Drainage Calculation

Site Area A1 = $5019 \text{ m}^2 = 0.005019 \text{ km}^2$

Uphill Catchment Area to the immediate north of the site A2 = 2200 m^2 = 0.0022 km^2

Calculation of Runoff,

$$Q = 0.278 C i A$$

C1 = 0.35 (p.37 of Stormwater Drainage Manual)

C2 = 0.9

Take i = 250 mm/hr

Therefore, Q = 0.278 * 250 * (0.005019 * 0.35 + 0.0022 * 0.9)

 $= 0.2597 \, \text{m}^3/\text{sec}$

= 15582 lit/min

Calculation Maximum Capacity of Proposed 450 mm dia. Underground pipe

Manning Equation V = $R^{2/3} * S_f^{0.5}/n$

Dia 450 mm

Where $R = pi r^2 / 2 pi r$

r = 0.225 m

= r/2

= 0.1125 m

 $n = 0.012 \text{ s/m}^{1/3}$ (Table 13 of Stormwater Drainage Manual)

1/75 $S_f = 0.0133$

Therefore, $V = 0.1125^{2/3} * 0.0133^{0.5} / 0.012$

= 2.2396 m/sec

Maximum Capacity (Qmax) = V * A

 $= 2.2396 * pi r^2$

 $= 0.356 \,\mathrm{m}^3/\mathrm{sec}$

1 nos of pipe = $0.356 \text{ m}^3/\text{sec}$

= 21360 lit/min

>15582 lit/min

Provide 450 mm dia underground pipe (1:75) is OK