERAGE QUEUE * 6m**

J1 - YEAR 2035 - AM TRAFFIC FLOW

REFERENCE SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION															
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.		Junction No.		J1											
Lai King Hill Road / King Lai Path												DATE :		18-Sep-25		FILENAME :											
STAGE 1 INT= 0						STAGE 2 INT= 5						STAGE 3 INT= 10						STAGE 4 INT= 15									
<img alt="Detailed traffic flow diagrams for																											

J1 - YEAR 2035 - PM TRAFFIC FLOW

REFERENCE SCENARIO

OVE ARUP & PARTNERS											TRAFFIC SIGNAL CALCULATION																			
S16 Application for Proposed Development at Kau Wa Keng											PROJECT NO.		299277-02		Junction No.		J1													
Lai King Hill Road / King Lai Path											DATE :		18-Sep-25		FILENAME :															
C1	10										No. of stages per cycle		N =	4																
C2	50										No. of stage using for calculation		N =	2																
King Lai Path											Cycle time		C =	120 sec																
											Sum(Y)		Y =	0.158																
B2	15										Loss time		L =	35 sec																
B1	457										Total Flow		=	968 pcu																
Lai King Hill Road											Co	=	(1.5'L+5)(1-Y)	=	68.3 sec															
											Cm	=	L(1-Y)	=	41.6 sec															
											Yult			=	0.638															
											R.C.ult	=	(Yult-Y)*100%	=	303.9 %															
											Cp	=	0.9'L(0.9-Y)	=	42.4 sec															
											Ymax	=	1-L/C	=	0.708															
											R.C.(C)	=	(0.9'Ymax-Y)*100%	=	304 %															
STAGE 1 INT= 0					STAGE 2 INT= 5					STAGE 3 INT= 10					STAGE 4 INT= 15															
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow	Uphill Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length								
A1,A2	1	3.75	A	1	15		N	1990	65	142		207	0.31	1929			28													
A2	1	3.75	A	1			N	2130	229			229	0.00	2130	0.107															
B1	1.2	3.40	B	1		O	N	1955	242			242	0.00	1955	0.108															
B1,B2	1.2	3.40	B	1	20		N	2095	215	15		230	0.07	1856	0.124	0.124														
C1,C2	3	4.20	C	1	10		N	2035	10	50	60	1.00	1770		1770	0.034	0.034													
<img alt="Pedestrian crossing diagram showing four stages (Stage 1 to Stage 4) with their respective cycle times and intervals. Stage 1:																														

J1 - YEAR 2035 - AM TRAFFIC FLOW

DESIGN SCENARIO

OVE ARUP & PARTNERS

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road / King Lai Path

J1_DES_AM

TRAFFIC SIGNAL CALCULATION

PROJECT NO: 299277-02 Junction No: J1

DATE: 18-Sep-25 FILENAME:

No. of stages per cycle	N = 4
No. of stage using for calculation	N = 2
Cycle time	C = 120 sec
Sum(Y)	Y = 0.224
Loss time	L = 35 sec
Total Flow	= 1179 pcu
Co	= $(1.5L+5)(1-Y)$ = 74.1 sec
Cm	= $L(1-Y)$ = 45.1 sec
Yult	= 0.638
R.C.ult	= $(Yult-Y)*Y*100\%$ = 184.9 %
Cp	= $0.9^2L/(0.9-Y)$ = 46.6 sec
Ymax	= $1/LC$ = 0.708
R.C.(C)	= $(0.9^2Ymax-Y)*Y*100\%$ = 185 %

Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
Dp	10	8	2	11	7	8	12	OK
Ep	10.5	7	8	12	7	8	12	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
								Left pcu/h	Straight pcu/h	Right pcu/h													
A1,A2	1	3.75	A	1	15	N	1990	70	140	210	0.33	1926			1926	0.109	41	41	0.319	28			
A2	1	3.75	A	1		N	2130		232	232	0.00	2130			2130	0.109	41	41	0.319	31			
B1	1,2	3.40	B	1		O	1955		327	327	0.00	1955			1955	0.167	64	64	0.314	31			
B1,B2	1,2	3.40	B	1	20	N	2095	290	20	310	0.06	1856			1856	0.167	63	64	0.313	29			
C1,C2	3	4.20	C	1	10	N	2035	5	95	100	1.00	1770			1770	0.057	21	21	0.323	17			
Ep																							

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J1 - YEAR 2035 - PM TRAFFIC FLOW

DESIGN SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																								
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.		Junction No.		J1																				
Lai King Hill Road / King Lai Path												DATE :		18-Sep-25		FILENAME :																				
STAGE 1 INT=						STAGE 2 INT= 5						STAGE 3 INT= 10						STAGE 4 INT= 15																		
<table border="1"> <thead> <tr> <th>Pedestrian Phase</th> <th>Width (m)</th> <th>Green Time Required (s)</th> <th>Green Time Provided (s)</th> <th>Check</th> </tr> </thead> <tbody> <tr> <td>Dp</td> <td>10</td> <td>SG 8 Delay 2 FG 11</td> <td>SG 8 Delay 2 FG 11</td> <td>OK</td> </tr> <tr> <td>Ep</td> <td>10.5</td> <td>7 8 12</td> <td>7 8 12</td> <td>OK</td> </tr> </tbody> </table>												Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)	Check	Dp	10	SG 8 Delay 2 FG 11	SG 8 Delay 2 FG 11	OK	Ep	10.5	7 8 12	7 8 12	OK										
Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)	Check																																
Dp	10	SG 8 Delay 2 FG 11	SG 8 Delay 2 FG 11	OK																																
Ep	10.5	7 8 12	7 8 12	OK																																
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead Sat. Flow	Left Sat. Flow	Straight Sat. Flow	Right Sat. Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Uphill Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length												
A1,A2	1	3.75	A	1	15		N	1990	65	152		217	0.30	1932				28		59	59	0.228	22													
A2	1	3.75	A	1			N	2130		238	0.00	2130		1932					59	59	0.227	24														
B1	1,2	3.40	B	1		O	N	1955		251	0.00	251		1955					67	67	0.230	22														
B1,B2	1,2	3.40	B	1	20		N	2095	222	15	0.06	237	0.06	1955					67	67	0.229	21														
C1,C2	3	4.20	C	1	10		N	2035	10	50	0.60	60	1.00	1770					18	18	0.226	10														
Ep																																				
NOTE: 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN												PEDESTRIAN WALKING SPEED = 0.9m/s		QUEUEING LENGTH = AVERAGE QUEUE * 6m																						

J2 - YEAR 2024 - AM TRAFFIC FLOW

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																																																												
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.	299277-02	Junction No.	J2																																																									
Lai King Hill Road / Ching Shan Terrace / Estate Road												DATE :	18-Sep-25	FILENAME :																																																										
												No. of stages per cycle N = 4 No. of stage using for calculation N = 3 Cycle time C = 120 sec Sum(Y) Y = 0.119 Loss time L = 37 sec Total Flow = 720 pcu $C_o = (1.5'L+5)(1-Y)$ = 68.7 sec $C_m = L(1-Y)$ = 42.0 sec $Y_{ult} = (Y_{ult}-Y)*100\%$ = 0.623 $R.C.ult = 0.91(0.9-Y)$ = 42.2 % $C_p = 0.91(0.9-Y)$ = 42.6 sec $Y_{max} = 1/C$ = 0.692 $R.C.(C) = (0.9^*Y_{max}^*Y)*100\%$ = 423 %																																																												
												<table border="1"> <thead> <tr> <th rowspan="2">Pedestrian Phase</th> <th rowspan="2">Width (m)</th> <th colspan="3">Green Time Required (s)</th> <th colspan="3">Green Time Provided (s)</th> <th rowspan="2">Check</th> </tr> <tr> <th>SG</th> <th>Delay</th> <th>FG</th> <th>SG</th> <th>Delay</th> <th>FG</th> </tr> </thead> <tbody> <tr> <td>Ep</td> <td>6.8</td> <td>5</td> <td>3</td> <td>6</td> <td>24</td> <td>3</td> <td>6</td> <td>OK</td> </tr> <tr> <td>Fp</td> <td>6.8</td> <td>5</td> <td>1</td> <td>6</td> <td>26</td> <td>1</td> <td>6</td> <td>OK</td> </tr> <tr> <td>Gp</td> <td>7</td> <td>6</td> <td>3</td> <td>6</td> <td>6</td> <td>3</td> <td>6</td> <td>OK</td> </tr> <tr> <td>Hp</td> <td>7.3</td> <td>7</td> <td>1</td> <td>7</td> <td>89</td> <td>1</td> <td>7</td> <td>OK</td> </tr> </tbody> </table>										Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check	SG	Delay	FG	SG	Delay	FG	Ep	6.8	5	3	6	24	3	6	OK	Fp	6.8	5	1	6	26	1	6	OK	Gp	7	6	3	6	6	3	6	OK	Hp	7.3	7	1	7	89	1	7	OK
Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check																																																																
		SG	Delay	FG	SG	Delay	FG																																																																	
Ep	6.8	5	3	6	24	3	6	OK																																																																
Fp	6.8	5	1	6	26	1	6	OK																																																																
Gp	7	6	3	6	6	3	6	OK																																																																
Hp	7.3	7	1	7	89	1	7	OK																																																																
Movement	Stage	Lane	Width	Phase	No. of lanes	Radius	O	N	Straight-Ahead	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow	Uphill Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length																																																	
			ft.						Sat. Flow	Left pcp/h	Straight pcp/h	Right pcp/h	pcp/h	%	pcp/h	pcp/h	y	y	sec	sec	sec	X	mt.																																																	
A1, A2	1	3.40	A	1	10		N	1955	10	158		168	0.06	1938		0.087	0.087	31		60	60	0.173	17																																																	
A2	1	3.40	A	1			N	2095		182		182	0.00	2095		0.087	0.087			61	60	0.174	18																																																	
B1	1, 2	3.40	B	1	15		O	1955	65			65	1.00	1777		0.037	0.037			25	77	0.057	5																																																	
B2,B3	1, 2	3.40	B	1	15		O	2095		195	5	200	0.03	1860		0.108	0.108			75	77	0.168	14																																																	
C1,C2	3	3.40	C	1	15		N	1955	10	33	43	1.00	1777		0.024	0.024			17	17	0.171	7																																																		
C2	3	3.40	C	1	25		N	2095		47	47	1.00	1976		0.024	0.024			17	17	0.168	8																																																		
D1,D2	4	5.00	D	1	12		N	2115	15	0	15	1.00	1880		0.008	0.008			6	6	0.160	3																																																		
Gp																		6																																																						
NOTE : 'O - OPPOSING TRAFFIC N - NEAR SIDE LANE												SG - STEADY GREEN FG - FLASHING GREEN																																																												
												PEDESTRIAN WALKING SPEED = 0.9m/s																																																												
												QUEUING LENGTH = AVERAGE QUEUE * 6m																																																												

J2 - YEAR 2024 - PM TRAFFIC FLOW

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																																																												
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.	299277-02	Junction No.	J2																																																									
Lai King Hill Road / Ching Shan Terrance / Estate Road												DATE :	18-Sep-25	FILENAME :																																																										
												No. of stages per cycle N = 4 No. of stage using for calculation N = 3 Cycle time C = 120 sec Sum(Y) Y = 0.135 Loss time L = 16 sec Total Flow = 695 pcu $C_o = (1.5'L+5)(1-Y)$ = 33.5 sec $C_m = L(1-Y)$ = 18.5 sec $Y_{ult} = (Y_{ult}-Y)*100\%$ = 0.780 $R.C.ult = 0.476.7\%$ = 476.7 % $C_p = 0.9'L(0.9-Y)$ = 18.8 sec $Y_{max} = 1-C$ = 0.867 $R.C.(C) = (0.9'Y_{max}Y)*100\%$ = 477 %																																																												
												<table border="1"> <thead> <tr> <th rowspan="2">Pedestrian Phase</th> <th rowspan="2">Width (m)</th> <th colspan="3">Green Time Required (s)</th> <th colspan="3">Green Time Provided (s)</th> <th rowspan="2">Check</th> </tr> <tr> <th>SG</th> <th>Delay</th> <th>FG</th> <th>SG</th> <th>Delay</th> <th>FG</th> </tr> </thead> <tbody> <tr> <td>Ep</td> <td>6.8</td> <td>5</td> <td>3</td> <td>6</td> <td>18</td> <td>3</td> <td>6</td> <td>OK</td> </tr> <tr> <td>Fp</td> <td>6.8</td> <td>5</td> <td>1</td> <td>6</td> <td>20</td> <td>1</td> <td>6</td> <td>OK</td> </tr> <tr> <td>Gp</td> <td>7</td> <td>6</td> <td>3</td> <td>6</td> <td>6</td> <td>3</td> <td>6</td> <td>OK</td> </tr> <tr> <td>Hp</td> <td>7.3</td> <td>7</td> <td>1</td> <td>7</td> <td>95</td> <td>1</td> <td>7</td> <td>OK</td> </tr> </tbody> </table>										Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check	SG	Delay	FG	SG	Delay	FG	Ep	6.8	5	3	6	18	3	6	OK	Fp	6.8	5	1	6	20	1	6	OK	Gp	7	6	3	6	6	3	6	OK	Hp	7.3	7	1	7	95	1	7	OK
Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check																																																																
		SG	Delay	FG	SG	Delay	FG																																																																	
Ep	6.8	5	3	6	18	3	6	OK																																																																
Fp	6.8	5	1	6	20	1	6	OK																																																																
Gp	7	6	3	6	6	3	6	OK																																																																
Hp	7.3	7	1	7	95	1	7	OK																																																																
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow	Uphill Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length																																																		
		ft.			ft.			Sat. Flow	Left pcp/h	Straight pcp/h	Right pcp/h	pcp/h	%	pcp/h		y	sec	sec	sec	sec	sec																																																			
A1, A2	1	3.40	A	1	10		N	1955	15	147		162	0.09	1928	0.084		16		65	0.155	15																																																			
A2	1	3.40	A	1			N	2095		178		178	0.00	2095	0.085				65	0.157	16																																																			
B1	1, 2	3.40	B	1	15	O	N	1955	75			75	1.00	1777	0.042	0.113			32	87	0.058	4																																																		
B2,B3	1, 2	3.40	B	1	15			2095		210	0	210	0.00	1865	0.113				87	87	0.155	12																																																		
C1,C2	3	3.40	C	1	15		N	1955	5			21	26	1.00	1777	0.015	0.015			11	11	0.160	5																																																	
C2	3	3.40	C	1	25			2095		29	29	1.00	1976	0.015					11	11	0.160	5																																																		
D1,D2	4	5.00	D	1	12		N	2115	15			0	1.00	1880	0.008	0.008			6	6	0.160	3																																																		
NOTE : 'O - OPPONDING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN												PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m																																																												

J2 - YEAR 2035 - AM TRAFFIC FLOW

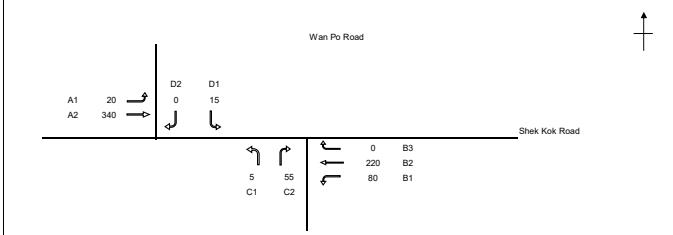
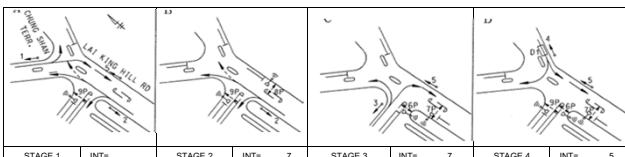
BASELINE SCENARIO

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng | PROJECT NO: 299277-02 | Junction No. J2

Lai King Hill Road / Ching Shan Terrace / Estate Road | DATE: 18-Sep-25 | FILENAME: J2_BASE_AM

No. of stages per cycle	N =	4
No. of stage using for calculation	N =	3
Cycle time	C =	120 sec
Sun(y)	Y =	0.124
Loss time	L =	37 sec
Total Flow	=	745 pcu
Co	= $(1.5'L+5)(1-Y)$	= 69.1 sec
Cm	= $L(1-Y)$	= 42.2 sec
Yult	=	0.623
R.C.ult	= $(Yult-Y)*Y^*100\%$	= 402.1 %
Cp	= $0.9^*L/(0.9-Y)$	= 42.9 sec
Ymax	= L/C	= 0.692
R.C.(C)	= $(0.9^*Ymax-Y)*Y^*100\%$	= 402 %



Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
Ep	6.8	5	3	6	23	3	6	OK
Fp	6.8	5	1	6	25	1	6	OK
Gp	7	6	3	6	6	3	6	OK
Hp	7.3	7	1	7	88	1	7	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1, A2	1	3.40	A	1	10		N	1955	10	165	0.06	1938			1938	0.090	0.091	31	60	60	0.181	18
A2	1	3.40	A	1			N	2095		190	0.00	2095			2095	0.091			61	60	0.181	19
B1	1,2	3.40	B	1	15	O	N	1955	65	65	1.00	1777			1777	0.037			24	77	0.057	5
B2,B3	1,2	3.40	B	1	15			2095	200	5	0.02	1860			1860	0.110			74	77	0.172	15
C1,C2	3	3.40	C	1	15		N	1955	10	35	0.45	1777			1777	0.025	0.025		17	17	0.179	8
C2	3	3.40	C	1	25			2095	50	50	1.00	1976			1976	0.025			17	17	0.179	9
D1,D2	4	5.00	D	1	12		N	2115	15	0	1.00	1880			1880	0.008	0.008		5	5	0.191	3
Gp																		6				

NOTE : 'O' - OPPOSING TRAFFIC | N - NEAR SIDE LANE | SG - STEADY GREEN | FG - FLASHING GREEN | PEDESTRIAN WALKING SPEED = 0.9m/s | QUEUING LENGTH = AVERAGE QUEUE * 6m

J2 - YEAR 2035 - PM TRAFFIC FLOW

BASELINE SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																						
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO:		299277-02		Junction No.:		J2																
Lai King Hill Road / Ching Shan Terrance / Estate Road												DATE:		18-Sep-25		FILENAME:																		
												No. of stages per cycle		N = 4																				
												No. of stage using for calculation		N = 3																				
												Cycle time		C = 120 sec																				
												Sum(Y)		Y = 0.142																				
												Loss time		L = 16 sec																				
												Total Flow		= 735 pcu																				
												Co = $(1.5'L+5)(1-Y)$		= 33.8 sec																				
												Cm = $L(1-Y)$		= 18.7 sec																				
												Yult		= 0.780																				
												R.C.ult = $(Yult-Y)*100\%$		= 448.3 %																				
												Cp = $0.9(0.9-Y)$		= 19.0 sec																				
												Ymax = $1-L/C$		= 0.867																				
												R.C.(C) = $(0.9*Ymax*Y)*100\%$		= 448 %																				
												Pedestrian		Width		Green Time Required (s)		Green Time Provided (s)		Check														
												Phase		Ep		SG		Delay		FG														
												Fp		6.8		5		3		6		OK												
												Gp		7		6		3		6		OK												
												Hp		7.3		7		1		7		OK												
STAGE 1			INT=			STAGE 2			INT=			STAGE 3			INT=			STAGE 4			INT=													
												Movement		Stage		Lane		Phase		No. of lanes		Radius		O										
												N		Straight-Ahead		Flow		Total Flow		Proportion of Turning Vehicles		Sat. Flow Gradient		Short lane Effect										
												Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h		Sat. Flow										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu/h										
												N		Sat. Flow		Straight		Right		pcu/h		pcu/h		pcu										

J2 - YEAR 2035 - AM TRAFFIC FLOW

REFERENCE SCENARIO

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road / Ching Shan Terrance / Estate Road

J2_REF_AM

PROJECT NO: 299277-02 Junction No. J2

DATE: 18-Sep-25 FILENAME:

Wan Po Road

Shek Kok Road

Stages: STAGE 1 INT= 12, STAGE 2 INT= 10, STAGE 3 INT= 7, STAGE 4 INT= 5

No. of stages per cycle	N = 4
No. of stage using for calculation	N = 3
Cycle time	C = 120 sec
Sum(Y)	Y = 0.161
Loss time	L = 39 sec
Total Flow	= 980 pcu
Co	= $(1.5'L+5)/(1-Y)$ = 75.7 sec
Cm	= $L/(1-Y)$ = 45.6 sec
Yult	= 0.608
R.C.ult	= $(Yult-Y)^*100%$ = 277.9 %
Cp	= $0.9^*L/(0.9-Y)$ = 47.5 sec
Ymax	= $0.1/C$ = 0.675
R.C.(C)	= $(0.9^*Ymax*Y)^*100%$ = 278 %

Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)	Check
Ep	6.8	5 3 6	20 3 6	OK
Fp	6.8	5 1 6	22 1 6	OK
Gp	7	6 3 6	6 3 6	OK
Hp	7.3	7 1 7	93 1 7	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.	
A1, A2	1	3.40	A	1	10		N	1955	10 237	247	0.04	1943			1943	0.127	0.127	31	64	64	0.238	23	
A2	1	3.40	A	1			N	2095	267	267	0.00	2095			2095	0.127			64	64	0.239	25	
B1	1,2	3.40	B	1	15	O	N	1955	65	65	1.00	1777			1777	0.037			18	81	0.054	4	
B2,B3	1,2	3.40	B	1	15		O	2095	286 5	291	0.02	1862			1862	0.156			79	81	0.232	19	
C1,C2	3	3.40	C	1	15		N	1955	10 35 45	50	1.00	1777			1777	0.025	0.025	13	13	13	0.234	8	
C2	3	3.40	C	1	25		N	2095	50	50	1.00	1976			1976	0.025			13	13	13	0.234	9
D1,D2	4	5.00	D	1	12		N	2115	15	0	15	1880			1880	0.008	0.008	2	4	6	0.160	3	
Gp																		6					

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN

PEDESTRIAN WALKING SPEED = 0.9m/s

QUEUING LENGTH = AVERAGE QUEUE * 6m

J2 - YEAR 2035 - PM TRAFFIC FLOW

REFERENCE SCENARIO

OVE ARUP & PARTNERS

S16 Application for Proposed Development at Kau Wa Keng

Lei King Hill Road / Ching Shan Terrance / Estate Road

J2_REF_PM

TRAFFIC SIGNAL CALCULATION

PROJECT NO: 299277-02 Junction No: J2

DATE: 18-Sep-25 FILENAME:

Wan Po Road

Shek Kok Road

STAGE 1 INT= **STAGE 2** INT= **7** **STAGE 3** INT= **7** **STAGE 4** INT= **5**

No. of stages per cycle N = 4
No. of stage using for calculation N = 3

Cycle time C = 120 sec
Sum(Y) Y = 0.186

Loss time L = 18 sec
Total Flow = 878 pcu

Co = $(1.5L+5)(1-Y)$ = 39.3 sec
Cm = $L(1-Y)$ = 22.1 sec
Yult = 0.765
R.C.ult = $(Yult-Y)*Y*100\%$ = 312.3 %
Cp = $0.9*L/(0.9-Y)$ = 22.7 sec
Ymax = $1/LC$ = 0.850
R.C.(C) = $(0.9-Ymax-Y)*Y*100\%$ = 312 %

Pedestrian

Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
Ep	6.8	5	3	6	16	3	6	OK
Fp	6.8	5	1	6	18	1	6	OK
Gp	7	6	3	6	6	3	6	OK
Hp	7.3	7	1	7	97	1	7	OK

Movement **Stage** **Lane Width m.** **Phase** **No. of lane** **Radius m.** **O** **N** **Straight-Ahead Sat. Flow** **Flow** **Total Flow** **Proportion of Turning Vehicles** **Sat. Flow pcu/h** **Uphill Gradient %** **Short lane Effect pcu/h** **Revised Sat. Flow pcu/h** **y** **Greater y** **L sec** **g (required) sec** **g (input) sec** **Degree of Saturation X** **Queuing Length m.**

A1, A2	1	3.40	A	1	10	N	1965	20	183	203	0.10	1927	1927	0.105	16	16			58	58	0.218	21
A2	1	3.40	A	1	N	1955	80	80	80	1.00	1777	1777	0.045	0.161	25	57	57	0.220	23			
B1	1,2	3.40	B	1	15	O	2095	301	0	301	1865	1865	0.161	0.161	89	89	89	0.061	4			
B2,B3	1,2	3.40	B	1	15	N	1965	5	23	28	1.00	1777	1777	0.016	0.016	9	9	9	0.210	5		
C1,C2	3	3.40	C	1	15		2095		32	32	1.00	1777	1976	0.016	0.016	9	9	9	0.216	6		
C2	3	3.40	C	1	25				0	15	1.00	1880	1880	0.008	0.008	2	4	6	0.160	3		
D1,D2	4	5.00	D	1	12	N	2115	15														

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J2 - YEAR 2035 - AM TRAFFIC FLOW

DESIGN SCENARIO

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

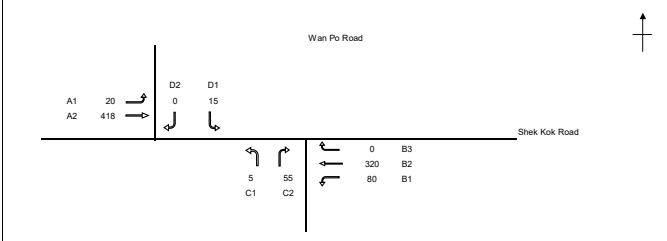
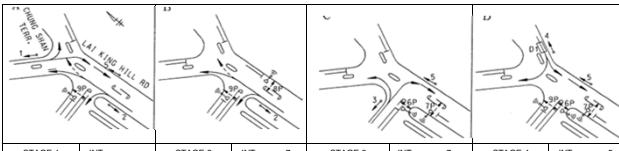
Lai King Hill Road / Ching Shan Terrance / Estate Road

J2_DES_AM

PROJECT NO: 299277-02 Junction No: J2

DATE: 18-Sep-25 FILENAME:

No. of stages per cycle	N = 4
No. of stage using for calculation	N = 3
Cycle time	C = 120 sec
Sum(Y)	Y = 0.169
Loss time	L = 39 sec
Total Flow	= 1034 pcu
Co	= $(1.5L+5)/(1-Y)$ = 76.4 sec
Cm	= $L/(1-Y)$ = 46.9 sec
Yult	= 0.608
R.C.ult	= $(Yult-Y)*Y*100\%$ = 259.8 %
Cp	= $0.9*L/(0.9-Y)$ = 48.0 sec
Ymax	= $1/L$ = 0.675
R.C.(C)	= $(0.9*Ymax-Y)*Y*100\%$ = 260 %



Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
Ep	6.8	5	3	6	19	3	6	OK
Fp	6.8	5	1	6	21	1	6	OK
Gp	7	6	3	6	6	3	6	OK
Hp	7.3	7	1	7	94	1	7	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
								Straight-Ahead Sat. Flow	Left pcu/h	Straight pcu/h													
A1, A2	1	3.40	A	1	10		N	1955	10	253	263	0.04	1944		1944	0.135	0.136	31	65	65	0.250	24	
A2	1	3.40	A	1			N	2095		284	284	0.00	2095		2095	0.136			65	65	0.250	26	
B1	1,2	3.40	B	1	15		O	1955	65		65	1.00	1777		1777	0.037			18	82	0.054	4	
B2, B3	1,2	3.40	B	1	15		N	2095		307	5	312	0.02	1862		1862	0.168			80	62	0.245	20
C1, C2	3	3.40	C	1	15		N	1955	10	35	45	1.00	1777		1777	0.025	0.025		12	12	0.253	8	
C2	3	3.40	C	1	25		N	2095		50	50	1.00	1976		1976	0.025			12	12	0.253	9	
D1, D2	4	5.00	D	1	12		N	2115	15	0	15	1.00	1880		1880	0.008	0.008	2	4	6	0.160	3	
Gp																			6				

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J2 - YEAR 2035 - PM TRAFFIC FLOW

DESIGN SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																																																												
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.	299277-02	Junction No.	J2																																																									
Lai King Hill Road / Ching Shan Terrance / Estate Road												DATE :	18-Sep-25	FILENAME :																																																										
												No. of stages per cycle N = 4 No. of stage using for calculation N = 3 Cycle time C = 120 sec Sum(Y) Y = 0.196 Loss time L = 18 sec Total Flow = 913 pcu $C_o = (1.5'L+5)(1-Y)$ = 39.8 sec $C_m = L(1-Y)$ = 22.4 sec Y_{ult} = 0.765 $R.C.ult$ = $(Y_{ult}-Y)*100\%$ = 290.5 % $C_p = 0.9'L(0.9-Y)$ = 23.0 sec Y_{max} = $1-C$ = 0.850 $R.C.(C) = (0.9'Y_{max}Y)*100\%$ = 291 %																																																												
												<table border="1"> <thead> <tr> <th rowspan="2">Pedestrian Phase</th> <th rowspan="2">Width (m)</th> <th colspan="3">Green Time Required (s)</th> <th colspan="3">Green Time Provided (s)</th> <th rowspan="2">Check</th> </tr> <tr> <th>SG</th> <th>Delay</th> <th>FG</th> <th>SG</th> <th>Delay</th> <th>FG</th> </tr> </thead> <tbody> <tr> <td>Ep</td> <td>6.8</td> <td>5</td> <td>3</td> <td>6</td> <td>15</td> <td>3</td> <td>6</td> <td>OK</td> </tr> <tr> <td>Fp</td> <td>6.8</td> <td>5</td> <td>1</td> <td>6</td> <td>17</td> <td>1</td> <td>6</td> <td>OK</td> </tr> <tr> <td>Gp</td> <td>7</td> <td>6</td> <td>3</td> <td>6</td> <td>6</td> <td>3</td> <td>6</td> <td>OK</td> </tr> <tr> <td>Hp</td> <td>7.3</td> <td>7</td> <td>1</td> <td>7</td> <td>97</td> <td>1</td> <td>7</td> <td>OK</td> </tr> </tbody> </table>										Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check	SG	Delay	FG	SG	Delay	FG	Ep	6.8	5	3	6	15	3	6	OK	Fp	6.8	5	1	6	17	1	6	OK	Gp	7	6	3	6	6	3	6	OK	Hp	7.3	7	1	7	97	1	7	OK
Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check																																																																
		SG	Delay	FG	SG	Delay	FG																																																																	
Ep	6.8	5	3	6	15	3	6	OK																																																																
Fp	6.8	5	1	6	17	1	6	OK																																																																
Gp	7	6	3	6	6	3	6	OK																																																																
Hp	7.3	7	1	7	97	1	7	OK																																																																
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow	Uphill Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	g (required)	g (input)	Degree of Saturation	Queuing Length																																																			
		ft.			ft.			Sat. Flow	Left pcu/h	Straight pcu/h	Right pcu/h	pcu/h	%	pcu/h		sec	y	sec	sec	X	mt.																																																			
A1, A2	1	3.40	A	1	10		N	1955	20	191		211	0.09	1928	0.109		57	57	0.230	22																																																				
A2	1	3.40	A	1			N	2095		227		227	0.00	2095	0.108		56	56	0.232	24																																																				
B1	1, 2	3.40	B	1	15		O	1955	80			80	1.00	1777	0.045	0.172	23	89	0.061	4																																																				
B2,B3	1, 2	3.40	B	1	15		N	2095		320	0	320	0.00	1865	0.172		89	89	0.231	17																																																				
C1,C2	3	3.40	C	1	15		N	1955	5			24	1.00	1777	0.016	0.016	8	8	0.245	5																																																				
C2	3	3.40	C	1	25		N	2095				31	1.00	1976	0.016		8	8	0.235	6																																																				
D1,D2	4	5.00	D	1	12		N	2115	15			0	1.00	1880	0.008	0.008	2	4	6	0.160	3																																																			
NOTE : 'O - OPPONDING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m																																																																								

J3 - YEAR 2024 - AM TRAFFIC FLOW

EXISTING LAYOUT

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road / Kwai Chung Interchange | J3A, OBS_AM

PROJECT NO: 299277-02 | Junction No. J3

DATE: 18-Sep-25 | FILENAME:

STAGE 1 INT= 5 STAGE 2 INT= 5 STAGE 3 INT= 5

No. of stages per cycle	N = 3
No. of stage using for calculation	N = 3
Cycle time	C = 120 sec
Sum(Y)	Y = 0.629
Loss time	L = 12 sec
Total Flow	= 1925 pcu
Co	= $(1.5L+5)/(1-Y)$ = 62.0 sec
Cm	= $L/(1-Y)$ = 32.4 sec
Yult	= 0.810
R.C.ult	= $(Yult-Y)*Y*100%$ = 28.8 %
Cp	= $0.9^*L/(0.9-Y)$ = 39.9 sec
Ymax	= 0.9/L = 0.900
R.C.(C)	= $(0.9^*Ymax*Y)*Y*100%$ = 29 %

Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)	Check	
SG	Delay	FG	SG	Delay	FG

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight Ahead Sat. Flow	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1,A2	1	3.75	A	1	15		N	1990	125	125	1.00	1809			1809	0.069	0.136	12	23	0.360	20	
A2	1	3.75	A	1			N	2130		290	0.00	2130			2130	0.136		23	23	0.710	47	
B1	2	3.30	B	1	20			1945		325	0.00	1945			1945	0.167	0.167	29	29	0.691	49	
B2	2	3.30	B	1				2085		300	1.00	1940			1940	0.155		27	29	0.640	46	
C1	3	3.50	C	1	18		N	1965	535	535	1.00	1814	4.10%	-172	1642	0.326	0.326	56	56	0.698	57	
C2	3	3.50	C	1	25			2105		350	1.00	1986	4.10%	-172	1814	0.193		33	56	0.413	37	

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2024 - PM TRAFFIC FLOW

EXISTING LAYOUT

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																																																																																																																																								
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO:		299277-02		Junction No.:		J3																																																																																																																																		
Lai King Hill Road / Kwai Chung Interchange												DATE:		18-Sep-25		FILENAME:																																																																																																																																				
	<p>No. of stages per cycle N = 3 No. of stage using for calculation N = 3</p> <p>Cycle time C = 120 sec Sum(Y) Y = 0.530 Loss time L = 12 sec Total Flow = 1755 pcu</p> <p>Co = $(1.5'L+5)(1-Y)$ = 48.9 sec Cm = $L(1-Y)$ = 25.5 sec Yult = 0.810 R.C.ult = $(Yult-Y)^*100\%$ = 52.9 % Cp = $0.9L(0.9-Y)$ = 29.2 sec Ymax = $1-L/C$ = 0.900</p> <p>R.C.(C) = $(0.9^*Ymax-Y)^*100\%$ = 53 %</p>																																																																																																																																																			
	<table border="1"> <thead> <tr> <th rowspan="2">Pedestrian Phase</th> <th rowspan="2">Width (m)</th> <th colspan="2">Green Time Required (s)</th> <th colspan="2">Green Time Provided (s)</th> <th rowspan="2">Check</th> </tr> <tr> <th>SG</th> <th>Delay</th> <th>FG</th> <th>SG</th> <th>Delay</th> <th>FG</th> </tr> </thead> <tbody> <tr> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table>	Pedestrian Phase	Width (m)	Green Time Required (s)		Green Time Provided (s)		Check	SG	Delay	FG	SG	Delay	FG																																																																																																																																						
Pedestrian Phase	Width (m)			Green Time Required (s)		Green Time Provided (s)			Check																																																																																																																																											
		SG	Delay	FG	SG	Delay	FG																																																																																																																																													
<table border="1"> <thead> <tr> <th rowspan="2">Movement</th> <th rowspan="2">Stage</th> <th rowspan="2">Lane</th> <th rowspan="2">Width</th> <th rowspan="2">Phase</th> <th rowspan="2">No. of lanes</th> <th rowspan="2">Radius</th> <th rowspan="2">O</th> <th rowspan="2">N</th> <th colspan="3">Flow</th> <th rowspan="2">Total Flow</th> <th rowspan="2">Proportion of Turning Vehicles</th> <th rowspan="2">Sat. Flow Gradient</th> <th rowspan="2">Short lane Effect</th> <th rowspan="2">Revised Sat. Flow</th> <th rowspan="2">y</th> <th rowspan="2">Greater</th> <th rowspan="2">L</th> <th rowspan="2">g (required)</th> <th rowspan="2">g (input)</th> <th rowspan="2">Degree of Saturation</th> <th rowspan="2">Queuing Length</th> </tr> <tr> <th>Sat. Flow</th> <th>Left</th> <th>Straight</th> <th>Right</th> <th>pcu/h</th> <th>pcu/h</th> <th>pcu/h</th> <th>pcu/h</th> <th>pcu/h</th> </tr> </thead> <tbody> <tr> <td>A1, A2</td> <td>1</td> <td>3.75</td> <td>A</td> <td>1</td> <td>15</td> <td></td> <td>N</td> <td>1990</td> <td>195</td> <td>1.00</td> <td>1809</td> <td>0.108</td> <td>0.157</td> <td>12</td> <td>22</td> <td>32</td> <td>0.404</td> <td>29</td> </tr> <tr> <td>A2</td> <td>1</td> <td>3.75</td> <td>A</td> <td>1</td> <td></td> <td></td> <td>N</td> <td>2130</td> <td>335</td> <td>0.00</td> <td>2130</td> <td>0.157</td> <td></td> <td></td> <td>32</td> <td>32</td> <td>0.590</td> <td>49</td> </tr> <tr> <td>B1</td> <td>2</td> <td>3.30</td> <td>B</td> <td>1</td> <td></td> <td></td> <td>N</td> <td>1945</td> <td>320</td> <td>0.00</td> <td>1945</td> <td>0.165</td> <td>0.196</td> <td></td> <td>34</td> <td>40</td> <td>0.494</td> <td>43</td> </tr> <tr> <td>B2</td> <td>2</td> <td>3.30</td> <td>B</td> <td>1</td> <td>20</td> <td></td> <td></td> <td>2085</td> <td>380</td> <td>1.00</td> <td>1940</td> <td>0.196</td> <td></td> <td></td> <td>40</td> <td>40</td> <td>0.588</td> <td>51</td> </tr> <tr> <td>C1</td> <td>3</td> <td>3.50</td> <td>C</td> <td>1</td> <td>18</td> <td></td> <td>N</td> <td>1965</td> <td>290</td> <td>1.00</td> <td>1814</td> <td>4.10%</td> <td>-172</td> <td></td> <td>36</td> <td>36</td> <td>0.589</td> <td>41</td> </tr> <tr> <td>C2</td> <td>3</td> <td>3.50</td> <td>C</td> <td>1</td> <td>25</td> <td></td> <td></td> <td>2105</td> <td>235</td> <td>1.00</td> <td>1986</td> <td>4.10%</td> <td>-172</td> <td></td> <td>1814</td> <td>0.130</td> <td>0.432</td> <td>33</td> </tr> </tbody> </table>	Movement	Stage	Lane	Width	Phase	No. of lanes	Radius	O	N	Flow			Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length	Sat. Flow	Left	Straight	Right	pcu/h	pcu/h	pcu/h	pcu/h	pcu/h	A1, A2	1	3.75	A	1	15		N	1990	195	1.00	1809	0.108	0.157	12	22	32	0.404	29	A2	1	3.75	A	1			N	2130	335	0.00	2130	0.157			32	32	0.590	49	B1	2	3.30	B	1			N	1945	320	0.00	1945	0.165	0.196		34	40	0.494	43	B2	2	3.30	B	1	20			2085	380	1.00	1940	0.196			40	40	0.588	51	C1	3	3.50	C	1	18		N	1965	290	1.00	1814	4.10%	-172		36	36	0.589	41	C2	3	3.50	C	1	25			2105	235	1.00	1986	4.10%	-172		1814	0.130	0.432	33	<p>NOTE: 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m</p>
Movement										Stage	Lane	Width													Phase	No. of lanes	Radius	O	N	Flow			Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length																																																																																																								
	Sat. Flow	Left	Straight	Right	pcu/h	pcu/h	pcu/h	pcu/h	pcu/h																																																																																																																																											
A1, A2	1	3.75	A	1	15		N	1990	195	1.00	1809	0.108	0.157	12	22	32	0.404	29																																																																																																																																		
A2	1	3.75	A	1			N	2130	335	0.00	2130	0.157			32	32	0.590	49																																																																																																																																		
B1	2	3.30	B	1			N	1945	320	0.00	1945	0.165	0.196		34	40	0.494	43																																																																																																																																		
B2	2	3.30	B	1	20			2085	380	1.00	1940	0.196			40	40	0.588	51																																																																																																																																		
C1	3	3.50	C	1	18		N	1965	290	1.00	1814	4.10%	-172		36	36	0.589	41																																																																																																																																		
C2	3	3.50	C	1	25			2105	235	1.00	1986	4.10%	-172		1814	0.130	0.432	33																																																																																																																																		

J3 - YEAR 2035 - AM TRAFFIC FLOW

EXISTING LAYOUT - BASELINE SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION									
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.		Junction No.		J3					
Lai King Hill Road / Kwai Chung Interchange												DATE :		18-Sep-25		FILENAME :					

J3 - YEAR 2035 - PM TRAFFIC FLOW

EXISTING LAYOUT - BASELINE SCENARIO

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road / Kwai Chung Interchange

J3A, BASE, PM

PROJECT NO: 299277-02 Junction No. J3

DATE: 18-Sep-25 FILENAME:

Lai King Hill Road

No. of stages per cycle N = 3
No. of stage using for calculation N = 3

Cycle time C = 120 sec
Sum(Y) Y = 0.556

Loss time L = 12 sec
Total Flow = 1850 pcu

Co = $(1.5L+5)/(1-Y)$ = 51.8 sec
Cm = $L/(1-Y)$ = 27.0 sec
Yult = 0.810
R.C.ult = $(Yult-Y)^*100\%$ = 45.6 %
Cp = $0.9^*L/(0.9-Y)$ = 31.4 sec
Ymax = $1/LC$ = 0.900
R.C.(C) = $(0.9^*Ymax-Y)^*100\%$ = 46 %

A		B		C					
STAGE 1	INT= 5	STAGE 2	INT= 5	STAGE 3	INT= 5				

Pedestrian Phase	Width (m)	Green Time Required (s)		Green Time Provided (s)		Check
		SG	Delay	FG	SG	

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
									Left pcu/h	Straight pcu/h	Right pcu/h													
A1,A2	1	3.75	A	1	15		N	1990	210		210	1.00	1809		1809	0.116	0.164	12	23	32	0.435	31		
A2	1	3.75	A	1			N	2130		350	350	0.00	2130		2130	0.164			32	32	0.616	51		
B1	2	3.30	B	1			N	1945		335	335	0.00	1945		1945	0.172	0.206		33	40	0.517	45		
B2	2	3.30	B	1	20			2085		400	400	1.00	1940		1940	0.206			40	40	0.619	53		
C1	3	3.50	C	1	18		N	1965	305		305	1.00	1814	4.10%	-172	1642	0.186	0.186		36	36	0.619	43	
C2	3	3.50	C	1	25			2105		250	250	1.00	1986	4.10%	-172	1814	0.138			27	36	0.459	35	

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - AM TRAFFIC FLOW

EXISTING LAYOUT - REFERENCE SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION									
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO:		299277-02		Junction No.:		J3			
Lai King Hill Road / Kwai Chung Interchange												DATE:		18-Sep-25		FILENAME:					
C1	565																				
C2	558																				
B2	315																				
B1	373																				
A1	460																				
A2	349																				
Kwai Chung Interchange																					
Lai King Hill Road																					

J3 - YEAR 2035 - PM TRAFFIC FLOW

EXISTING LAYOUT - REFERENCE SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION									
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.		Junction No.		J3					
Lai King Hill Road / Kwai Chung Interchange												DATE :		18-Sep-25		FILENAME :					
C1	305																				
C2	424																				
B2	400																				
B1	367																				
A1	342																				
A2	378																				
Kwai Chung Interchange																					
Lai King Hill Road																					

J3 - YEAR 2035 - AM TRAFFIC FLOW

EXISTING LAYOUT - DESIGN SCENARIO

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road / Kwai Chung Interchange

J3A_DES_AM

PROJECT NO: 299277-02 Junction No. J3

DATE: 18-Sep-25 FILENAME:

No. of stages per cycle	N = 3
No. of stage using for calculation	N = 3
Cycle time	C = 120 sec
Sum(Y)	Y = 0.829
Loss time	L = 12 sec
Total Flow	= 2735 pcu
Co	= $(1.5'L+5)(1-Y)$ = 134.3 sec
Cm	= $L/(1-Y)$ = 70.1 sec
Yult	= 0.810
R.C.ult	= $(Yult-Y)^*100\%$ = -2.3 %
Cp	= $0.9'L/(0.9-Y)$ = 151.7 sec
Ymax	= 0.900
R.C.(C)	= $(0.9^*Ymax-Y)^*100\%$ = -2 %

STAGE 1	INT= 5	STAGE 2	INT= 5	STAGE 3	INT= 5
---------	--------	---------	--------	---------	--------

Pedestrian Phase	Width (m)	Green Time Required (s) SG Delay FG	Green Time Provided (s) SG Delay FG	Check
------------------	-----------	-------------------------------------	-------------------------------------	-------

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow per vehicle	Uphill Gradient %	Short lane Effect	Revised Sat. Flow	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1,A2	1	3.75	A	1	15		N	1990	528	528	1.00	1809			1809	0.292	0.292	12	38	38	0.922	72
A2	1	3.75	A	1			N	2130		352	0.00	2130			2130	0.165			22	38	0.522	48
B1	2	3.30	B	1				1945		375	0.00	1945			1945	0.193	0.193		25	25	0.925	66
B2	2	3.30	B	1	20			2085		315	1.00	1940			1940	0.162			21	25	0.780	50
C1	3	3.50	C	1	18		N	1965	565	565	1.00	1814	4.10%	-172	1642	0.344	0.344		45	45	0.918	71
C2	3	3.50	C	1	25			2105		600	1.00	1986	4.10%	-172	1814	0.331			43	45	0.882	75

NOTE : 'O' - OPPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN

PEDESTRIAN WALKING SPEED = 0.9m/s

QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - PM TRAFFIC FLOW

EXISTING LAYOUT - DESIGN SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																																						
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO:		299277-02		Junction No.:		J3																																
Lai King Hill Road / Kwai Chung Interchange												DATE :		18-Sep-25		FILENAME :																																		
												<p>No. of stages per cycle N = 3 No. of stage using for calculation N = 3</p> <p>Cycle time C = 120 sec Sum(Y) Y = 0.673 Loss time L = 12 sec Total Flow = 2267 pcu</p> <p>Co = $(1.5'L+5)(1-Y)$ = 70.4 sec Cm = $L(1-Y)$ = 36.7 sec Yult = 0.810 R.C.ult = $(Yult-Y)^*100\%$ = 20.3 % Cp = $0.9L(0.9-Y)$ = 47.6 sec Ymax = $1-C$ = 0.900</p> <p>R.C.(C) = $(0.9^*Ymax-Y)^*100\%$ = 20 %</p>																																						
												<table border="1"> <thead> <tr> <th rowspan="2">Pedestrian Phase</th> <th rowspan="2">Width (m)</th> <th colspan="2">Green Time Required (s)</th> <th colspan="2">Green Time Provided (s)</th> <th rowspan="2">Check</th> </tr> <tr> <th>SG</th> <th>Delay</th> <th>FG</th> <th>SG</th> <th>Delay</th> <th>FG</th> </tr> </thead> <tbody> <tr> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table>																			Pedestrian Phase	Width (m)	Green Time Required (s)		Green Time Provided (s)		Check	SG	Delay	FG	SG	Delay	FG							
Pedestrian Phase	Width (m)	Green Time Required (s)		Green Time Provided (s)		Check																																												
		SG	Delay	FG	SG		Delay	FG																																										
STAGE 1		INT= 5	STAGE 2		INT= 5	STAGE 3		INT= 5																																										
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead Sat. Flow	Flow Left pcu/h	Flow Straight pcu/h	Flow Right pcu/h	Total Sat. Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow Gradient %	Uphill Gradient pcu/h	Short lane Effect	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation %	Queuing Length m.																										
A1,A2	1	3.75	A	1	15		N	1990	378			378	1.00	1809	0.209	0.209	12		34	34	0.737	54																												
A2	1	3.75	A	1			N	2130		363		2130	0.00	1945	0.170	0.170		27	34	0.601	52																													
B1	2	3.30	B	1			N	1945		353		353	0.00	1945	0.181	0.181		29	33	0.660	51																													
B2	2	3.30	B	1	20			2085		400		400	1.00	1940	0.206	0.206		33	33	0.750	58																													
C1	3	3.50	C	1	18		N	1965	305			305	1.00	1814	0.162	0.162		30	41	0.544	40																													
C2	3	3.50	C	1	25			2105		468		468	1.00	1986	0.258	0.258		41	41	0.755	62																													

NOTE: 'O' - OPPOSING TRAFFIC

N - NEAR SIDE LANE

SG - STEADY GREEN

FG - FLASHING GREEN

PEDESTRIAN WALKING SPEED = 0.9m/s

QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - AM TRAFFIC FLOW

EXISTING LAYOUT - INTERIM SCENARIO A

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION									
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.		Junction No.		J3					
Lai King Hill Road / Kwai Chung Interchange												DATE :		18-Sep-25		FILENAME :					

J3 - YEAR 2035 - PM TRAFFIC FLOW

EXISTING LAYOUT - INTERIM SCENARIO A

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road / Kau Wa Keng Interchange

3A, INT_A, PM

PROJECT NO: 299277-02 Junction No. J3

DATE: 18-Sep-25 FILENAME:

Lai King Hill Road

No. of stages per cycle N = 3
No. of stage using for calculation N = 3

Cycle time C = 120 sec
Sun(y) Y = 0.572

Loss time L = 12 sec
Total Flow = 2059 pcu

Co = $(1.5'L+5)/(1-Y)$ = 53.8 sec
Cm = $L/(1-Y)$ = 26.1 sec
Yult = $(Yult-Y)^*100%$ = 0.810
R.C.ult = $(Yult-Y)^*100%$ = 41.5 %
Cp = $0.9^*L/(0.9-Y)$ = 33.0 sec
Ymax = L/C = 0.900
R.C.(C) = $(0.9^*Ymax-Y)^*100%$ = 42 %

STAGE 1	INT= 5	STAGE 2	INT= 5	STAGE 3	INT= 5	Pedestrian Phase	Width (m)	Green Time Required (s) SG Delay FG	Green Time Provided (s) SG Delay FG	Check
A	B	C								

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow	Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1,A2	1	3.75	A	1	15		N	1990	293	293	1.00	1809			1809	0.162	0.168	12	31	32	0.607	43
A2	1	3.75	A	1			N	2130		357	0.00	2130			2130	0.168			32	32	0.629	52
B1	2	3.30	B	1	20			1945	344	344	0.00	1945			1945	0.177	0.206		33	39	0.544	46
B2	2	3.30	B	1				2085		400	1.00	1940			1940	0.206			39	39	0.635	54
C1	3	3.50	C	1	18		N	1965	305	305	1.00	1814	4.10%	-172	1642	0.168	0.198		35	37	0.602	42
C2	3	3.50	C	1	25			2105		360	1.00	1986	4.10%	-172	1814	0.198			37	37	0.644	50

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - AM TRAFFIC FLOW

EXISTING LAYOUT - INTERIM SCENARIO B

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION									
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.		Junction No.		J3					
Lai King Hill Road / Kwai Chung Interchange												DATE :		18-Sep-25		FILENAME :					

J3 - YEAR 2035 - PM TRAFFIC FLOW

EXISTING LAYOUT - INTERIM SCENARIO B

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road / Kwai Chung Interchange | J3A, INT_B_PM

PROJECT NO: 299277-02 | Junction No: J3

DATE: 18-Sep-25 | FILENAME:

Lai King Hill Road

Kwai Chung Interchange

No. of stages per cycle	N = 3
No. of stage using for calculation	N = 3
Cycle time	C = 120 sec
Sum(Y)	Y = 0.602
Loss time	L = 12 sec
Total Flow	= 2128 pcu
Co	= $(1.5L+5)(1-Y)$ = 57.8 sec
Cm	= $L(1-Y)$ = 30.2 sec
Yult	= 0.810
R.C.ult	= $(Yult-Y)^*100\%$ = 34.6 %
Cp	= $0.9^*L/(0.9-Y)$ = 36.2 sec
Ymax	= 1/LC = 0.900
R.C.(C)	= $(0.9^*Ymax-Y)^*100\%$ = 35 %

STAGE 1		STAGE 2		STAGE 3	
INT=	5	INT=	5	INT=	5
A		B		C	

Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)	Check	
SG	Delay	FG	SG	Delay	FG

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1,A2	1	3.75	A	1	15		N	1990	321	359	347	321	1.00	1809		1809	0.177	0.177	12	32	32	0.665	47	
A2	1	3.75	A	1			N	2130		359		359	0.00	2130		2130	0.169		30	32	32	0.632	53	
B1	2	3.30	B	1			N	1945		347		347	0.00	1945		1945	0.178	0.206	32	37	57	0.579	48	
B2	2	3.30	B	1	20			2085		400		400	1.00	1940		1940	0.206		37	37	37	0.669	55	
C1	3	3.50	C	1	18		N	1965	305			305	1.00	1814	4.10%	-172	1642	0.186	0.218	33	39	57	0.572	41
C2	3	3.50	C	1	25			2105		396		396	1.00	1986	4.10%	-172	1814	0.218		39	39	39	0.672	53

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - AM TRAFFIC FLOW

EXISTING LAYOUT - INTERIM SCENARIO C

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION									
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO:		299277-02		Junction No.:		J3			
Lai King Hill Road / Kwai Chung Interchange												DATE:		18-Sep-25		FILENAME:					
<img alt="Existing Layout Diagram showing traffic flow from Lai King Hill Road into Kwai Chung Interchange. Arrows indicate flow from C1 (565), C2 (562), B2 (315), and B1 (372																					

J3 - YEAR 2035 - PM TRAFFIC FLOW

EXISTING LAYOUT - INTERIM SCENARIO C

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road / Kwai Chung Interchange | J3A, INT_C, PM

PROJECT NO: 299277-02 | Junction No: J3 | DATE: 18-Sep-25 | FILENAME: J3A, INT_C, PM

No. of stages per cycle = 3
No. of stage using for calculation = 3

Cycle time = 120 sec
Sum(Y) = 0.638

Loss time = 12 sec
Total Flow = 2198 pcu

Co = $(1.5'L+5)/(1-Y)$ = 63.5 sec
Cm = $L/(1-Y)$ = 33.1 sec
Yult = 0.810

R.C.ult = $(Yult-Y)^*100\%$ = 27.0 %
Cp = $0.9^*L/(0.9-Y)$ = 41.2 sec
Ymax = $0.1/C$ = 0.900

R.C.(C) = $(0.9^*Ymax*Y)^*100\%$ = 27 %

STAGE 1		STAGE 2		STAGE 3																	
INT= 5		INT= 5		INT= 5																	
Pedestrian Phase	Width (m)	Green Time Required (s)		Green Time Provided (s)																	
SG	Delay	FG	SG	Delay	FG																

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1,A2	1	3.75	A	1	15		N	1990	350		350	1.00	1809		1809	0.193	0.193	12	33	33	0.704	51		
A2	1	3.75	A	1			N	2130		361	361	0.00	2130		2130	0.169			29	33	0.616	52		
B1	2	3.30	B	1	20			1945		350	350	0.00	1945		1945	0.180	0.206		30	35	0.617	50		
B2	2	3.30	B	1				2085		400	400	1.00	1940		1940	0.206			35	35	0.707	57		
C1	3	3.50	C	1	18		N	1965	305		305	1.00	1814	4.10%	-172	1642	0.186	0.238		31	40	0.557	41	
C2	3	3.50	C	1	25			2105		432	432	1.00	1986	4.10%	-172	1814	0.238			40	40	0.715	58	

NOTE : 'O' - OPPOSING TRAFFIC | N - NEAR SIDE LANE | SG - STEADY GREEN | FG - FLASHING GREEN | PEDESTRIAN WALKING SPEED = 0.9m/s | QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - AM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - BASELINE SCENARIO

J3 - YEAR 2035 - PM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - BASELINE SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION									
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO:		299277-02		Junction No.:		J3			
Lai King Hill Road / Kwai Chung Interchange												DATE :		19-Nov-25		FILENAME :					
<img alt="Junction layout diagram showing four stages (A, B, C, D) of traffic flow. Stage A: A1 (210), A2 (350). Stage B: B1 (335), B2 (400). Stage C: C1 (305), C2 (250). Stage D: D1 (18																					

J3 - YEAR 2035 - AM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - REFERENCE SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION											
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.		Junction No.		J3							
Lai King Hill Road / Kwai Chung Interchange												DATE :		19-Nov-25		FILENAME :							
STAGE 1			INT= 5			STAGE 2			INT= 5			STAGE 3			INT= 5			STAGE 4			INT=		
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow	Lip Hill Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length	
		mt.			m.			Sat. Flow	Left pcp/h	Straight pcp/h	Right pcp/h	pcp/h	%	pcp/h	pcp/h	y	y	sec	sec	sec	X	mt.	
A1,A2	1	3.75	A	1	15		N	1990	460	0	460	1.00	1809		1809	0.254	0.254	7	29	29	1.052	70	
A2	1	3.75	A	1			N	2130	349	349	0.00	2130		2130	0.164	0.164		19	29	0.678	53		
B1	1.2	3.30	B	1	20		N	1945	373	373	0.00	1945		1945	0.192	0.192		22	22	1.046	61		
B2	1.2	3.30	B	1				2085		315	1.00	1940		1940	0.162	0.162		19	22	0.886	51		
C1	3	3.50	C	1	18		N	1965	565	565	1.00	1814	4.10%	-172	1642	0.344	0.344		40	40	1.032	75	
C2	3	3.50	C	1	25			2105		558	1.00	1986	4.10%	-172	1814	0.308			36	40	0.923	74	
ped																		25					
NOTE : 'O' - OPPONDING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN												PEDESTRIAN WALKING SPEED = 0.9m/s		QUEUEING LENGTH = AVERAGE QUEUE * 6m									

J3 - YEAR 2035 - PM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - REFERENCE SCENARIO

OVE ARUP & PARTNERS **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road / Kwai Chung Interchange J38_REF_PM_(TD)

PROJECT NO: 299277-02 Junction No. J3

DATE: 19-Nov-25 FILENAME:

No. of stages per cycle N = 4

No. of stage using for calculation N = 3

Cycle time C = 120 sec

Sum(Y) Y = 0.629

Loss time L = 32 sec

Total Flow = 2216 pcu

Co = $(1.5L+5)(1-Y)$ = 142.9 sec

Cm = $L(1-Y)$ = 83.3 sec

Yult = 0.660

R.C.ult = $(Yult-Y)*100\%$ = 4.9 %

Cp = $0.9^*L/(0.9-Y)$ = 103.3 sec

Ymax = 1/LC = 0.733

R.C.(C) = $(0.9^*Ymax-Y)*100\%$ = 5 %

Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
D	10.6	9	2	8	15	2	8	OK
F	11.4	10	7	8	10	7	8	OK
G	9.3	8	7	7	11	7	7	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
								Straight-Ahead Sat. Flow	Left pcu/h	Straight pcu/h													
A1,A2	1	3.75	A	1	15		N	1990	342	0	342	1.00	1809		1809	0.189	0.189	7	26	26	0.873	54	
A2	1	3.75	A	1			N	2130		378	378	0.00	2130		2130	0.177			25	26	0.819	59	
B1	1,2	3.30	B	1	20		N	1945		367	367	0.00	1945		1945	0.169			26	29	0.781	56	
B2	1,2	3.30	B	1			N	2085		400	400	1.00	1940		1940	0.206	0.206		29	29	0.853	61	
C1	3	3.50	C	1	18		N	1965	305		305	1.00	1814	4.10%	-172	1642	0.166	0.234		26	33	0.676	44
C2	3	3.50	C	1	25		N	2105		424	424	1.00	1986	4.10%	-172	1814	0.234			33	33	0.850	61
ped																			25				

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - AM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - DESIGN SCENARIO

OVE ARUP & PARTNERS **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng **PROJECT NO.:** 299277-02 **Junction No.:** J3

Lai King Hill Road / Kwai Chung Interchange **DATE:** 19-Nov-25 **FILENAME:** J3B_DES_AM_(TD)

Lai King Hill Road

Kwai Chung Interchange

Stages and Flow Rates (pcu/h):

- Stage A:** A1 (528), A2 (352)
- Stage B:** B1 (375), B2 (315)
- Stage C:** C1 (565), C2 (600)

No. of stages per cycle **N =** 4

No. of stage using for calculation **N =** 3

Cycle time **C =** 120 sec

Sum(Y) **Y =** 0.798

Loss time **L =** 32 sec

Total Flow **=** 2735 pcu

Co $= (1.5L+5)(1-Y)$ **=** 262.9 sec

Cm $= L(1-Y)$ **=** 157.7 sec

Yult **=** 0.660

R.C.ult $= (Yult-Y)*100%$ **=** -17.3 %

Cp $= 0.9^*L/(0.9-Y)$ **=** 283.4 sec

Ymax $= 1/LC$ **=** 0.733

R.C.(C) $= (0.9^*Ymax-Y)*100%$ **=** -17 %

B		B		C		Stages and Flow Rates (pcu/h)			
A						STAGE 1: INT= 5 STAGE 2: INT= 5 STAGE 3: INT= 5 STAGE 4: INT= 5			

Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
	SG	Delay	FG	SG	Delay	FG		
D	10.6	9	2	8	15	2	8	OK
F	11.4	10	7	8	10	7	8	OK
G	9.3	8	7	7	11	7	7	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1,A2	1	3.75	A	1	15		N	1990	528	0	528	1.00	1809			1809	0.292	0.292	7	32	32	1.094	77	
	A2	1	3.75	A	1		N	2130		352	352	0.00	2130			2130	0.165			18	32	0.620	52	
	B1	1.2	3.30	B	1		N	1945		375	375	0.00	1945			1945	0.193			21	21	1.102	62	
	B2	1.2	3.30	B	1	20		2085		315	315	1.00	1940			1940	0.162	0.162		18	21	0.928	63	
	C1	3	3.50	C	1	18		1965	565		565	1.00	1814	4.10%	-172	1642	0.344	0.344		38	38	1.087	77	
	C2	3	3.50	C	1	25		2105		600	600	1.00	1986	4.10%	-172	1814	0.331			36	38	1.045	82	
ped																		25						

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - PM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - DESIGN SCENARIO

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road / Kwai Chung Interchange

J3B_DES_PM_(TD)

PROJECT NO: 299277-02 Junction No. J3

DATE: 19-Nov-25 FILENAME:

Lai King Hill Road

No. of stages per cycle N = 4
No. of stage using for calculation N = 3

Cycle time C = 120 sec
Sum(Y) Y = 0.673

Loss time L = 32 sec
Total Flow = 2267 pcu

Co = $(1.5L+5)/(1-Y)$ = 162.2 sec
Cm = $L/(1-Y)$ = 97.9 sec
Yult = 0.660
R.C.ult = $(Yult-Y)^*100\%$ = -2.0 %
Cp = $0.9^*L/(0.9-Y)$ = 127.0 sec
Ymax = $1/L$ = 0.733
R.C.(C) = $(0.9^*Ymax-Y)^*100\%$ = -2 %

Pedestrian Phase Width (m) Green Time Required (s) SG Delay FG Green Time Provided (s) SG Delay FG Check

Phase	Width (m)	SG	Delay	FG	SG	Delay	FG	Check
D	10.6	9	2	8	15	2	8	OK
F	11.4	10	7	8	10	7	8	OK
G	9.3	8	7	7	11	7	7	OK

STAGE 1 INT= 5 **STAGE 2** INT= 5 **STAGE 3** INT= 5 **STAGE 4** INT= 5

Movement **Stage** **Lane Width m.** **Phase** **No. of lane** **Radius m.** **O** **N** **Straight-Ahead Sat. Flow** **Flow** **Total Flow pcu/h** **Proportion of Turning Vehicles** **Sat. Flow pcu/h** **Uphill Gradient %** **Short lane Effect** **Revised Sat. Flow pcu/h** **y** **Greater y** **L sec** **g (required) sec** **g (input) sec** **Degree of Saturation X** **Queuing Length m.**

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Left pcu/h	Straight pcu/h	Right pcu/h	Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1,A2	1	3.75	A	1	15		N	1990	378	0	378	1.00	1809			1809	0.209	0.209	7	27	27	0.929	66	
A2	1	3.75	A	1			N	2130		363	363	0.00	2130			2130	0.170		22	27	27	0.757	56	
B1	1,2	3.30	B	1	20			1945		353	353	0.00	1945			1945	0.181		24	27	27	0.807	55	
B2	1,2	3.30	B	1				2085		400	400	1.00	1940			1940	0.206	0.206	27	27	27	0.917	63	
C1	3	3.50	C	1	18		N	1965	305		305	1.00	1814	4.10%	-172	1642	0.186	0.258	24	34	34	0.656	44	
C2	3	3.50	C	1	25			2105		468	468	1.00	1986	4.10%	-172	1814	0.258		34	34	34	0.911	67	
ped																			25					

NOTE : 'O' - OPPOSING TRAFFIC **N** - NEAR SIDE LANE **SG** - STEADY GREEN **FG** - FLASHING GREEN **PEDESTRIAN WALKING SPEED = 0.9m/s** **QUEUING LENGTH = AVERAGE QUEUE * 6m**

J3 - YEAR 2035 - AM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - INTERIM SCENARIO A

OVE ARUP & PARTNERS **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road / Kwai Chung Interchange J3B_INT_A_AM_(TD)

PROJECT NO: 299277-02 Junction No.: J3

DATE: 19-Nov-25 FILENAME :

STAGE 1		STAGE 2		STAGE 3		STAGE 4		INT=	
INT=	5	INT=	5	INT=	5	INT=	5	INT=	

Pedestrian Phase		Width (m)		Green Time Required (s)		Green Time Provided (s)		Check	
SG	Delay	FG	SG	Delay	FG	SG	Delay	FG	
D	10.6		9	2	8	15	2	8	OK
F	11.4		10	7	8	10	7	8	OK
G	9.3		8	7	7	11	7	7	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	l sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
								Straight-Ahead Sat. Flow	Left pcu/h	Straight pcu/h													
A1,A2	1	3.75	A	1	15		N	1990	329	0	329	1.00	1809		1809	0.182	0.182	7	23	23	0.949	80	
A2	1	3.75	A	1			N	2130		337	337	0.00	2130		2130	0.158			20	23	0.825	54	
B1	1,2	3.30	B	1			N	1945		366	366	0.00	1945		1945	0.188			24	24	0.941	76	
B2	1,2	3.30	B	1	20			2085		315	315	1.00	1940		1940	0.162	0.162		21	24	0.812	50	
C1	3	3.50	C	1	18		N	1965	565		565	1.00	1814	4.10%	-172	1642	0.344	0.344		44	44	0.939	74
C2	3	3.50	C	1	25			2105		485	485	1.00	1986	4.10%	-172	1814	0.267			34	44	0.729	61
ped																			25				

NOTE : 'O' - OPPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN

PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - PM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - INTERIM SCENARIO A

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO:		299277-02		Junction No.:		J3										
Lai King Hill Road / Kwai Chung Interchange												DATE :		19-Nov-25		FILENAME :												
STAGE 1			INT= 5			STAGE 2			INT= 5			STAGE 3			INT= 5			STAGE 4			INT=							
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead Sat. Flow	Left Sat. Flow	Straight Sat. Flow	Right Sat. Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Uphill Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length				
A1,A2	1	3.75	A	1	15		N	1990	293	0		293	1.00	1809		1809	0.162	0.168	7		25	26	0.748	46				
A2	1	3.75	A	1			N	2130	357			357	0.00	2130		2130	0.168			26	26	0.774	56					
B1	1.2	3.30	B	1			N	1945	344			344	0.00	1945		1945	0.177			27	32	0.663	50					
B2	1.2	3.30	B	1	20			2085		400		400	1.00	1940		1940	0.206	0.206	32	32	0.773	59						
C1	3	3.50	C	1	18		N	1965	305			305	1.00	1814	4.10%	-172	1642	0.186	0.198	29	31	0.719	45					
C2	3	3.50	C	1	25			2105		360		360	1.00	1986	4.10%	-172	1814	0.198		31	31	0.768	53					
																		</										

J3 - YEAR 2035 - AM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - INTERIM SCENARIO B

OVE ARUP & PARTNERS

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road / Kwai Chung Interchange

J3B_INT_B_AM_(TD)

PROJECT NO: 299277-02 Junction No. J3

DATE: 19-Nov-25 FILENAME:

Lai King Hill Road

No. of stages per cycle N = 4
No. of stage using for calculation N = 3

Cycle time C = 120 sec
Sum(y) Y = 0.724

Loss time L = 32 sec
Total Flow = 2508 pcu

Co = $(1.5'L+5)/(1-Y)$ = 192.3 sec
Cm = $L/(1-Y)$ = 116.1 sec
Yult = $Y/(Y+L)$ = 0.660
R.C.ult = $(Yult-Y)*Y*100\%$ = -8.9 %
Cp = $0.9'L/(0.9-Y)$ = 163.9 sec
Ymax = $1/L$ = 0.733
R.C.(C) = $(0.9*Ymax*Y)*Y*100\%$ = -9 %

STAGE 1 INT= 5 **STAGE 2** INT= 5 **STAGE 3** INT= 5 **STAGE 4** INT=

Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
D	10.6	9	2	8	15	2	8	OK
F	11.4	10	7	8	10	7	8	OK
G	9.3	8	7	7	11	7	7	OK

Movement **Stage** **Lane Width m.** **Phase** **No. of lane** **Radius m.** **O** **N** **Straight-Ahead Sat. Flow** **Flow** **Total Flow** **Proportion of Turning Vehicles** **Sat. Flow** **Uphill Gradient %** **Short lane Effect pcu/h** **Revised Sat. Flow pcu/h** **y** **Greater y** **L sec** **g (required) sec** **g (input) sec** **Degree of Saturation X** **Queuing Length m.**

A1,A2	1	3.75	A	1	15		N	1990	394	0	394	1.00	1809		1809	0.218	0.218	7	26	26	1.005	62	
A2	1	3.75	A	1			N	2130		342	342	0.00	2130		2130	0.161			20	26	0.741	54	
B1	1,2	3.30	B	1			N	1945		369	369	0.00	1945		1945	0.190			23	23	0.990	322	
B2	1,2	3.30	B	1	20			2085		315	315	1.00	1940		1940	0.162	0.162		20	23	0.847	51	
C1	3	3.50	C	1	18		N	1965	565		565	1.00	1814	4.10%	-172	1642	0.344	0.344		42	42	0.983	207
C2	3	3.50	C	1	25			2105		523	523	1.00	1986	4.10%	-172	1814	0.288			35	42	0.824	68
ped																			25				

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - PM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - INTERIM SCENARIO B

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION										
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO:		299277-02		Junction No.:		J3				
Lai King Hill Road / Kwai Chung Interchange												DATE :		19-Nov-25		FILENAME :						
STAGE 1			INT= 5			STAGE 2			INT= 5			STAGE 3			INT= 5			STAGE 4			INT=	
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow	Lipult Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length
		mt.			m.			Sat. Flow	Left pcpnh	Straight pcpnh	Right pcpnh	pcpnh	%	pcpnh	pcpnh	y	sec	sec	sec	sec	X	m.
A1, A2	1	3.75	A	1	15		N	1990	321	1.00	1809				1809	0.177	0.177	7		26	0.819	50
A2	1	3.75	A	1			N	2130	359	0.00	2130				2130	0.169	0.169			25	0.778	56
B1	1, 2	3.30	B	1			N	1945	347	0.00	1945				1945	0.178	0.178			26	0.714	52
B2	1, 2	3.30	B	1	20			2085		400	1.00	1940			1940	0.206	0.206			30	0.825	60
C1	3	3.50	C	1	18		N	1965	305	1.00	1814	4.10%	-172	1642	0.186	0.218			27	0.697	45	
C2	3	3.50	C	1	25			2105		396	1.00	1986	4.10%	-172	1814	0.218			32	0.819	58	
ped																		25				
NOTE : 'O - OPPPOSING TRAFFIC' N - NEAR SIDE LANE												SG - STEADY GREEN		FG - FLASHING GREEN		PEDESTRIAN WALKING SPEED = 0.9m/s		QUEUING LENGTH = AVERAGE QUEUE * 6m				

J3 - YEAR 2035 - AM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - INTERIM SCENARIO C

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road / Kwai Chung Interchange

J3B_INT_C_AM_(TD)

PROJECT NO: 299277-02 Junction No. J3

DATE: 19-Nov-25 FILENAME:

Lai King Hill Road

Kwai Chung Interchange

Stages: C1, 565 (up); C2, 562 (down); B2, 315 (up); B1, 372 (down); A1, 463 (up); A2, 347 (down).

No. of stages per cycle	N =	4
No. of stage using for calculation	N =	3
Cycle time	C =	120 sec
Sun(y)	Y =	0.762
Loss time	L =	32 sec
Total Flow	=	2624 pcu
Co	=	(1.5'L+5)*(1-Y) = 223.1 sec
Cm	=	L/(1-Y) = 134.7 sec
Yult	=	0.660
R.C.ult	=	(Yult-Y)*Y*100% = -13.4 %
Cp	=	0.9*L/(0.9-Y) = 204.4 sec
Ymax	=	0.1/C = 0.733
R.C.(C)	=	(0.9*Ymax-Y)*Y*100% = -13 %

STAGE 1		STAGE 2		STAGE 3		STAGE 4	
INT=	5	INT=	5	INT=	5	INT=	5

Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
	SG	Delay	FG	SG	Delay	FG		
D	10.6	9	2	8	15	2	8	OK
F	11.4	10	7	8	10	7	8	OK
G	9.3	8	7	7	11	7	7	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1,A2	1	3.75	A	1	15		N	1990	463 0	463	1.00	1809		1809	0.256	0.256	7	30	30	1.024	69	
A2	1	3.75	A	1			N	2130		347	0.00	2130		2130	0.163			19	30	0.652	52	
B1	1,2	3.30	B	1				1945		372	0.00	1945		1945	0.191			22	22	1.043	61	
B2	1,2	3.30	B	1	20			2085		315	1.00	1940		1940	0.162	0.162		19	22	0.886	51	
C1	3	3.50	C	1	18			1965	565	565	1.00	1814	4.10%	-172	1642	0.344	0.344		40	40	1.032	75
C2	3	3.50	C	1	25			2105		562	1.00	1986	4.10%	-172	1814	0.310			36	40	0.930	75
ped																		25				

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - PM TRAFFIC FLOW

TD PLANNED JUNCTION ARRAGEMENT - INTERIM SCENARIO C

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road / Kwai Chung Interchange

J3B_INT_C_PM_(TD)

PROJECT NO: 299277-02 Junction No. J3

DATE: 19-Nov-25 FILENAME:

Lai King Hill Road

B2 B1
400 350

Kwai Chung Interchange
C1 305
C2 432

350 361
A1 A2

No. of stages per cycle N = 4
No. of stage using for calculation N = 3

Cycle time C = 120 sec
Sum(Y) Y = 0.638

Loss time L = 32 sec
Total Flow = 2198 pcu

Co = $(1.5'L+5)/(1-Y)$ = 146.4 sec
Cm = $L/(1-Y)$ = 85.4 sec
Yult = 0.660

R.C.ult = $(Yult-Y)^*100\%$ = 3.5 %
Cp = $0.9^*L/(0.9-Y)$ = 109.9 sec
Ymax = $0.1/C$ = 0.733

R.C.(C) = $(0.9^*Ymax*Y)^*100\%$ = 3 %

Pedestrian Phase	Width (m)	Green Time Required (s) SG Delay FG	Green Time Provided (s) SG Delay FG	Check
D	10.6	9 2 8	15 2 8	OK
F	11.4	10 7 8	10 7 8	OK
G	9.3	8 7 7	11 7 7	OK

STAGE 1 INT= 5 STAGE 2 INT= 5 STAGE 3 INT= 5 STAGE 4 INT=

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1,A2	1	3.75	A	1	15		N	1990	350 0	350	1.00	1809			1809	0.193	0.193	7	27	27	0.860	54
A2	1	3.75	A	1			N	2130		361	0.00	2130			2130	0.169			23	27	0.753	56
B1	1,2	3.30	B	1			N	1945		350	0.00	1945			1945	0.180			25	28	0.771	54
B2	1,2	3.30	B	1	20			2085		400	1.00	1940			1940	0.206	0.206		28	28	0.864	61
C1	3	3.50	C	1	18		N	1965	305	305	1.00	1814	4.10%	-172	1642	0.186	0.238		26	33	0.676	44
C2	3	3.50	C	1	25			2105		432	1.00	1986	4.10%	-172	1814	0.238			33	33	0.866	63
ped																		25				

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - AM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - BASELINE SCENARIO

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road / Kwai Chung Interchange | J3C_BASE_IMP_AM

PROJECT NO: 299277-02 | Junction No. J3

DATE: 18-Sep-25 | FILENAME:

Lai King Hill Road

Kwai Chung Interchange

Stages: P, Q, R, S, Y, Z1, Z2

Flows (pcu/h): C1 565, C2 370, B2 315, B1 345, A1 135, A2 310

No. of stages per cycle	N = 3
No. of stage using for calculation	N = 3
Cycle time	C = 120 sec
Sum(y)	Y = 0.684
Loss time	L = 12 sec
Total Flow	= 2040 pcu
Co	= $(1.5'L+5)(1-Y)$ = 72.8 sec
Cm	= $U/(1-Y)$ = 36.0 sec
Yult	= 0.610
R.C.ult	= $(Yult-Y)*100\%$ = 18.4 %
Cp	= $0.9^*U/(0.9-Y)$ = 50.0 sec
Ymax	= 1-L/C = 0.900
R.C.(C)	= $(0.9^*Ymax-Y)*100\%$ = 18 %

STAGE 1		STAGE 2		STAGE 3	
INT=	5	INT=	5	INT=	5
X2		X1		R	
P		Q		Y	
S		Z1		Z2	

Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)	Check
	SG	Delay	FG	
P	5	6	1 5	52 1 5
Q	10	6	2 11	17 2 11
R	12	13	5 12	13 5 12
S	11	12	5 11	16 5 11

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater' sec	l sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1	1	3.75	X1	1	15		N	1990	135			135	1.00	1809		1809	0.075			12	54	0.166	15	
C1	1	3.50	X2	1	18		N	1965	565			565	1.00	1814	4.10%	1642	0.344	0.344		54	54	0.765	62	
C2	1	3.50	X2	1	25			2105				370	1.00	1986	4.10%	1814	0.204			32	54	0.453	41	
A2	3	3.75	Z1	1				2130				310	0.00	2130		2130	0.146			23	28	0.624	48	
B1	3	3.30	Z2	1			N	1945				345	0.00	1945		1945	0.177	0.177		28	28	0.760	53	
B2	2	3.30	Y	1	20			2085				315	1.00	1940		1940	0.162	0.162		26	26	0.750	49	

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - PM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - BASELINE SCENARIO

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng | PROJECT NO: 299277-02 | Junction No. J3

Lai King Hill Road / Kwai Chung Interchange | DATE: 18-Sep-25 | FILENAME: J3C_BASE_IMP_PM

No. of stages per cycle	N = 3
No. of stage using for calculation	N = 3
Cycle time	C = 120 sec
Sum(y)	Y = 0.564
Loss time	L = 12 sec
Total Flow	= 1850 pcu
Co	= $(1.5L+5)/(1-Y)$ = 52.8 sec
Cm	= $L/(1-Y)$ = 27.5 sec
Yult	= 0.810
R.C.ult	= $(Yult-Y)*Y*100\%$ = 43.6 %
Cp	= $0.9L/(0.9-Y)$ = 32.2 sec
Ymax	= $1-L/C$ = 0.900
R.C.(C)	= $(0.9*Ymax-Y)*Y*100\%$ = 44 %

P		Y		Z2			
X2	X1	Q	R	S	Z1	Z2	

STAGE 1 INT= 5 STAGE 2 INT= 5 STAGE 3 INT= 5

Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
P	5	6	1	5	34	1	5	OK
Q	10	6	2	11	30	2	11	OK
R	12	13	5	12	26	5	12	OK
S	11	12	5	11	21	5	11	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
								Straight-Ahead Sat. Flow pcu/h	Left pcu/h	Straight pcu/h													
A1	1	3.75	X1	1	15	N	N	1990	210		210	1.00	1809	4.10%	-172	1809	0.116		12	22	36	0.387	29
C1	1	3.50	X2	1	18		N	1965	305		305	1.00	1814		-172	1642	0.186	0.186		36	36	0.619	43
C2	1	3.50	X2	1	25			2105			250	1.00	1986	4.10%	-172	1814	0.138			26	36	0.459	35
A2	3	3.75	Z1	1				2130		350	350	0.00	2130			2130	0.164			31	33	0.598	51
B1	3	3.30	Z2	1				1945		335	335	0.00	1945			1945	0.172	0.172		33	33	0.626	49
B2	2	3.30	Y	1	20			2085		400	400	1.00	1940			1940	0.206	0.206		39	39	0.635	54

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - AM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - REFERENCE SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION													
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.		Junction No.		J3									
Lai King Hill Road / Kwai Chung Interchange												DATE :		18-Sep-25		FILENAME :									
C1	565																								
C2	558																								
B2	315																								
B1	373																								
460	349																								
A1																									
A2																									
X2																									
X1																									
P																									
Q																									
Y																									
Z2																									
S																									
Z1																									
STAGE 1	INT=	5	STAGE 2	INT=	5	STAGE 3	INT=	5																	
Movement	Stage	Lane Width	Phase	No. of lanes	Radius	O	N	Straight-Ahead Sat. Flow	Left Sat. Flow	Straight Sat. Flow	Right Sat. Flow	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Uphill Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (sec)	g (sec)	Degree of Saturation	Queuing Length
		mt.			m.			pcu/h	pcu/h	pcu/h	pcu/h	pcu/h	pcu/h	pcu/h	%	pcu/h	pcu/h	pcu/h	pcu/h	sec	sec	sec	sec	sec	
A1	1	3.75	X1	1	15		N	1990	460	1.00	1809	460	1.00	1809	4.10%	-172	1809	0.254	39	53	0.576	51			
C1	1	3.50	X2	1	18		N	1965	565	1.00	1814	565	1.00	1814	4.10%	-172	1642	0.344	53	53	0.779	63			
C2	1	3.50	X2	1	25			2105		558	1.00	1986	558	1.00	1986		-172	1814	0.308	47	53	0.697	62		
A2	3	3.75	Z1	1			N	2130		349	0.00	2130	349	0.00	2130			2130	0.164	25	29	0.678	53		
B1	3	3.30	Z2	1			N	1945		373	0.00	1945	373	0.00	1945			1945	0.192	29	29	0.794	57		
B2	2	3.30	Y	1	20			2085		315	1.00	1940	315	1.00	1940			1940	0.162	1	25	26	0.750	49	
NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN												PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m													

No. of stages per cycle	N = 3
No. of stage using for calculation	N = 3
Cycle time	C = 120 sec
Sum(Y)	Y = 0.698
Loss time	L = 13 sec
Total Flow	= 2620 pcu
Co	= $(1.5'L+5)(1-Y)$ = 81.2 sec
Cm	= $L(1-Y)$ = 43.1 sec
Yult	= 0.803
R.C.ult	= $(Yult-Y)^*100\%$ = 14.9 %
Cp	= $0.9'L(0.9-Y)$ = 58.0 sec
Ymax	= $1-L/C$ = 0.892
R.C.(C)	= $(0.9'YmaxY)^*100\%$ = 15 %

Pedestrian Phase	Width (m)	Green Time Required (s)		Green Time Provided (s)		Check		
		SG	Delay	FG	SG	Delay	FG	
P	5	6	1	5	51	1	5	OK
Q	10	6	2	11	17	2	11	OK
R	12	13	5	12	13	5	12	OK
S	11	12	5	11	17	5	11	OK

J3 - YEAR 2035 - PM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - REFERENCE SCENARIO

OVE ARUP & PARTNERS **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng
Lai King Hill Road / Kwai Chung Interchange **J3C_REF_IMP_PM**

PROJECT NO. 299277-02 Junction No. J3
DATE: 18-Sep-25 FILENAME:

Lai King Hill Road

Kwai Chung Interchange

Stages and Flow Data:

- Stage P:** C1 (305), C2 (424), D1 (342), D2 (378)
- Stage Q:** B2 (400), B1 (367)
- Stage Y:** (None)
- Stage Z1:** (None)
- Stage Z2:** (None)
- Stage R:** (None)
- Stage S:** (None)

No. of stages per cycle N = 3

No. of stage using for calculation N = 3

Cycle time C = 120 sec

Sum(y) Y = 0.629

Loss time L = 12 sec

Total Flow = 2216 pcu

Co = $(1.5L+S)/(1-Y)$ = 61.9 sec

Gm = $L/(1-Y)$ = 32.3 sec

Yult = $(Yult-Y)^*100\%$ = 26.8 %

R.C.ult = $0.9^*L/(9.0^*Y)$ = 39.8 sec

Cp = $0.9^*L/(9.0^*Y)$ = 0.900

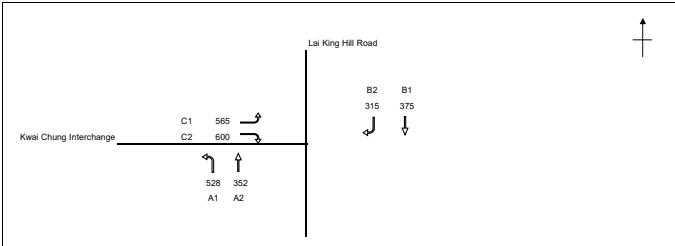
Ymax = $1/LC$ = 0.900

R.C.(C) = $(0.9^*Ymax^*Y)^*100\%$ = 29 %

STAGE 1		INT= 5	STAGE 2		INT= 5	STAGE 3		INT= 5
---------	--	--------	---------	--	--------	---------	--	--------

Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)			Check
		SG Delay FG	SG	Delay	FG	
P	5	6 1 5	38	1	5	OK
Q	10	6 2 11	26	2	11	OK
R	12	13 5 12	22	5	12	OK
S	11	12 5 11	20	5	11	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.	
A1	1	3.75	X1	1	15		N	1990	342			342	1.00	1809			1809	0.189			12	32	40	0.567	46
C1	1	3.50	X2	1	18		N	1965	305			305	1.00	1814	4.10%	-172	1642	0.186	0.234		32	40	0.557	41	
C2	1	3.50	X2	1	25			2105				424	1.00	1986		-172	1814	0.234			40	40	0.701	57	
A2	3	3.75	Z1	1				2130		378		378	0.00	2130			2130	0.177				30	32	0.665	55
B1	3	3.30	Z2	1				1945		367		367	0.00	1945			1945	0.189	0.189			32	32	0.708	54
B2	2	3.30	Y	1	20			2085		400		400	1.00	1940			1940	0.206	0.206			35	35	0.707	57


NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN

PEDESTRIAN WALKING SPEED = 0.9m/s

QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - AM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - DESIGN SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																																																																																																																																																																
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.		Junction No.																																																																																																																																																														
Lai King Hill Road / Kwai Chung Interchange												299277-02		J3																																																																																																																																																														
J3C_DES_IMP_AM												DATE :		18-Sep-25		FILENAME :																																																																																																																																																												
												No. of stages per cycle N = 3 No. of stage using for calculation N = 3																																																																																																																																																																
												Cycle time C = 120 sec Sum(Y) Y = 0.699 Loss time L = 13 sec Total Flow = 2735 pcu																																																																																																																																																																
$C_o = (1.5'L+5)(1-Y)$ $C_m = L(1-Y)$ $Y_{ult} = (Y_{ult}-Y)*100\%$ $R.C.ult = 0.91(0.9-Y)$ $C_p = 0.91(0.9-Y)$ $Y_{max} = 1-C_p$ $R.C.(C) = (0.9^*Y_{max}^*Y)*100\%$												= 81.5 sec = 43.2 sec = 0.803 = 14.8 % = 58.3 sec = 0.892 = 15 %																																																																																																																																																																
<table border="1"> <thead> <tr> <th>Pedestrian Phase</th> <th>Width (m)</th> <th>Green Time Required (s)</th> <th>Green Time Provided (s)</th> <th>Check</th> </tr> </thead> <tbody> <tr> <td>P</td> <td>5</td> <td>SG 6</td> <td>Delay 1</td> <td>FG 5</td> <td>OK</td> </tr> <tr> <td>Q</td> <td>10</td> <td>6</td> <td>2</td> <td>11</td> <td>OK</td> </tr> <tr> <td>R</td> <td>12</td> <td>13</td> <td>5</td> <td>12</td> <td>OK</td> </tr> <tr> <td>S</td> <td>11</td> <td>12</td> <td>5</td> <td>11</td> <td>OK</td> </tr> </tbody> </table>												Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)	Check	P	5	SG 6	Delay 1	FG 5	OK	Q	10	6	2	11	OK	R	12	13	5	12	OK	S	11	12	5	11	OK																																																																																																																																				
Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)	Check																																																																																																																																																																								
P	5	SG 6	Delay 1	FG 5	OK																																																																																																																																																																							
Q	10	6	2	11	OK																																																																																																																																																																							
R	12	13	5	12	OK																																																																																																																																																																							
S	11	12	5	11	OK																																																																																																																																																																							
<table border="1"> <thead> <tr> <th>Movement</th> <th>Stage</th> <th>Lane Width</th> <th>Phase</th> <th>No. of Lane</th> <th>Radius</th> <th>O</th> <th>N</th> <th>Straight-Ahead Sat. Flow</th> <th>Left Sat. Flow</th> <th>Right Sat. Flow</th> <th>Total Flow</th> <th>Proportion of Turning Vehicles</th> <th>Sat. Flow Gradient</th> <th>Uphill Effect</th> <th>Short lane Sat. Flow</th> <th>Revised Sat. Flow</th> <th>y</th> <th>Greater</th> <th>L</th> <th>g (required)</th> <th>g (input)</th> <th>Degree of Saturation</th> <th>Queuing Length</th> </tr> </thead> <tbody> <tr> <td>A1</td> <td>1</td> <td>3.75</td> <td>X1</td> <td>1</td> <td>15</td> <td></td> <td>N</td> <td>1990</td> <td>528</td> <td>1.00</td> <td>1809</td> <td>4.10%</td> <td>-172</td> <td>1809</td> <td>0.292</td> <td>12</td> <td>45</td> <td>53</td> <td>0.661</td> <td>59</td> </tr> <tr> <td>C1</td> <td>1</td> <td>3.50</td> <td>X2</td> <td>1</td> <td>18</td> <td></td> <td>N</td> <td>1965</td> <td>565</td> <td>1.00</td> <td>1814</td> <td>4.10%</td> <td>-172</td> <td>1642</td> <td>0.344</td> <td></td> <td>53</td> <td>53</td> <td>0.779</td> <td>63</td> </tr> <tr> <td>C2</td> <td>1</td> <td>3.50</td> <td>X2</td> <td>1</td> <td>25</td> <td></td> <td></td> <td>2105</td> <td></td> <td>600</td> <td>1.00</td> <td>1986</td> <td></td> <td></td> <td>1814</td> <td>0.331</td> <td></td> <td>51</td> <td>53</td> <td>0.749</td> <td>67</td> </tr> <tr> <td>A2</td> <td>3</td> <td>3.75</td> <td>Z1</td> <td>1</td> <td></td> <td></td> <td></td> <td>2130</td> <td>352</td> <td>0.00</td> <td>2130</td> <td></td> <td></td> <td>2130</td> <td>0.165</td> <td></td> <td>25</td> <td>29</td> <td>0.684</td> <td>53</td> </tr> <tr> <td>B1</td> <td>3</td> <td>3.30</td> <td>Z2</td> <td>1</td> <td></td> <td></td> <td></td> <td>1945</td> <td>375</td> <td>0.00</td> <td>1945</td> <td></td> <td></td> <td>1945</td> <td>0.193</td> <td></td> <td>29</td> <td>29</td> <td>0.798</td> <td>57</td> </tr> <tr> <td>B2</td> <td>2</td> <td>3.30</td> <td>Y</td> <td>1</td> <td>20</td> <td></td> <td></td> <td>2085</td> <td>315</td> <td>1.00</td> <td>1940</td> <td></td> <td></td> <td>1940</td> <td>0.162</td> <td>1</td> <td>25</td> <td>26</td> <td>0.750</td> <td>49</td> </tr> </tbody> </table>												Movement	Stage	Lane Width	Phase	No. of Lane	Radius	O	N	Straight-Ahead Sat. Flow	Left Sat. Flow	Right Sat. Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Uphill Effect	Short lane Sat. Flow	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length	A1	1	3.75	X1	1	15		N	1990	528	1.00	1809	4.10%	-172	1809	0.292	12	45	53	0.661	59	C1	1	3.50	X2	1	18		N	1965	565	1.00	1814	4.10%	-172	1642	0.344		53	53	0.779	63	C2	1	3.50	X2	1	25			2105		600	1.00	1986			1814	0.331		51	53	0.749	67	A2	3	3.75	Z1	1				2130	352	0.00	2130			2130	0.165		25	29	0.684	53	B1	3	3.30	Z2	1				1945	375	0.00	1945			1945	0.193		29	29	0.798	57	B2	2	3.30	Y	1	20			2085	315	1.00	1940			1940	0.162	1	25	26	0.750	49										
Movement	Stage	Lane Width	Phase	No. of Lane	Radius	O	N	Straight-Ahead Sat. Flow	Left Sat. Flow	Right Sat. Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Uphill Effect	Short lane Sat. Flow	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length																																																																																																																																																					
A1	1	3.75	X1	1	15		N	1990	528	1.00	1809	4.10%	-172	1809	0.292	12	45	53	0.661	59																																																																																																																																																								
C1	1	3.50	X2	1	18		N	1965	565	1.00	1814	4.10%	-172	1642	0.344		53	53	0.779	63																																																																																																																																																								
C2	1	3.50	X2	1	25			2105		600	1.00	1986			1814	0.331		51	53	0.749	67																																																																																																																																																							
A2	3	3.75	Z1	1				2130	352	0.00	2130			2130	0.165		25	29	0.684	53																																																																																																																																																								
B1	3	3.30	Z2	1				1945	375	0.00	1945			1945	0.193		29	29	0.798	57																																																																																																																																																								
B2	2	3.30	Y	1	20			2085	315	1.00	1940			1940	0.162	1	25	26	0.750	49																																																																																																																																																								
NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN												PEDESTRIAN WALKING SPEED = 0.9m/s		QUEUING LENGTH = AVERAGE QUEUE * 6m																																																																																																																																																														

J3 - YEAR 2035 - PM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - DESIGN SCENARIO

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng | PROJECT NO: 299277-02 | Junction No. J3

Lai King Hill Road / Kwai Chung Interchange | DATE: 18-Sep-25 | FILENAME: J3C_DES_IMP_PM

No. of stages per cycle	N = 3
No. of stage using for calculation	N = 3
Cycle time	C = 120 sec
Sum(y)	Y = 0.646
Loss time	L = 12 sec
Total Flow	= 2267 pcu
Co	= $(1.5L+5)(1-Y)$ = 64.9 sec
Cm	= $L(1-Y)$ = 33.9 sec
Yult	= 0.810
R.C.ult	= $(Yult-Y)^*100\%$ = 25.4 %
Cp	= $0.9^*L(0.9-Y)$ = 42.5 sec
Ymax	= $1-L/C$ = 0.900
R.C.(C)	= $(0.9^*Ymax-Y)^*100\%$ = 25 %

P		Y		Z2			
X2	X1	Q	R	S	Z1	Z2	
STAGE 1		INT= 5		STAGE 2		INT= 5	
STAGE 3		INT= 5					

Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
P	5	6	1	5	41	1	5	OK
Q	10	6	2	11	25	2	11	OK
R	12	13	5	12	21	5	12	OK
S	11	12	5	11	18	5	11	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.	
								Straight-Ahead Sat. Flow pcu/h	Left pcu/h	Straight pcu/h														
A1	1	3.75	X1	1	15	N	N	1990	378		378	1.00	1809	4.10%	-172	1809	0.209		12	35	43	0.583	49	
C1	1	3.50	X2	1	18		N	1965	305		305	1.00	1814	4.10%	-172	1642	0.186	0.258		31	43	0.518	39	
C2	1	3.50	X2	1	25			2105			468	1.00	1986	4.10%	-172	1814	0.258			43	43	0.720	60	
A2	3	3.75	Z1	1				2130			363	0.00	2130			2130	0.170				29	30	0.662	54
B1	3	3.30	Z2	1				1945			353	0.00	1945			1945	0.181	0.181			30	30	0.726	53
B2	2	3.30	Y	1	20			2085			400	1.00	1940			1940	0.206	0.206			34	34	0.728	57

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - AM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - INTERIM SCENARIO A

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng | PROJECT NO: 299277-02 | Junction No. J3

Lai King Hill Road / Kwai Chung Interchange | DATE: 18-Sep-25 | FILENAME: J3C_INT_A_IMP_AM

No. of stages per cycle	N =	3
No. of stage using for calculation	N =	3
Cycle time	C =	120 sec
Sum(Y)	Y =	0.695
Loss time	L =	13 sec
Total Flow	=	2397 pcu
Co	= $(1.5L+5)(1-Y)$	= 80.3 sec
Cm	= $U(1-Y)$	= 42.6 sec
Yult	=	0.803
R.C.ult	= $(Yult-Y)*Y*100\%$	= 15.5 %
Cp	= $0.9^*U(0.9-Y)$	= 57.0 sec
Ymax	= $1-U/C$	= 0.892
R.C.(C)	= $(0.9^*Ymax-Y)*Y*100\%$	= 16 %

STAGE 1		INT= 5		STAGE 2		INT= 5		STAGE 3		INT= 5	
---------	--	--------	--	---------	--	--------	--	---------	--	--------	--

Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check		
		SG	Delay	FG	SG	Delay	FG			
P	5	6	1	5	51	1	5	OK		
Q	10	6	2	11	17	2	11	OK		
R	12	13	5	12	13	5	12	OK		
S	11	12	5	11	17	5	11	OK		

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow			Flow		Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
								Left pcu/h	Straight pcu/h	Right pcu/h															
A1	1	3.75	X1	1	15	N	N	1990	329		329	1.00	1809	4.10%	-172	1809	0.182			12	28	53	0.412	37	
C1	1	3.50	X2	1	18			1965	565		565	1.00	1814		-172	1642	0.344	0.344			53	53	0.779	63	
C2	1	3.50	X2	1	25			2105			485	1.00	1986	4.10%	-172	1814	0.267				41	53	0.605	54	
A2	3	3.75	Z1	1		N		2130		337	337	0.00	2130			2130	0.158			24	29	0.655	51		
B1	3	3.30	Z2	1				1945		366	366	0.00	1945			1945	0.188	0.188		29	29	0.779	56		
B2	2	3.30	Y	1	20			2085		315	315	1.00	1940			1940	0.162	0.162	1	25	26	0.750	49		

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - PM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - INTERIM SCENARIO A

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng | PROJECT NO: 299277-02 | Junction No. J3

Lai King Hill Road / Kwai Chung Interchange | DATE: 18-Sep-25 | FILENAME: J3C_INT_A_IMP_PM

No. of stages per cycle	N = 3
No. of stage using for calculation	N = 3
Cycle time	C = 120 sec
Sum(y)	Y = 0.582
Loss time	L = 12 sec
Total Flow	= 2059 pcu
Co	= $(1.5L+5)/(1-Y)$ = 55.0 sec
Cm	= $L/(1-Y)$ = 25.7 sec
Yult	= 0.810
R.C.ult	= $(Yult-Y)*Y*100%$ = 39.3 %
Cp	= $0.9*L/(0.9-Y)$ = 33.9 sec
Ymax	= $1/L$ = 0.900
R.C.(C)	= $(0.9*Ymax*Y)*Y*100%$ = 39 %

Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
P	5	6	1	5	35	1	5	OK
Q	10	6	2	11	29	2	11	OK
R	12	13	5	12	25	5	12	OK
S	11	12	5	11	21	5	11	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
									Left pcu/h	Straight pcu/h	Right pcu/h													
A1	1	3.75	X1	1	15		N	1990	293		293	1.00	1809		1809	0.162			12	30	37	0.525	41	
C1	1	3.50	X2	1	18		N	1965	305		305	1.00	1814	4.10%	-172	1642	0.166	0.198		34	37	0.602	42	
C2	1	3.50	X2	1	25			2105			360	1.00	1986	4.10%	-172	1814	0.198			37	37	0.644	50	
A2	3	3.75	Z1	1				2130	357		357	0.00	2130		2130	0.168			31	33	0.609	52		
B1	3	3.30	Z2	1			N	1945	344		344	0.00	1945		1945	0.177			33	33	0.643	50		
B2	2	3.30	Y	1	20			2085			400	1.00	1940		1940	0.206			38	38	0.651	55		

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - AM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - INTERIM SCENARIO B

OVE ARUP & PARTNERS **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng **PROJECT NO:** 299277-02 **Junction No.:** J3

Lai King Hill Road / Kwai Chung Interchange **DATE:** 18-Sep-25 **FILENAME:** J3C_INT_B_IMP_AM

No. of stages per cycle **N =** 3
No. of stage using for calculation **N =** 3

Cycle time **C =** 120 sec
Sum(Y) **Y =** 0.696

Loss time **L =** 13 sec
Total Flow **=** 2508 pcu

Co $= (1.5'L+5)(1-Y)$ **=** 80.7 sec
Cm $= L/(1-Y)$ **=** 42.8 sec
Yult $= (Yult-Y)*100%$ **=** 0.603
R.C.ult $= (Yult-Y)*100%$ **=** 15.3 %
Cp $= 0.9^*(0.9-Y)$ **=** 57.4 sec
Ymax $= 1-L/C$ **=** 0.892
R.C.(C) $= (0.9^*Ymax-Y)*100%$ **=** 15 %

P		Q		R		S		T		U		V		W		X		Y		Z1		Z2		Z3	
X2	X1																								
STAGE 1	INT= 5	STAGE 2	INT= 5	STAGE 3	INT= 5																				

Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
P	5	6	1	5	51	1	5	OK
Q	10	6	2	11	17	2	11	OK
R	12	13	5	12	13	5	12	OK
S	11	12	5	11	17	5	11	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
									Left pcu/h	Straight pcu/h	Right pcu/h													
A1	1	3.75	X1	1	15		N	1990	394		394	1.00	1809	4.10%	-172	1809	0.218		12	33	53	0.493	44	
C1	1	3.50	X2	1	18		N	1965	565		565	1.00	1814	4.10%	-172	1642	0.344	0.344		53	53	0.779	63	
C2	1	3.50	X2	1	25			2105			523	1.00	1986			1814	0.288			44	53	0.653	58	
A2	3	3.75	Z1	1				2130		342	342	0.00	2130			2130	0.161			25	29	0.664	52	
B1	3	3.30	Z2	1			N	1945	369		369	0.00	1945			1945	0.190	0.190		29	29	0.785	56	
B2	2	3.30	Y	1	20			2085		315	315	1.00	1940			1940	0.162	0.162	1	25	26	0.750	49	

NOTE : 'O' - OPPOSING TRAFFIC **N** - NEAR SIDE LANE **SG** - STEADY GREEN **FG** - FLASHING GREEN **PEDESTRIAN WALKING SPEED = 0.9m/s** **QUEUING LENGTH = AVERAGE QUEUE * 6m**

J3 - YEAR 2035 - PM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - INTERIM SCENARIO B

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng | PROJECT NO: 299277-02 | Junction No. J3

Lai King Hill Road / Kwai Chung Interchange | DATE: 18-Sep-25 | FILENAME: J3C_INT_B_IMP_PM

STAGE 1 INT= 5 STAGE 2 INT= 5 STAGE 3 INT= 5

No. of stages per cycle		N = 3
No. of stage using for calculation		N = 3
Cycle time	C = 120 sec	
Sum(Y)	Y = 0.603	
Loss time	L = 12 sec	
Total Flow	= 2128 pcu	
Co	= $(1.5L+5)(1-Y)$ = 57.9 sec	
Cm	= $U(1-Y)$ = 30.2 sec	
Yult	= 0.810	
R.C.ult	= $(Yult-Y)*Y*100\%$ = 34.3 %	
Cp	= $0.9*U(0.9-Y)$ = 36.4 sec	
Ymax	= 1/LC = 0.900	
R.C.(C)	= $(0.9*Ymax-Y)*Y*100\%$ = 34 %	

Pedestrian Phase		Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
SG	Delay	FG	SG	Delay	FG	SG	Delay	FG	
P	5	6	1	5	37	1	5	37	OK
Q	10	6	2	11	28	2	11	28	OK
R	12	13	5	12	24	5	12	24	OK
S	11	12	5	11	20	5	11	20	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow pcu/h	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1	1	3.75	X1	1	15		N	1990	321			321	1.00	1809	4.10%	-172	1809	0.177		12	32	39	0.546	43
C1	1	3.50	X2	1	18		N	1965	305			305	1.00	1814	4.10%	-172	1642	0.186	0.218		33	39	0.572	41
C2	1	3.50	X2	1	25			2105				396	1.00	1986	4.10%	-172	1814	0.218			39	39	0.672	53
A2	3	3.75	Z1	1				2130				359	0.00	2130			2130	0.169			30	32	0.632	53
B1	3	3.30	Z2	1				1945				347	0.00	1945			1945	0.178	0.178		32	32	0.669	51
B2	2	3.30	Y	1	20			2085				400	1.00	1940			1940	0.206	0.206		37	37	0.669	55

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J3 - YEAR 2035 - AM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - INTERIM SCENARIO C

OVE ARUP & PARTNERS

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road / Kwai Chung Interchange

J3C_INT_C_IMP_AM

PROJECT NO: 299277-02 Junction No. J3

DATE: 18-Sep-25 FILENAME:

Lai King Hill Road

No. of stages per cycle N = 3
No. of stage using for calculation N = 3

Cycle time C = 120 sec
Sum(y) Y = 0.698

Loss time L = 13 sec
Total Flow = 2624 pcu

Co = $(1.5'L+5)(1-Y)$ = 81.1 sec
Cm = $U/(1-Y)$ = 43.0 sec
Yult = 0.803
R.C.ult = $(Yult-Y)*100\%$ = 15.0 %
Cp = $0.9^*U/(0.9-Y)$ = 57.9 sec
Ymax = $1-L/C$ = 0.892
R.C.(C) = $(0.9^*Ymax-Y)*100\%$ = 15 %

Pedestrian Phase

	Width (m)	Green Time Required (s)	Green Time Provided (s)					
	SG	Delay	FG	SG	Delay	FG	Check	
P	5	6	1	5	51	1	5	OK
Q	10	6	2	11	17	2	11	OK
R	12	13	5	12	13	5	12	OK
S	11	12	5	11	17	5	11	OK

STAGE 1 INT= 5 **STAGE 2** INT= 5 **STAGE 3** INT= 5

Movement **Stage** **Lane Width m.** **Phase** **No. of lane** **Radius m.** **O** **N** **Straight-Ahead Sat. Flow** **Flow** **Total Flow pcu/h** **Proportion of Turning Vehicles** **Sat. Flow pcu/h** **Uphill Gradient %** **Short lane Effect pcu/h** **Revised Sat. Flow pcu/h** **y** **Greater' sec** **g (required) sec** **g (input) sec** **g (required) sec** **Degree of Saturation X** **Queuing Length m.**

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater' sec	g (required) sec	g (input) sec	g (required) sec	Degree of Saturation X	Queuing Length m.
								Left pcu/h	Straight pcu/h	Right pcu/h													
A1	1	3.75	X1	1	15		N	1990	463		463	1.00	1809	4.10%	-172	1809	0.256	12	39	53	0.579	52	
C1	1	3.50	X2	1	18		N	1965	565		565	1.00	1814	4.10%	-172	1642	0.344	0.344	53	53	0.779	63	
C2	1	3.50	X2	1	25			2105			562	1.00	1986		-172	1814	0.310		48	53	0.702	63	
A2	3	3.75	Z1	1				2130			347	0.00	2130			2130	0.163		25	29	0.674	53	
B1	3	3.30	Z2	1				1945			372	0.00	1945			1945	0.191		29	29	0.791	56	
B2	2	3.30	Y	1	20			2085			315	1.00	1940			1940	0.162	0.162	1	25	26	0.750	49

NOTE : 'O - OPPOSING TRAFFIC **N - NEAR SIDE LANE** **SG - STEADY GREEN** **FG - FLASHING GREEN** **PEDESTRIAN WALKING SPEED = 0.9m/s** **QUEUING LENGTH = AVERAGE QUEUE * 6m**

J3 - YEAR 2035 - PM TRAFFIC FLOW

PROPOSED JUNCTION IMPROVEMENT - INTERIM SCENARIO C

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng | PROJECT NO: 299277-02 | Junction No. J3

Lai King Hill Road / Kwai Chung Interchange | DATE: 18-Sep-25 | FILENAME: J3C_INT_C_IMP_PM

Lai King Hill Road

Kwai Chung Interchange

Stages: P, Q, R, S, Y, Z1, Z2, B1, B2, C1, C2, A1, A2, X1, X2

No. of stages per cycle = 3
No. of stage using for calculation = 3

Cycle time = 120 sec
Sum(Y) = 0.624

Loss time = 12 sec
Total Flow = 2198 pcu

Co = $(1.5L+5)(1-Y)$ = 61.2 sec
Cm = $U(1-Y)$ = 31.9 sec

Yult = 0.810
R.C.ult = $(Yult-Y)^*100\%$ = 29.7 %
Cp = $0.9^*U(0.9-Y)$ = 39.2 sec

Ymax = $1/LC$ = 0.900
R.C.(C) = $(0.9^*Ymax-Y)^*100\%$ = 30 %

STAGE 1		INT= 5		STAGE 2		INT= 5		STAGE 3		INT= 5	
---------	--	--------	--	---------	--	--------	--	---------	--	--------	--

Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
P	5	6	1	5	39	1	5	OK
Q	10	6	2	11	27	2	11	OK
R	12	13	5	12	23	5	12	OK
S	11	12	5	11	19	5	11	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.	
								Straight-Ahead Sat. Flow pcu/h	Left pcu/h	Straight pcu/h														
A1	1	3.75	X1	1	15	N	N	1990	350		350	1.00	1809	4.10%	-172	1809	0.193		12	33	41	0.566	46	
C1	1	3.50	X2	1	18			1965	305		305	1.00	1814	4.10%	-172	1642	0.186	0.238		32	41	0.544	40	
C2	1	3.50	X2	1	25			2105			432	1.00	1986	4.10%	-172	1814	0.238			41	41	0.697	57	
A2	3	3.75	Z1	1				2130		361	361	0.00	2130				2130	0.169			29	31	0.656	54
B1	3	3.30	Z2	1				1945	350		350	0.00	1945				1945	0.180	0.180		31	31	0.697	52
B2	2	3.30	Y	1	20			2085	400	400	1.00	1940				1940	0.206	0.206		36	36	0.687	56	

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J4 - YEAR 2024 - AM TRAFFIC FLOW

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																							
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.	299277-02	Junction No.	J4																				
Mei Lai Road / Lai Wan Road												DATE :	18-Sep-25	FILENAME :																					
												No. of stages per cycle		N = 3																					
												No. of stage using for calculation		N = 2																					
												Cycle time		C = 120 sec																					
												Sum(Y)		Y = 0.271																					
												Loss time		L = 10 sec																					
												Total Flow		= 1390 pcu																					
												Co = $(1.5'L+5)(1-Y)$		= 27.4 sec																					
												Cm = $L(1-Y)$		= 13.7 sec																					
												Yult		= 0.825																					
												R.C.ult = $(Yult-Y)^*100\%$		= 204.5 %																					
												Cp = $0.9'L(0.9-Y)$		= 14.3 sec																					
												Ymax = $1-L/C$		= 0.917																					
												R.C.(C) = $(0.9'Ymax-Y)^*100\%$		= 204 %																					
												Pedestrian Phase		Width (m)	Green Time Required (s)		Green Time Provided (s)		Check																
												Dp	9.6	SG	Delay	FG	SG	Delay	FG	OK															
												Ep	7.3	5	1	8	50	1	8	OK															
												Fp	7.3	5	7	8	46	7	8	OK															
												Movement		Stage	Lane	Phase	No. of lanes	Radius	O	N	Straight-Ahead Sat. Flow	Left Sat. Flow	Right Sat. Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L sec	g (required)	g (input)	Degree of Saturation	Queuing Length
												1	3.30	C	1	16		N	1945	65		177	242	1.00	1778	0.136	0.136	10	55	55	0.297	26			
												2	4.00	C	1	16		N	2155			268	268	1.00	1970	0.136			55	55	0.297		29		
												2	2.70	B	1	6		N	1885	115	49		164	0.70	1604	0.102			42	42	0.292		21		
												2	3.00	B	1			N	2055			211		0.00	2055	0.103			42	42	0.293		27		
												2,3	3.20	A	1			N	1935			261		0.00	1935	0.135	0.135		55	55	0.294		28		
												2,3	3.20	A	1	25	O		2075		75	169	244	0.31	1812	0.135			55	55	0.294		26		
NOTE : 'O - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN												PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m																							

J4 - YEAR 2024 - PM TRAFFIC FLOW

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																																																			
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.	299277-02	Junction No.	J4																																																
Mei Lai Road / Lai Wan Road												DATE :	18-Sep-25	FILENAME :																																																	
												No. of stages per cycle N = 3 No. of stage using for calculation N = 2 Cycle time C = 120 sec Sum(Y) Y = 0.211 Loss time L = 20 sec Total Flow = 1200 pcu $C_o = (1.5'L+5)(1-Y)$ = 44.4 sec $C_m = L(1-Y)$ = 25.4 sec Y_{ult} = 0.750 $R.C.ult = (Y_{ult}-Y)*100\%$ = 255.2 % $C_p = 0.9'L(0.9-Y)$ = 26.1 sec $Y_{max} = 1/C$ = 0.833 $R.C.(C) = (0.9'Y_{max}Y)*100\%$ = 255 %																																																			
												<table border="1"> <thead> <tr> <th rowspan="2">Pedestrian Phase</th> <th rowspan="2">Width (m)</th> <th colspan="3">Green Time Required (s)</th> <th colspan="3">Green Time Provided (s)</th> <th rowspan="2">Check</th> </tr> <tr> <th>SG</th> <th>Delay</th> <th>FG</th> <th>SG</th> <th>Delay</th> <th>FG</th> </tr> </thead> <tbody> <tr> <td>Dp</td> <td>9.6</td> <td>11</td> <td>2</td> <td>9</td> <td>49</td> <td>2</td> <td>9</td> <td>OK</td> </tr> <tr> <td>Ep</td> <td>7.3</td> <td>5</td> <td>1</td> <td>8</td> <td>51</td> <td>1</td> <td>8</td> <td>OK</td> </tr> <tr> <td>Fp</td> <td>7.3</td> <td>5</td> <td>7</td> <td>8</td> <td>45</td> <td>7</td> <td>8</td> <td>OK</td> </tr> </tbody> </table>										Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check	SG	Delay	FG	SG	Delay	FG	Dp	9.6	11	2	9	49	2	9	OK	Ep	7.3	5	1	8	51	1	8	OK	Fp	7.3	5	7	8	45	7	8	OK
Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check																																																							
		SG	Delay	FG	SG	Delay	FG																																																								
Dp	9.6	11	2	9	49	2	9	OK																																																							
Ep	7.3	5	1	8	51	1	8	OK																																																							
Fp	7.3	5	7	8	45	7	8	OK																																																							
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead Sat. Flow	Left Sat. Flow	Right Sat. Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Uphill Effect	Revised Sat. Flow	y	Greater	L sec	g (required)	g (input)	Degree of Saturation	Queuing Length																																									
C1,C2	1	3.30	C	1	16		N	1945	95	106	201	1.00	1778		20			54	54	0.251	22																																										
C2	1	4.00	C	1	16		N	2155		224	224	1.00	1970				54	54	0.253	25																																											
B1,B2	2	2.70	B	1	6		N	1885	115	40	155	0.74	1590				46	46	0.254	19																																											
B2	2	3.00	B	1				2055		200	200	0.00	2055				46	46	0.254	25																																											
A1	2,3	3.20	A	1			N	1935		217	217	0.00	1935				53	53	0.254	24																																											
A1,A2	2,3	3.20	A	1	25	O		2075		113	90	0.44	1797				53	53	0.256	23																																											

NOTE : 'O' - OPPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J4 - YEAR 2035 - AM TRAFFIC FLOW

BASELINE SCENARIO

OVE ARUP & PARTNERS **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng **PROJECT NO:** 299277-02 **Junction No.:** J4 **DATE:** 18-Sep-25 **FILENAME:** J4_BASE_AM

Lai Wan Road **Mei Lai Road**

Diagram showing traffic flow and signal stages:

- Stages:** A1 (450), A2 (80), B1 (120), B2 (270).
- Intervals:** INT= 7, INT= 5.
- Flow Data:**
 - Stages A1, A2: Left (65), Straight (470), Opposing (C1, C2).
 - Stages B1, B2: Left (120), Straight (270), Opposing (B1, B2).

Stages: STAGE 1, STAGE 2, STAGE 3, STAGE 4, STAGE 5.

Intervals: INT= 7, INT= 5.

Diagram: A detailed sketch of the intersection showing the flow of traffic from Lai Wan Road and Mei Lai Road, with arrows indicating the direction of travel for each stage and interval.

Table 1: No. of stages per cycle

No. of stages per cycle	N =	3
No. of stage using for calculation	N =	2

Table 2: Cycle time

Cycle time	C =	120 sec
Sun(y)	Y =	0.285

Table 3: Loss time

Loss time	L =	10 sec
Total Flow	=	1455 pcu

Table 4: Coefficients

Co	= $(1.5'L+5)(1-Y)$	= 28.0 sec
Cm	= $L(1-Y)$	= 14.0 sec
Yfull	=	0.825
R.C.ult	= $(Yult-Y)*Y*100\%$	= 189.7 %
Cp	= $0.9'L(0.9-Y)$	= 14.6 sec
Ymax	= $1-L/C$	= 0.917
R.C.(C)	= $(0.9*Ymax-Y)*Y*100\%$	= 190 %

Table 5: Pedestrian Phase

Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
Dp	9.6	11	2	9	50	2	9	OK
Ep	7.3	5	1	8	50	1	8	OK
Fp	7.3	5	7	8	46	7	8	OK

Table 6: Movement Data

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
								Left pcu/h	Straight pcu/h	Right pcu/h													
C1,C2	1	3.30	C	1	16	N	1945	65	189	254	1.00	1778			1778	0.143	0.143	10	55	55	0.312	28	
C2	1	4.00	C	1	16	N	2155		281	281	1.00	1970			1970	0.143			55	55	0.311	30	
B1,B2	2	2.70	B	1	6	N	1885	120	51	171	0.70	1604			1604	0.107			41	41	0.312	23	
B2	2	3.00	B	1		N	2055		219	219	0.00	2055			2055	0.107			41	41	0.312	29	
A1	2.3	3.20	A	1		N	1935		273	273	0.00	1935			1935	0.141	0.142		55	55	0.308	30	
A1,A2	2.3	3.20	A	1	25	O	2075	177	80	257	0.31	1811			1811	0.142			55	55	0.310	28	

NOTE: 'O' - OPPOSING TRAFFIC **N** - NEAR SIDE LANE **SG** - STEADY GREEN **FG** - FLASHING GREEN **PEDESTRIAN WALKING SPEED** = 0.9m/s **QUEUING LENGTH** = AVERAGE QUEUE * 6m

J4 - YEAR 2035 - PM TRAFFIC FLOW

BASELINE SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION										
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.		Junction No.		J4						
Mei Lai Road / Lai Wan Road												DATE :		18-Sep-25		FILENAME :						
A1	350																					
A2	95																					
100																						
345																						
C1																						
C2																						
255																						
B2																						
120																						
B1																						
Lai Wan Road																						
Lai Wan Road																						
STAGE 1	INT=	7																				
STAGE 2	INT=																					
STAGE 3	INT=																					
STAGE 4	INT=																					
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length	
		ft.			m.			Sat. Flow	Left pcpuh	Straight pcpuh	Right pcpuh	pcpuh	pcpuh	pcpuh	y	sec	sec	sec	sec		ft.	
C1,C2	1	3.30	C	1	16		N	1945	100	111	211	1.00	1778	0.119	0.119	20	54	54	0.264	23		
C2	1	4.00	C	1	16		N	2155	234	234	1.00	1970	0.119	0.103	54	54	0.264	26				
B1,B2	2	2.70	B	1	6		N	1885	120	44	164	0.73	1594	0.103	0.103	46	46	0.268	20			
B2	2	3.00	B	1			N	2055	211	211	0.00	2055	0.103	0.103	46	46	0.268	26				
A1	2,3	3.20	A	1			N	1935	231	231	0.00	1935	0.119	0.119	54	54	0.265	25				
A1,A2	2,3	3.20	A	1	25	O	N	2075	119	95	214	0.44	1797	0.119	0.119	54	54	0.265	24			
NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN																						
PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m																						
No. of stages per cycle												N =	3									
No. of stage using for calculation												N =	2									
Cycle time												C =	120 sec									
Sum(Y)												Y =	0.222									
Loss time												L =	20 sec									
Total Flow												=	1265 pcpu									
Co = $(1.5'L+5)(1-Y)$												=	45.0 sec									
Cm = $L(1-Y)$												=	25.7 sec									
Yult												=	0.750									
R.C.ult = $(Yult-Y)^*100\%$												=	238.3 %									
Cp = $0.9'L(0.9-Y)$												=	26.5 sec									
Ymax = $1-L/C$												=	0.833									
R.C.(C) = $(0.9'Ymax-Y)^*100\%$												=	238 %									
Pedestrian Phase												Width (m)	Green Time Required (s)		Green Time Provided (s)		Check					
Dp												9.6	SG	2	9	49	2	9	OK			
Ep												7.3	5	1	8	51	1	8	OK			
Fp												7.3	5	7	8	45	7	8	OK			

J4 - YEAR 2035 - AM TRAFFIC FLOW

REFERENCE SCENARIO

OVE ARUP & PARTNERS **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng **PROJECT NO:** 299277-02 **Junction No.:** J4 **DATE:** 18-Sep-25 **FILENAME:** J4_REF_AM

Lai Wan Road **Mei Lai Road**

Stages: A1 (599), A2 (80), B1 (120), B2 (356), C1 (65), C2 (470)

Intervals: STAGE 1 (INT= 7), STAGE 2 (INT= 7), STAGE 3 (INT= 5), STAGE 4 (INT= 5)

Diagram: A detailed sketch of the intersection showing traffic flow from Lai Wan Road and Mei Lai Road, with arrows indicating the direction of travel for each stage and interval.

Table 1: No. of stages per cycle

No. of stages per cycle	N = 3
No. of stage using for calculation	N = 2

Table 2: Cycle time

Cycle time	C = 120 sec
Sun(y)	Y = 0.324

Table 3: Loss time

Loss time	L = 10 sec
Total Flow	= 1690 pcu

Table 4: Coefficients

Co	= $(1.5'L+5Y)(1-Y)$	= 29.8 sec
Cm	= $L/(1-Y)$	= 14.8 sec
Yfull	= 0.825	
R.C.ult	= $(Yult-Y)^*100\%$	= 154.8 %
Cp	= $0.9'L/(0.9-Y)$	= 15.6 sec
Ymax	= 1-L/C	= 0.917

Table 5: R.C.(C)

R.C.(C)	= $(0.9*Ymax-Y)^*100\%$	= 155 %
---------	-------------------------	---------

Table 6: Pedestrian Phase

Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
Dp	9.6	11	2	9	44	2	9	OK
Ep	7.3	5	1	8	56	1	8	OK
Fp	7.3	5	7	8	40	7	8	OK

Table 7: Movement Data

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
								Left pcu/h	Straight pcu/h	Right pcu/h													
C1,C2	1	3.30	C	1	16	N	1945	65	189	254	1.00	1778			1778	0.143	0.143	10	49	49	0.350	30	
C2	1	4.00	C	1	16	N	2155		281	281	1.00	1970			1970	0.143			48	49	0.349	33	
B1,B2	2	2.70	B	1	6	N	1885	120	92	212	0.57	1651			1651	0.128			44	44	0.350	27	
B2	2	3.00	B	1		N	2055		264	264	0.00	2055			2055	0.128			44	44	0.350	33	
A1	2.3	3.20	A	1		N	1935	350	350	0.00	1935			1935	0.181	0.181		61	61	0.356	34		
A1,A2	2.3	3.20	A	1	25	O	2075	249	80	329	0.24	1818			1818	0.181			61	61	0.356	32	

Notes: O - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J4 - YEAR 2035 - PM TRAFFIC FLOW

REFERENCE SCENARIO

OVE ARUP & PARTNERS **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng **PROJECT NO:** 299277-02 **Junction No.:** J4 **DATE:** 18-Sep-25 **FILENAME:** J4_REF_PM

Mei Lai Road / Lai Wan Road

Diagram: A site plan showing the intersection of Mei Lai Road and Lai Wan Road. The intersection is controlled by a four-stage traffic signal. Stage 1: A1 (412) and A2 (95) flow into the intersection. Stage 2: 336 and B2 flow out. Stage 3: 100 and 345 flow into the intersection. Stage 4: B1 (120) and C1 (C2) flow out. Arrows indicate the direction of traffic flow for each stage.

Stages: STAGE 1, INT= 7, STAGE 2, INT= 12, STAGE 3, INT= 15, STAGE 4, INT= 15.

Table 1: No. of stages per cycle

No. of stages per cycle	N =	3
No. of stage using for calculation	N =	2

Table 2: Cycle time

Cycle time	C =	120 sec
Sun(y)	Y =	0.242

Table 3: Loss time

Loss time	L =	20 sec
Total Flow	=	1408 pcu

Table 4: Coefficients

Co	= $(1.5'L+5)(1-Y)$	= 46.2 sec
Cm	= $L(1-Y)$	= 26.4 sec
Yull	= 0.750	
R.C.ult	= $(Yull-Y)*Y*100%$	= 209.5 %
Cp	= $0.9'L(0.9-Y)$	= 27.4 sec
Ymax	= $1-L/C$	= 0.833
R.C.(C)	= $(0.9*Ymax-Y)*Y*100%$	= 209 %

Table 5: Pedestrian Phase

Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
Dp	9.6	11	2	9	44	2	9	OK
Ep	7.3	5	1	8	56	1	8	OK
Fp	7.3	5	7	8	40	7	8	OK

Table 6: Movement Data

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
								Left pcu/h	Straight pcu/h	Right pcu/h													
C1,C2	1	3.30	C	1	16	N	1945	100	111	211	1.00	1778			1778	0.119	0.119	20	49	49	0.291	25	
C2	1	4.00	C	1	16		2155		234	234	1.00	1970			1970	0.119	0.119		49	49	0.291	28	
B1,B2	2	2.70	B	1	6	N	1885	120	82	202	0.59	1641			1641	0.123	0.124		51	51	0.290	23	
B2	2	3.00	B	1			2055		254	254	0.00	2055			2055	0.124			51	51	0.291	29	
A1	2.3	3.20	A	1		N	1935		264	264	0.00	1935			1935	0.136			56	56	0.292	28	
A1,A2	2.3	3.20	A	1	25	O	2075	148	95	243	0.39	1803			1803	0.135			56	56	0.289	26	

Notes: O - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J4 - YEAR 2035 - AM TRAFFIC FLOW

DESIGN SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																																																			
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.	299277-02	Junction No.	J4																																																
Mei Lai Road / Lai Wan Road												DATE :	18-Sep-25	FILENAME :																																																	
												<table border="1"> <tr> <td>No. of stages per cycle</td> <td>N =</td> <td>3</td> </tr> <tr> <td>No. of stage using for calculation</td> <td>N =</td> <td>2</td> </tr> <tr> <td>Cycle time</td> <td>C =</td> <td>120 sec</td> </tr> <tr> <td>Sum(Y)</td> <td>Y =</td> <td>0.332</td> </tr> <tr> <td>Loss time</td> <td>L =</td> <td>10 sec</td> </tr> <tr> <td>Total Flow</td> <td>=</td> <td>1744 pcu</td> </tr> <tr> <td>Co</td> <td>= (1.5'L+5)(1-Y)</td> <td>= 30.0 sec</td> </tr> <tr> <td>Cm</td> <td>= L(1-Y)</td> <td>= 15.0 sec</td> </tr> <tr> <td>Yult</td> <td>= 0.825</td> <td>= 0.825</td> </tr> <tr> <td>R.C.ult</td> <td>= (Yult-Y)*100%</td> <td>= 148.1 %</td> </tr> <tr> <td>Cp</td> <td>= 0.9'L(0.9-Y)</td> <td>= 15.9 sec</td> </tr> <tr> <td>Ymax</td> <td>= 1-L/C</td> <td>= 0.917</td> </tr> <tr> <td>R.C.(C)</td> <td>= (0.9'Ymax-Y)*100%</td> <td>= 148 %</td> </tr> </table>										No. of stages per cycle	N =	3	No. of stage using for calculation	N =	2	Cycle time	C =	120 sec	Sum(Y)	Y =	0.332	Loss time	L =	10 sec	Total Flow	=	1744 pcu	Co	= (1.5'L+5)(1-Y)	= 30.0 sec	Cm	= L(1-Y)	= 15.0 sec	Yult	= 0.825	= 0.825	R.C.ult	= (Yult-Y)*100%	= 148.1 %	Cp	= 0.9'L(0.9-Y)	= 15.9 sec	Ymax	= 1-L/C	= 0.917	R.C.(C)	= (0.9'Ymax-Y)*100%	= 148 %			
No. of stages per cycle	N =	3																																																													
No. of stage using for calculation	N =	2																																																													
Cycle time	C =	120 sec																																																													
Sum(Y)	Y =	0.332																																																													
Loss time	L =	10 sec																																																													
Total Flow	=	1744 pcu																																																													
Co	= (1.5'L+5)(1-Y)	= 30.0 sec																																																													
Cm	= L(1-Y)	= 15.0 sec																																																													
Yult	= 0.825	= 0.825																																																													
R.C.ult	= (Yult-Y)*100%	= 148.1 %																																																													
Cp	= 0.9'L(0.9-Y)	= 15.9 sec																																																													
Ymax	= 1-L/C	= 0.917																																																													
R.C.(C)	= (0.9'Ymax-Y)*100%	= 148 %																																																													
												<table border="1"> <thead> <tr> <th rowspan="2">Pedestrian Phase</th> <th rowspan="2">Width (m)</th> <th colspan="3">Green Time Required (s)</th> <th colspan="3">Green Time Provided (s)</th> <th rowspan="2">Check</th> </tr> <tr> <th>SG</th> <th>Delay</th> <th>FG</th> <th>SG</th> <th>Delay</th> <th>FG</th> </tr> </thead> <tbody> <tr> <td>Dp</td> <td>9.6</td> <td>11</td> <td>2</td> <td>9</td> <td>42</td> <td>2</td> <td>9</td> <td>OK</td> </tr> <tr> <td>Ep</td> <td>7.3</td> <td>5</td> <td>1</td> <td>8</td> <td>58</td> <td>1</td> <td>8</td> <td>OK</td> </tr> <tr> <td>Fp</td> <td>7.3</td> <td>5</td> <td>7</td> <td>8</td> <td>38</td> <td>7</td> <td>8</td> <td>OK</td> </tr> </tbody> </table>										Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check	SG	Delay	FG	SG	Delay	FG	Dp	9.6	11	2	9	42	2	9	OK	Ep	7.3	5	1	8	58	1	8	OK	Fp	7.3	5	7	8	38	7	8	OK
Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check																																																							
		SG	Delay	FG	SG	Delay	FG																																																								
Dp	9.6	11	2	9	42	2	9	OK																																																							
Ep	7.3	5	1	8	58	1	8	OK																																																							
Fp	7.3	5	7	8	38	7	8	OK																																																							
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead Sat. Flow	Left Sat. Flow	Straight Sat. Flow	Right Sat. Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Uphill Effect	Short lane Sat. Flow	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length																																							
C1,C2	1	3.30	C	1	16		N	1945	65	189	254	1.00	1778				0.143	0.143	10		47	47	0.365	31																																							
C2	1	4.00	C	1	16		N	2155	281	281	1970	1.00	1970				0.143	0.143			47	47	0.364	34																																							
B1,B2	2	2.70	B	1	6		N	1885	120	102	222	0.54	1661	0.134			0.134	0.134			44	44	0.365	28																																							
B2	2	3.00	B	1			N	2055	275	275	0.00	2055				0.134	0.134			44	44	0.365	35																																								
A1	2,3	3.20	A	1			N	1935	367	367	0.00	1935				0.190	0.190			63	63	0.361	35																																								
A1,A2	2,3	3.20	A	1	25	O	N	2075	80	345	0.23	1820				0.190	0.190			63	63	0.381	33																																								
NOTE : 'O - OPPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN												PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m																																																			

J4 - YEAR 2035 - PM TRAFFIC FLOW

DESIGN SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																																																			
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.	299277-02	Junction No.	J4																																																
Mei Lai Road / Lai Wan Road												DATE :	18-Sep-25	FILENAME :																																																	
												No. of stages per cycle N = 3 No. of stage using for calculation N = 2 Cycle time C = 120 sec Sum(Y) Y = 0.247 Loss time L = 20 sec Total Flow = 1443 pcu $C_o = (1.5'L+5)(1-Y)$ = 46.5 sec $C_m = L(1-Y)$ = 26.6 sec Y_{ult} = 0.750 $R.C.ult = (Y_{ult}-Y)*100\%$ = 203.5 % $C_p = 0.9'L(0.9-Y)$ = 27.6 sec $Y_{max} = 1-L/C$ = 0.833 $R.C.(C) = (0.9'Y_{max}-Y)*100\%$ = 203 %																																																			
												<table border="1"> <thead> <tr> <th rowspan="2">Pedestrian Phase</th> <th rowspan="2">Width (m)</th> <th colspan="3">Green Time Required (s)</th> <th colspan="3">Green Time Provided (s)</th> <th rowspan="2">Check</th> </tr> <tr> <th>SG</th> <th>Delay</th> <th>FG</th> <th>SG</th> <th>Delay</th> <th>FG</th> </tr> </thead> <tbody> <tr> <td>Dp</td> <td>9.6</td> <td>11</td> <td>2</td> <td>9</td> <td>43</td> <td>2</td> <td>9</td> <td>OK</td> </tr> <tr> <td>Ep</td> <td>7.3</td> <td>5</td> <td>1</td> <td>8</td> <td>57</td> <td>1</td> <td>8</td> <td>OK</td> </tr> <tr> <td>Fp</td> <td>7.3</td> <td>5</td> <td>7</td> <td>8</td> <td>39</td> <td>7</td> <td>8</td> <td>OK</td> </tr> </tbody> </table>										Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check	SG	Delay	FG	SG	Delay	FG	Dp	9.6	11	2	9	43	2	9	OK	Ep	7.3	5	1	8	57	1	8	OK	Fp	7.3	5	7	8	39	7	8	OK
Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check																																																							
		SG	Delay	FG	SG	Delay	FG																																																								
Dp	9.6	11	2	9	43	2	9	OK																																																							
Ep	7.3	5	1	8	57	1	8	OK																																																							
Fp	7.3	5	7	8	39	7	8	OK																																																							
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead Sat. Flow	Left Sat. Flow	Right Sat. Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Uphill Effect	Revised Sat. Flow	y	Greater	L sec	g (required)	g (input)	Degree of Saturation	Queuing Length																																									
C1,C2	1	3.30	C	1	16		N	1945	100		111	211	1.00	1778	0.119	0.119	20	48	48	0.297	25																																										
C2	1	4.00	C	1	16		N	2155		234	234	1.00	1970	0.119			48	48	0.297		28																																										
B1,B2	2	2.70	B	1	6		N	1885	120	92	212	0.57	1651	0.128	0.128		52	52	0.296		24																																										
B2	2	3.00	B	1			N	2055		263	263	0.00	2055	0.128			52	52	0.295		30																																										
A1	2,3	3.20	A	1			N	1935		270	270	0.00	1935	0.140			56	57	0.294		28																																										
A1,A2	2,3	3.20	A	1	25	O	N	2075		95	253	0.38	1804	0.140			57	57	0.295		27																																										
NOTE : 'O - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN												PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m																																																			

J5 - YEAR 2024 - AM TRAFFIC FLOW

OVE ARUP & PARTNERS **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng **PROJECT NO:** 299277-02 **Junction No.** J5

Mei Lai Road / Cheung Sha Wan Road **DATE :** 18-Sep-25 **FILENAME :** J5_OBS_AM

No. of stages per cycle	N =	4
No. of stage using for calculation	N =	2
Cycle time		
Sun(Y)	C =	90 sec
Loss time	Y =	0.317
Total Flow	L =	38 sec
Co = $(1.5L+5)(1-Y)$		
Cm	= L/(1-Y)	= 55.7 sec
Yult	= 0.615	
R.C. ult	= (Yult-Y)*100%	= 93.3 %
Cp	= 0.9/L(0.9-Y)	= 58.7 sec
Ymax	= 1-L/C	= 0.578
R.C. (C) = $(0.9*Y_{max}-Y)*100\%$		
= 64 %		

Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)	Check
Ep	4.9	5 3	43 3	8
Fp	4.5	5 3	53 3	6
Gp	4	5 5	37 5	12
Hp	3.7	5 7	5 7	9

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1, A2	1	3.20	A	1	6.5		N	1935	180	12		192	0.94	1591		1591	0.121	0.121	28	20	20	0.543	22	
A2	1	3.40	A	1			N	2095		303		303	0.00	2095		2495	0.121		20	20	0.546	35		
B1	2	3.80	B	1				1995		22		22	0.00	1995		1995	0.011		2	14	0.071	3		
B1	2	3.80	B	1				2135		23		23	0.00	2135		2135	0.011		2	14	0.069	3		
C1	3	3.00	C	1			N	1915	108			108	0.00	1915		1915	0.056	0.196	9	32	0.159	10		
C1	3	3.40	C	1			N	2095		117		117	0.00	2095		2095	0.056		9	32	0.157	11		
D1	3	3.20	C	1	30		N	1935	361			361	1.00	1843		1843	0.196		32	32	0.551	35		
D1	3	3.20	C	1	30		N	2075	449			449	1.00	1976		320	2296	0.196		32	32	0.550	43	
X	4																		5			5		
Hp																								

NOTE : 'O' - OPPOSING TRAFFIC **N** - NEAR SIDE LANE **SG** - STEADY GREEN **FG** - FLASHING GREEN **PEDESTRIAN WALKING SPEED = 0.9m/s** **QUEUEING LENGTH = AVERAGE QUEUE * 6m**

J5 - YEAR 2024 - PM TRAFFIC FLOW

OVE ARUP & PARTNERS **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng
Mei Lai Road / Cheung Sha Wan Road **J5_OBS_PM** PROJECT NO: 299277-02 Junction No. J5 DATE: 18-Sep-25 FILENAME:

No. of stages per cycle N = 4
No. of stage using for calculation N = 2

Cycle time C = 90 sec
Sun(y) Y = 0.308
Loss time L = 38 sec
Total Flow = 1655 pcu

Co = $(1.5'L+5)(1-Y)$ = 89.6 sec
Cm = $L/(1-Y)$ = 54.9 sec
Yfull = 0.615
R.C.ult = $(Yult-Y)^*100\%$ = 99.6 %
Cp = $0.9'L/(0.9-Y)$ = 57.8 sec
Ymax = L/C = 0.578

R.C.(C) = $(0.9^*Ymax-Y)^*100\%$ = 69 %

STAGE 1 INT= 7 **STAGE 2** INT= 13 **STAGE 3** INT= 5 **STAGE 4** INT= 5

Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
Ep	4.9	5	3	8	39	3	8	OK
Fp	4.5	5	3	6	53	3	6	OK
Gp	4	5	5	12	33	5	12	OK
Hp	3.7	5	7	9	5	7	9	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
									Left pcu/h	Straight pcu/h	Right pcu/h													
A1, A2	1	3.20	A	1	6.5		N	1935	165	66	231	0.71	1661		1661	0.139	0.140	28	23	24	0.521	25		
A2	1	3.40	A	1			N	2095		349	349	0.00	2095	400	2495	0.140			24	24	0.525	38		
B1	2	3.80	B	1			N	1995		31	31	0.00	1995		1995	0.016			3	14	0.100	4		
B1	2	3.80	B	1			N	2135		34	34	0.00	2135		2135	0.016			3	14	0.102	4		
C1	3	3.00	C	1			N	1915		151	151	0.00	1915		1915	0.079	0.168		13	28	0.253	16		
C1	3	3.40	C	1			N	2095		164	164	0.00	2095		2095	0.078			13	28	0.252	17		
D1	3	3.20	C	1	30		N	1935	310		310	1.00	1843		1843	0.168			28	28	0.541	32		
D1	3	3.20	C	1	30		N	2075	385		385	1.00	1976		2296	0.168			28	28	0.539	40		
X	4																		5					
Hp																			5					

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J5 - YEAR 2035 - AM TRAFFIC FLOW

BASELINE SCENARIO

J5 - YEAR 2035 - PM TRAFFIC FLOW

BASELINE SCENARIO

OVE ARUP & PARTNERS **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng
Mei Lai Road / Cheung Sha Wan Road **JS5_BASE_PM** PROJECT NO: 299277-02 Junction No. J5 DATE: 18-Sep-25 FILENAME:

No. of stages per cycle N = 4
No. of stage using for calculation N = 2

Cycle time C = 90 sec
Sum(Y) Y = 0.326

Loss time L = 38 sec
Total Flow = 1750 pcu

Co = $(1.5'L+5)(1-Y)$ = 91.9 sec
Cm = $L(1-Y)$ = 58.4 sec
Yfull = 0.615
R.C.ult = $(Yfull-Y)^*100\%$ = 68.3 %
Cp = $0.9'L/(0.9-Y)$ = 59.5 sec
Ymax = $1-L/C$ = 0.578

R.C.(C) = $(0.9*Ymax-Y)^*100\%$ = 60 %

Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
Ep	4.9	5	3	8	39	3	8	OK
Fp	4.5	5	3	6	53	3	6	OK
Gp	4	5	5	12	33	5	12	OK
Hp	3.7	5	7	9	5	7	9	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
								Left pcu/h	Straight pcu/h	Right pcu/h													
A1, A2	1	3.20	A	1	6.5	N	1935	175	71	246	0.71	1662	1662	0.148	0.148	28	24	24	0.555	27			
A2	1	3.40	A	1		N	2095	369	369	0.00	2095	2495	0.148				24	24	0.555	41			
B1	2	3.80	B	1			1995	33	33	0.00	1995	1995	0.017			3	14	0.106	4				
B1	2	3.80	B	1			2135	37	37	0.00	2135	2135	0.017			3	14	0.111	5				
C1	3	3.00	C	1		N	1915	157	157	0.00	1915	1915	0.062	0.178		13	28	0.264	16				
C1	3	3.40	C	1			2095	173	173	0.00	2095	2095	0.083			13	28	0.265	18				
D1	3	3.20	C	1	30	N	1935	327	327	1.00	1843	1843	0.177			28	28	0.570	34				
D1	3	3.20	C	1	30		2075	408	408	1.00	1976	2296	0.178			28	28	0.571	42				
X	4															5							
Hp																5							

NOTE : 'O' - OPPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J5 - YEAR 2035 - AM TRAFFIC FLOW

REFERENCE SCENARIO

J5 - YEAR 2035 - PM TRAFFIC FLOW

REFERENCE SCENARIO

J5 - YEAR 2035 - AM TRAFFIC FLOW

DESIGN SCENARIO

OVE ARUP & PARTNERS **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Mei Lai Road / Cheung Sha Wan Road **J5_DES_AM**

PROJECT NO.: 299277-02 **Junction No.:** J5 **DATE :** 18-Sep-25 **FILENAME :** J5

No. of stages per cycle N = 4
No. of stage using for calculation N = 2

Cycle time C = 90 sec
Sum(Y) Y = 0.389
Loss time L = 38 sec
Total Flow = 1944 pcu

Co = $(1.5*L+5)*(1-Y)$ = 101.5 sec
Cm = $L/(1-Y)$ = 62.2 sec
Yult = $(Yult-Y)*100%$ = 58.1 %
Cp = $0.9*L/(0.9-Y)$ = 66.9 sec
Ymax = $1-L/C$ = 0.578
R.C.(C) = $(0.9*Ymax-Y)*100%$ = 34 %

Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)	Check
Ep	4.9	5 3 8	45 3 8	OK
Fp	4.5	5 3 6	53 3 6	OK
Gp	4	5 5 12	39 5 12	OK
Hp	3.7	5 7 9	5 7 9	OK

STAGE 1 INT= 7 **STAGE 2** INT= 13 **STAGE 3** INT= 5 **STAGE 4** INT= 5

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.	
								Left pcu/h	Straight pcu/h	Right pcu/h														
A1, A2	1	3.20	A	1	6.5	N	1935	217	0	217	1.00	1972			400	1572	0.138	0.138	28	18	18	0.690	26	
A2	1	3.40	A	1		N	2095	330		330	0.00	2095				2495	0.132			18	18	18	0.661	40
B1	2	3.80	B	1			1995	22		22	0.00	1995				1995	0.011			1	14	14	0.071	3
B1	2	3.80	B	1			2135	23		23	0.00	2135				2135	0.011			1	14	14	0.069	3
C1	3	3.00	C	1		N	1915	150		150	0.00	1915				1915	0.078	0.251		10	34	207	0.14	
C1	3	3.40	C	1			2095	165		165	0.00	2095				2095	0.079			11	34	208	0.208	15
D1	3	3.20	C	1	30	N	1935	461		461	1.00	1843				1843	0.250			33	34	34	0.662	43
D1	3	3.20	C	1	30		2075	576		576	1.00	1976				2296	0.251			34	34	34	0.664	54
X	4																		5				5	
Hp																								

NOTE : 'O' - OPPOSING TRAFFIC **N** - NEAR SIDE LANE **SG** - STEADY GREEN **FG** - FLASHING GREEN **PEDESTRIAN WALKING SPEED = 0.9m/s** **QUEUING LENGTH = AVERAGE QUEUE * 6m**

J5 - YEAR 2035 - PM TRAFFIC FLOW

DESIGN SCENARIO

J5 - YEAR 2035 - AM TRAFFIC FLOW

INTERIM SCENARIO A

OVE ARUP & PARTNERS

TRAFFIC SIGNAL CALCULATION

S16 Application for Proposed Development at Kau Wa Keng

Mei Lai Road / Cheung Sha Wan Road

J5_INT_A_AM

PROJECT NO: 299277-02 Junction No: J5

DATE: 18-Sep-25 FILENAME:

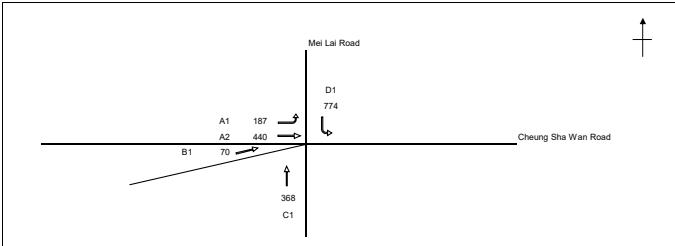
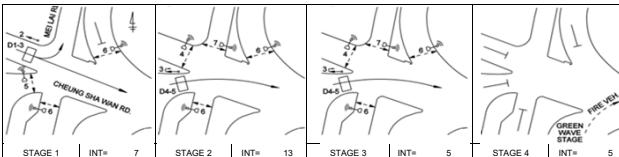
No. of stages per cycle N = 4
No. of stage using for calculation N = 2

Cycle time C = 90 sec
Sum(Y) Y = 0.360
Loss time L = 38 sec
Total Flow = 1799 pcpu

Co = $(1.5'L+5)(1-Y)$ = 96.8 sec
Cm = $L/(1-Y)$ = 59.4 sec
Yult = $(Yult-Y)*100%$ = 0.615
R.C. ult = $(Yult-Y)*100%$ = 70.9 %
Cp = $0.9'L/(0.9-Y)$ = 63.3 sec
Ymax = $1-L/C$ = 0.578

R.C.(C) = $(0.9*Ymax-Y)*100%$ = 45 %

STAGE 1	INT= 7	STAGE 2	INT= 13	STAGE 3	INT= 5	STAGE 4	INT= 5



Pedestrian Phase	Width	Green Time Required (s)			Green Time Provided (s)			Check
		SG	Delay	FG	SG	Delay	FG	
Ep	4.9	5	3	8	44	3	8	OK
Fp	4.5	5	3	6	53	3	6	OK
Gp	4	5	5	12	38	5	12	OK
Hp	3.7	5	7	9	5	7	9	OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow			Total Flow pcp/h	Proportion of Turning Vehicles	Sat. Flow pcp/h	Uphill Gradient %	Short lane Effect pcp/h	Revised Sat. Flow pcp/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1, A2	1	3.20	A	1	6.5		N	1935	204	3		207	0.99	1576		1576	0.131	0.131	28	19	19	0.622	24	
A2	1	3.40	A	1			N	2095		327		327	0.00	2095		2495	0.131			19	19	0.621	39	
B1	2	3.80	B	1			N	1995		22		22	0.00	1995		1995	0.011			2	14	0.071	3	
B1	2	3.80	B	1			N	2135		23		23	0.00	2135		2135	0.011			2	14	0.069	3	
C1	3	3.00	C	1			N	1915		131		131	0.00	1915		1915	0.068	0.228		10	33	0.187	12	
C1	3	3.40	C	1			N	2095		144		144	0.00	2095		2095	0.069			10	33	0.187	14	
D1	3	3.20	C	1	30		N	1935	421			421	1.00	1843		1843	0.228			33	33	0.623	40	
D1	3	3.20	C	1	30		N	2075	524			524	1.00	1976		2296	0.228			33	33	0.622	50	
X	4																		5					
Hp																			5					

NOTE: 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J5 - YEAR 2035 - PM TRAFFIC FLOW

INTERIM SCENARIO A

OVE ARUP & PARTNERS										TRAFFIC SIGNAL CALCULATION																																																																																																																																																																																																																																																						
S16 Application for Proposed Development at Kau Wa Keng										PROJECT NO.		299277-02		Junction No.		J5																																																																																																																																																																																																																																																
Mei Lai Road / Cheung Sha Wan Road										DATE :		18-Sep-25		FILENAME :																																																																																																																																																																																																																																																		
<table border="1"> <thead> <tr> <th>Pedestrian Phase</th> <th>Width (m)</th> <th>Green Time Required (s)</th> <th>Green Time Provided (s)</th> <th>Check</th> </tr> </thead> <tbody> <tr> <td>Ep</td> <td>4.9</td> <td>SG 5, Delay 3, FG 8</td> <td>SG 40, Delay 3, FG 8</td> <td>OK</td> </tr> <tr> <td>Fp</td> <td>4.5</td> <td>SG 5, Delay 3, FG 6</td> <td>SG 53, Delay 3, FG 6</td> <td>OK</td> </tr> <tr> <td>Gp</td> <td>4</td> <td>SG 5, Delay 5, FG 12</td> <td>SG 34, Delay 5, FG 12</td> <td>OK</td> </tr> <tr> <td>Hp</td> <td>3.7</td> <td>SG 5, Delay 7, FG 9</td> <td>SG 5, Delay 7, FG 9</td> <td>OK</td> </tr> </tbody> </table>										Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)	Check	Ep	4.9	SG 5, Delay 3, FG 8	SG 40, Delay 3, FG 8	OK	Fp	4.5	SG 5, Delay 3, FG 6	SG 53, Delay 3, FG 6	OK	Gp	4	SG 5, Delay 5, FG 12	SG 34, Delay 5, FG 12	OK	Hp	3.7	SG 5, Delay 7, FG 9	SG 5, Delay 7, FG 9	OK																																																																																																																																																																																																																														
Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)	Check																																																																																																																																																																																																																																																												
Ep	4.9	SG 5, Delay 3, FG 8	SG 40, Delay 3, FG 8	OK																																																																																																																																																																																																																																																												
Fp	4.5	SG 5, Delay 3, FG 6	SG 53, Delay 3, FG 6	OK																																																																																																																																																																																																																																																												
Gp	4	SG 5, Delay 5, FG 12	SG 34, Delay 5, FG 12	OK																																																																																																																																																																																																																																																												
Hp	3.7	SG 5, Delay 7, FG 9	SG 5, Delay 7, FG 9	OK																																																																																																																																																																																																																																																												
<table border="1"> <thead> <tr> <th>Movement</th> <th>Stage</th> <th>Lane Width (m)</th> <th>Phase</th> <th>No. of Lane</th> <th>Radius (m)</th> <th>O</th> <th>N</th> <th>Straight-Ahead Sat. Flow (pcu/h)</th> <th>Left Sat. Flow (pcu/h)</th> <th>Right Sat. Flow (pcu/h)</th> <th>Total Flow Vehicles</th> <th>Proportion of Turning Vehicles</th> <th>Sat. Flow (pcu/h)</th> <th>Uphill Gradient %</th> <th>Short lane Effect</th> <th>Revised Sat. Flow (pcu/h)</th> <th>y</th> <th>Greater</th> <th>L (sec)</th> <th>g (sec)</th> <th>g (input)</th> <th>Degree of Saturation</th> <th>Queuing Length (m)</th> </tr> </thead> <tbody> <tr> <td>A1, A2</td> <td>1</td> <td>3.20</td> <td>A</td> <td>1</td> <td>6.5</td> <td></td> <td>N</td> <td>1935</td> <td>187</td> <td>62</td> <td>249</td> <td>0.75</td> <td>1649</td> <td>0.151</td> <td>0.152</td> <td>28</td> <td>23</td> <td>23</td> <td>0.591</td> <td>28</td> <td></td> </tr> <tr> <td>A2</td> <td>1</td> <td>3.40</td> <td>A</td> <td>1</td> <td></td> <td></td> <td>N</td> <td>2095</td> <td>378</td> <td></td> <td>378</td> <td>0.00</td> <td>2095</td> <td>400</td> <td>0.152</td> <td>23</td> <td>23</td> <td>0.593</td> <td>42</td> <td></td> </tr> <tr> <td>B1</td> <td>2</td> <td>3.80</td> <td>B</td> <td>1</td> <td></td> <td></td> <td>N</td> <td>1995</td> <td>33</td> <td></td> <td>33</td> <td>0.00</td> <td>1995</td> <td>1995</td> <td>0.017</td> <td>3</td> <td>14</td> <td>0.106</td> <td>4</td> <td></td> </tr> <tr> <td>B1</td> <td>2</td> <td>3.80</td> <td>B</td> <td>1</td> <td></td> <td></td> <td>N</td> <td>2135</td> <td>37</td> <td></td> <td>37</td> <td>0.00</td> <td>2135</td> <td>2135</td> <td>0.017</td> <td>3</td> <td>14</td> <td>0.111</td> <td>5</td> <td></td> </tr> <tr> <td>C1</td> <td>3</td> <td>3.00</td> <td>C</td> <td>1</td> <td></td> <td></td> <td>N</td> <td>1915</td> <td>176</td> <td></td> <td>176</td> <td>0.00</td> <td>1915</td> <td>1915</td> <td>0.092</td> <td>0.187</td> <td>14</td> <td>29</td> <td>0.285</td> <td>18</td> <td></td> </tr> <tr> <td>C1</td> <td>3</td> <td>3.40</td> <td>C</td> <td>1</td> <td></td> <td></td> <td>N</td> <td>2095</td> <td>192</td> <td></td> <td>192</td> <td>0.00</td> <td>2095</td> <td>2095</td> <td>0.092</td> <td>0.187</td> <td>14</td> <td>29</td> <td>0.284</td> <td>20</td> <td></td> </tr> <tr> <td>D1</td> <td>3</td> <td>3.20</td> <td>C</td> <td>1</td> <td>30</td> <td></td> <td>N</td> <td>1935</td> <td>345</td> <td></td> <td>345</td> <td>1.00</td> <td>1843</td> <td>320</td> <td>0.187</td> <td>29</td> <td>29</td> <td>0.581</td> <td>35</td> <td></td> </tr> <tr> <td>D1</td> <td>3</td> <td>3.20</td> <td>C</td> <td>1</td> <td>30</td> <td></td> <td>N</td> <td>2075</td> <td>429</td> <td></td> <td>429</td> <td>1.00</td> <td>1976</td> <td>2296</td> <td>0.187</td> <td>29</td> <td>29</td> <td>0.580</td> <td>44</td> <td></td> </tr> <tr> <td>X</td> <td>4</td> <td></td> <td>5</td> <td></td> <td>5</td> <td></td> <td></td> </tr> <tr> <td>Hp</td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table>																				Movement	Stage	Lane Width (m)	Phase	No. of Lane	Radius (m)	O	N	Straight-Ahead Sat. Flow (pcu/h)	Left Sat. Flow (pcu/h)	Right Sat. Flow (pcu/h)	Total Flow Vehicles	Proportion of Turning Vehicles	Sat. Flow (pcu/h)	Uphill Gradient %	Short lane Effect	Revised Sat. Flow (pcu/h)	y	Greater	L (sec)	g (sec)	g (input)	Degree of Saturation	Queuing Length (m)	A1, A2	1	3.20	A	1	6.5		N	1935	187	62	249	0.75	1649	0.151	0.152	28	23	23	0.591	28		A2	1	3.40	A	1			N	2095	378		378	0.00	2095	400	0.152	23	23	0.593	42		B1	2	3.80	B	1			N	1995	33		33	0.00	1995	1995	0.017	3	14	0.106	4		B1	2	3.80	B	1			N	2135	37		37	0.00	2135	2135	0.017	3	14	0.111	5		C1	3	3.00	C	1			N	1915	176		176	0.00	1915	1915	0.092	0.187	14	29	0.285	18		C1	3	3.40	C	1			N	2095	192		192	0.00	2095	2095	0.092	0.187	14	29	0.284	20		D1	3	3.20	C	1	30		N	1935	345		345	1.00	1843	320	0.187	29	29	0.581	35		D1	3	3.20	C	1	30		N	2075	429		429	1.00	1976	2296	0.187	29	29	0.580	44		X	4															5		5			Hp																5				
Movement	Stage	Lane Width (m)	Phase	No. of Lane	Radius (m)	O	N	Straight-Ahead Sat. Flow (pcu/h)	Left Sat. Flow (pcu/h)	Right Sat. Flow (pcu/h)	Total Flow Vehicles	Proportion of Turning Vehicles	Sat. Flow (pcu/h)	Uphill Gradient %	Short lane Effect	Revised Sat. Flow (pcu/h)	y	Greater	L (sec)	g (sec)	g (input)	Degree of Saturation	Queuing Length (m)																																																																																																																																																																																																																																									
A1, A2	1	3.20	A	1	6.5		N	1935	187	62	249	0.75	1649	0.151	0.152	28	23	23	0.591	28																																																																																																																																																																																																																																												
A2	1	3.40	A	1			N	2095	378		378	0.00	2095	400	0.152	23	23	0.593	42																																																																																																																																																																																																																																													
B1	2	3.80	B	1			N	1995	33		33	0.00	1995	1995	0.017	3	14	0.106	4																																																																																																																																																																																																																																													
B1	2	3.80	B	1			N	2135	37		37	0.00	2135	2135	0.017	3	14	0.111	5																																																																																																																																																																																																																																													
C1	3	3.00	C	1			N	1915	176		176	0.00	1915	1915	0.092	0.187	14	29	0.285	18																																																																																																																																																																																																																																												
C1	3	3.40	C	1			N	2095	192		192	0.00	2095	2095	0.092	0.187	14	29	0.284	20																																																																																																																																																																																																																																												
D1	3	3.20	C	1	30		N	1935	345		345	1.00	1843	320	0.187	29	29	0.581	35																																																																																																																																																																																																																																													
D1	3	3.20	C	1	30		N	2075	429		429	1.00	1976	2296	0.187	29	29	0.580	44																																																																																																																																																																																																																																													
X	4															5		5																																																																																																																																																																																																																																														
Hp																5																																																																																																																																																																																																																																																
<p>NOTE : 'O' - OPPONDING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN</p>												PEDESTRIAN WALKING SPEED = 0.9m/s				QUEUING LENGTH = AVERAGE QUEUE * 6m																																																																																																																																																																																																																																																

J5 - YEAR 2035 - AM TRAFFIC FLOW

INTERIM SCENARIO B

OVE ARUP & PARTNERS **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Mei Lai Road / Cheung Sha Wan Road **J5_INT_B_AM**

PROJECT NO.: 299277-02 **Junction No.:** J5

DATE : 18-Sep-25 **FILENAME :**

No. of stages per cycle N = 4
No. of stage using for calculation N = 2

Cycle time C = 90 sec
Sum(Y) Y = 0.368
Loss time L = 38 sec
Total Flow = 1846 pcu

Co = $(1.5*L+5)*(1-Y)$ = 98.1 sec
Cm = $L/(1-Y)$ = 60.1 sec
Yult = $(Yult-Y)*100%$ = 67.2 %
Cp = $0.9*L/(0.9-Y)$ = 64.3 sec
Ymax = $1-L/C$ = 0.578

R.C.(C) = $0.9*Ymax-Y)*100%$ = 41 %

Pedestrian Phase	Width (m)	Green Time Required (s)	SG Delay	FG	Green Time Provided (s)	SG Delay	FG	Check
Ep	4.9	5 3	8		44 3	8		OK
Fp	4.5	5 3	6		53 3	6		OK
Gp	4	5 5	12		38 5	12		OK
Hp	3.7	5 7	9		5 7	9		OK

STAGE 1 INT= 7 **STAGE 2** INT= 13 **STAGE 3** INT= 5 **STAGE 4** INT= 5

STAGE 1 INT= 7 **STAGE 2** INT= 13 **STAGE 3** INT= 5 **STAGE 4** INT= 5

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
								Left pcu/h	Straight pcu/h	Right pcu/h													
A1, A2	1	3.20	A	1	6.5	N	1935	208	0	208	1.00	1572			1572	0.132	0.132	28	19	19	0.627	25	
A2	1	3.40	A	1		N	2095	330		330	0.00	2095			2495	0.132			19	19	0.627	39	
B1	2	3.80	B	1			1995	22		22	0.00	1995			1995	0.011			2	14	0.071	3	
B1	2	3.80	B	1			2135	23		23	0.00	2135			2135	0.011			2	14	0.069	3	
C1	3	3.00	C	1		N	1915	137		137	0.00	1915			1915	0.072	0.236		10	33	0.195	13	
C1	3	3.40	C	1			2095	151		151	0.00	2095			2095	0.072			10	33	0.197	14	
D1	3	3.20	C	1	30	N	1935	434		434	1.00	1843			1843	0.236			33	33	0.642	41	
D1	3	3.20	C	1	30		2075	541		541	1.00	1976			2296	0.236			33	33	0.643	51	
X	4																	5			5		
Hp																		5			5		

NOTE : 'O' - OPPOSING TRAFFIC **N** - NEAR SIDE LANE **SG** - STEADY GREEN **FG** - FLASHING GREEN **PEDESTRIAN WALKING SPEED = 0.9m/s** **QUEUING LENGTH = AVERAGE QUEUE * 6m**

J5 - YEAR 2035 - PM TRAFFIC FLOW

INTERIM SCENARIO B

J5 - YEAR 2035 - AM TRAFFIC FLOW

INTERIM SCENARIO C

OVE ARUP & PARTNERS **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Mei Lai Road / Cheung Sha Wan Road **J5_INT_C_AM**

PROJECT NO.: 299277-02 **Junction No.:** J5

DATE : 18-Sep-25 **FILENAME :**

No. of stages per cycle N = 4
No. of stage using for calculation N = 2

Cycle time C = 90 sec
Sum(Y) Y = 0.379
Loss time L = 38 sec
Total Flow = 1897 pcu

Co = $(1.5*L+5)*(1-Y)$ = 99.8 sec
Cm = $L/(1-Y)$ = 61.2 sec
Yult = $(Yult-Y)*100%$ = 62.3 %
Cp = $0.9*L/(0.9-Y)$ = 65.6 sec
Ymax = $1-L/C$ = 0.578

R.C.C. = $0.9*Ymax-Y)*100%$ = 37 %

Pedestrian Phase	Width (m)	Green Time Required (s)	SG Delay	FG	Green Time Provided (s)	SG Delay	FG	Check
Ep	4.9	5 3	8		44 3	8		OK
Fp	4.5	5 3	6		53 3	6		OK
Gp	4	5 5	12		38 5	12		OK
Hp	3.7	5 7	9		5 7	9		OK

STAGE 1 INT= 7 **STAGE 2** INT= 13 **STAGE 3** INT= 5 **STAGE 4** INT= 5

STAGE 1 INT= 7 **STAGE 2** INT= 13 **STAGE 3** INT= 5 **STAGE 4** INT= 5

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow	Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1, A2	1	3.20	A	1	6.5		N	1935	213 0	213	1.00	1572			1572	0.135	0.135	28	19	19	0.642	25
A2	1	3.40	A	1			N	2095	330	330	0.00	2095			2495	0.132			18	19	0.627	39
B1	2	3.80	B	1				1995	22	22	0.00	1995			1995	0.011			2	14	0.071	3
B1	2	3.80	B	1				2135	23	23	0.00	2135			2135	0.011			1	14	0.069	3
C1	3	3.00	C	1			N	1915	144	144	0.00	1915			1915	0.075	0.243		10	33	0.205	14
C1	3	3.40	C	1				2095	158	158	0.00	2095			2095	0.075			10	33	0.206	15
D1	3	3.20	C	1	30		N	1935	448	448	1.00	1843			1843	0.243			33	33	0.663	43
D1	3	3.20	C	1	30			2075	559	559	1.00	1976			2296	0.243			33	33	0.664	53
X	4																		5	5		
Hp																			5			

NOTE : 'O' - OPPOSING TRAFFIC **N** - NEAR SIDE LANE **SG** - STEADY GREEN **FG** - FLASHING GREEN **PEDESTRIAN WALKING SPEED = 0.9m/s** **QUEUING LENGTH = AVERAGE QUEUE * 6m**

J5 - YEAR 2035 - PM TRAFFIC FLOW

INTERIM SCENARIO C

OVE ARUP & PARTNERS

S16 Application for Proposed Development at Kau Wa Keng

Mei Lai Road / Cheung Sha Wan Road

TRAFFIC SIGNAL CALCULATION

PROJECT NO: 299277-02 Junction No. J5

DATE: 18-Sep-25 FILENAME:

No. of stages per cycle	N =	4
No. of stage using for calculation	N =	2
Cycle time		
Sum(Y)	C =	90 sec
Y = 0.347	Y =	0.347 sec
Loss time		
L = 38 sec	L =	38 sec
Total Flow		
= 1898 pcu		
Co = $(1.5'L+5)(1-Y)$		
= 94.9 sec		
Cm = $L/(1-Y)$		
= 58.2 sec		
Yult		
= 0.615		
R.C.ult = $(Yult-Y)^*100\%$		
= 77.3 %		
Cp = $0.9'L/(0.9-Y)$		
= 61.8 sec		
Ymax = $1-C$		
= 0.578		
R.C.(C) = $(0.9'Ymax-Y)^*100\%$		
= 50 %		

Pedestrian Phase	Width (m)	Green Time Required (s)	Green Time Provided (s)	Check
Ep	4.9	5 3	8 40	3 8 OK
Fp	4.5	5 3	6 53	3 6 OK
Gp	4	5 5	12 34	5 12 OK
Hp	3.7	5 7	9 5	7 9 OK

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow	Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1, A2	1	3.20	A	1	6.5		N	1935	195 57	252	0.77	1642		1642	0.153	0.154	28	23	23	0.601	28	
A2	1	3.40	A	1			N	2095	383	383	0.00	2095		2495	0.154			23	23	0.601	43	
B1	2	3.80	B	1			N	1995	33	33	0.00	1995		1995	0.017			2	14	0.106	4	
B1	2	3.80	B	1				2135	37	37	0.00	2135		2135	0.017			3	14	0.111	5	
C1	3	3.00	C	1			N	1915	188	188	0.00	1915		1915	0.098	0.193		15	29	0.305	19	
C1	3	3.40	C	1			N	2095	205	205	0.00	2095		2095	0.098			15	29	0.304	21	
D1	3	3.20	C	1	30		N	1935	356	356	1.00	1843		1843	0.193			29	29	0.600	36	
D1	3	3.20	C	1	30			2075	444	444	1.00	1976		2296	0.193			29	29	0.600	45	
X	4																	5				
Hp																		5				

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN

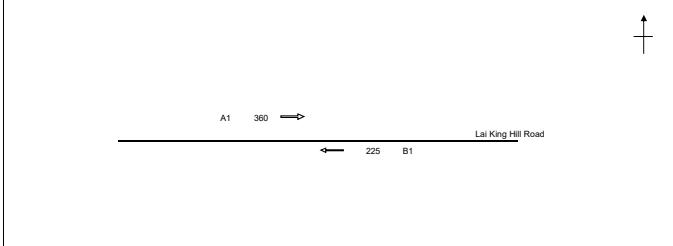
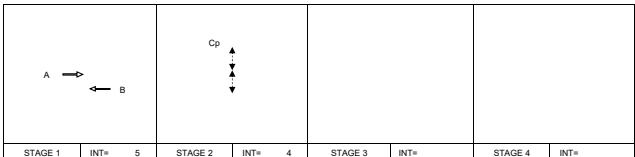
PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J6 - YEAR 2024 - AM TRAFFIC FLOW

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																							
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.		299277-02		Junction No.		J6																	
Lai King Hill Road near Vehicular Access of the Proposed Development												DATE :		22-Sep-25		FILENAME :																			
<table border="1"> <thead> <tr> <th colspan="2">STAGE 1</th> <th colspan="2">INT= 5</th> <th colspan="2">STAGE 2</th> <th colspan="2">INT= 4</th> <th colspan="2">STAGE 3</th> <th colspan="2">INT=</th> <th colspan="2">STAGE 4</th> <th colspan="2">INT=</th> </tr> </thead> </table>												STAGE 1		INT= 5		STAGE 2		INT= 4		STAGE 3		INT=		STAGE 4		INT=									
STAGE 1		INT= 5		STAGE 2		INT= 4		STAGE 3		INT=		STAGE 4		INT=																					
Movement	Stage	Lane Width	Phase	No. of lanes	Radius	O	N	Flow			Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Uphill Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length												
								Sat. Flow	Left pcp/h	Straight pcp/h														Right pcp/h	pcu/h										
A1	1	5.00	A	1			N	2115	350		350	0.00	2115			2115	0.165	4	66	66	0.226	14													
B1	1	5.20	A	1			N	2135		205	205	0.00	2135			2135	0.096		38	66	0.131	8													
ped	2	Cp																20																	
NOTE : 'O - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN												PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m																							

J6 - YEAR 2024 - PM TRAFFIC FLOW

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION												
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.		299277-02		Junction No.		J6						
Lai King Hill Road near Vehicular Access of the Proposed Development												DATE :		22-Sep-25		FILENAME :								
												No. of stages per cycle N = 2 N = 1												
												Cycle time C = 90 sec Sum(Y) Y = 0.161 Loss time L = 24 sec Total Flow = 555 pcu												
												$C_o = (1.5'L+5)(1-Y)$ $C_m = L(1-Y)$ Y_{ult} $R.C.ult = (Y_{ult}-Y)*100\%$ $C_p = 0.9'L(0.9-Y)$ $Y_{max} = 1-C$ $R.C.(C) = (0.9'Y_{max}-Y)*100\%$		= 48.9 sec = 28.6 sec = 0.720 = 347.9 % = 29.2 sec = 0.733 = 311 %										
Pedestrian Phase Cp		Width (m)		Green Time Required (s)		Green Time Provided (s)		Check																
		8.6		SG 10 2		FG 8																		
								OK																
STAGE 1		INT= 5		STAGE 2		INT= 4		STAGE 3		INT=		STAGE 4		INT=										
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead S sat. Flow	Left S sat. Flow	Straight S sat. Flow	Right S sat. Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Uphill Gradient	Short lane Effect	Revised Sat. Flow	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1	1	5.00	A	1			N	2115	340		215	340	0.00	2115			2115	0.161	4		66	66	0.219	14
B1	1	5.20	A	1			N	2135		215		215	0.00	2135			2135	0.101		41	66	0.137	9	
ped	2	Cp																	20					
NOTE : 'O - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN												PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m												



J6 - YEAR 2035 - AM TRAFFIC FLOW

BASELINE SCENARIO

OVE ARUP & PARTNERS										TRAFFIC SIGNAL CALCULATION																																																														
S16 Application for Proposed Development at Kau Wa Keng										PROJECT NO.		299277-02		Junction No.		J6																																																								
Lai King Hill Road near Vehicular Access of the Proposed Development										DATE:		22-Sep-25		FILENAME:																																																										
										<table border="1"> <tr> <td>No. of stages per cycle</td> <td>N =</td> <td>2</td> </tr> <tr> <td>No. of stage using for calculation</td> <td>N =</td> <td>1</td> </tr> <tr> <td>Cycle time</td> <td>C =</td> <td>90 sec</td> </tr> <tr> <td>Sum(y)</td> <td>Y =</td> <td>0.173</td> </tr> <tr> <td>Loss time</td> <td>L =</td> <td>24 sec</td> </tr> <tr> <td>Total Flow</td> <td>=</td> <td>580 pcu</td> </tr> <tr> <td>Co</td> <td>=</td> <td>(1.5'L+5)(1-Y)</td> <td>=</td> <td>49.6 sec</td> </tr> <tr> <td>Cm</td> <td>=</td> <td>L/(1-Y)</td> <td>=</td> <td>29.0 sec</td> </tr> <tr> <td>Yfull</td> <td>=</td> <td>0.720</td> <td>=</td> <td>0.720</td> </tr> <tr> <td>R.C.ult</td> <td>=</td> <td>(Yfull-Y)*Y*100%</td> <td>=</td> <td>317.2 %</td> </tr> <tr> <td>Cp</td> <td>=</td> <td>0.9'L/(0.9-Y)</td> <td>=</td> <td>29.7 sec</td> </tr> <tr> <td>Ymax</td> <td>=</td> <td>0.1/C</td> <td>=</td> <td>0.733</td> </tr> <tr> <td>R.C.(C)</td> <td>=</td> <td>(0.9*Ymax-Y)*Y*100%</td> <td>=</td> <td>282 %</td> </tr> </table>										No. of stages per cycle	N =	2	No. of stage using for calculation	N =	1	Cycle time	C =	90 sec	Sum(y)	Y =	0.173	Loss time	L =	24 sec	Total Flow	=	580 pcu	Co	=	(1.5'L+5)(1-Y)	=	49.6 sec	Cm	=	L/(1-Y)	=	29.0 sec	Yfull	=	0.720	=	0.720	R.C.ult	=	(Yfull-Y)*Y*100%	=	317.2 %	Cp	=	0.9'L/(0.9-Y)	=	29.7 sec	Ymax	=	0.1/C	=	0.733	R.C.(C)	=	(0.9*Ymax-Y)*Y*100%	=	282 %
No. of stages per cycle	N =	2																																																																						
No. of stage using for calculation	N =	1																																																																						
Cycle time	C =	90 sec																																																																						
Sum(y)	Y =	0.173																																																																						
Loss time	L =	24 sec																																																																						
Total Flow	=	580 pcu																																																																						
Co	=	(1.5'L+5)(1-Y)	=	49.6 sec																																																																				
Cm	=	L/(1-Y)	=	29.0 sec																																																																				
Yfull	=	0.720	=	0.720																																																																				
R.C.ult	=	(Yfull-Y)*Y*100%	=	317.2 %																																																																				
Cp	=	0.9'L/(0.9-Y)	=	29.7 sec																																																																				
Ymax	=	0.1/C	=	0.733																																																																				
R.C.(C)	=	(0.9*Ymax-Y)*Y*100%	=	282 %																																																																				
A		B		Cp						Pedestrian Phase		Width (m)		Green Time Required (s)		Green Time Provided (s)		Check																																																						
STAGE 1		INT= 5		STAGE 2		INT= 4		STAGE 3		INT=		STAGE 4		INT=																																																										
Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.																																																
A1	1	5.00	A	1		N	N	2115	Left pcu/h	Straight pcu/h	Right pcu/h	365	0.00	2115		2115	0.173	0.173	4	66	66	0.235	15																																																	
B1	1	5.20	A	1				2135				215	0.00	2135		2135	0.101			39	66	0.137	9																																																	
ped	2	Cp																20																																																						
NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN										PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m																																																														

J6 - YEAR 2035 - PM TRAFFIC FLOW

BASELINE SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION												
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.		299277-02		Junction No.		J6						
Lai King Hill Road near Vehicular Access of the Proposed Development												J6_BASE_PM		DATE :		22-Sep-25		FILENAME :						
												No. of stages per cycle N = 2 No. of stage using for calculation N = 1		Cycle time C = 90 sec Sum(Y) Y = 0.170		Loss time L = 24 sec Total Flow = 585 pcpu		Co = (1.5'L+5)/(1-Y) = 49.4 sec Cm = L/(1-Y) = 28.9 sec Yult = 0.720 R.C.ult = (Yult-Y)*100% = 32.3 % Cp = 0.9'L/(0.9-Y) = 29.6 sec Ymax = 1-C = 0.733 R.C.(C) = (0.9'Ymax-Y)*100% = 28.8 %						
												Pedestrian Phase Cp		Width (m) 8.6		Green Time Required (s) SG 10 Delay 2 FG 8		Green Time Provided (s) SG 10 Delay 2 FG 8		Check				
STAGE 1			INT= 5		STAGE 2			INT= 4		STAGE 3			INT=		STAGE 4			INT=		OK				
Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead S sat. Flow pcpuh	Left S straight pcpuh	Right S straight pcpuh	Flow	Total Flow pcpuh	Proportion of Turning Vehicles	Sat. Flow pcpuh	Uphill Gradient %	Short lane Effect pcpuh	Revised Sat. Flow pcpuh	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1	1	5.00	A	1		N	N	2115	360		360	0.00	2115				2115	0.170	4	66	66	0.232	14	
B1	1	5.20	A	1		N	N	2135		225	225	0.00	2135				2135	0.105		41	66	0.144	9	
ped	2	Cp																	20					
NOTE : 'O - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN												PEDESTRIAN WALKING SPEED = 0.9m/s										QUEUEING LENGTH = AVERAGE QUEUE * 6m		

J6 - YEAR 2035 - AM TRAFFIC FLOW

REFERENCE SCENARIO

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road near Vehicular Access of the Proposed Development

J6_REF_AM

PROJECT NO: 299277-02 Junction No. J6

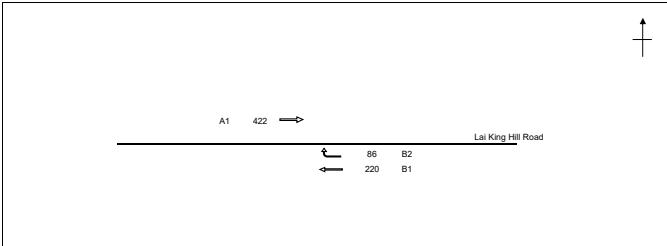
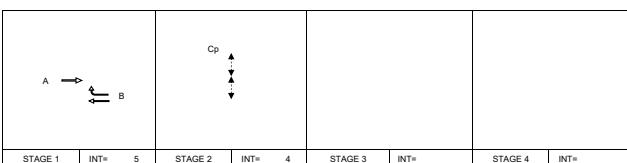
DATE: 22-Sep-25 FILENAME:

No. of stages per cycle	N =	2
No. of stage using for calculation	N =	1
Cycle time	C =	90 sec
Sum(y)	Y =	0.255
Loss time	L =	24 sec
Total Flow	=	815 pcu
Co	=	55.0 sec
Cm	=	32.2 sec
Yult	=	0.720
R.C.ult	=	182.3 %
Cp	=	33.5 sec
Ymax	=	0.733
R.C.(C)	=	159 %

A		B		Cp					
---	--	---	--	----	--	--	--	--	--

Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check OK
		SG	Delay	FG	SG	Delay	FG	
	8.6	10	2	8	10	2	8	

STAGE 1		INT= 5	STAGE 2		INT= 4	STAGE 3		INT=	STAGE 4		INT=
---------	--	--------	---------	--	--------	---------	--	------	---------	--	------



Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow			Total Flow	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1	1	4.00	A	1			N	2015	Left pcu/h	Straight pcu/h	Right pcu/h	514	0.00	2015		2015	0.255	0.255	4	66	66	0.348	21	
B1	1	3.00	A	1			N	1915				210	0.00	1915		1915	0.110			28	66	0.150	8	
B2	1	3.00	A	1	10		N	2055				91	1.00	1787		1787	0.051			13	66	0.069	4	
ped	2	Cp																	20					

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN

PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J6 - YEAR 2035 - PM TRAFFIC FLOW

REFERENCE SCENARIO

OVE ARUP & PARTNERS											TRAFFIC SIGNAL CALCULATION												
S16 Application for Proposed Development at Kau Wa Keng											PROJECT NO.		299277-02		Junction No.		J6						
Lai King Hill Road near Vehicular Access of the Proposed Development											DATE :		22-Sep-25		FILENAME :								
A1	422	→	Lai King Hill Road											No. of stages per cycle	N =	2							
			86	B2			220	B1						No. of stage using for calculation	N =	1							
											Cycle time		C = 90 sec		Sum(Y)		Y = 0.209		Loss time				
											L = 24 sec		Total Flow		= 728 pcu								
$C_o = (1.5'L+5)/(1-Y)$ $C_m = L/(1-Y)$ $Y_{ult} = (Y_{ult}-Y)*100\%$ $R.C.ult = 0.91/(0.9-Y)$ $C_p = 0.91/(0.9-Y)$ $Y_{max} = 1-C_p$ $R.C.(C) = (0.9^*Y_{max}^*Y)*100\%$											= 51.9 sec		= 30.4 sec		= 0.720		= 243.8 %		= 31.3 sec				
											= 0.733		= 0.733		= 215 %								
											Pedestrian Phase		Width (m)		Green Time Required (s)		Green Time Provided (s)		Check				
											Cp		8.6		SG 10		Delay 2		FG 8		SG 10		
STAGE 1			INT= 5			STAGE 2			INT= 4			STAGE 3			INT=			STAGE 4			INT=		
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead Sat. Flow	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow	Uphill Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length	
								Left pcu/h	Straight pcu/h	Right pcu/h		pcu/h		pcu/h		y	sec	sec	sec	sec	X	m.	
A1	1	4.00	A	1			N	2015	422	0.00	2015				2015	0.209	4		66	0.286	17		
B1	1	3.00	A	1	10		N	1915	220	0.00	1915				1915	0.115		36	66	0.157	9		
B2	1	3.00	A	1			N	2055	86	1.00	1787				1787	0.048		15	66	0.066	3		
ped	2		Cp														20						
NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN											PEDESTRIAN WALKING SPEED = 0.9m/s										QUEUING LENGTH = AVERAGE QUEUE * 6m		

J6 - YEAR 2035 - AM TRAFFIC FLOW

DESIGN SCENARIO

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng

Lai King Hill Road near Vehicular Access of the Proposed Development

Project No: 299277-02 Junction No: J6

Date: 22-Sep-25

File Name: J6_DES_AM

Diagram: A1 547 → Lai King Hill Road ← 112 B2 ← 210 B1

Stages:

STAGE 1	INT= 5	STAGE 2	INT= 4	STAGE 3	INT=	STAGE 4	INT=
---------	--------	---------	--------	---------	------	---------	------

Table 1: Movement Data

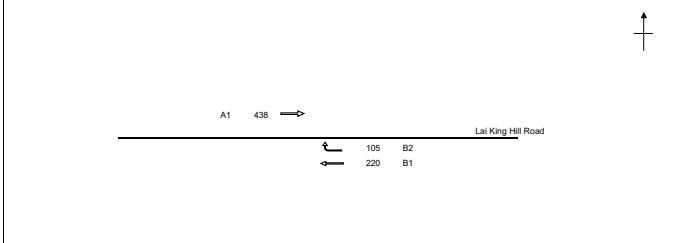

Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
								Left pcu/h	Straight pcu/h	Right pcu/h													
A1	1	4.00	A	1		N	2015		547	547	0.00	2015			2015	0.271	0.271	4	66	66	0.370	22	
B1	1	3.00	A	1		N	1915		210	210	0.00	1915			1915	0.110			27	66	0.150	8	
B2	1	3.00	A	1	10	N	2055		112	112	1.00	1787			1787	0.063			15	66	0.085	4	
ped	2	Cp																20					

Table 2: Signal Settings

No. of stages per cycle	N = 2
No. of stage using for calculation	N = 1
Cycle time	C = 90 sec
Sum(y)	Y = 0.271
Loss time	L = 24 sec
Total Flow	= 869 pcu
Co	= $(1.5L+5)(1-Y)$ = 56.3 sec
Cm	= $L(1-Y)$ = 32.9 sec
Yult	= 0.720
R.C.ult	= $(Yult-Y)^*100\%$ = 165.2 %
Cp	= $0.9^*L/(0.9-Y)$ = 34.4 sec
Ymax	= 1-L/C = 0.733
R.C.(C)	= $(0.9^*Ymax-Y)^*100\%$ = 143 %

J6 - YEAR 2035 - PM TRAFFIC FLOW

DESIGN SCENARIO

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																							
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO.		299277-02		Junction No.		J6																	
Lai King Hill Road near Vehicular Access of the Proposed Development												DATE :		22-Sep-25		FILENAME :																			
												No. of stages per cycle N = 2 No. of stage using for calculation N = 1																							
												Cycle time C = 90 sec Sum(Y) Y = 0.217 Loss time L = 24 sec Total Flow = 763 pcpu																							
												$C_o = (1.5'L+5)/(1-Y)$ $C_m = L/(1-Y)$ $Y_{ult} = 0.720$ $R.C_{ult} = (Y_{ult}-Y)*100\%$ $C_p = 0.9'L/(0.9-Y)$ $Y_{max} = 1-C$ $R.C.(C) = (0.9'Y_{max}-Y)*100\%$																							
												$= 52.4 \text{ sec}$ $= 30.7 \text{ sec}$ $= 231.2 \%$ $= 31.6 \text{ sec}$ $= 0.733$ $= 204 \%$																							
STAGE 1				INT= 5				STAGE 2				INT= 4				STAGE 3				INT=				STAGE 4				INT=							
Movement	Stage	Lane Width	Phase	No. of lane	Radius	O	N	Straight-Ahead	Flow			Total Flow	Proportion of Turning Vehicles		Sat. Flow	Uphill Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length										
								Sat. Flow	Left pcpuh	Straight pcpuh	Right pcpuh			%	pcpuh	pcpuh	pcpuh	pcpuh	sec	sec	sec	sec	sec	X	m.										
A1	1	4.00	A	1			N	2015	438	0.00	2015							2015	0.217		4		66	0.296	18										
B1	1	3.00	A	1			N	1915	220	0.00	1915							1915	0.115				35	0.157	9										
B2	1	3.00	A	1	10		N	2055	105	1.00	1787							1787	0.059				18	0.080	4										
ped	2	Cp																					20												
NOTE : 'O - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN																								PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m											

J6 - YEAR 2035 - AM TRAFFIC FLOW

INTERIM SCENARIO A

OVE ARUP & PARTNERS | **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng | PROJECT NO: 299277-02 | Junction No. J6

Lai King Hill Road near Vehicular Access of the Proposed Development | DATE: 22-Sep-25 | FILENAME: J6_INT_A_AM

No. of stages per cycle	N = 2
No. of stage using for calculation	N = 1
Cycle time	C = 90 sec
Sum(y)	Y = 0.226
Loss time	L = 24 sec
Total Flow	= 724 pcu
Co	= $(1.5^*L+5)/(1-Y)$ = 53.0 sec
Cm	= $U/(1-Y)$ = 31.0 sec
Yult	= 0.720
R.C.ult	= $(Yult-Y)^*100\%$ = 216.9 %
Cp	= $0.9^*U/(0.9-Y)$ = 32.0 sec
Ymax	= 1-L/C = 0.733
R.C.(C)	= $(0.9^*Ymax-Y)^*100\%$ = 192 %

STAGE 1		INT= 5	STAGE 2		INT= 4	STAGE 3		INT=	STAGE 4		INT=
---------	--	--------	---------	--	--------	---------	--	------	---------	--	------

Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check OK
		SG	Delay	FG	SG	Delay	FG	
Cp	8.6	10	2	8	10	2	8	

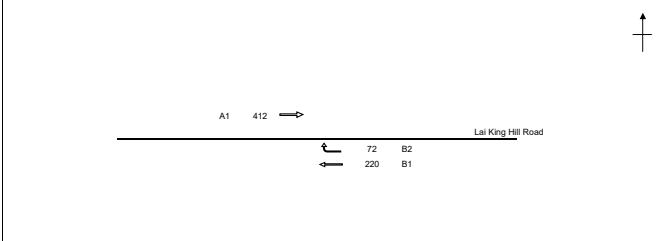
Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect Sat. Flow pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1	1	4.00	A	1			N	2015	455		455	0.00	2015			2015	0.226	0.226	4	66	66	0.308	18	
B1	1	3.00	A	1			N	1915	210		210	0.00	1915			1915	0.110			32	66	0.150	8	
B2	1	3.00	A	1	10		N	2055	59		59	1.00	1787			1787	0.033			10	66	0.045	2	
ped	2	Cp																	20					

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J6 - YEAR 2035 - PM TRAFFIC FLOW

INTERIM SCENARIO A

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																											
S16 Application for Proposed Development at Kau Wa Keng Lai King Hill Road near Vehicular Access of the Proposed Development												PROJECT NO.	299277-02		Junction No.	J6																							
J6_INT_A_PM												DATE :	22-Sep-25		FILENAME :																								
												No. of stages per cycle = 2 No. of stage using for calculation = 1 Cycle time = 90 sec Sum(Y) = 0.198 Loss time = 24 sec Total Flow = 674 pcu $C_o = (1.5'L+5)(1-Y)$ = 51.1 sec $C_m = L(1-Y)$ = 29.9 sec Y_{ult} = 0.720 $R.C.ult = (Y_{ult}-Y)^*100\%$ = 263.6 % $C_p = 0.9'L(0.9-Y)$ = 30.8 sec $Y_{max} = 1/C$ = 0.733 $R.C.(C) = (0.9'Y_{max}-Y)^*100\%$ = 233 %																											
												<table border="1"> <thead> <tr> <th rowspan="2">Pedestrian Phase</th> <th rowspan="2">Width (m)</th> <th colspan="3">Green Time Required (s)</th> <th colspan="3">Green Time Provided (s)</th> <th rowspan="2">Check</th> </tr> <tr> <th>SG</th> <th>Delay</th> <th>FG</th> <th>SG</th> <th>Delay</th> <th>FG</th> </tr> </thead> <tbody> <tr> <td>Cp</td> <td>8.6</td> <td>10</td> <td>2</td> <td>8</td> <td>10</td> <td>2</td> <td>8</td> <td>OK</td> </tr> </tbody> </table>				Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check	SG	Delay	FG	SG	Delay	FG	Cp	8.6	10	2	8	10	2	8	OK
Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check																															
		SG	Delay	FG	SG	Delay	FG																																
Cp	8.6	10	2	8	10	2	8	OK																															
STAGE 1		INT= 5		STAGE 2		INT= 4		STAGE 3		INT=		STAGE 4		INT=																									
Movement	Stage	Lane Width	Phase	No. of lanes	Radius	O	N	Straight-Ahead Sat. Flow	Left Sat. Flow	Straight Sat. Flow	Right Sat. Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow Gradient	Uphill Effect	Revised Sat. Flow	y	Greater	L sec	g (required)	g (input)	Degree of Saturation	Queuing Length																
A1	1	4.00	A	1			N	2015		399		399	0.00	2015			2015	0.198	0.198	4	66	66	0.270	16															
B1	1	3.00	A	1			N	1915		220		220	0.00	1915			1915	0.115	0.115	38	66	66	0.157	9															
B2	1	3.00	A	1	10		N	2055		55		55	1.00	1787			1787	0.031	0.031	10	66	66	0.042	2															
ped	2		Cp																20																				
NOTE : 'O - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN												PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m																											


J6 - YEAR 2035 - AM TRAFFIC FLOW

INTERIM SCENARIO B

OVE ARUP & PARTNERS										TRAFFIC SIGNAL CALCULATION																
S16 Application for Proposed Development at Kau Wa Keng										PROJECT NO:		299277-02		Junction No.:		J6										
Lai King Hill Road near Vehicular Access of the Proposed Development										DATE:		22-Sep-25		FILENAME:												
										No. of stages per cycle N = 2 No. of stage using for calculation N = 1		Cycle time C = 90 sec Sum(y) Y = 0.241		Loss time L = 24 sec Total Flow = 771 pcu		Co = $(1.5^*L+5)(1-Y)$ = 54.0 sec Cm = $U/(1-Y)$ = 31.6 sec Yult = 0.720 R.C.ult = $(Yult-Y)^*100\%$ = 199.1 % Cp = $0.9^*U/(0.9-Y)$ = 32.8 sec Ymax = 1-L/C = 0.733 R.C.(C) = $(0.9^*Ymax-Y)^*100\%$ = 174 %										
STAGE 1		INT= 5		STAGE 2		INT= 4		STAGE 3		INT=		STAGE 4		INT=												
Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow			Total Flow	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.		
A1	1	4.00	A	1			N	2015	485			485	0.00	2015		2015	0.241	0.241	4	66	66	0.328	19			
B1	1	3.00	A	1			N	1915	210			210	0.00	1915		1915	0.110		30	66	66	0.150	8			
B2	1	3.00	A	1	10		N	2055	76			76	1.00	1787		1787	0.043		12	66	66	0.058	3			
ped	2	Cp																20								
NOTE : 'O' - OPPOSING TRAFFIC										N - NEAR SIDE LANE		SG - STEADY GREEN		FG - FLASHING GREEN		PEDESTRIAN WALKING SPEED = 0.9m/s		QUEUING LENGTH = AVERAGE QUEUE * 6m								

J6 - YEAR 2035 - PM TRAFFIC FLOW

INTERIM SCENARIO B

OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION											
S16 Application for Proposed Development at Kau Wa Keng Lai King Hill Road near Vehicular Access of the Proposed Development												PROJECT NO.	299277-02		Junction No.	J6							
J6_INT_B_PM												DATE :	22-Sep-25		FILENAME :								
												No. of stages per cycle		N = 2									
												No. of stage using for calculation		N = 1									
												Cycle time		C = 90 sec									
												Sum(Y)		Y = 0.204									
												Loss time		L = 24 sec									
												Total Flow		= 704 pcu									
												Co = (1.5'L+5)/(1-Y)		= 51.5 sec									
												Cm = L/(1-Y)		= 30.2 sec									
												Yult		= 0.720									
												R.C.ult = (Yult-Y)*100%		= 252.1 %									
												Cp = 0.9'L/(0.9-Y)		= 31.1 sec									
												Ymax = 1-C		= 0.733									
												R.C.(C) = (0.9'Ymax-Y)*100%		= 223 %									
												Pedestrian Phase	Width (m)	Green Time Required (s)		Green Time Provided (s)		Check					
												Cp	8.6	SG	Delay	FG	SG	Delay	FG	OK			
														10	2	8	10	2	8				
STAGE 1			INT= 5			STAGE 2			INT= 4			STAGE 3			INT=			STAGE 4			INT=		
Movement	Stage	Lane	Width	Phase	No. of lanes	Radius	O	N	Straight-Ahead	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow	Uphill Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length
									Sat. Flow	Left	Straight	Right	pcu/h	pcu/h	pcu/h	pcu/h	pcu/h	y	sec	sec	sec	sec	m.
A1	1	4.00	A	1			N	2015	412		0.00	2015						2015	0.204		4		
B1	1	3.00	A	1		10	N	1915	220		0.00	1915						1915	0.115		37	66	0.279
B2	1	3.00	A	1			N	2055	72	72	1.00	1787						1787	0.040		13	66	0.157
ped	2		Cp																	20			3
NOTE : 'O - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN												PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m											

J6 - YEAR 2035 - AM TRAFFIC FLOW

INTERIM SCENARIO C

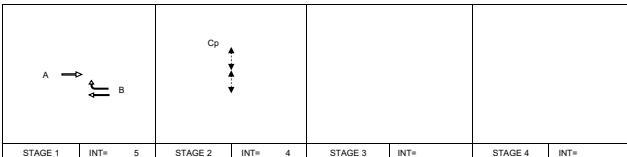
OVE ARUP & PARTNERS **TRAFFIC SIGNAL CALCULATION**

S16 Application for Proposed Development at Kau Wa Keng **PROJECT NO:** 299277-02 **Junction No.:** J6

Lai King Hill Road near Vehicular Access of the Proposed Development **J6_INT_C_AM** **DATE :** 22-Sep-25 **FILENAME :**

No. of stages per cycle	N =	2
No. of stage using for calculation	N =	1
Cycle time		C = 90 sec
Sum(y)		Y = 0.257
Loss time		L = 24 sec
Total Flow		= 822 pcu
Co	= $(1.5'L+5)(1-Y)$	= 55.2 sec
Cm	= $L/(1-Y)$	= 32.3 sec
Yult	= $(Yult-Y)*100%$	= 0.720
R.C.ult	= $(Yult-Y)*100%$	= 180.6 %
Cp	= $0.9'L/(0.9-Y)$	= 33.6 sec
Ymax	= $1-L/C$	= 0.733
R.C.(C)	= $(0.9*Ymax-Y)*100%$	= 157 %

A		B		Cp											
STAGE 1		INT= 5		STAGE 2		INT= 4		STAGE 3		INT=		STAGE 4		INT=	



Pedestrian Phase	Width (m)	Green Time Required (s)			Green Time Provided (s)			Check OK
		SG	Delay	FG	SG	Delay	FG	
Cp	8.6	10	2	8	10	2	8	

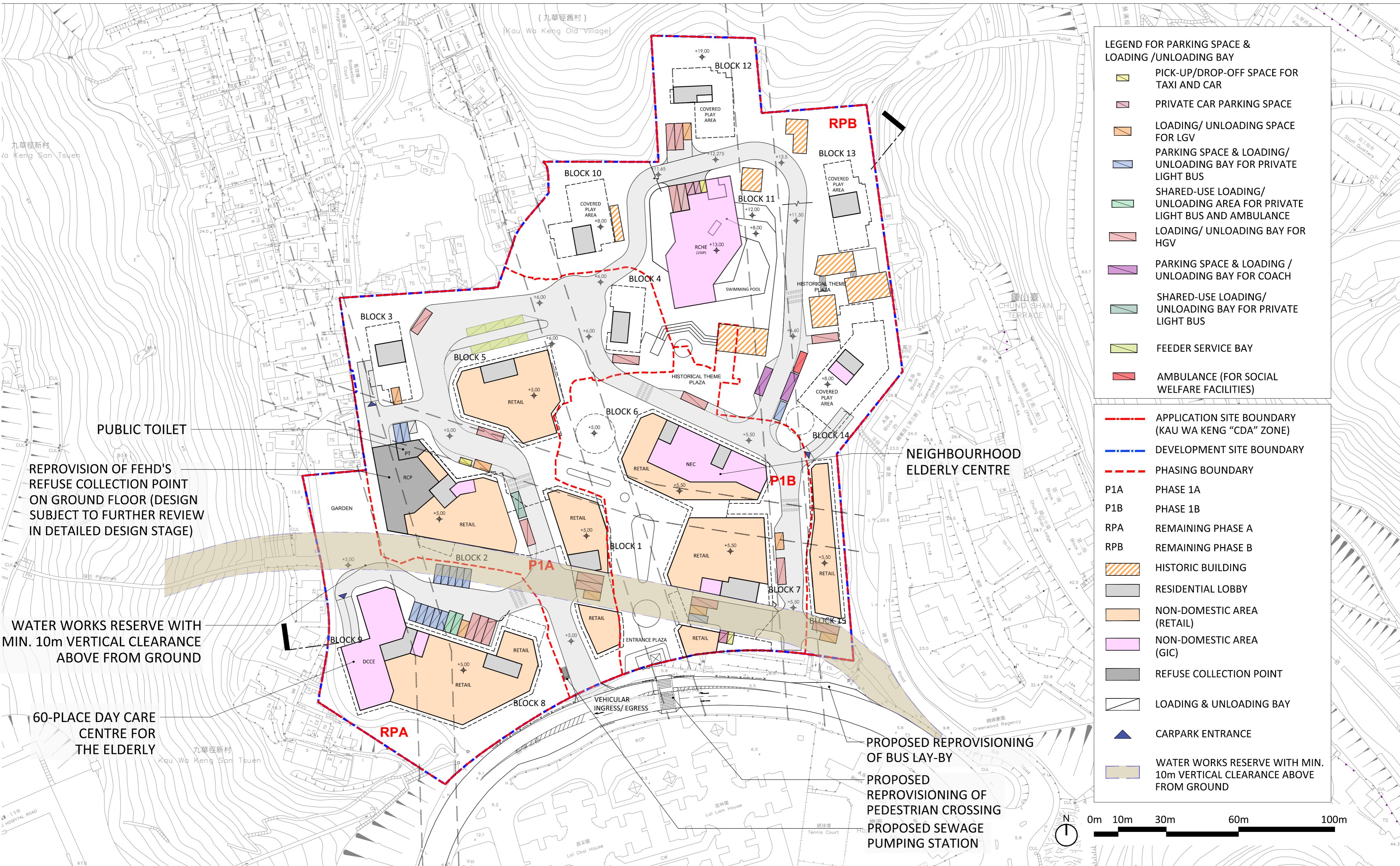
Movement	Stage	Lane Width m.	Phase	No. of lane	Radius m.	O	N	Straight-Ahead Sat. Flow	Flow			Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Uphill Gradient %	Short lane Effect pcu/h	Revised Sat. Flow pcu/h	y	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queuing Length m.
A1	1	4.00	A	1			N	2015	517		517	0.00	2015			2015	0.257	0.257	4	66	66	0.350	21	
B1	1	3.00	A	1			N	1915	210		210	0.00	1915			1915	0.110			28	66	0.150	8	
B2	1	3.00	A	1	10		N	2055	95		95	1.00	1787			1787	0.053			14	66	0.072	4	
ped	2		Cp																	20				

NOTE : 'O' - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m

J6 - YEAR 2035 - PM TRAFFIC FLOW

INTERIM SCENARIO C

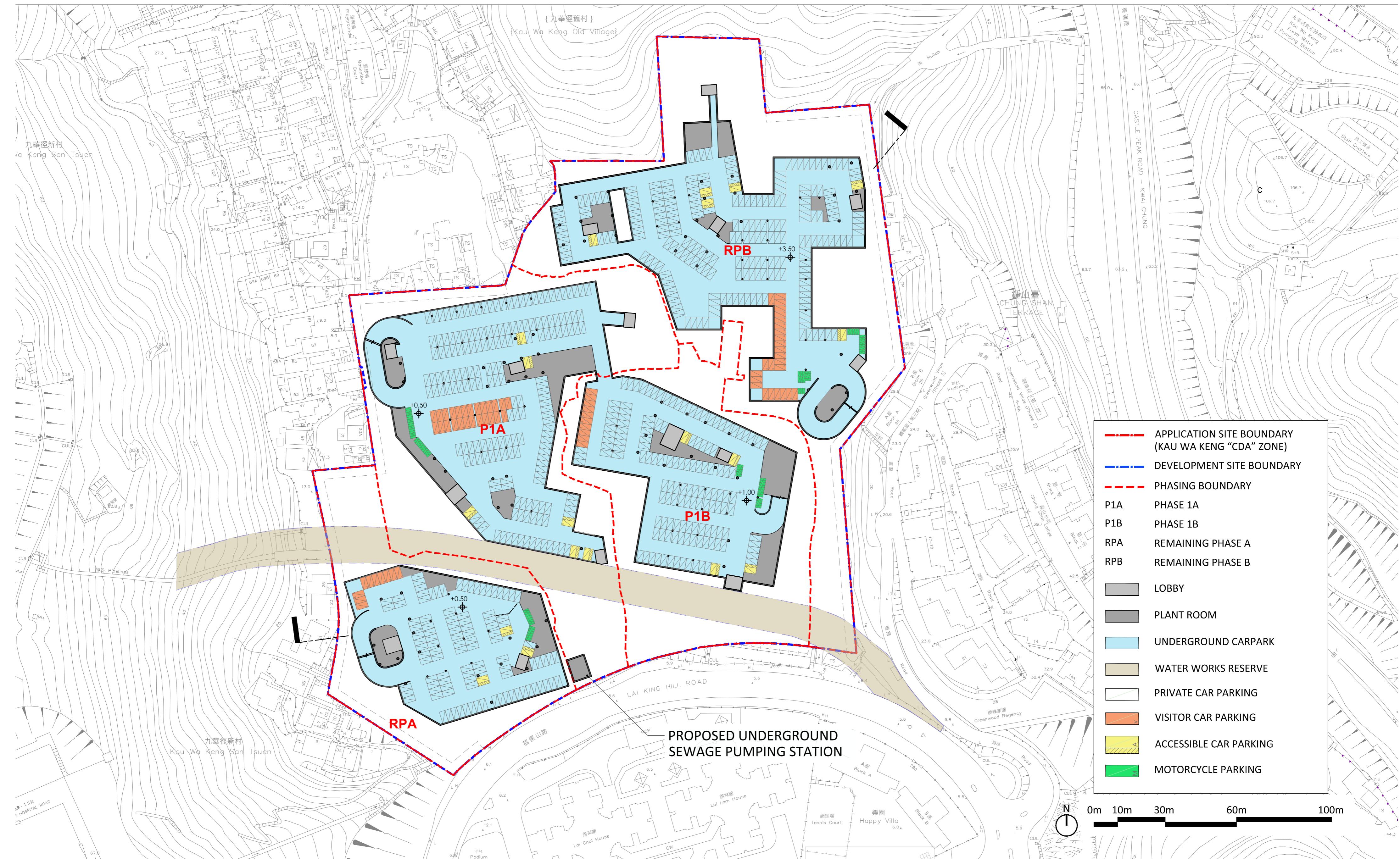
OVE ARUP & PARTNERS												TRAFFIC SIGNAL CALCULATION																							
S16 Application for Proposed Development at Kau Wa Keng												PROJECT NO:		299277-02		Junction No.:		J6																	
Lai King Hill Road near Vehicular Access of the Proposed Development												DATE :		22-Sep-25		FILENAME :																			
												No. of stages per cycle N = 2 No. of stage using for calculation N = 1																							
												Cycle time C = 90 sec Sum(Y) Y = 0.211 Loss time L = 24 sec Total Flow = 733 pcpm																							
												$C_o = (1.5'L+5)(1-Y)$ $C_m = L(1-Y)$ $Y_{ult} = (Y_{ult}-Y)*100\%$ $R.C_{ult} = 0.91(0.9-Y)$ $C_p = 0.91/C$ $Y_{max} = 1/C$ $R.C.(C) = (0.9^*Y_{max}^*Y)*100\%$																							
												$= 52.0 \text{ sec}$ $= 30.4 \text{ sec}$ $= 0.720$ $= 241.4 \%$ $= 31.3 \text{ sec}$ $= 0.733$ $= 213 \%$																							
STAGE 1			INT= 5			STAGE 2			INT= 4			STAGE 3			INT=			STAGE 4			INT=			Pedestrian Phase		Width (m)		Green Time Required (s)			Green Time Provided (s)			Check	
Movement	Stage	Lane	Width	Phase	No. of lane	Radius	O	N	Straight-Ahead	Flow	Total Flow	Proportion of Turning Vehicles	Sat. Flow	Uphill Gradient	Short lane Effect	Revised Sat. Flow	y	Greater	L	g (required)	g (input)	Degree of Saturation	Queuing Length	Cp	8.6	SG	Delay	FG	SG	Delay	FG	OK			
A1	1	4.00	A	1			N	2015	425	0.00	2015					2015	0.211	4		66	66	0.288	17			SG	10	2	8	SG	10	2	8		
B1	1	3.00	A	1	10		N	1915	220	0.00	1915					1915	0.115		36	66	66	0.157	9			SG	10	2	8	SG	10	2	8		
B2	1	3.00	A	1	10		N	2055	88	1.00	1787					1787	0.049		15	66	66	0.067	4			SG	10	2	8	SG	10	2	8		
ped	2		Cp																20																
NOTE : 'O - OPPOSING TRAFFIC N - NEAR SIDE LANE SG - STEADY GREEN FG - FLASHING GREEN												PEDESTRIAN WALKING SPEED = 0.9m/s QUEUING LENGTH = AVERAGE QUEUE * 6m																							


Appendix B

Highlighted Plans of Internal Transport Provision

GROUND FLOOR LAYOUT PLAN

1:500@A0 1:1000@A2

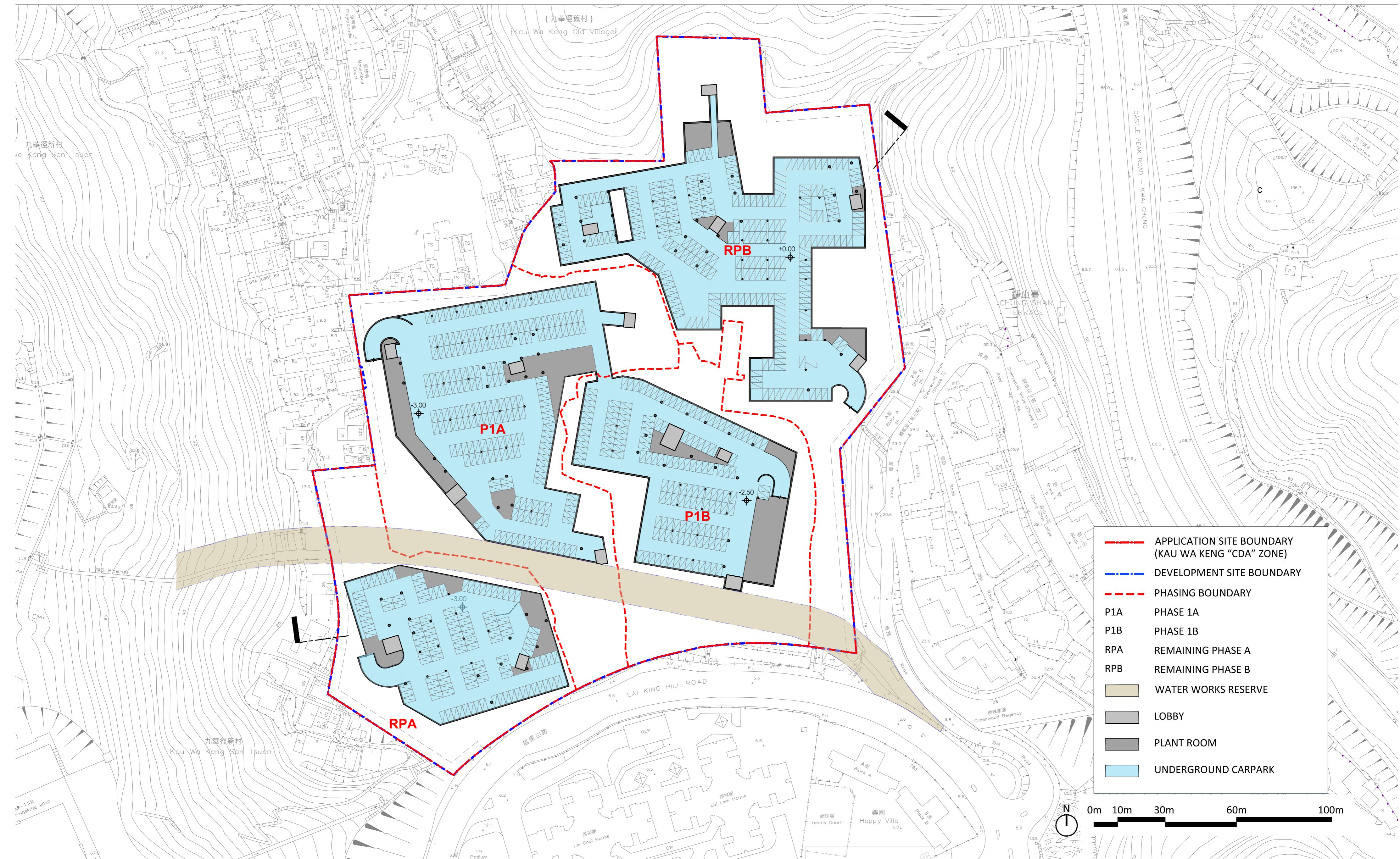


PROPOSED COMPREHENSIVE DEVELOPMENT INCLUDING FLATS, RETAIL AND COMMUNITY FACILITIES AND MINOR RELAXATION OF PLOT RATIO AND BUILDING HEIGHT RESTRICTION IN "COMPREHENSIVE DEVELOPMENT AREA" ZONE
AT VARIOUS LOTS IN S.D.4 AND ADJOINING GOVERNMENT LAND, KAU WA KENG, KWAI CHUNG
18 NOVEMBER 2025

DRAWING NO.: MLP-SK01\01-R10

BASEMENT 1/F FLOOR LAYOUT PLAN

1:500@A0 1:1000@A2

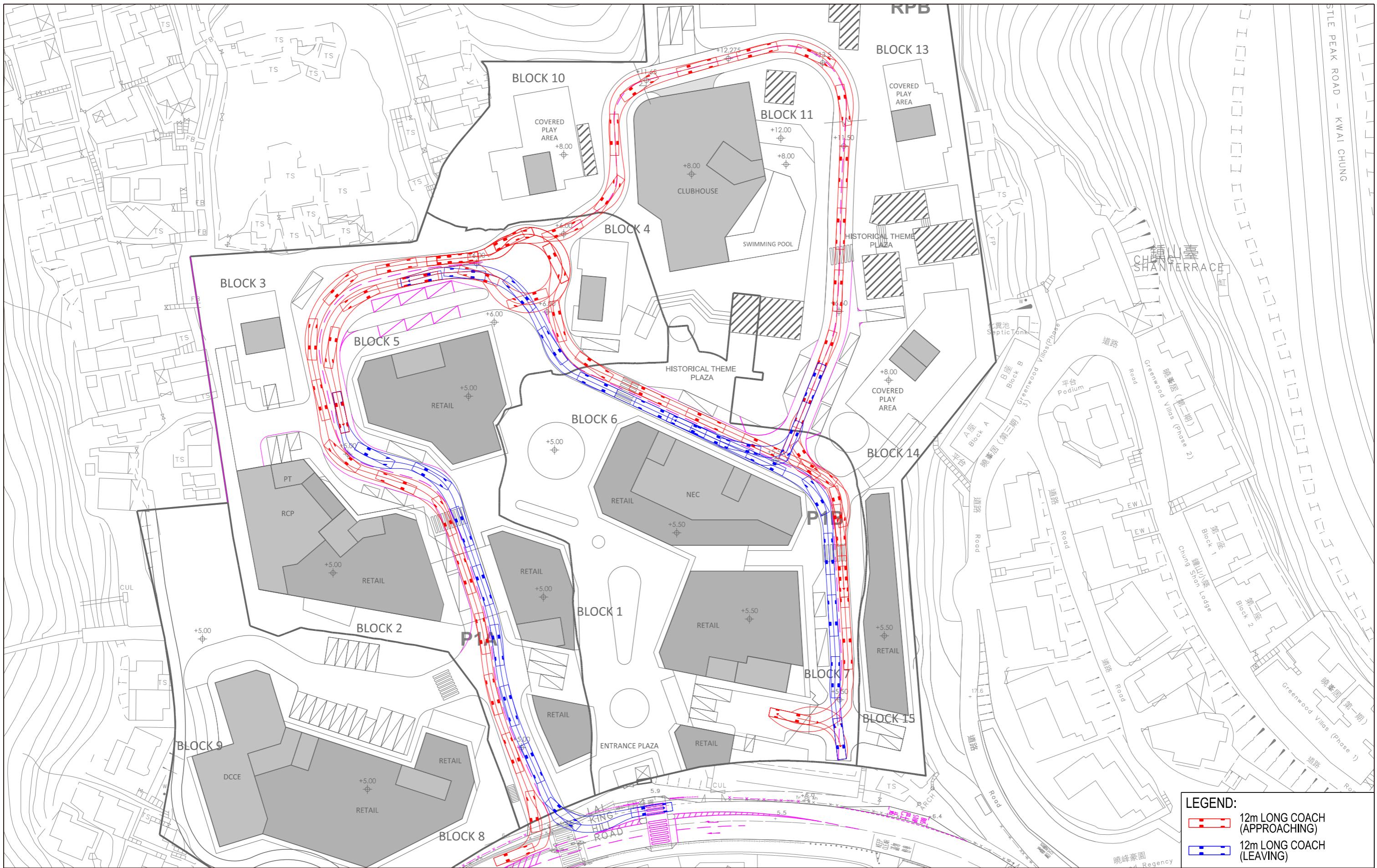

PROPOSED COMPREHENSIVE DEVELOPMENT INCLUDING FLATS, RETAIL AND COMMUNITY FACILITIES AND MINOR RELAXATION OF PLOT RATIO AND BUILDING HEIGHT RESTRICTION IN "COMPREHENSIVE DEVELOPMENT AREA" ZONE
AT VARIOUS LOTS IN S.D.4 AND ADJOINING GOVERNMENT LAND, KAU WA KENG, KWAI CHUNG
21 FEBRUARY 2025

DRAWING NO.: MLP-SK03\02-R6

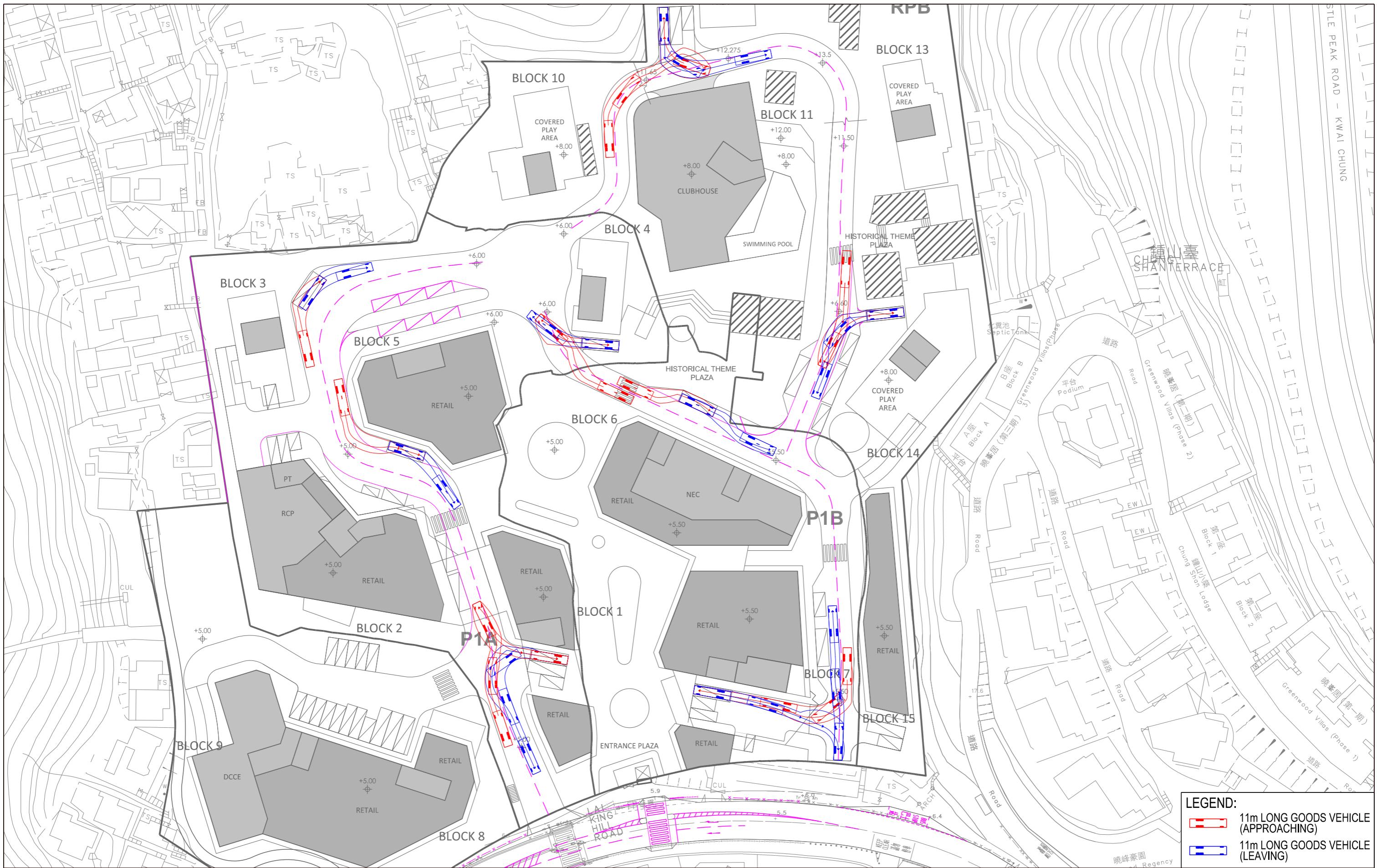
LU TANG LAI ARCHITECTS LTD.
呂鄧黎建築師有限公司

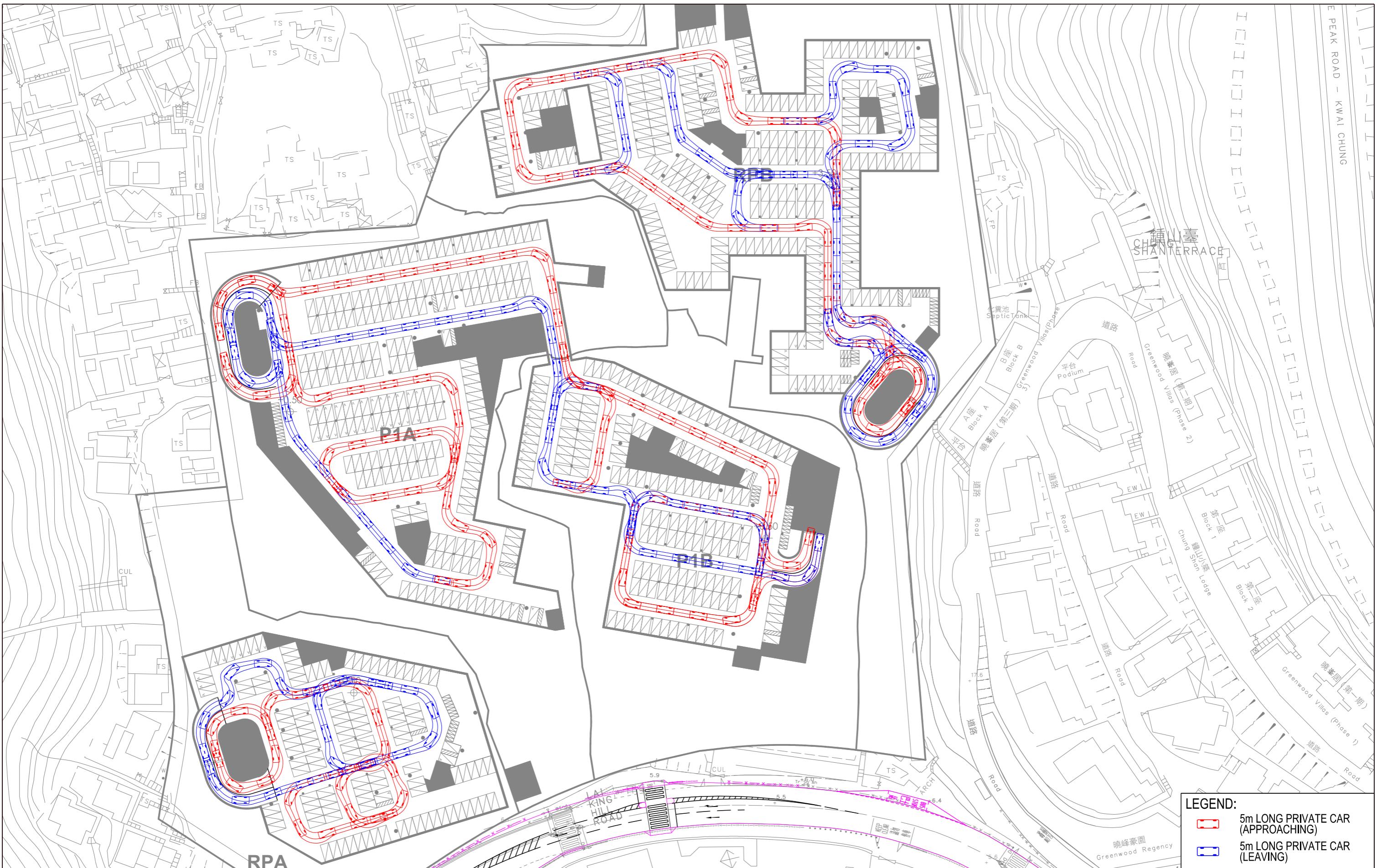
BASEMENT 2/F FLOOR LAYOUT PLAN

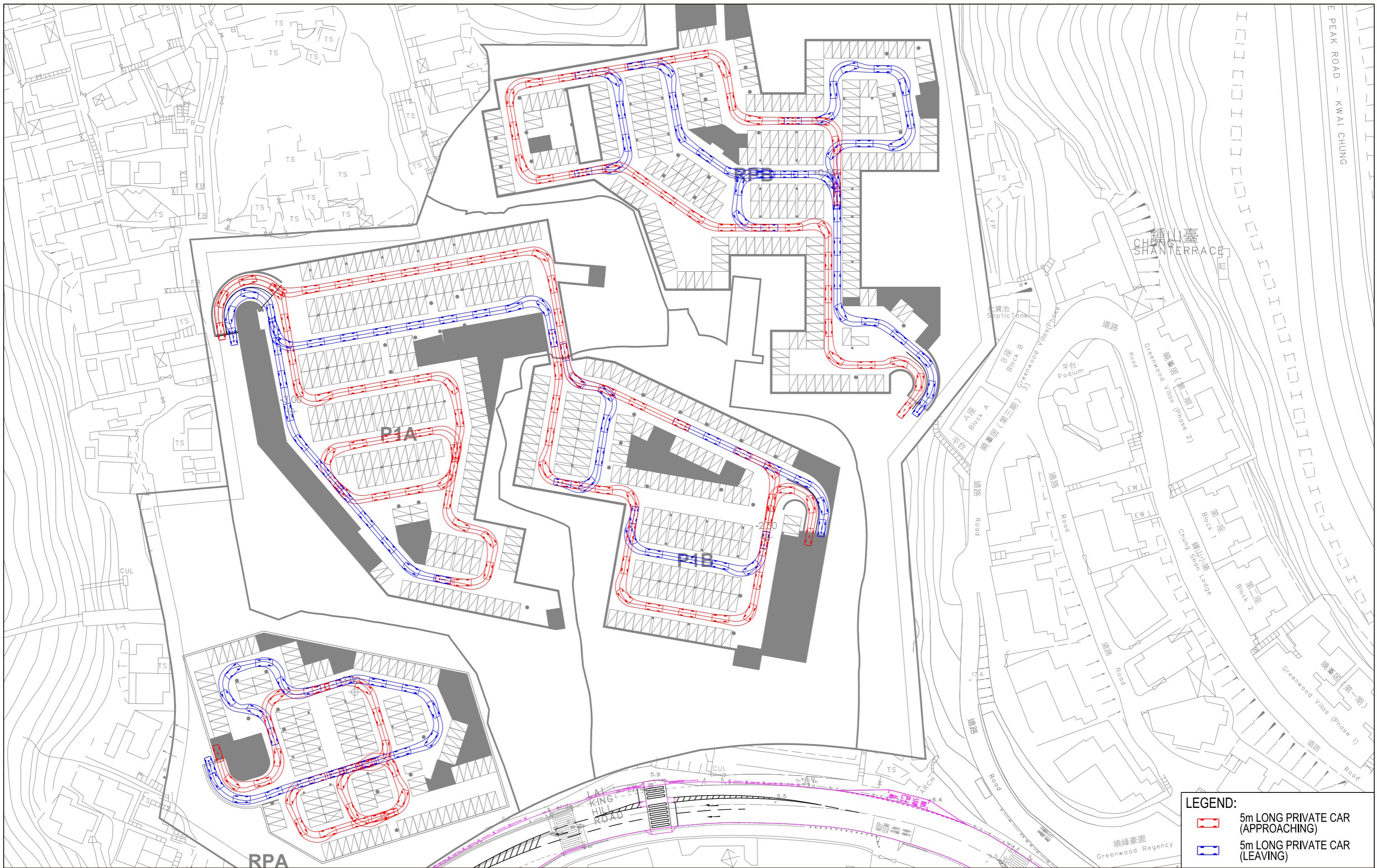
1:500@A0 1:1000@A2


PROPOSED COMPREHENSIVE DEVELOPMENT INCLUDING FLATS, RETAIL AND COMMUNITY FACILITIES AND MINOR RELAXATION OF PLOT RATIO AND BUILDING HEIGHT RESTRICTION IN "COMPREHENSIVE DEVELOPMENT AREA" ZONE
AT VARIOUS LOTS IN S.D.4 AND ADJOINING GOVERNMENT LAND, KAU WA KENG, KWAI CHUNG
21 FEBRUARY 2025

DRAWING NO.: MLP-SK03\01-R6


Appendix C

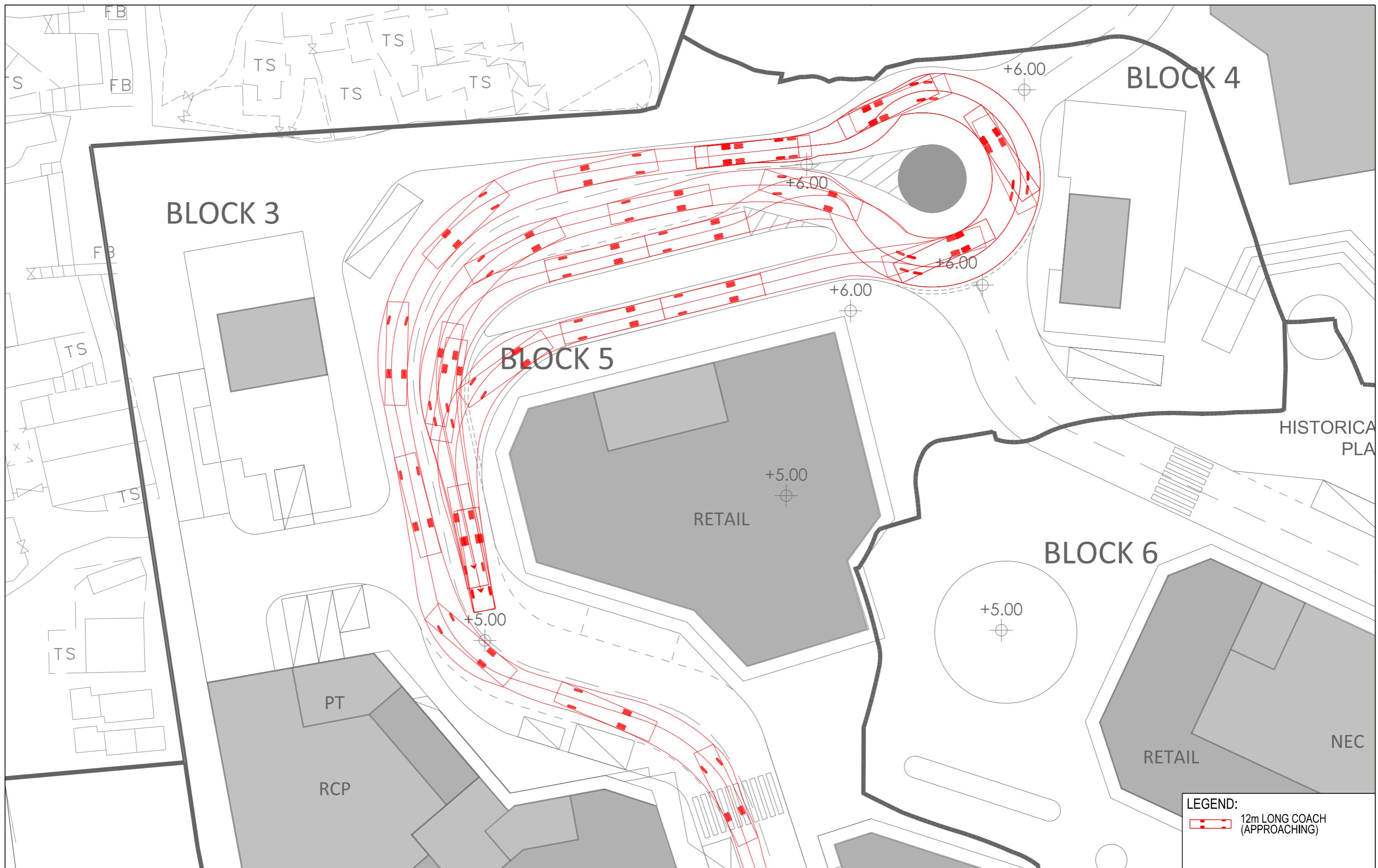

Critical Swept Path Analysis


Date	Scale	Drawing Title	ARUP
17NOV25	1:1000@A3	SWEPT PATH ANALYSIS FOR 12m LONG COACH	
Drawn	Job No.	WLAC 299277-02	

Date	Scale	Drawing Title	
17NOV25	1:1000@A3	SWEPT PATH ANALYSIS FOR 11m LONG GOODS VEHICLE	
Drawn WLAC	Job No. 299277-02		ARUP

SWEPT PATH ANALYSIS FOR 5m LONG PRIVATE CAR AT B1

Job Title Application for Permission Under Section 16 of the Town Planning Ordinance (Cap. 131) for Proposed Comprehensive Development including Flats, Retail and Community Facilities and Minor Relaxation of Plot Ratio and Building Height Restriction in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung


SK-013_SP1

Date 17NOV25 Scale 1:1000@A3

Drawing Title SWEPT PATH ANALYSIS FOR 5m LONG PRIVATE CAR AT B2

Drawn WLAC Job No. 299277-02

ARUP

Job Title Application for Permission Under Section 16 of the Town Planning Ordinance (Cap. 131) for Proposed Comprehensive Development including Flats, Retail and Community Facilities and Minor Relaxation of Plot Ratio and Building Height Restriction in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung

SK-023_SP1

Date 19JAN26 Scale 1:400@A3

Drawn WLAC Job No. 299277-02

SWEPT PATH ANALYSIS FOR 12m LONG BUSES

ARUP

Appendix D

Planned Junction Improvement Schemes

Legend

To be implemented by HyD

RM/RM Road markings be painted/ replaced/ modified

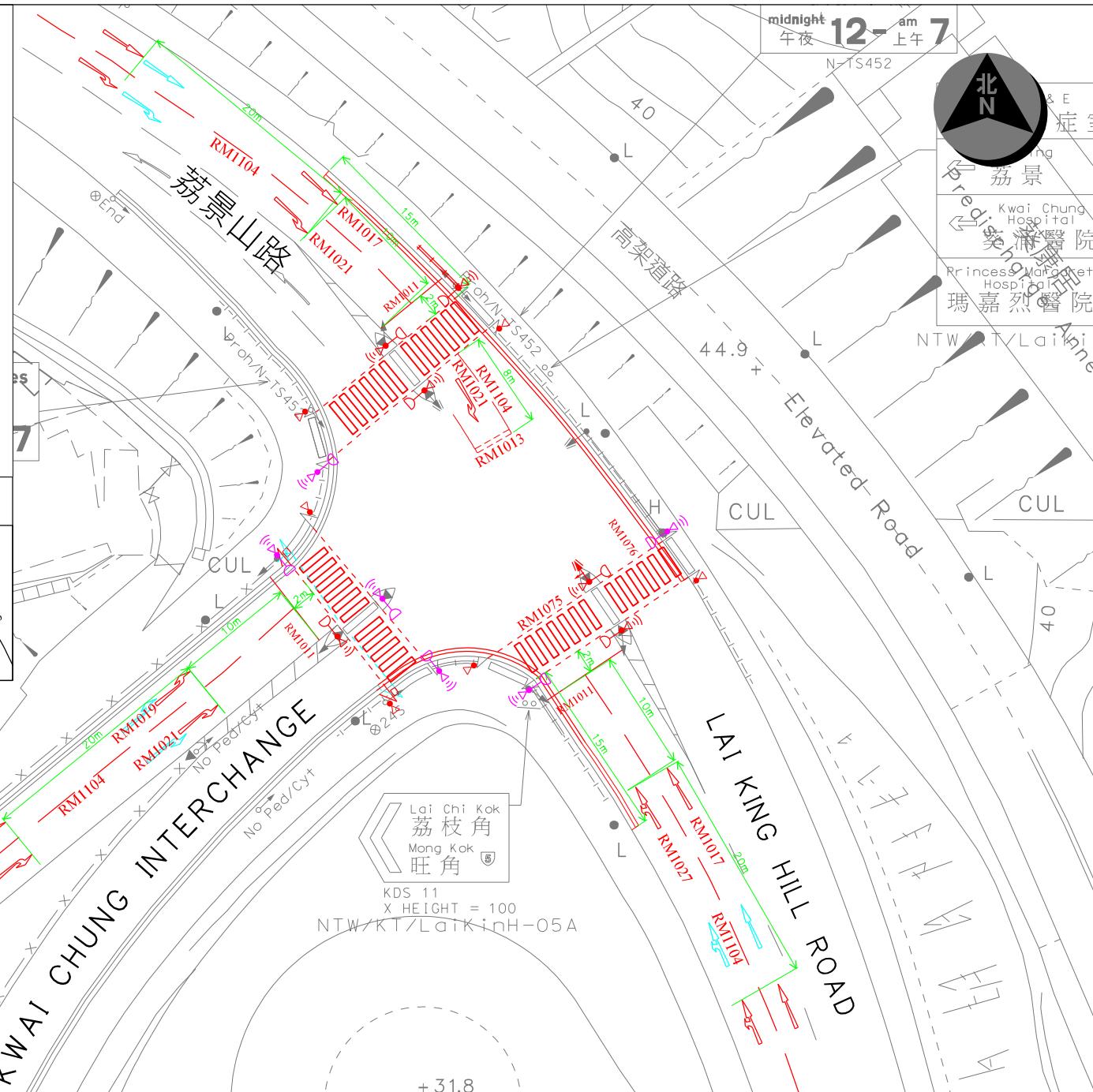
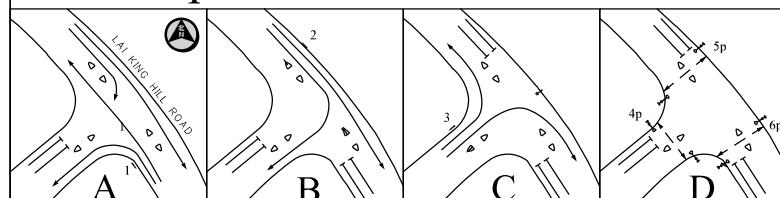
Ducting and necessary civil works to be provided for installation of the traffic light signal aspects/ poles.

 Exg. Dropped Kerbs with Tactile Warning Strips & the Beam Barrier to be modified same as the dimension between the exg. refuge islands.

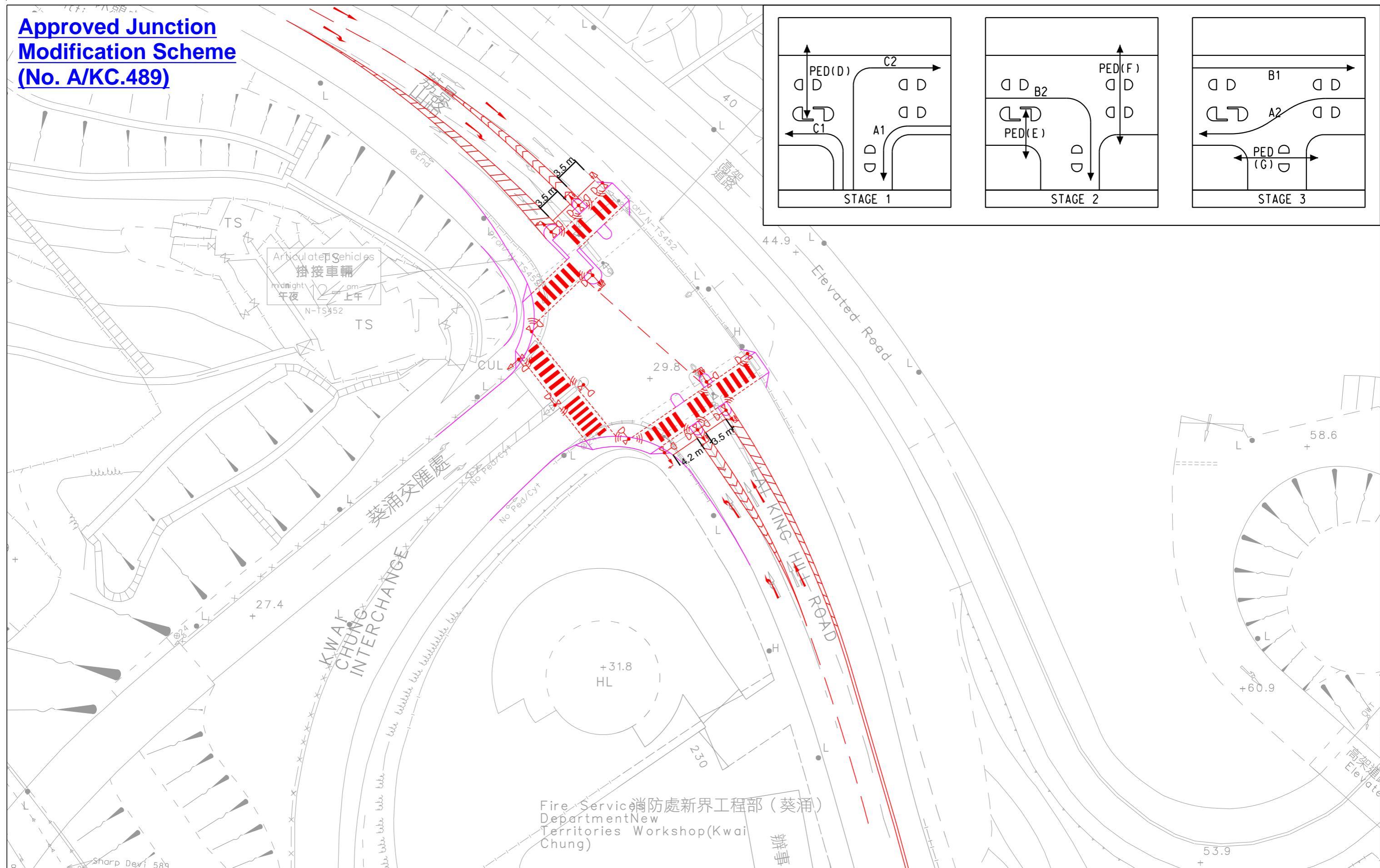
===== Proposed Type II Railing at Junction to be installed

• To be implemented by EMSD

Proposed push buttons to be installed (offset <600mm from crossing)



Proposed pedestrian signals with e-audible/push buttons

mounted on existing poles (offset <600mm from crossing)


Proposed pedestrian signals with e-audible/push button

mounted on new poles (offset <600mm from crossing)

Proposed method of control

**Approved Junction
Modification Scheme
(No. A/KC.489)**

S16 Planning Application for Proposed Comprehensive Development including Flat and Community Facilities in "Comprehensive Development Area" Zone at Various Lots in S.D.4 and Adjoining Government Land, Kau Wa Keng, Kwai Chung			FIGURE 4.4
Date	Scale	Drawing Title	
DEC 21	NTS		
Drawn KSIY	Job No.	PROPOSED JUNCTION MODIFICATION FOR J3	ARUP