Annex 1

Revised Drainage Impact Assessment

Drainage Impact Assessment

Jul 2025

Prepared by: YEUNG TOI TUNG RP0666920

Marvellous Construction & Design Company Limited

Drainage Impact Assessment

Table of Contents

1	Introduction	1
1	1.1 Background	1
1	1.2 Application Site	1
2	Development Proposal	2
2	2.1 The Proposed Development	2
3	Assessment Criteria	2
4	Proposed Drainage System	5
4	4.1. Proposed Channels	5
4	4.2 Maintenance Responsibilities	5
5	Conclusion	5
1 14	ist of Table	
	ble 1 - Key Development Parameters ble 2– Design Return Periods under SDM	2 2
1010		_
Lis	ist of Figure	
Fig	gure 1 – Site Location Plan	
Fig	gure 2 – Existing Drainage Plan	
Fig	gure 3 – Proposed Drainage System	
Fig	gure 4 – Catchment Plan	
Fig	gure 5 – Sections	
Fig	gure 6 – Existing Levels	
Li	ist of Appendix	
App	ppendix A – Design Calculation	
App	ppendix B – Development Layout Plan	
Apr	opendix C – Reference Drawings	

Appendix D – Site Photos of Existing Drainage System

<u>Drainage Impact Assessment</u>

1 Introduction

1.1 Background

- 1.1.1 The applicant seeks planning permission from the Town Planning Board (the Board) under Section (S.) 16 of the Town Planning Ordinance (Cap. 131) (the Ordinance) to use Various Lots in D.D. 17 and Adjoining Government Land (GL), Ting Kok, Tai Po, New Territories (the Site) for 'Proposed Temporary Place of Recreation, Sports or Culture, Eating Place, Barbecue Site and Holiday Camp with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land'.
- 1.1.2 This report aims to support the development in drainage aspect.

1.2 Application Site

- 1.2.1 The application site is situated beside Ting Kok Road near Shan Liu Road and adjacent to Plover Cove. It has an area of approx. 38,338 m². The site location is shown in Figure 1.
- 1.2.2 The existing site is mainly unpaved with level various from approx. +3.3mPD to + 5.6mPD. The proposed site is intent to be partly paved for site formation of structure, footpath, skateboard ground, caravan site, vehicle parking spaces, and L/UL and circulation area.
- 1.2.3 There is an existing stream at the west of the application site. The Plover Cove is at the east and south of the application site. Figure 2 indicate the existing drainage system of the area.

1

Drainage Impact Assessment

2 Development Proposal

2.1 The Proposed Development

2.1.1 The total site area is approximately 38,338 m². After the development the site would be partially paved. The catchment plan is shown in **Figure 4**.

Proposed Development	
Total Site Area (m²)	38,338
Paved Area after Development (m²)	15,970

Table 1 – Site Development Area

3 Assessment Criteria

3.1.1 The Recommended Design Return Period based on Flood Level from SDM (Table 10) is adopted for this report. The recommendation is summarized in **Table 2** below.

Description	Design Return Periods
Intensively Used Agricultural Land	2 – 5 Years
Village Drainage Including Internal Drainage System under a polder Scheme	10 Years
Main Rural Catchment Drainage Channels	50 Years
Urban Drainage Trunk System	200 Years
Urban Drainage Branch System	50 Years

Table 2- Design Return Periods under SDM

3.1.2 The proposed drainage system intended to collect runoff from internal site and external catchment. 1 in 10 years return period is adopted for the drainage design.

Drainage Impact Assessment

- 3.1.3 Stormwater drainage design will be carried out in accordance with the criteria set out in the Stormwater Drainage Manual published by DSD. The proposed design criteria to be adopted for design of this stormwater drainage system and factors which have been considered are summarised below.
 - 1. Intensity-Duration-Frequency Relationship The Recommended Intensity-Duration-Frequency relationship is used to estimate the intensity of rainfall. It can be expressed by the following algebraic equation.

$$i = \frac{a}{(t_d + b)^c}$$

The site is located within the HKO Zone. Therefore, for 10 years return period, the following values are adopted.

$$a = 485$$
 $b = 3.11$
 $c = 0.397$

11.1% rainfall increase due to climate change according to Table 28 of SDM Corrigendum No. 1/2022.

2. The peak runoff is calculated by the Rational Method i.e. $Q_p = 0.278CiA$

where
$$Q_p$$
 = peak runoff in m³/s
 C = runoff coefficient (dimensionless)
 i = rainfall intensity in mm/hr
 A = catchment area in km²

- 3. The run-off coefficient (C) of surface runoff are taken as follows:
 - Paved Area: C = 0.95
 Unpaved Area: C = 0.35

Drainage Impact Assessment

4. Manning's Equation is used for calculation of velocity of flow inside the channels:

Manning's Equation:
$$v = \frac{R^{\frac{1}{6}}}{n} R^{\frac{1}{2}} S_f^{\frac{1}{2}}$$

Where,

V = velocity of the pipe flow (m/s)

S_f = hydraulic gradient

n = manning's coefficient

R = hydraulic radius (m)

5. Colebrook-White Equation is used for calculation of velocity of flow inside the pipes:

Colebrook-White Equation:
$$\underline{v} = -\sqrt{32gRS} \log \log \left(\frac{k_s}{14.8R} + \frac{1.255v}{R\sqrt{32gRS_f}}\right)$$

where,

V = velocity of the pipe flow (m/s)

S_f = hydraulic gradient k_f = roughness value (m)

v = kinematics viscosity of fluid

D = pipe diameter (m) R = hydraulic radius (m)

Drainage Impact Assessment

4 Proposed Drainage System

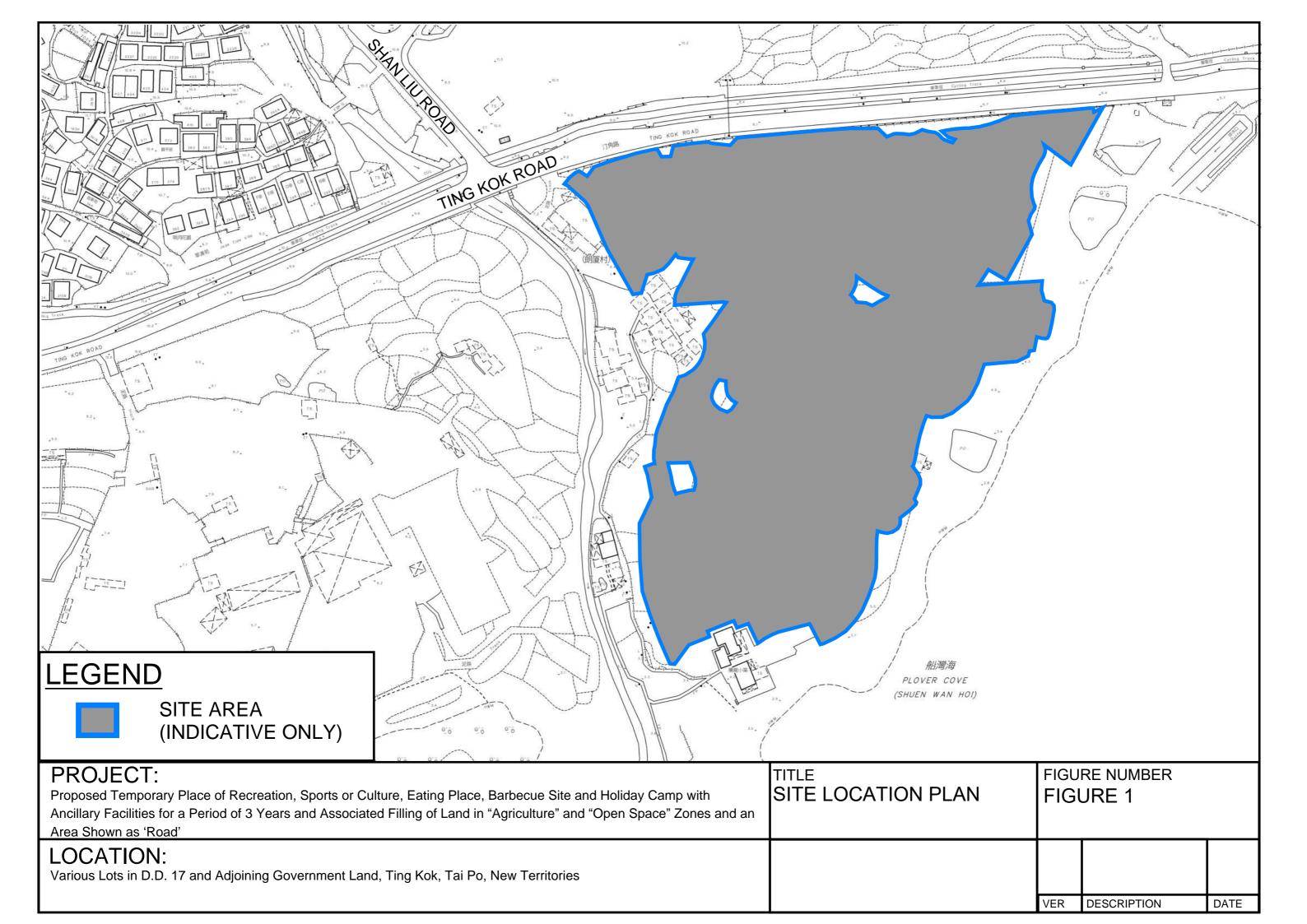
4.1. Proposed Channels

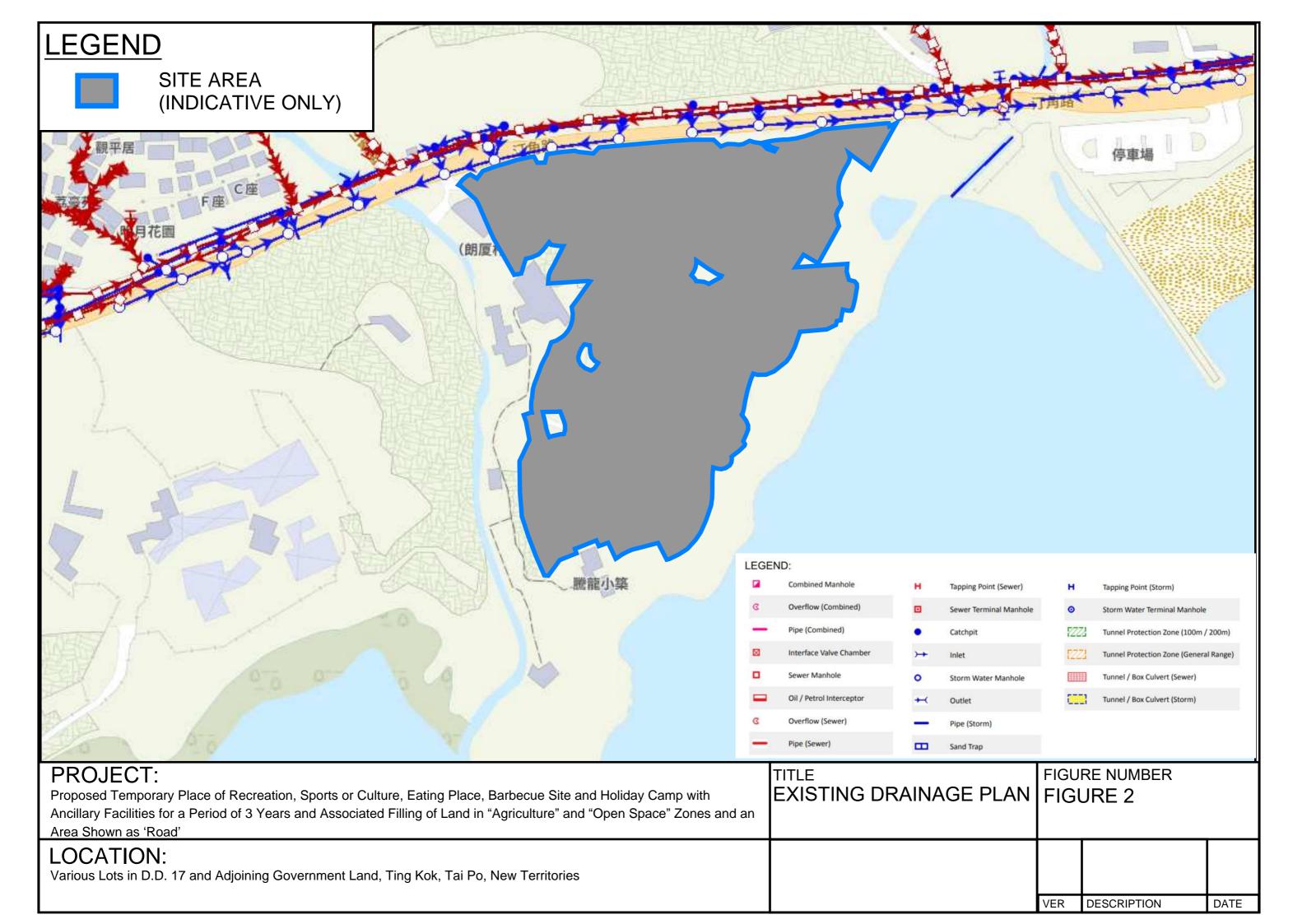
- 4.1.1 Proposed channels are designed for collection of runoff for internal and external catchment. The design calculations of proposed UChannel and capacity checking against site flow are shown in Appendix A.
- 4.1.2 The channels are proposed to be discharged to Plover Cove and existing stream. The alignment, size, gradient and details of the proposed drains are shown in **Figure 3**.
- 4.1.3 The proposed stormwater drainage system shall be completed prior to the commencement of other construction works, including site clearance and land filling works.
- 4.1.4 The catchment plan is shown in **Figure 4**.
- 4.1.5 Reference Drawings are shown in **Appendix C** for reference.

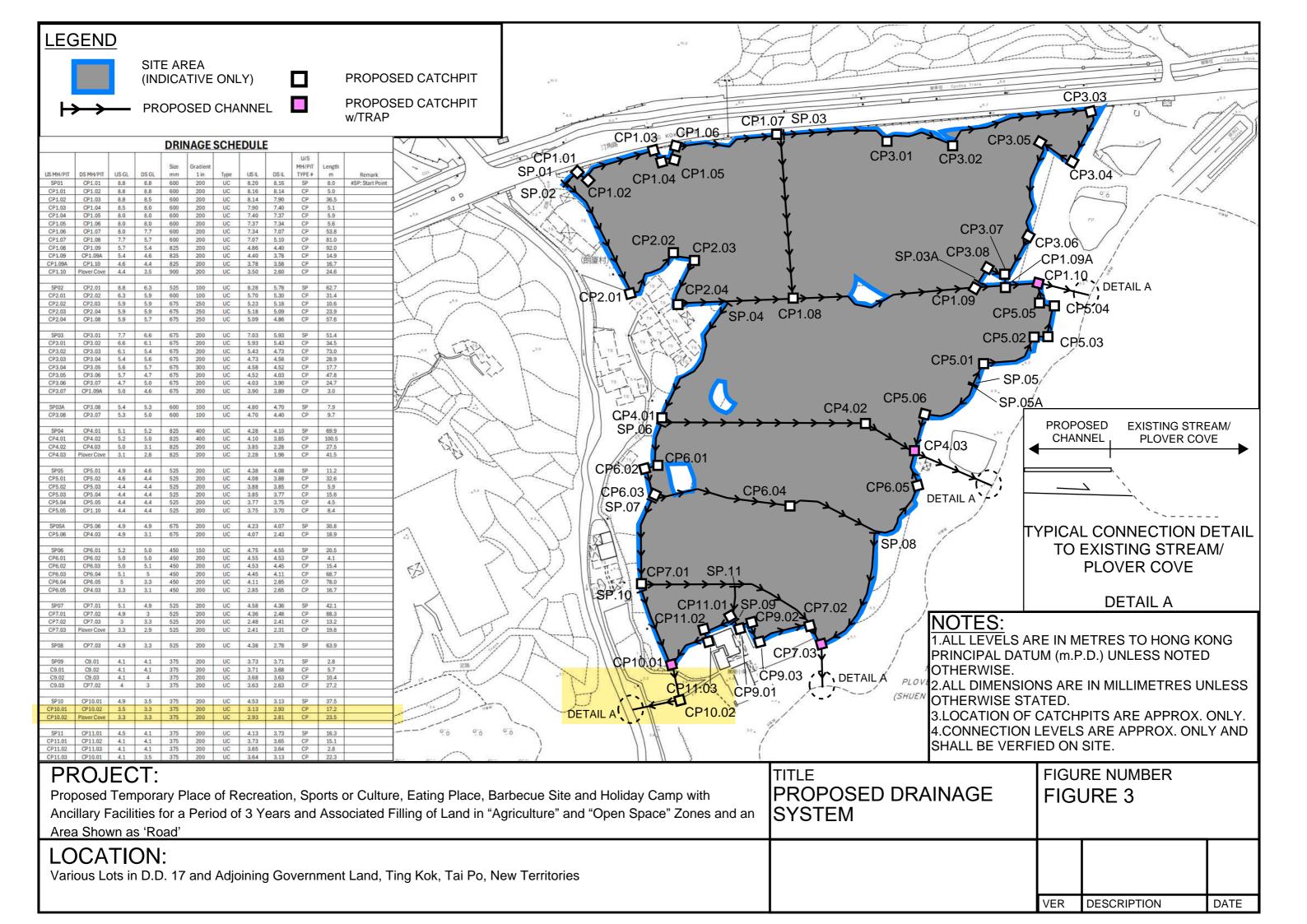
4.2 Maintenance Responsibilities

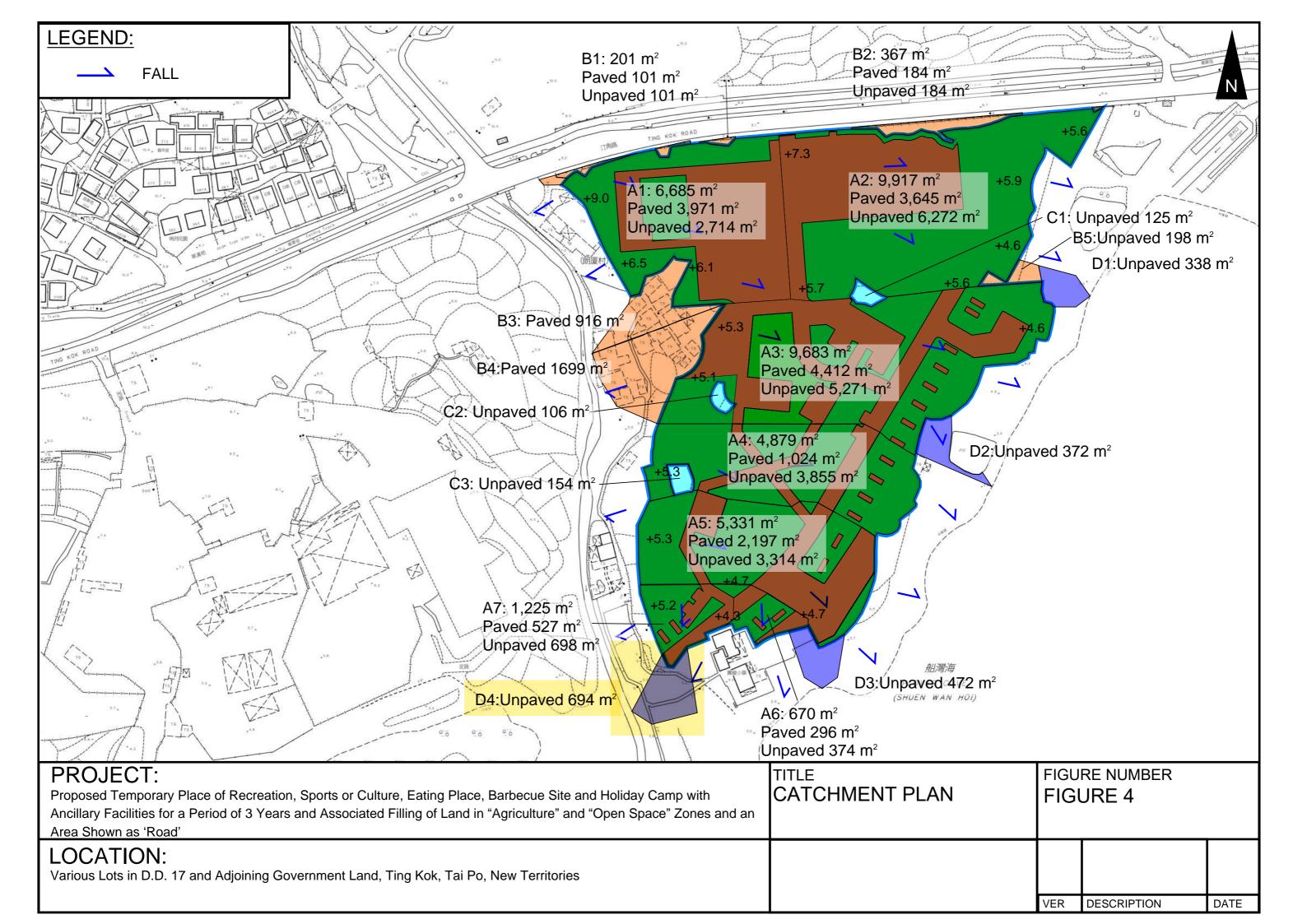
- 4.2.1 The proposed stormwater drainage system is to be maintained by the development.
- 4.2.2 The development should carry out inspection to all drainage components before wet season (April). It is also required to carry out routine inspection monthly in wet season and quarterly in dry season and carry out necessary maintenance works to ensure the drainage system is able to function properly.

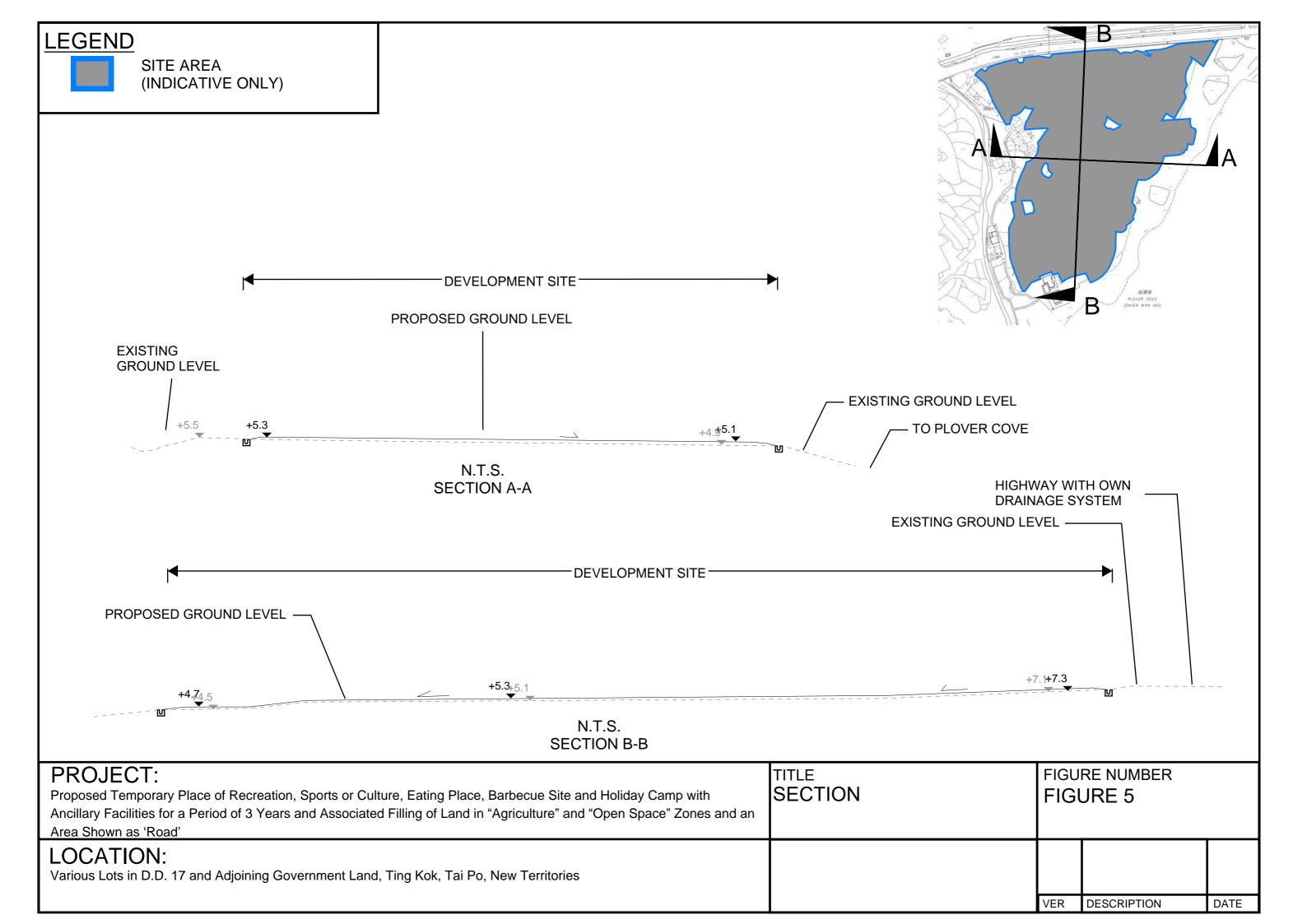
The maintenance work includes the followings :-

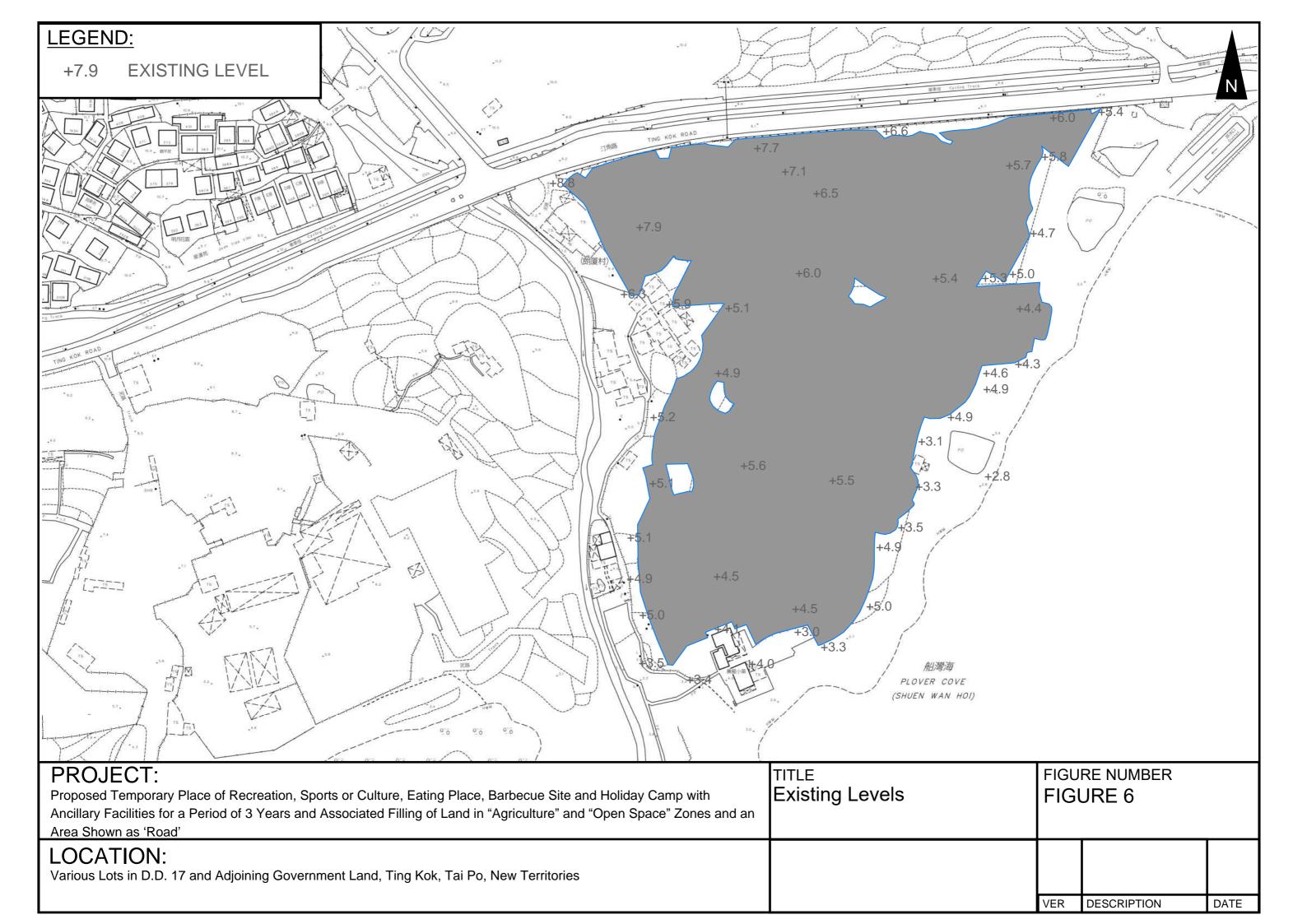

- Cleaning of drains, catchpits and outlets.
- Remove debris, sediments and vegetation to prevent blockage
- Look for signs of damages, such as crack and repair as if it would affect the system to function properly.


5 Conclusion


5.1.1 Drainage review has been conducted for the Proposed Development. With implementation of proposed drainage system, no unacceptable adverse drainage impact is anticipated.

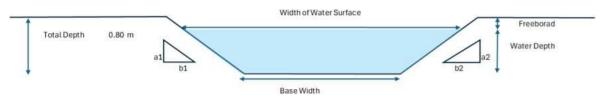

- End of Text -


FIGURES



APPENDIX

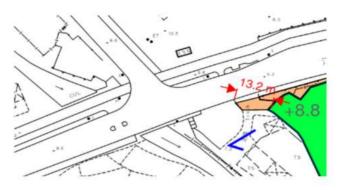
Appendix A: Design Calculation


	Zone							_	n	0.014			-	HKO a	485			
	Нк	O		Return Period	1 in	10	years		Ks	0.15		Storm Constant	1	HKO b	3.11			
			•					_	Viscosity	0.000001				НКО с	0.397			
	Catchment Area Ta	able (Area in m²)																
	Catchment	A1	A2	A3	A4	A5	A6	A7	A3a	B1	B2	B3	B4	B5	C1	C2	C3	D1
ĺ	Total Area	6685	9917	9682.6	4878.8	5331.4	670.4	1225.4	5092	201	367	916	1699	198	125	106	154	388
	Hard Paved Area	3971	3645	4411.6	1023.8	2197.4	296.4	527.4	2515	100.5	184	916	1699	0	0	0		0

Pavement Type	Hard Paved	Unpaved
Runoff Coefficient	0.95	0.35

US MH/PIT	Drainage System DS MH/PIT	US GL	DS GL	Size	Gradient	Туре	USIL	DS IL	U/S MH/PIT	Length	V	Capacity	Catchment ID1	Catchment	Total Equivalent	ToC	Intensity	Total	Utiliti							
	201111111	5552	2002	mm	1 in	.,,,,	00.2	50.2	TYPE"	m	m/s**	m ³ /s	outoninoii 122	ID2	ID3	ID4	ID5	ID6	ID7	ID8	ID9	Area m²	min	mm/hr ***	Discharge	
SP01	CP1.01	8.80	8.80	600	200	UC	8.20	8.16	SP	8	1.65	0.48	A1	B1								4853.00	1.00	307	m³/s 0.41	86.7
CP1.01	CP1.02	8.80	8.80	600	200	UC	8.16	8.14	CP	5	1.65	0.48	A1	B1								4853.00	1.08	305	0.41	86.0
CP1.02	CP1.03	8.80	8.50	600	200	UC	8.14	7.90	CP	36.5	1.65	0.48	A1	B1								4853.00	1.13	304	0.41	85.
CP1.03	CP1.04	8.50	8.00	600	200	UC	7.90	7.40	CP	5.1	1.65	0.48	A1	B1								4853.00	1.50	294	0.40	82.
CP1.04 CP1.05	CP1.05 CP1.06	8.00	8.00 8.00	600 600	200 200	UC	7.40 7.37	7.37 7.34	CP CP	5.9 5.6	1.65 1.65	0.48	A1 A1	B1 B1								4853.00 4853.00	1.55 1.61	292 291	0.39	82. 82.
CP1.05	CP1.06	8.00	7.70	600	200	UC	7.34	7.07	CP	53.8	1.65	0.48	A1	B1								4853.00	1.67	291	0.39	81.
CP1.07	CP1.08	7.70	5.70	600	200	UC	7.07	5.10	CP	81	1.65	0.48	A1	B1								4853.00	2.21	278	0.37	78
CP1.08	CP1.09	5.70	5.40	825	200	UC	4.86	4.40	CP	92	2.05	1.12	A1	A2	B1	В3	C1					11424.90	3.02	262	0.83	74
CP1.09	CP1.09A	5.40	4.60	825	200	UC	4.40	3.78	CP	14.9	2.05	1.12	A1	A2	B1	B3	B5	C1				11494.20	3.77	251	0.80	71
CP1.09A	CP1.10	4.60	4.40	825	200	UC	3.78	3.58	CP	16.7	2.05	1.12	A1	A2	B1	B2	B3	B5	C1	04	D4	11732.75	3.89	249	0.81	72
CP1.10	Plover Cove	4.40	3.50	900	200	UC	3.50	2.60	CP	24.6	2.17	1.41	A1	A2	A3a	B1	B2	B3	A5	C1	D1	18274.88	4.03	247	1.25	88
SP02	CP2.01	8.80	6.30	525	100	UC	8.28	5.78	SP	62.7	2.14	0.47	A1									4722.35	1.00	307	0.40	85
CP2.01 CP2.02	CP2.02 CP2.03	6.30 5.90	5.90 5.90	600 675	100 250	UC	5.70 5.23	5.30 5.18	CP CP	31.4 10.6	2.34 1.60	0.68	A1 A1	B3 B3								5592.55 5592.55	1.49 1.71	294 289	0.46	67 76
CP2.03	CP2.04	5.90	5.90	675	250	UC	5.18	5.09	CP	23.9	1.60	0.59	A1	B3								5592.55	1.82	286	0.44	75
CP2.04	CP1.08	5.90	5.70	675	250	UC	5.09	4.86	CP	57.6	1.60	0.59	A1	B3								5592.55	2.07	280	0.44	74
SP03	CP3.01	7.70	6.60	675	200	UC	7.03	5.93	SP	51.4	1.79	0.66	A2	B2								5896.50	1.00	307	0.50	76
CP3.01	CP3.02	6.60	6.10	675	200	UC	5.93	5.43	CP	34.5	1.79	0.66	A2	B2								5896.50	1.48	294	0.48	73
CP3.02	CP3.03	6.10	5.40	675	200	UC	5.43	4.73	CP	73	1.79	0.66	A2	B2								5896.50	1.80	286	0.47	71
CP3.03 CP3.04	CP3.04 CP3.05	5.40 5.60	5.60 5.70	675 675	200 300	UC	4.73 4.58	4.58 4.52	CP CP	28.9 17.7	1.79 1.46	0.66 0.53	A2 A2	B2 B2								5896.50 5896.50	2.48	272 267	0.45	68 81
CP3.05	CP3.05	5.70	4.70	675	200	UC	4.50	4.03	CP	47.8	1.79	0.53	A2 A2	B2								5896.50	2.75	264	0.44	65
CP3.06	CP3.07	4.70	5.00	675	200	UC	4.03	3.90	CP	24.7	1.79	0.66	A2	B2								5896.50	3.40	256	0.42	64
CP3.07	CP1.09A	5.00	4.60	675	200	UC	3.90	3.89	CP	3	1.79	0.66	A2	B2								5896.50	3.63	253	0.41	63
SP03A	CP3.08	5.40	5.30	600	100	UC	4.80	4.70	SP	7.9	2.34	0.68	A2									5657.95	1.00	307	0.48	7:
CP3.08	CP3.07	5.30	5.00	600	100	UC	4.70	4.40	CP	9.7	2.34	0.68	A2									5657.95	1.06	306	0.48	7
SP04	CP4.01	5.10	5.20	825	400	UC	4.28	4.10	SP	69.9	1.45	0.79	A3	B4								7649.92	1.00	307	0.65	8
CP4.01	CP4.02	5.20	5.00	825	400	UC	4.10	3.85	CP	100.5	1.45	0.79	A3	B4	C2							7687.02	1.81	286	0.61	7
CP4.02 CP4.03	CP4.03 Plover Cove	5.00 3.10	3.10 2.80	825 825	200 200	UC	3.85 2.28	2.28 1.98	CP CP	27.5 41.5	2.05 2.05	1.12 1.12	A3 A3	B4 A4	C2 B4	C2	C3	D2				7687.02 10192.98	2.96 3.45	263 255	0.56 0.72	50 64
0005			4.00				400	4.00		44.0			10-									0004.00	4.00			
SP05 CP5.01	CP5.01 CP5.02	4.90 4.60	4.60 4.40	525 525	200 200	UC	4.38 4.08	4.08 3.88	SP CP	11.2 32.6	1.51 1.51	0.34	A3a A3a									3291.20 3291.20	1.00 1.12	307 304	0.28 0.28	8
CP5.02	CP5.03	4.40	4.40	525	200	UC	3.88	3.85	CP	5.9	1.51	0.34	A3a									3291.20	1.48	294	0.27	8
CP5.03	CP5.04	4.40	4.40	525	200	UC	3.85	3.77	CP	15.6	1.51	0.34	A3a									3291.20	1.55	293	0.27	79
CP5.04	CP5.05	4.40	4.40	525	200	UC	3.77	3.75	CP	4.5	1.51	0.34	A3a									3291.20	1.72	288	0.26	78
CP5.05	CP1.10	4.40	4.40	525	200	UC	3.75	3.70	CP	8.4	1.51	0.34	A3a									3291.20	1.77	287	0.26	7
SP05A	CP5.06	4.90	4.90	675	200	UC	4.23	4.07	SP	30.8	1.79	0.66	A3	C2								6072.97	1.00	307	0.52	7
CP5.06	CP4.03	4.90	3.10	675	200	UC	4.07	2.43	CP	18.9	1.79	0.66	A3	C2								6072.97	1.29	299	0.51	7
SP06	CP6.01	5.20	5.00	450	150	UC	4.75	4.55	SP	20.5	1.58	0.26	A4	C3								2375.76	1.00	307	0.20	7
CP6.01 CP6.02	CP6.02 CP6.03	5.00 5.00	5.00 5.10	450 450	200 200	UC	4.55 4.53	4.53 4.45	CP CP	4.1 15.4	1.37	0.22	A4 A4	C3								2375.76 2375.76	1.22	301 300	0.20	8
CP6.03	CP6.04	5.10	5.00	450	200	UC	4.45	4.11	CP	68.7	1.37	0.22	A4	C3								2375.76	1.45	295	0.19	8
CP6.04	CP6.05	5.00	3.30	450	200	UC	4.11	2.85	CP	78	1.37	0.22	A4	C3								2375.76	2.29	276	0.18	8
CP6.05	CP4.03	3.30	3.10	450	200	UC	2.85	2.65	CP	16.7	1.37	0.22	A4	C3								2375.76	3.24	259	0.17	7
SP07	CD7.01	F 10	4.00	FOF	200	IIC.	4.50	4.00	SP	40.1	4.54	0.24	AF									2104.42	1.00	207	0.07	8
CP7.01	CP7.01 CP7.02	5.10 4.90	4.90 3.00	525 525	200 200	UC	4.58 4.36	4.36 2.48	CP	42.1 88.3	1.51 1.51	0.34	A5 A5									3184.43 3184.43	1.00 1.46	307 295	0.27	7
CP7.02	CP7.03	3.00	3.30	525	200	UC	2.48	2.41	CP	13.2	1.51	0.34	A5	A6								3596.91	2.44	273	0.27	8
CP7.03	Plover Cove	3.30	2.90	525	200	UC	2.41	2.31	CP	19.8	1.51	0.34	A5	A6	D3							3762.11	2.58	270	0.28	8
SP08	CP7.03	4.90	3.30	525	200	UC	4.38	2.78	SP	63.9	1.51	0.34	A5									3184.43	1.00	307	0.27	8
SP09	C9.01	4.10	4.10	375	200	UC	3.73	3.71	SP	2.8	1.21	0.14	A6									412.48	1.00	307	0.04	
C9.01	C9.02	4.10	4.10	375	200	UC	3.71	3.68	CP	5.7	1.21	0.14	A6									412.48	1.04	306	0.04	
C9.02	C9.03	4.10	4.00	375	200	UC	3.68	3.63	CP	10.4	1.21	0.14	A6									412.48	1.12	304	0.03	
C9.03	CP7.02	4.00	3.00	375	200	UC	3.63	2.63	CP	27.2	1.21	0.14	A6									412.48	1.26	300	0.03	
SP10	CP10.01	4.90	3.50	375	200	UC	4.53	3.13	SP	37.5	1.21	0.14	A7									745.33	1.00	307	0.06	
CP10.01	CP10.01	3.50	3.30	375	200	UC	3.13	2.93	CP	17.2	1.21	0.14	A7	D4								988.23	1.78	287	0.08	
CP10.02	Plover Cove	3.30	3.30	375	200	UC	2.93	2.81	CP	23.5	1.21	0.14	A7	D4								988.23	1.78	287	0.08	
SP11	CP11.01	4.50	4.10	375	200	UC	4.13	3.73	SP	16.3	1.21	0.14	A7									745.33	1.00	307	0.06	
CP11.01 CP11.02	CP11.02	4.10	4.10	375 375	200	UC	3.73	3.65	CP CP	15.1	1.21	0.14	A7 A7									745.33	1.22	301	0.06	4
	CP11.03 CP10.01	4.10 4.10	4.10 3.50	375 375	200	UC	3.65			2.8	1.21	0.14										745.33 745.33	1.43	295 294	0.06	4
CP11.03	CP10.01	4.10	3.50	375	200	UC	3.64	3.13	CP	22.3	1.21	0.14	A7									745.33	1.47		294	294 0.06

#SP: Start Point ##:with 10% reduction in flow area


	1	a1
	6.1	b1
	1	a2
	4.8	b2
m	0.80	Total Depth
m	3.20	Base Width
m	0.50	Assumed Water Depth
m	0.30	Freeboard

Assumed Water Depth	Freeboard	Base Width*	Width of Water Surface	Flow Area	Wetted Perimeter	Hydralic Radius	Manning's Roughness	Gradient	Velocity	Capacity
m	m	m	m	m ²	m	m		1 in	m/s	m³/s
0.50	0.30	3.20	8.64	2.96	8.73	0.34	0.035	200	0.98	2.91

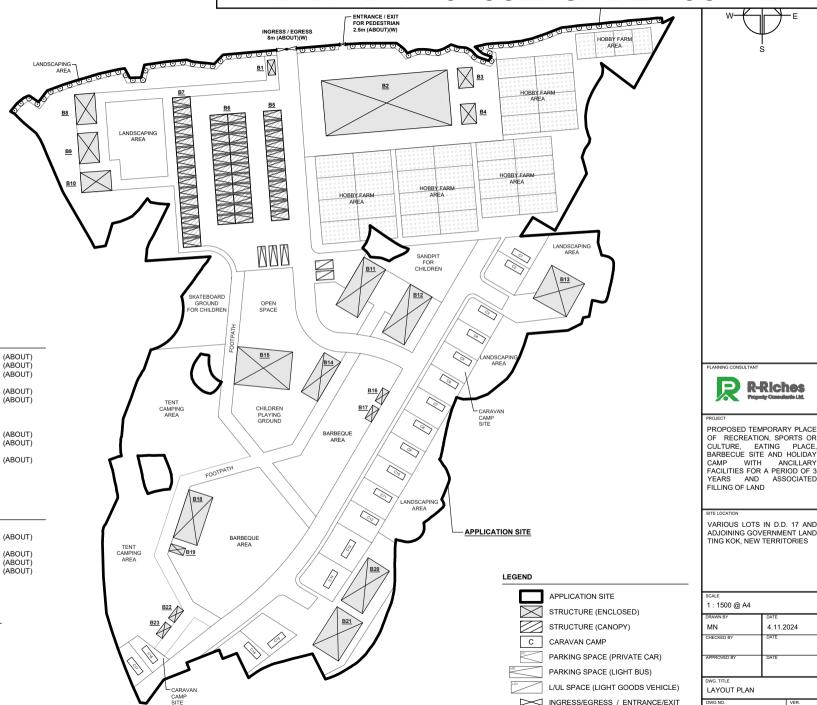
Total Flowfrom The Application Site = $0.06 \text{ m}^3/\text{s}$ Utilization Rate = 2.1%Total flow from CP10.01 only occupy 2.1% of the existing stream.

Time of Concentration Checking

Catchment	Flow Distance	Highest Level	I nwest Level	Gradient (per 100m) = (H1-H2)/L x 100	to (min) = 0.14465L/ (H ^{0.2} A ^{0.1})	tc = to + tf
Α	L	H1	H2			
(m2)	(m)	(mPD)	(mPD)		(min)	(min)
44	13.2	9.3	8.8	3.788	1.0	1.0

APPENDIX B - PROPOSED SITE LAYOUT PLAN

R-Riches


ANCILLARY

ASSOCIATED

4.11.2024

001

PLAN 4

DEVELOPMENT PARAMETERS

APPLICATION SITE AREA

COVERED AREA

SITE COVERAGE

DOMESTIC GFA

BUILDING HEIGHT

#CARAVAN AREA

CARAVAN CAMP SITE

DIMENSION OF SITE

COVERED AREA HEIGHT OF CARAVAN

NO. OF CARAVAN CAMP SITE

TOTAL AREA OF CARAVAN CAMP SITE : 318.6# m²

PARKING AND LOADING/UNLOADING PROVISIONS

NO. OF PRIVATE CAR PARKING SPACE : 48

DIMENSION OF PARKING SPACE

NO. OF L/UL SPACE FOR LGV

DIMENSION OF L/UL SPACE

NO. OF LIGHT BUS PARKING SPACE DIMENSION OF PARKING SPACE

NO. OF STOREY

TOTAL GFA

NO. OF STRUCTURE

NON-DOMESTIC GFA

PLOT RATIO

UNCOVERED AREA

: 38,338 m²

: 33.350.4 m²

: 0.13

: 13%

: 23 + 18#

: 3 m - 6 m

: 4,669 m² + 318.6[#]m²

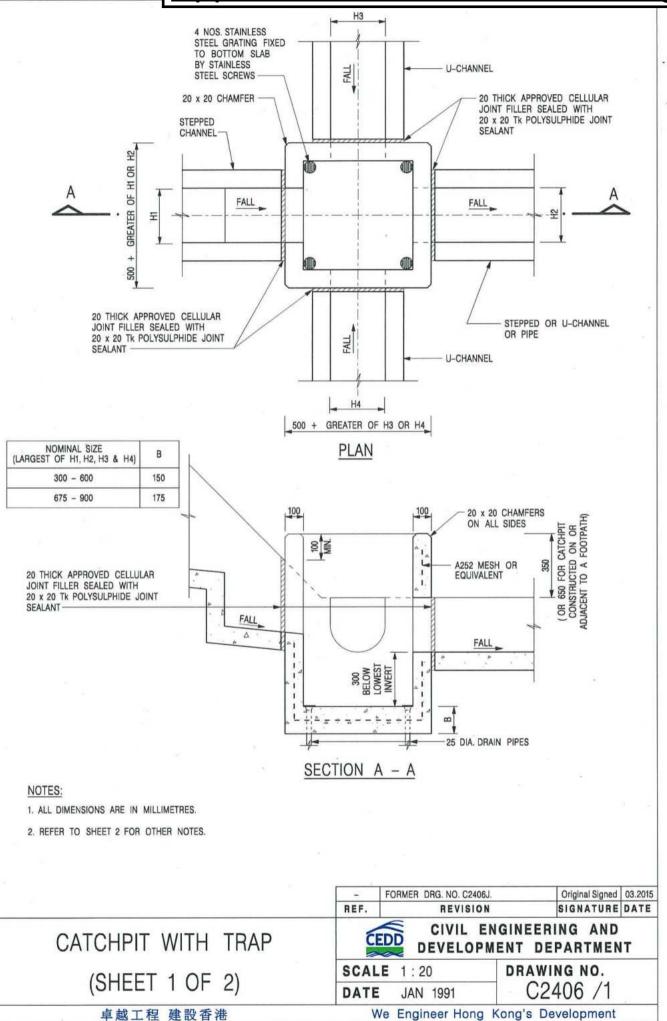
: NOT APPLICABLE

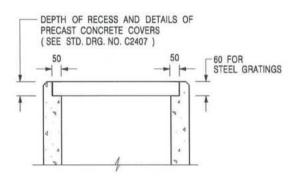
: 4.669 m² + 318.6[#]m

: 4.669 m² + 318.6[#]m

: 2.44 m (W) X 7.26 (L)

: 5 m (L) X 2.5 m (W)


: 8 m (L) X 3 m (W)


: 7 m (L) X 3.5 m (W)

: 17.7 m² EACH

: 2.8 m2 EACH

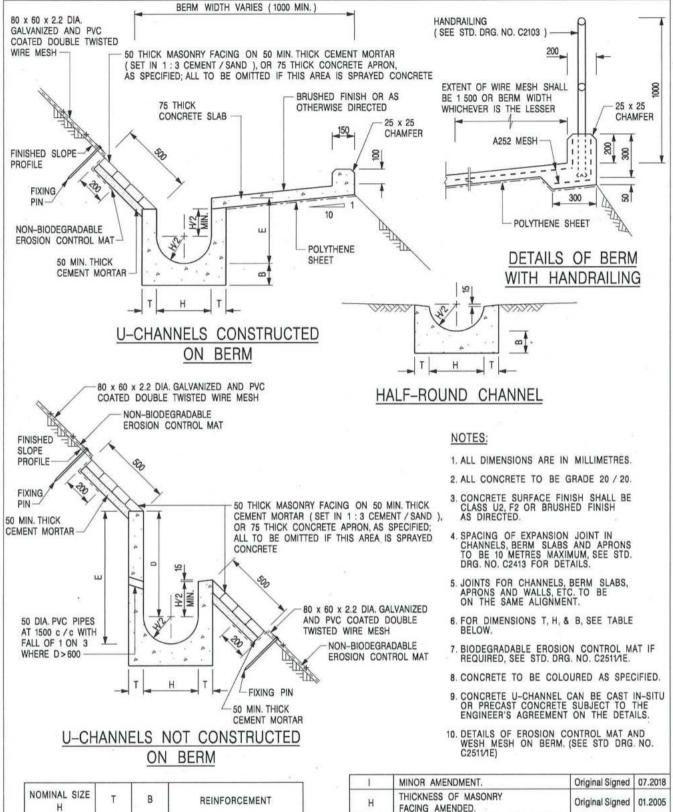
Appendix C - Reference Drawings

ALTERNATIVE TOP SECTION FOR PRECAST CONCRETE COVERS / GRATINGS

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE SHALL BE GRADE 20 /20.
- 3. CONCRETE SURFACE FINISH SHALL BE CLASS U2 OR F2 AS APPROPRIATE.
- 4. FOR DETAILS OF JOINT, REFER TO STD. DRG. NO. C2413.
- 5. CONCRETE TO BE COLOURED AS SPECIFIED.
- UNLESS REQUESTED BY THE MAINTENANCE PARTY AND AS DIRECTED BY THE ENGINEER, CATCHPIT WITH TRAP IS NORMALLY NOT PREFERRED DUE TO PONDING PROBLEM.
- UPON THE REQUEST FROM MAINTENANCE PARTY, DRAIN PIPES AT CATCHPIT BASE CAN BE USED BUT THIS IS FOR CATCHPITS LOCATED AT SLOPE TOE ONLY AND AS DIRECTED BY THE ENGINEER.
- FOR CATCHPITS CONSTRUCTED ON OR ADJACENT TO A FOOTPATH, STEEL GRATINGS (SEE DETAIL 'A' ON STD. DRG. NO. C2405 /2) OR CONCRETE COVERS (SEE STD. DRG. NO. C2407) SHALL BE PROVIDED AS DIRECTED BY THE ENGINEER.
- 9. IF INSTRUCTED BY THE ENGINEER, HANDRAILING (SEE DETAIL 'J' ON STD. DRG. NO. C2405 /5; EXCEPT ON THE UPSLOPE SIDE) IN LIEU OF STEEL GRATINGS OR CONCRETE COVERS CAN BE ACCEPTED AS AN ALTERNATIVE SAFETY MEASURE FOR CATCHPITS NOT ON A FOOTPATH NOR ADJACENT TO IT. TOP OF THE HANDRAILING SHALL BE 1 000 mm MIN. MEASURED FROM THE ADJACENT GROUND LEVEL.
- 10. MINIMUM INTERNAL CATCHPIT WIDTH SHALL BE 1 000 mm FOR CATCHPITS WITH A HEIGHT EXCEEDING 1 000 mm MEASURED FROM THE INVERT LEVEL TO THE ADJACENT GROUND LEVEL. AND, STEP IRONS (SEE DSD STD. DRG. NO. DS1043) AT 300 c STAGGERED SHALL BE PROVIDED. THICKNESS OF CATCHPIT WALL FOR INSTALLATION OF STEP IRONS SHALL BE INCREASED TO 150 mm.
- FOR RETROFITTING AN EXISTING CATCHPIT WITH STEEL GRATING, SEE DETAIL 'G' ON STD. DRG. NO. C2405 /4.
- SUBJECT TO THE APPROVAL OF THE ENGINEER, OTHER MATERIALS CAN ALSO BE USED AS COVERS / GRATINGS.

A	MINOR AMENDMENT.	Original Signed	04.2016
-	FORMER DRG. NO. C2406J.	Original Signed	03.2015
REF.	REVISION	SIGNATURE	DATE


CATCHPIT WITH TRAP (SHEET 2 OF 2) CEDD

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

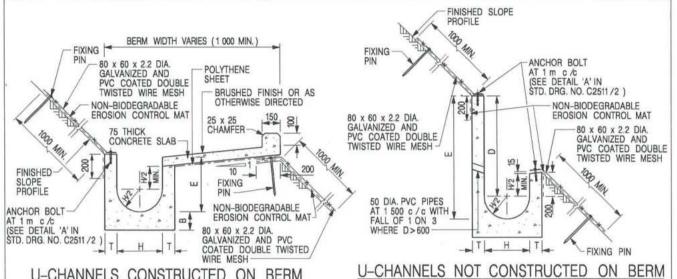
DATE JAN 1991

C2406 /2A

卓越工程 建設香港

NOMINAL SIZE H	T	В	REINFORCEMENT
300	80	100	A252 MESH PLACED
375 - 600	100	150	CENTRALLY AND T=100 WHEN E>650
675 - 900	125	175	A252 MESH PLACED CENTRALLY

ner.	HEVISION	SIGNATURE	DAIE
REF.	REVISION	SIGNATURE	
В	MINOR AMENDMENTS.	Original Signed	3.94
C	150 x 100 UPSTAND ADDED AT BERM.	Original Signed	6.99
D	MINOR AMENDMENT.	Original Signed	08.2001
E	DRAWING TITLE AMENDED.	Original Signed	11.2001
F	GENERAL REVISION.	Original Signed	12.2002
G	MINOR AMENDMENT.	Original Signed	01.2004
Н	THICKNESS OF MASONRY FACING AMENDED.	Original Signed	01.2005
	MINOR AMENDMENT.	Original olyned	07.2010

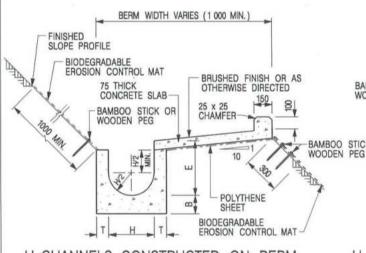

DETAILS OF HALF-ROUND AND U-CHANNELS (TYPE A -WITH MASONRY APRON)

CEDD

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

SCALE 1:25 DATE JAN 1991 C2409l

卓越工程 建設香港



U-CHANNELS CONSTRUCTED ON BERM WITH NON-BIODEGRADABLE EROSION CONTROL MAT U-CHANNELS NOT CONSTRUCTED ON BERM
WITH NON-BIODEGRADABLE
EROSION CONTROL MAT

BIODEGRADABLE

EROSION CONTROL MAT

FINISHED SLOPE PROFILE

BAMBOO STICK OR
WOODEN PEG

50 DIA PVC PIPES
AT 1 500 c/c WITH
FALL OF 1 ON 3
WHERE D>600

BAMBOO STICK OR WOODEN PEG

U-CHANNELS CONSTRUCTED ON BERM WITH BIODEGRADABLE EROSION CONTROL MAT

U-CHANNELS NOT CONSTRUCTED ON BERM
WITH BIODEGRADABLE
EROSION CONTROL MAT

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE TO BE GRADE 20 /20.
- CONCRETE SURFACE FINISH SHALL BE CLASS U2, F2 OR BRUSHED FINISH AS DIRECTED.
- SPACING OF EXPANSION JOINT IN CHANNELS, BERM SLABS AND APRONS TO BE 10 METRES MAXIMUM, SEE STD. DRG. NO. C2413 FOR DETAILS.
- JOINTS FOR CHANNELS, BERM SLABS, APRONS AND WALLS, ETC. TO BE ON THE SAME ALIGNMENT.
- FOR DIMENSIONS T, H, & B, SEE TABLE BELOW.
- FOR TYPICAL FIXING PIN DETAILS, SEE STD. DRG. NO. C2511/2.
- 8. MINIMUM SIZE OF 25 x 50 x 300mm SHALL BE PROVIDED FOR WOODEN PEG.
- MINIMUM SIZE OF 10mm DIAMETER WITH 200mm LONG SHALL BE PROVIDED FOR BAMBOO STICK.
- 10. THE FIXING DETAILS OF NON-BIODEGRADABLE AND BIODEGRADABLE EROSION CONTROL MATS ON EXISTING BERM SHALL REFER TO STD. DRG. NO. C2511/1.

NOMINAL SIZE H	Т	В	REINFORCEMENT
300	80	100	A252 MESH PLACED
375 - 600	100	150	CENTRALLY AND T=100 WHEN E>650
675 - 900	125	175	A252 MESH PLACED CENTRALLY

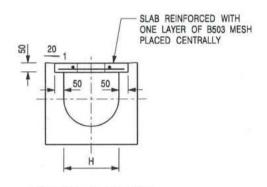
REF.	REVISION	SIGNATURE	DATE
Α	MINOR AMENDMENT.	Original Signed	10.92
В	MINOR AMENDMENT.	Original Signed	3.94
C	150 x 100 UPSTAND ADDED AT BERM.	Original Signed	6.99
D	MINOR AMENDMENT.	Original Signed	08.2001
E	GENERAL REVISION.	Original Signed	12.2002
F	MINOR AMENDMENT.	Original Signed	01.2004
G	DIMENSION TABLE AMENDED.	Original Signed	01.2005
Н	FIXING DETAILS OF BIODEGRADABLE EROSION CONTROL MAT ADDED.	Original Signed	12.2017
- 1	MINOR AMENDMENT.	Original Signed	07.2018

DETAILS OF HALF-ROUND AND U-CHANNELS (TYPE B - WITH EROSION CONTROL MAT APRON)

CEDD

DATE

BAMBOO STICK OR WOODEN PEG


CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

SCALE DIAGRAMMATIC

JAN 1991

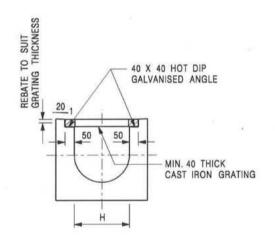
C2410l

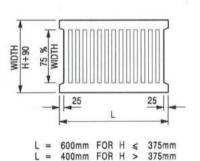
卓越工程 建設香港

GRADE 20 / 20 PRECAST CONCRETE

SLAB WITH F2 FINISH

15 x 15 CORNER FILLETS
ON ALL EDGES


600


PLAN OF SLAB

TYPICAL SECTION

U-CHANNELS WITH PRECAST CONCRETE SLABS

(UP TO H OF 525)

TYPICAL SECTION

CAST IRON GRATING

(DIMENSIONS ARE FOR GUIDANCE ONLY, CONTRACTOR MAY SUBMIT EQUIVALENT TYPE)

U-CHANNEL WITH CAST IRON GRATING

(UP TO H OF 525)

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. H=NOMINAL CHANNEL SIZE.
- ALL CAST IRON FOR GRATINGS SHALL BE GRADE EN-GJL-150 COMPLYING WITH BS EN 1561.
- 4. FOR COVERED CHANNELS TO BE HANDED OVER TO HIGHWAYS DEPARTMENT FOR MAINTENANCE, THE GRATING DETAILS SHALL FOLLOW THOSE AS SHOWN ON HyD STD. DRG. NO. H3156.

REF.	REVISION	SIGNATURE	DATE
Α	CAST IRON GRATING AMENDED.	Original Signed	
В	NAME OF DEPARTMENT AMENDED.	Original Signed	01.2005
С	MINOR AMENDMENT. NOTE 3 ADDED.	Original Signed	
D	NOTE 4 ADDED.	Original Signed	
Ε	NOTES 3 & 4 AMENDED.	Original Signed	

COVER SLAB AND CAST IRON GRATING FOR CHANNELS

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

SCALE 1:20		DRAWING NO.
DATE	JAN 1991	C2412E

卓越工程 建設香港

PROJECT:

Proposed Temporary Place of Recreation, Sports or Culture, Eating Place, Barbecue Site and Holiday Camp with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land in "Agriculture" and "Open Space" Zones and an Area Shown as 'Road'

SITE PHOTOS OF EXISTING DRAINAGE SYSTEM APPENDIX D

LOCATION:

Various Lots in D.D. 17 and Adjoining Government Land, Ting Kok, Tai Po, New Territories

ER DESCRIPTION DATE