Appendix G

Revised Traffic Impact Assessment

SECTION 16 PLANNING APPLICATION FOR PROPOSED RESIDENTIAL DEVELOPMENT AT VARIOUS LOTS IN D.D. 221 AND ADJOINING GOVERNMENT LAND, SHA HA, SAI KUNG

TRAFFIC IMPACT ASSESSMENT

CONTENTS

		PAGE NO.
1.	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	STUDY OBJECTIVE	1
1.3	REPORT STRUCTURE	1
2.	PROPOSED DEVELOPMENT	2
2.1	SITE LOCATION	2
2.2	DEVELOPMENT PARAMETERS	2
2.3	VEHICULAR ACCESS ARRANGEMENT	2
2.4	PROVISION OF PUBLIC PEDESTRIAN WALKWAY	2
2.5	INTERNAL TRANSPORT FACILITY	3
3.	TRAFFIC CONTEXT	4
3.1	ROAD NETWORK	4
3.2	EXISTING TRAFFIC CONDITION	4
3.3	EXISTING PUBLIC TRANSPORT SERVICES	7
4.	TRAFFIC FORECASTING	8
4.1	Design Year	8
4.2	FORECAST ASSUMPTIONS	8
4.3	DEVELOPMENT TRIPS	9
5.	TRAFFIC IMPACT ASSESSMENT	11
5.1	TRAFFIC IMPACT ASSESSMENT	11
6.	PUBLIC TRANSPORT SERVICE ASSESSMENT	14
6.1	EXISTING PUBLIC TRANSPORT SERVICES	14
6.2	FUTURE PUBLIC TRANSPORT DEMAND	15
7.	PEDESTRIAN IMPACT ASSESSMENT	19
7.1	Existing Pedestrian Connections	19
7.2	FUTURE PEDESTRIAN CONNECTIONS	19
7.3	YEAR 2035 PEDESTRIAN FORECAST	20
8.	SUMMARY & CONCLUSION	21
8.1	Summary	21
8.2	Conclusion	22

APPENDIX A – SWEPT PATH ANALYSIS AND SIGHTLINE AT PROPOSED VEHICULAR ACCESS

APPENDIX B – JUNCTION CALCULATION SHEETS

APPENDIX C – DESCRIPTION OF LEVEL-OF-SERVICE (LOS) ON FOOTPATHS

TABLES

Table No.	Title Page	e No.
Table 2.1	Proposed Development Parameters	2
Table 2.2	Proposed Internal Transport Facility Provisions	3
Table 3.1	Identified Key Local Junctions and Road Links	4
Table 3.2	Observed Weekend Peak-hour Traffic Flows in 2024 and 2025	5
Table 3.3	Current Junction Operational Performance	6
Table 3.4	Current Road Link Operational Performance	6
Table 3.5	Existing Public Transport Services	7
Table 4.1	ATC Traffic Counts between Year 2019 to Year 2023	8
Table 4.2	2019-based TPEDM Population and Employment Growths in Southeast New Territor (Other Area)	ries 9
Table 4.3	Estimated Trip Generations of Planned and Committed Developments	9
Table 4.4	Observed Trip Rates of Existing PVP at Kau Sai Chau Public Golf Course	9
Table 4.5	Estimated Development Traffic Trips	10
Table 5.1	Identified Key Local Junctions	11
Table 5.2	Junction Operational Performance at Year 2035	11
Table 5.3	Year 2035 Road Link Operational Performance for Reference Case	12
Table 5.4	Year 2035 Road Link Operational Performance for Design Case Scenario	12
Table 6.1	Observed Public Transport Demand (Outbound) during AM Peak Hour	14
Table 6.2	Anticipated Transport Demand of Proposed development	15
Table 6.3	Transport Modal Splits of Local Area	15
Table 6.4	Estimated Pedestrian Trips of Proposed Development during peak hours in Weekday	y 16
Table 6.5	Future Public Transport Demand (Outbound) during AM Peak Hour	17
Table 6.6	Future Public Transport Demand (Outbound) during AM Peak Hour	18
Table 7.1	LOS Assessments of Existing Footpaths	19
Table 7.2	Anticipated Pedestrian Trips during Peak Hours	20
Table 7.3	LOS Assessments of Footpaths in Design Year 2035	20

DRAWINGS

Fig. No.	Title	Following Page No.
1.1	Site Location	1
2.1	Master Layout Plan	3
2.2	Basement Plan	3
2.3	Indicative Access Design	3
3.1	Planned Improvement of Hiram's Highway	7
3.2	Identified Key Local Junctions and Screenlines	7
3.3	Existing Junction Layout of Tai Mong Tsai Road/Wai Man Road (A)	7
3.4	Existing Junction Layout of Tai Mong Tsai Road/Mei Yu Street/Po Tung Road (B)	7
3.5	Existing Junction Layout of Po Tung Road/Fuk Man Road (C)	7
3.6	Existing Junction Layout of Po Tung Road/Man Nin Street (D)	7
3.7	Existing Layout of Pedestrian Crossing Near Yau Ma Po Street (E) and Junction	7
	At Po Tung Road/ Yau Ma Po Street (F)	
3.8	Existing Junction Layout of Hiram's Highway/ Chui Tong Road (G)	7
3.9	Existing Junction Layout of Hiram's Highway/ Po Lo Che Road/ Hong Kin Road (Hong Kin Road)	1) 7
3.10	Existing Junction Layout of Tai Mong Tsai Road /Sai Sha Road (I)	7
3.11	Observed Traffic Flows	7
3.12	Existing Public Transport Services	7
4.1	Zoning Plan of 2019-Based TPEDM	10
4.2	Year 2035 Reference Traffic Flows	10
4.3	Year 2035 Design Traffic Flows	10
5.1	Planned Junction Layout of Tai Mong Tsai Road/Mei Yu Street/Po Tung Road (B)	13
5.2	Planned Junction Layout of Po Tung Road/Fuk Man Road (C)	13
5.3	Planned Junction Layout of Po Tung Road/Man Nin Street (D)	13
5.4	Planned Layout of Pedestrian Crossing Near Yau Ma Po Street (E) and Junction	
	At Po Tung Road/ Yau Ma Po Street (F)	13
5.5	Planned Junction Layout of Hiram's Highway/ Chui Tong Road (G)	13
5.6	Planned Junction Layout of Hiram's Highway/ Po Lo Che Road/ Hong Kin Road (H) 13
6.1	Existing Public Transport Services in Weekday Peak Hour	18
6.2	TPU Boundary Plan Under 2021 Population Census	18
7.1	Identified Key Footpaths	20

1. INTRODUCTION

1.1 Background

- 1.1.1 The application site is at various lots in DD221 and adjoining Government land, Sai Kung, as shown in **Drawing 1.1**. It is currently in an area shown as "Road" in the approved Sai Kung Town Outline Zoning Plan (OZP) S/SK-SKT/6.
- 1.1.2 The applicant intends to develop the site into a residential development with a view to better utilizing the "leftover" land resources between the CDA(1) zone and Tai Mong Tsai Road taking into account the ongoing Hiram's Highway Improvement Stage 2. This Traffic Impact Assessment (TIA) study is to review the potential traffic impact on the adjacent local road network by the proposed residential development to support the Section 16 Application.

1.2 Study Objective

- 1.2.1 The objectives of this study are summarised as follows:
 - review the current traffic condition and circulation pattern in the adjacent local road network;
 - review the proposed development schedule;
 - produce future traffic forecasts on the adjacent local road network with considerations of the planned developments in the vicinity;
 - investigate the traffic impact on the adjacent local road network with operation of the proposed development at Design Year.

1.3 Report Structure

- 1.3.1 Following this introductory chapter, there are six further chapters:
 - Chapter 2 Proposed Development, presents the development parameters and the transport provisions of the proposed scheme;
 - Chapter 3 Traffic Context, describes the current traffic condition and future traffic planning in the vicinity;
 - Chapter 4 Traffic Forecasts, describes the methodology of traffic forecasting exercise and presents the results;
 - Chapter 5 − Traffic Impact Assessment, presents the assessment findings of the anticipated traffic condition upon occupation of the proposed development, and suggests, if necessary, improvement measures to alleviate the foreseeable traffic problem;
 - Chapter 6 − Public Transport Service Assessment, presents the assessment results on the utilisation of the public transport upon occupation of the proposed development, and suggests, if necessary, improvement measures to alleviate the foreseeable problem;
 - Chapter 7 Pedestrian Impact Assessment, describes the pedestrian forecasting methodology and presents the results;
 - Chapter 8 –Conclusion, summarises the study findings and presents the conclusion accordingly.

2. PROPOSED DEVELOPMENT

2.1 Site Location

2.1.1 The application site is located in Sha Ha. It is bounded by Tai Mong Tsai Road to the north, existing residential developments to the west and planned CDA(1) site to the south.

2.2 Development Parameters

2.2.1 The subject site is proposed to be developed into a residential development. The proposed development parameters are summarised in **Table 2.1**. It is anticipated to be completed in year 2032. The Master Layout Plan (MLP) and basement plan are illustrated in **Drawing 2.1** and **Drawing 2.2** respectively.

Table 2.1 Proposed Development Parameters

	Parameter
Plot Ratio	about 1.5
Domestic GFA	about 11,421m²
No. of Blocks	3
No. of Units	about 280
Average Flat size	approx. 40.79m²
Anticipated Population	about 756 ⁽¹⁾

Remark: (1) Adopting the average domestic household size of 2.7 in the District Council Constituency Area Q01 Sai Kung Central in 2021 Population Census.

2.3 Vehicular Access Arrangement

- 2.3.1 The vehicular access for the proposed development is Tai Mong Tsai Road, which is the only road abutting the site. A left-in/left-out arrangement is proposed for the vehicular access to minimize the traffic impact to Tai Mong Tsai Road. The indicative design of the vehicular access is illustrated in **Drawing No. 2.3**. The design and construction of vehicular access and the associated pedestrian crossing will be undertaken by the applicant at his own cost.
- 2.3.2 Swept path analysis for 11m long HGV has been conducted at the proposed vehicular access and the result is shown in **Appendix A**. The result demonstrated that sufficient manoeuvring space has been provided for 11m HGV turning into and out from the vehicular access.
- 2.3.3 Besides, sightline analysis has also been conducted at the proposed vehicular access and the result is shown in **Appendix A**. The result revealed that adequate sightline distance have been provided for the proposed vehicular access.

2.4 Provision of Public Pedestrian Walkway

2.4.1 It is noted that a 6m wide public pedestrian walkway will be provided by others to connect Tai Mong Tsai Road and Mei Fuk Street for public use according to the approved planning application of nearby CDA(1) site (Application No. A/SK-SKT/28). As part of the planned pedestrian walkway will fall within boundary of the application site, a 6m wide public pedestrian walkway will be reserved on the west of the application site. The proposed 6m public pedestrian walkway within the site is indicated in the **Drawing 2.1**.

2.5 Internal Transport Facility

2.5.1 The proposed residential development would be provided with internal transport facilities in accordance with the latest Hong Kong Planning Standards and Guidelines (HKPSG). In addition, public parking spaces are proposed to increase the parking space supply to the community. Taking into consideration of the basement extent, 10 nos. public parking spaces for private car are proposed. The proposed provisions are summarised in **Table 2.2**.

Table 2.2 Proposed Internal Transport Facility Provisions

Item	High	end of HKPSG Re		Parameters	Provision (nos.)				
Residential Development									
Private Car	GPS ⁽¹⁾	R1 ⁽¹⁾		R2 ⁽¹⁾	R3 ⁽¹⁾				
	1 space per	FS ≤ 40m ²	0.5	0.5 1 1.1		160 units	22		
	4 units	40m ² <fs≤70m<sup>2</fs≤70m<sup>	1.2	1	1.1	120 units	40		
Visitor Parking	4 spaces for e	ach block with 61-		2 blocks	8				
	5 spaces for each block with more than 75 units						5		
						Total	75 ⁽³⁾		
Motorcycle Parking	1 space per 100 units					280 units	3		
HGV									
Loading/Unloading	1 bay per resi	dential block				3 blocks	3		
Bays									
Public Parking Space	es ·								
Private Car	_	-		·	·	-	10		

Remarks:

⁽¹⁾ Parking Requirement = GPS x R1 x R2 x R3, where GPS = 1 car space per 4 flats, R1=1.2 for flat size 40m^2 <FS \leq 70m², R2=1 for the site outside a 500-radius of rail station, R3=1.1 for domestic plot ratio 1<PR \leq 2.

⁽²⁾ With reference to the other similar residential developments.

⁽³⁾ Including 2 disabled spaces for total 51-150 parking spaces, with reference to Regulation 72 of the Building (Planning) Regulations.

^{2.5.2} Both the ancillary carpark and public parking spaces would be located in the basement, whilst the loading/unloading bays would be located on the ground floor level along the 7.3m wide internal driveway.

3. TRAFFIC CONTEXT

3.1 Road Network

Existing Road Network

- 3.1.1 Sha Ha area is mainly served by Tai Mong Tsai Road, a rural road which functions as local distributor running in north-south direction. It connects Po Tung Road to Hiram's Highway and to Clear Water Bay Road further on the south and Sai Sha Road on the north.
- 3.1.2 Hiram's Highway is a strategic road linking up Sai Kung to East Kowloon and Tseung Kwan O. The existing Hiram's Highway between Marina Cove to Sai Kung Town is generally a single 2-lane carriageway.

Planned Road Network

- 3.1.3 Improvement works to Hiram's Highway has been planned by Highways Department (HyD), with the objectives to relieve existing traffic congestion and enhance the resilience to unexpected incidents. The works has been divided into 2 stages. Stage 1 works included the road widening of Hiram's Highway between Clear Water Bay Road and Marina Cove, which has been completed in 2021.
- 3.1.4 The Stage 2 works includes widening of the road section between Marina Cove to Sai Kung Town, which covered Hiram's Highway, Po Tung Road and a section of Tai Mong Tsai Road abutting the application site. According to the HyD's press releases dated 29 September 2023, the design and construction of the works is scheduled to commence in the Q2 2024 and will take about 84 months to complete. As such, it is anticipated that the improvement works would be completed by 2032. **Drawing No. 3.1** shows the extent of the planned Stage 2 improvement works.

3.2 Existing Traffic Condition

3.2.1 A total of nine local junctions and six road links have been identified with reference to the major ingress and egress routes of the proposed development for assessment purpose. The key local junctions are listed in **Table 3.1**, whilst their locations are indicated in **Drawing 3.2**.

Table 3.1 Identified Key Local Junctions and Road Links

Ref. (1)	Junction/Road Link	Туре	Drawing No.						
Junction	Junction								
Α	Tai Mong Tsai Road/Wai Man Road	Roundabout	3.3						
В	Tai Mong Tsai Road/Mei Yu Street/Po Tung Road	Priority	3.4						
С	Po Tung Road/Fuk Man Road	Roundabout	3.5						
D	Po Tung Road/Man Nin Street	Priority	3.6						
E	Pedestrian Crossing near Yau Ma Po Street	Signal	3.7						
F	Po Tung Road/Yau Ma Po Street	Priority	3.8						
G	Hiram's Highway/Chui Tong Road	Priority	3.8						
Н	Hiram's Highway/Po Lo Che Road /Hong Kin Road	Signal	3.9						
I	Tai Mong Tsai Road /Sai Sha Road	Roundabout	3.10						

Table 3.1 Identified Key Local Junctions and Road Links (Cont'd)

Ref. (1)	Junction/Road Link	Туре	Drawing No.				
Road Li	Road Link						
S1	Tai Mong Tsai Road (section between Wai Man Road and Sha Ha Path)	Single-2	3.2				
S2	Tai Mong Tsai Road (section between Sha Kok Mei Road and Sha Kok Mei Village (North)	Single-2	3.2				
S3	Fuk Man Road (section between Po Tung Road and Chan Man Street)	Single-2	3.2				
S4	Po Tung Road (section between Fuk Man Road and Man Nin Street)	Single-2	3.2				
S5	Hiram's Highway (section between Hong Kin Road and Po Lo Che Path)	Single-2	3.2				
S6	Sai Sha Road (section near its roundabout with Tai Mong Tsai Road)	Single-2	3.2				

Remark: (1) Locations refer to Drawing 3.2.

- 3.2.2 In order to establish the current traffic condition in the area, traffic surveys in form of manual classified count were conducted at the identified key local junctions. Since Sai Kung is not only a residential area, but also is a popular recreational place during the weekends, the traffic surveys were not only conducted during the typical weekday morning and evening peak hours, but also the weekend peak period.
- 3.2.3 The traffic surveys were arranged and conducted on a typical weekday in April 2024 during morning peak hours between 07:30-09:30 and the evening peak hours between 17:00-19:00 and a typical weekend in April 2024 (Saturday) during the hours of 12:00-19:00.
- 3.2.4 The observed traffic data indicates that the weekday morning and evening peak hours occurred from 07:45 to 08:45 and 17:30 to 18:30 respectively while the weekend peak hour occurred from 13:45 to 14:45. The observed peak hour traffic flows are shown in **Drawing 3.11**.
- 3.2.5 To verify that the survey conducted in April 2024 could apply to current conditions, an updated survey has been conducted at the critical link sections in the study area on a typical weekend in May 2025. Comparison of the updated survey result against the previous survey in 2024 is presented in **Table 3.2**.

Table 3.2 Observed Weekend Peak-hour Traffic Flows in 2024 and 2025

		Weekend Peak			
Road Section	Dir.	Observed Flows	Observed Flows		
		in 2024 (pcu/hr)	in 2025 (pcu/hr)		
Tai Mong Tsai Road	NB	920	825		
(Section between Man Nin Street and Yi Chun	SB	1,025	875		
Public Carpark, near junction D)	JD .	1,025	673		
Hiram's Highway	NB	955	800		
(Section between Po Lo Che Road and Chui	SB	1,000	710		
Tong Road, near junction H)	ЭD	1,000	710		
Sai Sha Road	NB	505	455		
(section near its roundabout with Tai Mong	SB	440	395		
Tsai Road, Road Link S6)	JD	770	395		

3.2.6 According to **Table 3.2**, the previous traffic flows in 2024 are higher than the updated traffic flows in 2025. It is considered that the previous traffic flows in 2024 could apply to current conditions for traffic assessment purpose. In this regard, the previous traffic flows in 2024 was adopted as base flows in the traffic forecast for conservative approach.

Junction Operational Performance

3.2.7 Junction capacity assessments have been conducted to evaluate the current operational performance of the identified key local junctions. The assessment results are summarised in **Table 3.3**.

Table 3.3 Current Junction Operational Performance

Ref.	l	Toma	Reserve Capacity / Ratio to Flow Capacity			
(1)	Junction	Туре	Weel	Weekend		
			AM	PM	weekend	
Α	Tai Mong Tsai Road/Wai Man Road	Roundabout	0.62	0.48	0.53	
В	Tai Mong Tsai Road/Mei Yu Street/Po Tung Road	Priority	0.03	0.05	0.07	
С	Po Tung Road/Fuk Man Road	Roundabout	1.14	1.02	1.29	
D	Po Tung Road/Man Nin Street	Priority	0.65	0.91	1.34	
Е	Pedestrian Crossing near Yau Ma Po Street	Signal	37%	41%	32%	
F	Po Tung Road/Yau Ma Po Street	Priority	0.21	0.22	0.13	
G	Hiram's Highway/Chui Tong Road	Priority	0.19	0.30	0.37	
Н	Hiram's Highway/Po Lo Che Road /Hong Kin Road	Signal	45%	43%	44%	
I	Tai Mong Tsai Road /Sai Sha Road	Roundabout	0.32	0.33	0.30	

Remark: (1) Locations refer to **Drawing 3.2**.

3.2.8 The assessment results indicated that all the identified key junctions are currently operating with capacity, except the roundabout of Po Tung Road/Fuk Man Road (C) and the priority junction of Po Tung Road/Man Nin Street (D).

Road Link Operational Performance

3.2.9 Traffic surveys have also been conducted to establish the current traffic flows at the identified road links as indicated in **Drawing 3.2**. The Volume to Capacity (V/C) ratio of each identified road links have been evaluated and the results are summarised in **Table 3.4**.

Table 3.4 Current Road Link Operational Performance

Ref.	Road Link	Road Link Dir		Observed Flows (pcu/hr)			erved F Veh/hi		Design Capacity	V/C Ratio		
			AM	PM	WE	AM	PM	WE	(Veh/hr) ⁽²⁾	AM	PM	WE
S1	Tai Mong	NB	500	630	655	442	571	592	850	0.52	0.67	0.70
21	Tsai Road	SB	685	535	590	621	494	527	850	0.73	0.58	0.62
S2	Tai Mong	NB	435	585	585	402	548	539	850	0.47	0.64	0.63
32	Tsai Road	SB	605	470	505	549	441	450	850	0.65	0.52	0.53
S3	Fuk Man Road	WB	455	495	615	400	400	530	850	0.47	0.47	0.62
33		EB	485	420	555	408	345	470	850	0.48	0.41	0.55
S4	Po Tung Road	NB	750	900	960	667	811	851	850	0.78	0.95	1.00
34		SB	945	835	980	844	753	876	850	0.99	0.89	1.03
S5	Hiram's Highway	NB	810	970	935	720	886	822	850	0.85	1.04	0.97
35		SB	1065	860	975	955	774	876	850	1.12	0.91	1.03
S6	Sai Sha	NB	500	615	505	448	580	457	850	0.53	0.68	0.54
36	Road	SB	565	410	440	520	391	393	850	0.61	0.46	0.46

Remarks: (1) Refer to Drawing 3.2.

S16 Planning Application for Proposed Residential Development at various lots in D.D. 221 and adjoining government land, Sha Ha, Sai Kung

Traffic Impact Assessment

⁽²⁾ Design capacity of 850 veh/hr for each bound of single 2-lane carriageway, as extracted from TPDM Volume 2 Chapter 2.4.

3.2.10 The assessment results in **Table 3.4** indicated that all the identified sections are currently operating within capacity, except the road link of Po Tung Road (S4) and a section of Hiram's Highway near Hong Kin Road (S5).

3.3 Existing Public Transport Services

3.3.1 Franchised bus and minibus are the major public transport services in Sai Kung. The nearby public transport facilities of the site are indicated in **Drawing 3.12**, whilst the details and servicing schedules are summarised in **Table 3.5**.

Table 3.5 Existing Public Transport Services

Route	Origin/Destination	Frequency (min.)	Remark
Franchise	d Bus		
92	Diamond Hill Railway Station <-> Sai Kung	10-30	-
92R	Sai Kung → Tsim Sha Tsui Star Ferry	From Tsim Sha Tsui Star Ferry: 60 From Sai Kung: 20-30	Saturday, Sunday and Public Holiday only
94	Wong Shek Pier <-> Sai Kung	20 – 40	-
96R	Diamond Hill Railway Station <-> Wong Shek Pier	18 – 30	Saturday, Sunday and Public Holiday only
99	Heng On Bus Terminus <-> Sai Kung	15 – 30	-
99R	University Railway Station Bus Terminus <-> Sai Kung North Bus Terminus	60	Public Holiday only
292P	Sai Kung → Kwun Tong	(for ref. one trip at 7:30a.m only)	Weekday Morning Peak Hour only
299X	Shatin Central Bus Terminus <-> Sai Kung	15 – 20	-
792M	Tseung Kwan O Station <-> Sai Kung	15 –30	-
Green Mi	nibus		
1	Kowloon Bay (Telford Gardens) <-> Sai Kung	8 – 20	-
1A ⁽¹⁾	Diamond Hill (Choi Hung Road) Public Transport Interchange <> Sai Kung	4	-
15	Diamond Hill (Choi Hung Road) Public Transport Interchange <-> Sai Kung	10 – 15	Overnight Service only
7	Hoi Ha <-> Sai Kung	20 – 30	-
9	Lady Maclehose Holiday Village <-> Sai Kung	30	-
12	Po Lam <-> Sai Kung	10 – 15	-
101M ⁽²⁾	Hang Hau Station <-> Sai Kung	3 – 30	-
Red Minik	pus		
-	Causeway Bay <-> Sai Kung	Non-scheduled	-
-	Kwun Tong <-> Sai Kung	Non-scheduled	-
-	Mong Kok <> Sai Kung	Non-scheduled	-

Remarks:

- (1) Apart from regular services, short-working journeys from Sai Kung North Public Transport Interchange will be operated daily from 5:30 am and 9:00 am at a frequency of 20 minutes.
- (2) Apart from regular services, special trips (between Sai Kung and Hang Hau Station (via Sai Kung North Public Transport Interchange)) are operated from 7:00 am to 9:30 am between Mondays and Fridays (except public holidays) and from 4:00 pm to 6:30pm daily at a frequency of 10 minutes.

Drawing Title

LEGEND:

600 WEEKDAY AM PEAK HOUR TRAFFIC FLOWS (PCU/HR)

(435) WEEKDAY PM PEAK HOUR TRAFFIC FLOWS (PCU/HR)

[500] WEEKEND PEAK HOUR TRAFFIC FLOWS (PCU/HR)

-	-	-	-	Project Title
	-	•	•	
-	-	-	-	PRC
Α	MINOR AMENDMENT	PTC	19DEC24	
Rev.	Description	Checked	Date	1

SECTION 16 PLANNING APPLICATION FOR PROPOSED RESIDENTIAL DEVELOPMENT AT VARIOUS LOTS IN D.D. 221 AND ADJOINING GOVERNMENT LAND, SHA HA, SAI KUNG

				OBSI	ERVE	D TRA	FFIC	C FLOWS
ned	HZF	Checked	PTC	Scale	NTS	Date SEP	2024	Drawing No.

SYSTIA

3.11

CHK50791710/TIA/F311-A.CDR/LLH/19DEC24

4. TRAFFIC FORECASTING

4.1 Design Year

4.1.1 The tentative completion year of the proposed development is year 2032. Hence, the design year of 2035 three years upon operation of the proposed development, has been adopted for traffic forecast and assessment purposes.

4.2 Forecast Assumptions

Traffic Growth Rate from 2024 to 2035

4.2.1 As Hiram's Highway would still be the only major road to serve the area (with or without the improvement works), the current general traffic circulation pattern in the vicinity at the design year of 2035 is expected to be very similar to the current situation. Therefore, the simple growth rate method is adopted for the traffic forecasting exercise.

Historical Trend

4.2.2 Annual Traffic Census (ATC) traffic count stations are available in the vicinity of the development. The annual traffic counts in the latest Annual Traffic Census (ATC) report published by Transport Department (TD) over a period between Year 2019 and Year 2023 are summarised in **Table 4.1**.

Table 4.1 ATC Traffic Counts between Year 2019 to Year 2023

Station	Road	А	Annual Growth Rate				
no.		2019	2020	2021	2022	2023	2019/2023
5258	Po Tung Road & Tai Mong Tsai Road	31,970	30,760*	32,210*	30,800*	28400	-2.92%
6055	Hiram's Highway	24,280*	23,360*	24,460*	23,480	22860	-1.50%
	Total	56,250	54,120	56,670	54,280	51,260	-2.30%

Note: (*) AADT estimated by growth factor.

4.2.3 As shown in **Table 4.1**, the average annual traffic growth rates are -2.3% per annum over the past 5 years.

Planning Data

4.2.4 Besides, reference has been made to the latest available 2019-Based Territorial Population and Employment Data Matrices (TPEDM) published by Planning Department for determination of traffic growth rate. The average annual growth rates in terms of population and employment from year 2019 to 2031 in Southeast New Territories (Other Area) are illustrated in **Table 4.2**. The relevant zone plan in TPEDM is indicated in **Drawing 4.1**

Table 4.2 2019-based TPEDM Population and Employment Growths in Southeast New Territories (Other Area)

Zone ⁽¹⁾	Popu	lation	Annual Growth Rate (p.a.)	Emplo	yment	Annual Growth Rate (p.a.)	
	2019	2031	2019/2031	2019	2031	2019/2031	
Southeast New Territories (Other Area)	68,900	59,750	-1.18%	27,250	28,100	+0.26%	

Remark: (1) Refer to Drawing 4.1.

- 4.2.5 The TPEDM population data indicates that the annual population and employment growth rate in Southeast New Territories (Other Area) is -1.18% p.a. and +0.26% p.a. respectively.
- 4.2.6 Having reviewed the historical growth trend and planning data, a traffic growth rate of +0.26% p.a. was adopted for producing the traffic forecast from Year 2024 up to Year 2035.

Adjacent Planned/Committed Development

4.2.7 According to the latest available information from public domain, there is a planned residential development in CDA(1) zone adjacent to the Applicant site that are expected to be completed by year 2035. The estimated trip generations of this planned development is listed in **Table 4.3**. which would be considered in the traffic forecast.

Table 4.3 Estimated Trip Generations of Planned and Committed Developments

	No. of		Week	Weekend			
	No. of Units	AM	Peak	PM I	Peak	Pe	ak
	Offics	GEN	ATT	GEN	ATT	GEN	ATT
Proposed Residential Development in CDA(1) zone (1)	972	192	109	94	129	108	134

Note: (1) As extracted from the approved TIA report for the Section 16 planning application No. A/SK-SKT/28).

4.3 Development Trips

- 4.3.1 The proposed residential development will provide 280 units with average flat size of about 40.8m². The development trips for residential portion was estimated with reference to the trip rates in Transport Planning Design Manual (TPDM) published by TD.
- 4.3.2 Besides, 10 nos. public parking spaces for private car will be provided within the site. To estimate the trips of proposed public parking spaces, a trip generation survey was conducted at the existing nearby Public Vehicle Park (i.e. Kau Sai Chau Public Golf Course) on the same survey period as described in **Section 3.2**. The observed trip rates of surveyed PVP during the peak hours are computed and summarized in **Table 4.4**.

Table 4.4 Observed Trip Rates of Existing PVP at Kau Sai Chau Public Golf Course

			Wee	Weekend Peak			
	No. of Space	AM	Peak	PM	Peak	weekei	iu Peak
		GEN	ATT	GEN	ATT	GEN	ATT
Observed Trips (pcu/hr)	283	4	8	5	15	39	40
Trip Rates (pcu/hr/space)		0.0141	0.0283	0.0177	0.0530	0.138	0.142

S16 Planning Application for Proposed Residential Development at various lots in D.D. 221 and adjoining government land, Sha Ha, Sai Kung

4.3.3 Based on above, the estimated development trips during the weekday morning and evening and weekend peak hours are summarised in **Table 4.5**.

Table 4.5 Estimated Development Traffic Trips

			Wee	kday		Weekei	ad Dools
	Parameter	AM	AM Peak		Peak	weekei	по Реак
		GEN	ATT	GEN	ATT	GEN	ATT
Residential							
Trip Rates (pcu/hr/unit) ⁽¹⁾	=	0.0718	0.0425	0.0286	0.037	0.0258(2)	0.0393(2)
Trips (pcu/hr)	280 units	20	12	8	10	7	11
PVP							
Trip Rates (pcu/hr/space)	=	0.0141	0.0283	0.0177	0.0530	0.138	0.142
Trips (pcu/hr)	10	1	1	1	1	2	2
Total		21	13	9	11	9	13

Notes:

- (1) Mean value of trip rates for private housing with average flat size of 60 m² in TPDM is adopted for weekday peak scenarios.
- (2) Ratios of weekday PM trips to weekend trips were applied. The ratios were derived with reference to the trip generation survey at the similar residential development in the vicinity (i.e. The Mediterranean) in April 2024.
- 4.3.4 As indicated in **Table 4.5**, the proposed development would generate the two-way trips total of 34, 20 and 22 pcu/hr during the weekday morning, evening and weekend peak hours respectively.
- 4.3.5 According to the above, the anticipated 2035 peak hour reference traffic flows are obtained by applying the adopted growth rates to the 2024 traffic flows and superimposing the estimated trip generations of the planned development. The 2035 reference peak-hour traffic flows are shown in **Drawing 4.2**.
- 4.3.6 The estimated development trips summarised in **Table 4.5** would be superimposed onto the year 2035 reference peak hour traffic flows to produce the anticipated year2035 design peak hour traffic flows (with proposed development), as shown in **Drawing 4.3**.

Drawing Title

LEGEND:

735 WEEKDAY AM PEAK HOUR TRAFFIC FLOWS (PCU/HR)

(500) WEEKDAY PM PEAK HOUR TRAFFIC FLOWS (PCU/HR)

[580] WEEKEND PEAK HOUR TRAFFIC FLOWS (PCU/HR)

-	-	-	-	Project Title
	-	•	•	
-	-	-	-	PRC
Α	MINOR AMENDMENT	PTC	19DEC24	
Rev.	Description	Checked	Date	1

SECTION 16 PLANNING APPLICATION FOR PROPOSED RESIDENTIAL DEVELOPMENT AT VARIOUS LOTS IN D.D. 221 AND ADJOINING GOVERNMENT LAND, SHA HA, SAI KUNG

YEAR 2035 REFERENCE TRAFFIC FLOWS

Designed HZF Checked PTC Scale NTS Date SEP 2024 Drawing No. 4.2 Rev. A

Drawing Title

LEGEND:

750 WEEKDAY AM PEAK HOUR TRAFFIC FLOWS (PCU/HR)

(505) WEEKDAY PM PEAK HOUR TRAFFIC FLOWS (PCU/HR)

[585] WEEKEND PEAK HOUR TRAFFIC FLOWS (PCU/HR)

-	-	-	-	Project Title
	-	-	-	
-	-	-	-	PRC
Α	MINOR AMENDMENT	PTC	20DEC24	
Rev.	Description	Checked	Date	1

SECTION 16 PLANNING APPLICATION FOR PROPOSED RESIDENTIAL DEVELOPMENT AT VARIOUS LOTS IN D.D. 221 AND ADJOINING GOVERNMENT LAND, SHA HA, SAI KUNG

YEAR 2035 DESIGN TRAFFIC FLOWS

Designed HZF Checked PTC Scale NTS Date SEP 2024 Drawing No. 4.3

SYSTIA

5. TRAFFIC IMPACT ASSESSMENT

5.1 Traffic Impact Assessment

5.1.1 To investigate the traffic impact of the proposed development on the surrounding road network at the design year 2035, operational performance of the identified key local junctions and critical links have been assessed for both reference and design scenarios.

Planned Hiram's Highway Improvement Stage 2

5.1.2 As mentioned in **Section 3.1**, the planned improvement works to Hiram's Highway has been gazetted and is anticipated to be completed by 2032. The planned road and junction improvements works under the project were adopted in the assessment. The possible planned junction layouts, which has been adopted in the assessment, are summarized in **Table 5.1** and illustrated in **Drawing Nos. 5.1 – 5.6**.

Table 5.1 Identified Key Local Junctions

Ref. (1)	Junction	Туре	Drawing No.
В	Tai Mong Tsai Road/Mei Yu Street/Po Tung Road	Roundabout	5.1
С	Po Tung Road/Fuk Man Road	Roundabout	5.2
D	Po Tung Road/Man Nin Street	Signal	5.3
E	Pedestrian Crossing near Yau Ma Po Street	Signal	5.4
F	Po Tung Road/Yau Ma Po Street	Priority	5.4
G	Hiram's Highway/Chui Tong Road	Signal	5.5
Н	Hiram's Highway/Po Lo Che Road /Hong Kin Road	Signal	5.6

Remark: (1) Locations refer to Drawing 3.2.

Junction Operational Performance

5.1.3 Based on the existing/planned layouts, the junction assessment results for the 2035 reference and design scenarios are summarized in **Table 5.2**. The junction calculation sheets are attached in **Appendix B**.

Table 5.2 Junction Operational Performance at Year 2035

		Туре	I	Reserve (Capacity / R	atio to F	low Capa	city
Ref.			Re	eference	Case	Design Case		
(1)	Junction		Wee	kday	Weekend	Wee	kday	Weekend
			AM PM Peak Peak		Peak	AM Peak	PM Peak	Peak
Α	Tai Mong Tsai Road/ Wai Man Road	Roundabout	0.69	0.55	0.61	0.70	0.55	0.62
В	Tai Mong Tsai Road/Mei Yu Street/Po Tung Road ⁽²⁾	Roundabout	0.57	0.49	0.49	0.59	0.49	0.49
С	Po Tung Road/Fuk Man Road (2)	Roundabout	0.42	0.37	0.44	0.43	0.37	0.44
D	Po Tung Road/Man Nin Street (2)	Signal	51%	43%	29%	50%	42%	28%
E	Pedestrian Crossing near Yau Ma Po Street ⁽²⁾	Signal	>100%	>100%	>100%	>100%	>100%	>100%
F	Po Tung Road/Yau Ma Po Street (2)	Priority	0.15	0.18	0.13	0.15	0.18	0.13
G	Hiram's Highway/Chui Tong Road (2)	Signal	80%	91%	51%	78%	91%	50%
Н	Hiram's Highway/Po Lo Che Road/ Hong Kin Road (2)	Signal	86%	>100%	>100%	84%	>100%	>100%
I	Tai Mong Tsai Road /Sai Sha Road	Roundabout	0.35	0.36	0.33	0.36	0.36	0.33

Remarks: (1) Locations refer to **Drawing 3.2**.

(2) Based on the possible planned junction layout under Hiram's Highway Improvement Stage 2.

5.1.4 The assessment results in **Table 5.2** indicate that all identified key junctions would operate within their capacity under the reference (without the proposed development) and design cases (with the proposed development).

Road Link Performance

5.1.5 Apart from junction capacity assessment, the road link operation performance was also undertaken for both reference and design scenarios. Based on the existing/planned layouts with traffic forecast, the results of the assessment are summarized in **Tables 5.3** and **5.4**.

Table 5.3 Year 2035 Road Link Operational Performance for Reference Case

Ref.	Road Link	Dir	Reference Traffic Flows (pcu/hr)				rence T vs (Veh		Design Capacity	ν	/C Rati	io
(1)	Road Lilik		AM	PM	WE	AM	PM	WE	(Veh/hr) (2)	AM	PM	WE
S1 Ta	Tai Mong Tsai	NB	580	680	710	520	620	645	850	0.61	0.73	0.76
31	Road	SB	740	590	650	675	550	585	850	0.79	0.65	0.69
S2	Tai Mong Tsai	NB	515	680	685	480	645	635	850	0.56	0.76	0.75
32	Road	SB	740	530	585	685	505	530	850	0.81	0.59	0.62
S3	Fuk Man Road	WB	470	505	635	410	410	545	850	0.48	0.48	0.64
33		EB	495	430	570	420	355	485	850	0.49	0.42	0.57
S4	Do Tung Dood	NB	920	1105	1145	810	990	1010	2,600	0.31	0.38	0.39
34	Po Tung Road	SB	1175	1005	1150	1045	900	1020	2,600	0.40	0.35	0.39
S5	Hiram's	NB	900	1075	1045	810	990	930	2,600	0.31	0.38	0.36
35	Highway	SB	1215	935	1065	1100	845	970	2,600	0.42	0.33	0.37
	Cai Cha Daad	NB	580	665	555	530	625	510	850	0.62	0.74	0.60
S6	Sai Sha Road	SB	620	465	500	575	445	450	850	0.68	0.52	0.53

Remarks:

Table 5.4 Year 2035 Road Link Operational Performance for Design Case Scenario

Ref.	Road Link	Dir	Design Traffic Flows (pcu/hr)			•	n Traffic (Veh/hr)		Design Capacity	V/C Ratio		
(1)	Road Link	Diii	AM	PM	WE	AM	PM	WE	(Veh/hr) (2)	AM	PM	WE
S1	Tai Mong Tsai	NB	585	685	715	525	620	650	850	0.62	0.73	0.76
21	Road	SB	745	595	655	680	555	590	850	0.80	0.65	0.69
S2	Tai Mong Tsai	NB	530	690	695	495	655	650	850	0.58	0.77	0.76
32	Road	SB	755	535	590	695	510	535	850	0.82	0.60	0.63
S3	Fuk Man	WB	470	505	635	410	410	545	850	0.48	0.48	0.64
33	Road	EB	495	430	570	420	355	485	850	0.49	0.42	0.57
S4	Do Tung Bood	NB	930	1110	1155	820	1000	1020	2,600	0.32	0.38	0.39
34	Po Tung Road	SB	1190	1010	1155	1060	905	1030	2,600	0.41	0.35	0.40
CE	Hiram's	NB	910	1080	1055	815	1000	935	2,600	0.31	0.38	0.36
S5	Highway	SB	1230	940	1070	1115	850	975	2,600	0.43	0.33	0.38
cc	Cai Cha Daad	NB	585	670	560	535	630	515	850	0.63	0.74	0.61
S6	Sai Sha Road	SB	625	470	505	580	445	455	850	0.68	0.52	0.54

Remarks:

S16 Planning Application for Proposed Residential Development at various lots in D.D. 221 and adjoining government land, Sha Ha, Sai Kung

⁽¹⁾ Refer to Drawing 3.2.

⁽²⁾ Design capacity of 850 veh/hr for each bound of single 2-lane carriageway and 2,600 veh/hr for each bound of dual 2 lane carriageway, as extracted from TPDM Volume 2 Chapter 2.4.

⁽¹⁾ Refer to Drawing 3.2.

⁽²⁾ Design capacity of 850 veh/hr for each bound of single 2-lane carriageway and 2,600 veh/hr for each bound of dual 2 lane carriageway, as extracted from TPDM Volume 2 Chapter 2.4.

5.1.6	The assessment results in Table 5.3 and Table 5.4 indicated that all identified road links would operate within their capacity under the reference (without the proposed development) and design cases (with the proposed development).

CHK50791710/TIA/F51-A DGN/LHO/18DEC24

Original Size : A4

6. PUBLIC TRANSPORT SERVICE ASSESSMENT

6.1 Existing Public Transport Services

- 6.1.1 Since the Application Site would be developed as a residential development, it is anticipated that most of the public transport trip generations would be the outbound trips to work and school during weekday morning peak period. As such, the weekday AM peak will be considered as peak scenario to be adopted in the assessment.
- 6.1.2 As mentioned in **Section 3**, franchised bus and minibus are the major public transport modes in Sai Kung, which serve as feeder routes to MTR stations. The existing public transport services during weekday peak hour is shown in **Drawing 6.1**.
- 6.1.3 In order to establish the current public transport demand, a public transport survey was conducted at bus/GMB bus stops in Sai Kung Town Center and the peak loading points on a typical weekday from 07:00 to 09:00 during the morning peak period in April 2024. Analysis of the survey results suggested that the peak passenger demand of PT services in the morning peak hour was occurred during 08:00 to 09:00. The corresponding peak hour results are summarised in **Table 6.1**.

Table 6.1 Observed Public Transport Demand (Outbound) during AM Peak Hour

Route No.	Destinations	(veh/hr) (pax/hr) (1)		Average Peak Hourly Occupancy	Observed Passenger Pattern of PT Demand	
Franchised B	uses					
92	Diamond Hill Railway Station	4	480	56%	15%	
99	Heng On Bus Terminus	4	480	33%	16%	
292P	Kwun Tong	0	0	0%	0%	
299X	Shatin Central Bus Terminus	3	360	60%	50%	
792M	Tseung Kwan O Station	3	360	48%	19%	
	Total	14	1680	-	100%	
Minibus						
GMB 1	Kowloon Bay (Telford Gardens)	4	76	95%	8%	
GMB 1A	Diamond Hill (Choi Hung Road) Public Transport Interchange	21	399	91%	37%	
GMB 12	Po Lam	5	95	51%	5%	
GMB 101M	Hang Hau Station	24	456	88%	39%	
RMB	Mongkok	5	95	48%	3%	
RMB	Kwun Tong	8	152	45%	8%	
	Total	67	1273	-	100%	

Note: (1) The passenger capacities of bus and minibus are assumed 120 pax/hr and 19 pax/hr during peak hours.

6.1.4 The assessment results in **Table 6.1** indicates that local public transport services in Sai Kung area (outbound) are operating with capacities during the weekday morning peak hour.

6.1.5 Besides, the distribution of passenger trips among bus and minibus in Sai Kung Town Center was also identified in the PT survey. Based on the observed total number of boarding and alighting passengers at the bus/minibus stops in Sai Kung Town Center, 18% was bus passengers and 82% was minibus passengers.

6.2 Future Public Transport Demand

6.2.1 With reference to Travel Characteristics Survey 2011 (TCS 2011) published by Transport Department (TD), the pedestrian trips of the proposed development in morning peak hour has been derived in **Table 6.2**.

Table 6.2 Anticipated Transport Demand of Proposed development

Location	Estimated Population ⁽¹⁾ [i]	Average daily mechanized trips per person ⁽²⁾ [ii]	Peak hour factor ⁽³⁾ [iii]	Peak hour transport demand (pax/hr) =[i] x [ii] x [iii]
Proposed Development (280 units)	756	1.83	12%	166

Notes: (1) Refer to Table 2.1.

- (2) Average daily mechanised trips per person as extracted from TCS 2011.
- (3) Weekday morning peak hour factor for all merchandised trips of 20% as a conservative approach (with reference to TCS 2011) and peak direction split of 60% assumed (i.e. 1-way Peak hour factor = $20\% \times 60\% = 12\%$).
- 6.2.2 Based on the calculation in **Table 6.2**, it is anticipated that the pedestrian trips of the proposed development is 166 nos. during the morning peak hour.

Review on Transport Modal Splits

6.2.3 To identify the transport mode shares in local area, Population Census 2021 published by Census and Statistics Department has also been reviewed. The extracted transport modal splits for Large Tertiary Planning Unit Group - Sai Kung Area are analysed in **Table 6.3**.

Table 6.3 Transport Modal Splits of Local Area

Main Mode of Transport to Place of Work	Modal Split
Mass Transit Railway	19.4%
Franchised Bus	9.1%
On foot only	12.8%
Public light bus ⁽⁴⁾	39.8%
Private car / Passenger van	15.6%
Company bus / van	1.3%
Mass Transit Railway (Light Rail)	0%
Taxi	0.6%
Residential coach service	0.1%
Ferry/ Vessel	0%
Others (5)	1.3%
Total	100%

Note: (1) Data of Large Tertiary Planning Unit Group Nos. 821 and 826 - 828 under "Working Population with Fixed Place of Work in Hong Kong by Year, Main Mode of Transport to Place of Work and Large Subunit Group" in Population Census 2021.

6.2.4 With reference to the transport modal splits in **Table 6.3** and the existing available transport modes in Sai Kung Town Centre, it is assumed that the modal splits for PT mode and non-PT (i.e. private car and taxi) are 83.8% and 16.2% respectively. The PT mode was further split to bus and minibus mode based on the surveyed distribution of passenger trips among bus and minibus in Sai Kung area. The estimated pedestrian trips of proposed development in weekday are summarized in **Table 6.4**.

Table 6.4 Estimated Pedestrian Trips of Proposed Development during peak hours in Weekday

Transport Mode		Modal Split	Pedestrian Trips for (ped/hr)		
PT (83.8%) ⁽¹⁾	Bus	15.1% ⁽²⁾	25		
P1 (83.8%) ⁽⁻⁾	Minibus	68.7% ⁽²⁾	114		
Non-PT (includin	ng Taxi/Private Car)	16.2% ⁽¹⁾	27		
	Total	100%	166		

Remarks:

- (1) Based on the Population Census 2021.
- (2) Based on the surveyed distribution of passenger trips among bus and minibus in Sai Kung Town Centre. 82% was minibus passengers and 18% was bus passengers.
- 6.2.5 As shown in **Table 6.4**, it is estimated that 139 nos. pedestrian from the proposed development would rely on the road-based public transport services.
- 6.2.6 It is noted that there is a planned residential development in CDA(1) zone adjacent to the Application Site. According to TIA report of its planning application, the planned development will provide 972 units with 2,615 population. Based on above same methodology, the estimated PT trips of the planned development would be 481 nos. (including 394 nos. for minibus passenger and 87 nos. for bus passenger), which would be considered in the traffic forecast.

Capacity Assessment on Public Transport Services

6.2.7 Based on the observed passenger pattern of PT demand in Sai Kung area in **Table 6.1**, the PT demand of the proposed development and planned development were split to the existing bus and minibus services. The anticipated bus and minibus demands during peak hours are shown in **Table 6.5**.

Table 6.5 Future Public Transport Demand (Outbound) during AM Peak Hour

		Bus	Referen (Without the Develop	e Proposed	Design Case (with the Proposed Development)			
Route No.	Destinations	Capacity (pax/hr) (1) [B]	Future PT demand (Without Proposed Development) [E]	Anticipated Average Peak Hourly Occupancy [E]/ [B]	PT Demand of Proposed Development (pax/hr) [F]	Anticipated PT demand (With Proposed Development) [G] = [E] + [F]	Anticipated Average Peak Hourly Occupancy ⁽³⁾ [G]/[B]	
Franchised	d Buses							
92	Diamond Hill Railway Station	480	282	59%	4	286	60%	
99	Heng On Bus Terminus	480	172	36%	4	176	37%	
292P ⁽²⁾	Kwun Tong	-	-	-	-	-	-	
299X	Shatin Central Bus Terminus	360	260	72%	13	273	76%	
792M	Tseung Kwan O Station	360	190	53%	5	195	54%	
	Total	1680	904	-	26	930	-	
MiniBus								
GMB 1	Kowloon Bay (Telford Gardens)	76	104	137%	9	113	149%	
GMB 1A	Diamond Hill (Choi Hung Road) Public Transport Interchange	399	509	128%	42	551	138%	
GMB 12	Po Lam	95	68	72%	6	74	78%	
GMB 101M	Hang Hau Station	456	555	122%	44	599	131%	
RMB	Mongkok	95	58	61%	3	61	64%	
RMB	Kwun Tong	152	100	66%	9	109	72%	
	Total	1273	1394	-	113	1507	-	

Notes: (1) The passenger capacities of bus and minibus are assumed 120 pax/hr and 19 pax/hr during peak hours.

According to **Table 6.5**, it is anticipated that the existing services of GMB routes No. 1, 1A and 101M would be overcapacities upon population intakes in the vicinity of Sha Ha Area. Taking into consideration that the bus and GMB services in Sai Kung area are both served as feeders to MTR Stations, the GMB passenger is assumed to be shifted to use the bus service as alternative transport service when the GMBs are full. The anticipated bus and minibus demands during peak hours are re-distributed and shown in **Table 6.6**.

⁽²⁾ No trip was observed during the identified peak hour in the survey.

⁽³⁾ According to the Guidelines on Bus Service Improvement and Reduction published by TD, TD may consider frequency improvement if the average occupancy of bus route reaches 75% during peak hour to enhance the service level.

Table 6.6 Future Public Transport Demand (Outbound) during AM Peak Hour

	Bus Capacity (pax/hr) [B]	Anticipated PT demand (With Proposed Development) [H]	Anticipated Average Peak Hourly Occupancy ⁽³⁾ [H]/[B]
Bus			
KMB 92 (to Diamond Hill)	480	475 ⁽¹⁾	99%
CTB 792M (to TKO Station)	480	338 ⁽²⁾	70%
GMB			
GMB 1 (to Kowloon Bay)	76	76 ⁽¹⁾	100%
GMB 1A (to Diamond Hill)	399	399 ⁽¹⁾	100%
GMB 101M (Hang Hau Station)	456	456 ⁽²⁾	100%

Remarks: (1) Refer to Column G in **Table 6.5**. 189 nos. passengers of GMB Route Nos. 1 and 1A are assumed to be shifted to use the KMB's bus route no. 92 when the GMBs are full.

6.2.8 Based on the assessment result in **Table 6.5** and **Table 6.6**, enhancement of the existing PT services would be required under both reference and design cases (i.e. with and without the proposed development) to meet the passenger demand arising from the population intakes in the vicinity of Sha Ha area. The suggested enhancement of PT services for TD's future planning are discussed in the following paragraphs.

Frequency Improvement of Existing Bus Route 299x

6.2.9 Based on **Table 6.5**, it is suggested to increase additional 1 trip for bus route 299x (Shatin bound) during AM peak hour period to enhance the service level. Actual service enhancement is subject to the Transport Department's review at a later stage and actual passenger demand.

Frequency Improvement of Existing Bus Route KMB 92

6.2.10 Based on **Table 6.6**, it is suggested to increase additional 2 trips for bus route KMB 92 (Diamond Hill bound) during AM peak hour period to meet the passenger demand arising from the population intakes in the vicinity of Sha Ha area. Actual service enhancement is subject to the Transport Department's review at a later stage and actual passenger demand.

⁽²⁾ Refer to Column G in **Table 6.5**. 143 nos. passengers of GMB Route No. 101M is assumed to be shifted to use the CTB's bus route no. 792M when the GMB is full.

7. PEDESTRIAN IMPACT ASSESSMENT

7.1 Existing Pedestrian Connections

- 7.1.1 At present, footpaths and crossings are provided in the vicinity of the site along Tai Mong Tsai Road, Mei Yuen Street and Wai Man Road to facilitate pedestrians to/from the nearby bus/minibus stops.
- 7.1.2 In order to establish the current pedestrian demand in the area, pedestrian head count survey was conducted at the key sections of footpaths along the anticipated access routes of the sites during the morning peak 07:00-09:00 and evening peak 17:00-19:00 on a typical weekday in February 2025. The locations of the surveyed sections are shown in **Drawing No. 7.1**.
- 7.1.3 The survey result indicated that the observed peak-hour pedestrian demand occurred during 07:10 to 08:10 and 17:10 to 18:10 in the morning and evening peak periods respectively. With the observed pedestrian flows, the key footpaths were assessed under the 'Level of Service (LOS)' approach in accordance with TPDM. The results of the Level of Service (LOS) assessment for existing footpaths are summarized in **Table 7.1**.

Table 7.1 LOS Assessments of Existing Footpaths

Ref	Section	Existing Footpath Width Width		Two-way Observed Flows (pph)		Flow Rate (ppm/m)		Level of Service ⁽³⁾	
(-)		(m)	(m)	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Α	Tai Mong Tsai Road (Eastern Footpath)	2.3	1.3	60	135	0.8	1.7	Α	А
В	Mei Fuk Street (Northern Footpath)	2.5	1.5	15	10	0.2	0.1	Α	Α
С	Mei Yuen Street (Western Footpath)	3.1	2.1	15	10	0.1	0.1	Α	Α
D	Wai Man Road (Northern Footpath)	3	2	90	85	0.8	0.7	А	А

Remarks: (1) Location refer to Drawing No. 7.1.

- (2) Effective width = Existing Width 1m Dead width (i.e. 0.5m clearance for each side of kerb/tree pit/railing)
- (3) Details of Pedestrian Walkway LOS refer to TPDM. Volume 6 Chapter 10 Section 10.4.2. The definitions of different level of LOS on footpaths extracted from TPDM is shown in **Appendix C**.
- 7.1.4 As shown in **Table 7.1**, all existing footpaths are operating within capacity (i.e. LOS C or better).

7.2 Future Pedestrian Connections

- 7.2.1 As mentioned in **Section 2.4**, a 6m wide footpath will be provided by others to connect Tai Mong Tsai Road and Mei Fuk Street for public use according to the approved planning application of nearby CDA(1) site (Application No. A/SK-SKT/28). This would facilitate residents of the proposed development to/from the bus/minibus termini near Sai Kung Pier.
- 7.2.2 Besides, as mentioned in **Section 3.1**, the planned improvement works to Hiram's Highway is anticipated to be completed by 2032 before the completion of the proposed development. The planned road works at Tai Mong Tsai Road was adopted in the assessment.

7.3 Year 2035 Pedestrian Forecast

7.3.1 In order to investigate the impact induced by the proposed development to the surrounding pedestrian network, year 2035 (i.e. three years upon completion of the proposed development) has been adopted for the pedestrian assessment.

Pedestrian Growth

7.3.2 Same as traffic forecast as discussed in **Section 4.2**, the traffic growth rate of +0.26% will be adopted for the pedestrian forecast.

<u>Pedestrian Trips of the Proposed Development and Adjacent Planned Development</u>

7.3.3 As discussed in **Section 6.2**, the pedestrian trips of the proposed development and adjacent planned development during peak hours are 166 pax/hr and 574 pax/hr respectively.

Table 7.2 Anticipated Pedestrian Trips during Peak Hours

	No. of Units	Estimated Pedestrian Trips during peak hours(1) (pax/hr)
Proposed Development	280	166
Planned residential development in CDA(1) zone (Application No. A/SK-SKT/28)	972	574

Remark: (1) Details refer to Section 6.2.

- 7.3.4 According to the above, the anticipated 2035 pedestrian forecast are obtained by applying the adopted growth rates to the observed pedestrian flows and superimposing the anticipated pedestrian trips of the proposed development and the adjacent planned development.
- 7.3.5 The anticipated 2035 pedestrian forecast with the LOS assessment result at the critical footpaths are shown in **Table 7.3**.

Table 7.3 LOS Assessments of Footpaths in Design Year 2035

Ref	Section	Footpath Effect Width Widt			-way erved (pph)	Flow Rate (ppm/m)		Level of Service ⁽³⁾	
(1)		(m)	(m)	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
А	Planned Tai Mong Tsai Road (Eastern Footpath)	2	1	175	265	2.9	4.4	А	А
В	Mei Fuk Street (Northern Footpath)	2.5	1.5	600	585	6.7	6.5	Α	Α
С	Mei Yuen Street (Western Footpath)	3.1	2.1	590	570	4.7	4.5	Α	Α
D	Wai Man Road (Northern Footpath)	3	2	220	210	1.8	1.8	Α	Α

Remarks: (1) Location refer to **Drawing No. 7.1.**

- (2) Effective width = Footpath Width 1m Dead width (i.e. 0.5m clearance for each side of kerb/tree pit/railing)
- (3) Details of Pedestrian Walkway LOS refer to T.P.D.M. Volume 6 Chapter 10 Section 10.4.2. The definitions of different level of LOS on footpaths is extracted from TPDM is shown in **Appendix C**.
- 7.3.6 The assessment results in **Table 7.3** indicated that all the critical footpaths will still be operating within capacity (i.e. LOS C or better) during peak hours upon completion of the proposed development.

8. SUMMARY & CONCLUSION

8.1 Summary

- 8.1.1 The application site is at various lots in DD221 and adjoining Government land, Sai Kung. It is currently in an area shown as "Road" in the approved Sai Kung Town Outline Zoning Plan (OZP) S/SK-SKT/6. The applicant intends to develop the site into a residential development with a view to better utilizing the "leftover" land resources between the CDA(1) zone and the planned Tai Mong Tsai Road.
- 8.1.2 The applicant intends to develop the site into a residential development with about 280 units. The tentative completion year of the development is year 2032.
- 8.1.3 The development vehicular access will be located at Tai Mong Tsai Road. The internal transport facilities provisions will be provided in accordance with the relevant guidelines stipulated in the latest HKPSG. Also, 10 nos. public parking space for private car have been included in the proposed MLP in order to increase the parking space supply to the community.
- 8.1.4 Traffic surveys have been conducted to establish the current traffic condition in the vicinity of the subject site. The junction and link capacity assessments revealed that all the identified local junctions and road links are currently operating with ample capacity except the roundabout of Po Tung Road/Fuk Man Road (C), the priority junction of Po Tung Road/Man Nin Street (D), a section of Po Tung Road (S4) and a section of Hiram's Highway near Hong Kin Road (S5).
- 8.1.5 Improvement works to Hiram's Highway has been planned by Highways Department (HyD), with the objectives to relieve existing traffic congestion and enhance the resilience to unexpected incidents. The works is divided into 2 stages. Stage 1 works included the road widening of Hiram's Highway between Clear Water Bay Road and Marina Cove, which has been completed in 2021. The Stage 2 works includes widening of the road section between Marina Cove to Sai Kung Town, which included Hiram's Highway, Po Tung Road and a section of Tai Mong Tsai road abutting the application site. According to the HyD's press releases dated 29 September 2023, the design and construction of the works is scheduled to commence in the Q2 2024 and will take about 84 months to complete. As such, it is anticipated that the improvement works would be completed by 2032. This planned improvement works was adopted for assessment.
- 8.1.6 Operational performance of the identified local junctions and road links have been assessed based on the anticipated year 2035 traffic flows and the existing/planned layouts. The assessment results as shown in **Table 5.1** and **Table 5.2** revealed that all identified key junctions and road links will operate with ample capacity.
- 8.1.7 Public transport service assessments have been conducted with full occupation of the proposed development. To meet the passenger demand arising from the population intake in the vicinity of Sha Ha area, enhancement of the existing PT services are suggested for Transport Department's planning. Actual service enhancement is subject to the Transport Department's review at a later stage and actual passenger demand.
- 8.1.8 Performance of the identified critical footpaths has also been assessed and the results revealed that all the identified sections will still be operating with satisfactory performance upon completion of the proposed development.

8.2 Conclusion

8.2.1 In conclusion, the traffic impact assessment has demonstrated that the development traffic generation by the subject site can be absorbed by the nearby road network and would not cause any adverse traffic impact. Hence it can be concluded that the proposed development is considered acceptable in traffic terms.

Appendix A Swept Path Analysis and Sightline at Proposed Vehicular Access

Appendix B Junction Calculation Sheets

Simplified Roundabout Capacity Calculation

Job Title:					own As 'Road'	, Various	s Lots In D.D.		Adjoining Gover	nment La	and, Sha H	a, Sai Kung
Junction:			l/Wai Man	Road					.: A (Obs)			
Scheme:		4 Observed	l Flow					Ref. No	.:			
Year:	2024			Job No.: C	CHK50791710			Rev.:				
AM	PM											
ARM A:	Tai Mong T		Southern									
ARM B:	Tai Mong T		Northern									
ARM C:	Wai Man R	oad										
							Δ)— в			
							Α	7	ь			
								Ĭ				
GEOMETI	1							С				
ARM	V	e	L	r	D	Phi	S	-				
A	3.00	7.50	15	50	42	30	0.48					
В	3.20	4.80	7	30	42	60	0.37					
С	3.60	5.00	7	30	42	50	0.32					
AM EL OVE												
AM FLOW	1	n	0						Ente-			
from \ to	A 5	360	70					Circ 145	Entry			
A									435			
B C	515 50	10 130	160 5					80 530	685 185			
C	30	130	3					330	185			
PM FLOW	 							l				
from \ to	A	В	С					Circ	Entry			
A	5	525	35					110	565			
В	405	5	125					45	535			
C	45	100	5					415	150			
C	15	100	5					113	150			
WEEKENI	FLOWS							ı				
from \ to	A	В	C					Circ	Entry			
A	5	515	60					145	580			
В	415	5	170					70	590			
C	40	135	5					425	180			
CALCULA							1	Q_E		RFC		
ARM	K	X_2	M	F	$t_{\rm D}$	f_c	AM	PM	WEEKEND	AM	PM	WEEKEND
A	1.03	5.30	0.17	1605	1.43	0.62	1560	1582	1560	0.28	0.36	0.37
В	0.91	4.12	0.17	1250	1.43	0.55	1100	1117	1105	0.62	0.48	0.53
С	0.95	4.45	0.17	1349	1.43	0.57	993	1055	1049	0.19	0.14	0.17
									Crtical Arm:	В	В	В
									RFC:	0.62	0.48	0.53
	nce with TPI	DM V2 Ch4		1						AM	PM	WEEKEND
Calculated b	y:			Date:	Dec-24		Checked by:					

Simplified Roundabout Capacity Calculation

	460 485	5 125	5					485 470	615		
1											
С											
В	460	_	75					1	540		
A	5	485	475					135	965		
from \ to	A	В	C					Circ	Entry		
WEEKEND	FLOWS										
			J					.50	.,,,		
С	410	80	43 5					430	470		
A B	5 420	525 5	370 45					90 380	900 470		
from \ to	A 5	B 525	C 270					Circ	Entry		
PM FLOWS		D						I a:	D. 1		
			-								
B C	350	100	5					600	455		
A	5 590	330 5	420 60					110 430	755 655		
from \ to	A	B 220	C 420					Circ	Entry		
AM FLOWS			~					l ~:	.		
C	3.50	8.50	35	10	28	40	0.23				
В	3.50	9.00	43	40	28	35	0.80				
ARM A	7.00	e 7.50	1	20	D 28	Phi 35	S 0.80	-			
GEOMETR						DI.		Α			
								Ī			
								$\overline{}$			
								()— c		
	- un 111111 1101										
	Fuk Man Roa		110								
	Po Tung Roa Po Tung Roa		NB					В			
AM ARM A:	PM Po Tung Roa	d	SB					_			
	2024 PM			Job No.: C	CHK507917	10		Rev.:			
	Year 2024	Observed	Flow	I.I. N C	VIIV 507017	710		Ref. No.	•		
	Tai Mong			Roau					: C (Obs)		

TRAFFIC S	IGN/	ALS (CALC	ULAT	ION						Job No.	: <u>CHK5</u>	<u>07917</u> 10	ı	IVA HON	G KONG	LIMITED
Junction:	Pedest	rian Cro	ssing ne	ear Yau Ma	Po Stre	et (JE)		-							Design Yea	r: <u>2024</u>	
Description:	Year 20	024 Obs	erved Tr	affic Flow							Designed	By: MLC			Checked By	r: PTC	
	nts				Radi	ius (m)	t (%)	Pro. Tu	ırning (%)	Revised S	Saturation pcu/hr)		AM Peak			PM Peak	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	АМ	РМ	АМ	PM	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Hiram's Highway	→	Α	1	3.500						1965	1965	800	0.407		960	0.489	0.489
(NB) Hiram's Highway (SB)	•	В	1	3.500						1965	1965	990	0.504	0.504	960	0.489	
Pedestrian Crossie	ng	Ср	2	MIN GRE	EEN + FL	.ASH =	6	+	5	=	11						
Notes:				Flow: (po	eu/hr)						→	Group	A,Cp	В,Ср	Group	A,Cp	A,Cp
												у	0.407	0.504	у	0.489	0.489
												L (sec)	20	20	L (sec)	20	20
						800(960)				990(960)		C (sec)	85	85	C (sec)	85	85
												y pract.	0.688	0.688	y pract.	0.688	0.688
Stage / Phase Dia	ıgrams			1								R.C. (%)	69%	37%	R.C. (%)	41%	41%
1.	JJ			2.				3	•			4.			5.		
A	4	-	— в			Ср	^										
I/G= 4			I/G= 6	6		11		I/G=			I/G=			I/G=			
I/G= 4			I/G= 6	6		11		I/G=			I/G=			I/G=	ion:		(E)
											Date	DEC, 2024			IOn: n Crossing near Y	au Ma Po Street	

TRAFFIC S	IGN/	ALS C	CALC	ULAT	ION						Job No.	: <u>CHK5</u>	<u>07917</u> 10	ı	IVA HON	G KONG	LIMITED
Junction:	Pedest	rian Cro	ssing ne	ear Yau Ma	Po Stre	et (JE)		_							Design Yea	r: <u>2024</u>	
Description:	Year 20)24 Obs	erved Tr	affic Flow				-			Designed	By: MLC			Checked By	: LLW	
	ints				Radi	us (m)	t (%)	Pro. Tu	ırning (%)	Revised S Flow (Saturation ocu/hr)		WE			WE	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	WE	WE	WE	WE	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Hiram's Highway	→	Α	1	3.500						1965	1965	920	0.468		920	0.468	
(NB) Hiram's Highway (SB)	•	В	1	3.500						1965	1965	1025	0.522	0.522	1025	0.522	0.522
Pedestrian Crossii	ng	Ср	2	MIN GRE	EN + FL	ASH =	6	+	5	=	11						
Notes:				Flow: (po	cu/hr)						→	Group	A,Cp	В,Ср	Group	A,Cp	В,Ср
												у	0.468	0.522	у	0.468	0.522
												L (sec)	20	20	L (sec)	20	20
						920(920)				1025(1025)		C (sec) y pract.	85 0.688	85 0.688	C (sec) y pract.	85 0.688	85 0.688
												R.C. (%)	47%	32%	R.C. (%)	47%	32%
Stage / Phase Dia	grams											11101 (73)		0270	11101 (14)	17.70	0270
1.				2.				3				4.			5.		
A	4		— в				^										
	•		D			Ср	*										
I/G= 4			I/G= 6	6		11		I/G=			I/G=			I/G=			
I/G= 4			I/G= 6	6		11		I/G=			I/G=	e:		I/G= Junct	ion:		Œ
												DEC, 2024			n Crossing near Y	au Ma Po Street	

TRAFFIC SIGNALS CALCULATION **MVA HONG KONG LIMITED** Job No.: CHK50791710 Design Year: ____2024_ Hiram's Highway/Hong Kin Road (JH) Description: _ Year 2024 Observed Traffic Flow Designed By: MLC Checked By: PTC Revised Saturation Flow (pcu/hr) Radius (m) Pro. Turning (%) AM Peak PM Peak Gradient (%) Stage Left y Value y Value Critical y Approach (pcu/hr) (m) (pcu/hr) 1965 0.458 0.458 Hiram's Highway D NB 1,2,3 3.500 20 1960 1960 65 0.033 70 0.036 Hiram's Highway 1.2.5 3 500 20 13% 20% 1750 * 1740 466 0.266 394 0.226 3.500 2105 2105 559 0.266 476 SB Α 1.2.5 0.226 Hong Kin Road G 4 4 000 15 1830 1830 100 0.055 70 0.038 0.038 4 20 0.025 75 WB G 4.000 2005 2005 50 0.037 Hiram's Highway Е 2.3.4 3.500 10 6% 9% 1945 1940 405 0.208 491 0.253 1895 395 0.208 479 0.253 2,3,4 3.500 1895 NB Ε Hiram's Highway F 2,3,4,5 3.500 1965 1965 905 0.461 0.461 755 0.384 1745 2,3,4,5 3.500 20 1745 60 0.034 90 0.052 SB Po Lo Che Road В 1 3.000 15 20 38% / 62% 41% / 59% 1765 1765 195 0.110 0.110 195 0.110 1,2,3,5 MIN GREEN + FLASH = Pedestrian Crossing Мр 4 MIN GREEN + FLASH = 11 3,4 MIN GREEN + FLASH = Кр 5 6 11 Lp MIN GREEN + FLASH = 11 MIN GREEN + FLASH = Notes: Flow: (pcu/hr) Group C,G,Lp Group C,Mp,Lp C,G,Lp 25(45) *Site Factor of 0.9 is applied due to merging lane at the exit arm 0.434 0.571 0.458 0.496 У 120(115) 🗲 75(80) 745(900) L (sec) 27 8 L (sec) 32 27 965(790) 775(925) C (sec) 100 100 C (sec) 128 128 65(70) 905(755) y pract. 0.657 y pract. 0.675 0.710 0.828 100(70) **5**0(75) R.C. (%) R.C. (%) 43% 51% 45% Stage / Phase Diagrams 3. ↑ Lp I/G= 5 I/G= 5 I/G: I/G I/G: I/G= 5 I/G= 11 11

Date:

DEC, 2024

Junction:

Hiram's Highway/Hong Kin Road

TRAFFIC SIGNALS CALCULATION **MVA HONG KONG LIMITED** Job No.: CHK50791710 Design Year: ____2024_ Hiram's Highway/Hong Kin Road (JH) Description: _ Year 2024 Observed Traffic Flow Designed By: MLC Checked By: PTC Revised Saturation Flow (pcu/hr) Radius (m) Pro. Turning (%) WE Peak WE Peak 8 Stage Critical y Left WE Peak y Value Approach (pcu/hr) (m) (pcu/hr) 0.448 Hiram's Highway D NB 1,2,3 3.500 20 1960 1960 55 0.028 55 0.028 Hiram's Highway 1.2.5 3 500 20 16% 16% 1745 * 1745 435 0 249 435 0 249 3.500 2105 2105 525 0.249 525 0.249 SB Α 1.2.5 Hong Kin Road G 4 4 000 15 1830 1830 85 0.046 0.046 85 0.046 0.046 4 20 55 0.027 55 WB G 4.000 2005 2005 0.027 Hiram's Highway Е 2.3.4 3.500 10 11% 11% 1935 1935 470 0.243 470 0.243 460 0.243 460 2,3,4 3.500 1895 1895 0.243 NB Ε Hiram's Highway F 2,3,4,5 3.500 1965 1965 890 0.453 890 0.453 1745 1745 3.500 20 110 0.063 110 0.063 SB 2,3,4,5 Po Lo Che Road В 1 3.000 15 20 52% / 48% 52% / 48% 1760 1760 145 0.082 145 0.082 1,2,3,5 MIN GREEN + FLASH = Pedestrian Crossing Мр 4 MIN GREEN + FLASH = 11 3,4 MIN GREEN + FLASH = Кр 5 6 11 Lp MIN GREEN + FLASH = 11 MIN GREEN + FLASH = Notes: Flow: (pcu/hr) Group C,Mp,Lp C,G,Lp Group C,Mp,Lp C,G,Lp 50(50) *Site Factor of 0.9 is applied due to merging lane at the exit arm 0.448 0.494 0.448 0.494 У 70(70) 75(75) 880(880) L (sec) 32 27 L (sec) 32 27 890(890) 880(880) 110(110) C (sec) 128 128 C (sec) 128 128 55(55) 70(70) y pract. y pract. 0.675 0.675 0.710 0.710 85(85) **-55(55)** R.C. (%) R.C. (%) 51% 44% 51% Stage / Phase Diagrams 3. ↑ Lp I/G= 2 I/G I/G:

I/G:

I/G= 5

Date:

DEC, 2024

I/G= 11

Junction:

Hiram's Highway/Hong Kin Road

11

I/G

Simplified Roundabout Capacity Calculation

Scheme Year 2024 Subserved Flow Ref. No.:	Job Title:					own As 'Road	', Various	Lots In D.D.		Adjoining Gover	nment La	nd, Sha H	a, Sai Kung
Value	Junction:				.oad								
ARM PM ARM PM ARM PM ARM PM ARM PM ARM PM PM PM PM PM PM PM			Observed	l Flow	•								
ARM A: Tai Mong Tsai Read (West) ARM B: Tai Mong Tsai Read (East) ARM C: Sai Sha Road GEOMETRY ARM					Job No.: C	HK50791710)		Rev.:				
NRM Tai Mang Tai Read (Fair) ARM V e L T D Phi S									•				
ARM C: Sai Sha Read GROMETRY ARM									ĭ				
A				(East)									
ARM	ARM C:	Sai Sha Road	i										
ARM								Α	()— в			
ARM													
A	GEOMETR	RY											
B 3.4 8.1 15 100 35 20 0.50 C 4.2 7.7 13 10 35 35 0.43 AM FLOWS Fom to A B C Circ Entry	ARM	v	e	L	r	D	Phi	S	_				
AM FLOWS From to A	A	3.4	8.2	36	100	35	35	0.21	_'				
### A	В	3.4	8.1	15	100	35	20	0.50					
From \to A	С	4.2	7.7	13	10	35	35	0.43					
From \to A													
A 10 405 140 100 555 155 565		1	D	C					Ciro	Enter			
B									-				
PM FLOWS													
PM FLOWS from \ to A													
From \	C	170	70	3					100	200			
From \to A													
A		•							ı				
B													
C													
WEEKEND FLOWS From \ to													
From \to A	C	145	90	5					685	240			
From \to A	WEEKEND) FI OWS											
A 5 375 220 B 300 5 135 C 215 125 5		1	R	C					Circ	Entry			
B 300 5 135 230 440 310 345													
CALCULATIONS ARM K X ₂ M F t _D f _c AM PM WEEKEND AM PM WEEK A 1.02 6.76 0.08 2050 1.46 0.72 2020 2020 1995 0.27 0.33 0.3 B 1.07 5.75 0.08 1741 1.46 0.66 1760 1601 1707 0.32 0.26 0.2 C 0.93 6.08 0.08 1842 1.46 0.68 1415 1285 1523 0.19 0.19 0.19 Crtical Arm: B A A RFC: 0.32 0.33 0.3 -In accordance with TPDM V2 Ch4													
ARM K X2 M F t _D f _c AM PM WEEKEND AB A													
ARM K X2 M F t _D f _c AM PM WEEKEND AB A													
ARM K X2 M F t _D f _c AM PM WEEKEND AB A	CALCIII	l TIONS						C]]:		RFC		
A 1.02 6.76 0.08 2050 1.46 0.72 2020 2020 1995 0.27 0.33 0.3 B 1.07 5.75 0.08 1741 1.46 0.66 1760 1601 1707 0.32 0.26 0.2 C 0.93 6.08 0.08 1842 1.46 0.68 1415 1285 1523 0.19 0.19 0.2 Crtical Arm: B A A RFC: 0.32 0.33 0.3 -In accordance with TPDM V2 Ch4 AM PM WEEL			Y.	М	E	t _e	f	•		WEEKEND		рм	WEEKEND
B 1.07 5.75 0.08 1741 1.46 0.66 1760 1601 1707 0.32 0.26 0.2 C 0.93 6.08 0.08 1842 1.46 0.68 1415 1285 1523 0.19 0.19 0.2 Crtical Arm: B A A RFC: 0.32 0.33 0.2 -In accordance with TPDM V2 Ch4 AM PM WEEL													0.30
C 0.93 6.08 0.08 1842 1.46 0.68 1415 1285 1523 0.19 0.19 0.20 Crtical Arm: B A A A RFC: 0.32 0.33 0.30 -In accordance with TPDM V2 Ch4 AM PM WEEL													0.30
- In accordance with TPDM V2 Ch4 RFC: 0.32 0.33 0.3 - M PM WEEL													0.23
RFC: 0.32 0.33 0.3 - In accordance with TPDM V2 Ch4 AM PM WEER													
- In accordance with TPDM V2 Ch4 RM PM WEER		I						I		Crtical Arm:	В	A	A
- In accordance with TPDM V2 Ch4 AM PM WEER													0.30
	- In accorda	nce with TPD	M V2 Ch4										WEEKEND
Calculated by: Date: Dec-24 Checked by:					Date:	Dec-24		Checked by:	:				

Simplified Roundabout Capacity Calculation

Scheme Year 2075 No No CHK50791710 Rev.	Job Title:					own As 'Roa	d', Various	s Lots In D.I		Adjoining Gove	rnment L	and, Sha F	Ia, Sai Kung
Year:	Junction:				Road				Ref. No.	: A (Ref)			
ARM FM FM FM FM FM FM FM			5 Referenc	e Flow	1								
ARM A: Tat Mong Teal Read Southern ARM B: Tat Mong Teal Read Northern ARM C: Wait Main Road GEOMETRY					Job No.: (CHK507917	710		Rev.:				
ARM C: Wait Main Road ARM C: Wait Main Road ARM C: Wait Main Road ARM Note													
ARM C: Wai Man Read GEOMETRY ARM													
GEOMETRY ARM v				Northern									
GEOMETRY ARM v c L r D Phi S A 3.00 7.50 15 50 42 30 0.48 B 3.20 4.80 7 30 42 50 0.32 AM FLOWS From Vio A B C Circ Entry C 170 200 5 CC 155 50 42 30 0.48 A 5 370 140 200 5 545 375 PM FLOWS From Vio A B C Circ Entry C 170 200 5 CC 150 155 500 425 500 C 170 200 5 CC 150 155 500 C 105 135 5 CC 165 500 C 105 1077 1062 0.69 0.55 0.66 C 166 CC 166 AM PM WEEKEN B B B B B C C 166 CC 16	ARM C:	Wai Man R	oad										
GEOMETRY ARM v c L r D Phi S A 3.00 7.50 15 50 42 30 0.48 B 3.20 4.80 7 30 42 50 0.32 AM FLOWS From Vio A B C Circ Entry C 170 200 5 CC 155 50 42 30 0.48 A 5 370 140 200 5 545 375 PM FLOWS From Vio A B C Circ Entry C 170 200 5 CC 150 155 500 425 500 C 170 200 5 CC 150 155 500 C 105 135 5 CC 165 500 C 105 1077 1062 0.69 0.55 0.66 C 166 CC 166 AM PM WEEKEN B B B B B C C 166 CC 16) -			
ARM v e L r D Phi S A 3 300 7.500 15 50 42 30 0.48 B 3.20 4.80 7 30 42 60 0.37 C 3.60 5.00 7 30 42 50 0.32 AM FLOWS from to A B C Circ Entry A 5 370 140 B 530 10 200 150 740 C 170 200 5 5 545 375 PM FLOWS from to A B C Circ Entry A 5 540 115 B 415 5 170 125 590 C 105 135 5 425 C 110 175 5 425 C 110 175 5 425 C 110 175 5 426 C 107 1349 1.43 0.55 1065 1077 1062 0.69 0.55 0.66 C 0.95 4.45 0.17 1349 1.43 0.57 985 1049 1044 0.38 0.23 0.23 C C 161 Arm: B B B C C Crical Arm: B B B B C C C Crical Arm: B B B B C C C Crical Arm: B B B B C C C Crical Arm: B B B B C C C Crical Arm: B B B B C C C Crical Arm: B B B B C C C Crical Arm: B B B B C C C Crical Arm: B B B B C C C Crical Arm: B B B B C C C Crical Arm: B B B B C C C Crical Arm: B C C C C C C C C C C C C C C C C C C								Α	7	— в			
ARM													
ARM													
ARM									Ţ				
A		1							C				
R		+							_				
AM FLOWS from \(\to \) A B C Circ Entry													
AM FLOWS From vo A													
From \to A B C Circ Entry	С	3.60	5.00	7	30	42	50	0.32					
From \to A B C Circ Entry													
From \to A B C Circ Entry													
From \to A B C Circ Entry													
From \to A B C Circ Entry													
A 5 370 140 215 515 150 740 150 740 150 740 150 740 150 740 150 740 150 740 150 145 150 740 150 145 150 145 150 145 150 145 14		1	_	_					1	_			
B 530 10 200 5 545 375													
PM FLOWS From \to A													
PM FLOWS from \ to													
From \to A	С	170	200	5					545	375			
From \to A													
From \to A													
From to A B C Circ Entry													
From to A B C Circ Entry													
A 5 540 115 145 660 125 590		S							1				
B									_				
C 105 135 5 425 245													
WEEKEND FLOWS From \to A B C Circ Entry													
From \to A	С	105	135	5					425	245			
From \to A													
From \to A													
From \to A													
From \to A	*********								l				
A 5 530 145 B 425 5 220 C 110 175 5									I a:	.			
CALCULATIONS													
CALCULATIONS ARM K AD2 M F t _D f _c AM PM WEEKEND AM PM WEEKEND A 1.03 5.30 0.17 1605 1.43 0.62 1515 1560 1534 0.34 0.42 0.44 B 0.91 4.12 0.17 1250 1.43 0.55 1065 1077 1062 0.69 0.55 0.65 C 0.95 4.45 0.17 1349 1.43 0.57 985 1049 1044 0.38 0.23 0.28 Crtical Arm: B B B RFC: 0.69 0.55 0.61 -In accordance with TPDM V2 Ch4													
CALCULATIONS ARM K AD2 M F t _D f _c AM PM WEEKEND AM PM WEEKEND A 1.03 5.30 0.17 1605 1.43 0.62 1515 1560 1534 0.34 0.42 0.44 B 0.91 4.12 0.17 1250 1.43 0.55 1065 1077 1062 0.69 0.55 0.66 C 0.95 4.45 0.17 1349 1.43 0.57 985 1049 1044 0.38 0.23 0.28 Crtical Arm: B B B RFC: 0.69 0.55 0.61 -In accordance with TPDM V2 Ch4													
ARM K AD2 M F t _D f _c AM PM WEEKEND AM PM WEEKEND A 1.03 5.30 0.17 1605 1.43 0.62 1515 1560 1534 0.34 0.42 0.44 B 0.91 4.12 0.17 1250 1.43 0.55 1065 1077 1062 0.69 0.55 0.65 C 0.95 4.45 0.17 1349 1.43 0.57 985 1049 1044 0.38 0.23 0.28 Crtical Arm: B B B B B -In accordance with TPDM V2 Ch4 AM PM WEEKIND AM PM WEEKIND	C	110	1/5	3					435	290			
ARM K AD2 M F t _D f _c AM PM WEEKEND AM PM WEEKEND A 1.03 5.30 0.17 1605 1.43 0.62 1515 1560 1534 0.34 0.42 0.44 B 0.91 4.12 0.17 1250 1.43 0.55 1065 1077 1062 0.69 0.55 0.65 C 0.95 4.45 0.17 1349 1.43 0.57 985 1049 1044 0.38 0.23 0.28 Crtical Arm: B B B B B -In accordance with TPDM V2 Ch4 AM PM WEEKIND AM PM WEEKIND													
ARM K AD2 M F t _D f _c AM PM WEEKEND AM PM WEEKEND A 1.03 5.30 0.17 1605 1.43 0.62 1515 1560 1534 0.34 0.42 0.44 B 0.91 4.12 0.17 1250 1.43 0.55 1065 1077 1062 0.69 0.55 0.65 C 0.95 4.45 0.17 1349 1.43 0.57 985 1049 1044 0.38 0.23 0.28 Crtical Arm: B B B B B -In accordance with TPDM V2 Ch4 AM PM WEEKIND AM PM WEEKIND									1				
ARM K AD2 M F t _D f _c AM PM WEEKEND AM PM PM PM WEEKEND AM PM PM PM PM PM PM PM									1				
ARM K AD2 M F t _D f _c AM PM WEEKEND AM PM PM PM WEEKEND AM PM PM PM PM PM PM PM	CALCULA	TIONS							I Os		REC		
A 1.03 5.30 0.17 1605 1.43 0.62 1515 1560 1534 0.34 0.42 0.44 B 0.91 4.12 0.17 1250 1.43 0.55 1065 1077 1062 0.69 0.55 0.60 C 0.95 4.45 0.17 1349 1.43 0.57 985 1049 1044 0.38 0.23 0.28 Crtical Arm: B B B RFC: 0.69 0.55 0.61 AM PM WEEKI			VD3	М	E	t_	f	АМ		WEEKEND		DM	WEEKEND
B 0.91 4.12 0.17 1250 1.43 0.55 1065 1077 1062 0.69 0.55 0.60		+						_					
C 0.95 4.45 0.17 1349 1.43 0.57 985 1049 1044 0.38 0.23 0.28 Crtical Arm: B B B B RFC: 0.69 0.55 0.61 - In accordance with TPDM V2 Ch4 AM PM WEEKI													
Crtical Arm: B B B B RFC: 0.69 0.55 0.61 - In accordance with TPDM V2 Ch4 AM PM WEEKI													
RFC: 0.69 0.55 0.61 - In accordance with TPDM V2 Ch4 - MM PM WEEK		0.93	4.43	0.17	1349	1.43	0.57	983	1049	1044	0.38	0.23	0.28
RFC: 0.69 0.55 0.61 - In accordance with TPDM V2 Ch4 AM PM WEEK													
RFC: 0.69 0.55 0.61 - In accordance with TPDM V2 Ch4 AM PM WEEK													
RFC: 0.69 0.55 0.61 - In accordance with TPDM V2 Ch4 AM PM WEEK													
RFC: 0.69 0.55 0.61 - In accordance with TPDM V2 Ch4 AM PM WEEK		I						I		Cutical A	D	n	ъ
- In accordance with TPDM V2 Ch4 AM PM WEEK													
	In	maa wid TD	OM U2 CLA							KFC:			
Laternated by. Date: Dec-24 Checked by:			JIVI VZ CN4		Doto:	Dec 24		Checked by			ANI	PM	WEEKEND
	Calculated b	y.			Date:	DCC-24		спескей в	у.				

Scheme: Year 2035 Reference Flow Ref. No.; Year: 2035 Job No.; CHK50791710 Rev.;	,	nu, sna m	mmem Du				aa , variou				Residential D		Job Title:
Year 2035								ai Road	ai Mong Tsa				Junction:
ARM PM ARM A. Table Table					Ref. No.:	F				Flow	5 Reference		
ARM A: Tai Mong Taia Road (N) ARM B: Mei Yu Street ARM C: Po Tung Road (S) C —					Rev.:	F	710	CHK50791	Job No.: 0			2035	Year:
ARM C: Po Tung Road (S) GEOMETRY ARM v c L r D Phi S A 3.65 4.50 12 35 28 30 0.11 B 4.00 4.00 1 12 28 40 0.00 C 5.00 5.00 1 45 28 45 0.00 AM FLOWS from Vo A B C Circ Entry AR 5 10 5 15 745 B 10 5 15 745 B 5 5 30 580 515 WEEKEND FLOWS from Vo A B C Circ Entry A 5 5 5 30 580 515 WEEKEND FLOWS From Vo A B C Circ Entry A 5 5 5 30 580 515 C 670 35 5 5 0 20 520 WEEKEND FLOWS From Vo A B C Circ Entry A 5 5 5 30 510 500 515 715 B 5 5 5 30 510 500 515 715 C 685 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5													
ARM C: Po Tung Road (S) GEOMETRY ARM v c L r D Phi S A 3.65 4.50 12 35 28 30 0.11 B 4.00 4.00 1 12 28 40 0.00 C 5.00 5.00 1 45 28 45 0.00 AM FLOWS from Vo A B C Circ Entry AR 5 10 5 15 745 B 10 5 15 745 B 5 5 30 580 515 WEEKEND FLOWS from Vo A B C Circ Entry A 5 5 5 30 580 515 WEEKEND FLOWS From Vo A B C Circ Entry A 5 5 5 30 580 515 C 670 35 5 5 0 20 520 WEEKEND FLOWS From Vo A B C Circ Entry A 5 5 5 30 510 500 515 715 B 5 5 5 30 510 500 515 715 C 685 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5											Sai Road (N)	Tai Mong T	ARM A:
ARM C: Po Tung Road (S) GEOMETRY ARM													
C					_								
Calculations Calc											Jud (5)	To Tung Ro	riidir C.
Calculations Calc				\	•	c — (
ARM			•	<i>一</i>		<u> </u>							
ARM						`							
ARM					T								
ARM													
ARM					В							RY	GEOMETR
B						S	Phi	D	r	L	e	v	ARM
B						0.11	30	28	35	12	4.50	3.65	A
AM FLOWS from \to A							40	28	12				
AM FLOWS from \ to A													
From \to A						0.00	73	20	43		3.00	3.00	C
From \to A													
From \to A													
From \ to A													
From \to A												[
A						ı						ı	
B													
PM FLOWS From \to A				5 765	15							5	A
PM FLOWS From \to A				5 30	745					15	5	10	В
PM FLOWS from \to A												510	
From \to A				0 020								510	
From \to A													
From \to A													
From \to A													
From \												ļ	
A 5 10 500 35 515 510 40 15 715												S	PM FLOWS
B 5 5 30 15 715				Entry	Circ					C	В	A	from \ to
B 5 5 30 15 715				5 515						500	10	5	A
C 685 25 5 15 715 WEEKEND FLOWS from\to A B C Circ Entry A 5 30 580 45 615 B 15 5 40 590 60 C 670 35 5 25 710 CALCULATIONS QE RFC ARM K X2 M F t _D f _c AM PM WEEKEND AM PM A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.04													
WEEKEND FLOWS													
from \ to A B C Circ Entry A 5 30 580 45 615 B 15 5 40 590 60 C 670 35 5 25 710 CALCULATIONS ARM K X₂ M F t _D f _c AM PM WEEKEND AM PN A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0				713	13					3	23	003	C
from \ to A B C Circ Entry A 5 30 580 45 615 B 15 5 40 590 60 C 670 35 5 25 710 CALCULATIONS ARM K X₂ M F t _D f _c AM PM WEEKEND AM PN A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0													
from \ to A B C Circ Entry A 5 30 580 45 615 B 15 5 40 590 60 C 670 35 5 25 710 CALCULATIONS ARM K X₂ M F t _D f _c AM PM WEEKEND AM PN A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0													
from \ to A B C Circ Entry A 5 30 580 45 615 B 15 5 40 590 60 C 670 35 5 25 710 CALCULATIONS ARM K X₂ M F t _D f _c AM PM WEEKEND AM PN A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0													
from \ to A B C Circ Entry A 5 30 580 45 615 B 15 5 40 590 60 C 670 35 5 25 710 CALCULATIONS ARM K X₂ M F t _D f _c AM PM WEEKEND AM PN A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0													
A 5 30 580 45 615 B 15 5 40 590 60 C 670 35 5 5 25 710 CALCULATIONS ARM K X ₂ M F t _D f _c AM PM WEEKEND AM PN A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0												FLOWS	WEEKEND
A 5 30 580				Entry	Circ					C	В	A	from \ to
B 15 5 40 590 60 25 710 CALCULATIONS Q _E RFC ARM K X ₂ M F t _D f _c AM PM WEEKEND AM PN A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0											30		
C 670 35 5 25 710 CALCULATIONS QE RFC ARM K X2 M F t _D f _c AM PM WEEKEND AM PN A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0													
CALCULATIONS QE RFC ARM K X2 M F t _D f _c AM PM WEEKEND AM PN A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0													
ARM K X ₂ M F t _D f _c AM PM WEEKEND AM PM A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0				3 /10	23					3	33	670	C
ARM K X ₂ M F t _D f _c AM PM WEEKEND AM PM A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0													
ARM K X ₂ M F t _D f _c AM PM WEEKEND AM PM A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0												1	
ARM K X ₂ M F t _D f _c AM PM WEEKEND AM PM A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0													
ARM K X2 M F t _D f _c AM PM WEEKEND AM PM A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0													
A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0			RFC		E	Q_E						TIONS	CALCULA
A 1.02 4.34 0.04 1316 1.48 0.58 1335 1323 1317 0.57 0.3 B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0	WEEKEND	PM	AM	WEEKEND	PM	AM	f_c	$t_{\rm D}$	F	M	X_2	1	
B 0.93 4.00 0.04 1212 1.48 0.56 742 864 822 0.04 0.0	0.47	0.39				_							
	0.07	0.05											
C 0.70 5.00 0.04 1515 1.40 0.02 1405 1406 1402 0.55 0.4													
	0.49	0.49	0.55	1402	1408	1403	0.62	1.48	1313	0.04	3.00	0.98	
												[
Crtical Arm: A C	C	C	A	Crtical Arm:									I
	0.49	0.49											
	WEEKEND	PM									DM V2 Ch4	nce with TPI	- In accordar
Calculated by: Date: Dec-24 Checked by:						Checked by:		Dec-24	Date:				
Date. Det 21 Circulary.						checked by.		DOC 27	Date.			,.	Carcarated by

C 430 60 5 5 C C 490 75 5	200 00 55 55 56 57	10	20	30	0.33	Circ 115 520 815 Circ 90 490 590 Circ 140 570 620	Entry 515 790 110 Entry 485 530 85 Entry 565 620 135	RFC		
C 430 60 5 5 C C 490 75	200 00 55 55 56 57	10	20	30	0.33	115 520 815 Circ 90 490 590 Circ 140 570 620	515 790 110 Entry 485 530 85 Entry 565 620			
C 430 60 5 5 C C 490 75	200 00 55 55 56 57	10	20	30	0.33	115 520 815 Circ 90 490 590 Circ 140 570	515 790 110 Entry 485 530 85 Entry 565 620			
C 430 60 5 5 C C 490	C	10	20	30	0.33	115 520 815 Circ 90 490 590	515 790 110 Entry 485 530 85 Entry 565			
C 430 60 5 5 C C C C	G G G G G G G G G G G G G G G G G G G	10	20	30	0.33	115 520 815 Circ 90 490 590	515 790 110 Entry 485 530 85			
C 430 60 5 5 C C 380 45 5	30 0 3 3 5 5 5	10	20	30	0.33	115 520 815 Circ 90 490 590	515 790 110 Entry 485 530 85			
C 430 60 5 5 C C 380 45	G G G G G G G	10	20	30	0.33	115 520 815 Circ 90 490	515 790 110 Entry 485 530			
C 430 60 5 5 C C 380 45	G G G G G G G	10	20	30	0.33	115 520 815 Circ 90 490	515 790 110 Entry 485 530			
C 430 60 5	60 0 6	10	20	30	0.33	115 520 815	515 790 110 Entry 485			
430 60 5	30 0 5	10	20	30	0.33	115 520 815	515 790 110			
C 430 60	60 0	10	20	30	0.33	115 520	515 790			
C 430 60	60 0	10	20	30	0.33	115 520	515 790			
<u>C</u> 430	<u>C</u>	10	20	30	0.33	115	515			
C		10	20	30	0.33					
		10	20	30	0.33	ı				
12	-	10	20	30	0.33					
12	2	10	20	30	0.33					
12	,		26							
5		40	26	45	0.48					
1		10	26	15	0.00	-				
L			D	Phi	S	Å				
						\bigcup)—c			
Northern	ern					Ĩ				
Southern						В				
				-						
CC 1 10 W	I	Job No.: 0	CHK507917	10			•			
	110									
1	nd/Fuk M ce Flow Southe	ce Flow Southern	Job No.: (Job No.: CHK507917	ad/Fuk Man Road ce Flow Job No.: CHK50791710 Southern	ad/Fuk Man Road ce Flow Job No.: CHK50791710 Southern	Ce Flow Ref. No. Job No.: CHK50791710 Rev.: Southern B	Job No.: CHK50791710 Rev.: Southern B	ce Flow Ref. No.: Job No.: CHK50791710 Rev.: Southern B	Ce Flow Ref. No.: Job No.: CHK50791710 Rev.: Southern B

TRAFFIC SIGNALS CALCULATION **MVA HONG KONG LIMITED** Job No.: <u>CHK507917</u>10 Po Tung Road/ Man Nin Street (JD) Design Year: 2035 Description: _ 2035 Reference Traffic Flow Designed By: MLC Checked By: PTC Revised Saturation Flow (pcu/hr) Radius (m) Pro. Turning (%) AM Peak PM Peak Gradient (%) Phase Right Stage Feff Critical y y Value y Value Approach (pcu/hr) (pcu/hr) (m) 3.400 1955 1955 Po Tung Road 410 0.210 485 0.248 0.248 В 15 1905 125 2 3.400 1905 0.066 160 0.084 С Po Tung Road ₩ 3 400 15 17% 15% 1925 1925 562 0.292 482 0.250 С 0.293 3.400 2095 2095 613 0.293 523 0.250 SB Man Nin Street D 3 3.800 15 20 67% / 33% 67% / 33% 1900 * 1900 * 210 0.111 0.111 300 0.158 0.158 WB 2 MIN GREEN + FLASH = Pedestrian Crossing Notes: Flow: (pcu/hr) Group C,B,D C,Ep ,D A,Ep ,D C,Ep ,D Group *Additional saturation flow of 80 pcu/hr due to the additional pocket provided (3600s / 90s per cycle * release 2 0.469 0.403 0.408 0.406 У L (sec) 13 29 L (sec) 29 32 ocu/cycle) 850(1005) C (sec) 90 90 C (sec) 90 90 1080(935) 140(200) **→**70(100) y pract. y pract. 0.770 0.580 95(70) 0.610 0.610 125(160) R.C. (%) 64% 51% R.C. (%) 49% 43% Stage / Phase Diagrams 2. 3. 4. 1 Ер I/G= 5 20 I/G= 2 I/G= Date: I/G= I/G= Junction: (D) DEC, 2024 Po Tung Road/ Man Nin Street

TRAFFIC	SIGNA	ALS C	CALC	ULAT	ION						Job No.	: <u>CHK5</u>	<u>07917</u> 10	ı	IVA HON	G KONG	LIMITED
Junction:	Po Tun	ig Road/	Man N	in Street (c	JD)			_							Design Year	2035	
Description:	2035 R	eference	e Traffic	Flow				_			Designed	By: MLC			Checked By	: PTC	
	ents				Radiu	us (m)	ıt (%)	Pro. Tu	ırning (%)	Revised S Flow (Saturation pcu/hr)		WE			WE	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	WE	WE	WE	WE	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Po Tung Road NB	$\overrightarrow{}$	A A B	1 1 2	3.400 3.400 3.500		15		1	•	1955 2095 1915	1955 2095 1915	471 504 130	0.241 0.241 0.068	•	471 504 130	0.241 0.241 0.068	l
Po Tung Road SB	↓	C C	1 1	3.400 3.400	15			26%	26%	1905 2095	1905 2095	548 602	0.288 0.287	0.288	548 602	0.288 0.287	0.288
Man Nin Street WB	: ⁴1*	D	3	3.800	15	20		52% / 48%	52% / 48%	1905 *	1905 *	355	0.186	0.186	355	0.186	0.186
Pedestrian Cross	sing	Ep	2	MIN GRE		ASH =	13	+	7	=	20	Graun	A50.D	*	Graup	450 D	
*Additional satura				1.0	,,						→ N	Group	A,Ep,D 0.427	C,Ep,D	Group	A,Ep,D 0.427	C,Ep,D
due to the addition (3600s / 90s per	onal pocke cycle * rel	et provid lease 2	ed									y L (sec)	32	29	y L (sec)	32	0.474 29
pcu/cycle)					→	975(975)				1010(1010)		C (sec)	90	90	C (sec)	90	90
					~		185(185)	· _	► 170(170)	140(140)		y pract.	0.580	0.610	y pract.	0.580	0.610
					130(130)			\bigvee				R.C. (%)	36%	29%	R.C. (%)	36%	29%
Stage / Phase D	Diagrams														l i		
1. A	► ► +		— c	2.	В	\	^	Ер	•	*		4.			5.		
									D								
I/G= 5 I/G= 5			I/G=			20		I/G= 2 I/G= 2			I/G= I/G=			I/G=			

Haram's Highway	TRAFFIC S	IGN <i>A</i>	ALS C	CALC	ULAT	ION						Job No.:	: <u>CHK5</u>	<u>07917</u> 10	ı	IVA HON	G KONG	LIMITED
Personal Page Personal Consisting Cap 2 MIN GREEN + FLASH = 13	Junction:	Pedesti	rian Cro	ssing ne	ar Yau Ma	a Po Stre	et (JE)									Design Yea	r: <u>2035</u>	
Perfector Part Pa	Description:	Year 20	35 Refe	rence T	raffic Flow							Designed I	By: MLC			Checked By	r: PTC	
Pedestrian Crossing Cp 2 Min GREEN + FLASH = 13 + 7 = 20 -		ıts				Radi	us (m)	(%)	Pro. Tu	ırning (%)				AM Peak			PM Peak	
Alice Proceeding Co 2 MIN ORIEEN + FLASH 13 7 20 20 20 20 20 20 20	Approach	Movemen	Phase	Stage		Left	Right	Gradient	АМ	PM				y Value	Critical y		y Value	Critical y
Pedestrian Creeding		→				ı	1	I		I								0.286
Notes: Flow: (pcu/hr)		-		1											0.303			
Stage / Phase Diagrams		g	Ср	2			ASH =	13	+	7	-	20			•			
L (sec) 26 26 L (sec) 26 26 26 L (sec) 26 26 26 L (sec) 26 L (s	Notes:				Flow: (po	cu/hr)						→ N						
→ 975(1160) 1225(1135) ← C (sec) 90 90 C (sec) 90 90 90																		
V pract. 0.640 0.640 v pract. 0.640					l	-	975(116	0)			1225(1135)	•						
R.C. (%) 166% 111% R.C. (%) 128% 123%														0.640	0.640		0.640	
1.															111%		128%	123%
A B		grams			I.								I .			1,		
I/G= 3 I/G= 4 20 I/G= I/G= I/G= I/G= I/G= Date: Junction: (E)		4		В	2.		Ср		3	•			4.			5.		
Date: Junction: (E)																<u> </u>		
DEC, 2024 Pedestrian Crossing near Yau Ma Po Street	I/G= 3			I/G= 4	+		20		I/G=			Date	DEC, 2024		Junct			E

TRAFFIC S	IGN/	ALS C	CALC	ULAT	ION						Job No.	: <u>CHK5</u>	<u>07917</u> 10	N	IVA HON	G KONG	LIMITED
Junction:	Pedest	rian Cro	ssing ne	ear Yau Ma	a Po Stree	et (JE)									Design Yea	r: <u>2035</u>	
Description:	Year 20	35 Refe	rence T	raffic Flow							Designed	By: MLC			Checked By	: PTC	
	nts				Radiu	ıs (m)	(%)	Pro. Tu	rning (%)		Saturation pcu/hr)		WE			WE	
Approach	Movements	Phase	Stage	Width (m)	Left	Right	Gradient (%)	WE	WE	WE	WE	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Hiram's Highway (NB)	<u></u>	A A	1	3.400 3.400			I			1955 2095	1955 2095	529 566	0.271 0.270	l	529 566	0.271 0.270	
Hiram's Highway (SB)	-	B B	1	3.400 3.400						1955 2095	1955 2095	577 618	0.295 0.295	0.295	577 618	0.295 0.295	0.295
Pedestrian Crossin	ng	Ср	2	MIN GRE		ASH =	13	+	7	-	20			·			•
Notes:				Flow: (po	su/Hr)						→ N	Group	A,Cp	B,Cp	Group	A,Cp	B,Cp
												y L (sec)	0.271 26	0.295 26	y L (sec)	0.271 26	0.295 26
						1095(109	95)			1195(1195)	•—	C (sec)	90	90	C (sec)	90	90
												y pract.	0.640	0.640	y pract.	0.640	0.640
												R.C. (%)	137%	117%	R.C. (%)	137%	117%
Stage / Phase Dia	grams													•			
1.				2.				3.				4.			5.		
A	;		В			Cp					Los			1			
I/G= 3 I/G= 3			I/G= 4			20 20		I/G= I/G=			I/G= I/G=			I/G= I/G=			
											Date	DEC, 2024		Junct	ion: n Crossing near Ya	u Ma Po Street	E

Simplified Priority Junction Capacity Calculation

TRAFFIC SIGNALS CALCULATION **MVA HONG KONG LIMITED** Job No.: <u>CHK507917</u>10 Hiram's Highway / Chui Tong Road (JG) Design Year: 2035 Description: _ 2035 Reference Traffic Flow Designed By: MLC Checked By: PTC Revised Saturation Flow (pcu/hr) Radius (m) Pro. Turning (%) AM Peak Gradient (%) Stage Critical y Left y Value Approach (pcu/hr) (pcu/hr) (m) 2045 532 2185 2185 457 0.209 0.243 NB 1,2 4.300 15 0.025 0.025 0.040 В 1810 1810 0.058 0.069 Hiram's Highway 3.300 20 105 125 (SB) 3.300 0.251 0.251 0.210 0.210 В 3.300 2085 2085 522 0.250 437 0.210 Chui Tong Road С 3 3.300 15 22.5 55% / 45% 36% / 64% 1850 * 1860 * 100 0.054 0.054 110 0.059 0.059 MIN GREEN + FLASH = Pedestrian Crossing MIN GREEN + FLASH = 10 21 Notes: Flow: (pcu/hr) B,E,C,Fp B,E,C,Hp B,E,C,Hp Group Group A,C,Hp *Additional saturation flow of 60 pcu/hr is added due to pocket provided (3600s / 120s per cycle * release 2 pcu/cycle) у 0.330 0.330 0.303 0.310 L (sec) 31 41 L (sec) 36 41 885(1030) C (sec) 120 120 C (sec) 120 120 1045(875) 55(40) y pract. y pract. 0.668 0.593 105(125) 0.593 0.630 50(80) R.C. (%) 102% 80% R.C. (%) 108% 91% Stage / Phase Diagrams 2. 3. Нр Fp I/G= 3 I/G= 5 I/G= 10 Date: Junction: (G) DEC, 2024 Hiram's Highway / Chui Tong Road

TRAFFIC SIGNALS CALCULATION **MVA HONG KONG LIMITED** Job No.: <u>CHK507917</u>10 Hiram's Highway / Chui Tong Road (JG) Design Year: ____2035 Description: _ 2035 Reference Traffic Flow Designed By: MLC Checked By: PTC Revised Saturation Flow (pcu/hr) Radius (m) Pro. Turning (%) Gradient (%) Stage Critical y Left y Value Approach (pcu/hr) (pcu/hr) (m) 2045 2185 2185 0.229 0.229 NB 1,2 4.300 501 501 15 0.050 0.050 0.050 В 1810 1810 0.066 0.066 Hiram's Highway 3.300 20 120 120 (SB) 3.300 0.237 0.237 0.237 0.237 В 3.300 2085 2085 495 0.237 495 0.237 Chui Tong Road С 3 3.300 15 22.5 59% / 41% 59% / 41% 1845 1845 195 0.106 0.106 195 0.106 0.106 MIN GREEN + FLASH = Pedestrian Crossing MIN GREEN + FLASH = 10 21 Notes: Flow: (pcu/hr) B,E,C,Fp B,E,C,Hp B,E,C,Fp B,E,C,Hp Group Group *Additional saturation flow of 60 pcu/hr is added due to pocket provided (3600s / 120s per cycle * release 2 pcu/cycle) у 0.393 0.393 0.393 0.393 L (sec) 31 41 L (sec) 31 41 C (sec) 120 120 C (sec) 120 120 970(970) 990(990) 115(115) y pract. y pract. 0.668 0.593 120(120) 0.593 0.668 100(100) R.C. (%) 70% 51% R.C. (%) 70% 51% Stage / Phase Diagrams 2. 3. Нр Fp I/G= 3 I/G= 5 I/G= 10 Date: Junction: (G) DEC, 2024 Hiram's Highway / Chui Tong Road

TRAFFIC SIGNALS CALCULATION Job No.: CHK50791710 **MVA HONG KONG LIMITED** Hiram's Highway/Hong Kin Road (JH) Design Year: ___2035_ Description: _ 2035 Reference Traffic Flow Designed By: MLC Checked By: PTC Revised Saturation Flow (pcu/hr) Radius (m) Pro. Turning (%) AM Peak 8 Stage Left y Value Critical y Approach (m) (pcu/hr) (pcu/hr) 1955 1955 C 0.206 0.248 NB 1,2,3 3.400 2095 2095 432 520 ō 18 1990 0.033 0.035 Hiram's Highway 1.2.5 1770 1770 0.034 0.045 3.300 15 60 80 Α 1,2,5 3.300 0.266 433 0.208 Α 1,2,5 3.300 2085 2085 555 0.266 432 0.207 Hong Kin Road G 3.700 20 1845 1845 105 0.057 0.038 WB G 3.700 18 1960 1960 50 0.026 75 0.038 Hiram's Highway 2,3 3.400 20 1820 1820 20 0.011 35 0.019 NB Е 2,3 3.400 2095 2095 365 0.174 0.174 243 0.116 0.116 3.400 2095 2095 365 0.174 242 2,3 0.116 Ε Hiram's Highway F 2.3.4 3.400 1955 1955 507 0.259 398 0.204 SB 2,3,4 3.400 2095 2095 543 0.259 427 0.204 Р 3.500 18 1945 1945 60 0.031 0.031 95 0.049 0.049 Po Lo Che Road 3.000 10 38% / 63% 40% / 60% 1740 * 0.115 0.115 200 0.115 0.115 EΒ 1,2,3,5 MIN GREEN + FLASH = Pedestrian Crossing Мр MIN GREEN + FLASH = 11 13 3,4 MIN GREEN + FLASH = Кр 5 8 Lp 5 MIN GREEN + FLASH = 12 MIN GREEN + FLASH = MIN GREEN + FLASH = Jp 1,5 10 15 Notes: Flow: (pcu/hr) Group B,E,G,Lp B,E,P,Np Group B,F,Np B,E,P,Np N → 20(35) Additional saturation flow of 36 pcu/hr is added due to pocket provided (3600s / 100s per cycle * release 1 pcu/cycle) 0.346 0.320 0.319 0.280 У 125(120) 835(1005) 75(80) L (sec) 27 34 L (sec) 20 34 1110(865) 730(485) 60(95) 65(70) C (sec) C (sec) 100 100 100 100 0.657 0.594 0.594 0.720 y pract. y pract. 50(75) 105(70) R.C. (%) R.C. (%) 90% 86% 126% 112% Stage / Phase Diagrams 2. 3. <---> ↑ Lp Kp ↑ ₩p ---> Jp Ŷ Hp <----> Hp <----> I/G= 3 I/G= 5 I/G= I/G= 5 I/G: I/G= 5 I/G= 10 14

Date:

DEC, 2024

(H)

Junction:

Hiram's Highway/Hong Kin Road

TRAFFIC SIGNALS CALCULATION Job No.: CHK50791710 **MVA HONG KONG LIMITED** Hiram's Highway/Hong Kin Road (JH) Design Year: ___2035_ Description: _ 2035 Reference Traffic Flow Designed By: MLC Checked By: PTC Revised Saturation Flow (pcu/hr) Radius (m) Pro. Turning (%) 8 Stage Left Critical y Approach y Value (pcu/hr) (m) (pcu/hr) 1955 0.245 0.245 C 0.244 0.244 NB 1,2,3 3.400 2095 2095 512 512 ō 18 1990 0.028 0.028 Hiram's Highway 1.2.5 1770 1770 0.040 0.040 3.300 15 70 70 Α 1,2,5 3.300 0.235 0.235 Α 1,2,5 3.300 2085 2085 490 0.235 490 0.235 Hong Kin Road G 3.700 20 1845 1845 0.046 0.046 WB G 3.700 18 1960 1960 55 0.028 55 0.028 Hiram's Highway 2,3 3.400 20 1820 1820 35 0.019 35 0.019 NB Е 2,3 3.400 2095 2095 288 0.137 0.137 288 0.137 0.137 3.400 2095 2095 287 287 2,3 0.137 0.137 Ε Hiram's Highway F 2.3.4 3.400 1955 1955 473 0.242 473 0.242 0.242 SB 2,3,4 3.400 2095 2095 507 507 0.242 Р 3.500 18 1945 1945 115 0.059 0.059 115 0.059 0.059 Po Lo Che Road 3.000 10 52% / 48% 52% / 48% 1735 * 1735 * 0.084 0.084 0.084 0.084 EΒ 1,2,3,5 MIN GREEN + FLASH = Pedestrian Crossing Мр MIN GREEN + FLASH = 11 13 3,4 MIN GREEN + FLASH = Кр 5 8 Lp 5 MIN GREEN + FLASH = 12 MIN GREEN + FLASH = MIN GREEN + FLASH = Jp 1,5 10 15 Notes: Flow: (pcu/hr) Group B,F,Np B,E,P,Np Group B,F,Np B,E,P,Np 35(35) Additional saturation flow of 36 pcu/hr is added due to pocket provided (3600s / 100s per cycle * release 1 pcu/cycle) 0.326 0.280 0.326 0.280 У 70(70) 990(990) 75(75) L (sec) 20 34 L (sec) 20 34 980(980) 575(575) 115(115) 55(55) C (sec) C (sec) 100 100 100 100 0.594 0.720 0.594 0.720 y pract. y pract. 55(55) 85(85) R.C. (%) R.C. (%) 121% 112% 121% 112% Stage / Phase Diagrams 2. 3. <---> ↑ Lp Kp ↑ ₩p ---> Jp Ŷ Hp <----> Hp <----> I/G= 3 I/G= 5 I/G= I/G= 5 I/G: I/G= 5 I/G= 10 14 (H) Date: Junction:

DEC, 2024

Hiram's Highway/Hong Kin Road

Job Title:	Proposed I	Residential	Developme	nt In Area Sho	wn As 'Road	', Various	Lots In D.D.	221 And	Adjoining Gover	nment La	nd, Sha H	a, Sai Kung
Junction:			l/Sai Sha R	oad				Ref. No.	: I (Ref)			
Scheme:	Year 2035	Referenc	e Flows					Ref. No.	:			
Year:	2035 Ref			Job No.: C	HK5079171	0		Rev.:				
AM	PM							_				
ARM A:	Tai Mong Ts		(West)					Ç				
ARM B:	Tai Mong Ts		(East)									
ARM C:	Sai Sha Road	1										
								1)— в			
							Α	(в			
GEOMETR	RY											
ARM	v	e	L	r	D	Phi	S					
A	3.4	8.2	36	100	35	35	0.21	•				
В	3.4	8.1	15	100	35	20	0.50					
C	4.2	7.7	13	10	35	35	0.43					
AM FLOW	 											
from \ to	S A	В	С					Circ	Entry			
A	10	480	145					105	635			
В	515	5	100					160	620			
C	175	95	5					530	275			
PM FLOW	1							ı				
from \ to	A	В	С					Circ	Entry			
A	10	565	150					105	725			
В	365	5	95					390	465			
С	150	95	5					745	250			
WEEKEND	FLOWS							I				
from \ to	A	В	C					Circ	Entry			
A	5	420	225					140	650			
В	355	5	140					235	500			
С	220	130	5					365	355			
								1				
CALCULA	TIONS						Ç	I Q _E		RFC		
ARM	K	X_2	M	F	$t_{\rm D}$	f_c	AM	PM	WEEKEND	AM	PM	WEEKEND
A	1.02	6.76	0.08	2050	1.46	0.72	2017	2017	1991	0.31	0.36	0.33
В	1.07	5.75	0.08	1741	1.46	0.66	1756	1593	1703	0.35	0.29	0.29
С	0.93	6.08	0.08	1842	1.46	0.68	1384	1247	1488	0.20	0.20	0.24
									Crtical Arm:	В	A	A
									RFC:	0.35	0.36	0.33
	nce with TPD	M V2 Ch4					1			AM	PM	WEEKEND
Calculated b	y:			Date:	Dec-24		Checked by:					

Scheme: Year: AM ARM A: ARM B:	Year 2035 2035 PM Tai Mong Ts Tai Mong Ts Wai Man Ro	Design F sai Road sai Road	d/Wai Man R Flow Southern Northern		EHK50791710			Ref. No. Ref. No. Rev.:	: A (Des)			
Year: AM ARM A: ARM B: ARM C:	2035 PM Tai Mong Ts Tai Mong Ts Wai Man Ro	sai Road sai Road	Southern	Job No.: C	CHK50791710				:			
AM ARM A: ARM B: ARM C:	PM Tai Mong Ts Tai Mong Ts Wai Man Ro	sai Road		Job No.: C	:HK50/91/10			Rev.:				
ARM A: ARM B: ARM C:	Tai Mong Ts Tai Mong Ts Wai Man Ro	sai Road										
GEOMETR							Α)— в			
ARM A B	3.00 3.20	e 7.50 4.80	L 15 7	r 50 30	D 42 42	Phi 30 60	S 0.48 0.37	c				
С	3.60	5.00	7	30	42	50	0.32					
AM FLOWS	S											
from \ to	A	В	C					Circ	Entry			
A	15	375	140					215	530			
B C	535 170	10 200	200 5					160 560	745 375			
PM FLOWS from \ to	A 10	B 545	<u>C</u> 115					Circ 145	Entry 670			
B C	420 105	5 135	170 5					130 435	595 245			
WEEKEND		В	C					Circ	Enter			
from \ to	A 15	535	145					185	Entry 695			
B C	430 110	5 175	220 5					165 450	655 290			
CALCULAT							1	$Q_{\rm E}$	ı	RFC		
ARM	1 03	X ₂ 5.30	0.17	F 1605	1.43	f _c	AM 1515	PM	WEEKEND	AM 0.35	PM	WEEKEND 0.45
A B C	1.03 0.91 0.95	4.12 4.45	0.17 0.17 0.17	1250 1349	1.43 1.43 1.43	0.62 0.55 0.57	1515 1060 977	1560 1075 1044	1534 1057 1036	0.35 0.70 0.38	0.43 0.55 0.23	0.45 0.62 0.28
- In accordan Calculated by	ace with TPD	M V2 Ch4		Date:	Dec-24		Checked by:		Crtical Arm: RFC:	B 0.70 AM	B 0.55 PM	B 0.62 WEEKEND

Job Title:						', Various I	Lots In D.D. 2		oining Gover	nment Land	i, Sha Ha, S	ai Kung
Junction:		ad/Mei Yu S		ong Tsai Ro	ad			Ref. No.:	B (Des)			
Scheme:		Design Flov	N .					Ref. No.:				
Year:	2035			Job No.: C	CHK507917	10		Rev.:				
AM	PM											
ARM A:	Tai Mong Ts											
ARM B:	Mei Yu Stree											
ARM C:	Po Tung Roa	id (S)										
									1	_		
							c —	(—	A		
								T				
								ı				
GEOMETR	1		-			D1 :		В				
ARM	V	e	L	r	D	Phi	S	_				
A	3.65	4.50	12	35	28	30	0.11					
В	4.00	4.00	1	12	28	40	0.00					
С	5	5	1	45	28	45	0.00					
AM FLOW	l S											
from \ to	A	В	С					Circ	Entry			
A	8	25	750					15	783.29487			
В	10	5	15					763.29487	30			
C	520	5	5					23.294874	530			
	320	3	3					23.274074	330			
PM FLOW	I S							I				
from \ to	A	В	C					Circ	Entry			
A	10	10	505					35	525			
В	5	5	30					520	40			
C	690	25	5					20	720			
			-						.=-			
WEEKEND	FLOWS							i.				
from \ to	A	В	C					Circ	Entry			
A	10	30	585					45	625			
В	15	5	40					600	60			
С	680	35	5					30	720			
CALCULA	TIONS							Q_E		RFC		
ARM	K	\mathbf{X}_2	M	F	$t_{\rm D}$	f_c	AM	PM	WEEKEND	AM	PM	WEEKEND
A	1.02	4.34	0.04	1316	1.48	0.58	1335	1323	1317	0.59	0.40	0.47
В	0.93	4.00	0.04	1212	1.48	0.56	732	859	817	0.04	0.05	0.07
C	0.98	5.00	0.04	1515	1.48	0.62	1463	1465	1459	0.36	0.49	0.49
	•						•	(Crtical Arm:	A	C	C
I									RFC:	0.59	0.49	0.49
- In accorda	nce with TPD	M V2 Ch4								AM	PM	WEEKEND
Calculated b				Date:	Dec-24		Checked by:					
	-						, ,					

					s Lots In DD	221 And A	djoining Go		Land, Sha Ha, S	ai Kung		
Junction:	Tai Mong			Road					: C (Des)			
Scheme:	Year 2035	Design F	low	CHIVEOE	57510			Ref. No.	:			
Year:	2035			CHK505:	5/510			Rev.:				
AM ARM A:	Po Tung Roa	d	Southern									
ARM B:	Po Tung Roa		Northern					B				
ARM C:	Fuk Man Roa		Northern									
AKWI C.	ruk Man Ko	au										
								()— c			
									\mathcal{F}^{c}			
								\searrow				
GEOMETI	RY							Ä				
ARM	v	e	L	r	D	Phi	S					
A	4.50	4.50	1	10	26	15	0.00					
В	7.00	8.50	5	40	26	45	0.48					
C	3.50	6.00	12	10	26	30	0.33					
AM FLOW	ı	D						l «	D			
from \ to	A 85	0	C 430					Circ 115	Entry 515			
A B	740	5	60					520	805			
С	0	105	5					830	110			
C	U	103	3					830	110			
FLOWS	I							1				
from \ to	A	В	C					Circ	Entry			
A	105	0	380					90	485			
В	485	5	45					490	535			
C	0	80	5					595	85			
WEEKENI	 D FLOWS							1				
from \ to	A	В	С					Circ	Entry			
A	75	0	490					140	565			
В	545	5	75					570	625			
С	0	130	5					625	135			
								•				
a	mro							6		P. 2-		
CALCULA	1	v	3.5	=	_	£	1	Q _E	WEDVE:	RFC	•	Weeker
ARM	K	X ₂	M	F 1264	t _D	f _c	AM	0	WEEKEND	AM	0	WEEKEND
A	1.00	4.50	0.03	1364	1.48	0.59	1299	1314	1285	0.40	0.37	0.44
B C	0.97 0.95	7.77 5.00	0.03 0.03	2353 1515	1.48 1.48	0.80 0.62	1886 949	1909 1088	1847 1070	0.43 0.12	0.28 0.08	0.34
C	0.93	5.00	0.03	1515	1.48	0.62	949	1088	1070	0.12	0.08	0.13
										ъ.		
									Crtical Arm:	B 0.43	A 0.37	A 0.44
- In accorde	ance with TPD	M V2 Ch1							RFC:	0.43 AM	0.37 0	0.44 WEEKEND
Calculated b		112 12 CH4		Date:	Dec-24		Checked by:	:		ANVI	U	WEEKEND
- arearated t	- J·				20021		Jaconea by					

Job No.: <u>CHK507917</u>10

MVA HONG KONG LIMITED

Po Tung Road/ Man Nin Street (JD) Design Year: 2035 Designed By: MLC Description: _ 2035 Design Traffic Flow Checked By: PTC Revised Saturation Flow (pcu/hr) Radius (m) Pro. Turning (%) % WE WE Gradient Phase Flow (pcu/hr) Width Left WE WE WE WE y Value y Value Critical y (m) 0.243 0.243 0.243 0.243 2095 510 510 NB A B 3,400 2095 3.400 15 C Po Tung Road 15 25% 25% 1905 1905 550 0.289 550 0.289 3.400 3.400 2095 0.289 0.289 0.289 0.289 Man Nin Street D 3 3.800 15 20 52% / 48% 52% / 48% 1905 * 1905 355 0.186 0.186 355 0.186 0.186 WB Pedestrian Crossing 2 MIN GREEN + FLASH = 13 20 Notes Flow: (pcu/hr) Group A,Ep,D C,Ep,D Group A,Ep,D C,Ep,D *Additional saturation flow of 80 pcu/hr 0.475 0.430 0.475 0.430 due to the additional pocket provided (3600s / 90s per cycle * release 2 32 29 32 29 L (sec) L (sec) pcu/cycle) 1015(1015) C (sec) 90 90 C (sec) 90 90 **≯**170(170) 185(185) 140(140) y pract. 0.580 0.610 y pract. 0.580 0.610 130(130) 35% 28% 35% 28% R.C. (%) R.C. (%) Stage / Phase Diagrams 2. 3. 4. Еp I/G= -I/G= I/G= 4 I/G= 2 I/G= Date Junction: (D) DEC, 2024 Po Tung Road/ Man Nin Street

Job No.: <u>CHK505575</u>10

MVA HONG KONG LIMITED

Job No.: <u>CHK505575</u>10 Pedestrian Crossing near Yau Ma Po Street (JE) Design Year: 2035 Designed By: MLC Description: ____ 2035 Design Traffic Flow Checked By: PTC Revised Saturation Flow (pcu/hr) Radius (m) (%) Pro. Turning (%) AM Peak PM Peak Gradient Phase Flow (pcu/hr) Width Left PM AM PM y Value y Value Critical y 0.243 0.243 562 603 0.287 0.288 0.288 (NB) 3,400 2095 2095 510 550 590 0.281 0.282 3.400 1955 1955 0.306 0.306 Hiram's Highway 599 0.306 641 (SB) 3.400 2095 2095 Pedestrian Crossing 2 MIN GREEN + FLASH = 13 20 Flow: (pcu/hr) Notes: Group A,Cp В,Ср Group В,Ср A,Cp 0.243 0.282 0.288 0.306 26 26 26 26 L (sec) L (sec) **→** 985(1165) 1240(1140) C (sec) 90 90 C (sec) 90 y pract. 0.640 0.640 y pract. 0.640 0.640 R.C. (%) 163% 109% R.C. (%) 127% 122% Stage / Phase Diagrams 2. 3. 4. Ср _ в I/G= 4 I/G= 4 Junction: (E)

DEC, 2024

Pedestrian Crossing near Yau Ma Po Street

MVA HONG KONG LIMITED

Job No.: <u>CHK505575</u>10 Pedestrian Crossing near Yau Ma Po Street (JE) Design Year: 2035 Designed By: MLC Description: ____ 2035 Design Traffic Flow Checked By: PTC Revised Saturation Flow (pcu/hr) Radius (m) (%) Pro. Turning (%) WE Peak WE Peak Gradient Phase Width Left WE Peak WE Peak WE Peak WE Peak y Value y Value Critical y 533 572 0.273 0.273 533 572 0.273 0.273 (NB) 3,400 2095 2095 3.400 1955 1955 0.296 579 0.296 Hiram's Highway 579 0.296 0.296 0.296 2095 0.296 (SB) 3.400 2095 621 Pedestrian Crossing 2 MIN GREEN + FLASH = 13 20 Flow: (pcu/hr) Notes: Group A,Cp В,Ср Group A,Cp B,Cp 0.273 0.296 0.273 0.296 28 26 28 26 L (sec) L (sec) **→** 1105(1105) 1200(1200) C (sec) 90 90 C (sec) 90 y pract. 0.620 0.640 y pract. 0.620 0.640 R.C. (%) 127% 116% R.C. (%) 127% 116% Stage / Phase Diagrams 2. 3. 4. Ср _ в I/G= 4 I/G= 4 Junction: (E)

DEC, 2024

Pedestrian Crossing near Yau Ma Po Street

MVA HONG KONG LIMITED

Simplified Priority Junction Capacity Calculation

Job No.: <u>CHK507917</u>10 Hiram's Highway / Chui Tong Road (JG) Design Year: 2035 2035 Design Traffic Flow Designed By: MLC Checked By: PTC Description: _ Revised Saturation Flow (pcu/hr) Pro. Turning (%) AM Peak Radius (m) % PM Peak Gradient Width Left PM AM y Value Critical y (m) 2045 2045 0.212 0.244 Hiram's Highway 1.2 4.300 433 500 1,2 4.300 2185 2185 462 0.211 535 Е 2 4.300 15 1985 1985 50 0.025 80 0.040 0.040 В 3.300 20 1810 1810 105 0.058 125 0.069 0.254 0.211 (SB) R 3 300 2085 2085 530 0.254 440 0.211 В 2085 2085 530 0.254 440 0.211 3.300 С Chui Tong Road 3 55% / 45% 36% / 64% 1850 * 1860 * 100 0.054 0.054 110 0.059 0.059 3 300 15 22.5 Pedestrian Crossing MIN GREEN + FLASH = MIN GREEN + FLASH = Notes Flow: (pcu/hr) Group B,E,C,Fp B,E,C,Hp Group A,C,Hp B,E,C,Hp *Additional saturation flow of 60 pcu/hr is 0.310 0.333 0.308 0.304 added due to pocket provided (3600s / 120s per cycle * release 2 pcu/cycle) 36 41 31 47 L (sec) L (sec) 895(1035) C (sec) 120 120 C (sec) 120 120 1060(880) 55(40) **≯**45(70) 105(125) y pract. 0.668 0.548 y pract. 0.630 0.593 50(80) 100% 78% 107% 91% R.C. (%) R.C. (%) Stage / Phase Diagrams 2. 3. 4. ٨ Hp <-----> Fp I/G= I/G= 10 I/G= I/G= 5 I/G= 5 I/G= 10 21 I/G= Date Junction: (G) DEC, 2024

MVA HONG KONG LIMITED

Hiram's Highway / Chui Tong Road

Job No.: <u>CHK507917</u>10 Hiram's Highway / Chui Tong Road (JG) Design Year: 2035 2035 Design Traffic Flow Designed By: MLC Checked By: PTC Description: _ Revised Saturation Flow (pcu/hr) Pro. Turning (%) Radius (m) % WE WE Gradient Width Left WE WE Critical y (m) 2045 2045 0.232 0.232 Hiram's Highway 1.2 4.300 474 474 1,2 4.300 2185 2185 0.232 506 Е 0.050 2 4.300 15 1985 1985 100 0.050 0.050 100 0.050 В 3.300 20 1810 1810 120 0.066 120 0.066 0.239 (SB) R 3 300 2085 2085 498 0.239 0.239 498 0.239 В 2085 497 0.238 497 0.238 3.300 2085 С Chui Tong Road 3 59% / 41% 59% / 41% 1845 * 1845 * 195 0.106 195 0.106 0.106 3 300 15 22.5 0.106 Pedestrian Crossing MIN GREEN + FLASH = MIN GREEN + FLASH = Notes Flow: (pcu/hr) Group B,E,C,Fp B,E,C,Hp Group B,E,C,Fp B,E,C,Hp *Additional saturation flow of 60 pcu/hr is 0.395 0.395 0.395 0.395 added due to pocket provided (3600s / 120s per cycle * release 2 pcu/cycle) 31 41 31 41 L (sec) L (sec) C (sec) 120 120 C (sec) 120 120 995(995) 115(115) **→**80(80) 120(120) y pract. 0.668 0.593 y pract. 0.668 0.593 100(100) 50% 50% R.C. (%) 69% R.C. (%) 69% Stage / Phase Diagrams 2. 3. ٨ Hp <-----> Fp I/G= I/G= 10 I/G= I/G= 5 I/G= 5 I/G= 10 21 I/G= Date Junction: (G) DEC, 2024 Hiram's Highway / Chui Tong Road

MVA HONG KONG LIMITED

I/G=

Date

DEC, 2024

I/G=

I/G= 10

I/G= 10

Hiram's Highway/Hong Kin Road

14

14

(H)

I/G=

I/G= 5

I/G= 3

DEC, 2024

Hiram's Highway/Hong Kin Road

Job No.:

CHK50791710

MVA HONG KONG LIMITED

Scheme Very 2075 Design Flows Deb No CHK 50791710 Rey :	Job Title:					own As 'Road	d', Various	Lots In D.D.		Adjoining Gover	nment La	nd, Sha H	a, Sai Kung
Year 2035 design	Junction:				oad								
AAM PAN ARM C: Tai Mong Tai Road (West) B: Sa Sia Road ARM C: Tai Mong Tai Road (West) ARM FLOWS From V: Very C: Tai				lows	1131 6	VIIIZZ070171	0			.•			
ARM A: Tai Mong Tai Road (Pasi) ARM C: Sai Sta Road GEOMETRY ARM C: Sai Sta Road A			n		Job No.: C	HK50/91/1	.0		Rev.:				
ARM C: Sai Sha Road ARM C: Sai Sha Road A			ai Road	(West)					С				
ARM C: Sai Sha Road A													
ARM v				(====)					\perp	_			
ARM								Α)—в			
A 3.4 8.2 36 100 35 35 0.21 B 3.4 8.1 15 100 35 20 0.50 C 4.2 7.7 13 10 35 35 0.43 AMFLOWS From\to A		RY											
B 3.4 8.1 15 100 35 20 0.50 C 4.2 7.7 13 10 35 35 0.43 AM FLOWS from \to A									_				
AMPLOWS From \													
MAPLOWS From \to A													
From No	C	4.2	7.7	13	10	35	33	0.43					
A 10 485 145		1											
B													
PM FLOWS													
From \to A													
A		1	В	C					Circ	Entry			
C	A								105				
WEEKEND FLOWS		370	5	95					390	470			
Circ Entry A 5 425 225 140 655 235 505	С	150	95	5					750	250			
A 5 425 225	WEEKENI) FLOWS											
B 360 5 140	from \ to								Circ	Entry			
CALCULATIONS ARM K X ₂ M F t _D f _c AM PM WEEKEND AM PM WEEKEND A 1.02 6.76 0.08 2050 1.46 0.72 2017 2017 1991 0.32 0.36 0.33 B 1.07 5.75 0.08 1741 1.46 0.66 1756 1593 1703 0.36 0.29 0.30 C 0.93 6.08 0.08 1842 1.46 0.68 1380 1244 1485 0.20 0.20 0.24 Crtical Arm: B A A RFC: 0.36 0.36 0.33 -In accordance with TPDM V2 Ch4													
CALCULATIONS RFC ARM K X ₂ M F t _D f _c AM PM WEEKEND AM PM WEEKEND A 1.02 6.76 0.08 2050 1.46 0.72 2017 2017 1991 0.32 0.36 0.33 B 1.07 5.75 0.08 1741 1.46 0.66 1756 1593 1703 0.36 0.29 0.30 C 0.93 6.08 0.08 1842 1.46 0.68 1380 1244 1485 0.20 0.20 0.24 Crtical Arm: B A A RFC: 0.36 0.36 0.33 - In accordance with TPDM V2 Ch4													
ARM K X2 M F t _D f _c AM PM WEEKEND AM PM WEEKEND A 1.02 6.76 0.08 2050 1.46 0.72 2017 2017 1991 0.32 0.36 0.33 B 1.07 5.75 0.08 1741 1.46 0.66 1756 1593 1703 0.36 0.29 0.30 C 0.93 6.08 0.08 1842 1.46 0.68 1380 1244 1485 0.20 0.20 0.24 Crtical Arm: RFC: 0.36 0.36 0.33 - In accordance with TPDM V2 Ch4 CRTICAL ARM: RFC: 0.36 0.36 0.33	С	220	130	5					370	355			
A 1.02 6.76 0.08 2050 1.46 0.72 2017 2017 1991 0.32 0.36 0.33 B 1.07 5.75 0.08 1741 1.46 0.66 1756 1593 1703 0.36 0.29 0.30 C 0.93 6.08 0.08 1842 1.46 0.68 1380 1244 1485 0.20 0.20 0.24 Crtical Arm: B A A RFC: 0.36 0.36 0.33 - In accordance with TPDM V2 Ch4	CALCULA	TIONS							$Q_{\rm E}$		RFC		
B 1.07 5.75 0.08 1741 1.46 0.66 1756 1593 1703 0.36 0.29 0.30 C 0.93 6.08 0.08 1842 1.46 0.68 1380 1244 1485 0.20 0.20 0.24													
C 0.93 6.08 0.08 1842 1.46 0.68 1380 1244 1485 0.20 0.20 0.24 Crtical Arm: B A A A RFC: 0.36 0.36 0.33 - In accordance with TPDM V2 Ch4 AM PM WEEKEND													
Crtical Arm: B A A RFC: 0.36 0.36 0.33 - In accordance with TPDM V2 Ch4 AM PM WEEKEND													
- In accordance with TPDM V2 Ch4 RFC: 0.36 0.36 0.33 - M PM WEEKEND	C	0.93	6.08	0.08	1842	1.46	0.68	1380	1244	1485	0.20	0.20	0.24
Calculated by: Date: Dec-24 Checked by:	- In accorda	nce with TPD	M V2 Ch4								0.36	0.36	
					Date:	Dec-24		Checked by:	:				

Appendix C Description of Level-of-Service (LOS) on Footpaths

Appendix C - Description of Level-of-Service (LOS) for Footpaths

LOS	Flow Rate (ped/min/m)	Description
А	≤ 16	Pedestrians basically move in desired paths without altering their movements in response to other pedestrians. Walking speeds are freely selected, and conflicts between pedestrians are unlikely.
В	16 - 23	Sufficient space is provided for pedestrians to freely select their walking speeds, to bypass other pedestrians and to avoid crossing conflicts with others. At this level, pedestrians begin to be aware of other pedestrians and to respond to their presence in the selection of walking paths.
С	23 - 33	Sufficient space is available to select normal walking speeds and to bypass other pedestrians primarily in unidirectional stream. Where reverse direction or crossing movement exist, minor conflicts will occur, and speed and volume will be somewhat lower.
D	33 - 49	Freedom to select individual walking speeds and bypass other pedestrians is restricted. Where crossing or reverse-flow movements exist, the probability of conflicts is high and its avoidance requires changes of speeds and position. The LOS provides reasonable fluid flow; however considerable friction and interactions between pedestrians are likely to occur.
E	49 - 75	Virtually, all pedestrians would have their normal walking speeds restricted. At the lower range of this LOS, forward movement is possible only by shuffling. Space is insufficient to pass over slower pedestrians. Cross- and reverse-movement are possible only with extreme difficulties. Design volumes approach the limit of walking capacity with resulting stoppages and interruptions to flow.
F	> 75	Walking speeds are severely restricted. Forward progress is made only by shuffling. There are frequent and unavoidable conflicts with other pedestrians. Cross- and reverse-movements are virtually impossible. Flow is sporadic and unstable. Space is more characteristics of queued pedestrians than of moving pedestrian streams.

Source from Transport Planning & Design Manual. Volume 6 Chapter 10 Section 10.4.2.