

**Proposed Temporary Public Vehicle Park
with Electric Vehicle Charging Facilities and
Filling of Land for a Period of 3 Years,
Various Lots in DD7, Kau Lung Hang,
Tai Po, New Territories**

**Traffic Impact Assessment
Final Report
December 2025**

Prepared by: CKM Asia Limited

Prepared for: Wing Lee (Kong Shum) Transportation Limited

Proposed Temporary Public Vehicle Park with Electric Vehicle Charging Facilities and Filling of Land for a Period of 3 Years, Various Lots in DD7, Kau Lung Hang, Tai Po, New Territories

CONTENTS

<u>CHAPTER</u>		<u>PAGE</u>
1.0	INTRODUCTION	1
	Background	1
	Structure of the Report	1
2.0	THE EXISTING SITUATION	2
	The Application Site	2
	The Road Network	2
	Manual Classified Traffic Counts	2
	Existing Junction Performance	2
	Public Transport Services	3
3.0	THE PROPOSED TEMPORARY PUBLIC VEHICLE PARK	4
	The Proposed Temporary Public Vehicle Park	4
	Swept Path Analysis	4
4.0	TRAFFIC ANALYSIS	5
	Design Year	5
	Traffic Forecasting	5
	Estimated Traffic Growth Rate from 2024 to 2029	5
	Net Increase in Traffic Generation of the Proposed Temporary Public Vehicle Park	6
	Year 2029 Peak Hour Traffic Flows	7
	2029 Junction Capacity Analysis	7
5.0	SUMMARY	8
	Appendix A – Junction Analysis	
	Appendix B – Swept Path Analysis	

Proposed Temporary Public Vehicle Park with Electric Vehicle Charging Facilities and Filling of Land for a Period of 3 Years, Various Lots in DD7, Kau Lung Hang, Tai Po, New Territories

TABLES

NUMBER

- 2.1 Existing Junction Performance
- 2.2 Existing Public Transport Services operating in the vicinity of the Proposed Temporary Public Vehicle Park
- 4.1 AADT of the Core Stations Located in the vicinity of the Application Site
- 4.2 Population Projections of Tai Po District
- 4.3 Traffic Generation of Existing Uses
- 4.4 Traffic Generation for Proposed Temporary Public Vehicle Park
- 4.5 Net Increase in Traffic Generation
- 4.6 2029 Junction Performance

Proposed Temporary Public Vehicle Park with Electric Vehicle Charging Facilities and Filling of Land for a Period of 3 Years, Various Lots in DD7, Kau Lung Hang, Tai Po, New Territories

FIGURES

NUMBER

- 1.1 Location of the Application Site
- 2.1 Locations of Surveyed Junctions
- 2.2 Layout of Tai Wo Service Road West / Hong Lok Yuen Road
- 2.3 Layout of Lam Kam Road Interchange / Tai Po Road – Tai Wo
- 2.4 Layout of Lam Kam Road Interchange
- 2.5 Existing Peak Hour Traffic Flows
- 3.1 Layout Plan of the Proposed Temporary Public Vehicle Park
- 4.1 2029 Peak Hour Traffic Flows without the Proposed Temporary Public Vehicle Park
- 4.2 2029 Peak Hour Traffic Flows with the Proposed Temporary Public Vehicle Park

1.0 INTRODUCTION

Background

- 1.1 The application site is located at various lots in D.D. 7 at Kau Lung Hang, in Tai Po. The location of the application site is shown in **Figure 1.1**.
- 1.2 CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned by the Applicant to prepare a traffic assessment in connection with the S16 application for a temporary public vehicle park with 205 car parking spaces and 6 parking spaces shared-use for HGV and coach for a period of 3 years (the “Proposed Temporary Public Vehicle Park”). Access to the Proposed Temporary Public Vehicle Park is via its existing vehicular access, which is provided at Tai Wo Service Road West, some 600m north of its junction with Hong Lok Yuen Road.
- 1.3 This report describes the traffic assessment undertaken for the Proposed Temporary Public Vehicle Park.

Structure of the Report

- 1.4 The report is structured as follows:

Chapter One	- Gives the background of the project;
Chapter Two	- Describes the existing situation;
Chapter Three	- Presents the Proposed Temporary Public Vehicle Park;
Chapter Four	- Describes the traffic impact analysis; and
Chapter Five	- Gives the overall conclusion.

2.0 THE EXISTING SITUATION

The Application Site

2.1 The application site is currently used as a plant nursery with some temporary shelters and ancillary storage area. It fronts onto Tai Wo Service Road West to the east, some 600m north of its junction with Hong Lok Yuen Road.

The Road Network

2.2 Tai Wo Service Road West is classified as rural road, and is of single carriageway 2-lane standard. It connects with Wo Hing Road to the north, and with Hong Lok Yuen Road, Fanling Highway and Lam Kam Road Interchange to the south.

2.3 Lam Kam Road is classified as a rural road, and is of single carriageway 2-lane standard. It connects with the Lam Kam Road Interchange and Tolo Highway to the north and with Route Twisk, Kam Sheung Road and Kam Tin Road to the south.

Manual Classified Traffic Counts

2.4 To quantify the traffic flows in the vicinity of the application site, manual classified counts were conducted on Wednesday, 19th June 2024 during the AM and PM peak periods at the following junctions:

- J1: Tai Wo Service Road West / Hong Lok Yuen Road;
- J2: Lam Kam Road Interchange / Tai Po Road – Tai Wo; and
- J3: Lam Kam Road Interchange.

2.5 The locations of these junctions are shown in **Figure 2.1** and the layouts are shown in **Figures 2.2 – 2.4** respectively.

2.6 From the traffic survey conducted, the AM and PM peak hours are found between 0730 – 0830 hours and 1715 – 1815 hours respectively. The existing AM and PM peak hour flows are presented in **Figures 2.5**.

Existing Junction Performance

2.7 The existing operating performance of the surveyed junctions is calculated based on the existing traffic flows, and the analysis was undertaken using the method found in the Transport Planning and Design Manual ("TPDM"). The results are summarised in **Table 2.1**, and detailed calculations are presented in the **Appendix A**.

TABLE 2.1 EXISTING JUNCTION PERFORMANCE

Ref	Junction	Type of Junction (Parameter)	AM Peak	PM Peak
J1	Tai Wo Service Road West / Hong Lok Yuen Road	Signal (RC)	65%	58%
J2	Lam Kam Road Interchange / Tai Po Road – Tai Wo	Priority (DFC)	0.581	0.484
J3	Lam Kam Road Interchange	RA (DFC)	0.484	0.631

Note: RA – roundabout RC – reserve capacity DFC - design flow/capacity ratio

2.8 **Table 2.1** shows that the junctions operate with capacities.

Public Transport Services

2.9 At present, 10 franchised bus and 3 green minibus ("GMB") routes operate in the vicinity of the Proposed Temporary Public Vehicle Park. Details of public transport services are presented in **Table 2.2**.

TABLE 2.2 EXISTING PUBLIC TRANSPORT SERVICES OPERATING IN THE VICINITY OF THE PROPOSED TEMPORARY PUBLIC VEHICLE PARK

Route	Routing	Headway (minutes)
KMB 73	Fanling (Wah Ming) – Tai Po Industrial Estate	20 – 30
KMB 73A	Fanling (Wah Ming) – Yu Chui Court	20 – 35
KMB 73B	Chuen On Road (Nethersole Hospital) – Sheung Shui (Circular)	25 – 60
KMB 74C	Kau Lung Hang – Kwun Tong Ferry	AM Peak
KMB 74D	Kau Lung Hang – Kwun Tong Ferry	25 – 60
KMB 271P	Kau Lung Hang – Tsim Sha Tsui (Canton Road)	AM Peak
KMB 273C	Kau Lung Hang – Tsuen Wan West Station	AM Peak
KMB 373	Sheung Shui – Central (Hong Kong Station)	AM, PM Peak
KMB N373	Fanling (Luen Wo Hui) – Central (Macau Ferry)	Overnight
KMB N73	Shatin Central – Lok Ma Chau	Overnight
GMB 502	Ching Ho Estate – Nethersole Hospital	8 – 15
GMB 25A	Tai Po Market – Nam Wa Po	5 - 10
GMB 25B	Tai Po Market – Kau Lung Hang / Yuen Leng	4 – 8

Note: KMB – Kowloon Motor Bus GMB – Green Minibus

3.0 THE PROPOSED TEMPORARY PUBLIC VEHICLE PARK

The Proposed Temporary Public Vehicle Park

3.1 The Proposed Temporary Public Vehicle Park provides 205 car parking spaces and 6 parking spaces shared-use for HGV and coach, and the layout plan is shown in **Figure 3.1**.

Swept Path Analysis

3.2 The CAD-based swept path analysis programme, **AUTODESK VEHICLE TRACKING**, was used to check the ease of manoeuvring of vehicles within the Proposed Temporary Public Vehicle Park, and the swept path analysis drawings are found in **Appendix B**. Vehicles are found to have no manoeuvring problems.

4.0 TRAFFIC ANALYSIS

Design Year

4.1 The Proposed Temporary Public Vehicle Park is scheduled to commence operation in 2026 and operate until 2029. Hence, the design year adopted for traffic analysis is 2029.

Traffic Forecasting

4.2 Year 2029 peak hour traffic flows for the junction capacity analysis is produced (i) with reference to existing traffic flows; (ii) estimated traffic growth rate from 2024 to 2029; and (iii) expected net increase in traffic generation due to the Proposed Temporary Public Vehicle Park.

Estimated Traffic Growth Rate from 2024 to 2029

4.3 Reference is made to the (i) the Annual Average Daily Traffic ("AADT") of the core stations which are located in the vicinity found in the Annual Traffic Census ("ATC") published by Transport Department, and (ii) the population projection for Tai Po District from the "Projections of Population Distribution 2023 – 2031" published by the Planning Department. The above information is presented in **Tables 4.1** and **4.2** respectively.

TABLE 4.1 AADT OF THE CORE STATIONS LOCATED IN THE VICINITY OF THE APPLICATION SITE

Station	5507	5461	Overall
Road	Tai Wo Service Rd W	Fanling Highway	–
From	Lam Kam Rd INT	Lam Kam Rd INT	–
To	Kau Lung Hang Flyover near Kiu Tau Rd	Kau Lung Hang Lo Wai	–
2017	5,540*	92,220*	97,760
2018	5,670*	95,160*	100,830
2019	4,570	95,760	100,330
2020	4,330	92,630	96,960
2021	4,500*	97,150*	101,650
2022	4,360*	92,840*	97,200
2023	4,470*	98,660*	103,130
Average Annual Growth (2017-2023)	-3.51%	1.13%	0.90%

Note: * Estimated by Growth Factor

TABLE 4.2 POPULATION PROJECTIONS OF TAI PO DISTRICT

Year	Population in Tai Po
2024	331,800
2029	341,200
Average Annual Growth 2024 to 2029	0.56%

4.4 **Table 4.1** shows that the annual average traffic growth of 0.90%, between 2017 and 2023. **Table 4.2** shows that the annual population growth between 2024 – 2029 is 0.56%. To be conservative, an annual average traffic growth of 0.90% is adopted for year 2024 – 2029.

Net Increase in Traffic Generation of the Proposed Temporary Public Vehicle Park

Traffic Generation of the Existing uses

4.5 The traffic generation of the existing uses are estimated based on the traffic generation survey conducted at the application site during AM and PM peak of Wednesday, 19th June 2024. The survey result is presented in **Table 4.3**.

TABLE 4.3 TRAFFIC GENERATION OF EXISTING USES

Items	AM Peak		PM Peak	
	Generation	Attraction	Generation	Attraction
Traffic Generation of Existing Uses (plant nursery, ancillary storage) (pcu/hr)	17	13	18	21
	30 (2-way)		39 (2-way)	

4.6 **Table 4.3** shows that the existing uses generates 30 and 39 pcu (2-way) in AM and PM peak hours respectively.

Traffic Generation of the Proposed Temporary Public Vehicle Park

4.7 The TPDM has no trip rates for temporary public vehicle park, hence, the traffic generation of the Proposed Temporary Public Vehicle Park is calculated based on the trip rates derived from the traffic generation survey conducted at a temporary car park at Ma Wo Road in Tai Po. The traffic generation survey was conducted on Wednesday, 19th June 2024, and the survey results, the derived trip rate and the calculated traffic generation of the Proposed Temporary Public Vehicle Park is presented in **Table 4.4**.

TABLE 4.4 TRAFFIC GENERATION OF THE PROPOSED TEMPORARY PUBLIC VEHICLE PARK

Items	Parameter	AM Peak		PM Peak	
		GEN	ATT	GEN	ATT
Skye Parking, Ma Wo Road, Tai Po (246 spaces)	Traffic Generation ⁽¹⁾	pcu/hr	16	15	10
	Derived Trip Rate ⁽²⁾	pcu/space/hr	0.0650	0.0610	0.0407
The Proposed Temporary Public Vehicle Park (Total 211 spaces: 205 for car, 6 for HGV/Coach)	Traffic Generation ⁽¹⁾	pcu/hr	14	13	9
			27 (2-way)		35 (2-way)
GEN – Generation		ATT – Attraction			

4.8 **Table 4.4** shows that the Proposed Temporary Public Vehicle Park is expected to generate 27 and 35 pcu (2-way) in AM and PM peak hours respectively.

Net Increase in Traffic Generation

4.9 The net increase in traffic generation between the existing uses and the Proposed Temporary Public Vehicle Park is presented in **Table 4.5**.

TABLE 4.5 NET INCREASE IN TRAFFIC GENERATION

Scheme	Traffic Generation (pcu/ hr)			
	AM Peak		PM Peak	
	Generation	Attraction	Generation	Attraction
The Proposed Temporary Public Vehicle Park (from Table 4.4) [a]	14	13	9	26
Existing Uses (from Table 4.3) [b]	17	13	18	21
Net Increase [a] – [b]:	-3	+0	-9	+5
	-3 (2-way)		-4 (2-way)	

4.10 Compared to the existing uses, the Proposed Temporary Public Vehicle Park is expected to have net increase of -3 and -4 pcu / hour (2-way) in AM and PM peak respectively.

Year 2029 Peak Hour Traffic Flows

4.11 Year 2029 peak hour traffic flows for the following cases are derived:

$$\text{Year 2029 Without the Proposed Temporary Public Vehicle Park [A]} = \text{Existing Traffic Flow} + \text{estimated traffic growth between 2024 and 2029}$$

$$\text{Year 2029 With the Proposed Temporary Public Vehicle Park [B]} = [A] + \text{Net Increase in traffic generation}$$

4.12 Year 2029 peak hour traffic flows for the above two cases are shown in **Figures 4.1 and 4.2** respectively.

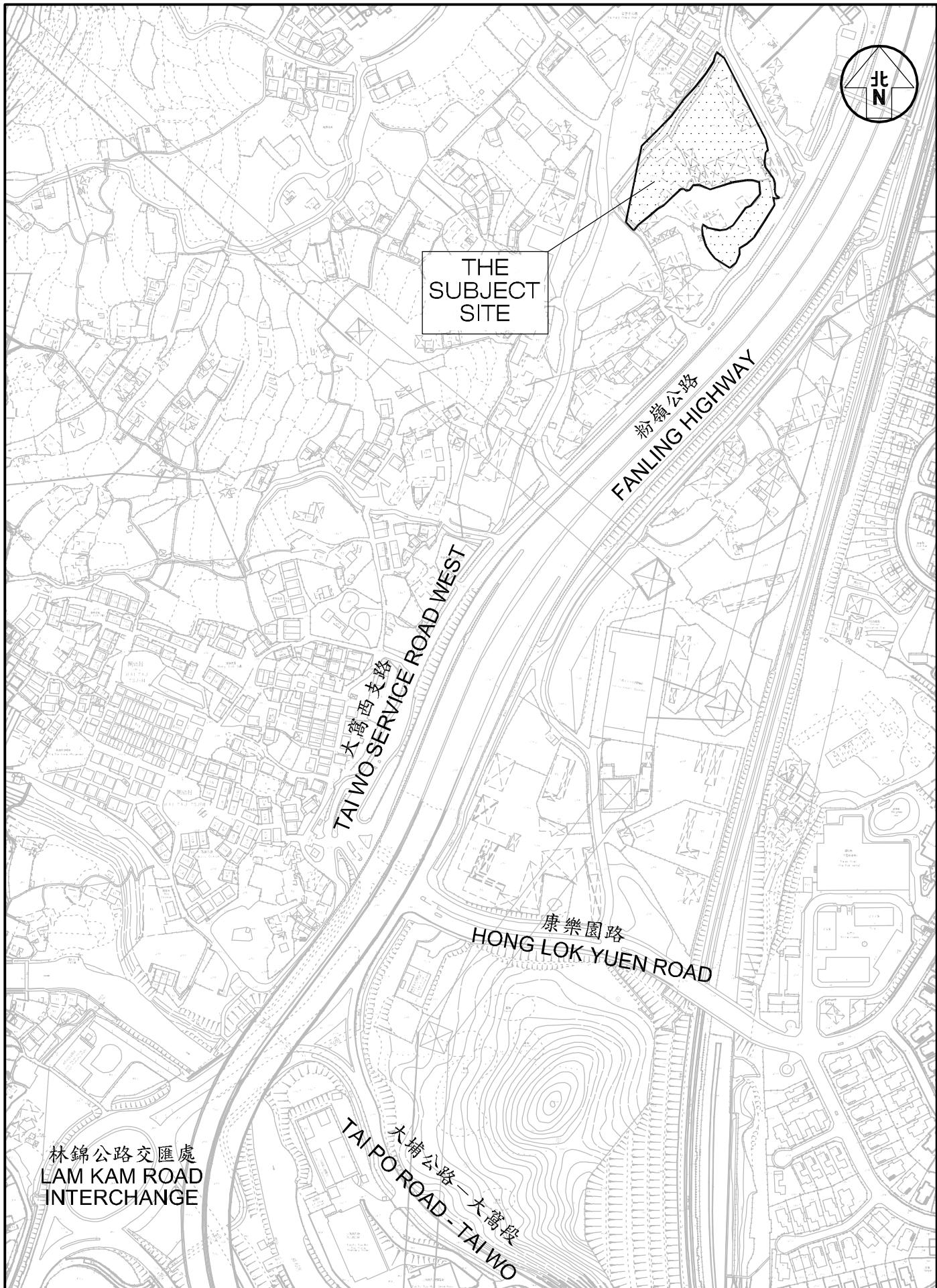
2029 Junction Capacity Analysis

4.13 Year 2029 junction capacity analysis for the case without and with the Proposed Temporary Public Vehicle Park are summarised in **Table 4.6** and detailed calculations are found in the **Appendix A**.

TABLE 4.6 2029 JUNCTION PERFORMANCE

Ref	Junction	Type of Junction (Parameter)	Without the Proposed Temporary Public Vehicle Park		With the Proposed Temporary Public Vehicle Park	
			AM Peak	PM Peak	AM Peak	PM Peak
J1	Tai Wo Service Road West / Hong Lok Yuen Road	Signal (RC)	57%	51%	57%	51%
J2	Lam Kam Road Interchange / Tai Po Road – Tai Wo	Priority (DFC)	0.615	0.514	0.615	0.516
J3	Lam Kam Road Interchange	RA (DFC)	0.510	0.665	0.510	0.669

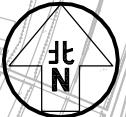
Note: RA – roundabout RC – reserve capacity DFC - design flow/capacity ratio


4.14 The results in **Table 4.6** indicate that the junctions analysed will operate with sufficient capacities in 2029, and the Proposed Temporary Public Vehicle Park has no adverse traffic impact.

5.0 SUMMARY

- 5.1 The application site is located at various lots in D.D. 7 at Kau Lung Hang, Tai Po. Access to the Proposed Temporary Public Vehicle Park is via its existing vehicular access which is provided at the Tai Wo Service Road West.
- 5.2 The Proposed Temporary Public Vehicle Park provides 205 car parking spaces and 6 parking spaces shared-use for HGV and coach for a period of 3 years.
- 5.3 Year 2029 peak hour traffic flows for the junction capacity analysis is produced (i) with reference to existing traffic flows; (ii) estimated traffic growth rate from 2024 to 2029; and (iii) expected net increase in traffic generation due to the Proposed Temporary Public Vehicle Park.
- 5.4 A comparison is made of the performance of the junctions assessed for the cases without and with the Proposed Temporary Public Vehicle Park. The traffic analysis concluded that the junctions analysed will operate with sufficient capacities in 2029, and the Proposed Temporary Public Vehicle Park has no adverse traffic impact.

Figures



Project Title PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES	Job No. J7353	Figure No. 1.1	Scale in A4 1 : 4,000
Designed by L K W	Drawn by S C Y	Checked by K C	Revision Date B 03 SEP 2025
Figure Title LOCATION OF THE APPLICATION SITE	CKM Asia Limited Traffic and Transportation Planning Consultants 21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong Tel : (852) 2520 5990 Fax : (852) 2528 6343 Email : mail@ckmasia.com.hk		

LEGEND :

Surveyed Junction

THE SUBJECT SITE

粉嶺公路
FANLING HIGHWAY

大窩西支路
TAI WO SERVICE ROAD WEST

J01

康樂園路
HONG LOK YUEN ROAD

大埔公路—大窩段
TAI PO ROAD - TAI WO

J02

J03

林錦公路交匯處
LAM KAM ROAD
INTERCHANGE

Project Title
PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES

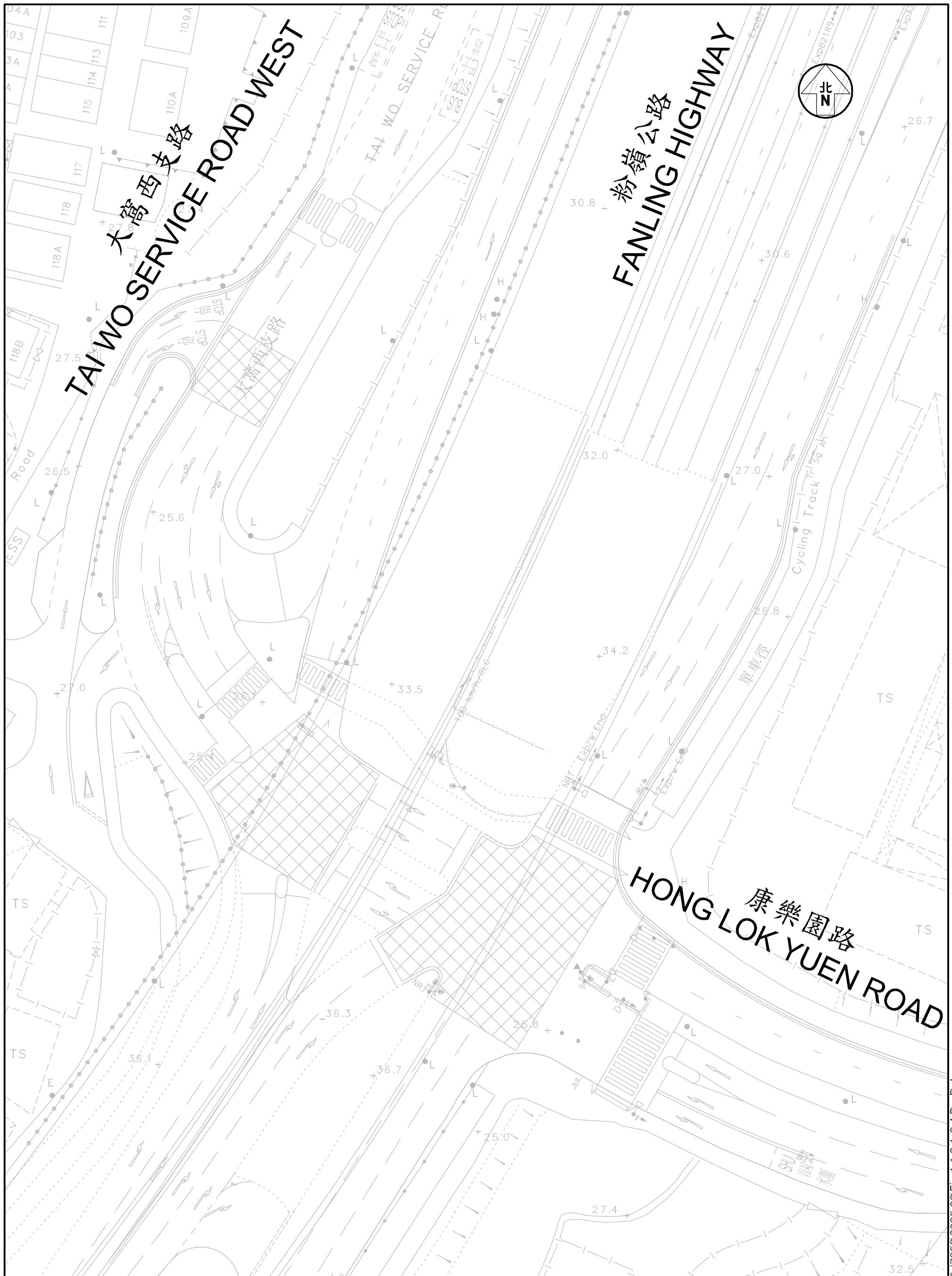
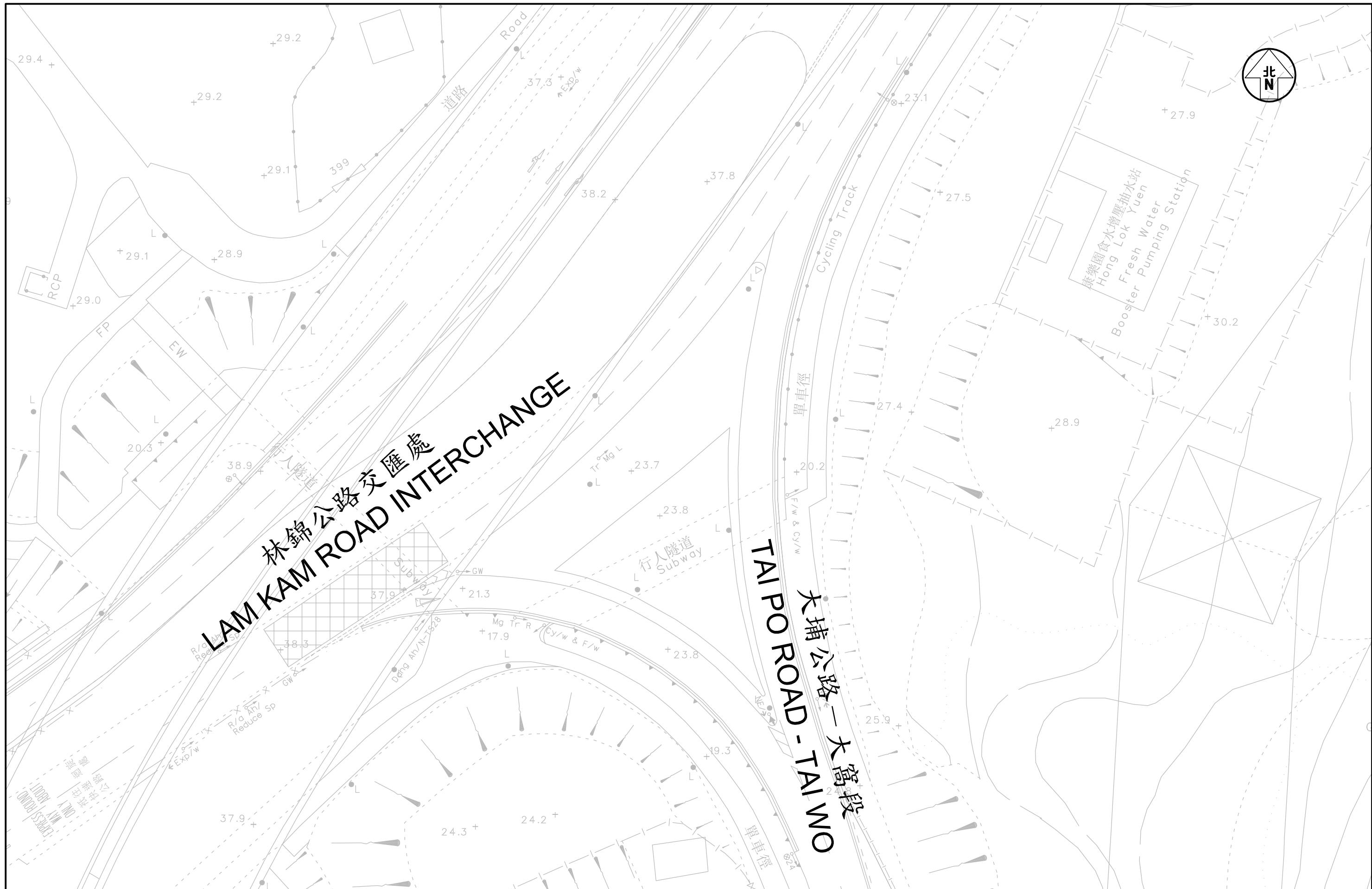

Job No. J7353 Figure No. 2.1 Scale in A4
1 : 4,000
Designed by L K W Drawn by S C Y Checked by K C Revision Date B 03 SEP 2025

Figure Title

LOCATIONS OF SURVEYED JUNCTIONS

CKM Asia Limited


Traffic and Transportation Planning Consultants
21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong
Tel : (852) 2520 5990 Fax : (852) 2528 6343 Email : mail@ckmasia.com.hk

Project Title: PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES

Job No.	Figure No.	Scale in A3		
J7353	2.2	1 : 500		
Designed by	Drawn by	Checked by	Revision	Date
L K W	S C Y	K C	B	03 SEP 2025

Figure Title: LAYOUT OF TAI WO SERVICE ROAD WEST / HONG LOK YUEN ROAD

Project Title

PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES

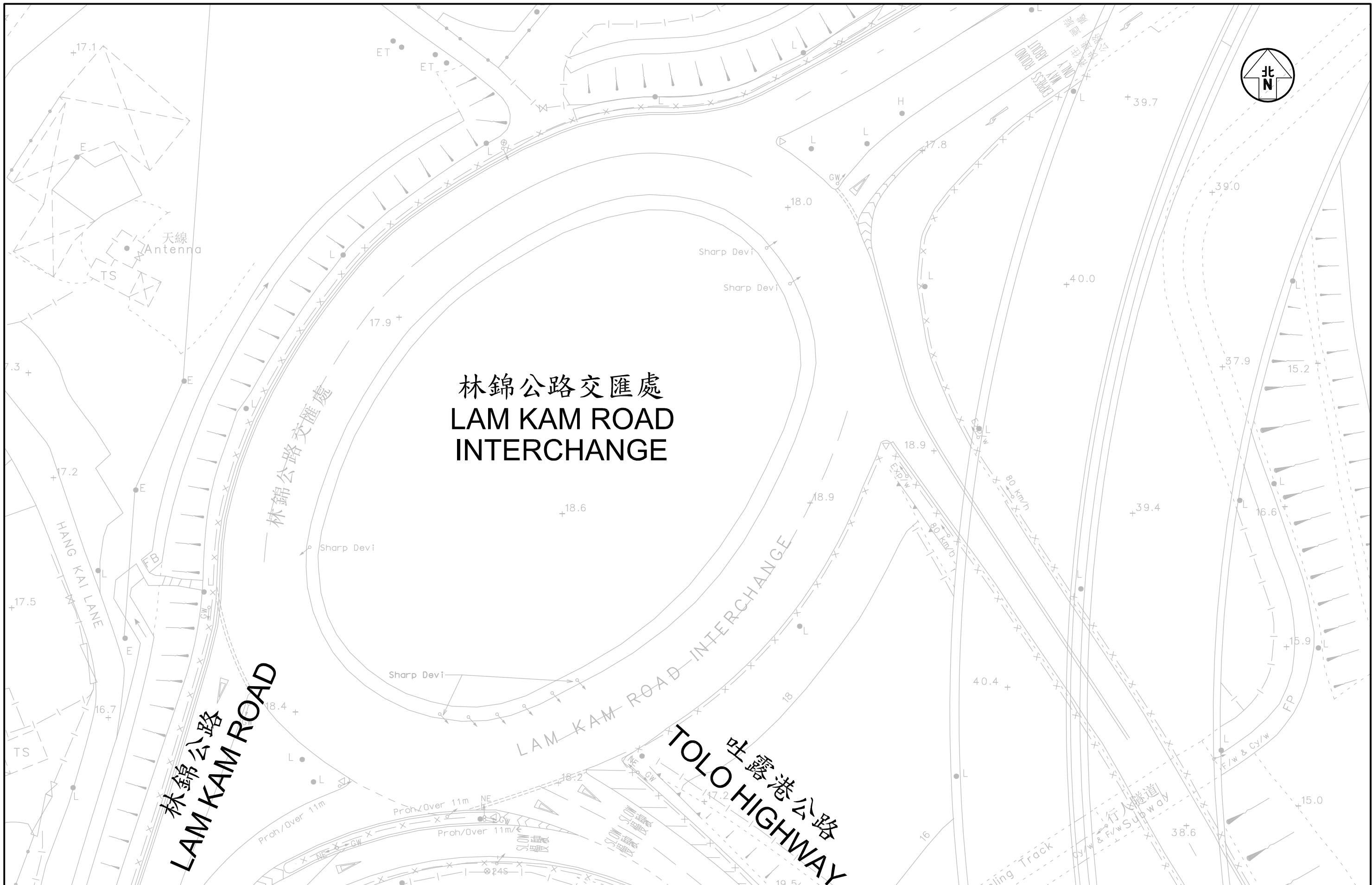
J7353

Figure No.
2.3

Revision
B

CKM Asia Limited
Traffic and Transportation Planning Consultants

Figure Title


LAYOUT OF LAM KAM ROAD INTERCHANGE / TAI PO ROAD - TAI WO

Designed by L K W	Drawn by S C Y	Checked by K C
Scale in A3		Date 03 SEP 2025
1 : 500		

林錦公路交匯處 LAM KAM ROAD INTERCHANGE

林錦公路
LAM KAM ROAD

吐露港公路
TOLO HIGHWAY

Project Title

PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING
OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES

J7353

Figure No.
2.4

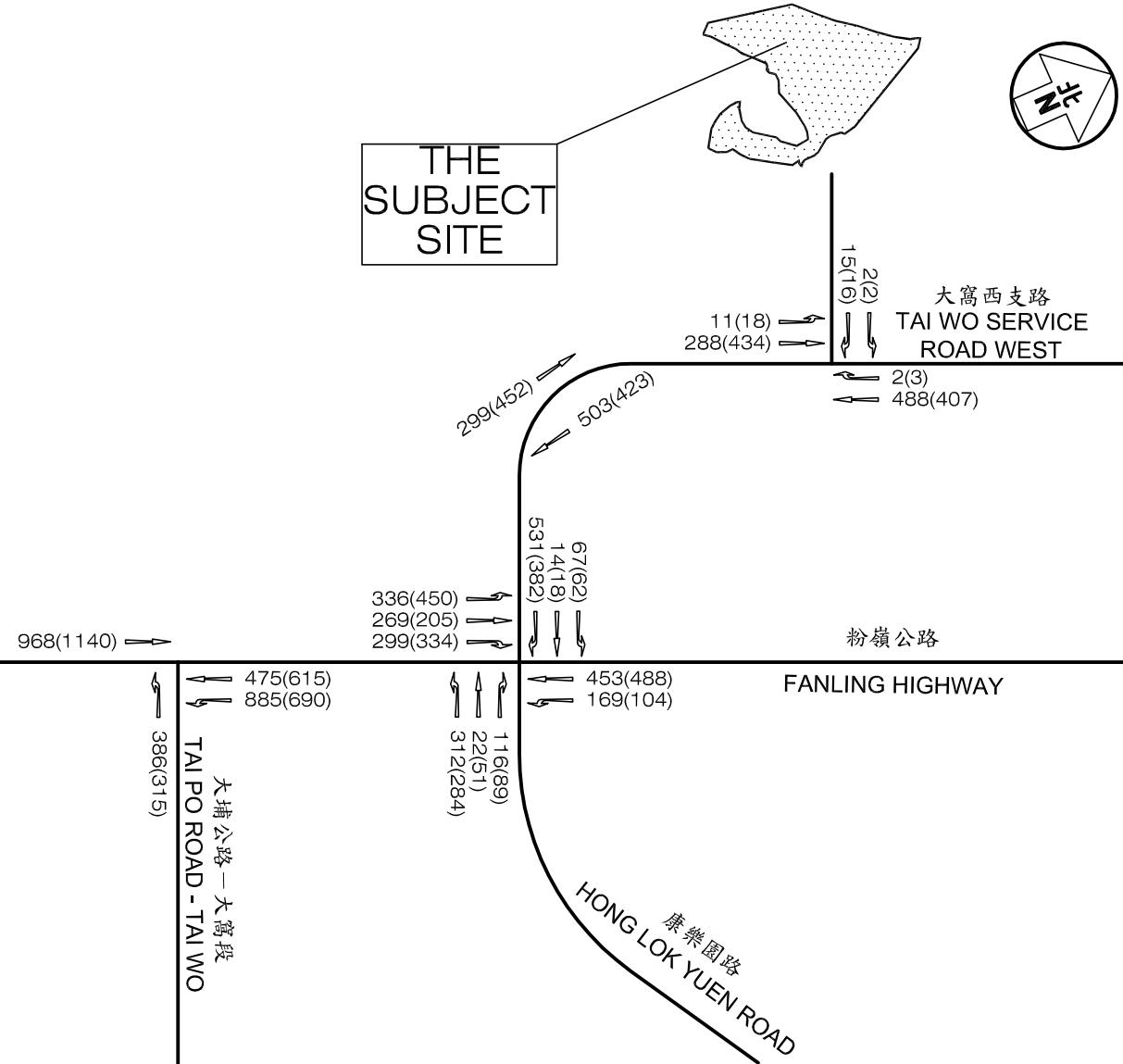
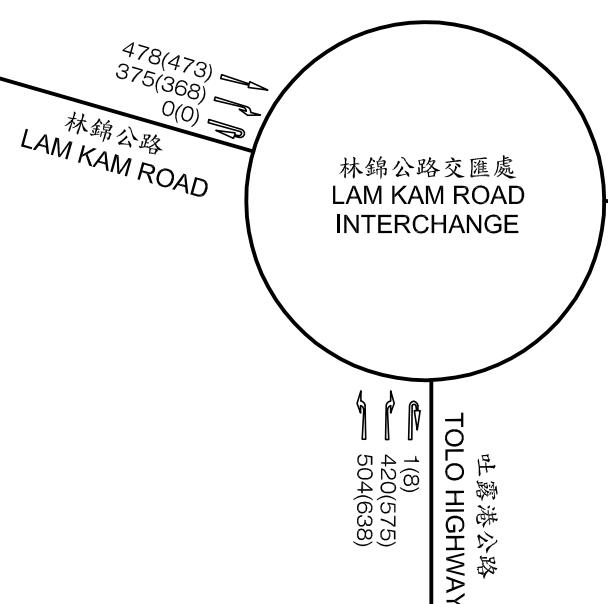
Revision
B

Figure Title

LAYOUT OF LAM KAM ROAD INTERCHANGE

Designed by L K W	Drawn by S C Y	Checked by K C
Scale in A3		Date 03 SEP 2025
1 : 500		

CKM Asia Limited



Traffic and Transportation Planning Consultants
21st Floor, Methodist House, 36 Hennessy Road
Wan Chai, Hong Kong
Tel : (852) 2520 5990 Fax : (852) 2528 6343
Email : mail@ckmasia.com.hk

LEGEND :

123 - AM peak hour traffic flow, pcu / hr
(456) - PM peak hour traffic flow, pcu / hr

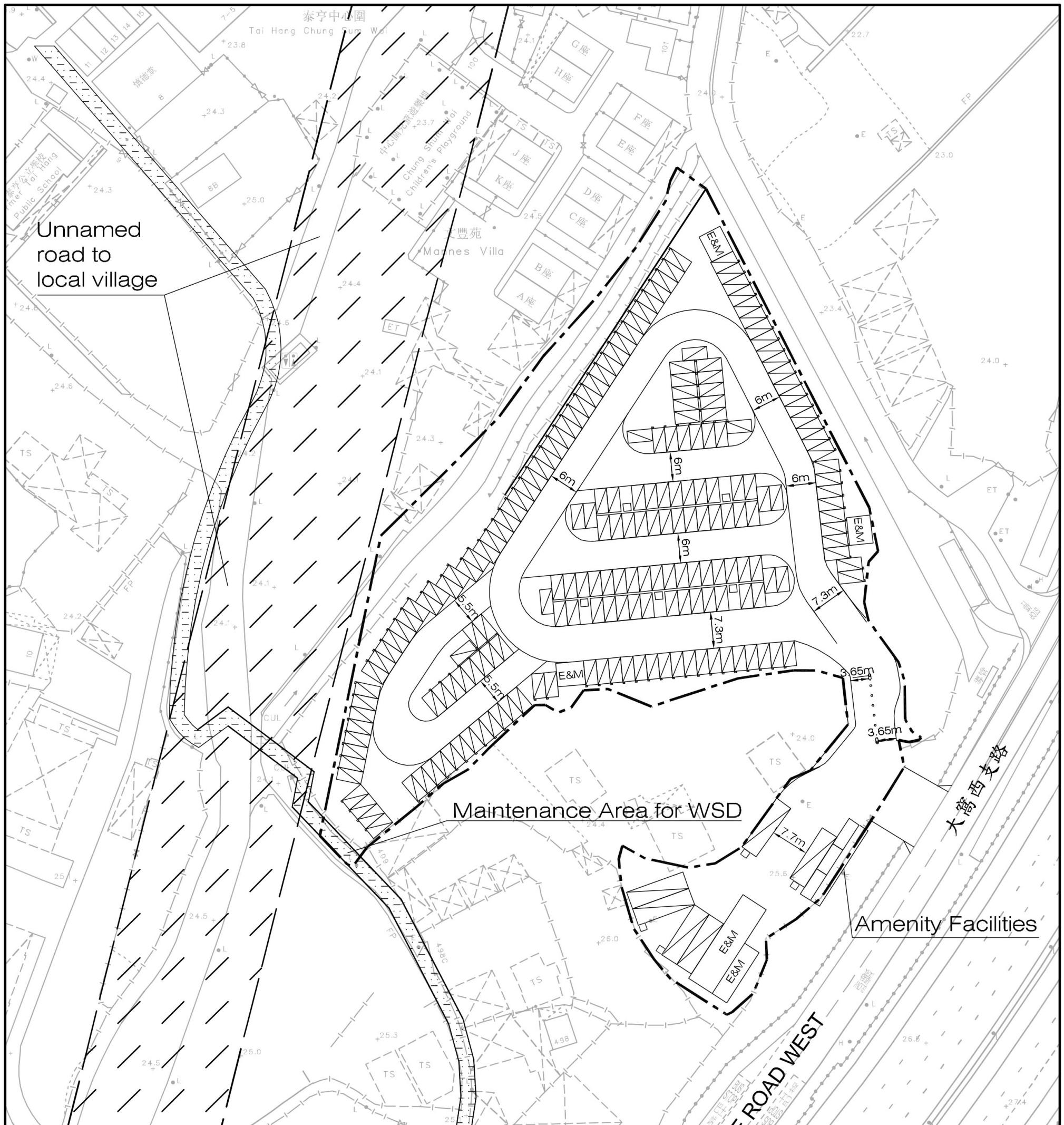
THE
SUBJECT
SITE

Project Title
PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING
OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES

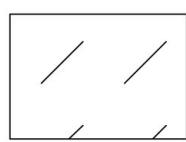
J7353

Figure No.
2.5

Revision
B


CKM Asia Limited
Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road,
Wan Chai, Hong Kong
Tel : (852) 2520 5990 Fax : (852) 2528 6343
Email : mail@ckmasia.com.hk


Figure Title

EXISTING PEAK HOUR TRAFFIC FLOWS

Designed by L K W	Drawn by S C Y	Checked by K C
Scale in A4 N.T.S.	Date 03 SEP 2025	

LEGEND :

Waterworks Reserve

Car Parking Space
@5.0m(L) X 2.5m(W)

"Shared-use"
HGV and Coach Parking Space
@12.0m(L) X 3.5m(W)

Project Title

PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES

Job No.

J7353

Figure No.

3.1

Scale in A3

1 : 800

Designed by

L K W

Drawn by

S C Y

Checked by

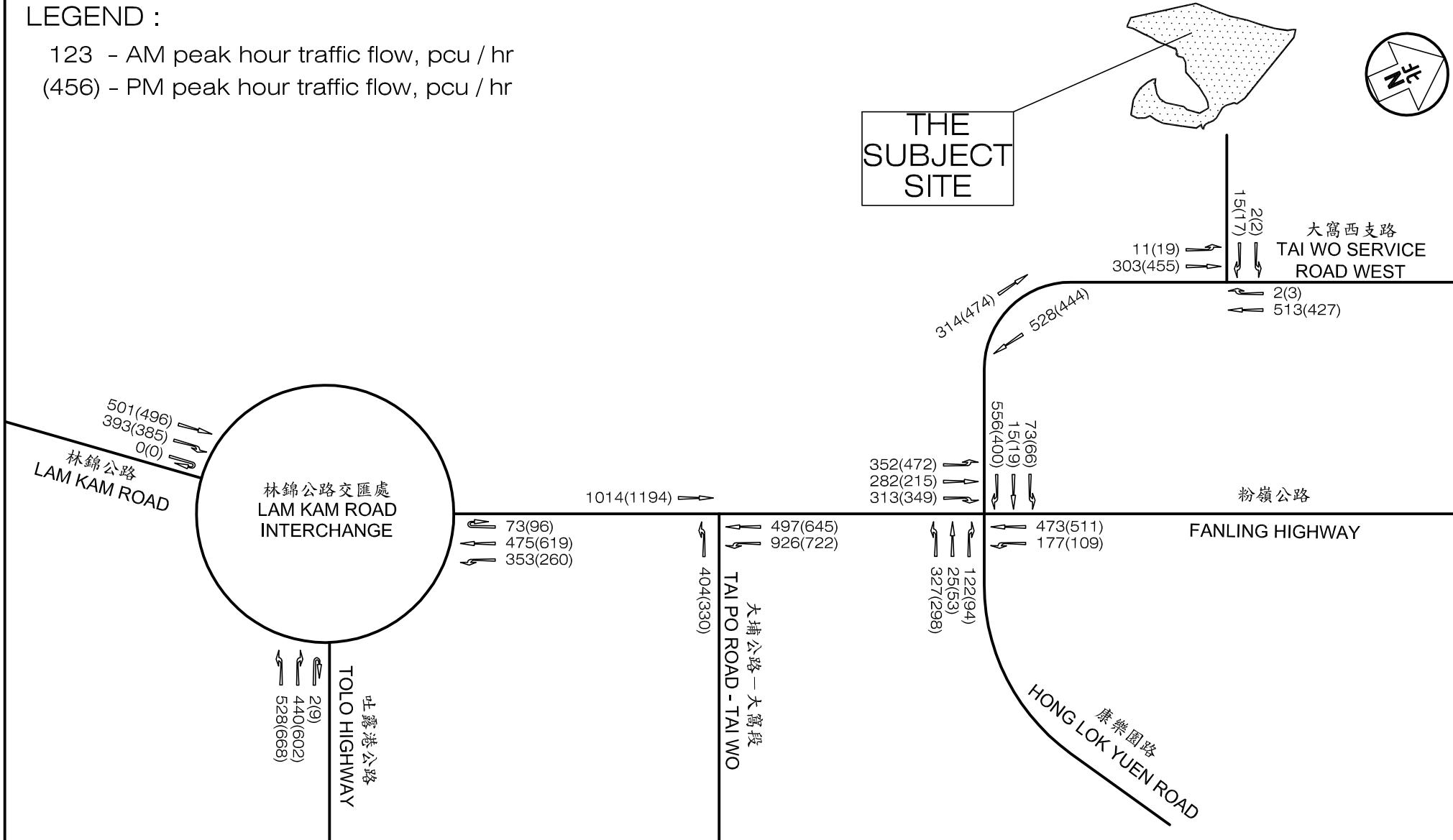
K C

Revision

D

Date

18 DEC 2025


Figure Title

LAYOUT PLAN OF THE PROPOSED TEMPORARY PUBLIC VEHICLE PARK

CKM Asia Limited
Traffic and Transportation Planning Consultants
21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong
Tel : (852) 2520 5990 Fax : (852) 2528 6343 Email : mail@ckmasia.com.hk

LEGEND :

123 - AM peak hour traffic flow, pcu / hr
(456) - PM peak hour traffic flow, pcu / hr

Project Title **PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES**

J7353

Figure No. **4.1**

Revision **B**

CKM Asia Limited

Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road,
Wan Chai, Hong Kong
Tel : (852) 2520 5990 Fax : (852) 2528 6343
Email : mail@ckmasia.com.hk

Figure Title

2029 PEAK HOUR TRAFFIC FLOWS WITHOUT THE PROPOSED TEMPORARY PUBLIC VEHICLE PARK

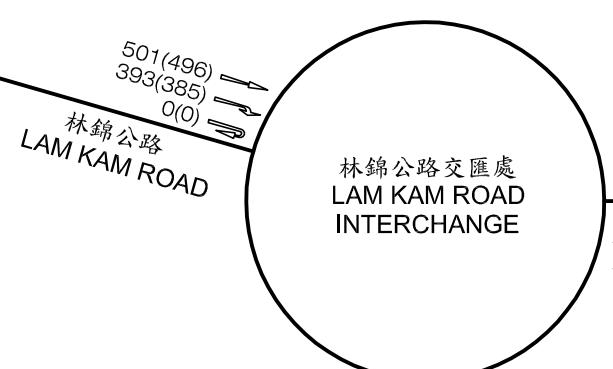
Designed by **L K W**

Drawn by **S C Y**

Checked by **K C**

Scale in A4

N.T.S.


Date **03 SEP 2025**

LEGEND :

123 - AM peak hour traffic flow, pcu / hr
(456) - PM peak hour traffic flow, pcu / hr

THE
SUBJECT
SITE

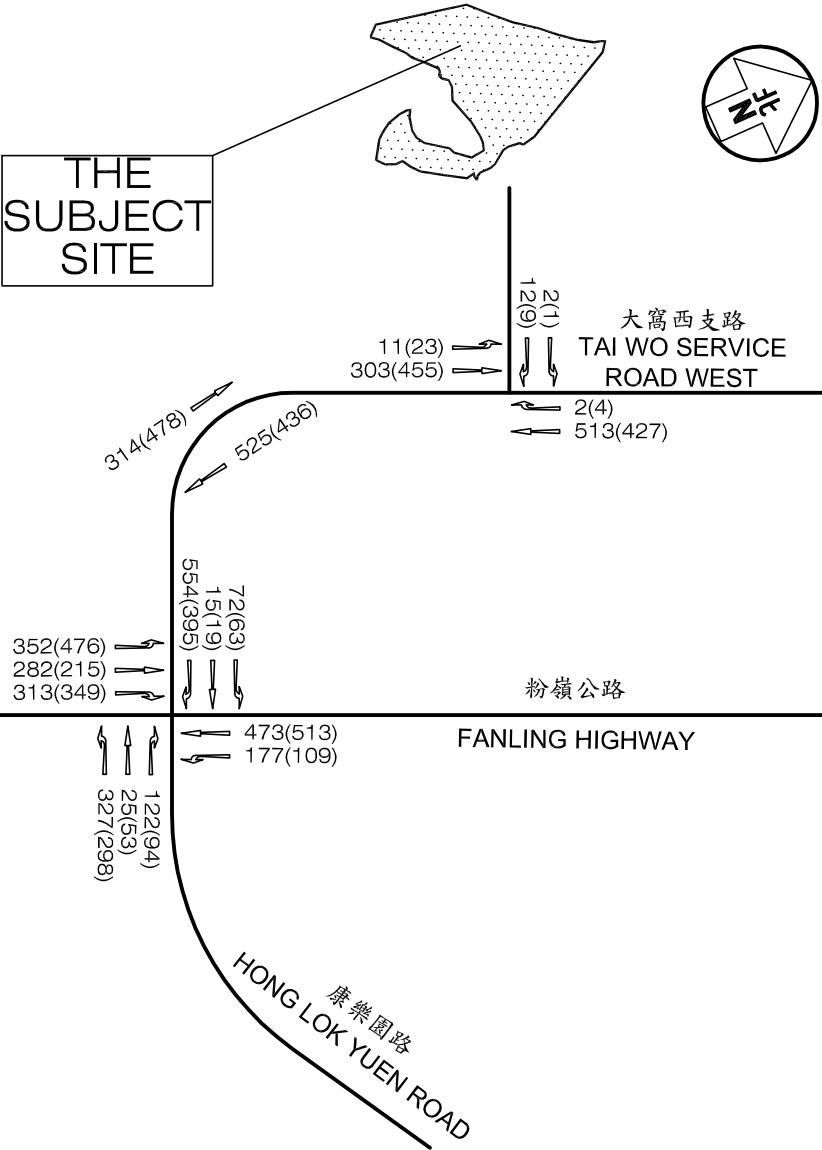
1014(1198) →

73(100)
475(619)
352(258)

496(645)
925(719)

大埔公路 - 大窩段
TAI PO ROAD - TAI WO

404(332)


501(496)
393(385)
0(0)

林錦公路
LAM KAM ROAD

林錦公路交匯處
LAM KAM ROAD
INTERCHANGE

吐露港公路
TOLO HIGHWAY

2(9)
440(602)
528(668)

Project Title

PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING
OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES

J7353

Figure No.

4.2

Revision

B

Figure Title

2029 PEAK HOUR TRAFFIC FLOWS WITH THE
PROPOSED TEMPORARY PUBLIC VEHICLE PARK

Designed by L K W Drawn by S C Y Checked by K C

Scale in A4
N.T.S.

Date

03 SEP 2025

CKM Asia Limited

Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road,
Wan Chai, Hong Kong
Tel : (852) 2520 5990 Fax : (852) 2528 6343
Email : mail@ckmasia.com.hk

Appendix A

Junction Analysis

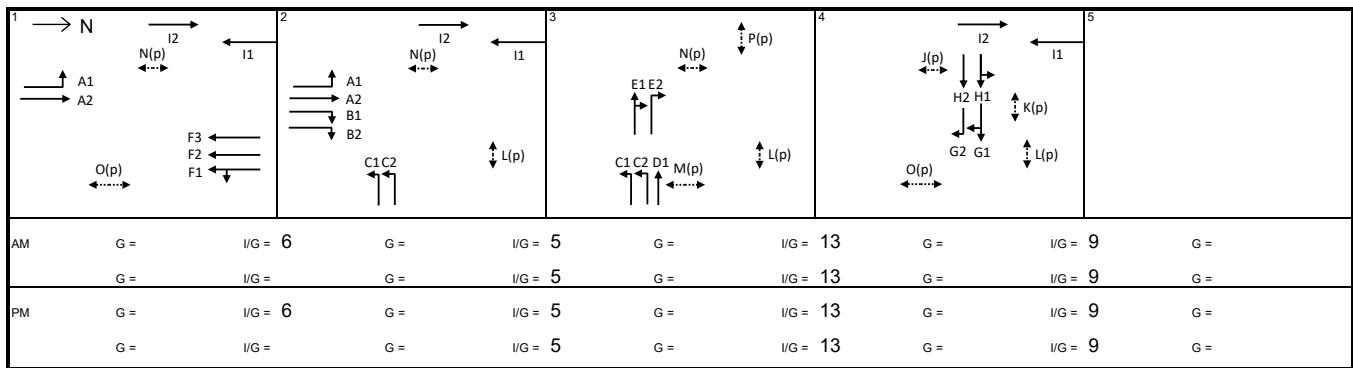
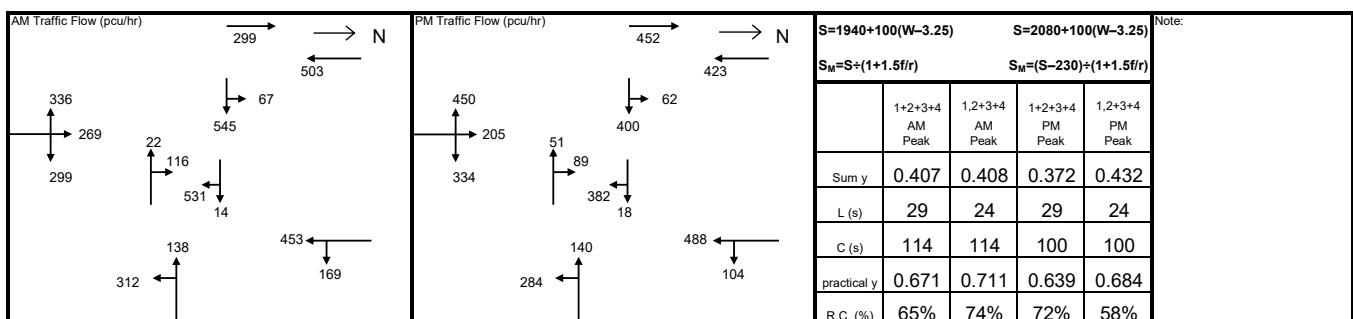
Signal Junction Analysis

Junction: Tai Wo Service Road West / Hong Lok Yuen Road

Job Number: J7353

Scenario: Existing Condition

P. 1

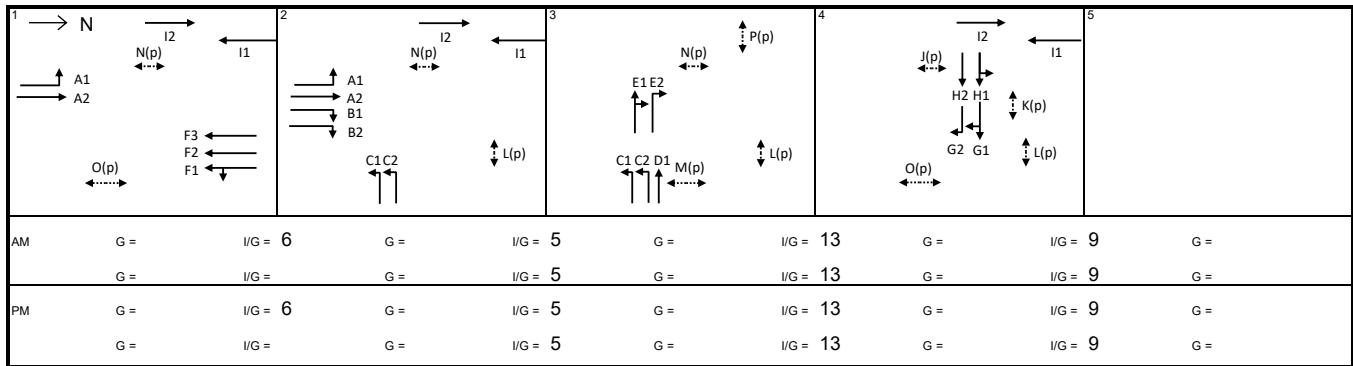
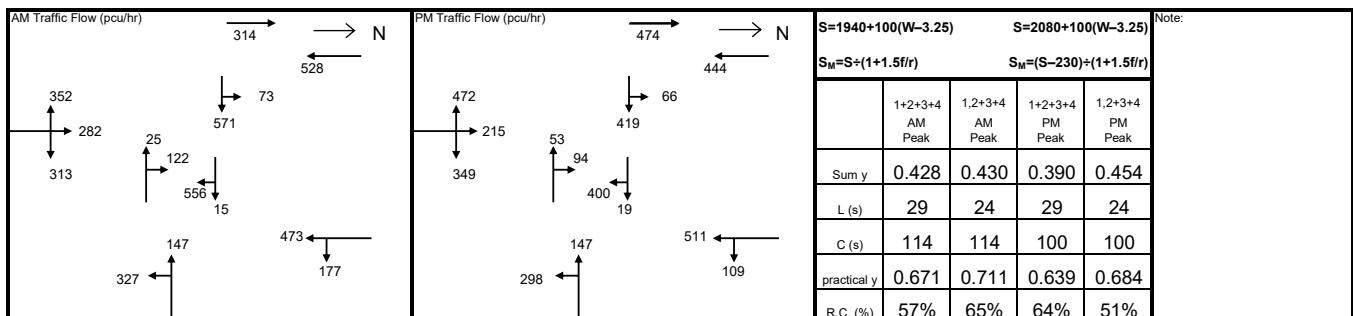


Design Year: 2024

Designed By: _____

Checked By: _____

Date: 8 Sep 2025

Approach	Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	AM Peak					PM Peak					
						Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	
Fanling Highway NB	LT	A1	1,2	3.50	25.0		100	1854	336	0.181		100	1854	450	0.243	
	SA	A2	1,2	3.50				1965	269	0.137			1965	205	0.104	
	RT	B1	2	3.50	30.0		100	2005	150	0.075		100	2005	168	0.084	
	RT	B2	2	3.50	25.0		100	1986	149	0.075	0.075	100	1986	166	0.084	0.084
Fanling Highway SB	LT+SA	F1	1	3.50	10.0		94	1722	181	0.105	0.105	58	1808	178	0.098	0.098
	SA	F2	1	3.50				2105	221	0.105			2105	207	0.098	
	SA	F3	1	3.50				2105	221	0.105			2105	207	0.098	
	LT	C1	2,3	3.50	10.0		100	1709	147	0.086		100	1709	134	0.078	
Hong Lok Yuen Road WB	LT	C2	2,3	3.50	15.0		100	1914	165	0.086		100	1914	150	0.078	
	SA	D1	3	3.50				1965	138	0.070	0.070		1965	140	0.071	0.071
	SA+RT	E1	3	4.00	15.0		69	2016	70	0.035		29	2094	72	0.035	
	RT	E2	3	4.00	15.0		100	1959	68	0.035		100	1959	68	0.035	
Tai Wo Service Rd West EB	LT+SA	H1	4	4.00	10.0		24	1754	275	0.157	0.157	30	1749	207	0.118	0.118
	SA	H2	4	4.00				2155	337	0.157			2155	255	0.118	
	SA+RT	G1	4	4.00	20.0		95	1881	267	0.142		91	1886	196	0.104	
	RT	G2	4	4.00	15.0		100	1959	278	0.142		100	1959	204	0.104	
Tai Wo Service Road West SB	SA	I1	1,2,4	4.00				2015	503	0.250			2015	423	0.210	
Tai Wo Service Road West NB	SA	I2	1,2,4	4.00				2015	299	0.148			2015	452	0.224	
pedestrian phase	$J_{(P)}$	4					min crossing time =	7	sec GM +	7	sec FGM =	14	sec			
	$K_{(P)}$	4					min crossing time =	9	sec GM +	7	sec FGM =	16	sec			
	$L_{(P)}$	2,3,4					min crossing time =	7	sec GM +	12	sec FGM =	19	sec			
	$M_{(P)}$	3					min crossing time =	14	sec GM +	11	sec FGM =	25	sec			
	$N_{(P)}$	1,2,3					min crossing time =	7	sec GM +	9	sec FGM =	16	sec			
	$O_{(P)}$	1,4					min crossing time =	7	sec GM +	10	sec FGM =	17	sec			
	$P_{(P)}$	3					min crossing time =	7	sec GM +	6	sec FGM =	13	sec			

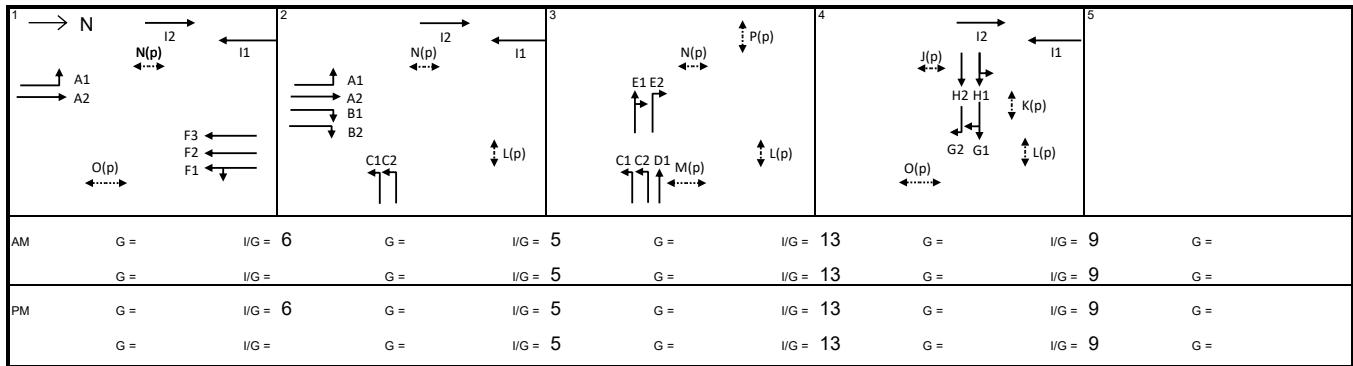
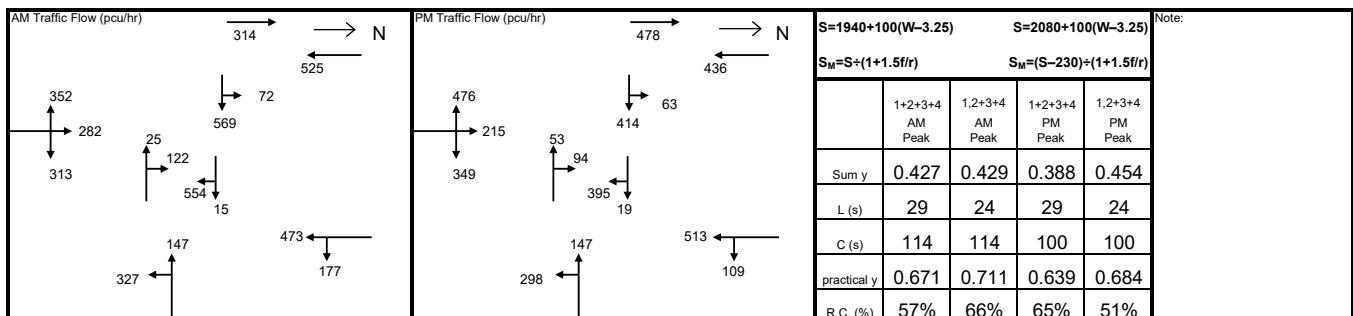


Signal Junction Analysis

Junction: Tai Wo Service Road West / Hong Lok Yuen Road
 Scenario: Without the the Proposed Temporary Public Vehicle Park
 Design Year: 2029

Job Number: J7353
 P. 2

Designed By: Checked By: Date: 8 Sep 2025

Approach	Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	AM Peak					PM Peak					
						Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	
Fanling Highway NB	LT	A1	1.2	3.50	25.0		100	1854	352	0.190		100	1854	472	0.255	
	SA	A2	1.2	3.50				1965	282	0.144			1965	215	0.109	
	RT	B1	2	3.50	30.0		100	2005	157	0.078		100	2005	175	0.087	
	RT	B2	2	3.50	25.0		100	1986	156	0.078	0.078	100	1986	174	0.087	0.087
Fanling Highway SB	LT+SA	F1	1	3.50	10.0		94	1722	189	0.110	0.110	59	1805	186	0.103	0.103
	SA	F2	1	3.50				2105	231	0.110			2105	217	0.103	
	SA	F3	1	3.50				2105	231	0.110			2105	217	0.103	
	LT	C1	2,3	3.50	10.0		100	1709	154	0.090		100	1709	141	0.082	
Hong Lok Yuen Road WB	LT	C2	2,3	3.50	15.0		100	1914	173	0.090		100	1914	157	0.082	
	SA	D1	3	3.50				1965	147	0.075	0.075		1965	147	0.075	0.075
	SA+RT	E1	3	4.00	15.0		67	2020	75	0.037		30	2092	76	0.036	
	RT	E2	3	4.00	15.0		100	1959	72	0.037		100	1959	71	0.036	
Tai Wo Service Road West EB	LT+SA	H1	4	4.00	10.0		25	1752	289	0.165	0.165	30	1740	217	0.125	0.125
	SA	H2	4	4.00				2155	355	0.165			2155	268	0.125	
	SA+RT	G1	4	4.00	20.0		95	1881	280	0.149		91	1886	206	0.109	
	RT	G2	4	4.00	15.0		100	1959	291	0.149		100	1959	213	0.109	
Tai Wo Service Road West SB	SA	I1	1,2,4	4.00				2015	528	0.262			2015	444	0.220	
Tai Wo Service Road West NB	SA	I2	1,2,4	4.00				2015	314	0.156			2015	474	0.235	
pedestrian phase	$J_{(P)}$	4					min crossing time =	7	sec GM +	7	sec FGM =	14	sec			
	$K_{(P)}$	4					min crossing time =	9	sec GM +	7	sec FGM =	16	sec			
	$L_{(P)}$	2,3,4					min crossing time =	7	sec GM +	12	sec FGM =	19	sec			
	$M_{(P)}$	3					min crossing time =	14	sec GM +	11	sec FGM =	25	sec			
	$N_{(P)}$	1,2,3					min crossing time =	7	sec GM +	9	sec FGM =	16	sec			
	$O_{(P)}$	1,4					min crossing time =	7	sec GM +	10	sec FGM =	17	sec			
	$P_{(P)}$	3					min crossing time =	7	sec GM +	6	sec FGM =	13	sec			



Signal Junction Analysis

Junction: Tai Wo Service Road West / Hong Lok Yuen Road
 Scenario: With the the Proposed Temporary Public Vehicle Park
 Design Year: 2029

Job Number: J7353
 P. 3

Designed By: Checked By: Date: 8 Sep 2025

Approach	Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	AM Peak					PM Peak					
						Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	
Fanling Highway NB	LT	A1	1.2	3.50	25.0		100	1854	352	0.190		100	1854	476	0.257	
	SA	A2	1.2	3.50				1965	282	0.144			1965	215	0.109	
	RT	B1	2	3.50	30.0		100	2005	157	0.078		100	2005	175	0.087	
	RT	B2	2	3.50	25.0		100	1986	156	0.078	0.078	100	1986	174	0.087	0.087
Fanling Highway SB	LT+SA	F1	1	3.50	10.0		94	1722	189	0.110	0.110	58	1808	187	0.103	0.103
	SA	F2	1	3.50				2105	231	0.110			2105	218	0.103	
	SA	F3	1	3.50				2105	231	0.110			2105	218	0.103	
	LT	C1	2,3	3.50	10.0		100	1709	154	0.090		100	1709	141	0.082	
Hong Lok Yuen Road WB	LT	C2	2,3	3.50	15.0		100	1914	173	0.090		100	1914	157	0.082	
	SA	D1	3	3.50				1965	147	0.075	0.075		1965	147	0.075	0.075
	SA+RT	E1	3	4.00	15.0		67	2020	75	0.037		30	2092	76	0.036	
	RT	E2	3	4.00	15.0		100	1959	72	0.037		100	1959	71	0.036	
Tai Wo Service Road West EB	LT+SA	H1	4	4.00	10.0		25	1752	287	0.164	0.164	30	1740	213	0.122	0.122
	SA	H2	4	4.00				2155	354	0.164			2155	264	0.122	
	SA+RT	G1	4	4.00	20.0		95	1881	279	0.148		91	1886	203	0.108	
	RT	G2	4	4.00	15.0		100	1959	290	0.148		100	1959	211	0.108	
Tai Wo Service Road West SB	SA	I1	1,2,4	4.00				2015	525	0.261			2015	436	0.216	
Tai Wo Service Road West NB	SA	I2	1,2,4	4.00				2015	314	0.156			2015	478	0.237	
pedestrian phase	$J_{(P)}$	4					min crossing time =	7	sec GM +	7	sec FGM =	14	sec			
	$K_{(P)}$	4					min crossing time =	9	sec GM +	7	sec FGM =	16	sec			
	$L_{(P)}$	2,3,4					min crossing time =	7	sec GM +	12	sec FGM =	19	sec			
	$M_{(P)}$	3					min crossing time =	14	sec GM +	11	sec FGM =	25	sec			
	$N_{(P)}$	1,2,3					min crossing time =	7	sec GM +	9	sec FGM =	16	sec			
	$O_{(P)}$	1,4					min crossing time =	7	sec GM +	10	sec FGM =	17	sec			
	$P_{(P)}$	3					min crossing time =	7	sec GM +	6	sec FGM =	13	sec			

Priority Junction Analysis

Junction:	Lam Kam Interchange / Tai Po Road – Tai Wo		
Design Year:	2024	Job Number:	J7353
Scenario:	Existing Condition		

The predictive equations of capacity of movement are:

$$Q-BA = D[627 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB)]$$

$$Q-BC = E[745 - Y(0.364q-AC + 0.144q-AB)]$$

$$Q-CB = E[745 - 0.364Y(q-AC + q-AB)]$$

The geometric parameters represented by D, E, F are:

$$D = [1 \pm 0.094(w-BA - 3.65)] [1 \pm 0.0009(V-rBA - 120)] [1 \pm 0.0006(V-lBA - 150)]$$

$$E = [1 \pm 0.094(w-BC - 3.65)] [1 \pm 0.0009(V-rBC - 120)]$$

$$E = [1 + 0.094(w-BC - 3.65)][1 + 0.0009(V-IBC - 120)]$$

where $Y = 1 - 0.0345W$

q-AB etc = the design flow of movement AB etc

q-AB, etc - the design
W = major road width

W = major road width

W-CR = central reserve width
w_BA etc = lane width to vehicle

v-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc

v-IBA, etc = visibility to the right for waiting vehicles in stream BA, etc
 v-IBA, etc = visibility to the left for waiting vehicles in stream BA, etc

Geometry :	Input	Input	Input	Calculated
	W 14.40	V-rBA	w-BA	D 0.5332
	W-CR 9.00	V-IBA	w-BC 4.70	E 1.1185
		V-rBC 140	w-CB	F 0.5860
		V-rCB		Y 0.5032

Analysis :

Traffic Flows, pcu/hr	AM	PM	Capacity, pcu/hr	AM	PM
q-CA	968	1140	Q-BA	261	245
q-CB	0	0	Q-BC	664	651
q-AB	885	690	Q-CB	291	296
q-AC	475	615	Q-BAC	664	651
q-BA	0	0			
q-BC	386	315			
f	1,000	1,000			

Ratio-of-flow to Capacity	AM	PM
B-A	0.000	0.000
B-C	0.581	0.484
C-B	0.000	0.000

Priority Junction Analysis

Junction:	Lam Kam Interchange / Tai Po Road – Tai Wo		
Design Year:	2029	Job Number:	J7353
Scenario:	Without the Proposed Temporary Public Vehicle Park		
Date: 8 Sep 2025			P. 5
Lam Kam Road Interchange (Arm C)			Lam Kam Road Interchange (Arm A)
1194 1014		497 645 926 722	
←			↓
North			
404 330			
Tai Po Road - Tai Wo (Arm B)			
AM PM			

The predictive equations of capacity of movement are:

$$Q-BA = D[627 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB)]$$

$$Q-BC = E[745 - Y(0.364q-AC + 0.144q-AB)]$$

$$Q-CB = F[745 - 0.364Y(q-AC + q-AB)]$$

The geometric parameters represented by D, E, F are:

$$D = [1 + 0.094(w-BA - 3.65)][1 + 0.0009(V-rBA - 120)][1 + 0.0006(V-IBA - 150)]$$

$$E = [1 + 0.094(w-BC - 3.65)][1 + 0.0009(V-rBC - 120)]$$

$$F = [1 + 0.094(w-CB - 3.65)][1 + 0.0009(V-rCB - 120)]$$

where $Y = 1 - 0.0345W$

q-AB, etc = the design flow of movement AB, etc

W = major road width

W-CR = central reserve width

w-BA, etc = lane width to vehicle

v-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc

v-IBA, etc = visibility to the left for waiting vehicles in stream BA, etc

Geometry :

	Input	Input	Input		Calculated
W	14.40	V-rBA	w-BA	D	0.5332
W-CR	9.00	V-IBA	w-BC	E	1.1185
		V-rBC	140	F	0.5860
		V-rCB	w-CB	Y	0.5032

Analysis :

	Traffic Flows, pcu/hr	AM	PM	Capacity, pcu/hr	AM	PM
q-CA		1014	1194	Q-BA	255	237
q-CB		0	0	Q-BC	656	643
q-AB		926	722	Q-CB	284	290
q-AC		497	645	Q-BAC	656	643
q-BA		0	0			
q-BC		404	330			
f		1.000	1.000			

	Ratio-of-flow to Capacity	AM	PM
B-A		0.000	0.000
B-C		0.615	0.514
C-B		0.000	0.000

Priority Junction Analysis

Junction: Lam Kam Interchange / Tai Po Road – Tai Wo
Design Year: 2029 Job Number: J7353 Date: 8 Sep 2025
Scenario: With the Proposed Temporary Public Vehicle Park P. 6

The predictive equations of capacity of movement are:

$$Q-BA = D[627 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB)]$$

$$Q-BC = E[745 - Y(0.364q-AC + 0.144q-AB)]$$

$$Q-CB = F[745 - 0.364Y(q-AC + q-AB)]$$

The geometric parameters represented by D, E, F are:

$$D = [1 + 0.094(w-BA - 3.65)][1 + 0.0009(V-rBA - 120)][1 + 0.0006(V-IBA - 150)]$$

$$E = [1 \pm 0.094(w-BC - 3.65)] [1 \pm 0.0009(V-rBC - 120)]$$

$$E = [1 \pm 0.094(w-BC - 3.65)] [1 \pm 0.0009(V-rBC - 120)]$$

where $Y = 1 - 0.0345W$

q-AB etc = the design flow of movement AB etc

W = major road width

W = major road width

w-CR = central reserve width
w-BA etc = lane width to vehicle

v-rBA etc = visibility to the right for waiting vehicles in stream BA etc

v-IBA, etc = visibility to the right for waiting vehicles in stream BA, etc
 v-IBA, etc = visibility to the left for waiting vehicles in stream BA, etc

Geometry :	Input	Input	Input	Calculated
	W 14.40	V-rBA	w-BA	D 0.5332
	W-CR 9.00	V-IBA	w-BC 4.70	E 1.1185
		V-rBC 140	w-CB	F 0.5860
		V-rCB		Y 0.5032

Analysis :

Traffic Flows, pcu/hr	AM	PM	Capacity, pcu/hr	AM	PM
q-CA	1014	1198	Q-BA	255	237
q-CB	0	0	Q-BC	657	643
q-AB	925	719	Q-CB	284	290
q-AC	496	645	Q-BAC	657	643
q-BA	0	0			
q-BC	404	332			
f	1,000	1,000			

Ratio-of-flow to Capacity	AM	PM
B-A	0.000	0.000
B-C	0.615	0.516
C-B	0.000	0.000

Roundabout Analysis

Location	Lam Kam Interchange							
Scenario	Existing Condition							
Design Year	2024		Job Number		J7353		Date	08 Sep 2025

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_c
From A	0	478	375						853	491
From B	454	70	0						524	376
From C	0	420	1						421	524
From D										
From E										
From F										
From G										
From H										
Total	454	968	376						1798	

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_c
From A	0	473	368						841	675
From B	591	92	0						683	376
From C	0	575	8						583	683
From D										
From E										
From F										
From G										
From H										
Total	591	1140	376						2107	

Legend

Arm	Road (in clockwise order)
A	Lam Kam Road
B	Lam Kam Road Interchange
C	Slip Road to Tolo Highway
D	
E	
F	
G	
H	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	\emptyset (°)	S
From A	7.0	6.0	100.0	14.5	78	18	0.1
From B	4.5	4.0	33.5	9.5	78	60	0.1
From C	8.5	7.0	42.3	9.5	78	22	0.3
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_c q_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	$= 1 - 0.00347(\emptyset - 30) - 0.978[(1/r) - 0.05]$
F	$= 303x_2$
f_c	$= 0.210t_D(1 + 0.2x_2)$
t_D	$= 1 + 0.5/(1 + M)$
M	$= \exp[(D - 60)/10]$
x_2	$= v + (e - v)/(1 + 2S)$
S	$= 1.6(e - v)/L$

Limitation

e	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
\emptyset	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

Arm	x_2	M	t_D	K	F	f_c	Q_E		Entry Flow		RFC	
							AM	PM	AM	PM	AM	PM
From A	6.819	6.050	1.071	1.081	2066	0.532	1951	1845	853	841	0.437	0.456
From B	4.428	6.050	1.071	0.916	1342	0.424	1082	1082	524	683	0.484	0.631
From C	7.997	6.050	1.071	1.055	2423	0.585	2234	2136	421	583	0.188	0.273
From D												
From E												
From F												
From G												
From H												

Roundabout Analysis

Location	Lam Kam Interchange						
Scenario	Without the Proposed Temporary Public Vehicle Park						Page 8
Design Year	2028	Job Number			J7353	Date	

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_c
From A	0	501	393						894	515
From B	475	73	0						548	395
From C	0	440	2						442	548
From D										
From E										
From F										
From G										
From H										
Total	475	1014	395						1884	

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_c
From A	0	496	385						881	707
From B	619	96	0						715	394
From C	0	602	9						611	715
From D										
From E										
From F										
From G										
From H										
Total	619	1194	394						2207	

Legend

Arm	Road (in clockwise order)
A	Lam Kam Road
B	Lam Kam Road Interchange
C	Slip Road to Tolo Highway
D	
E	
F	
G	
H	

Geometric Parameters

Arm	e (m)	v (m)	r (m)	L (m)	D (m)	\emptyset (°)	S
From A	7.0	6.0	100.0	14.5	78	18	0.1
From B	4.5	4.0	33.5	9.5	78	60	0.1
From C	8.5	7.0	42.3	9.5	78	22	0.3
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_c q_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	$= 1 - 0.00347(\emptyset - 30) - 0.978[(1/r) - 0.05]$
F	$= 303x_2$
f_c	$= 0.210t_D(1 + 0.2x_2)$
t_D	$= 1 + 0.5/(1 + M)$
M	$= \exp[(D - 60)/10]$
x_2	$= v + (e - v)/(1 + 2S)$
S	$= 1.6(e - v)/L$

Limitation

e	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
\emptyset	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

Ratio-of-Flow to Capacity (RFC)

Arm	x_2	M	t_D	K	F	f_c	Q_E	Entry Flow		RFC	
								AM	PM	AM	PM
From A	6.819	6.050	1.071	1.081	2066	0.532	1937	1827	894	881	0.461 0.482
From B	4.428	6.050	1.071	0.916	1342	0.424	1075	1075	548	715	0.510 0.665
From C	7.997	6.050	1.071	1.055	2423	0.585	2219	2116	442	611	0.199 0.289
From D											
From E											
From F											
From G											
From H											

Roundabout Analysis

Location	Lam Kam Interchange						
Scenario	With the Proposed Temporary Public Vehicle Park						
Design Year	2028	Job Number			J7353	Date	

Page 9
08 Sep 2025

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_c
From A	0	501	393						894	515
From B	475	73	0						548	395
From C	0	440	2						442	548
From D										
From E										
From F										
From G										
From H										
Total	475	1014	395						1884	

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_c
From A	0	496	385						881	711
From B	619	100	0						719	394
From C	0	602	9						611	719
From D										
From E										
From F										
From G										
From H										
Total	619	1198	394						2211	

Legend

Arm	Road (in clockwise order)
A	Lam Kam Road
B	Lam Kam Road Interchange
C	Slip Road to Tolo Highway
D	
E	
F	
G	
H	

Geometric Parameters

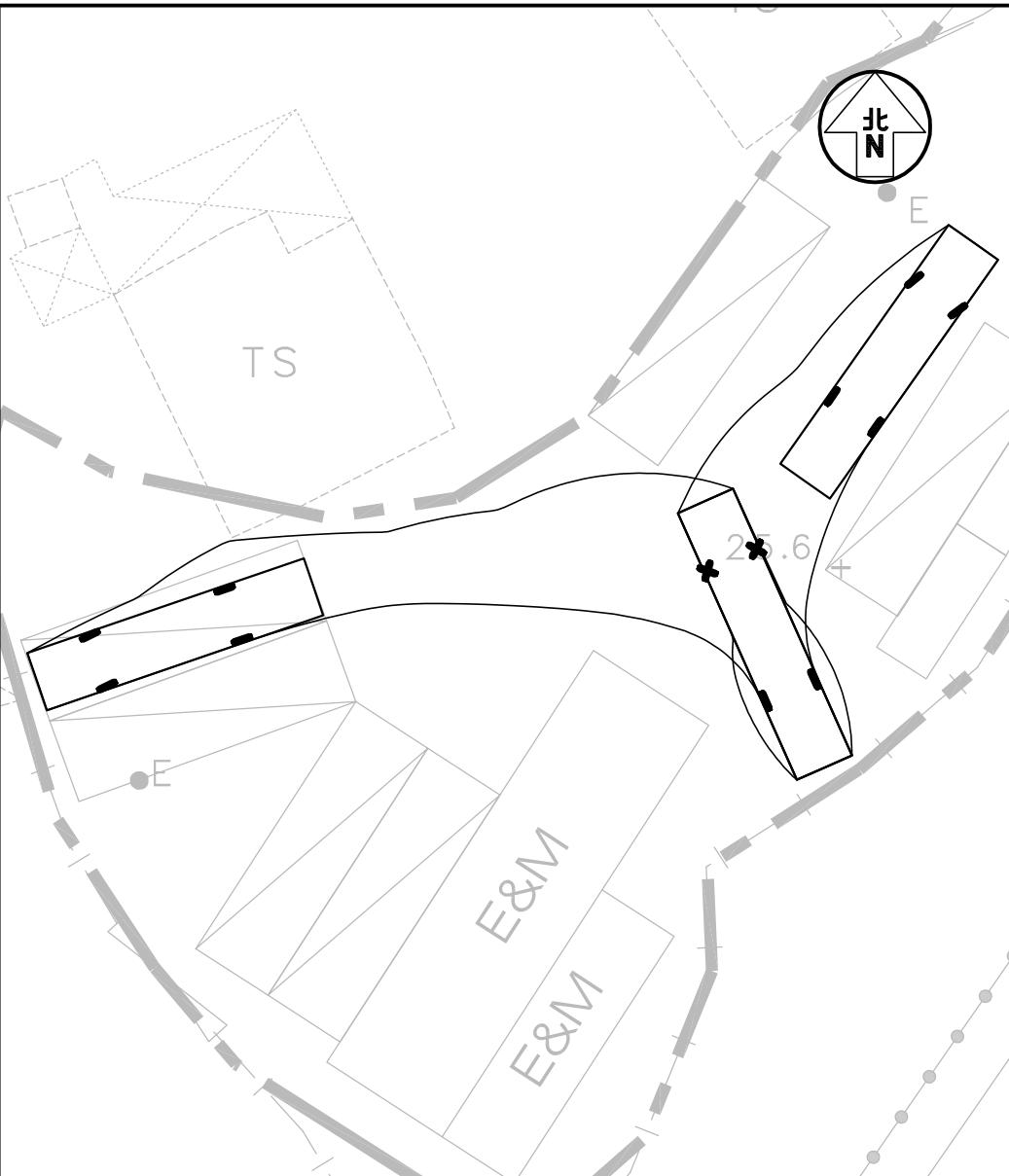
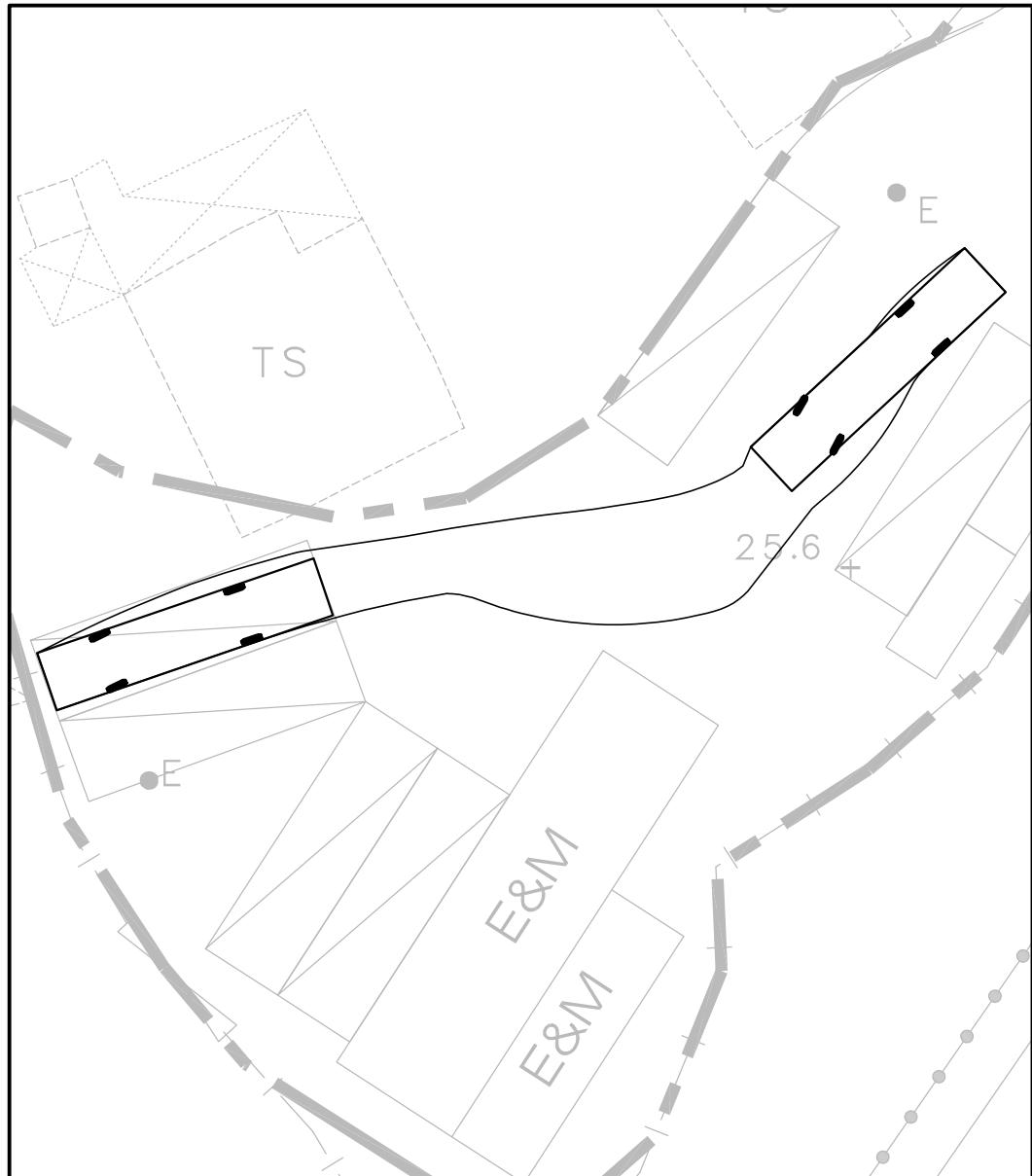
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	\emptyset (°)	S
From A	7.0	6.0	100.0	14.5	78	18	0.1
From B	4.5	4.0	33.5	9.5	78	60	0.1
From C	8.5	7.0	42.3	9.5	78	22	0.3
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_c q_c)$

Q_E	Entry Capacity
q_c	Circulating Flow across the Entry
K	$= 1 - 0.00347(\emptyset - 30) - 0.978[(1/r) - 0.05]$
F	$= 303x_2$
f_c	$= 0.210t_D(1 + 0.2x_2)$
t_D	$= 1 + 0.5/(1 + M)$
M	$= \exp[(D - 60)/10]$
x_2	$= v + (e - v)/(1 + 2S)$
S	$= 1.6(e - v)/L$

Limitation

e	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
\emptyset	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0



Ratio-of-Flow to Capacity (RFC)

Arm	x_2	M	t_D	K	F	f_c	Q_E		Entry Flow		RFC	
							AM	PM	AM	PM	AM	PM
From A	6.819	6.050	1.071	1.081	2066	0.532	1937	1825	894	881	0.461	0.483
From B	4.428	6.050	1.071	0.916	1342	0.424	1075	1075	548	719	0.510	0.669
From C	7.997	6.050	1.071	1.055	2423	0.585	2219	2113	442	611	0.199	0.289
From D												
From E												
From F												
From G												
From H												

Appendix B

Swept Path Analysis

Project Title
PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING
OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES

J7353

Figure No.
SP1

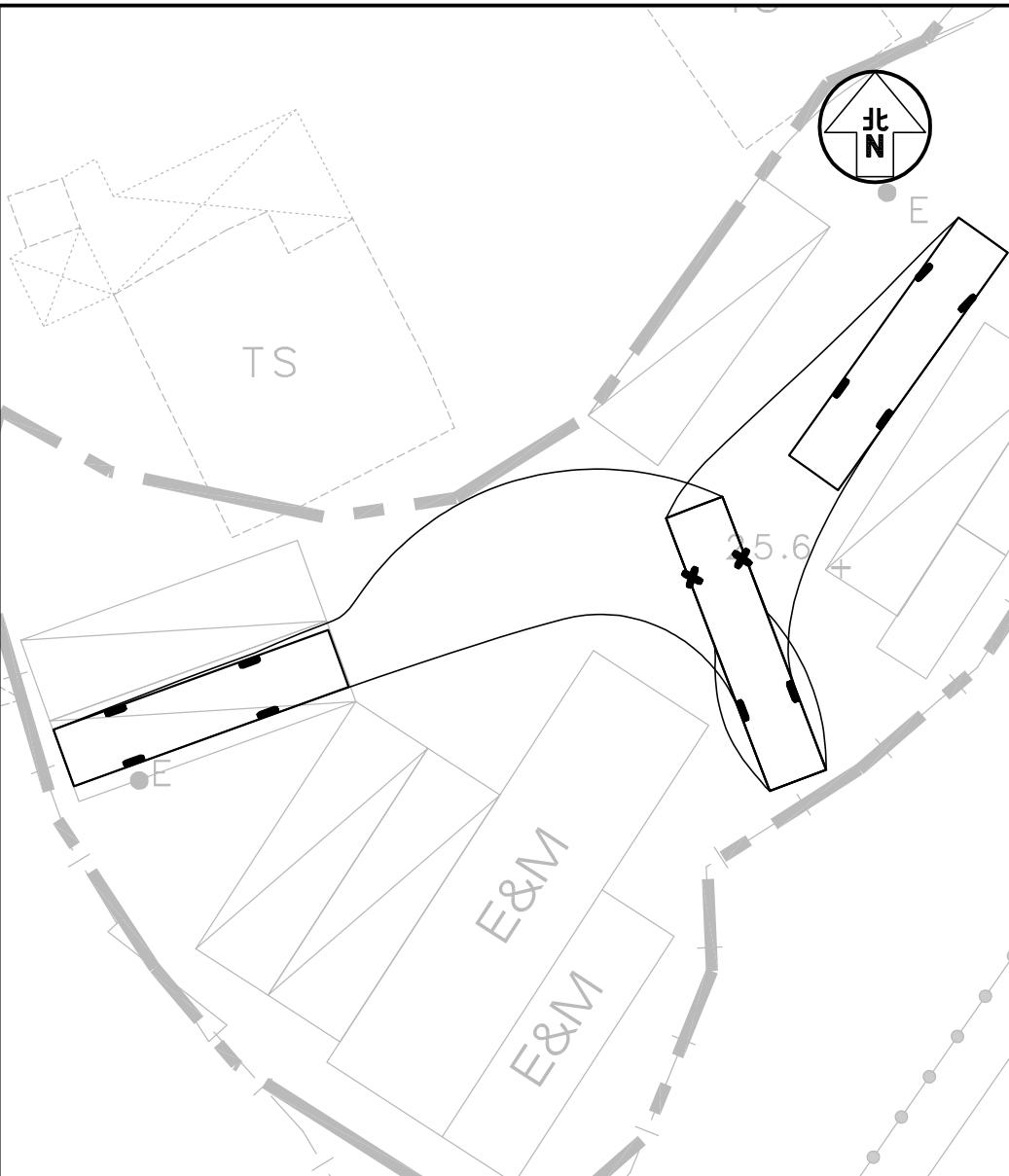
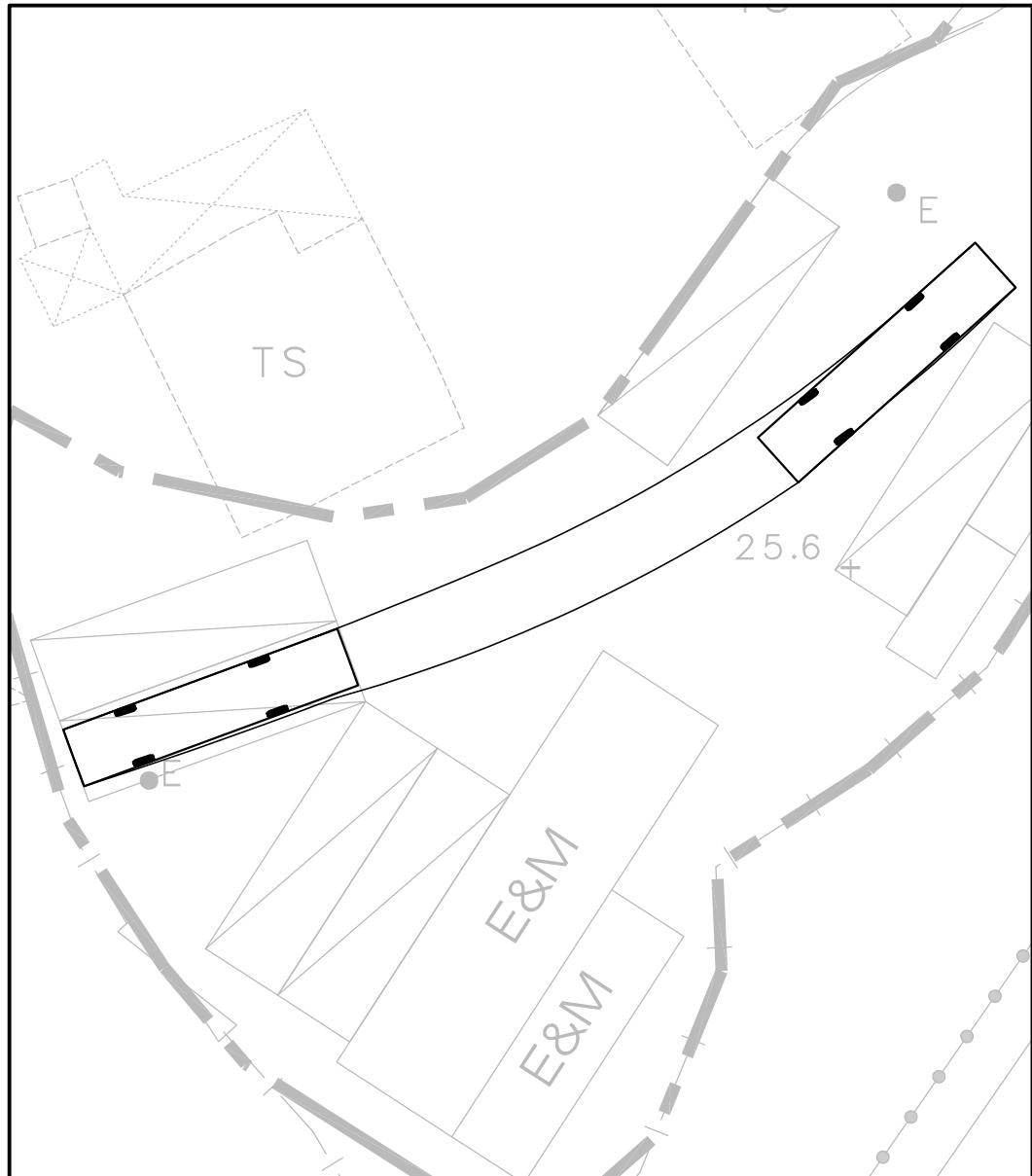


Revision
D

Figure Title
**SWEPT PATH OF COACH
ENTERING & LEAVING THE "SHARED-USE" HGV AND COACH PARKING SPACE**

Designed by L K W	Drawn by S C Y	Checked by K C
Scale in A4 1 : 300	Date 18 DEC 2025	

CKM Asia Limited
Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road,
Wan Chai, Hong Kong
Tel : (852) 2520 5990 Fax : (852) 2528 6343
Email : mail@ckmasia.com.hk

Project Title
PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING
OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES

J7353

Figure No.
SP2

Revision
D

CKM Asia Limited
Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road,
Wan Chai, Hong Kong
Tel : (852) 2520 5990 Fax : (852) 2528 6343
Email : mail@ckmasia.com.hk

Figure Title
**SWEPT PATH OF COACH
ENTERING & LEAVING THE "SHARED-USE" HGV AND COACH PARKING SPACE**

Designed by L K W	Drawn by S C Y	Checked by K C
Scale in A4 1 : 300	Date 18 DEC 2025	

Project Title
PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING
OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES

J7353

Figure No.
SP3


Revision
D

CKM Asia Limited
Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road,
Wan Chai, Hong Kong
Tel : (852) 2520 5990 Fax : (852) 2528 6343
Email : mail@ckmasia.com.hk

Figure Title
**SWEPT PATH OF COACH
ENTERING & LEAVING THE "SHARED-USE" HGV AND COACH PARKING SPACE**

Designed by L K W	Drawn by S C Y	Checked by K C
Scale in A4 1 : 300	Date 18 DEC 2025	

Project Title

PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES

J7353

Figure No.

SP4

Revision

D

Figure Title

SWEPT PATH OF COACH
ENTERING & LEAVING THE "SHARED-USE" HGV AND COACH PARKING SPACE

Designed by	Drawn by	Checked by
L K W	S C Y	K C
Scale in A4	Date	
1 : 300	18 DEC 2025	

CKM Asia Limited

Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road,
Wan Chai, Hong Kong
Tel : (852) 2520 5990 Fax : (852) 2528 6343
Email : mail@ckmasia.com.hk

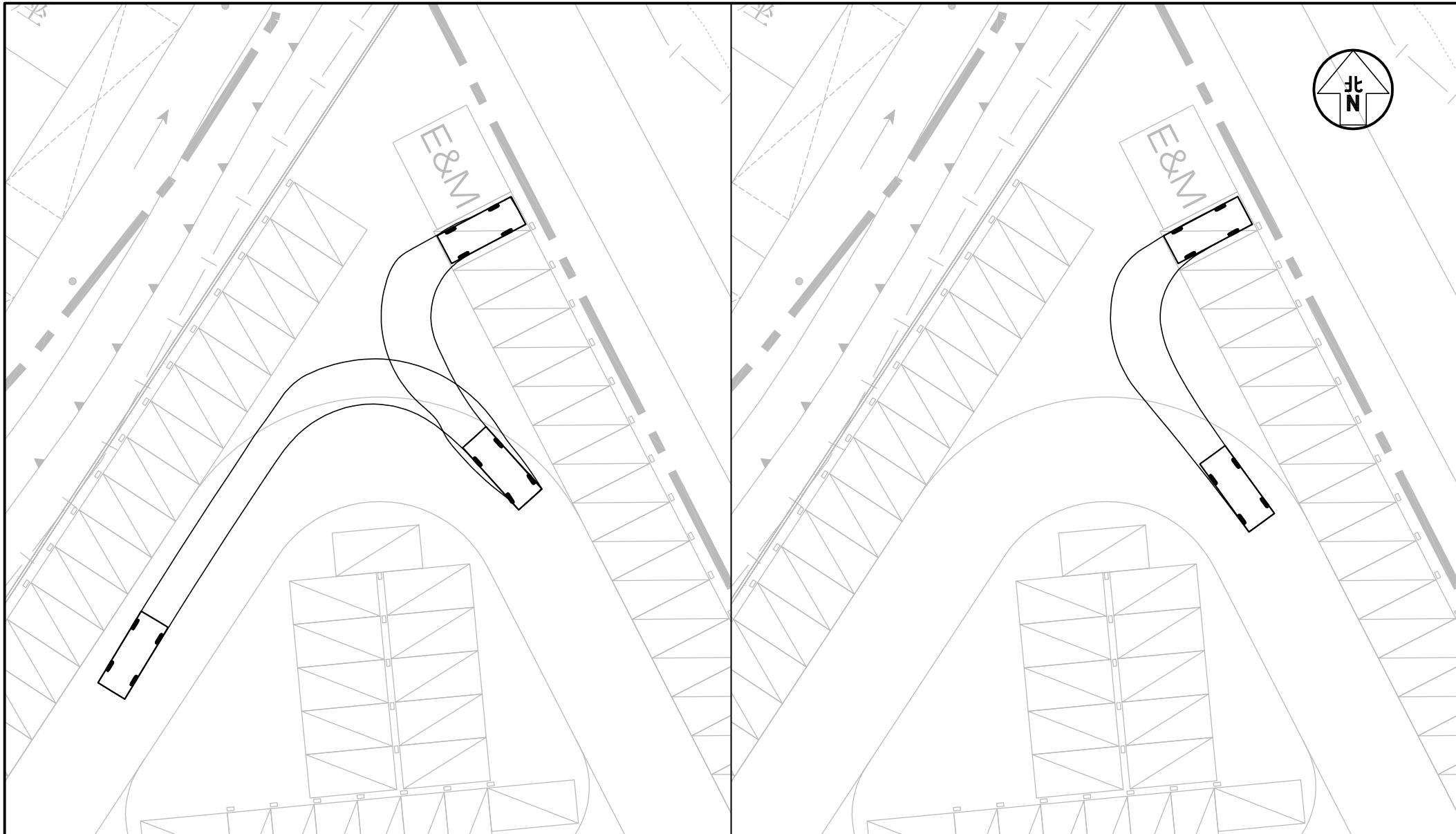

Project Title
PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING
OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES

Figure No. SP5 Revision D
J7353

Figure Title
SWEPT PATH OF PRIVATE CAR
ENTERING & LEAVING THE CAR PARKING SPACE

Designed by L K W	Drawn by S C Y	Checked by K C
Scale in A4 1 : 300	Date 18 DEC 2025	

CKM Asia Limited
Traffic and Transportation Planning Consultants
21st Floor, Methodist House, 36 Hennessy Road,
Wan Chai, Hong Kong
Tel : (852) 2520 5990 Fax : (852) 2528 6343
Email : mail@ckmasia.com.hk

Project Title

PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES

J7353

Figure No.

SP6

Revision

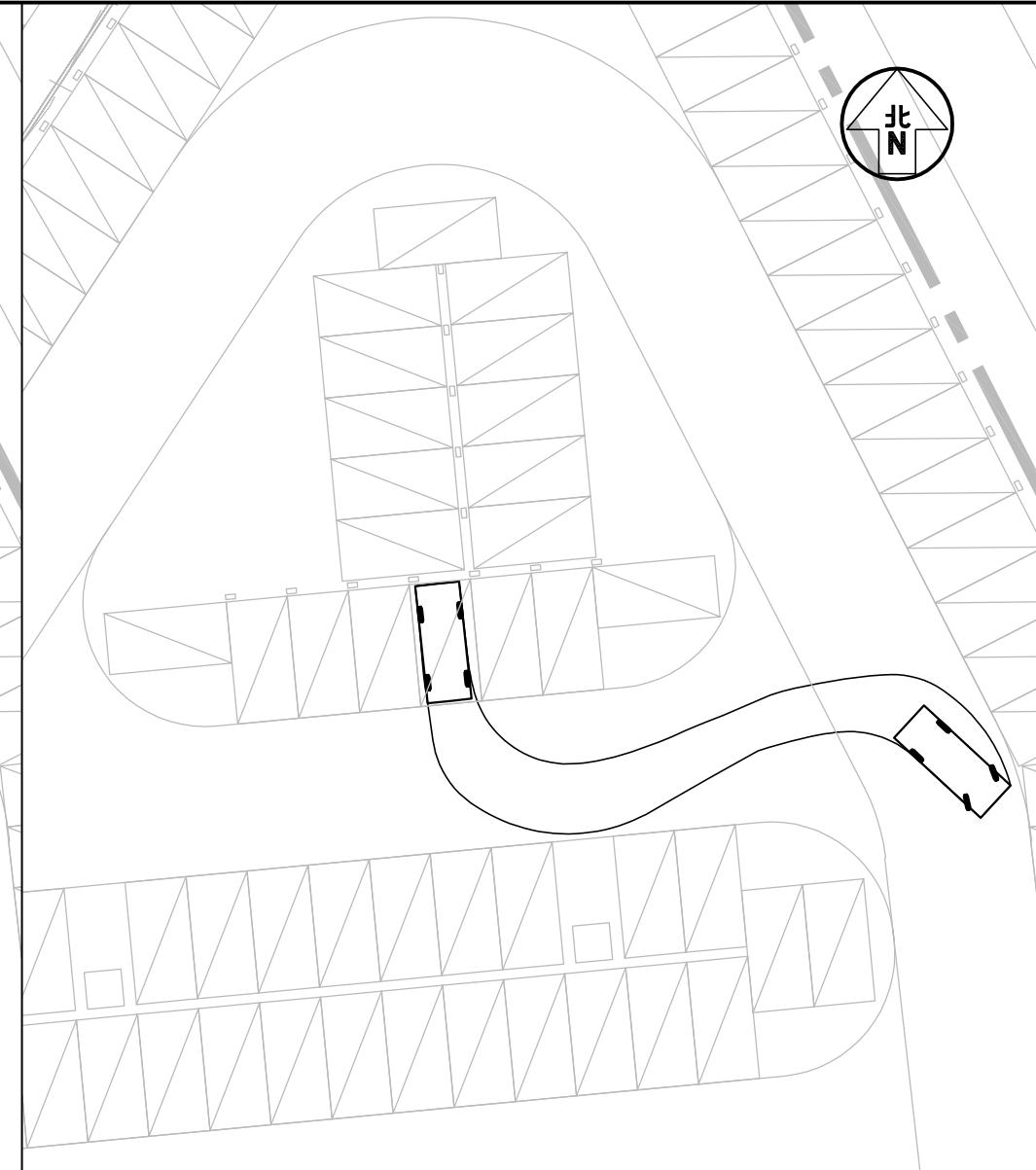
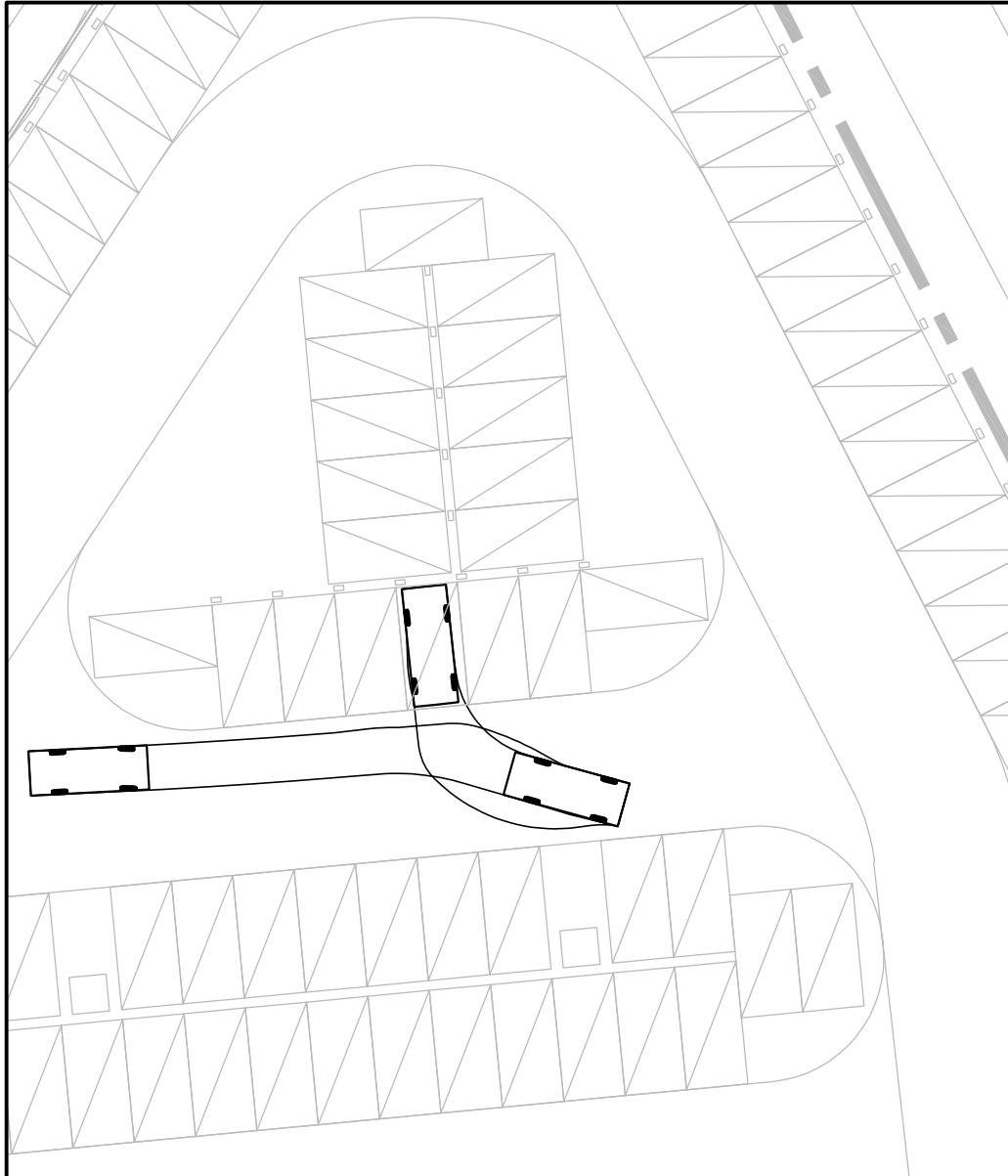
D

Figure Title

SWEPT PATH OF PRIVATE CAR
ENTERING & LEAVING THE CAR PARKING SPACE

Designed by L K W Drawn by S C Y Checked by K C

Scale in A4



1 : 300

Date 18 DEC 2025

CKM Asia Limited

Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road,
Wan Chai, Hong Kong
Tel : (852) 2520 5990 Fax : (852) 2528 6343
Email : mail@ckmasia.com.hk

Project Title

PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES

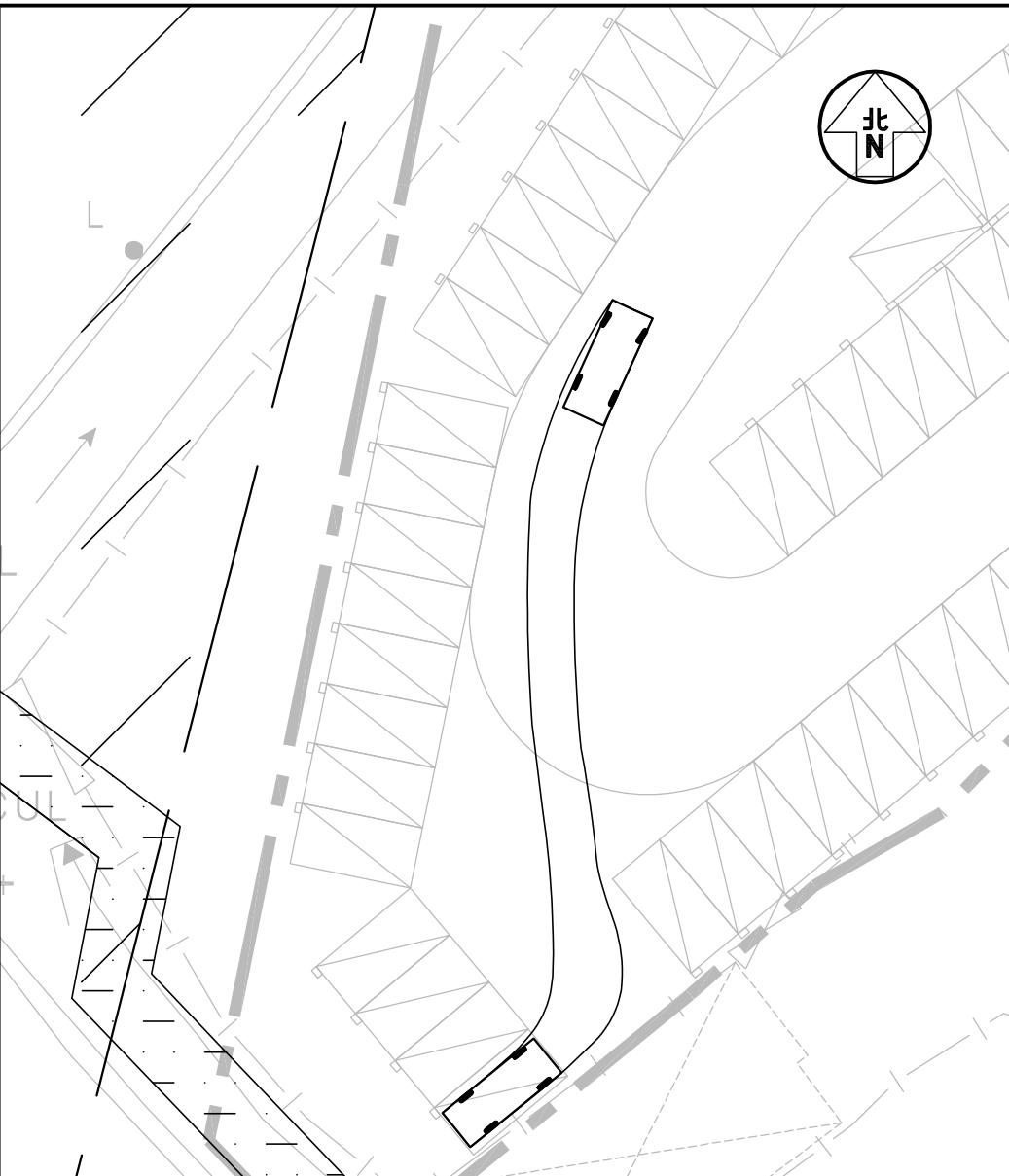
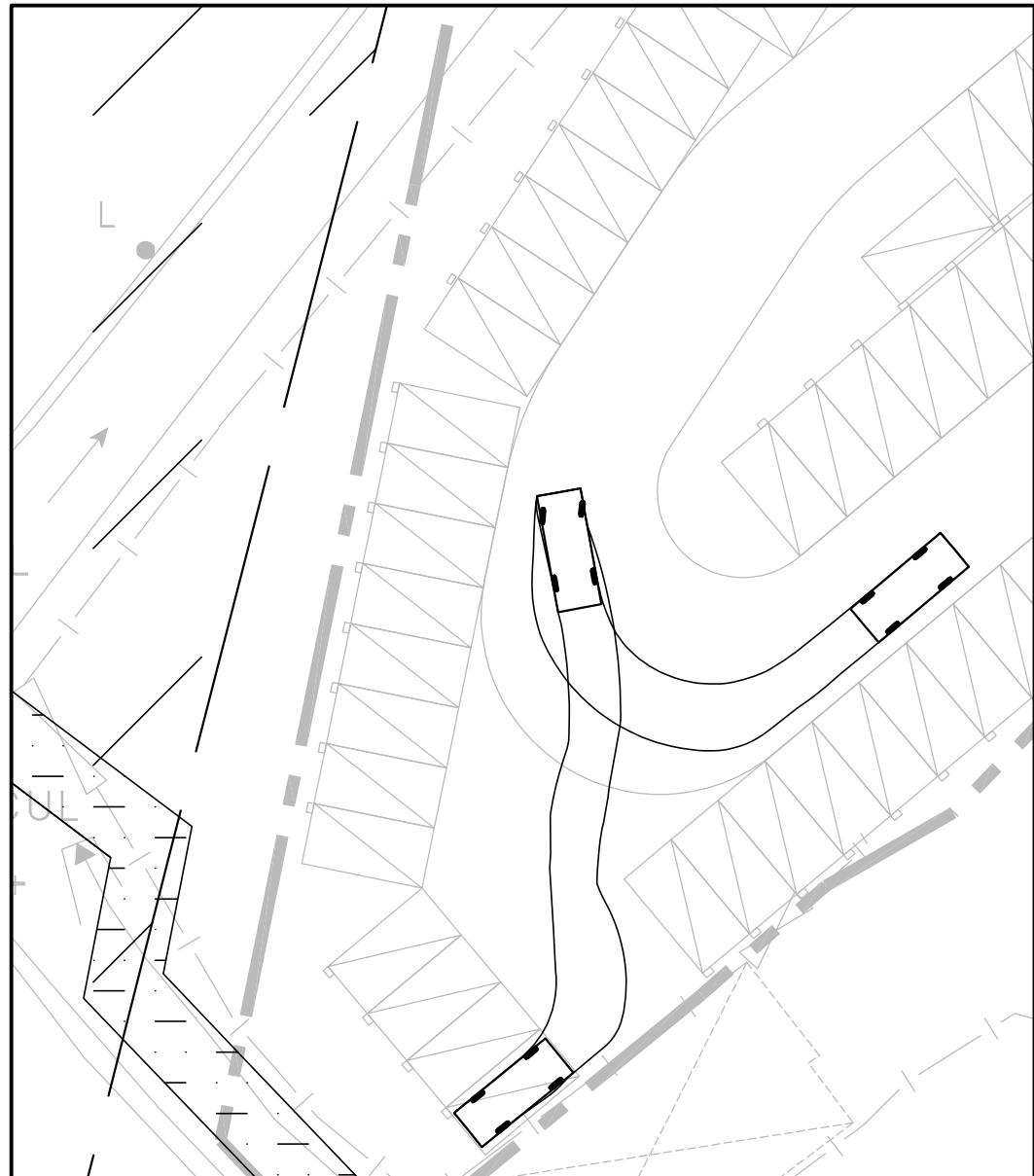
J7353

Figure No.
SP7

Revision
D

Figure Title

**SWEPT PATH OF PRIVATE CAR
ENTERING & LEAVING THE CAR PARKING SPACE**



Designed by
L K W Drawn by
S C Y Checked by
K C

Scale in A4
1 : 300 Date
18 DEC 2025

CKM Asia Limited

Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road,
Wan Chai, Hong Kong
Tel : (852) 2520 5990 Fax : (852) 2528 6343
Email : mail@ckmasia.com.hk

Project Title

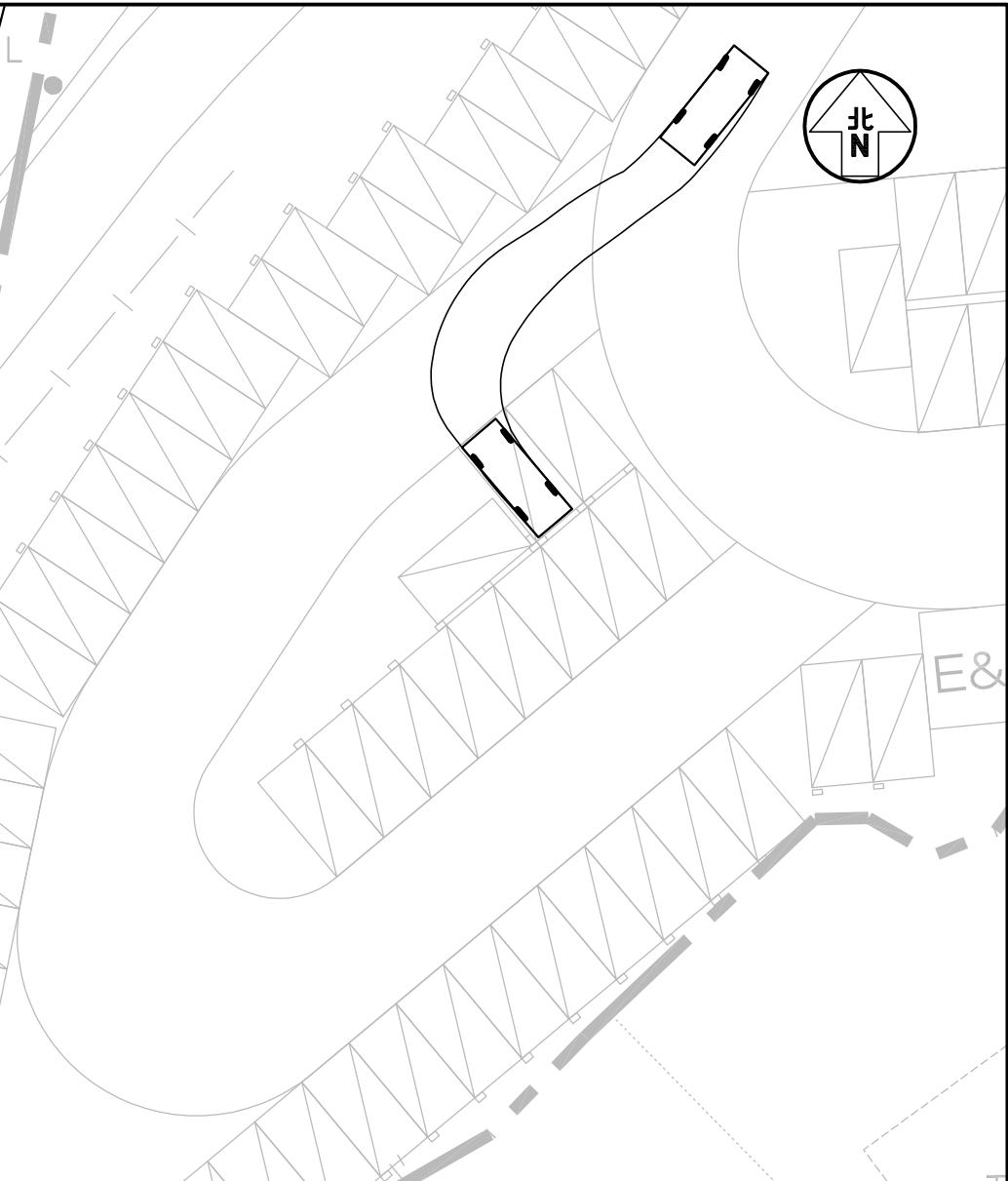
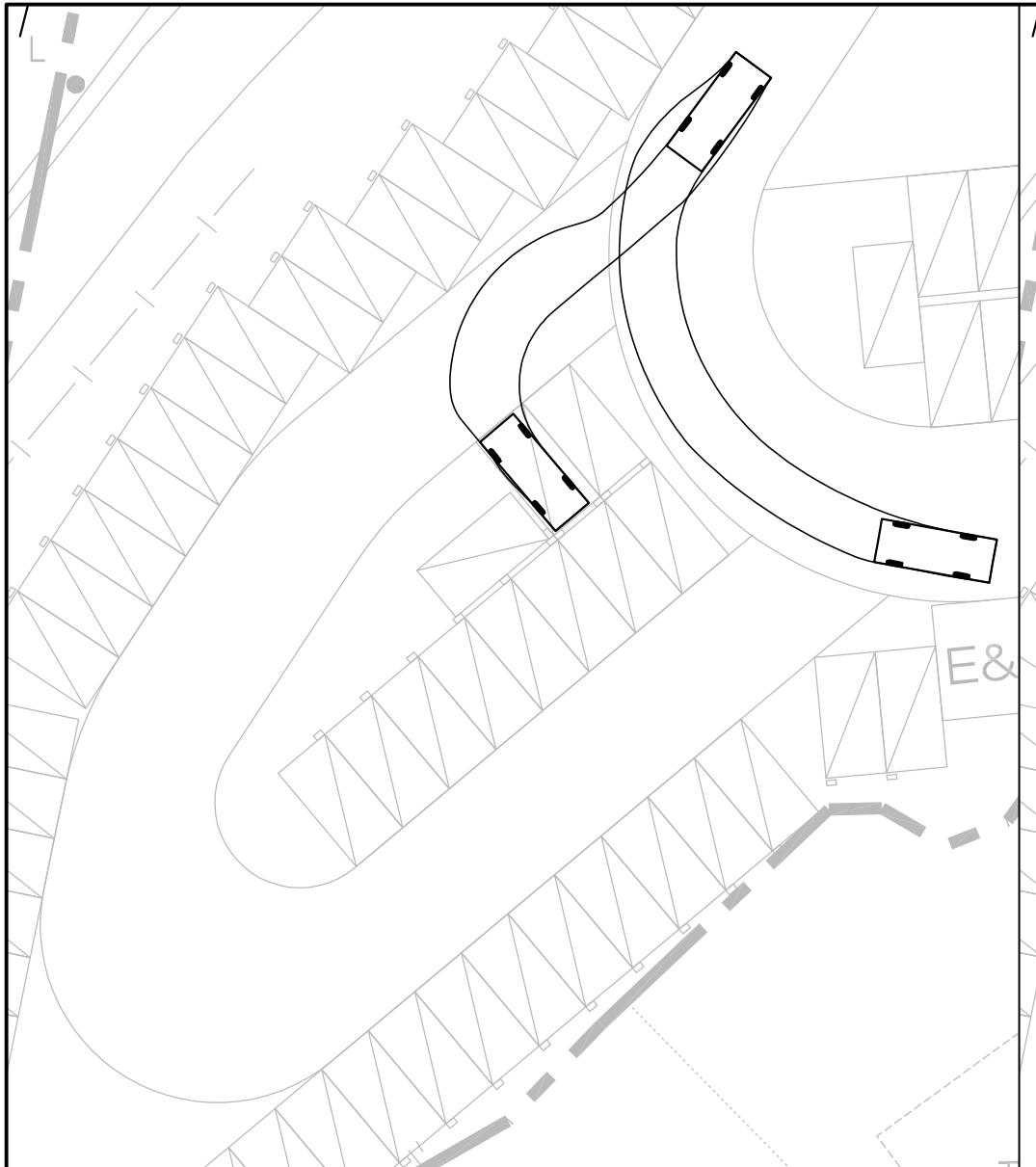
PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES

J7353

Figure No.
SP8

Revision
D

Figure Title



SWEPT PATH OF PRIVATE CAR
ENTERING & LEAVING THE CAR PARKING SPACE

Designed by L K W	Drawn by S C Y	Checked by K C
Scale in A4 1 : 300	Date 18 DEC 2025	

CKM Asia Limited

Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road,
Wan Chai, Hong Kong
Tel : (852) 2520 5990 Fax : (852) 2528 6343
Email : mail@ckmasia.com.hk

Project Title

PROPOSED TEMPORARY PUBLIC VEHICLE PARK WITH ELECTRIC VEHICLE CHARGING FACILITIES AND FILLING OF LAND FOR A PERIOD OF 3 YEARS, VARIOUS LOTS IN DD7, KAU LUNG HANG, TAI PO, NEW TERRITORIES

J7353

Figure No.

SP9

Revision

D

Figure Title

SWEPT PATH OF PRIVATE CAR
ENTERING & LEAVING THE CAR PARKING SPACE

Designed by L K W	Drawn by S C Y	Checked by K C
----------------------	-------------------	-------------------

Scale in A4 1 : 300	Date 18 DEC 2025
------------------------	---------------------

CKM Asia Limited

Traffic and Transportation Planning Consultants

21st Floor, Methodist House, 36 Hennessy Road,
Wan Chai, Hong Kong
Tel : (852) 2520 5990 Fax : (852) 2528 6343
Email : mail@ckmasia.com.hk