Section 16 Planning Application for Proposed Temporary Warehouse (excluding Dangerous Goods Godown) and Open Storage of Construction Material and Machineries with Ancillary Facilities and Associated Filling of Land for a Period of 3 Years at Various Lots in D.D. 87 and Adjoining Government Land, Kong Nga Po, Sheung Shui, New Territories

Appendix II

Traffic Impact Assessment

S.16 Planning Application for Proposed Temporary Warehouse (excluding Dangerous Goods Godown) and Open Storage of Construction Material and Machineries with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land at Various Lots in D.D. 87 and Adjoining Government Land, Kong Nga Po, Sheung Shui, New Territories

TRAFFIC IMPACT ASSESSMENT

Reference: 80115-R01-01 Date: May 2025 Prepared by: 8FM Consultancy Limited

Content

1	INTRODUCTION			
	1.1	Background	1	
	1.2	Study Objectives	1	
	1.3	Report Structure	1	
2	PROPO	SED DEVELOPMENT	3	
	2.1	The Site Location	3	
	2.2	The Development Schedule	3	
	2.3	Vehicle Access Arrangement	4	
	2.4	Internal Transport Facilities	4	
3	EXISTIN	IG TRAFFIC SITUATION	5	
	3.1	Existing Road Network	5	
	3.2	Public Transport Facilities	5	
	3.3	Traffic Survey	5	
	3.4	Existing Traffic Condition	6	
4	DEVELC	PMENT TRAFFIC GENERATION	7	
	4.1	Estimated Development Flows	7	
	4.2	Traffic Routing for the Project Site	8	
5	FUTURE	TRAFFIC SITUATION	10	
	5.1	Design Year	10	
	5.2	Traffic Forecast Methodology	10	

6

5.3	Regional Traffic Growth	10
5.4	Planned and Committed Development	11
5.5	2028 Traffic Flows	12
5.6	Future Traffic Impact Assessment	12
Summar	y and Conclusion	14
61	Summany	1/

0.1	Summary	14
6.2	Conclusion	14

Appendix A – Junction Calculation Sheets

S.16 Planning Application for Proposed Temporary Warehouse (excluding Dangerous Goods Godown) and Open Storage of Construction Material and Machineries with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land at Various Lots in D.D. 87 and Adjoining Government Land, Kong Nga Po, Sheung Shui, New Territories

List of Table

Table 2.1	Key Development Parameters
Table 2.2	Details of the Temporary Structures
Table 2.3	Internal Transport Facilities
Table 3.1	Franchised Bus and GMB Services Close to Project Site
Table 3.2	Existing Junction Capacity Assessment
Table 4.1	Traffic Rates for Industrial Building
Table 4.2	Estimated Traffic Generation & Attraction Arising from Warehouse
Table 4.3	Traffic Rates for Office Development
Table 4.4	Estimated Traffic Generation & Attraction Arising from Ancillary Site
	Office/General Storage Uses
Table 4.5	Estimated Development Flow
Table 5.1	AADT Extracted from Annual Traffic Census
Table 5.2	2021-Based TPDEM Data for North District
Table 5.3	Traffic Generation of Planned Developments
Table 5.4	Future Year Junction Capacity Assessment

List of Figure

- Figure 1 Location of the Project Site
- Figure 2.1 Layout of Project Site
- Figure 2.2 Swept Path Analysis for 12m Large Fire Appliance
- Figure 3.1 Public Transport Facilities
- Figure 3.2 Key Junction
- Figure 3.3 Observed Flows during AM & PM Peak Hours
- Figure 4.1 Vehicular Ingress and Egress Route
- Figure 5.1 Location of Planned Developments
- Figure 5.2 2028 Reference Traffic Flows during Peak Hours
- Figure 5.3 2028 Design Traffic Flows during Peak Hours

1 INTRODUCTION

1.1 Background

The Applicant intends to seek planning permission for the Section 16 Planning Application for Proposed Temporary Warehouse (excluding Dangerous Goods Godown) and Open Storage of Construction Material and Machineries with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land at Lot Nos. 346, 347 S.A, 347 S.B, 347 RP, 348 RP, 349 RP, 351 RP, 352 S.B RP (Part), 361 RP, 366 RP in D.D. 87 and Adjoining Government Land, Kong Nga Po, Sheung Shui, New Territories ("Project Site").

The location of the Project Site is shown in **Figure 1**.

8FM Consultancy Limited was commissioned as the traffic consultant to carry out a Traffic Impact Assessment (TIA) Study in support of this planning application.

1.2 Study Objectives

The objectives of this TIA are listed as follows:

- To review the existing traffic conditions in the vicinity of the Project Site;
- To present and evaluate the internal transport facilities;
- To estimate the traffic forecasts of the adopted design year and assess the future traffic situation in the surrounding network;
- To evaluate the potential traffic impact of the proposed development; and
- To suggest traffic improvement proposals, if necessary.

1.3 Report Structure

The report is structured as follows:

- Chapter 2 Proposed Development
 Describing the project site, vehicular access arrangement, development schedule and the proposed internal transport facilities;
- Chapter 3 Existing Traffic Situation

Presenting the existing traffic context, the traffic survey, and the traffic assessment of the existing traffic conditions;

Chapter 4 – Development Traffic Generation

Estimating the traffic flows arising from the proposed development;

• Chapter 5 – Future Traffic Situation

Describing the traffic forecast methodology and presenting the traffic assessment results under reference and design scenarios;

Chapter 6 - Summary and Conclusion

Summarizing the findings and conclusion of this traffic impact assessment study.

2 PROPOSED DEVELOPMENT

2.1 The Site Location

The Project Site is located in Kong Nga Po, Sheung Shui, and it can be accessible from Kong Nga Po Road via a local track. The location of the Project Site is shown in **Figure 1**.

2.2 The Development Schedule

The project site is proposed to be utilised as warehouse, open storage for construction materials and equipment and ancillary office on a temporary basis of 3 years. Based on the planning statement, the operation hours of the proposed use are from 9:00 a.m. to 6:00 p.m. from Mondays to Saturdays, and there will be no operation on Sundays and public holidays.

In accordance with the planning statement, the project site has a total area of about 16,604m2, including (i). uncovered area for circulation/maneuvering space and provision of 10 parking spaces; and (ii). covered area with six single-storey temporary structures. The layout of the project site is shown in **Figure 2.1**. Key development parameters of the proposed use are tabulated in **Table 2.1**. The details of the temporary structures in the site are tabulated in **Table 2.2**.

Proposed Use	Temporary Open Storage of Construction Materials and Equipment and Ancillary Office
Operation Hours	9:00am - 6:00pm (Mondays – Saturdays, Except Sundays and Public Holidays)
Total Site Area	16,604m ² (including about 6,886m ² of Government land)
Covered Area	About 2,990m ² (Warehouse and Ancillary Use)
Uncovered Area	About 13,614m ² (Maneuvering space & Parking Space)

Table 2.1 Key Development Parameters

Structure	Uses	Floor Area (about)	Building Height
Structure A	Structure A Warehouse		2 storey
Structure B	Ancillary Site Office/General Storage Uses	220m ²	1 storey
Structure C	Warehouse	2,400 m ²	2 storey
Structure D	Ancillary Site Office/General Storage Uses	220m ²	1 storey
Structure E	Ancillary Site Office/General Storage Uses	220m ²	1 storey
Structure F	Ancillary Site Office/General Storage Uses	393m ²	1 storey

Table 2.2 Details of the Temporary Structures

2.3 Vehicle Access Arrangement

Access to the project site will be provided through an about 11m-wide ingress/egress point located at the northwestern boundary, which is connected to a local track leading to Kong Nga Po Road. The vehicle access arrangement is presented in **Figure 2.1** for reference.

Swept path analysis is also conducted for the access point and the access road. **Figure 2.2** demonstrates that the existing site access and parking space arrangement are adequate for maneuvering a 12m Large Fire Appliance.

2.4 Internal Transport Facilities

The internal transport facilities to be provided in the project site are summarized in **Table 2.3**. As there are no specific parking and loading/unloading requirements for temporary open storage development in accordance with HKPSG, ancillary transport facilities are provided based on the Applicant's requirements to meet operational needs.

Type of Ancillary Transport Facilities		
Private Car Parking Spaces	5m(L) x 2.5m(W)	10
L/UL Bays for LGVs	7m(L) x 3.5m(W)	12
L/UL Bays for HGVs	11m(L) x 3.5m(W)	12

Table 2.3 Internal Transport Facilities

3 EXISTING TRAFFIC SITUATION

3.1 Existing Road Network

As indicated in **Figure 1**, the project site is located at the east of Kong Nga Po Road, and it can be accessible from Kong Nga Po Road via a local unnamed road. The existing condition of the connecting carriageways is summarized as follows:

- Unnamed Road 1 is a single-track access road connecting Kong Nga Po Road in the west to Ping Che Road in the east. It acts as a single carriageway with 1-lane 2-way operation.
- Kong Nga Po Road is a rural road acting as a single carriageway with 2-lane 2way operation. It connects Man Kam To Road in the west and Kong Nga Po in the east.
- Man Kam To Road is a rural road with 3 to 4 lanes and 2-way operation. It connects Man Kam To Control Point in the north and Jockey Club Road in the south.

3.2 Public Transport Facilities

The project site cannot be immediately accessible by taking public transportation. The nearest franchised bus and GMB services are around 2.3km away from the site, operating along Man Kam To Road. Details of these public transport services are presented in **Table 3.1** and **Figure 3.1**.

Table 3.1 Franchised Bus and GMB Services Close to Project Site

Route	Routing	Peak Frequency (minutes)
KMB 73K	Sheung Shui ↔Man Kam To (San Uk Ling)	10-15
GMB 59K	Sheung Shui Station ↔Lin Ma Hang	15

3.3 Traffic Survey

In order to evaluate the existing traffic conditions in the vicinity, the classified traffic surveys were conducted on 7 May 2025 (Wednesday) from 7:00 to 10:00 in the morning and from 16:00 to 19:00 in the evening. The key junctions of the study area are indicated in **Figure 3.2**.

The traffic flows collected during the traffic surveys have been converted to passenger car units (PCU) based on the PCU factors as indicated in Volume 2 of the Transport Planning and Design Manual (TPDM).

The results of the traffic survey identified that the AM and PM peak hours occur during 7:30 to 8:30 and 16:45 to 17:45, respectively. The 2025 observed peak hours traffic flows in the study area are presented in **Figure 3.3**.

3.4 **Existing Traffic Condition**

Based on the observed traffic flows, the performance of the key junctions in the vicinity of the project site during the AM and PM peak hours was assessed.

3.4.1 Existing Junction Capacity Assessment

The results of junction performance are indicated in **Table 3.2** and detailed junction calculation sheets are given in Appendix A.

A Unnamed Rd 1 / Kong Nga Po Priority 0.17	0.4.4
	0.14
B Kong Nga Po Rd / Access Rd to Kong Nga Po Police Training Facilities Roundabout / DFC 0.20	0.14
C Man Kam To Rd / Kong Nga Po Priority Rd / DFC 0.62	0.60

Table 3.2 Existing Junction Capacity Assessment

*Notes

(i) DFC - Design Flow / Capacity Rati. The performance of a priority junction or roundabout is normally measured by its Design Flow / Capacity (DFC) ratio. A DFC ratio less than 1.0 indicates that the junction is operating within design capacity. A DFC ratio greater than 1.0 indicates that the junction is overloaded, resulting in traffic queues and longer delay time to the minor arm traffic.

As shown in Table 3.2, all of the surveyed junctions perform satisfactorily during peak hours with adequate reserve capacities.

4 DEVELOPMENT TRAFFIC GENERATION

4.1 Estimated Development Flows

With reference to the Planning Statement, the proposed development will make use of heavy goods vehicles (HGV), light goods vehicles (LGV), and private cars to travel to/from the application site.

As the proposed development will be operated as warehouses and ancillary site office/general storage uses, the trip generation & attraction arising from the operational needs will be estimated respectively based on the different land use.

4.1.1 Warehouse

With reference to **Table 2.2**, Structures A & C will be proposed as warehouse. The trip generation & attraction of warehouses in the proposed development is estimated with reference to the trip rates of industrial use under TPDM Vol 1, which are tabulated in **Table 4.1**. Mean level is adopted for a conservative estimation of trip assessment.

		Upper Limit/	per Limit/ AM Peak		PM Peak		
Land Use	Unit	Mean/ Lower Limit	Generation Rate	Attraction Rate	Generation Rate	Attraction Rate	
		Upper Limit	0.1153	0.1727	0.1648	0.1260	
Industrial Building	NI I	Mean	0.0926	0.1386	0.1350	0.1049	
		Lower Limit	0.0698	0.1044	0.1053	0.0808	

Table 4.1 Traffic Rates for Industrial Building

The calculated traffic generation & attraction arising from the operation of warehouses during the identified peak hours are estimated in **Table 4.2**.

Table 4.2 Estimated Traffic Generation & Attraction Arising from Warehouse

Land Use			AM Peak		PM Peak	
Land Use	Area	Unit	Generation	Attraction	Generation	Attraction
Warehouse	1,937m ²	pcu/hr	2	3	3	3

4.1.2 Ancillary Site Office/General Storage Uses

With reference to **Table 2.2**, Structures B, D, E & F will be proposed as ancillary site/general storage. The trip generation & attraction of the ancillary site office/general storage uses is estimated with reference to the trip rate for office in the TPDM Vol 1, which is tabulated in **Table 4.3**. The trip rates of both industrial/office uses under TPDM Vol 1 would be applicable as the structures serve

two purposes. For a conservative approach, the mean level of trip rates for office use is adopted.

Land Use	Unit	Upper Limit/ Mean/ Lower Limit	AM F Generation Rate		PM F Generation Rate	
	(pcu/hr/100 sqm GFA)	Upper Limit	0.2361	0.3257	0.1928	0.1510
Office		Mean	0.1703	0.2452	0.1573	0.1175
		Lower Limit	0.1045	0.1646	0.1217	0.084

Table 4.3 Traffic Rates for Office Development

The calculated traffic generation & attraction arsing from the operation of site office during the identified peak hours are esitmated in **Table 4.4**.

Table 4.4 Estimated Traffic Generation & Attraction Arising from Ancillary Site Office/General Storage Uses

Land Use	Area	Unit	AM F Generation		PM F Generation	
Ancillary Site Office/General Storage Uses	1,053m²	pcu/hr	2	3	2	2

4.1.3 Estimated Development Flow

With the trip generation & attraction estimated for different land use, the development flow is summarized in **Table 4.5**.

Table 4.5 Estimated Development Flow

Unit	AM Peak (pcu/hr)		PM Peak (pcu/hr)		
	Generation	Attraction	Generation	Attraction	
pcu/hr	4	6	5	5	
Total	10 pcu/hr		10 pcu/hr		

4.2 Traffic Routing for the Project Site

The anticipated routes for project-related vehicles travelling to and from the project site are indicated in **Figure 4.1** and described as follows:

4.2.1 Ingress route

The project vehicles are expected to travel to the project site from Man Kam To Control Point and various locations across the 18 districts. Considering operational needs and accessibility, the vehicle distribution from these origins is estimated to be 50/50.

4.2.2 Egress route

The project vehicles are expected to disperse from the project site and arrive at Man Kam To Control Point and various locations across the 18 districts. Considering operational needs and accessibility, the vehicle distribution to these destinations is estimated to be 50/50.

5 FUTURE TRAFFIC SITUATION

5.1 Design Year

The planning application for the Proposed Temporary Warehouse and Open Storage with Ancillary Facilities and Associated Filling of Land development involves a period of 3 years, it is assumed that the end year for the Project Site would be year 2028. Therefore, the year 2028 is adopted as the design year of this study.

5.2 Traffic Forecast Methodology

To conduct the traffic forecast on the road networks in the vicinity of the project site, the existing traffic flows will be adjusted with the following factors considered:

- Historical traffic data from Annual Traffic Census (ATC) by Transport Department;
- The forecast population and employment from the 2021-based Territorial Population and Employment Data Matrices (TPEDM) planning data by the Planning Department;
- Committed and planned developments adjacent to the project site.

5.3 Regional Traffic Growth

5.3.1 <u>Annual Traffic Census (ATC)</u>

Reference has been made to the ATC reports from year 2019 to 2023. The historical traffic data of the surrounding road links are based on the Annual Average Daily Traffic (AADT) extracted from ATC issued by the Transport Department. The relevant AADT data from year 2019 to 2023 are summarized in **Table 5.1**.

Station	Road	From	То	2019	2020	2021	2022	2023	Growth Rate p.a.
5465	Man Kam To	Jockey		16,900	17,270	17,960	17,410	17,820	1.33%
5405	Rd	Club Rd			2.19	4.00	-3.06	2.35	1.5576
5218	Jockey Club	Po Shek	Po Shek Man Kam	26,450	25,180	26,400	25,230	22,510	-3.95%
5210	Rd	Wu Rd	To Rd		-4.80	4.85	-4.43	-10.78	-3.9576
6018	Po Shek Wu	Choi Yuen	Jockey	37,910	36,090	37,850	33,260	34,190	-2.55%
0018	Rd	Rd	Club Rd		-4.80	4.88	-12.13	2.80	-2.55%
			Total	81,26 0	78,54 0	82,21 0	75,90 0	74,52 0	-2.14%

Table 5.1 AADT Extracted from Annual Traffic Census

Table 5.1 indicates that the overall average annual growth rate of the adjacent road

 network is -2.14%.

5.3.2 Projected Population Data

Reference has been made to the 2021-based Territorial Population and Employment Data Matrices (TPEDM) planning data provided by the Planning Department. The population data in the North District for the years 2021, 2026, and 2031 are presented in **Table 5.2**.

Table 5.2 2021-Based TPDEM Data for North District

	TPDEM E	Estimation/P	rojection	Annual Growth Rate		
Item	2021	2026	2031	2021 to 2026	2026 to 2031	2021 to 2031
Population	309,650	352,000	435,550	2.60%	4.35%	3.47%

Source: 2021-based TPEDM by Planning Department

Table 5.2 indicates that the highest annual growth rate for population is 4.35%.

Based on the findings of the above two tables, a conservative growth rate of **4.35%** per annum was adopted to estimate the background traffic growth from 2025 to 2028.

5.4 Planned and Committed Development

Planned and committed developments in the vicinity of the Project Site, which are expected to be completed and in operation within the assessment period (up to 2028), have been identified and considered in the traffic forecast. A summary of the identified developments is presented in **Table 5.3**, and the locations of the planned developments are illustrated in **Figure 5.1**.

Table 5.3 Traffic Generation of Planned Developments

Land Use	GFA	AM Peak (pcu/hr) Generation Attraction		(pcu/hr) (pcu/hr)	
Kong Nga Po Police Training Facilities	35,000m ²	60	86	55	41

Traffic generated by the above major planned and committed developments has been included in the traffic forecast for the design year 2028.

5.5 2028 Traffic Flows

The growth factor will be applied to the 2025 observed peak hours traffic flows to estimate the 2028 reference flows.

The reference and design flows of the design year 2028 are calculated from the following formula:

2028 Reference Flows (Fig. 5.1)	=	2025 Observed Flows (Fig 3.3) x (1+4.35%) ³
2028 Design Flows (Fig. 5.2)	=	2025 Reference Flows (Fig. 5.1) + Net Change in Development Traffic Flows

Figure 5.2 shows the 2028 Reference Peak Hours Flows in the area. By adding the net development traffic, **Figure 5.3** shows the 2028 Design Peak Hours Traffic Flows.

5.6 Future Traffic Impact Assessment

The traffic impact assessments for design year 2028 were conducted for the key junctions and road links in the vicinity of the project site for both the Reference and Design scenarios.

5.6.1 Future Year Junction Capacity Assessment

Based on the Reference Flows and Design Flows, junction capacity assessments for design year 2028 are carried out and the results are presented in **Table 5.4**, with detailed calculation sheets given in **Appendix A**.

Jun No.	Junction	Type/			2028 Design Scenario	
5011 NO.	Location	Capacity Index	АМ	РМ	АМ	РМ
Α	Unnamed Rd 1 / Kong Nga Po Rd	Priority / DFC ⁽ⁱ⁾	0.22	0.18	0.23	0.19
В	Kong Nga Po Rd / Access Rd to Kong Nga Po Police Training Facilities	Roundabout / DFC	0.27	0.17	0.28	0.17
С	Man Kam To Rd / Kong Nga Po Rd	Priority / DFC	0.82	0.80	0.83	0.81

Table 5.4 Future Year Junction Capacity Assessment

*Notes: DFC - Design Flow / Capacity Ratio

(i) The performance of a priority junction or roundabout is normally measured by its Design Flow / Capacity (DFC) ratio. A DFC ratio less than 1.0 indicates that the junction is operating within design capacity. A DFC ratio greater than 1.0 indicates that the junction is overloaded, resulting in traffic queues and longer delay time to the minor arm traffic.

Table 5.4 reveals that all the junctions will operate satisfactorily with ample junction capacity in both the 2028 reference and 2028 design scenarios during peak hours.

6 Summary and Conclusion

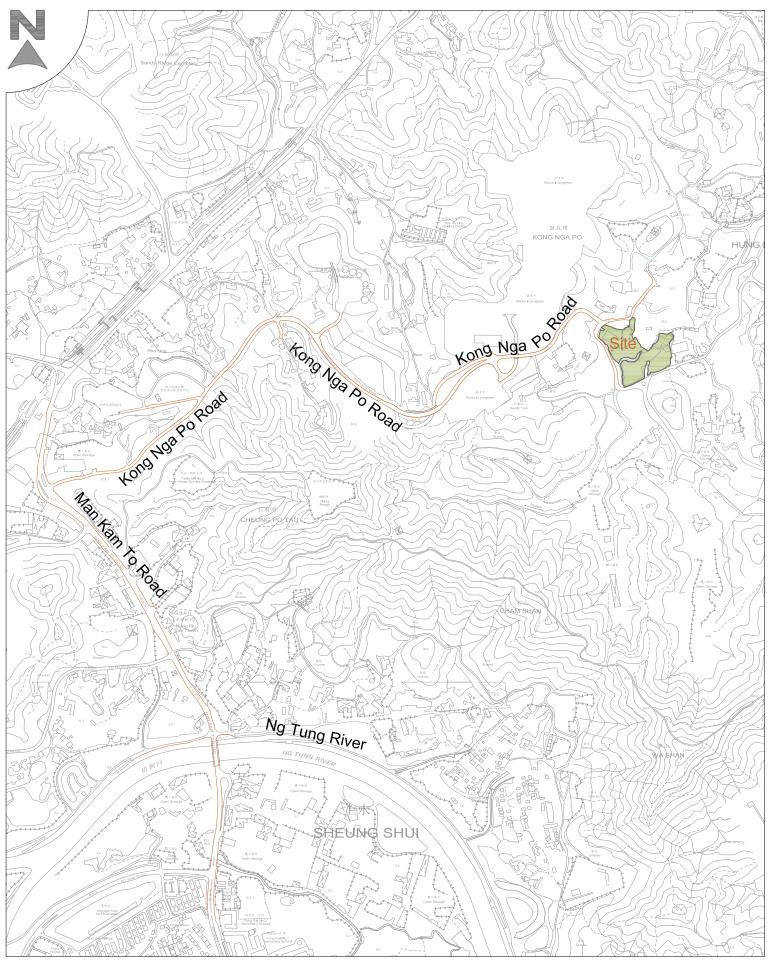
6.1 Summary

The Applicant intends to seek the Town Planning Board permission to utilise the Project Site as temporary warehouse (excluding dangerous goods godown) and open storage of construction material and machineries with ancillary facilities for a period of 3 years and associated filling of land.

In order to appraise the existing traffic conditions, classified turning movement count surveys have been carried out at the key junctions and road links in the vicinity of project site on 7 May 2025 from 7:00 to 10:00 in the morning and 16:00 to 19:00 in the evening. The morning and evening peak hours of the road network have been identified as 7:30am to 8:30am and 16:45pm to 17:45pm, respectively.

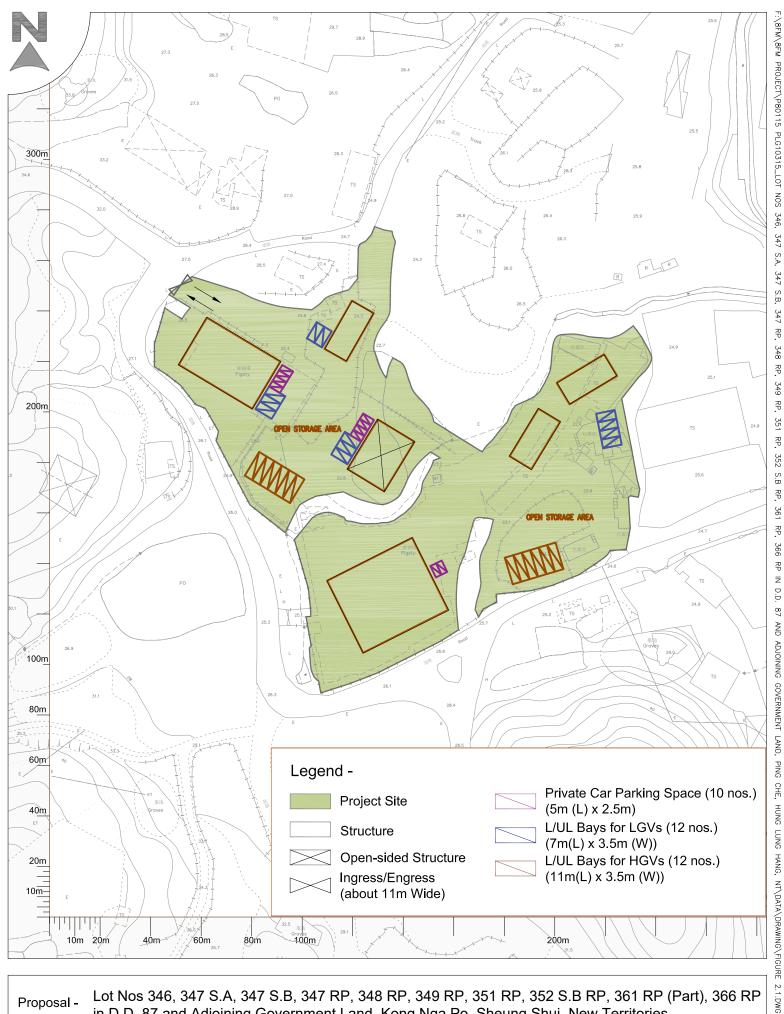
Year 2028 is used as the design year for the traffic impact assessment. Based on the historical data and the future planning data, an annual growth rate of 4.35% was adopted for this study. This growth factor has been applied to the observed traffic flows in 2025 to determine the anticipated traffic flows in design year 2028. The assessment results reveal that the key junctions identified are expected to

operate satisfactorily with sufficient capacity in both 2028 reference and 2028 design scenarios during peak hours.


6.2 Conclusion

The findings of this study show that the development traffic will not cause adverse traffic impact onto the local road network. The proposed development is therefore supported from the traffic engineering point of view at this stage.

S.16 Planning Application for Proposed Temporary Warehouse (excluding Dangerous Goods Godown) and Open Storage of Construction Material and Machineries with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land at Various Lots in D.D. 87 and Adjoining Government Land, Kong Nga Po, Sheung Shui, New Territories

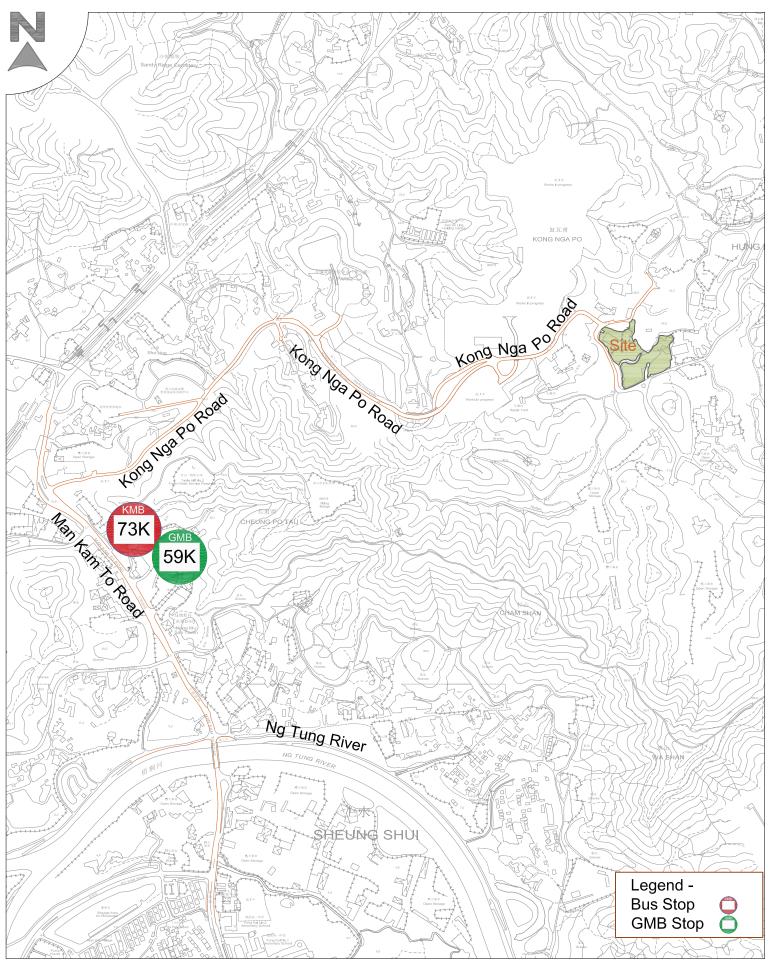


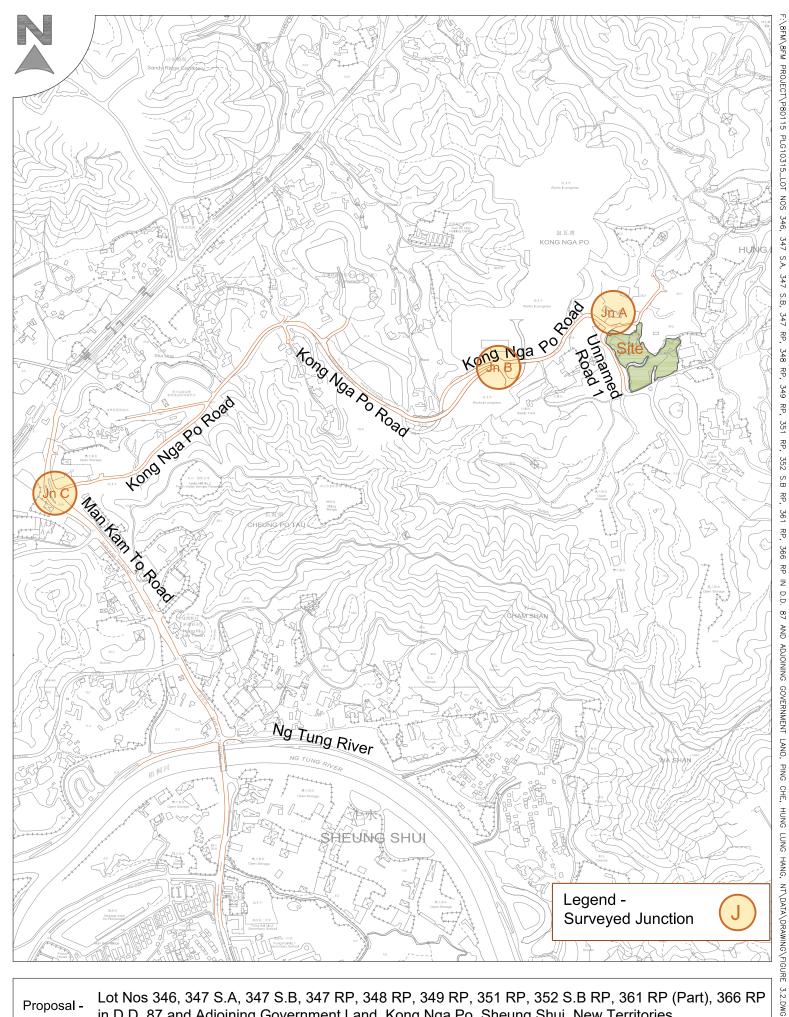
Proposal - Lot Nos 346, 347 S.A, 347 S.B, 347 RP, 348 RP, 349 RP, 351 RP, 352 S.B RP, 361 RP (Part), 366 RP in D.D. 87 and Adjoining Government Land, Kong Nga Po, Sheung Shui, New Territories

Drawing Title -	Dwg No Figure 1	Rev	
Location of the Project Site	Scale - 1:10000@A4	Date - May 2025	BFM CONSULTANCY LIMITED

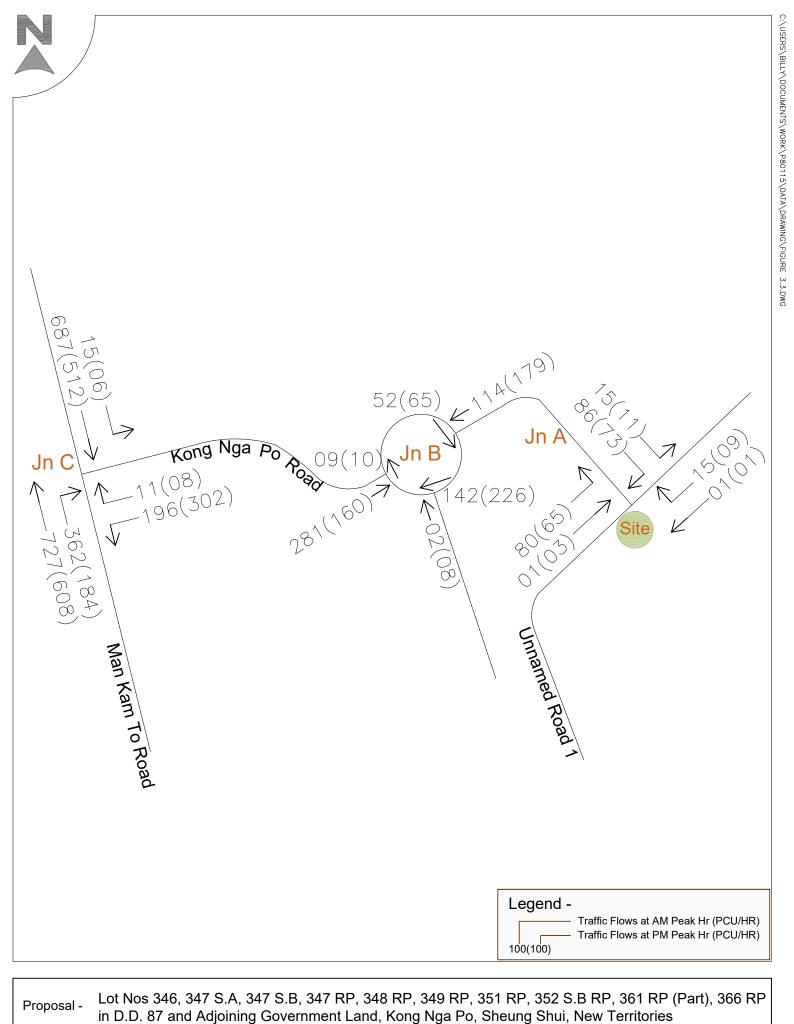
Proposal -	Proposal - Lot Nos 346, 347 S.A, 347 S.B, 347 RP, 348 RP, 349 RP, 351 RP, 352 S.B RP, 361 RP (Part), 366 RP in D.D. 87 and Adjoining Government Land, Kong Nga Po, Sheung Shui, New Territories					
	Drawing Title -	Dwg No Figure 2.1	Rev			

Scale - 1:1500@A4

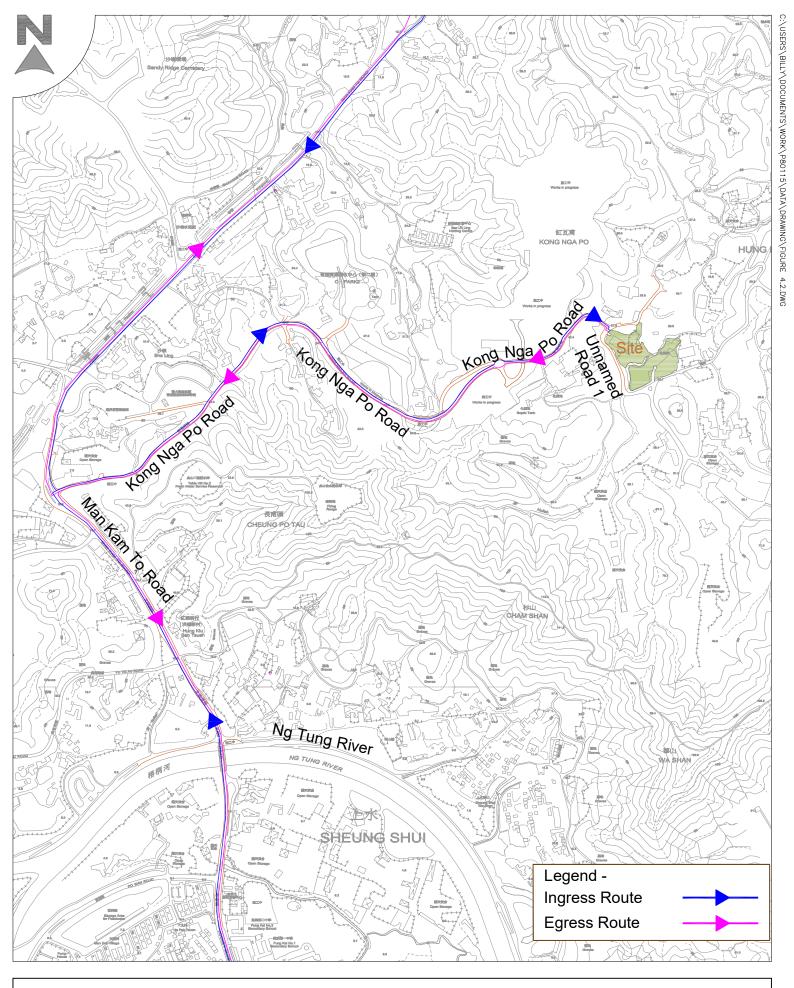

Layout of Project Site


Proposal - Lot Nos 346, 347 S.A, 347 S.B, 347 RP, 348 RP, 349 RP, 351 RP, 352 S.B RP, 361 RP (Part), 366 RP in D.D. 87 and Adjoining Government Land, Kong Nga Po, Sheung Shui, New Territories

Drawing Title - Swept Path Analysis for	Dwg No Figure 2.2	Rev		
12m Large Fire Appliance	Scale - 1:1500@A4	Date - May 2025	8FM CONSULTANCY LIMITED	

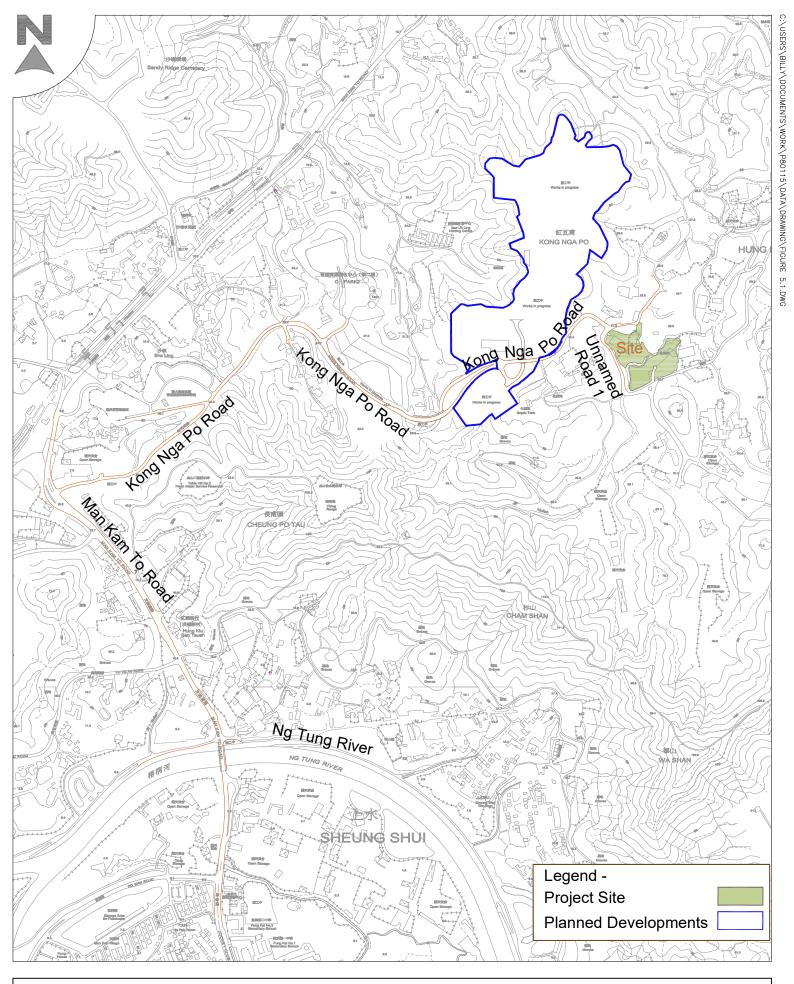

Proposal - Lot Nos 346, 347 S.A, 347 S.B, 347 RP, 348 RP, 349 RP, 351 RP, 352 S.B RP, 361 RP (Part), 366 RP in D.D. 87 and Adjoining Government Land, Kong Nga Po, Sheung Shui, New Territories

Drawing Title - Public Transport Facilities	Dwg No Figure 3.1	Rev	
	Scale - 1:10000@A4	Date - May 2025	BFM CONSULTANCY LIMITED



Lot Nos 346, 347 S.A, 347 S.B, 347 RP, 348 RP, 349 RP, 351 RP, 352 S.B RP, 361 RP (Part), 366 RP Proposal in D.D. 87 and Adjoining Government Land, Kong Nga Po, Sheung Shui, New Territories

Drawing Title -	Dwg No Figure 3.2	Rev	
Key Junction	Scale - 1:10000@A4	Date - May 2025	8FM CONSULTANCY LIMITED



		-	
Drawing Title - Observed Flows	Dwg No Figure 3.3	Rev	
during AM & PM Peak Hours	Scale	Date - May 2025	8FM CONSULTANCY LIMITED

Proposal -	Lot Nos 346, 347 S.A, 347 S.B, 347 RP, 348 RP, 349 RP, 351 RP, 352 S.B RP, 361 RP (Part), 366 RP
	in D.D. 87 and Adjoining Government Land, Kong Nga Po, Sheung Shui, New Territories

Drawing Title -	Dwg No Figure 4.1	Rev	
Vehicular Ingress and Egress Route	Scale - 1:10000@A4	Date - May 2025	8FM CONSULTANCY LIMITED

Proposal - Lot Nos 346, 347 S.A, 347 S.B, 347 RP, 348 RP, 349 RP, 351 RP, 352 S.B RP, 361 RP (Part), 366 RP in D.D. 87 and Adjoining Government Land, Kong Nga Po, Sheung Shui, New Territories

Drawing Title -	Dwg No Figure 4.1	Rev	
Location of Planned Developments	Scale - 1:10000@A4	Date - May 2025	8FM CONSULTANCY LIMITED

N 18:152 Jn C Xong Nga Po 22(23) Jn B 23(19) 261(379) 38:1(215) 7 (25) 38:1(215) 7 (25) 38:1(K 18,02
Road	Legend - Traffic Flows at AM Peak Hr (PCU/HR) Traffic Flows at PM Peak Hr (PCU/HR) 100(100)

Proposal -	Lot Nos 346, 347 S.A, 347 S in D.D. 87 and Adjoining Go	 	B RP, 361 RP (Part), 366 RP New Territories

Drawing Title - 2028 Reference Traffic Flows	Dwg No Figure 5.2	Rev	
during Peak Hours	Scale	Date - May 2025	8FM CONSULTANCY LIMITED

N 181582 Jn C N 10768 25(34) Jn C N 25(21) 263(382) Nam Kam To Road	128(107) 152(218) Jn A 995 Jn A 99
	Legend - Traffic Flows at AM Peak Hr (PCU/HR) Traffic Flows at PM Peak Hr (PCU/HR) 100(100) S.B, 347 RP, 348 RP, 349 RP, 351 RP, 352 S.B RP, 361 RP (Part), 366 RP

Drawing Title - 2028 Design Traffic Flows	Dwg No Figure 5.3	Rev	
during Peak Hours	Scale	Date - May 2025	8FM CONSULTANCY LIMITED

Junction Calculation Sheets

SEINI CONS	ULTANCY LIMIT	ED	PRIOF	RITY JUNCTION CALCULA	ATION			INITIALS	DATE
affic Impact Assessment fo	or Proposed Temporary Warehouse	excluding Dangerous Goods Godowr	n) and Open Storage of Cons	struction Material and Machineries with Ancillary Facilities	s for a Period of 3 Years and Ass	ociated Filling of Land at Various Lo	Prepared By:	FF	May-202
n A - Unnamed Rd	1 / Kong Nga Po Rd		2025 Obse	erved - AM Peak		Project No.: 80115	Checked By:	MM	May-2028
							Reviewed By:	FM	May-202
Unnamed Rd 1 (ARM A)		15 86 [3] [6] (ARM B)		[4] Unnamed Rd 1 [1] (ARM C)	NOTES : (GEO W = W cr = W b-a = W b-c = W c-b = V t b-a = V t b-a = V t b-a = V t b-a = D = E = F = Y =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE WI LANE WIDTH AVAILABL LANE WIDTH AVAILABL VISIBILITY TO THE LEFT VISIBILITY TO THE RIGF VISIBILITY TO THE RIGF STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C STREAM-SPECIFIC C-B (1-0.0345W)	LE TO VEHICLE WA LE TO VEHICLE WA LE TO VEHICLE WA T FOR VEHICLES WA HT FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES	AITING IN STRE AITING IN STRE WAITING IN ST S WAITING IN S S WAITING IN S	EAM b-c EAM c-b REAM b-a TREAM b-a TREAM b-c
		Kong Nga Po Rd				(1-0.004000)			
GEOMETRIC MAJOR ROA	AD (ARM A)	GEOMETRIC F.		THE CAPACITY OF MOVE	MENT :	(1000400)	COMPARISION C TO CAPACITY:		
MAJOR ROA W =	AD (ARM A) 8.0 (metres)	GEOMETRIC F	0.779	Q b-a =	MENT : 464 (pcu/hr)	(1000400)	TO CAPACITY: DFC b-a	=	0.0328
MAJOR ROA W = W cr =	AD (ARM A) 8.0 (metres) 0 (metres)	GEOMETRIC FA	0.779 0.834	Q b-a = Q b-c =	MENT : 464 (pcu/hr) 619 (pcu/hr)	(1000400)	TO CAPACITY: DFC b-a DFC b-c	= =	0.0328 0.1386
MAJOR ROA W = W cr = q a-b =	AD (ARM A) 8.0 (metres) 0 (metres) 15 (pcu/hr)	GEOMETRIC F. D = E = F =	0.779 0.834 0.895	Q b-a = Q b-c = Q c-b =	MENT : 464 (pcu/hr) 619 (pcu/hr) 663 (pcu/hr)	(10.0000)	DFC b-a DFC b-c DFC c-b	=	0.0328 0.1386 0.1204
MAJOR ROA W = W cr =	AD (ARM A) 8.0 (metres) 0 (metres)	GEOMETRIC FA	0.779 0.834	Q b-a = Q b-c = Q c-b = Q b-ac =	464 (pcu/hr) 619 (pcu/hr) 663 (pcu/hr) 589 (pcu/hr)	(10.0000)	DFC b-a DFC b-c DFC c-b DFC c-ac	= = =	0.0328 0.1386
MAJOR ROA W = W cr = q a-b = q a-c =	AD (ARM A) 8.0 (metres) 0 (metres) 15 (pcu/hr) 1 (pcu/hr)	GEOMETRIC F. D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 464 (pcu/hr) 619 (pcu/hr) 663 (pcu/hr) 589 (pcu/hr) 1583 (pcu/hr)	(10.0000)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0328 0.1386 0.1204 0.1714
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA	AD (ARM A) 8.0 (metres) 0 (metres) 15 (pcu/hr) 1 (pcu/hr) ND (ARM C)	GEOMETRIC F. D = E = F =	0.779 0.834 0.895	Q b-a = Q b-c = Q c-b = Q b-ac =	464 (pcu/hr) 619 (pcu/hr) 663 (pcu/hr) 589 (pcu/hr)	(10.0000)	DFC b-a DFC b-c DFC c-b DFC c-ac	= = =	0.0328 0.1386 0.1204
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 15 (pcu/hr) 1 (pcu/hr) AD (ARM C) 3.4 (metres)	GEOMETRIC F. D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 464 (pcu/hr) 619 (pcu/hr) 663 (pcu/hr) 589 (pcu/hr) 1583 (pcu/hr)	(1000400)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0328 0.1386 0.1204 0.1714
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA	AD (ARM A) 8.0 (metres) 0 (metres) 15 (pcu/hr) 1 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres)	GEOMETRIC F. D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 464 (pcu/hr) 619 (pcu/hr) 663 (pcu/hr) 589 (pcu/hr) 1583 (pcu/hr)	(1000400)	DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0328 0.1386 0.1204 0.1714
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 15 (pcu/hr) 1 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres)	GEOMETRIC F. D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 464 (pcu/hr) 619 (pcu/hr) 663 (pcu/hr) 589 (pcu/hr) 1583 (pcu/hr)	(1000400)	TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0328 0.1386 0.1204 0.1714 0.0006
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 15 (pcu/hr) 1 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres) 1 (pcu/hr) 80 (pcu/hr)	GEOMETRIC F. D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 464 (pcu/hr) 619 (pcu/hr) 663 (pcu/hr) 589 (pcu/hr) 1583 (pcu/hr)	(1000400)	TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0328 0.1386 0.1204 0.1714
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a =	AD (ARM A) 8.0 (metres) 0 (metres) 15 (pcu/hr) 1 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres) 1 (pcu/hr) 80 (pcu/hr)	GEOMETRIC F. D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 464 (pcu/hr) 619 (pcu/hr) 663 (pcu/hr) 589 (pcu/hr) 1583 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0328 0.1386 0.1204 0.1714 0.0006
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROA	AD (ARM A) 8.0 (metres) 0 (metres) 15 (pcu/hr) 1 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres) 1 (pcu/hr) 80 (pcu/hr) D (ARM B)	GEOMETRIC F. D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 464 (pcu/hr) 619 (pcu/hr) 663 (pcu/hr) 589 (pcu/hr) 1583 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0328 0.1386 0.1204 0.1714 0.0006
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROA W b-a =	AD (ARM A) 8.0 (metres) 0 (metres) 15 (pcu/hr) 1 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres) 1 (pcu/hr) 80 (pcu/hr) D (ARM B) 2.6 (metres)	GEOMETRIC F. D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 464 (pcu/hr) 619 (pcu/hr) 663 (pcu/hr) 589 (pcu/hr) 1583 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0328 0.1386 0.1204 0.1714 0.0006
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROA W b-a = W b-c =	AD (ARM A) 8.0 (metres) 0 (metres) 15 (pcu/hr) 1 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres) 1 (pcu/hr) 80 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres)	GEOMETRIC F. D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 464 (pcu/hr) 619 (pcu/hr) 663 (pcu/hr) 589 (pcu/hr) 1583 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0328 0.1386 0.1204 0.1714 0.0006
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROA W b-a = W b-c = VI b-a =	AD (ARM A) 8.0 (metres) 0 (metres) 15 (pcu/hr) 1 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres) 1 (pcu/hr) 80 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres) 25.4 (metres)	GEOMETRIC F. D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 464 (pcu/hr) 619 (pcu/hr) 663 (pcu/hr) 589 (pcu/hr) 1583 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0328 0.1386 0.1204 0.1714 0.0006
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROA W b-a = W b-c = VI b-a = Vr b-a =	AD (ARM A) 8.0 (metres) 0 (metres) 15 (pcu/hr) 1 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres) 1 (pcu/hr) 80 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres) 25.4 (metres) 47.3 (metres)	GEOMETRIC F. D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 464 (pcu/hr) 619 (pcu/hr) 663 (pcu/hr) 589 (pcu/hr) 1583 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0328 0.1386 0.1204 0.1714 0.0006

In B - Kong Nga Po Rd / Access Rd to Kong Nga Po Police Training Facilities 2025 Observed - AM Peak Import No.: 80115 Decked By: MM Mag-2025 Reviewed By: FM May-2025 Reviewed By: FM May-2025 Kong Nga Po Rd [1] 281 [4] 114 (8) (ARM C) (ARM A) [1] 281 [4] 2 (ARM B) (ARM B) (ARM C) Access Rd to Kong Nga Po Rd [4] 2 (ARM B) (ARM C) (ARM B) (ARM C) (ARM C) SEOMETRIC DETALS: ARM A B C (ARM B)		M CO	ONSULTANCY LIMITED	D		ROUNDABOUT JUNCTION ANALYSIS	INITIALS	DATE
N Reviewed By: PM May-2025 Kong Nga Po Rd (1) 281 (1) 281 (1) 281 (1) 281 (1) 281 (1) 281 (1) 281 (1) 281 (1) 281 (1) 281 (1) 281 (1) 281 (1) 281 (1)	Traffic In	mpact Asse	essment for Proposed Temporary Warehouse (exclu	uding Dangerous	Goods Godo	and Open Storage of Construction Material and Machineries with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land at Various L	FF	May-2025
Kong Nga Po Rd (1) 281 (1) <th(1)< th=""> <</th(1)<>	Jn B -	· Kong N	Iga Po Rd / Access Rd to Kong Nga I	Po Police Tra	aining Fac	ies 2025 Observed - AM Peak Project No.: 80115 Checked By:	MM	May-2025
Kong Nga Po Rd (ARM A) (1) 201 (4) (4) (ARM C) (ARM B) (ARM						Reviewed By:	FM	May-2025
E = E Entry width (m) 7.3 5.9 5.5 $L = Effective length of flare (m) 4.0 3.7 4.9$ $R = Entry radius (m) 25.1 8.5 12.3$ $D = Inscribed circle diameter (m) 13.4 13.4 13.4$ $A = Entry angle (degree) 31.0 3.4.0 37.0$ $Q = Entry flow (pcu/h) 281 2 114$ $Qc = Circulating flow across entry (pcu/h) 9 142 52$ $DUTPUT PARAMETERS:$ $S = Sharpness of flare = 1.6(E-V)/L 1.42 0.77 0.52$ $R = 1.0.00347(A-30)-0.976(1/R-0.05) 1.01 0.98 0.95$ $R = EXP((D-60)/10) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0$		(ARM /	A)		[6] 142 2 [5]	(ARM C) (ARM C) (ARM B) Access Rd to Kong Nga Po		
E = E Entry width (m) 7.3 5.9 5.5 $L = Effective length of flare (m) 4.0 3.7 4.9$ $R = Entry radius (m) 25.1 8.5 12.3$ $D = Inscribed circle diameter (m) 13.4 13.4 13.4$ $A = Entry angle (degree) 31.0 3.4.0 37.0$ $Q = Entry flow (pcu/h) 281 2 114$ $Qc = Circulating flow across entry (pcu/h) 9 142 52$ $DUTPUT PARAMETERS:$ $S = Sharpness of flare = 1.6(E-V)/L 1.42 0.77 0.52$ $R = 1.0.00347(A-30)-0.976(1/R-0.05) 1.01 0.98 0.95$ $R = EXP((D-60)/10) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0$								
Image: Section of the section of th								
$ \begin{array}{rcl} R & = & Entry radius (m) & 25.1 & 18.5 & 12.3 \\ 1.5cribed circle diameter (m) & 13.4 & 13.4 & 13.4 \\ 2.5c & = & Entry angle (degree) & 31.0 & 34.0 & 37.0 \\ 2.6c & = & Entry flow (pou/h) & 281 & 2 & 114 \\ 2.6c & = & Circulating flow across entry (pcu/h) & 9 & 142 & 52 \\ \end{array} $	/							
b) = Inscribed circle diameter (m) 13.4 13.4 13.4 A) = Entry angle (degree) 31.0 34.0 37.0 C) = Entry flow (pcu/h) 281 2 114 C) = Circulating flow across entry (pcu/h) 9 142 52 DUTPUT PARAMETERS:	/	=	Entry width (m)	7.3 5	5.9 5			
$ \begin{array}{rcl} A & = & Entry angle (degree) & 31.0 & 34.0 & 37.0 \\ 2 & = & Entry flow (pcu/h) & 281 & 2 & 114 \\ 3 & 2 & 114 \\ 3 & 2 & 2 & 22 \\ \end{array} \\ \hline \\ 2 & = & Circulating flow across entry (pcu/h) & 9 & 142 & 52 \\ \hline \\ 2 & = & Circulating flow across entry (pcu/h) & 9 & 142 & 52 \\ \hline \\ 3 & = & Sharpness of flare = 1.6(E-V)/L & 1.42 & 0.77 & 0.52 \\ 5 & = & 10.00347(A-30)-0.978(1/R-0.05) & 1.01 & 0.98 & 0.95 \\ 5 & = & 10.00347(A-30)-0.978(1/R-0.05) & 1.01 & 0.98 & 0.95 \\ 5 & = & V+((E-V)/(1+2S)) & 4.66 & 4.78 & 4.67 \\ A & = & EXP(D-60/10) & 0.01 & 0.01 & 0.01 \\ 5 & = & 303^*X2 & 1413 & 1450 & 1415 \\ 5 & = & 303^*X2 & 1413 & 1450 & 1415 \\ 5 & = & 0.21^*Td(1+0.2^*X2) & 0.61 & 0.61 & 0.61 \\ 5 & = & K(F-Fc^*Qc) & 1417 & 138 & 1308 \\ \hline \end{array}$		= =	Entry width (m) Effective length of flare (m)	7.3 5 4.0 3	5.9 5 3.7 4			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	- - R	= = =	Entry width (m) Effective length of flare (m) Entry radius (m)	7.3 5 4.0 3 25.1 1	5.9 5 3.7 4 18.5 12			
Dc=Circulating flow across entry (pcu/h)914252DUTPUT PARAMETERS:S=Sharpness of flare = 1.6(E-V)/L1.420.770.52TOTAL FLOW=599 (pcu/lC=1-0.00347(A-30)-0.978(1/R-0.05)1.010.980.95CRITICAL DFC=0.20(2=V + ((E-V)/(1+2S))4.664.784.67A=EXP((D-60)/10)0.010.010.01E=303*X2141314501415Id=1+(0.5/(1+M))1.501.50c=0.21*Td(1+0.2*X2)0.610.61Qe=K(F-Fc*Qc)141713381308	- - R D	= = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	7.3 5 4.0 3 25.1 1 13.4 1	5.9 5 3.7 4 18.5 12 13.4 13			
DUTPUT PARAMETERS: 5 = Sharpness of flare = 1.6(E-V)/L 1.42 0.77 0.52 C = 1-0.00347(A-30)-0.978(1/R-0.05) 1.01 0.98 0.95 CRITICAL DFC = 0.20 Z = V + ((E-V)/(1+2S)) 4.66 4.78 4.67 CRITICAL DFC = 0.20 A = EXP((D-60)/10) 0.01	R)	= = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	7.3 5 4.0 3 25.1 1 13.4 1 31.0 3	5.9 5 3.7 4 18.5 12 13.4 13 34.0 37			
Same=Sharpness of flare = $1.6(E-V)/L$ 1.420.770.52TOTAL FLOW=599 (pcu/lSame= $1-0.00347(A-30)-0.978(1/R-0.05)$ 1.010.980.95CRITICAL DFC=0.20Same=V + ((E-V)/(1+2S))4.664.784.67CRITICAL DFC=0.20M=EXP((D-60)/10)0.010.010.010.010.01Same=303*X2141314501415Id= $1+(0.5/(1+M))$ 1.501.50Same=K(F-Fc*Qc)141713381308	2 2 2 2	= = = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	7.3 5 4.0 3 25.1 1 13.4 1 31.0 3 281	5.9 5 3.7 4 18.5 12 13.4 13 34.0 37 2 11			
$L =$ $1-0.00347(A-30)-0.978(1/R-0.05)$ 1.01 0.98 0.95 CRITICAL DFC = 0.20 $L =$ $V + ((E-V)/(1+2S))$ 4.66 4.78 4.67 $1 =$ $EXP((D-60)/10)$ 0.01 0.01 0.01 $=$ $303^{*}X2$ 1413 1455 $d =$ $1+(0.5/(1+M))$ 1.50 1.50 $d =$ $0.21^{*}Td(1+0.2^{*}X2)$ 0.61 0.61 $Qe =$ $K(F-Fc^{*}Qc)$ 1417 1338 1308	2	= = = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	7.3 5 4.0 3 25.1 1 13.4 1 31.0 3 281	5.9 5 3.7 4 18.5 12 13.4 13 34.0 37 2 11			
$ \begin{array}{rcl} & & & \\ $	2 2 2 2 2 2	= = = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	7.3 5 4.0 3 25.1 1 13.4 1 31.0 3 281	5.9 5 3.7 4 18.5 12 13.4 13 34.0 37 2 11			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		= = = = = UT PARA	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L	7.3 5 4.0 3 25.1 1 13.4 1 31.0 3 281 9 1 1.42	5.9 5 3.7 4 18.5 12 13.4 13 34.0 37 2 11 142 5 0.77 0		=	599 (pcu/l
$\begin{array}{rcl} & = & 303^{\circ}X2 & 1413 & 1450 & 1415 \\ \hline d & = & 1+(0.5/(1+M)) & 1.50 & 1.50 & 1.50 \\ \hline c & = & 0.21^{\ast}Td(1+0.2^{\ast}X2) & 0.61 & 0.61 \\ \hline de & = & K(F-Fc^{\ast}Qc) & 1417 & 1338 & 1308 \\ \end{array}$		= = = = = UT PARA = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) XMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	7.3 5 4.0 3 25.1 1 13.4 1 31.0 3 281 9 1 1.42 1.01	5.9 5 3.7 4 18.5 12 13.4 13 34.0 37 2 11 142 5 0.77 0 0.98 0	CRITICAL DFC		
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		= = = = = UT PARA = = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) XMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	7.3 4 4.0 3 25.1 1 13.4 1 31.0 3 281 9 1 1.42 1.01 4.66	5.9 5 3.7 4 18.5 12 13.4 13 34.0 37 2 11 142 5 0.77 0 0.98 0 4.78 4	CRITICAL DFC		
c= $0.21*Td(1+0.2*X2)$ 0.610.61le=K(F-Fc*Qc)141713381308	2 DUTPU 2	= = = = = UT PARA = = = = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+25)) EXP((D-60)/10)	7.3 5 4.0 3 25.1 1 13.4 1 31.0 3 281 9 1 1.42 1.01 4.66 0.01	5.9 5 3.7 4 18.5 12 3.4 13 44.0 37 2 11 42 5 0.77 0 0.98 0 4.78 4 0.01 0	CRITICAL DFC		
Qe = K(F-Fc*Qc) 1417 1338 1308	2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	= = = = = UT PARA = = = = = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	7.3 5 4.0 3 25.1 1 13.4 1 31.0 3 281 9 1 1.42 1.01 4.66 0.01 1413	5.9 5 3.7 4 18.5 12 3.4 13 44.0 37 2 11 42 5 0.77 0 0.98 0 4.78 4 0.01 0 1450 14	CRITICAL DFC		
	- R D D D D C C C C C d	= = = = = = = = = = = = = = = = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) EXETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	7.3 4 4.0 5 25.1 1 13.4 1 31.0 3 281 9 1 1.42 1.01 4.66 0.01 1413 1.50	5.9 5 3.7 4 8.5 12 3.4 13 44.0 37 2 11 42 5 0.77 0 0.98 0 4.78 4 0.01 0 1450 14 1.50 1	CRITICAL DFC		
)FC = Design flow/Capacity = Q/Qe 0.20 0.00 0.09	- R D D D D C C C C C C d F d F c	= = = = = = = = = = = = = = = = = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) EXETTRS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M)) 0.21*Td(1+0.2*X2)	7.3 4 4.0 3 25.1 1 13.4 1 31.0 3 281 9 9 1 1.42 1.01 4.66 0.01 1413 1.50 0.61 1	5.9 5 3.7 4 8.5 12 3.4 13 44.0 37 2 11 42 5 0.77 0 0.98 0 4.78 4 0.01 0 1450 12 1.50 1 0.61 0	CRITICAL DFC		
	V E L R D A Q Q C OUTPU S K X2 M F T d F C Q e	= = = = = = = = = = = = = = = = = = =	Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) EXETTRS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M)) 0.21*Td(1+0.2*X2)	7.3 4 4.0 3 25.1 1 13.4 1 31.0 3 281 9 9 1 1.42 1.01 4.66 0.01 1413 1.50 0.61 1	5.9 5 3.7 4 8.5 12 3.4 13 44.0 37 2 11 42 5 0.77 0 0.98 0 4.78 4 0.01 0 1450 12 1.50 1 0.61 0	CRITICAL DFC		599 (pcu/h 0.20

FIN CONSU	ULTANCY LIMITI	ED	PRIOF	RITY JUNCTION CALCUL	ATION			INITIALS	DATE
ffic Impact Assessment for	r Proposed Temporary Warehouse (e	excluding Dangerous Goods Godown) and Open Storage of Cons	struction Material and Machineries with Ancillary Facilitie	es for a Period of 3 Years and Ass	ociated Filling of Land at Various L	Prepared By:	FF	May-202
C - Man Kam To R	Rd / Kong Nga Po Rd		2025 Obse	erved - AM Peak		Project No.: 80115	Checked By:	MM	May-202
							Reviewed By:	FM	May-202
Man Kam To Rd (ARM A)	[1] 15 [4] 687	(ARM B) Kong Nga Po Rd [6] [3] 11 196	362	(ARM C) [2] Man Kam To Rd [5]	NOTES : (GEC W = W cr = W b-a = W b-c = W c-b = VI b-a = VI b-a = Vr b-a = Vr b-c = D = E = F = Y =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILABL LANE WIDTH AVAILABL VISIBILITY TO THE LEF VISIBILITY TO THE RIGI VISIBILITY TO THE RIGI STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C STREAM-SPECIFIC C-E (1-0.0345W)	LE TO VEHICLE W/ LE TO VEHICLE W/ LE TO VEHICLE W/ T FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES	AITING IN STRE AITING IN STRE WAITING IN ST S WAITING IN S S WAITING IN S	EAM b-c EAM c-b REAM b-a TREAM b-a TREAM b-c
GEOMETRIC	DETAILS:	GEOMETRIC FA	ACTORS :	THE CAPACITY OF MOV	EMENT :		COMPARISION C	DF DESIGN FLC	w
MAJOR ROA		GEOMETRIC FA	ACTORS :	THE CAPACITY OF MOV	EMENT :			OF DESIGN FLC	w
MAJOR ROA W =	AD (ARM A) 14.0 (metres)	D =	0.773	Qb-a =	306 (pcu/hr)		TO CAPACITY: DFC b-a	=	0.0346
MAJOR ROA W = W cr =	AD (ARM A) 14.0 (metres) 5.9 (metres)	D = E =	0.773 0.807	Q b-a = Q b-c =	306 (pcu/hr) 496 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c	= =	0.0346 0.3948
MAJOR ROA W = W cr = q a-b =	AD (ARM A) 14.0 (metres) 5.9 (metres) 15 (pcu/hr)	D = E = F =	0.773 0.807 0.959	Q b-a = Q b-c = Q c-b =	306 (pcu/hr) 496 (pcu/hr) 587 (pcu/hr)		DFC b-a DFC b-c DFC c-b	= = =	0.0346 0.3948 0.6160
MAJOR ROA W = W cr =	AD (ARM A) 14.0 (metres) 5.9 (metres)	D = E =	0.773 0.807	Q b-a = Q b-c =	306 (pcu/hr) 496 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-ac	= =	0.0346 0.3948
MAJOR ROA W = W cr = q a-b = q a-c =	AD (ARM A) 14.0 (metres) 5.9 (metres) 15 (pcu/hr) 687 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	306 (pcu/hr) 496 (pcu/hr) 587 (pcu/hr) 481 (pcu/hr)		DFC b-a DFC b-c DFC c-b	= = =	0.0346 0.3948 0.6160
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI	AD (ARM A) 14.0 (metres) 5.9 (metres) 15 (pcu/hr) 687 (pcu/hr) D (ARM C)	D = E = F =	0.773 0.807 0.959	Q b-a = Q b-c = Q c-b =	306 (pcu/hr) 496 (pcu/hr) 587 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-ac	= = =	0.0346 0.3948 0.6160
MAJOR ROA W = W cr = q a-b = q a-c =	AD (ARM A) 14.0 (metres) 5.9 (metres) 15 (pcu/hr) 687 (pcu/hr) D (ARM C) 4.0 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	306 (pcu/hr) 496 (pcu/hr) 587 (pcu/hr) 481 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-ac	= = =	0.0346 0.3948 0.6160
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b =	AD (ARM A) 14.0 (metres) 5.9 (metres) 15 (pcu/hr) 687 (pcu/hr) D (ARM C)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	306 (pcu/hr) 496 (pcu/hr) 587 (pcu/hr) 481 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-ac	= = =	0.0346 0.3948 0.6160
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b =	AD (ARM A) 14.0 (metres) 5.9 (metres) 15 (pcu/hr) 687 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	306 (pcu/hr) 496 (pcu/hr) 587 (pcu/hr) 481 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0346 0.3948 0.6160 0.4294
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b =	AD (ARM A) 14.0 (metres) 5.9 (metres) 15 (pcu/hr) 687 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 727 (pcu/hr) 362 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	306 (pcu/hr) 496 (pcu/hr) 587 (pcu/hr) 481 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0346 0.3948 0.6160
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a =	AD (ARM A) 14.0 (metres) 5.9 (metres) 15 (pcu/hr) 687 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 727 (pcu/hr) 362 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	306 (pcu/hr) 496 (pcu/hr) 587 (pcu/hr) 481 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0346 0.3948 0.6160 0.4294
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a = q c-b = MINOR ROAE	AD (ARM A) 14.0 (metres) 5.9 (metres) 15 (pcu/hr) 687 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 727 (pcu/hr) 362 (pcu/hr) D (ARM B)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	306 (pcu/hr) 496 (pcu/hr) 587 (pcu/hr) 481 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0346 0.3948 0.6160 0.4294
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a = q c-b = MINOR ROAE W b-a =	AD (ARM A) 14.0 (metres) 5.9 (metres) 15 (pcu/hr) 687 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 727 (pcu/hr) 362 (pcu/hr) 2.3 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	306 (pcu/hr) 496 (pcu/hr) 587 (pcu/hr) 481 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0346 0.3948 0.6160 0.4294
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a = q c-b = MINOR ROAE W b-a = W b-c =	AD (ARM A) 14.0 (metres) 5.9 (metres) 15 (pcu/hr) 687 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 727 (pcu/hr) 362 (pcu/hr) 362 (pcu/hr) D (ARM B) 2.3 (metres) 2.3 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	306 (pcu/hr) 496 (pcu/hr) 587 (pcu/hr) 481 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0346 0.3948 0.6160 0.4294
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a =	AD (ARM A) 14.0 (metres) 5.9 (metres) 15 (pcu/hr) 687 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 727 (pcu/hr) 362 (pcu/hr) 362 (pcu/hr) D (ARM B) 2.3 (metres) 80 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	306 (pcu/hr) 496 (pcu/hr) 587 (pcu/hr) 481 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0346 0.3948 0.6160 0.4294
MAJOR ROA W = W cr = q a-b = q a-c = W c-b = Vr c-b = q c-a = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a = Vr b-a =	AD (ARM A) 14.0 (metres) 5.9 (metres) 15 (pcu/hr) 687 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 727 (pcu/hr) 362 (pcu/hr) 362 (pcu/hr) D (ARM B) 2.3 (metres) 80 (metres) 35.8 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	306 (pcu/hr) 496 (pcu/hr) 587 (pcu/hr) 481 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0346 0.3948 0.6160 0.4294

8FM CONSULTANCY LIMITED				PRIORITY JUNCTION CALCULATION				INITIALS	DATE
affic Impact Assessment fo	r Proposed Temporary Warehouse (excluding Dangerous Goods Godow	n) and Open Storage of (Construction Material and Machineries with Ancillary Facilities for	a Period of 3 Years and Ass	ociated Filling of Land at Various Lo	Prepared By:	FF	May-2025
n A - Unnamed Rd 1	1 / Kong Nga Po Rd		2025 O	bserved - PM Peak		Project No.: 80115	Checked By:	MM	May-2025
							Reviewed By:	FM	May-2025
Unnamed Rd 1 (ARM A)		11 73 [3] [6] (ARM B) Kong Nga Po Rd	→ 3 → 65	[4] Unnamed Rd 1 [1] (ARM C)	NOTES : (GEC W = W cr = W b-a = W c-b = Vr b-a = Vr b-a = Vr b-c = Vr c-b = D = E = F = Y =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE WI LANE WIDTH AVAILABL LANE WIDTH AVAILABL VISIBILITY TO THE LEF VISIBILITY TO THE RIGH VISIBILITY TO THE RIGH STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C STREAM-SPECIFIC C-B (1-0.0345W)	LE TO VEHICLE W/ LE TO VEHICLE W/ LE TO VEHICLE W/ T FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES	AITING IN STRE AITING IN STRE WAITING IN ST WAITING IN S WAITING IN S	AM b-c AM c-b REAM b-a TREAM b-a TREAM b-c
						(*)			
GEOMETRIC MAJOR ROA	AD (ARM A)	GEOMETRIC F.		THE CAPACITY OF MOVEME			COMPARISION C TO CAPACITY:		
MAJOR ROA W =	AD (ARM A) 8.0 (metres)	GEOMETRIC F	0.779	Q b-a =	468 (pcu/hr)		TO CAPACITY: DFC b-a	=	0.0244
MAJOR ROA W = W cr =	AD (ARM A) 8.0 (metres) 0 (metres)	GEOMETRIC F	0.779 0.834	Q b-a = Q b-c =	468 (pcu/hr) 620 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c	=	0.0244 0.1177
MAJOR ROA W = W cr = q a-b =	AD (ARM A) 8.0 (metres) 0 (metres) 9 (pcu/hr)	GEOMETRIC F. D = E = F =	0.779 0.834 0.895	Q b-a = Q b-c = Q c-b =	468 (pcu/hr) 620 (pcu/hr) 664 (pcu/hr)		DFC b-a DFC b-c DFC c-b	=	0.0244 0.1177 0.0973
MAJOR ROA W = W cr =	AD (ARM A) 8.0 (metres) 0 (metres)	GEOMETRIC F. D = E = F =	0.779 0.834	Q b-a = Q b-c = Q c-b = Q b-ac =	468 (pcu/hr) 620 (pcu/hr) 664 (pcu/hr) 594 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-ac	= = =	0.0244 0.1177
MAJOR ROA W = W cr = q a-b = q a-c =	AD (ARM A) 8.0 (metres) 0 (metres) 9 (pcu/hr) 1 (pcu/hr)	GEOMETRIC F D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	468 (pcu/hr) 620 (pcu/hr) 664 (pcu/hr) 594 (pcu/hr) 1625 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0244 0.1177 0.0973 0.1421
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA	AD (ARM A) 8.0 (metres) 0 (metres) 9 (pcu/hr) 1 (pcu/hr) D (ARM C)	GEOMETRIC F. D = E = F =	0.779 0.834 0.895	Q b-a = Q b-c = Q c-b = Q b-ac =	468 (pcu/hr) 620 (pcu/hr) 664 (pcu/hr) 594 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-ac	= = =	0.0244 0.1177 0.0973
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 9 (pcu/hr) 1 (pcu/hr) D (ARM C) 3.4 (metres)	GEOMETRIC F D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	468 (pcu/hr) 620 (pcu/hr) 664 (pcu/hr) 594 (pcu/hr) 1625 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0244 0.1177 0.0973 0.1421
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA	AD (ARM A) 8.0 (metres) 9 (pcu/hr) 1 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres)	GEOMETRIC F D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	468 (pcu/hr) 620 (pcu/hr) 664 (pcu/hr) 594 (pcu/hr) 1625 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0244 0.1177 0.0973 0.1421
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b =	AD (ARM A) 8.0 (metres) 9 (pcu/hr) 1 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres)	GEOMETRIC F D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	468 (pcu/hr) 620 (pcu/hr) 664 (pcu/hr) 594 (pcu/hr) 1625 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0244 0.1177 0.0973 0.1421 0.0017
MAJOR ROA W = W cr = qa-b = qa-c = MAJOR ROA W c-b = Vr c-b = q c-a =	AD (ARM A) 8.0 (metres) 9 (pcu/hr) 1 (pcu/hr) D (ARM C) 24.8 (metres) 3 (pcu/hr) 65 (pcu/hr)	GEOMETRIC F D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	468 (pcu/hr) 620 (pcu/hr) 664 (pcu/hr) 594 (pcu/hr) 1625 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0244 0.1177 0.0973 0.1421
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b =	AD (ARM A) 8.0 (metres) 9 (pcu/hr) 1 (pcu/hr) D (ARM C) 24.8 (metres) 3 (pcu/hr) 65 (pcu/hr)	GEOMETRIC F D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	468 (pcu/hr) 620 (pcu/hr) 664 (pcu/hr) 594 (pcu/hr) 1625 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0244 0.1177 0.0973 0.1421 0.0017
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROA	AD (ARM A) 8.0 (metres) 9 (pcu/hr) 1 (pcu/hr) D (ARM C) 24.8 (metres) 3 (pcu/hr) 65 (pcu/hr) D (ARM B)	GEOMETRIC F D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	468 (pcu/hr) 620 (pcu/hr) 664 (pcu/hr) 594 (pcu/hr) 1625 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0244 0.1177 0.0973 0.1421 0.0017
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a =	AD (ARM A) 8.0 (metres) 9 (pcu/hr) 1 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres) 3 (pcu/hr) 65 (pcu/hr) D (ARM B) 2.6 (metres)	GEOMETRIC F D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	468 (pcu/hr) 620 (pcu/hr) 664 (pcu/hr) 594 (pcu/hr) 1625 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0244 0.1177 0.0973 0.1421 0.0017
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c =	AD (ARM A) 8.0 (metres) 9 (pcu/hr) 1 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres) 3 (pcu/hr) 65 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres)	GEOMETRIC F D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	468 (pcu/hr) 620 (pcu/hr) 664 (pcu/hr) 594 (pcu/hr) 1625 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0244 0.1177 0.0973 0.1421 0.0017
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a =	AD (ARM A) 8.0 (metres) 9 (pcu/hr) 1 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres) 3 (pcu/hr) 65 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres) 25.4 (metres)	GEOMETRIC F D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	468 (pcu/hr) 620 (pcu/hr) 664 (pcu/hr) 594 (pcu/hr) 1625 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0244 0.1177 0.0973 0.1421 0.0017
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a = Vr b-a =	AD (ARM A) 8.0 (metres) 9 (pcu/hr) 1 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres) 3 (pcu/hr) 65 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres) 25.4 (metres) 47.3 (metres)	GEOMETRIC F D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	468 (pcu/hr) 620 (pcu/hr) 664 (pcu/hr) 594 (pcu/hr) 1625 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0244 0.1177 0.0973 0.1421 0.0017

	M CC	ONSULTANCY LIMITED	D			ROUNDABOUT JUNCTION ANALYSIS	И	NITIALS	DATE
						pen Storage of Construction Material and Machineries with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land at Various Le Prepared		FF	May-2025
n B - '	Kong N	Iga Po Rd / Access Rd to Kong Nga I	Po Police Tı	raining l	Facilities	2025 Observed - PM Peak Project No.: 80115 Checked	d By:	MM	May-2025
						Reviewe	ed By:	FM	May-2025
Kor	ng Nga F (ARM A		<u> </u>		[4] 65	N (ARM C) (ARM C) (ARM B) Access Rd to Kong Nga Po Police Training Facilities			
GEOME	ETRIC D	DETAILS: ARM	/ A	в	с				
GEOME									
1	=	Approach half width (m)	3.7	4.1	3.9				
,	= =	Approach half width (m) Entry width (m)	3.7 7.3	4.1 5.9	3.9 5.5				
	= = =	Approach half width (m) Entry width (m) Effective length of flare (m)	3.7 7.3 4.0	4.1 5.9 3.7	3.9 5.5 4.9				
	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	3.7 7.3 4.0 25.1	4.1 5.9 3.7 18.5	3.9 5.5 4.9 12.3				
	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	3.7 7.3 4.0 25.1 13.4	4.1 5.9 3.7 18.5 13.4	3.9 5.5 4.9 12.3 13.4				
	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	3.7 7.3 4.0 25.1 13.4 31.0	4.1 5.9 3.7 18.5 13.4 34.0	3.9 5.5 4.9 12.3 13.4 37.0				
	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	3.7 7.3 4.0 25.1 13.4 31.0 160	4.1 5.9 3.7 18.5 13.4 34.0 8	3.9 5.5 4.9 12.3 13.4 37.0 179				
	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	3.7 7.3 4.0 25.1 13.4 31.0 160	4.1 5.9 3.7 18.5 13.4 34.0	3.9 5.5 4.9 12.3 13.4 37.0				
l C	= = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	3.7 7.3 4.0 25.1 13.4 31.0 160	4.1 5.9 3.7 18.5 13.4 34.0 8	3.9 5.5 4.9 12.3 13.4 37.0 179				
UTPU	= = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L	3.7 7.3 4.0 25.1 13.4 31.0 160 10	4.1 5.9 3.7 18.5 13.4 34.0 8 226 0.77	3.9 5.5 4.9 12.3 13.4 37.0 179 65 0.52	TOTAL	FLOW =		648 (pcu/
uc UTPU	= = = = = = IT PARA = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) Circulating flow across entry (pcu/h)	3.7 7.3 4.0 25.1 13.4 31.0 160 10 1.42 1.01	4.1 5.9 3.7 18.5 13.4 34.0 8 226 0.77 0.98	3.9 5.5 4.9 12.3 13.4 37.0 179 65 0.52 0.95	TOTAL CRITICA			648 (pcu/ 0.14
с UTPU 2	= = = = = T PARA = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	3.7 7.3 4.0 25.1 13.4 31.0 160 10 1.42 1.01 4.66	4.1 5.9 3.7 18.5 13.4 34.0 8 226 0.77 0.98 4.78	3.9 5.5 4.9 12.3 13.4 37.0 179 65 0.52 0.95 4.67				
c UTPU 2	= = = = = T PARA = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	3.7 7.3 4.0 25.1 13.4 31.0 160 10 1.42 1.01 4.66 0.01	4.1 5.9 3.7 18.5 13.4 34.0 8 226 0.77 0.98 4.78 0.01	3.9 5.5 4.9 12.3 13.4 37.0 179 65 0.52 0.95 4.67 0.01				
2 2 1	= = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2	3.7 7.3 4.0 25.1 13.4 31.0 160 10 1.42 1.01 4.66 0.01 1413	4.1 5.9 3.7 18.5 13.4 34.0 8 226 0.77 0.98 4.78 0.01 1450	3.9 5.5 4.9 12.3 13.4 37.0 179 65 0.52 0.95 4.67 0.01 1415				
γ 2 2 2 2 2 2 2 2 2 2 2 2 2	= = = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) XMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	3.7 7.3 4.0 25.1 13.4 31.0 160 10 1.42 1.01 4.66 0.01 1413 1.50	4.1 5.9 3.7 18.5 13.4 34.0 8 226 0.77 0.98 4.78 0.01 1450 1.50	3.9 5.5 4.9 12.3 13.4 37.0 179 65 0.52 0.95 4.67 0.01 1415 1.50				
γ Ξ ξ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) XMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M)) 0.21*Td(1+0.2*X2)	$\begin{array}{c} 3.7\\ 7.3\\ 4.0\\ 25.1\\ 13.4\\ 31.0\\ 160\\ 10\\ \end{array}$ $\begin{array}{c} 1.42\\ 1.01\\ 4.66\\ 0.01\\ 1413\\ 1.50\\ 0.61\\ \end{array}$	4.1 5.9 3.7 18.5 13.4 34.0 8 226 0.77 0.98 4.78 0.01 1450 1.50 0.61	3.9 5.5 4.9 12.3 13.4 37.0 179 65 0.52 0.95 4.67 0.01 1415 1.50 0.61				
/ = - R D A Q Q c	= = = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) XMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	3.7 7.3 4.0 25.1 13.4 31.0 160 10 1.42 1.01 4.66 0.01 1413 1.50	4.1 5.9 3.7 18.5 13.4 34.0 8 226 0.77 0.98 4.78 0.01 1450 1.50	3.9 5.5 4.9 12.3 13.4 37.0 179 65 0.52 0.95 4.67 0.01 1415 1.50				648 (pcu/h 0.14
/ = - - - - - - - - - - - - - - - - - -	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) XMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M)) 0.21*Td(1+0.2*X2)	$\begin{array}{c} 3.7\\ 7.3\\ 4.0\\ 25.1\\ 13.4\\ 31.0\\ 160\\ 10\\ \end{array}$ $\begin{array}{c} 1.42\\ 1.01\\ 4.66\\ 0.01\\ 1413\\ 1.50\\ 0.61\\ \end{array}$	4.1 5.9 3.7 18.5 13.4 34.0 8 226 0.77 0.98 4.78 0.01 1450 1.50 0.61	3.9 5.5 4.9 12.3 13.4 37.0 179 65 0.52 0.95 4.67 0.01 1415 1.50 0.61				

	JLTANCY LIMITI	ED		PRIORITY JUNCTION CALCULATION			INITIALS	DATE
		excluding Dangerous Goods Godowr		torage of Construction Material and Machineries with Ancillary Facilities for a Period of 3 Years and Assoc			FF	May-202
C - Man Kam To R	Rd / Kong Nga Po Rd			2025 Observed - PM Peak	Project No.: 80115	Checked By:	MM	May-202
						Reviewed By:	FM	May-202
Man Kam To Rd (ARM A)	[1] 6 [4] 512	(ARM B) Kong Nga Po Rd [6] [3] 8 302	2	N NOTES : (GEOM W = W cr = W b-a = W b-a = W b-c = W b-c = W c-b = VI b-a = VI b-a = Vr b-a =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILABL LANE WIDTH AVAILABL VISIBILITY TO THE LEF VISIBILITY TO THE RIGI VISIBILITY TO THE RIGI STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C STREAM-SPECIFIC C-E (1-0.0345W)	LE TO VEHICLE W LE TO VEHICLE W LE TO VEHICLE W IT FOR VEHICLES HT FOR VEHICLE: HT FOR VEHICLE: A C	AITING IN STRE AITING IN STRE WAITING IN ST S WAITING IN S S WAITING IN S	AM b-c AM c-b REAM b-a TREAM b-a TREAM b-c
		GEOMETRIC F/	ACTORS :	THE CAPACITY OF MOVEMENT :		COMPARISION (TO CAPACITY:	DF DESIGN FLC	w
MAJOR ROA	D (ARM A)					TO CAPACITY:	DF DESIGN FLC	
MAJOR ROA W =	D (ARM A) 14.0 (metres)	D =	0.773	Q b-a = 380 (pcu/hr)		TO CAPACITY: DFC b-a		0.0211
MAJOR ROA	D (ARM A)	D =		Q b-a = 380 (pcu/hr)		TO CAPACITY:	=	
MAJOR ROA W = W cr =	D (ARM A) 14.0 (metres) 5.9 (metres)	D = E =	0.773 0.807	Q b-a = 380 (pcu/hr) Q b-c = 523 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c	=	0.0211 0.5782
MAJOR ROA W = W cr = q a-b =	D (ARM A) 14.0 (metres) 5.9 (metres) 6 (pcu/hr) 512 (pcu/hr)	D = E = F =	0.773 0.807 0.959	Q b-a = 380 (pcu/hr) Q b-c = 523 (pcu/hr) Q c-b = 621 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0211 0.5782 0.2960
MAJOR ROA W = W cr = q a-b = q a-c =	D (ARM A) 14.0 (metres) 5.9 (metres) 6 (pcu/hr) 512 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = 380 (pcu/hr) Q b-c = 523 (pcu/hr) Q c-b = 621 (pcu/hr) Q b-ac = 518 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0211 0.5782 0.2960
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL	D (ARM A) 14.0 (metres) 5.9 (metres) 6 (pcu/hr) 512 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = 380 (pcu/hr) Q b-c = 523 (pcu/hr) Q c-b = 621 (pcu/hr) Q b-ac = 518 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0211 0.5782 0.2960
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 6 (pcu/hr) 512 (pcu/hr) D (ARM C) 4.0 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = 380 (pcu/hr) Q b-c = 523 (pcu/hr) Q c-b = 621 (pcu/hr) Q b-ac = 518 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0211 0.5782 0.2960
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b =	D (ARM A) 14.0 (metres) 5.9 (metres) 6 (pcu/hr) 512 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = 380 (pcu/hr) Q b-c = 523 (pcu/hr) Q c-b = 621 (pcu/hr) Q b-ac = 518 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0211 0.5782 0.2960 0.5993
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAE W c-b = Vr c-b = q c-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 6 (pcu/hr) 512 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 608 (pcu/hr) 184 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = 380 (pcu/hr) Q b-c = 523 (pcu/hr) Q c-b = 621 (pcu/hr) Q b-ac = 518 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0211 0.5782 0.2960
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b =	D (ARM A) 14.0 (metres) 5.9 (metres) 6 (pcu/hr) 512 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 608 (pcu/hr) 184 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = 380 (pcu/hr) Q b-c = 523 (pcu/hr) Q c-b = 621 (pcu/hr) Q b-ac = 518 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0211 0.5782 0.2960 0.5993
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL	D (ARM A) 14.0 (metres) 5.9 (metres) 6 (pcu/hr) 512 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 608 (pcu/hr) 184 (pcu/hr) D (ARM B)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = 380 (pcu/hr) Q b-c = 523 (pcu/hr) Q c-b = 621 (pcu/hr) Q b-ac = 518 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0211 0.5782 0.2960 0.5993
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 6 (pcu/hr) 512 (pcu/hr) D (ARM C) 4.0 (metres) 608 (pcu/hr) 184 (pcu/hr) 0 (ARM B) 2.3 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = 380 (pcu/hr) Q b-c = 523 (pcu/hr) Q c-b = 621 (pcu/hr) Q b-ac = 518 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0211 0.5782 0.2960 0.5993
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c =	D (ARM A) 14.0 (metres) 5.9 (metres) 6 (pcu/hr) 512 (pcu/hr) D (ARM C) 4.0 (metres) 608 (pcu/hr) 184 (pcu/hr) 184 (pcu/hr) 0 (ARM B) 2.3 (metres) 2.3 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = 380 (pcu/hr) Q b-c = 523 (pcu/hr) Q c-b = 621 (pcu/hr) Q b-ac = 518 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0211 0.5782 0.2960 0.5993
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAE W c-b = Vr c-b = q c-a = q c-a = q c-b = MINOR ROAE W b-a = W b-c = VI b-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 6 (pcu/hr) 512 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 608 (pcu/hr) 184 (pcu/hr) 0 (ARM B) 2.3 (metres) 80 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = 380 (pcu/hr) Q b-c = 523 (pcu/hr) Q c-b = 621 (pcu/hr) Q b-ac = 518 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0211 0.5782 0.2960 0.5993
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-a = q c-b = MINOR ROAL W b-a = W b-c = Vl b-a = Vr b-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 6 (pcu/hr) 512 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 608 (pcu/hr) 184 (pcu/hr) D (ARM B) 2.3 (metres) 2.3 (metres) 80 (metres) 35.8 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = 380 (pcu/hr) Q b-c = 523 (pcu/hr) Q c-b = 621 (pcu/hr) Q b-ac = 518 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0211 0.5782 0.2960 0.5993

	ULTANCY LIMI	FED	PF	RIORITY JUNCTION CALCULA	TION			INITIALS	DATE
affic Impact Assessment fo	r Proposed Temporary Warehous	e (excluding Dangerous Goods Godowr	n) and Open Storag	ge of Construction Material and Machineries with Ancillary Facilities f	for a Period of 3 Years and Assoc	iated Filling of Land at Various L	Prepared By:	FF	May-202
n A - Unnamed Rd 1	1 / Kong Nga Po Rd		202	28 Reference - AM Peak		Project No.: 80115	Checked By:	MM	May-2028
							Reviewed By:	FM	May-202
Unnamed Rd 1 (ARM A)	[5] 2 [2] 18	18 110 [3] [6] (ARM B) Kong Nga Po Rd		2 [4] 2 [4] 39 [1] (ARM C)	NOTES : (GEOM W = W cr = W b-a = W b-c = W c-b = VI b-a = Vr b-a = Vr b-c = Vr c-b = D = E = F = Y =	ETRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILABL LANE WIDTH AVAILABL LANE WIDTH AVAILABL VISIBILITY TO THE RIGH VISIBILITY TO THE RIGH VISIBILITY TO THE RIGH STREAM-SPECIFIC B-A STREAM-SPECIFIC C-B (1-0.0345W)	LE TO VEHICLE WA LE TO VEHICLE WA LE TO VEHICLE WA T FOR VEHICLES WA HT FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES	AITING IN STRE AITING IN STRE WAITING IN ST WAITING IN S WAITING IN S	AM b-c AM c-b REAM b-a TREAM b-a TREAM b-c
GEOMETRIC MAJOR ROA W =	AD (ARM A)	GEOMETRIC F		THE CAPACITY OF MOVEM			COMPARISION O TO CAPACITY: DFC b-a	F DESIGN FLO	
	AD (ARM A) 8.0 (metres)		ACTORS : 0.779 0.834		455 (pcu/hr)		TO CAPACITY: DFC b-a		0.0396
MAJOR ROA W =	AD (ARM A) 8.0 (metres)	D =	0.779	Q b-a =			TO CAPACITY:	=	
MAJOR ROA W = W cr =	AD (ARM A) 8.0 (metres) 0 (metres)	D = E =	0.779 0.834	Q b-a = Q b-c =	455 (pcu/hr) 619 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c	=	0.0396 0.1777
MAJOR ROA W = W cr = q a-b =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr)	D = E = F =	0.779 0.834 0.895	Q b-a = Q b-c = Q c-b =	455 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr)		DFC b-a DFC b-c DFC c-b	= = =	0.0396 0.1777 0.1647
MAJOR ROA W = W cr = q a-b =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr)	D = E = F =	0.779 0.834 0.895	Q b-a = Q b-c = Q c-b = Q b-ac =	455 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 589 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-ac	= = =	0.0396 0.1777 0.1647
MAJOR ROA W = W cr = q a-b = q a-c =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	455 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 589 (pcu/hr) 1504 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0396 0.1777 0.1647 0.2173
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	455 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 589 (pcu/hr) 1504 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0396 0.1777 0.1647 0.2173
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres) 2 (pcu/hr)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	455 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 589 (pcu/hr) 1504 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0396 0.1777 0.1647 0.2173
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	455 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 589 (pcu/hr) 1504 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0396 0.1777 0.1647 0.2173 0.0013
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a = q c-b = MINOR ROAI	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres) 2 (pcu/hr) 109 (pcu/hr) D (ARM B)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	455 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 589 (pcu/hr) 1504 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0396 0.1777 0.1647 0.2173
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a = q c-b = MINOR ROAI W b-a =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres) 2 (pcu/hr) 109 (pcu/hr) D (ARM B) 2.6 (metres)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	455 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 589 (pcu/hr) 1504 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0396 0.1777 0.1647 0.2173 0.0013
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a = q c-b = MINOR ROAE W b-a = W b-c =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres) 2 (pcu/hr) 109 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	455 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 589 (pcu/hr) 1504 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0396 0.1777 0.1647 0.2173 0.0013
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres) 2 (pcu/hr) 109 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres) 25.4 (metres)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	455 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 589 (pcu/hr) 1504 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0396 0.1777 0.1647 0.2173 0.0013
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a = Vr b-a =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres) 2 (pcu/hr) 109 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres) 25.4 (metres) 47.3 (metres)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	455 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 589 (pcu/hr) 1504 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0396 0.1777 0.1647 0.2173 0.0013
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a = Vr b-a = Vr b-a =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) D (ARM C) 24.8 (metres) 2 (pcu/hr) 109 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres) 25.4 (metres) 47.3 (metres)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	455 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 589 (pcu/hr) 1504 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0396 0.1777 0.1647 0.2173 0.0013
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a = Vr b-a =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres) 2 (pcu/hr) 109 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres) 25.4 (metres) 47.3 (metres)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	455 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 589 (pcu/hr) 1504 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0396 0.1777 0.1647 0.2173 0.0013

	IVI CO	ONSULTANCY LIMITEI	D			ROUNDABOUT JUNCTION ANALYSIS	INITIALS	DATE
	mpact Ass	essment for Proposed Temporary Warehouse (excl	luding Dangero	ous Goods G	Godown) and O	pen Storage of Construction Material and Machineries with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land at Various Le Prepared By:	FF	May-2025
Jn B -	- Kong N	Nga Po Rd / Access Rd to Kong Nga I	Po Police T	Training	Facilities	2028 Reference - AM Peak Project No.: 80115 Checked By:	MM	May-2025
						Reviewed By:	FM	May-2025
Ke	ong Nga (ARM /			2] [6] 162 63 [5]	[4] 128	N (ARM C) (ARM C) (ARM B) Access Rd to Kong Nga Po Police Training Facilities		
GEOM		DETAILS: ARM	A N	в	с			
GEON	IETRIC [
GEON		Approach half width (m) Entry width (m)	A 3.7 7.3	B 4.1 5.9	C 3.9 5.5			
GEON	=	Approach half width (m)	3.7	4.1	3.9			
/	= =	Approach half width (m) Entry width (m)	3.7 7.3	4.1 5.9	3.9 5.5			
/ = - R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m)	3.7 7.3 4.0	4.1 5.9 3.7	3.9 5.5 4.9			
V E L R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	3.7 7.3 4.0 25.1	4.1 5.9 3.7 18.5	3.9 5.5 4.9 12.3			
/ = - R D	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	3.7 7.3 4.0 25.1 13.4	4.1 5.9 3.7 18.5 13.4	3.9 5.5 4.9 12.3 13.4			
/ = - - - - - - - - - - - - - - - - - -	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	3.7 7.3 4.0 25.1 13.4 31.0	4.1 5.9 3.7 18.5 13.4 34.0	3.9 5.5 4.9 12.3 13.4 37.0			
V E L R D A Q Q C	= = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	3.7 7.3 4.0 25.1 13.4 31.0 387	4.1 5.9 3.7 18.5 13.4 34.0 63	3.9 5.5 4.9 12.3 13.4 37.0 148			
V E R D A Q Q C DUTP	= = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS:	3.7 7.3 4.0 25.1 13.4 31.0 387 22	4.1 5.9 3.7 18.5 13.4 34.0 63 162	3.9 5.5 4.9 12.3 13.4 37.0 148 128	TOTAL ELOW		910 (pcu/
/ = - - 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0	= = = = = = UT PAR/	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	3.7 7.3 4.0 25.1 13.4 31.0 387	4.1 5.9 3.7 18.5 13.4 34.0 63	3.9 5.5 4.9 12.3 13.4 37.0 148	TOTAL FLOW CRITICAL DFC	=	910 (pcu/ 0.27
/ = - - - - - - - - - - - - - - - - - -	= = = = = = UT PAR/ =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L	3.7 7.3 4.0 25.1 13.4 31.0 387 22 1.42	4.1 5.9 3.7 18.5 13.4 34.0 63 162 0.77	3.9 5.5 4.9 12.3 13.4 37.0 148 128 0.52			
/ = - - - - - - - - - - - - - - - - - -	= = = = = UT PAR/ = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	3.7 7.3 4.0 25.1 13.4 31.0 387 22 1.42 1.01 4.66 0.01	4.1 5.9 3.7 18.5 13.4 34.0 63 162 0.77 0.98	3.9 5.5 4.9 12.3 13.4 37.0 148 128 0.52 0.95			
/ = - - - - - - - - - - - - - - - - - -	= = = = = UT PAR/ = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	3.7 7.3 4.0 25.1 13.4 31.0 387 22 1.42 1.01 4.66	4.1 5.9 3.7 18.5 13.4 34.0 63 162 0.77 0.98 4.78	3.9 5.5 4.9 12.3 13.4 37.0 148 128 0.52 0.95 4.67			
V E L R D A Q C OUTP S S K X2 M F	= = = = = UT PAR/ = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	3.7 7.3 4.0 25.1 13.4 31.0 387 22 1.42 1.01 4.66 0.01	4.1 5.9 3.7 18.5 13.4 34.0 63 162 0.77 0.98 4.78 0.01	3.9 5.5 4.9 12.3 13.4 37.0 148 128 0.52 0.95 4.67 0.01			
/ = - R D D Q Q Q Q Q C UTP S S K2 M = - Id	= = = = = UT PAR/ = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(L)-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	3.7 7.3 4.0 25.1 13.4 31.0 387 22 1.42 1.01 4.66 0.01 1413	4.1 5.9 3.7 18.5 13.4 34.0 63 162 0.77 0.98 4.78 0.01 1450	3.9 5.5 4.9 12.3 13.4 37.0 148 128 0.52 0.95 4.67 0.01 1415			
V E L R D A Q Q C	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	3.7 7.3 4.0 25.1 13.4 31.0 387 22 1.42 1.01 4.66 0.01 1413 1.50	4.1 5.9 3.7 18.5 13.4 34.0 63 162 0.77 0.98 4.78 0.01 1450 1.50	3.9 5.5 4.9 12.3 13.4 37.0 148 128 0.52 0.95 4.67 0.01 1415 1.50			910 (pcu/ł 0.27

SFIVI CONSU	JLTANCY LIMITE	ED	PF	RIORITY JUNCTION CALCULA	ATION			INITIALS	DATE
ffic Impact Assessment for	r Proposed Temporary Warehouse (e	xcluding Dangerous Goods Godown		ge of Construction Material and Machineries with Ancillary Facilities	s for a Period of 3 Years and Ass		Prepared By:	FF	May-202
C - Man Kam To R	Rd / Kong Nga Po Rd		202	28 Reference - AM Peak		Project No.: 80115	Checked By:	MM	May-202
							Reviewed By:	FM	May-202
Man Kam To Rd (ARM A)	[1] 32 [4] 781 →	(ARM B) Kong Nga Po Rd [6] [3] 23 261		Man Kam To Rd	NOTES : (GEO W = W cr = W b-a = W b-c = W c-b = VI b-a = VI b-a = Vr b-a = Vr b-c = D = E = F = Y =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILABL LANE WIDTH AVAILABL VISIBILITY TO THE LEF VISIBILITY TO THE RIG VISIBILITY TO THE RIG STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C STREAM-SPECIFIC C-E (1-0.0345W)	LE TO VEHICLE W/ LE TO VEHICLE W/ LE TO VEHICLE W/ T FOR VEHICLES ' HT FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES	AITING IN STRE AITING IN STRE WAITING IN ST S WAITING IN S S WAITING IN S	AM b-c AM c-b REAM b-a TREAM b-a TREAM b-c
GEOMETRIC		GEOMETRIC FA	ACTORS :	THE CAPACITY OF MOVE	MENT :		COMPARISION C TO CAPACITY:	OF DESIGN FLC	w
MAJOR ROA	D (ARM A)						TO CAPACITY:		
MAJOR ROA W =	D (ARM A) 14.0 (metres)	D =	0.773	Q b-a =	261 (pcu/hr)		TO CAPACITY: DFC b-a	=	0.0881
MAJOR ROA W = W cr =	D (ARM A) 14.0 (metres) 5.9 (metres)	D = E =	0.773 0.807	Q b-a = Q b-c =	261 (pcu/hr) 481 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c	= =	0.0881 0.5426
MAJOR ROA W =	D (ARM A) 14.0 (metres)	D =	0.773	Q b-a =	261 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	=	0.0881
MAJOR ROA W = W cr = q a-b = q a-c =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 781 (pcu/hr)	D = E = F =	0.773 0.807 0.959	Q b-a = Q b-c = Q c-b =	261 (pcu/hr) 481 (pcu/hr) 567 (pcu/hr)		DFC b-a DFC b-c DFC c-b	= = =	0.0881 0.5426 0.8201
MAJOR ROA W = W cr = q a-b =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 781 (pcu/hr) D (ARM C)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	261 (pcu/hr) 481 (pcu/hr) 567 (pcu/hr) 450 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0881 0.5426 0.8201
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 781 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	261 (pcu/hr) 481 (pcu/hr) 567 (pcu/hr) 450 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0881 0.5426 0.8201
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	261 (pcu/hr) 481 (pcu/hr) 567 (pcu/hr) 450 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0881 0.5426 0.8201
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	261 (pcu/hr) 481 (pcu/hr) 567 (pcu/hr) 450 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0881 0.5426 0.8201 0.6307
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 827 (pcu/hr) 465 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	261 (pcu/hr) 481 (pcu/hr) 567 (pcu/hr) 450 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0881 0.5426 0.8201
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 827 (pcu/hr) 465 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	261 (pcu/hr) 481 (pcu/hr) 567 (pcu/hr) 450 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0881 0.5426 0.8201 0.6307
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a = q c-b = MINOR ROAE	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 827 (pcu/hr) 465 (pcu/hr) D (ARM B)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	261 (pcu/hr) 481 (pcu/hr) 567 (pcu/hr) 450 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0881 0.5426 0.8201 0.6307
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a = q c-b = MINOR ROAE W b-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 827 (pcu/hr) 465 (pcu/hr) D (ARM B) 2.3 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	261 (pcu/hr) 481 (pcu/hr) 567 (pcu/hr) 450 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0881 0.5426 0.8201 0.6307
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a = q c-b = MINOR ROAE W b-a = W b-c =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 827 (pcu/hr) 465 (pcu/hr) 2.3 (metres) 2.3 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	261 (pcu/hr) 481 (pcu/hr) 567 (pcu/hr) 450 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0881 0.5426 0.8201 0.6307
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 827 (pcu/hr) 465 (pcu/hr) 0 (ARM B) 2.3 (metres) 80 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	261 (pcu/hr) 481 (pcu/hr) 567 (pcu/hr) 450 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0881 0.5426 0.8201 0.6307
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a = Vr b-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 827 (pcu/hr) 465 (pcu/hr) 0 (ARM B) 2.3 (metres) 80 (metres) 35.8 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	261 (pcu/hr) 481 (pcu/hr) 567 (pcu/hr) 450 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0881 0.5426 0.8201 0.6307

SFIVI CONSU		ED	PRIC	DRITY JUNCTION CALCULA	TION			INITIALS	DATE
affic Impact Assessment fo	or Proposed Temporary Warehouse (excluding Dangerous Goods Godowr	n) and Open Storage of (Construction Material and Machineries with Ancillary Facilities for	or a Period of 3 Years and Ass	ociated Filling of Land at Various L	Prepared By:	FF	May-2025
n A - Unnamed Rd 1	1 / Kong Nga Po Rd		2028 Re	eference - PM Peak		Project No.: 80115	Checked By:	MM	May-2025
							Reviewed By:	FM	May-2025
Unnamed Rd 1 (ARM A)	[5] 2 [2] 11	13 94 [3] [6] (ARM B) Kong Nga Po Rd	 ↓ ↓	[4] Unnamed Rd 1 [1] (ARM C)	NOTES : (GEO W = W cr = W b-a = W c-b = V tb-a = V t b-a = V t b-a = V t c-b = D = E = F = Y =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILABL LANE WIDTH AVAILABL VISIBILITY TO THE LEF VISIBILITY TO THE RIGF VISIBILITY TO THE RIGF STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C STREAM-SPECIFIC C-B (1-0.0345W)	LE TO VEHICLE WA LE TO VEHICLE WA LE TO VEHICLE WA T FOR VEHICLES WA HT FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES	AITING IN STRE AITING IN STRE WAITING IN ST & WAITING IN S & WAITING IN S	EAM b-c EAM c-b REAM b-a TREAM b-a TREAM b-c
		Kong Nga Po Ku				(10.004000)			
GEOMETRIC MAJOR ROA W =		GEOMETRIC F	ACTORS : 0.779	C b-a =	IENT : 462 (pcu/hr)	(10.001011)	COMPARISION O TO CAPACITY: DFC b-a	DF DESIGN FLC	W 0.0281
MAJOR ROA	AD (ARM A)	GEOMETRIC FA				(10.00.000)	TO CAPACITY:		
MAJOR ROA W = W cr = q a-b =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr)	GEOMETRIC F. D = E = F =	0.779 0.834 0.895	Q b-a = Q b-c = Q c-b =	462 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr)		DFC b-a DFC b-c DFC c-b	= = =	0.0281 0.1516 0.1252
MAJOR ROA W = W cr =	AD (ARM A) 8.0 (metres) 0 (metres)	GEOMETRIC FA	0.779 0.834	Q b-a = Q b-c = Q c-b = Q b-ac =	462 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 595 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-ac	=	0.0281 0.1516
MAJOR ROA W = W cr = q a-b = q a-c =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	462 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 595 (pcu/hr) 1575 (pcu/hr)	(DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0281 0.1516 0.1252 0.1798
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) D (ARM C)	GEOMETRIC F. D = E = F =	0.779 0.834 0.895	Q b-a = Q b-c = Q c-b = Q b-ac =	462 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 595 (pcu/hr)	(DFC b-a DFC b-c DFC c-b DFC c-ac	= = =	0.0281 0.1516 0.1252
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	462 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 595 (pcu/hr) 1575 (pcu/hr)	(DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0281 0.1516 0.1252 0.1798
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	462 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 595 (pcu/hr) 1575 (pcu/hr)	(DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0281 0.1516 0.1252 0.1798
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	462 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 595 (pcu/hr) 1575 (pcu/hr)	(DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0281 0.1516 0.1252 0.1798
MAJOR ROA W = W cr = qa-b = qa-c = MAJOR ROA W c-b = Vr c-b = q c-a =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres) 4 (pcu/hr) 83 (pcu/hr)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	462 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 595 (pcu/hr) 1575 (pcu/hr)	(TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0281 0.1516 0.1252 0.1798
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres) 4 (pcu/hr) 83 (pcu/hr)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	462 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 595 (pcu/hr) 1575 (pcu/hr)	(TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a		0.0281 0.1516 0.1252 0.1798 0.0025
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROA	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 4 (pcu/hr) 83 (pcu/hr) D (ARM B)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	462 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 595 (pcu/hr) 1575 (pcu/hr)	(TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a		0.0281 0.1516 0.1252 0.1798 0.0025
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 4 (pcu/hr) 83 (pcu/hr) D (ARM B) 2.6 (metres)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	462 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 595 (pcu/hr) 1575 (pcu/hr)	(TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a		0.0281 0.1516 0.1252 0.1798 0.0025
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres) 4 (pcu/hr) 83 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	462 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 595 (pcu/hr) 1575 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a		0.0281 0.1516 0.1252 0.1798 0.0025
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 24.8 (metres) 4 (pcu/hr) 83 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres) 25.4 (metres)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	462 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 595 (pcu/hr) 1575 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a		0.0281 0.1516 0.1252 0.1798 0.0025
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a = Vr b-a =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) D (ARM C) 3.4 (metres) 4 (pcu/hr) 83 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres) 25.4 (metres) 47.3 (metres)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	462 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 595 (pcu/hr) 1575 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a		0.0281 0.1516 0.1252 0.1798 0.0025

Traffic I	IVI CO	ONSULTANCY LIMITED	D			ROUNDABOUT JUNCTION ANALYSIS	INITIALS	DATE
	mpact Ass	essment for Proposed Temporary Warehouse (excl	uding Dangerous	s Goods G	Godown) and Op	pen Storage of Construction Material and Machineries with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land at Various La Prepared By:	FF	May-2025
Jn B -	Kong N	Nga Po Rd / Access Rd to Kong Nga F	Po Police Tr	raining I	Facilities	2028 Reference - PM Peak Project No.: 80115 Checked By:	MM	May-2025
						Reviewed By:	FM	May-2025
K	ong Nga (ARM /		∬ / 23 [2]	[6] 257 == 64) [4] 107	N (ARM C) (ARM C) (ARM B) Access Rd to Kong Nga Po Police Training Facilities		
				[5]				
GEOM	IETRIC [DETAILS: ARM		[5] B	c			
GEOM	IETRIC [DETAILS: ARM Approach half width (m)	1 A		C 3.9			
GEOM			I А 3.7	в				
GEOM	=	Approach half width (m)	1 A 3.7 7.3	B 4.1	3.9			
V E L R	= =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	A 3.7 7.3 4.0 25.1	B 4.1 5.9 3.7 18.5	3.9 5.5 4.9 12.3			
V E L R	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	1 A 3.7 7.3 4.0 25.1 13.4	B 4.1 5.9 3.7 18.5 13.4	3.9 5.5 4.9 12.3 13.4			
V E L R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	1 A 3.7 7.3 4.0 25.1 13.4	B 4.1 5.9 3.7 18.5	3.9 5.5 4.9 12.3			
V E L R D A	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	1 A 3.7 7.3 4.0 25.1 13.4 31.0	B 4.1 5.9 3.7 18.5 13.4	3.9 5.5 4.9 12.3 13.4			
/ = - - 2 A 2	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	3.7 7.3 4.0 25.1 13.4 31.0 215	B 4.1 5.9 3.7 18.5 13.4 34.0	3.9 5.5 4.9 12.3 13.4 37.0			
V E L R D A Q Q C	= = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	3.7 7.3 4.0 25.1 13.4 31.0 215	B 4.1 5.9 3.7 18.5 13.4 34.0 64	3.9 5.5 4.9 12.3 13.4 37.0 213			
V E R D A Q Q C OUTP	= = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	3.7 7.3 4.0 25.1 13.4 31.0 215	B 4.1 5.9 3.7 18.5 13.4 34.0 64	3.9 5.5 4.9 12.3 13.4 37.0 213	TOTAL FLOW	=	879 (pcu/ł
V E L R D A Q Q C OUTP S K	= = = = = = UT PAR/ = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	A 3.7 7.3 4.0 25.1 13.4 13.4 31.0 215 23 1.42 1.01	B 4.1 5.9 3.7 18.5 13.4 34.0 64 257 0.77 0.98	3.9 5.5 4.9 12.3 13.4 37.0 213 107 0.52 0.95		=	879 (pcu/h 0.17
/ = - - - - - - - - - - - - - - - - - -	= = = = = UT PAR/ = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	A 3.7 7.3 4.0 25.1 13.4 13.4 31.0 215 23 1.42 1.01 4.66 4.66	B 4.1 5.9 3.7 18.5 13.4 34.0 64 257 0.77 0.98 4.78	3.9 5.5 4.9 12.3 13.4 37.0 213 107 0.52 0.95 4.67			
/ = - - - - - - - - - - - - - - - - - -	= = = = = UT PAR/ = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	A 3.7 7.3 4.0 25.1 13.4 31.0 215 23 1.42 1.01 4.66 0.01	B 4.1 5.9 3.7 18.5 13.4 34.0 64 257 0.77 0.98 4.78 0.01	3.9 5.5 4.9 12.3 13.4 37.0 213 107 0.52 0.95 4.67 0.01			
/ = - - - - - - - - - - - - - - - - - -	= = = = = UT PAR/ = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(L/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	A 3.7 7.3 4.0 25.1 13.4 31.0 215 23 1.42 1.01 4.66 0.01 1413	B 4.1 5.9 3.7 18.5 13.4 34.0 64 257 0.77 0.98 4.78 0.01 1450	3.9 5.5 4.9 12.3 13.4 37.0 213 107 0.52 0.95 4.67 0.01 1415			
V E R D Q Q Q C D UTP S K X2 M F Td	= = = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	A 3.7 7.3 4.0 25.1 13.4 31.0 215 23 1.42 1.01 4.66 0.01 1413 1.50	B 4.1 5.9 3.7 18.5 13.4 34.0 64 257 0.77 0.98 4.78 0.01 1450 1.50	3.9 5.5 4.9 12.3 13.4 37.0 213 107 0.52 0.95 4.67 0.01 1415 1.50			
V E L R D A Q Q C OUTP S K X2 M F T d F T d F C	= = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303'X2 1+(0.5/(1+M)) 0.21*Td(1+0.2*X2)	A 3.7 7.3 4.0 25.1 13.4 31.0 215 23 1.42 1.01 4.66 0.01 1413 1.50 0.61	B 4.1 5.9 3.7 18.5 13.4 34.0 64 257 0.77 0.98 4.78 0.01 1450 1.50 0.61	3.9 5.5 4.9 12.3 13.4 37.0 213 107 0.52 0.95 4.67 0.01 1415 1.50 0.61			879 (pcu/h 0.17
V E L R D A Q Q C	= = = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	A 3.7 7.3 4.0 25.1 13.4 31.0 215 23 1.42 1.01 4.66 0.01 1413 1.50	B 4.1 5.9 3.7 18.5 13.4 34.0 64 257 0.77 0.98 4.78 0.01 1450 1.50	3.9 5.5 4.9 12.3 13.4 37.0 213 107 0.52 0.95 4.67 0.01 1415 1.50			

FIVI CONSU	JLTANCY LIMITE	ED	PRI	ORITY JUNCTION CALCULA	ATION			INITIALS	DATE
ffic Impact Assessment for	r Proposed Temporary Warehouse (e	xcluding Dangerous Goods Godown	i) and Open Storage o	of Construction Material and Machineries with Ancillary Facilities	s for a Period of 3 Years and Ass	ociated Filling of Land at Various L	Prepared By:	FF	May-202
C - Man Kam To R	Rd / Kong Nga Po Rd		2028	Reference - PM Peak		Project No.: 80115	Checked By:	MM	May-202
							Reviewed By:	FM	May-202
Man Kam To Rd (ARM A)	$\begin{bmatrix} 1 \end{bmatrix} 32 \underline{\qquad}$ $\begin{bmatrix} 4 \end{bmatrix} 582 \longrightarrow \end{bmatrix}$	(ARM B) Kong Nga Po Rd [6] [3] 19 379	216 ← 691	(ARM C) [2] Man Kam To Rd [5]	NOTES : (GEO W = W cr = W b-a = W b-c = W c-b = VI b-a = VI b-a = Vr b-a = Vr b-c = D = E = F = Y =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILABL LANE WIDTH AVAILABL VISIBILITY TO THE LEF VISIBILITY TO THE RIGI VISIBILITY TO THE RIGI STREAM-SPECIFIC B-A STREAM-SPECIFIC C-E (1-0.0345W)	LE TO VEHICLE W. LE TO VEHICLE W. LE TO VEHICLE W. T FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES	AITING IN STRE AITING IN STRE WAITING IN ST & WAITING IN S & WAITING IN S	AM b-c AM c-b REAM b-a TREAM b-a TREAM b-c
GEOMETRIC	DETAILS:	GEOMETRIC F	ACTORS :	THE CAPACITY OF MOVE	:MENT :		COMPARISION C	OF DESIGN FLC	w
MAJOR ROA	D (ARM A)						TO CAPACITY:		
MAJOR ROA W =	D (ARM A) 14.0 (metres)	D =	0.773	Q b-a =	354 (pcu/hr)		TO CAPACITY: DFC b-a	=	0.0537
MAJOR ROA W = W cr =	D (ARM A) 14.0 (metres) 5.9 (metres)	D = E =	0.773 0.807	Q b-a = Q b-c =	354 (pcu/hr) 511 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c	= =	0.0537 0.7417
MAJOR ROA W =	D (ARM A) 14.0 (metres)	D =	0.773	Q b-a =	354 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	=	0.0537
MAJOR ROA W = W cr = q a-b = q a-c =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 582 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	354 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 500 (pcu/hr)		DFC b-a DFC b-c DFC c-b	= = =	0.0537 0.7417 0.3582
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 582 (pcu/hr) D (ARM C)	D = E = F =	0.773 0.807 0.959	Q b-a = Q b-c = Q c-b =	354 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0537 0.7417 0.3582
MAJOR ROA W = W cr = q a-b = q a-c =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	354 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 500 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0537 0.7417 0.3582
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAE W c-b =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	354 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 500 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0537 0.7417 0.3582
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	354 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 500 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0537 0.7417 0.3582 0.7954
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAU W c-b = Vr c-b = q c-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 691 (pcu/hr) 216 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	354 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 500 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0537 0.7417 0.3582
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 691 (pcu/hr) 216 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	354 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 500 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0537 0.7417 0.3582 0.7954
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAE W c-b = Vr c-b = q c-a = q c-b = MINOR ROAE	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 691 (pcu/hr) 216 (pcu/hr) D (ARM B)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	354 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 500 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0537 0.7417 0.3582 0.7954
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 691 (pcu/hr) 216 (pcu/hr) 0 (ARM B) 2.3 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	354 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 500 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0537 0.7417 0.3582 0.7954
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 582 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres) 691 (pcu/hr) 216 (pcu/hr) 216 (pcu/hr) D (ARM B) 2.3 (metres) 2.3 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	354 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 500 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0537 0.7417 0.3582 0.7954
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 582 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 691 (pcu/hr) 216 (pcu/hr) 216 (pcu/hr) 0 (ARM B) 2.3 (metres) 80 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	354 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 500 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0537 0.7417 0.3582 0.7954
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAE W c-b = Vr c-b = q c-a = q c-a = q c-b = MINOR ROAE W b-a = W b-c = VI b-a = Vr b-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 32 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 691 (pcu/hr) 216 (pcu/hr) 216 (pcu/hr) 0 (ARM B) 2.3 (metres) 80 (metres) 35.8 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	354 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 500 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0537 0.7417 0.3582 0.7954

SFINI CONS	ULTANCY LIMIT	ED	PRIO	RITY JUNCTION CALCULA	ATION		INITIALS	DATE
affic Impact Assessment fo	or Proposed Temporary Warehouse (excluding Dangerous Goods Godowr	n) and Open Storage of Co	onstruction Material and Machineries with Ancillary Facilities	s for a Period of 3 Years and Asso	ciated Filling of Land at Various Le Prepared By:	FF	May-2025
n A - Unnamed Rd	1 / Kong Nga Po Rd		2028 Des	sign - AM Peak		Project No.: 80115 Checked By:	ММ	May-2025
						Reviewed By:	FM	May-2025
Unnamed Rd 1 (ARM A)	[5] 2 [2] 18	18 116 [3] [6] (ARM B)	← 2 ↓ 113	[4] Unnamed Rd 1 [1] (ARM C)	NOTES : (GEON W = W cr = W b-a = W b-c = W c-b = V c-b = Vr b-a = Vr b-a = Vr c-b = D = E = F = Y =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE WIDTH LANE WIDTH AVAILABLE TO VEHICLE W LANE WIDTH AVAILABLE TO VEHICLE W VISIBILITY TO THE LEFT FOR VEHICLES VISIBILITY TO THE RIGHT FOR VEHICLES VISIBILITY TO THE RIGHT FOR VEHICLES STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C STREAM-SPECIFIC C-B (1-0.0345W)	AITING IN STRE AITING IN STRE WAITING IN ST S WAITING IN S S WAITING IN S	EAM b-c EAM c-b REAM b-a TREAM b-a TREAM b-c
		Kong Nga Po Rd			1 -	(1-0.034399)		
GEOMETRIC MAJOR RO/		GEOMETRIC F.	ACTORS :	THE CAPACITY OF MOVE		COMPARISION O TO CAPACITY:	DF DESIGN FLC	
MAJOR RO/ W =	AD (ARM A) 8.0 (metres)	GEOMETRIC F	0.779	Q b-a =	MENT : 453 (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a	=	0.0397
MAJOR RO/ W = W cr =	AD (ARM A) 8.0 (metres) 0 (metres)	GEOMETRIC FA	0.779 0.834	Q b-a = Q b-c =	MENT : 453 (pcu/hr) 619 (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c	= =	0.0397 0.1874
MAJOR RO/ W = W cr = q a-b =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr)	GEOMETRIC F, D = E = F =	0.779 0.834 0.895	Q b-a = Q b-c = Q c-b =	MENT : 453 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b	= = =	0.0397 0.1874 0.1707
MAJOR RO/ W = W cr =	AD (ARM A) 8.0 (metres) 0 (metres)	GEOMETRIC FA	0.779 0.834	Q b-a = Q b-c = Q c-b = Q b-ac =	MENT : 453 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 590 (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= =	0.0397 0.1874
MAJOR RO/ W = W cr = q a-b = q a-c =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 453 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 590 (pcu/hr) 1493 (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0397 0.1874 0.1707 0.2271
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) AD (ARM C)	GEOMETRIC F, D = E = F =	0.779 0.834 0.895	Q b-a = Q b-c = Q c-b = Q b-ac =	MENT : 453 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 590 (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0397 0.1874 0.1707
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 453 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 590 (pcu/hr) 1493 (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0397 0.1874 0.1707 0.2271
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 453 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 590 (pcu/hr) 1493 (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0397 0.1874 0.1707 0.2271
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 453 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 590 (pcu/hr) 1493 (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0397 0.1874 0.1707 0.2271 0.0013
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres) 2 (pcu/hr) 113 (pcu/hr)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 453 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 590 (pcu/hr) 1493 (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0397 0.1874 0.1707 0.2271
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres) 2 (pcu/hr) 113 (pcu/hr)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 453 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 590 (pcu/hr) 1493 (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a		0.0397 0.1874 0.1707 0.2271 0.0013
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROA	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres) 2 (pcu/hr) 113 (pcu/hr) D (ARM B)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 453 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 590 (pcu/hr) 1493 (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a		0.0397 0.1874 0.1707 0.2271 0.0013
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROA W b-a =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres) 2 (pcu/hr) 113 (pcu/hr) D (ARM B) 2.6 (metres)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 453 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 590 (pcu/hr) 1493 (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a		0.0397 0.1874 0.1707 0.2271 0.0013
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROA W b-a = W b-c =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres) 2 (pcu/hr) 113 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 453 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 590 (pcu/hr) 1493 (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a		0.0397 0.1874 0.1707 0.2271 0.0013
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROA W b-a = W b-c = VI b-a =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres) 2 (pcu/hr) 113 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres) 25.4 (metres)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 453 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 590 (pcu/hr) 1493 (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a		0.0397 0.1874 0.1707 0.2271 0.0013
MAJOR RO/ W = W cr = qa-b = qa-c = MAJOR ROA W c-b = Vr c-b = qc-a = qc-b = MINOR ROA W b-a = W b-c = VI b-a = Vr b-a =	AD (ARM A) 8.0 (metres) 0 (metres) 18 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres) 2 (pcu/hr) 113 (pcu/hr) D (ARM B) 2.5 (metres) 2.5 (metres) 25.4 (metres) 47.3 (metres)	GEOMETRIC F, D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 453 (pcu/hr) 619 (pcu/hr) 662 (pcu/hr) 590 (pcu/hr) 1493 (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a		0.0397 0.1874 0.1707 0.2271 0.0013

Jn B - Kong Nga Po Rd / Access Rd to Kong Nga PO Police Training Facilities 2028 Design - AM Peak Project No:: 80115 Checked By: MM May-202 Reviewed By: FM May-202 Reviewed By: FM May-202 Kong Nga Po Rd [1] 393 J2 [2] [4] 122 [3] (ARM A) Reviewed By: FM May-202 Kong Nga Po Rd [1] 393 J2 [2] [4] 152 [3] (ARM C) Kong Nga Po Rd [4] IA B C Kong Nga Po Rd [9] IA B C Kong Nga Po Rd [9] IA B C GEOMETRIC DETALS: ARM B C C V = Approach half width (m) 3.7 4.9 A.9 E E E E E E E E 13.4		N CO	ONSULTANCY LIMITE	D			ROUNDABOUT JUNCTION ANALYSIS	INITIALS	DATE
N N May 201 Kong Nga Po Rd. (ARM A) (1) 300 + 22 (2) (2) (2) (2) (2) (2) (2) (2) (2)	Traffic Im	pact Asse	essment for Proposed Temporary Warehouse (excl	luding Dangero	ous Goods (Godown) and O	pen Storage of Construction Material and Machineries with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land at Various La Prepared By:	FF	May-2025
Kong Nga Po Rd (1) 300 (2) (2) (4) (4RM G) (ARM A) (ARM A) (ARM B) (ARM G) (ARM G) (ARM G) (B0 (ARM B) (ARM B) (ARM B) (ARM B) (ARM A) B C (ARM B) (ARM B) (ARM A) B C (ARM A) B C (4) - - - - - - (4) - - - - - - - (2) - <th>Jn B - I</th> <th>Kong N</th> <th>Iga Po Rd / Access Rd to Kong Nga I</th> <th>Po Police 1</th> <th>Training</th> <th>Facilities</th> <th>2028 Design - AM Peak Project No.: 80115 Checked By:</th> <th>MM</th> <th>May-2025</th>	Jn B - I	Kong N	Iga Po Rd / Access Rd to Kong Nga I	Po Police 1	Training	Facilities	2028 Design - AM Peak Project No.: 80115 Checked By:	MM	May-2025
Korg Nga Po Rd (ARM A) (1) 353 (2) (4) (3) (ARM A) (ARM B) (ARM B) (ARM B) (ARM B) (ASM A) (ARM B) (ASM B) (ASM B) (ASM B) (ASM B) (ASM B)							Reviewed By:	FM	May-2025
E = Entry width (m) 7.3 5.9 5.5 L = Effective length of flare (m) 4.0 3.7 4.9 R = Entry radius (m) 25.1 18.5 12.3 D = Inscribed circle diameter (m) 13.4 13.4 A = Entry angle (degree) 31.0 34.0 37.0 Q = Entry flow (pcu/h) 393 63 152 Qc = Circulating flow across entry (pcu/h) 393 63 152 Qc = Sharpness of flare = 16 (E-V)/L 1.42 0.77 0.52 X2 = V + ((E-V)/(1+25)) 1.01 0.98 0.95 X2 = V + ((E-V)/(1+25)) 4.66 4.78 4.67 M = EXP((D-60)/10) 0.01 0.01 0.01 F = 303'X2 1413 1450 1450 Td = 1+(0.5/(1+M)) 1.50 1.50 Fc = 0.21'Td((1+0.2'X2)) 0.61 0.61					[6] 166 166 63		(ARM C) (ARM C) (ARM B) (ARM B) Access Rd to Kong Nga Po		
E = Entry width (m) 7.3 5.9 5.5 L = Effective length of flare (m) 4.0 3.7 4.9 R = Entry radius (m) 25.1 18.5 12.3 D = Inscribed circle diameter (m) 13.4 13.4 A = Entry flow (pcu/h) 393 63 152 Qc = Circulating flow across entry (pcu/h) 393 63 152 Qc = Sharpness of flare = 1.6(E-V)/L 1.42 0.77 0.52 VUTPUT PARAMETERS: S 1-0.00347(A-30)-0.978(1/R-0.05) 1.01 0.98 0.95 X2 = V + ((E-V)/(1+2S)) 4.66 4.78 4.67 M = EXP((D-60)/10) 0.01 0.01 0.01 K2 = 0.21*Td(1+0.2*X2) 0.61 0.61 0.61 Ge 0.21*Td(1+0.2*X2) 0.61 0.61 0.61 0.61 Ge w (F-Fc*Qc) 1.92 1.24 1.24	GEOME	TRIC D	DETAILS: ARN	л а	в	с			
L = Effective length of flare (m) 4.0 3.7 4.9 R = Entry radius (m) 25.1 18.5 12.3 A = Entry adjue (degree) 31.0 34.0 37.0 Q = Entry flow (pou/h) 393 63 152 Qc = Circulating flow across entry (pcu/h) 22 166 128 OUTPUT FVERSHENES S = Sharpness of flare = 1.6(E-V)/L 1.42 0.75 X2 = V + ((E-V)/(1+2S)) 1.66 4.78 4.67 M = Sharpness of flare = 1.6(E-V)/L 1.45 4.67 M2 = V + ((E-V)/(1+2S)) 4.66 4.78 4.67 M3 = Sharpness of flare = 1.6(E-V)/L 1.45 1.450 X2 = V + ((E-V)/(1+2S)) 4.66 4.78 4.67 M4 = Sharpness of flare = 1.6(E-V)/L 1.50 1.50 1.50 Fc = 0.21*TG(1+0.2*X2) 0.61 0.61 Qe = 1.0.05/	GEOME								
R=Entry radius (m)25.118.512.3D=Inscribed circle diameter (m)13.413.413.4A=Entry angle (degree)31.034.037.0Q=Entry flow (pcu/h)39363152Qc=Circulating flow across entry (pcu/h)22166128DUTPUT PARAMETERS: X = $1.00347(A-30).0.978(1/R-0.05)$ 1.010.980.95CK= $1.000347(A-30).0.978(1/R-0.05)$ 1.010.980.95CRITICAL DFC=0.28K2= $V + ((E-V)/(1+2S))$ 4.664.784.67CRITICAL DFC=0.28K4=EXP((D-60)/10)0.010.010.010.01== 303^*X2 141314501415Fd= $1+(0.5/(1+M))$ 1.501.501.50== $0.21^*Td(1+0.2^*X2)$ 0.610.610.61Qe=K(F-Fc*Qc)140913241264	GEOME	=	Approach half width (m)	3.7	4.1	3.9			
D = Inscribed circle diameter (m) 13.4 13.4 13.4 A = Entry angle (degree) 31.0 34.0 37.0 Q = Entry flow (pcu/h) 393 63 152 Qc = Circulating flow across entry (pcu/h) 22 166 128 DOUTPUT PARAMETERS:	GEOME	= =	Approach half width (m) Entry width (m)	3.7 7.3	4.1 5.9	3.9 5.5			
A=Entry angle (degree) 31.0 34.0 37.0 Q=Entry flow (pcu/h) 393 63 152 Qc=Circulating flow across entry (pcu/h) 22 166 128 OUTPUT PARAMETERS:S=Sharpness of flare = $1.6(E-V)/L$ 1.42 0.77 0.52 K= $1-0.00347(A-30)-0.978(1/R-0.05)$ 1.01 0.98 0.95 K2=V + ((E-V)/(L+2S)) 4.66 4.78 4.67 M=EXP(D-60)/10) 0.01 0.01 0.01 F= 303^*X2 1413 1450 Td= $1+(0.5/(1+M))$) 1.50 1.50 Fc= $0.21^*Td(1+0.2^*X2)$ 0.61 0.61 Qe=K(F-Fc^*Qc) 1409 1324	V E L	= = =	Approach half width (m) Entry width (m) Effective length of flare (m)	3.7 7.3 4.0	4.1 5.9 3.7	3.9 5.5 4.9			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/ = - R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	3.7 7.3 4.0 25.1	4.1 5.9 3.7 18.5	3.9 5.5 4.9 12.3			
Qc=Circulating flow across entry (pcu/h)22166128OUTPUT PARAMETERS:S=Sharpness of flare = $1.6(E-V)/L$ 1.42 0.77 0.52 TOTAL FLOW = 924 (pcuK= $1-0.00347(A-30)-0.978(1/R-0.05)$ 1.01 0.98 0.95 CRITICAL DFC = 0.28 X2=V + ((E-V)/(1+2S)) 4.66 4.78 4.67 CRITICAL DFC = 0.28 M=EXP((D-60)/10) 0.01 0.01 0.01 1.50 1.50 F= $303^{*}X2$ 1413 1450 1415 Td= $1+(0.5/(1+M))$) 1.50 1.50 1.50 Fc= $0.21^{*}Td(140.2^{*}X2)$ 0.61 0.61 Qe=K(F-Fc*Qc) 1409 1324 1264	V E L R	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	3.7 7.3 4.0 25.1 13.4	4.1 5.9 3.7 18.5 13.4	3.9 5.5 4.9 12.3 13.4			
OUTPUT PARAMETERS:S=Sharpness of flare = $1.6(E-V)/L$ 1.42 0.77 0.52 K= $1-0.0347(A-30)-0.978(1/R-0.05)$ 1.01 0.98 0.95 X2=V + ((E-V)/(1+2S)) 4.66 4.78 4.67 M=EXP((D-60)/10) 0.01 0.01 0.01 F= $303^{\circ}X2$ 141314501415Td= $1+(0.5/(1+M))$ 1.50 1.50 1.50 Fc= $0.21^{*}Td(1+0.2^{*}X2)$ 0.61 0.61 Qe=K(F-Fc*Qc)140913241264	V E L R D A	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	3.7 7.3 4.0 25.1 13.4 31.0	4.1 5.9 3.7 18.5 13.4 34.0	3.9 5.5 4.9 12.3 13.4 37.0			
S=Sharpness of flare = $1.6(E-V)/L$ 1.42 0.77 0.52 TOTAL FLOW= 924 (pctK= $1-0.00347(A-30)-0.978(1/R-0.05)$ 1.01 0.98 0.95 CRITICAL DFC= 0.28 K2=V + ((E-V)/(1+2S)) 4.66 4.78 4.67 0.11 0.01 0.01 M=EXP((D-60)/10) 0.01 0.01 0.01 0.01 Td= $1+(0.5/(1+M))$ 1.50 1.50 1.50 Fd= $0.21^*Td(1+0.2^*X2)$ 0.61 0.61 Qe=K(F-Fc*Qc) 1409 1324 1264	/ = - - - - - - - - - - - - - - - - - -	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	3.7 7.3 4.0 25.1 13.4 31.0 393	4.1 5.9 3.7 18.5 13.4 34.0 63	3.9 5.5 4.9 12.3 13.4 37.0 152			
C_{c} =1-0.00347(A-30)-0.978(1/R-0.05)1.010.980.95CRITICAL DFC=0.28 (22) =V + ((E-V)/(1+2S))4.664.784.67 A =EXP((D-60)/10)0.010.010.01 E =303*X214131450 E^{c} =1+(0.5/(1+M))1.501.50 E^{c} =0.21*Ta(1+0.2*X2)0.610.61 Qe =K(F-Fc*Qc)14091324	/ = - - - - - - - - - - - - - - - - - -	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	3.7 7.3 4.0 25.1 13.4 31.0 393	4.1 5.9 3.7 18.5 13.4 34.0 63	3.9 5.5 4.9 12.3 13.4 37.0 152			
$\begin{array}{rcl} & & & \\ &$	/ = - R D A Q Q c	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	3.7 7.3 4.0 25.1 13.4 31.0 393	4.1 5.9 3.7 18.5 13.4 34.0 63	3.9 5.5 4.9 12.3 13.4 37.0 152			
M = EXP(D-60)/10) 0.01 0.01 0.01 = 303*X2 1413 1450 1415 Td = 1+(0.5/(1+M)) 1.50 1.50 1.50 =c = 0.21*Td(1+0.2*X2) 0.61 0.61 0.61 Qe = K(F-Fc*Qc) 1409 1324 1264	/ = - 2 2 2 2 2 5 5	= = = = = = T PARA =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L	3.7 7.3 4.0 25.1 13.4 31.0 393 22 1.42	4.1 5.9 3.7 18.5 13.4 34.0 63 166	3.9 5.5 4.9 12.3 13.4 37.0 152 128 0.52	TOTAL FLOW	=	924 (pcu/l
$F = 303^{\circ}X2$ 141314501415 $Td = 1+(0.5/(1+M))$ 1.501.501.50 $Fc = 0.21^{\circ}Td(1+0.2^{\circ}X2)$ 0.610.610.61 $Qe = K(F-Fc^{\circ}Qc)$ 140913241264	/ = - - - - - - - - - - - - - - - - - -	= = = = = = T PARA = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	3.7 7.3 4.0 25.1 13.4 31.0 393 22 1.42 1.01	4.1 5.9 3.7 18.5 13.4 34.0 63 166 0.77 0.98	3.9 5.5 4.9 12.3 13.4 37.0 152 128 0.52 0.95			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	/ = - - - - - - - - - - - - -	= = = = = T PARA = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	3.7 7.3 4.0 25.1 13.4 31.0 393 22 1.42 1.01 4.66	4.1 5.9 3.7 18.5 13.4 34.0 63 166 0.77 0.98 4.78	3.9 5.5 4.9 12.3 13.4 37.0 152 128 0.52 0.95 4.67			
$C = 0.21*Td(1+0.2*X2)$ 0.610.61 $Qe = K(F-Fc^*Qc)$ 140913241264	2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	= = = = = = T PARA = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	3.7 7.3 4.0 25.1 13.4 31.0 393 22 1.42 1.01 4.66 0.01	4.1 5.9 3.7 18.5 13.4 34.0 63 166 0.77 0.98 4.78 0.01	3.9 5.5 4.9 12.3 13.4 37.0 152 128 0.52 0.95 4.67 0.01			
Qe = K(F-Fc*Qc) 1409 1324 1264	/ - - - - - - - - - - - - -	= = = = = = T PAR4 = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(I/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	3.7 7.3 4.0 25.1 13.4 31.0 393 22 1.42 1.01 4.66 0.01 1413	4.1 5.9 3.7 18.5 13.4 34.0 63 166 0.77 0.98 4.78 0.01 1450	3.9 5.5 4.9 12.3 13.4 37.0 152 128 0.52 0.95 4.67 0.01 1415			
	/ = - - - - - - - - - - - - - - - - - -	= = = = = = T PARA = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP([0-60)/10) 303^*X2 1+(0.5/(1+M))	3.7 7.3 4.0 25.1 13.4 31.0 393 22 1.42 1.01 4.66 0.01 1413 1.50	4.1 5.9 3.7 18.5 13.4 34.0 63 166 0.77 0.98 4.78 0.01 1450 1.50	3.9 5.5 4.9 12.3 13.4 37.0 152 128 0.52 0.95 4.67 0.01 1415 1.50			
DFC = Design flow/Capacity = Q/Qe 0.28 0.05 0.12	V E L R D A Q C OUTPU S K X2 M F T d Fc	= = = = = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M)) 0.21*Td(1+0.2*X2)	3.7 7.3 4.0 25.1 13.4 31.0 393 22 1.42 1.01 4.66 0.01 1413 1.50 0.61	4.1 5.9 3.7 18.5 13.4 34.0 63 166 0.77 0.98 4.78 0.01 1450 1.50 0.61	3.9 5.5 4.9 12.3 13.4 37.0 152 128 0.52 0.95 4.67 0.01 1415 1.50 0.61			
	V E L R D A Q Q C OUTPU S K X2 M F Td Fc	= = = = = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) AMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M)) 0.21*Td(1+0.2*X2)	3.7 7.3 4.0 25.1 13.4 31.0 393 22 1.42 1.01 4.66 0.01 1413 1.50 0.61	4.1 5.9 3.7 18.5 13.4 34.0 63 166 0.77 0.98 4.78 0.01 1450 1.50 0.61	3.9 5.5 4.9 12.3 13.4 37.0 152 128 0.52 0.95 4.67 0.01 1415 1.50 0.61			924 (pcu/r 0.28

	JLTANCY LIMITI	ED	PRIOF	RITY JUNCTION CALCUL	LATION			INITIALS	DATE
ffic Impact Assessment for	r Proposed Temporary Warehouse (e	excluding Dangerous Goods Godow	n) and Open Storage of Con	nstruction Material and Machineries with Ancillary Facili	lities for a Period of 3 Years and As	ociated Filling of Land at Various L	Prepared By:	FF	May-202
C - Man Kam To R	Rd / Kong Nga Po Rd		2028 Desi	ign - AM Peak		Project No.: 80115	Checked By:	MM	May-202
							Reviewed By:	FM	May-202
Man Kam To Rd (ARM A)	[1] 35 [4] 781	(ARM B) Kong Nga Po Rd [6] [3] 25 263	•	(ARM C) [2] Man Kam To Rd	NOTES : (GEC W = W cr = W b-a = W b-c = V b-a = V t b-a = V t b-a = V t b-a = V t b-a = E = F = Y = Y =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILABL LANE WIDTH AVAILABL VISIBILITY TO THE LEF VISIBILITY TO THE RIGI VISIBILITY TO THE RIGI STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C STREAM-SPECIFIC C-B (1-0.0345W)	LE TO VEHICLE W/ LE TO VEHICLE W/ LE TO VEHICLE W/ T FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES	AITING IN STRE AITING IN STRE WAITING IN ST & WAITING IN S & WAITING IN S	AM b-c AM c-b REAM b-a TREAM b-a TREAM b-c
GEOMETRIC MAJOR ROA W =		GEOMETRIC F	ACTORS : 0.773	THE CAPACITY OF MOV Q b-a =	260 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a	DF DESIGN FLC	W 0.0962
MAJOR ROA	D (ARM A) 14.0 (metres) 5.9 (metres)	D = E =	0.773 0.807	Q b-a = Q b-c =	260 (pcu/hr) 480 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c		0.0962 0.5479
MAJOR ROA W =	D (ARM A) 14.0 (metres)	D =	0.773	Qb-a =	260 (pcu/hr)		TO CAPACITY: DFC b-a	=	0.0962
MAJOR ROA W = W cr = q a-b =	D (ARM A) 14.0 (metres) 5.9 (metres) 35 (pcu/hr) 781 (pcu/hr)	D = E = F =	0.773 0.807 0.959	Q b-a = Q b-c = Q c-b =	260 (pcu/hr) 480 (pcu/hr) 567 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0962 0.5479 0.8254
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 35 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 827 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	260 (pcu/hr) 480 (pcu/hr) 567 (pcu/hr) 447 (pcu/hr)		DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0962 0.5479 0.8254
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b =	D (ARM A) 14.0 (metres) 5.9 (metres) 35 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 827 (pcu/hr) 468 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	260 (pcu/hr) 480 (pcu/hr) 567 (pcu/hr) 447 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0962 0.5479 0.8254
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a = q c-b = MINOR ROAE	D (ARM A) 14.0 (metres) 5.9 (metres) 35 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 827 (pcu/hr) 468 (pcu/hr) D (ARM B)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	260 (pcu/hr) 480 (pcu/hr) 567 (pcu/hr) 447 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0962 0.5479 0.8254 0.6441
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b =	D (ARM A) 14.0 (metres) 5.9 (metres) 35 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 827 (pcu/hr) 468 (pcu/hr) 0 (ARM B) 2.3 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	260 (pcu/hr) 480 (pcu/hr) 567 (pcu/hr) 447 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0962 0.5479 0.8254 0.6441
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a = q c-b = MINOR ROAE W b-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 35 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 827 (pcu/hr) 468 (pcu/hr) 0 (ARM B) 2.3 (metres) 2.3 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	260 (pcu/hr) 480 (pcu/hr) 567 (pcu/hr) 447 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0962 0.5479 0.8254 0.6441
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAI W c-b = Vr c-b = q c-a = q c-b = MINOR ROAE W b-a = W b-c =	D (ARM A) 14.0 (metres) 5.9 (metres) 35 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 827 (pcu/hr) 468 (pcu/hr) 0 (ARM B) 2.3 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	260 (pcu/hr) 480 (pcu/hr) 567 (pcu/hr) 447 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0962 0.5479 0.8254 0.6441
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 35 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 827 (pcu/hr) 468 (pcu/hr) 0 (ARM B) 2.3 (metres) 80 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	260 (pcu/hr) 480 (pcu/hr) 567 (pcu/hr) 447 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0962 0.5479 0.8254 0.6441
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a = Vr b-a =	D (ARM A) 14.0 (metres) 5.9 (metres) 35 (pcu/hr) 781 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 827 (pcu/hr) 468 (pcu/hr) D (ARM B) 2.3 (metres) 80 (metres) 35.8 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	260 (pcu/hr) 480 (pcu/hr) 567 (pcu/hr) 447 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0962 0.5479 0.8254 0.6441

OF IVI CONS		ED	PRIOR	ITY JUNCTION CALCULA	ATION			INITIALS	DATE
raffic Impact Assessment fo	or Proposed Temporary Warehouse (e	excluding Dangerous Goods Godow	n) and Open Storage of Constr	ruction Material and Machineries with Ancillary Facilities	s for a Period of 3 Years and Asso	ociated Filling of Land at Various Lo	Prepared By:	FF	May-2025
In A - Unnamed Rd	1 / Kong Nga Po Rd		2028 Desig	n - PM Peak		Project No.: 80115	Checked By:	MM	May-2025
						F	Reviewed By:	FM	May-2025
Unnamed Rd 1 (ARM A)	[5] 2 → [2] 11 →	13 99 [3] [6] (ARM B) Kong Nga Po Rd	← 4 [4	Unnamed Rd 1	NOTES: (GEO W = W cr = W b-a = W b-c = W c-b = VI b-a = VI b-a = Vr b-a = Vr b-c = D = E = F = Y =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE WID LANE WIDTH AVAILABLE LANE WIDTH AVAILABLE LANE WIDTH AVAILABLE VISIBILITY TO THE LEFT VISIBILITY TO THE RIGH VISIBILITY TO THE RIGH STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C STREAM-SPECIFIC C-B (1-0.0345W)	TO VEHICLE WA TO VEHICLE WA TO VEHICLE WA FOR VEHICLES V T FOR VEHICLES T FOR VEHICLES	AITING IN STRE AITING IN STRE WAITING IN ST WAITING IN ST WAITING IN ST	AM b-c AM c-b REAM b-a IREAM b-a IREAM b-c
GEOMETRIC	C DETAILS:	GEOMETRIC F	ACTORS :	THE CAPACITY OF MOVE	:MENT :		COMPARISION O	F DESIGN FLO	w
GEOMETRIC MAJOR RO		GEOMETRIC F	ACTORS :	THE CAPACITY OF MOVE	:MENT :			F DESIGN FLO	w
MAJOR RO/ W =	AD (ARM A) 8.0 (metres)	D =	0.779	Q b-a =	461 (pcu/hr)	-	TO CAPACITY: DFC b-a	F DESIGN FLO	0.0282
MAJOR RO/ W = W cr =	AD (ARM A) 8.0 (metres) 0 (metres)	D = E =	0.779 0.834	Q b-a = Q b-c =	461 (pcu/hr) 620 (pcu/hr)	-	TO CAPACITY: DFC b-a DFC b-c	= =	0.0282 0.1597
MAJOR RO/ W = W cr = q a-b =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr)	D = E = F =	0.779 0.834 0.895	Q b-a = Q b-c = Q c-b =	461 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr)	-	TO CAPACITY: DFC b-a DFC b-c DFC c-b	= = =	0.0282 0.1597 0.1327
MAJOR RO/ W = W cr =	AD (ARM A) 8.0 (metres) 0 (metres)	D = E =	0.779 0.834	Q b-a = Q b-c = Q c-b = Q b-ac =	461 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 596 (pcu/hr)	-	TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b	= =	0.0282 0.1597
MAJOR RO/ W = W cr = q a-b = q a-c =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	461 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 596 (pcu/hr) 1561 (pcu/hr)	- 	TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0282 0.1597 0.1327 0.1879
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) AD (ARM C)	D = E = F =	0.779 0.834 0.895	Q b-a = Q b-c = Q c-b = Q b-ac =	461 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 596 (pcu/hr)	- 	TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b	= = =	0.0282 0.1597 0.1327
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	461 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 596 (pcu/hr) 1561 (pcu/hr)	- 	TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0282 0.1597 0.1327 0.1879
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	461 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 596 (pcu/hr) 1561 (pcu/hr)	- 	TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	= = =	0.0282 0.1597 0.1327 0.1879
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	461 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 596 (pcu/hr) 1561 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a (Share Lane) DFC c-a	= = =	0.0282 0.1597 0.1327 0.1879 0.0026
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres) 4 (pcu/hr) 88 (pcu/hr)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	461 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 596 (pcu/hr) 1561 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	= = =	0.0282 0.1597 0.1327 0.1879
MAJOR RO/ W = q a-b = q a-c = MAJOR RO/ W c-b = Vr c-b = q c-a = q c-b =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres) 4 (pcu/hr) 88 (pcu/hr)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	461 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 596 (pcu/hr) 1561 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a (Share Lane) DFC c-a		0.0282 0.1597 0.1327 0.1879 0.0026
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-b = q c-b = MINOR ROA	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres) 4 (pcu/hr) 88 (pcu/hr) B8 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	461 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 596 (pcu/hr) 1561 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a (Share Lane) DFC c-a		0.0282 0.1597 0.1327 0.1879 0.0026
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROA W b-a =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres) 4 (pcu/hr) 88 (pcu/hr) D (ARM B) 2.6 (metres)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	461 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 596 (pcu/hr) 1561 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a (Share Lane) DFC c-a		0.0282 0.1597 0.1327 0.1879 0.0026
MAJOR RO/ W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-b = MINOR ROA W b-a = W b-c =	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres) 24.8 (metres) 4 (pcu/hr) 88 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	461 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 596 (pcu/hr) 1561 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a (Share Lane) DFC c-a		0.0282 0.1597 0.1327 0.1879 0.0026
$\begin{array}{rcl} \text{MAJOR ROV}\\ W & = \\ W \ \text{cr} & = \\ q \ \text{a-b} & = \\ q \ \text{a-c} & = \\ q \ \text{a-c} & = \\ W \ \text{c-b} & = \\ V \ \text{c-b} & = \\ q \ \text{c-b} & = \\ \\ \text{MINOR ROA}\\ W \ \text{b-a} & = \\ W \ \text{b-c} & = \\ V \ \text{lb-a} & = \end{array}$	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres) 4 (pcu/hr) 88 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres) 25.4 (metres) 47.3 (metres)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	461 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 596 (pcu/hr) 1561 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a (Share Lane) DFC c-a		0.0282 0.1597 0.1327 0.1879 0.0026
$\begin{array}{rcl} \text{MAJOR ROW} & & = & \\ \text{W cr} & = & \\ \text{q} \text{a-b} & = & \\ \text{q} \text{a-c} & = & \\ \text{q} \text{a-c} & = & \\ \text{W} \text{ c-b} & = & \\ \text{Vr} \text{ c-b} & = & \\ \text{q} \text{ c-b} & = & \\ \text{MINOR ROA} & \\ \text{W} \text{ b-a} & = & \\ \text{W} \text{ b-c} & = & \\ \text{VI b-a} & = & \\ \text{Vr} \text{ b-a} & = & \\ \text{Vr} \text{ b-a} & = & \\ \end{array}$	AD (ARM A) 8.0 (metres) 0 (metres) 11 (pcu/hr) 2 (pcu/hr) AD (ARM C) 3.4 (metres) 4 (pcu/hr) 88 (pcu/hr) D (ARM B) 2.6 (metres) 2.5 (metres) 25.4 (metres) 47.3 (metres)	D = E = F = Y =	0.779 0.834 0.895 0.724	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	461 (pcu/hr) 620 (pcu/hr) 663 (pcu/hr) 596 (pcu/hr) 1561 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a (Share Lane) DFC c-a		0.0282 0.1597 0.1327 0.1879 0.0026

ŌГ	Мсо	ONSULTANCY LIMITED	כ			ROUNDABOUT JUNCTION ANALYSIS	INITIALS	DATE
Traffic	mpact Asse	essment for Proposed Temporary Warehouse (exclu	uding Danger	rous Goods (Godown) and O	en Storage of Construction Material and Machineries with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land at Various Ld Prepared	By: FF	May-2025
Jn B	- Kong N	Iga Po Rd / Access Rd to Kong Nga I	Po Police	Training	Facilities	2028 Design - PM Peak Project No.: 80115 Checked	By: MM	May-2025
						Reviewed	I By: FM	May-2025
	ong Nga F (ARM /	A)	[∦] / 23 [[2] [6] 262 64 [5] B	C	N (ARM C) (ARM C) Kong Nga Po Rd (ARM B) Access Rd to Kong Nga Po Police Training Facilities		
l								
V	=	Approach half width (m)	3.7	4.1	3.9			
=	=	Entry width (m)	7.3	5.9	5.5			
-	=	Effective length of flare (m)	4.0	3.7	4.9			
R D	=	Entry radius (m) Inscribed circle diameter (m)	25.1 13.4	18.5 13.4	12.3 13.4			
Δ	=	Entry angle (degree)	31.0	34.0	37.0			
n Q	-				218			
ך אכ	=	Entry flow (pcu/h) Circulating flow across entry (pcu/h)	220 23	64 262	218 107			
JC.	-	Circulating now across entry (pcu/n)	23	202	107			
DUTP	UT PARA	AMETERS:						
S	=	Sharpness of flare = 1.6(E-V)/L	1.42	0.77	0.52	TOTAL F		894 (pcu/l
K	=	1-0.00347(A-30)-0.978(1/R-0.05)	1.01	0.98	0.95	CRITICA	LDFC =	0.17
		V + ((E-V)/(1+2S))	4.66 0.01	4.78 0.01	4.67			
	-				0.01			
N	=	EXP((D-60)/10)						
M F	=	303*X2	1413	1450	1415			
M F Td	= =	303*X2 1+(0.5/(1+M))	1413 1.50	1450 1.50	1415 1.50			
X2 M F Td Fc Qe	=	303*X2	1413	1450	1415			

FIVI CONSU	ULTANCY LIMITE	ED	PF	RIORITY JUNCTION CALCULA	ATION			INITIALS	DATE
ffic Impact Assessment fo	or Proposed Temporary Warehouse (e	xcluding Dangerous Goods Godowr		e of Construction Material and Machineries with Ancillary Facilities	es for a Period of 3 Years and Ass	-	Prepared By:	FF	May-202
C - Man Kam To F	Rd / Kong Nga Po Rd		202	8 Design - PM Peak		Project No.: 80115	Checked By:	MM	May-202
							Reviewed By:	FM	May-202
Man Kam To Rd (ARM A)	[1] 34 [4] 582 →	(ARM B) Kong Nga Po Rd [6] [3] 21 382	2	Man Kam To Rd	NOTES : (GEC W = W cr = W b-a = W b-c = W c-b = VI b-a = VI b-a = Vr b-a = Vr b-c = D = E = F = Y =	METRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILABL LANE WIDTH AVAILABL VISIBILITY TO THE LEF VISIBILITY TO THE RIGI VISIBILITY TO THE RIGI STREAM-SPECIFIC B-A STREAM-SPECIFIC C-B (1-0.0345W)	LE TO VEHICLE W. LE TO VEHICLE W. LE TO VEHICLE W. T FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES HT FOR VEHICLES	AITING IN STRE AITING IN STRE WAITING IN ST S WAITING IN S S WAITING IN S	EAM b-c EAM c-b REAM b-a TREAM b-a TREAM b-c
GEOMETRIC		GEOMETRIC F/	ACTORS :	THE CAPACITY OF MOVE	EMENT :		COMPARISION C TO CAPACITY:	OF DESIGN FLC	DW .
MAJOR ROA	AD (ARM A)						TO CAPACITY:		
MAJOR ROA W =	AD (ARM A) 14.0 (metres)	D =	0.773	Q b-a =	353 (pcu/hr)		TO CAPACITY: DFC b-a	=	0.0595
MAJOR ROA W = W cr =	AD (ARM A) 14.0 (metres) 5.9 (metres)	D = E =	0.773 0.807	Q b-a = Q b-c =	353 (pcu/hr) 511 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c	= =	0.0595 0.7476
MAJOR ROA W =	AD (ARM A) 14.0 (metres)	D =	0.773	Q b-a =	353 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	=	0.0595
MAJOR ROA W = W cr = q a-b = q a-c =	AD (ARM A) 14.0 (metres) 5.9 (metres) 34 (pcu/hr) 582 (pcu/hr)	D = E = F =	0.773 0.807 0.959	Q b-a = Q b-c = Q c-b =	353 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 499 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b	= = =	0.0595 0.7476 0.3632
MAJOR ROA W = W cr = q a-b =	AD (ARM A) 14.0 (metres) 5.9 (metres) 34 (pcu/hr) 582 (pcu/hr) D (ARM C)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	353 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0595 0.7476 0.3632
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA	AD (ARM A) 14.0 (metres) 5.9 (metres) 34 (pcu/hr) 582 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	353 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 499 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0595 0.7476 0.3632
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b =	AD (ARM A) 14.0 (metres) 5.9 (metres) 34 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	353 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 499 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = =	0.0595 0.7476 0.3632
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b =	AD (ARM A) 14.0 (metres) 5.9 (metres) 34 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	353 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 499 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0595 0.7476 0.3632 0.8070
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a =	AD (ARM A) 14.0 (metres) 5.9 (metres) 34 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 691 (pcu/hr) 219 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	353 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 499 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0595 0.7476 0.3632
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b =	AD (ARM A) 14.0 (metres) 5.9 (metres) 34 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 691 (pcu/hr) 219 (pcu/hr)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	353 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 499 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0595 0.7476 0.3632 0.8070
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROA	AD (ARM A) 14.0 (metres) 5.9 (metres) 34 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres) 691 (pcu/hr) 219 (pcu/hr) D (ARM B)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	353 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 499 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0595 0.7476 0.3632 0.8070
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a =	AD (ARM A) 14.0 (metres) 5.9 (metres) 34 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 691 (pcu/hr) 219 (pcu/hr) D (ARM B) 2.3 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	353 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 499 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0595 0.7476 0.3632 0.8070
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c =	AD (ARM A) 14.0 (metres) 5.9 (metres) 34 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 691 (pcu/hr) 219 (pcu/hr) D (ARM B) 2.3 (metres) 2.3 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	353 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 499 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0595 0.7476 0.3632 0.8070
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROA W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a =	AD (ARM A) 14.0 (metres) 5.9 (metres) 34 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 691 (pcu/hr) 219 (pcu/hr) D (ARM B) 2.3 (metres) 80 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	353 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 499 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0595 0.7476 0.3632 0.8070
MAJOR ROA W = W cr = q a-b = q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c = VI b-a = Vr b-a =	AD (ARM A) 14.0 (metres) 5.9 (metres) 34 (pcu/hr) 582 (pcu/hr) D (ARM C) 4.0 (metres) 40 (metres) 691 (pcu/hr) 219 (pcu/hr) D (ARM B) 2.3 (metres) 80 (metres) 35.8 (metres)	D = E = F = Y =	0.773 0.807 0.959 0.517	Q b-a = Q b-c = Q c-b = Q b-ac =	353 (pcu/hr) 511 (pcu/hr) 603 (pcu/hr) 499 (pcu/hr)		TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane)	= = =	0.0595 0.7476 0.3632 0.8070