Attachment 5 – Revised Traffic Impact Assessment

Traffic Impact Assessment Report

December 2025

Table of Contents

		Page
1	INTR	ODUCTION1
	1.1	Background1
	1.2	Objectives1
	1.3	Structure of TIA Report
2	PRO	POSED DEVELOPMENT3
	2.1	Development Schedule3
	2.2	Proposed Development Access Arrangement
	2.3	Internal Parking and Servicing Facilities
3	EXIS	TING TRAFFIC CONDITION5
	3.1	Existing Traffic Arrangement5
	3.2	Traffic Survey5
	3.3	Junction Assessment5
	3.4	Road Link Capacity Assessments6
	3.5	Existing Public Transport Facilities7
4	REVI	EW ON FUTURE PUBLIC TRANSPORT DEMAND9
	4.1	Future Public Transport Demand9
	4.2	Future Public Transport Proposal9
5	TRAI	FFIC FORECASTING12
	5.1	Design Year12
	5.2	Traffic Forecast12
	5.3	Planned / Potential Future Developments
	5.4	Trip Generation of the Proposed Development
6	TRAI	FFIC IMPACT ASSESSMENT18
	6.1	Junction Capacity Assessment
	6.2	Further Junction Improvement for Junction of Castle Peak Road – Tai Lam / Tai
	Lam	Chung Road (J5)
	6.3	Road Link Capacity Assessments
	64	Pedestrian Assessment 20

7 TRA	FFIC IMPACT ASSESSMENT FOR SENSITIVITY TEST	22
<mark>7.1</mark>	Traffic Forecast for Sensitivity Test	22
<mark>7.2</mark>	Junction Capacity Assessment under Sensitivity Test	23
8 REV	IEW ON TRAFFIC IMPACT DURING CONSTRUCTION STAGE	24
8.1	Construction Year	24
8.2	Traffic Forecast for Construction Stage	24
8.3	Junction Assessments during Construction Stage	24
9 CON	ICLUSION	26
9.1	Summary	26
9.2	Conclusion	27
List of Ta	ubles	
		Page
Table 2.1	Indicative Development Schedule of the Development Site	3
Table 2.2	Parking and Servicing Facilities Provision	4
Table 3.1	Surveyed Key Junctions for Assessment	5
Table 3.2	Existing Junction Performance	6
Table 3.3	Road Link Capacity Assessments for Existing Year 2023	6
Table 3.4	Public Transport Services	7
Table 4.1	Estimation on Future Public Transport Demand for the Proposed Deve	lopment .9
Table 4.2	Summary of Anticipated Future Public Transport Demand	10
Table 5.1	Planning Data of 2019-based TPEDM	12
Table 5.2	Projections of Population Distribution	12
Table 5.3	Historical Annual Daily Traffic (AADT) Flows from ATC	13
Table 5.4	Traffic Flows Extracted from 2019-Based District Traffic Model	13
Table 5.5	Planned / Potential Future Development in the Vicinity	14
Table 5.6 Vicinity	Estimated Traffic Flows for Planned / Potential Future Developments in 14	the
Table 5.7	Estimated Traffic Flows for the Proposed Development (Approved Sch	eme)15

- ii -

Δ	=		O	A	V
	_	•	\smile	•	•

Table 5.8	Estimated Traffic Flows for the Proposed Development for Proposed Scheme .16
Table 5.9	Comparison of Development Traffic in Reference and Design Scenarios16
Table 6.1	Junction Performance in 2033
Table 6.2	2033 Junction Performance with Further Improvement Scheme19
Table 6.3	Queue Length Analysis Result of J5 with Further Junction Improvement19
Table 6.4	Road Link Capacity Assessment in Design Year 203319
Table 6.5	Existing Footpath Operation Performance
Table 6.6	2033 Design Pedestrian Assessment Results
Table 7.1	Sensitivity Test Junction Performance in 2033
Table 7.2	Queue Length Analysis Result of J5 under Sensitivity Test
Table 8.1	Anticipated Peak Hourly Construction Traffic
Table 8.2	Junction Performance in 2030 during Construction Stage25
Figure	
Figure 1.1	Site Location
Figure 2.1	Indicative Master Layout Plan
Figure 2.2	Vehicular Access Arrangement
Figure 3.1	Critical Junctions and Road Links
Figure 3.2	Existing Junction Layout of Castle Peak Road – Tai Lam / Castle Peak
Ciguro 2.2	Road – New Tai Lam (J1) Existing Junction Leveut of Coatle Book, Book, New Tai Lam / Coatle
Figure 3.3	Existing Junction Layout of Castle Peak Road – New Tai Lam / Castle Peak Road – Tsing Lung Tau (J2)
Figure 3.4	Existing Junction Layout of Castle Peak Road – Tai Lam / Slip Road from
945 51.1	Tuen Mun Road (J3)
Figure 3.5	Existing Junction Layout of Castle Peak Road – Tai Lam / Slip Road to
	Tuen Mun Road (J4)
Figure 3.6	Existing Junction Layout of Castle Peak Road – Tai Lam / Tai Lam
	Chung Road (J5)
Figure 3.7	Existing Junction Layout of Tai Lam Chung Road / Luen Hong Lane (J6)
Figure 3.8	Year 2023 Observed Traffic Flows
Figure 3.9	Existing Public Transport Facilities

- iii -

						ĺ
A	=	L	U	Λ	И	ı

Figure 4.1	Indicative Layout for Transport Interchange (TI)
Figure 5.1	Planned Developments
•	·
Figure 5.2	Year 2033 Background Traffic Flows
Figure 5.3	Year 2033 Reference Traffic Flows
Figure 5.4	Development Traffic Flows (Proposed Scheme)
Figure 5.5	Year 2033 Design Traffic Flows
Figure 6.1	Planned Junction Improvement Scheme at Castle Peak Road – Tai Lam /
	Tai Lam Chung Road
Figure 6.2	Proposed Further Junction Improvement Scheme at Castle Peak Road -
	Tai Lam / Tai Lam Chung Road
Figure 6.3	Year 2024 Observed Pedestrian Flows
Figure 6.4	Pedestrian Routing to Existing Bus Stops
Figure 6.5	Year 2033 Design Pedestrian Flows
Figure 7.1	Year 2033 Reference Traffic Flows for Sensitivity Test
Figure 7.2	Year 2033 Design Traffic Flows for Sensitivity Test
Figure 8.1	Year 2030 Construction Traffic Flows
Annex	
Annex A	Approved Gazette Plan for Luen Hong Lane
Annex B	Junction Capacity Calculation Sheets

Swept Path Analysis

Proposed Bus Routing

Annex C

Annex D

1 INTRODUCTION

1.1 Background

- 1.1.1 The Application Site is located in Tai Lam Chung Valley between Tsuen Wan and Tuen Mun. The proposed development comprises 2,670 nos. of residential flats and site formation works for village houses and provision of public facilities. The location of Application Site is shown in **Figure 1.1**.
- 1.1.2 The Application Site is mainly zoned "Comprehensive Development Area" ("CDA") under the Approved So Kwun Wat Outline Zoning Plan (OZP) no. S/TM-SKW/15. A previous scheme comprising 1,560 nos. of residential flats with average flat size of 49.0m² was approved in 2002 under the planning application A/TM-SKW/32 (hereinafter referred to as the "Approved Scheme").
- 1.1.3 The Applicant is now proposing a higher domestic plot ratio of 2.107 which comprises of 2,670 nos. of residential units with an average flat size of about 40.6m² (hereinafter referred to as "Proposed Scheme") with the site formation works for village houses and provision of public facilities remain unchanged from the Approved Scheme.
- 1.1.4 AECOM Asia Co. Ltd. was commissioned by the Applicant as the Traffic Consultant to prepare a TIA report in support of the Section 16 planning application.

1.2 Objectives

- 1.2.1 The main objectives of this report are as follows-
 - Outline the proposed development parameters and internal transport facilities, internal road arrangement etc.;
 - Review the current traffic condition in the vicinity of the Application Site;
 - Estimate the future public transport demand of the proposed development and develop enhancement on public transport services if necessary;
 - Estimate the potential traffic generations and attractions of the proposed development;
 - Produce traffic forecasts on the surrounding road network at the adopted design year;
 - Assess traffic impact on the surrounding road network induced from the proposed development; and
 - Develop traffic improvement proposal(s) if necessary.

1.3 Structure of TIA Report

- 1.3.1 Following this introductory chapter, the TIA is structured as follows:
 - Chapter 2: Proposed Development, describes the development schedule of the proposed development and its internal traffic facilities provisions, access arrangement, etc.;
 - Chapter 3: Existing Traffic Condition, reviews the current traffic conditions in the vicinity;

AECOM

- **Chapter 4**: Future Public Transport Proposal, elaborates the anticipated public transport demand and discusses the future possible public transport proposal;
- **Chapter 5**: Traffic Forecasting, describes the traffic forecasting methodology and presents the estimated traffic flows in design year;
- Chapter 6: Traffic Impact Assessment, assesses the traffic impact induced on the surrounding road network and recommends improvement schemes, if considered necessary;
- Chapter 7: Traffic Impact Assessment on Sensitivity Test, adopts traffic model
 as traffic forecasting and reassesses the traffic impact induced on the surrounding
 road network and recommends improvement schemes, if considered necessary;
- Chapter 8: Construction Traffic Impact Assessment, assesses the traffic impact on the surround road network during constructions stage and recommends improvement schemes, if considered necessary;
- **Chapter 9**: Summary and Conclusion, summarizes the findings of the study and presents the conclusion of this TIA.

2 PROPOSED DEVELOPMENT

2.1 Development Schedule

2.1.1 **Table 2.1** summarizes the development schedule of the Proposed Scheme with comparison to the Approved Scheme. The proposed indicative Master Layout Plan (MLP) under the current application is illustrated in **Figure 2.1** for reference.

Table 2.1 Indicative Development Schedule of the Development Site

Development Parameters	Approved Scheme	Proposed Scheme
Development Site Area	47,070m²	46,493m²
Plot Ratio	1.8555	2.107
Domestic GFA	86,267	108,468
No. of Storeys	15-16	6-23
No. of Units	1,560	2,670
Average Flat Size	49m²	40.6m ²

2.2 Proposed Development Access Arrangement

- 2.2.1 The location of vehicular run-in/out for the Proposed Development would be maintained at Luen Hong Lane near to Luen On San Tsuen. The proposed run-in/out is presented in **Figure 2.2**.
- 2.2.2 According to the approved Road Gazette 2728 Plan No. TMM4185 dated in May 2022, the road section at both ends of Luen Hong Lane would be widened to allow better vehicle manoeuvring. The approved road gazette plan is presented in **Annex A**.

2.3 Internal Parking and Servicing Facilities

- 2.3.1 The parking and loading/unloading facilities for the Proposed Development would be provided in accordance with the requirements as stipulated in the Hong Kong Planning Standards and Guidelines (HKPSG). The respective requirements and proposed provision are summarized in **Table 2.2**.
- 2.3.2 Swept path analysis for the indicative MLP was also conducted as demonstrated in Annex C. The results have demonstrated that sufficient manoeuvring for the critical locations of loading/unloading bay as well as carparking spaces subject to further reviewed in detail design stage.
- 2.3.3 According to the draft lease plan clause 14(d)(ii)(II), (III) and 15(c), the public village parking spaces will be maintained and operated by the applicant subject to the agreement from relevant government departments. Relevant clause refer to **Annex E**.

Table 2.2 Parking and Servicing Facilities Provision

Table 2.2 Parking and Servicing Facilities Provision									
	HKPSG Requirement		No. of Units / Blocks / GFA	Internal Transport Facilities					
Parking/ Servicing Facilities				HKPSG Requirement		Proposed			
				Lower End	Upper End	Provision			
Proposed Residential	Proposed Residential Development (2,670 flats)								
Southern Site (1,557 fl	ats)								
Residential Parking	Flat Size≤40m²	1 space per 8 – 14 units ⁽¹⁾	909	65	114	91			
Spaces	40m²< Flat Size ≤70m²	1 space per 3.33 – 5.83 units ⁽²⁾	648	112	195	156			
Northern Site (1,113 fla	ats)								
	Flat Size≤40m²	1 space per 8 – 14 units ⁽¹⁾	528	38	66	53			
Residential Parking Spaces	40m²< Flat Size ≤70m²	1 space per 3.33 – 5.83 units ⁽²⁾	568	98	171	137			
	70m²< Flat Size ≤100m²	1 space per 1.67 – 2.92 units ⁽³⁾	17	6	11	9			
		Total	2670	319	557	446(4)			
Visitor Parking Spaces	5 spa	ces per block	7	35		35			
Motorcycle Parking Spaces	1 space p	er 100 – 150 units	2670	18	27	27			
Loading / Unloading Bays	1 ba	ay per block	7	7		8 ⁽⁵⁾			
Bicycle Parking Spaces 1 bicycle parking space for every 30 flats with flat size smaller than 70m²		2653	89		89				
Retail (2000m² GFA)									
Retail Parking Spaces	1 space per	150m² – 300m² GFA	2000	7	14	10			
Retail Loading / Unloading Bays	1 bay per 800m² – 1200m² GFA		2000	2	3	3			
Motorcycle Parking Space		he total provision for ivate cars	-	1	1	1			

Notes

- (1) According to the current HKPSG, Parking Requirement = Global Parking Standard (GPS) x Demand Adjustment Ratio (R1) x Accessibility Adjustment Ratio (R2) x Development Intensity Adjustment Ratio (R3), i.e. 1 car space per 4-7 units x 0.5 x 1.0 x 1.0 = 1 car space per 8.00-14.00 units.
- (2) According to the current HKPSG, Parking Requirement = Global Parking Standard (GPS) x Demand Adjustment Ratio (R1) x Accessibility Adjustment Ratio (R2) x Development Intensity Adjustment Ratio (R3), i.e. 1 car space per 4-7 units x 1.2 x 1.0 x 1.0 = 1 car space per 3.33-5.83 units.
- (3) According to the latest HKPSG, Parking Requirement = Global Parking Standard (GPS) x Demand Adjustment Ratio (R1) x Accessibility Adjustment Ratio (R2) x Development Intensity Adjustment Ratio (R3), i.e. 1 car space per 4-7 units x 2.4 x 1.0 x 1.0 = 1 car space per 1.67-2.92 units.
- (4) Taken into consideration the proximity to public transport services, availability of public car parking space, traffic conditions and the illegal parking condition in the vicinity, it is proposed to adopt a GPS of 5 for calculating the carparking provision according to HKPSG.
- (5) Additional loading/unloading bay will be provided to serve the 17 nos. of house situated at the east of the Proposed Development.

3 EXISTING TRAFFIC CONDITION

3.1 Existing Traffic Arrangement

- 3.1.1 The Application Site is located in the Tai Lam Chung Valley between Tsuen Wan and Tuen Mun as shown in **Figure 3.1**. The Tai Lam Chung Nullah runs down through the valley from the Tai Lam Chung Reservoir Main Dam and its reservoir beyond. The application site is located in a generally flat area on the east side of the river near the entrance to the valley.
- 3.1.2 Tai Lam Chung Road is a two-way single carriageway with one traffic lane at each direction. The signalised junction of Castle Peak Road Tai Lam / Tai Lam Chung Road is the key junction connecting the development site to/from the surrounding area.
- 3.1.3 Luen Hong Lane is a single 2-lane carriageway with passing bay connecting with Luen Tai Street.

3.2 Traffic Survey

3.2.1 A total of 6 key junctions have been identified for assessment and listed in **Table 3.1** and shown in **Figure 3.1**.

Table 3.1 Surveyed Key Junctions for Assessment

Ref.	Junction	Туре	Fig. No.
J1	Castle Peak Road – Tai Lam / Castle Peak Road – New Tai Lam	Roundabout	3.2
J2	Castle Peak Road – New Tai Lam / Castle Peak Road – Tsing Lung Tau	Roundabout	3.3
J3	Castle Peak Road – Tai Lam / Slip Road from Tuen Mun Road	Signal	3.4
J4	Castle Peak Road – Tai Lam / Slip Road to Tuen Mun Road	Signal	3.5
J5	Castle Peak Road – Tai Lam / Tai Lam Chung Road	Signal	3.6
J6	Tai Lam Chung Road / Luen Hong Lane	Priority	3.7

- 3.2.2 The existing layout of the above junctions are shown in Figure 3.2 to Figure 3.7.
- 3.2.3 To investigate the current traffic condition of the identified critical junctions, manual classified traffic counts were conducted on 30 May 2023 during 7:30am 9:30am and 5:00pm 7:00pm.
- 3.2.4 The identified morning (AM) and evening (PM) peak hour are from 7:30am to 8:30am and from 5:30pm to 6:30pm respectively. The 2023 observed AM and PM peak hour traffic flows are shown in **Figure 3.8**.

3.3 Junction Assessment

3.3.1 Based on the 2023 observed traffic flows, capacity assessments were carried out in accordance with the methodology documented in the appendices of Transport Planning and Design Manual (TPDM) Volume 2 Chapter 4 for priority junction / roundabout. Signal junction assessments were based on TPDM Volume 4.

3.3.2 The existing junction performance of the critical junctions are summarized in **Table 3.2.** The junction calculation spreadsheets are enclosed in **Annex B**.

Table 3.2 Existing Junction Performance

Ref.	Junction	Indicator*	2023 Observed	
Kei.	Junction	indicator	AM Peak	PM Peak
J1	Castle Peak Road – Tai Lam / Castle Peak Road – New Tai Lam	DFC	0.54	0.33
J2	Castle Peak Road – New Tai Lam / Castle Peak Road – Tsing Lung Tau	DFC	0.27	0.12
J3	Castle Peak Road – Tai Lam / Slip Road from Tuen Mun Road	RC	>100%	>100%
J4	Castle Peak Road – Tai Lam / Slip Road to Tuen Mun Road	RC	>100%	>100%
J5	Castle Peak Road – Tai Lam / Tai Lam Chung Road	RC	>100%	>100%
J6	Tai Lam Chung Road / Luen Hong Lane	DFC	0.03	0.04

^{*} RC = Reserve Capacity for signal junction; DFC = Design Flow / Capacity ratio for priority junction or roundabout

3.3.3 At present, the concerned junctions are operating within capacity.

3.4 Road Link Capacity Assessments

3.4.1 Road link capacity assessments are also conducted to assess the existing flow/capacity ratio (i.e. V/C ratio) of the key road links in the vicinity of the subject site. The assessment results are summarized in **Table 3.3**.

Table 3.3 Road Link Capacity Assessments for Existing Year 2023

Ref. ⁽¹⁾	Road Link	Direction	Link Capacity ⁽²⁾	Year 2023 Observed Traffic Flows (pcu/hr)		Flow/Capacity Ratio (V/C Ratio)	
			(pcu/hr)	AM peak	PM Peak	AM peak	PM Peak
L1	Tuen Mun Road	EB	<mark>5,640</mark>	4,905	3,490	0.87	<mark>0.62</mark>
L2	ruen wun roau	WB	5,640	3,165	4,795	0.56	0.85
L3	Castle Peak Road – Tai Lam	EB	1,320	745	805	0.56	0.61
L4	Castle Peak Road – Tai Laiti	WB	1,320	180	185	0.14	0.14
L5	Tail and Church Dand	NB	1,020	170	100	0.17	0.10
L6	Tai Lam Chung Road	SB	1,020	185	190	0.18	0.19
L7	Luan Hann Lana	EB	480	20	20	0.04	0.04
L8	Luen Hong Lane	WB	480	25	30	0.05	0.06
L9	Ocatio Decisional Taillana	EB	3,600	1,460	745	0.41	0.21
L10	Castle Peak Road – Tai Lam	WB	3,600	520	940	0.14	0.26
L11	Cootle Dook Dood Toil on	EB	3,600	1,020	205	0.28	0.06
L12	Castle Peak Road – Tai Lam	WB	3,600	210	305	0.06	0.08
L13	Torra Mora Daniel	EB	7,560	5,585	3,970	0.74	0.53
L14	Tuen Mun Road	WB	5,640	3,165	4,795	0.56	0.85
L15	Clin Dood of Tuon Mun Dood	EB	1,320	575	300	0.44	0.23
L16	Slip Road of Tuen Mun Road	WB	1,320	445	630	0.34	0.48
L17	Tuen Mun Road	WB	<mark>5,640</mark>	<mark>3,295</mark>	<mark>4,465</mark>	<mark>0.58</mark>	0.79
L18	Slip Road of Tuen Mun Road	EB	<mark>1,320</mark>	<mark>285</mark>	<mark>585</mark>	0.22	0.44

Note:

(1) Refer to Figure 3.1(2) Derived with referen

AECOM

- (2) Derived with reference to Table 2.4.1.1 in TPDM Volume 2 Chapter 2.4
- 3.4.2 The above link capacity assessment results indicate that all road links are operating at within capacities.

3.5 Existing Public Transport Facilities

- 3.5.1 At present, there is a GMB route 43B located at Tai Lam Chung Bus Terminus near Luen Hong Lane, which is around 500m (around 7-minute walk) away from the Proposed Development.
- 3.5.2 The franchised bus and green minibus (GMB) routes serving at Castle Peak Road Tai Lam surrounding of the Proposed Development are summarized in the **Table 3.4**. The location of the bus stops and minibus stops are presented in **Figure 3.9**.

Table 3.4 Public Transport Services

Route No.	Origin	/ Des	stination	Frequency (min.) / Timetable					
Franchised Bus (CTB)									
952	Chi Lok Fa Yuen	\leftrightarrow	Causeway Bay (Moreton Terrace) Bus Terminus	5 - 30					
952C	So Kwun Wat	\rightarrow	Kornhill Plaza, Kornhill Road	07:12 \ 07:24 \ 07:36 ⁽¹⁾					
	Sunway Gardens, King's Road	\rightarrow	So Kwun Wat	18:10 · 18:15 ⁽¹⁾					
	Chi Lok Fa Yuen			<mark>8 - 20</mark>					
952P	So Kwun Wat	→	Causeway Bay (Moreton Terrace) Bus Terminus	07:15 \ 07:30 \ \ 07:40 \ 07:50					
	Golden Beach			<mark>07:33</mark>					
962	Lung Mun Oasis Bus Terminus	\leftrightarrow	Causeway Bay (Moreton Terrace) Bus Terminus	8 - 25					
N952	Causeway Bay (Moreton Terrace) Bus Terminus	\leftrightarrow	Chi Lok Fa Yuen	00:50 \ 01:10 \ 05:10 \ 05:40					
N962	Lung Mun Oasis Bus Terminus	\leftrightarrow	Causeway Bay (Moreton Terrace) Bus Terminus	25 - 45					
Franchis	sed Bus (KMB)								
52X	Tuen Mun Central Bus Terminus	\leftrightarrow	Mong Kok (Park Avenue) Bus Terminus	5 - 25					
52P	So Kwun Wat	\rightarrow	Mong Kok (Park Avenue) Bus Terminus	08:00					
53	YOHO Mall (Yuen Long)	\leftrightarrow	Nina Tower Bus Terminus	25 - 35					
61A	Yau Oi (South) Bus Terminus	\rightarrow	Tuen Mun Road Bus-Bus Interchange	06:50 ⁽¹⁾					
61M	Yau Oi (South) Bus Terminus	\leftrightarrow	Lai King North Bus Terminus	8 - 25					
61P	So Kwun Wat Tsuen	\leftrightarrow	Tsuen Wan Station Bus Terminus	07:10 \ 07:35 \ 08:05 18:15 \ 18:40 \ 19:05 ⁽¹⁾					
	Tuen Mun Road Bus-Bus Interchange	J	So Kwun Wat	10 - 30 ⁽²⁾					
252	So Kwun Wat Tsuen	\rightarrow	Tuen Mun Road Bus-Bus Interchange	20					
	Tuen Mun Road Bus-Bus Interchange	\rightarrow	18 Kwun Chui Road	20 ⁽¹⁾					

AECOM

Route No.	Origin	Frequency (min.) / Timetable				
261B	Sam Shing Public Transport Interchange	\rightarrow	Kowloon Station Bus Terminus	07:25 \ 07:35		
N252	Mei Foo Tuen Mun (Sam Shing Estate)		01:05 \ 01:35			
Franchi	sed Bus (MTR Bus)					
K51	Fu Tai Estate Bus Terminus	\leftrightarrow	Tai Lam Chung	5 - 20		
Green N	Green Mini-Bus (GMB)					
43B	Tuen Mun Town Centre (Ho Pong Street)	\leftrightarrow	Tai Lam Chung	18 - 30		

Notes:

- (1) Monday to Friday only

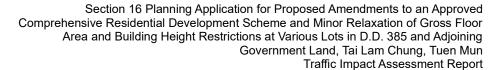
- (2) Circular route
 (3) Saturday, Sunday and Public Holiday
 (4) No service on Sundays and public holidays

4 REVIEW ON FUTURE PUBLIC TRANSPORT DEMAND

4.1 Future Public Transport Demand

4.1.1 To review the appropriate public transport provision to be provided due to the population intake of the Proposed Development, the future public transport demand for the Proposed Development is reviewed with reference to the information/data as available in the Population By-Census 2021 and the Travel Characteristics Survey 2011 Final Report as available on Transport Department's website. The estimation of future public transport demand is summarized in **Table 4.1**.

Table 4.1 Estimation on Future Public Transport Demand for the Proposed Development


Parameters	Formula	Proposed Scheme
Estimated Population by Flats	2,670 Flats	7,476 ⁽¹⁾
Estimated Population by Village Housing	80 Village House	224 ⁽¹⁾
Total Estimated Population	(a)	7,700 ⁽²⁾
Average daily mechanised trips per person	(b)	1.83 ⁽³⁾
Peak hour factor (AM/PM) to daily total	(c)	12%(4)
Modal Split for Public Transport	(d)	73%(5)
Estimated public transport demand per hour during peak hours	(e) = (a) x (b) x (c) x (d)	1,235

Notes:

- (1) The estimated population of the application site is estimated with an assumption of 2.8 persons / flat or village house.
- (2) The total estimated population is the factor (a) of formula reflecting total population of subject site including flats and village house.
- (3) The daily mechanised trip rate per population is 1.83 trips according to the Travel Characteristics Survey 2011 Final Report.
- (4) The peak hour factor is about 12% of daily trips according to the Travel Characteristics Survey 2011 Final Report.
- (5) Modal split for public transport is made reference with Table C109 of 2021 Population Cense.

4.2 Proposed Public Transport Facilities

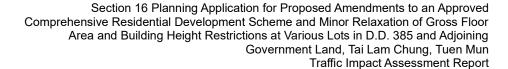
- 4.2.1 As the subject site is in close proximity to the Tuen Mun Bus-Bus Interchange (BBI) which provides extensive bus connections to other major areas in Hong Kong. The "Kowloon Bound" provides bus routes connecting to Kowloon and Hong Kong island while the "Tuen Mun Bound" provides bus routes connecting to Tuen Mun and Yuen Long area.
- 4.2.2 Under the proposed scheme, there will be 2,670 units. As per **Table 4.1** above, it is estimated that the public transport demand during peak hour is 1,235 pax / hr. As the major public transport demand would likely to be destined to the two bounds of Tuen Mun Bus-Bus Interchange, a circular bus service is proposed between Tuen Mun BBI and the development site. The proposed new bus service would be a circular route with terminating point at the development site and an enroute bus stop at Tuen Mun BBI for passenger boarding and alighting. Nevertheless, the boarding / alighting point for this proposed circular bus service can be further reviewed / discussed with TD in

the subsequent detail design stage.

- 4.2.3 In order to serve public transport demand of 1,235 pax/hr (Refer to Table 4.1), it will require a total of 14 bus trips during peak hours with a total capacity of 1,260 pax/hr (i.e. 14 trips X 120 pax/bus X 75% occupancy rate).
- 4.2.4 For conservative assessment, it has been assumed that 65% of the passengers [around 9 bus trips] would take the proposed circular bus service to/from the Tuen Mun BBI while the remaining 35% [around 5 trips] would be served the proposed en-route bus stop at the proposed TI with enhanced frequency of existing bus services (e.g. bus routes 52X, 53, 61M, 952 and 962).

Table 4.2 Summary of Anticipated Future Public Transport Demand

Table 112 Callinary 617 and of patent 1 at all 6 11 and 6011 Definant						
Direction	Public Transport Demand (pax/hr) (a)	Proposed Trips (b) = (a) / 90pax ⁽³⁾				
To Tuen Mun BBI (New Circular Bus Service)	802 ⁽¹⁾	9 trips				
En-route Bus Stop with Existing Bus Services	433 ⁽²⁾	5 trips				
Total	<mark>1,235</mark>	14 trips				


- Total public transport demand of 1,235pax/hr x 65% (Circular Bus Service Total public transport demand of 1,235pax/hr x 35% (En-route stop at Proposed TI)
- Bus carrying capacity is estimated as 120 pax * 75% occupancy rate
- 4.2.5 To serve the additional public transport demand as derived in **Table 4.2**, two bus services have been proposed.

En-route Bus Stop at the Subject Development

Currently, there are few bus routes running along Castle Peak Road – Tai Lam. To cater the future transport demand as derived in Table 4.2, it is recommended to introduce an en-route bus stop within the subject development serving enhanced frequency of existing bus services. Potential bus routes such as 52X, 53, 61M, 952 and 962, could provide connections to various destinations. It is anticipated that each bus route only needs to enhance their frequency slightly (e.g. from 10mins to 8.5mins) which will have a negligible impact on current peak hour headway.

Circular Service to Tuen Mun Bus-bus Interchange

- Given that TMRBBI offers extensive bus connections to major area across Hong Kong, it is considered appropriate to provide a dedicated bus service between the development site and the BBI. The proposed service would operate at an estimated peak-hour headway of approx. 7mins (i.e. 60mins / 9 trips).
- 4.2.8 The proposed circular bus routing is presented in **Annex D**.
- 4.2.9 In order to serve the public transport demand induced by the Proposed Development, total provision of 85m in length of bus bays would be proposed in the Proposed privately-operated Transport Interchange (TI) within the Proposed Development. To provide design flexibility, a 32m long bay has been reserved within the Proposed TI for potential future use by GMB, if required. The indicative layout of the transport

interchange is presented in **Figure 4.1**. Swept path analysis was conducted and demonstrated sufficient manoeuvring space would be allowed for 12.8m bus as presented in **Annex C**.

- 4.2.10 It should be noted that current demand split reflects existing conditions and will be reviewed during detailed design stage prior to population intake of the Proposed Development. Nonetheless, the proposed TI has provided two separate bus bays to allow flexibility for future changes in demand distribution.
- 4.2.11 The detailed arrangement of the proposed enhancement on public transport services would be subject to further review and consideration by relevant government departments and/or stakeholders in detailed design stage.
- 4.2.12 The applicant will be responsible for the construction, future management and maintenance of the Proposed TI.
- 4.2.13 It is noted that the proposed public transport plan and facilities in the TIA is for assessment purpose only. The final PTI layout and public transport plan to address the public transport demand arising from the development, including introduction of new routes or changes on existing public transport services, will be further reviewed in detailed design stage and decided by TD, subject to a host of factors including actual population intake date, prevailing public transport services at that time and etc."

5 TRAFFIC FORECASTING

5.1 Design Year

5.1.1 The proposed development is tentatively scheduled for completion in 2030. Year 2033 is therefore selected as a design year for assessment purpose (i.e. 3 years after the planned completion).

5.2 Traffic Forecast

5.2.1 Annual Growth Rate method is applied to estimate 2033 traffic forecast from the 2023 observed traffic flows. The annual growth rate is made reference to the planning data in 2019-based Territorial Population and Employment Data Matrix (TPEDM) which is available on Planning Department's website. **Table 5.1** shows the years 2019 and 2031 population planning data in Tuen Mun district.

Table 5.1 Planning Data of 2019-based TPEDM

Planning Data		2019				Annual Growth	
District	Population	Employment	Total	Population	Employment	Total	Rate
Tuen Mun	476,500	130,800	607,300	606,850	150,750	757,600	+1.86%

- 5.2.1 As shown in **Table 5.1**, the average growth rate as derived from TPEDM is about 1.86%.
- 5.2.2 Apart from the TPEDM, the Projections of Population Distribution in Tuen Mun district for year 2023-2031 as published by Planning Department is also reviewed. It was found that the average growth rate is about 1.46% from 2023 2031 and is summarized in **Table 5.2**.

Table 5.2 Projections of Population Distribution

District Council District	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Tuen Mun	506900	508800	539300	541600	554900	557600	573800	577700	577500	577300	586200
	Average Traffic Growth Rate from 20121 to 2031 = 1.46% per annum										

5.2.3 Other than TPEDM and the Projections of Population Distribution from Planning Department, the historical traffic data from Annual Traffic Census (ATC) is also reviewed. The annual average daily traffic (AADT) flow and annual growths of the nearby counting stations from 2016 to 2023 as presented in the ATC reports published annually by Transport Department are summarized in **Table 5.3**.

Table 5.3 Historical Annual Daily Traffic (AADT) Flows from ATC

ATC Stn.	Road Name				A.A.D.T	. (veh/day)			
No.	Roau Name	2016	2017	2018	2019	2020	2021	2022	2023
5012	Tuen Mun Road Expressway	123,250	129,590	129,160	133,340	127,640	127,800	121,740	124,650
5855	Tuen Mun Road Expressway	111,100	110,150	113,660	118,180	112,500	110,960	103,070	109,520
5857	Tuen Mun Road - Siu Lam	11,610	9,960	10,210	10,140	9,720	10,780	12,270	12,560
5657	Castle Peak Rd - Sham Tseng, Tsing Lung Tau & Tai Lam	12,350	12,160	12,460	12,370	12,830	13,550	13,140	13,440
6052	Castle Peak Rd - So Kwun Wat & Castle Peak Bay	19,490	19,600	20,270	20,130	19,300	20,070	20,540	22,250
	Total 277,800 281,460 285,760 294,160 281,990 283,160 270,760 282,420							282,420	
		Ave	rage Traffic G	rowth Rate fro	m 2016 to 202	3 = 0.24% per	annum		

- 5.2.4 As shown in **Table 5.3**, the average growth rate from 2016 to 2023 is about **0.24%** per annum according to the historical ATC data.
- 5.2.5 The Year 2019 Base District Traffic Models (BDTM) published by Transport Department was also referred to determine the traffic growth rates in Tuen Mun area. The projected traffic flows at the surrounding road network are summarized in **Table 5.4**.

Table 5.4 Traffic Flows Extracted from 2019-Based District Traffic Model

Road Links	Α	M	PM		
Rodu Liliks	2019	2031	2019	2031	
Tai Lam Chung Road	141	775	127	665	
Castle Peak Road – Tai Lam	482	1,224	1,033	1,781	
Tuen Mun Road	10,622	11,504	10,586	11,076	
Total	11,245	13,503	11,746	13,522	
Growth Rates	1.5	4%	1.1	8%	

5.2.6 The projected traffic flows in BDTM revealed that the growth rate of traffic rate in the local road network would be increased by 1.54% and 1.18% per annum for AM and PM peak respectively.

Adopted Traffic Growth Factor

5.2.7 Based on the results given by TPEDM estimates and AADT historical data as well as BDTM, an annual growth rate of **1.86**% per annum is adopted for projecting the peak hour traffic flows from 2023 to 2033 for conservative assessments.

5.3 Planned / Potential Future Developments

5.3.1 It is noted that there are several planned / potential developments along Castle Peak Road – Tai Lam and in So Kwun Wat, and their locations are listed in **Figure 5.1** and **Table 5.5** respectively.

Table 5.5 Planned / Potential Future Development in the Vicinity

Ref.	Lot	Proposed Use	No. of Flats	Estimated Average Flat Size (sq.m)
1 ⁽¹⁾	TMTL518	Private Housing	928	50
2 ⁽¹⁾	TMTL546	Private Housing	1,586	60
3 ⁽²⁾	TMTL561	Private Housing	2,708	60
4 ⁽³⁾	TMTL463	Private Housing	<mark>800</mark>	60
5	TMTL520	Private Housing	693	60
6 ⁽⁴⁾	TMTL496	Private Housing	1326	60
7 ⁽⁵⁾	Light Public Housing at Lok On Pai	Public Housing	4200	25

- (1) Development parameters extracted from RNTPC Paper No. 9/17
 (2) According to Amendment item A in RNTPC Paper No. 2/15 "Proposed Amendments to the Approved So Kwun Wat OZP No. S/TM-SKM/11" issued by Planning Department. The average flat sizes are extracted from RNTPC Paper No. 2/15

- Development parameters extracted from OZP
 Development parameters extracted from OZP
 Development parameters extracted from OZP
 Development parameters extracted from LC Paper No. CB(1)1123/2023(02)
- Estimates of traffic generation and attraction volume are derived from the trip rates as stipulated in Annex D of Transport Planning and Design Manual (TPDM) Volume 1 Chapter 3 published by Transport Department. Table 5.6 summarizes the estimated trip generations of the planned / potential future developments as listed in **Table 5.5**.

Table 5.6 **Estimated Traffic Flows for Planned / Potential Future Developments in the Vicinity**

			Estimated T	rips (pcu/hr)	
Ref.			Peak	PM	Peak
		Generation	Attraction	Generation	Attraction
1 - TMTL518	Adopted Trip Rate (pcu/hr/flat)	0.0718	0.0425	0.0286	0.037
1 - HWITESTO	Estimated Flow (pcu/hr)	67	39	27	34
2 - TMTL546	Adopted Trip Rate (pcu/hr/flat)	0.0718	0.0425	0.0286	0.037
2 111112010	Estimated Flow (pcu/hr)	114	67	45	59
3 - TMTL561	Adopted Trip Rate (pcu/hr/flat)	0.0718	0.0425	0.0286	0.037
3 - TWITE301	Estimated Flow (pcu/hr)	194	115	77	100
4 – TMTL463	Adopted Trip Rate (pcu/hr/flat)	0.0718	0.0425	0.0286	0.037
+ TWT2400	Estimated Flow (pcu/hr)	<mark>57</mark>	<mark>34</mark>	<mark>23</mark>	<mark>30</mark>
5 – TMTL520	Adopted Trip Rate (pcu/hr/flat)	0.0718	0.0425	0.0286	0.037
3 - TWITE320	Estimated Flow (pcu/hr)	50	29	20	26
6 – TMTL496	Adopted Trip Rate (pcu/hr/flat)	0.0718	0.0425	0.0286	0.037
0 - TWITE490	Estimated Flow (pcu/hr)	95	56	38	49
7 – Light Public Housing at Lok	Adopted Trip Rate (pcu/hr/flat) (1)	0.0071	0.0046	0.0112	0.014
On Pai	Estimated Flow (pcu/hr)	30	19	47	59

The adopted trip rates are referred to the Transport and Traffic Impact Assessment Report for "Proposed Light Public Housing Development and Associated Filling / Excavation of Land on a 3 Years Temporary Basis at Various Lots in D.D. 104 and Adjoining Government Land, Yau Pok Road,

5.4 Trip Generation of the Proposed Development

5.4.1 Based on the development schedule as mentioned in **Section 2**, the adopted trip rate extracted from Annex D of TPDM Volume 1 Chapter 3 and the development trip generation and attraction for Approved Scheme is summarized in **Table 5.7**.

Table 5.7 Estimated Traffic Flows for the Proposed Development (Approved Scheme)

			Estimated Trips (pcu/hr)					
	Application Site	АМ	Peak	PM Peak				
		Gen.	Att.	Gen.	Att.			
Site (a)	Adopted Trip Rates ⁽¹⁾ (pcu/hr/flat)	0.0718	0.0425	0.0286	0.037			
- 1,560 flats	Estimated Trips (pcu/hr)	113	67	45	58			
Site (b)	Adopted Trip Rates ⁽²⁾ (pcu/hr/flat)	0.3012	0.2189	0.2235	0.3234			
80 village house	Estimated Trips (pcu/hr)	25	18	18	26			
	Total (pcu/hr)	138	85	63	84			

Note:

Year 2033 Background Traffic Flows

5.4.2 The 2033 background traffic flows (without approved/proposed development) are derived by applying a growth rate of 1.86% p.a. on the 2023 observed flows upto the design year 2033 and superimpose the traffic flow as derived in **Table 5.6**. The year 2033 background traffic flows are presented in **Figure 5.2**.

Year 2033 Reference Traffic Flows

- 5.4.3 The 2033 reference traffic flows are derived by superimposing the potential traffic as induced by the Approved Scheme in **Table 5.7** onto the traffic flows in **Figure 5.2**.
- 5.4.4 The year 2033 reference traffic flows are presented in **Figure 5.3**.

Trip Generation of the Proposed Development in Design Scenario

- 5.4.5 In the design scenario of year 2033, it is adopted that Site (a) will increase the number of flats to 2,670 flats in accordance with the development schedule as listed in **Table 2.1**.
- 5.4.6 The estimated potential traffic generation and attraction of the Proposed Development in the Design Scenario of 2033 are shown in **Table 5.8**.

⁽¹⁾ TPDM mean trip rates for Private Housing: High-Density /R(A) with Ave. Flat Size of 60m²

⁽²⁾ TPDM mean trip rates for Private Housing: Low-Density /R(C) with Ave. Flat Size of 240m²

Table 5.8 Estimated Traffic Flows for the Proposed Development for Proposed Scheme

			Estimated T	rips (pcu/hr)
	AM	Peak	PM F	Peak	
		Gen.	Att.	Gen.	Att.
Site (a)	Adopted Trip Rates ⁽¹⁾ (pcu/hr/flat)	0.0718	0.0425	0.0286	0.037
– 2,670 flats	Estimated Trips (pcu/hr)	192	114	77	99
Site (b)	Adopted Trip Rates ⁽²⁾ (pcu/hr/flat)	0.3012	0.2189	0.2235	0.3234
– 80 village house	Estimated Trips (pcu/hr)	25	18	18	26
Retail	Adopted Trip Rates ⁽³⁾ (pcu/hr/100m ² GFA)	0.2296	0.2434	0.3100	0.3563
– 2000m ² GFA	Estimated Trips (pcu/hr)	5	5	7	8
Public	Adopted Trip Rates ⁽⁴⁾	·	-	-	-
Transport	Estimated Trips (pcu/hr)	36	36	36	36
	Total (pcu/hr)	258	173	138	169

Note:

- (1) TPDM mean trip rates for Private Housing: High-Density /R(A) with Ave. Flat Size of 60m²
- (2) TPDM mean trip rates for Private Housing: Low-Density /R(C) with Ave. Flat Size of 240m²
- (3) TPDM mean trip rates for Retail / Shopping Complex (Office + Retail)
- (4) Details calculation of trip generate / attraction by public transport refers to TIA Section 4.2 paragraph 4.2.2
- 5.4.7 As shown in **Table 5.8**, it is estimated that the Proposed Scheme would potentially generate 258 pcu/hr and attract 173 pcu/hr in the morning peak hour, and generate about 138 pcu/hr and attract 169 pcu/hr in the evening peak hour.
- 5.4.8 As compared with the Reference Scenario, the Proposed Development with domestic plot ratio of 2.107 would induce additional 2-way traffic 208 pcu/hr and 160 pcu/hr in morning and evening peak hour respectively. The comparison of development traffic of the application site in Reference and Design Scenarios are shown in **Table 5.9**.

Table 5.9 Comparison of Development Traffic in Reference and Design Scenarios

	Estimated Trips (pcu/hr)				
Application Site	AM	Peak	PM Peak		
	Gen.	Att.	Gen.	Att.	
Reference Scenario (a)	138	85	63	84	
Design Scenario (b)	258	173	138	169	
Net Difference = (b) - (a)	+120	+88	+75	+85	
Total Two-way Traffic (pcu/hr)	+:	208	+1	60	

- 5.4.9 In addition to the additional development traffic induced by the Proposed Development, the potential increases in bus traffic included by at the Proposed Development are also taken into account.
- 5.4.10 As discussed in **Section 4**, it is proposed to introduce 14 trips of bus services during the peak hours to cater the public transport demand as induced by the Proposed

Development.

Year 2033 Design Traffic Flows

- 5.4.11 The year 2033 design flows are derived by superimposing (i) the net increases in development traffic of the Proposed Development as presented in **Table 5.9**; and (ii) the additional bus trips upon the available of the proposed transport interchange in the Application Site onto the year 2033 reference traffic flows (**Figure 5.3**).
- 5.4.12 The development traffic flows as well as the year 2033 design traffic flows are presented in **Figure 5.4** and **5.5** respectively.

6 TRAFFIC IMPACT ASSESSMENT

6.1 Junction Capacity Assessment

- 6.1.1 The operational performance of 6 critical junctions based on year 2033 traffic forecasts as mentioned in **Section 5** have been assessed.
- 6.1.2 A junction improvement at Junction of Castle Peak Road Tai Lam / Tai Lam Chung Road (J5) is committed by the applicant under approved planning application (No. A/TM-SKW/26) as shown in **Figure 6.1**. As presented in **Figure 6.1**, an additional flare length would be implemented at Castle Peak Road (Tai Lam) while a pedestrian stagger crossing would be introduced at Tai Lam Chung Road westbound. This committed junction improvement layout will be taken into account for the junction capacity analysis.
- 6.1.3 The results of junction capacity assessment are summarized in **Table 6.1**.

Table 6.1 Junction Performance in 2033

			2033					
Ref.	Junction	Indicator ⁽	Background Case (without Approved Scheme)		Reference Case (with Approved Scheme)		Design Case (with Proposed Scheme)	
			AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
J1	Castle Peak Road – Tai Lam / Castle Peak Road – New Tai Lam	DFC	0.65	0.40	0.79	0.49	0.80	0.51
J2	Castle Peak Road – New Tai Lam / Castle Peak Road – Tsing Lung Tau	DFC	0.32	0.14	0.46	0.17	0.54	0.19
J3	Castle Peak Road – Tai Lam / Slip Road from Tuen Mun Road	RC	>100%	>100%	>100%	>100%	>100%	>100%
J4	Castle Peak Road – Tai Lam / Slip Road to Tuen Mun Road	RC	<mark>>100%</mark>	<mark>90%</mark>	<mark>>100%</mark>	<mark>78%</mark>	<mark>95%</mark>	<mark>69%</mark>
J5	Castle Peak Road – Tai Lam / Tai Lam Chung Road ^{(2) (3)}	RC	<mark>62%</mark>	<mark>92%</mark>	<mark>10%</mark>	<mark>42%</mark>	<mark>-15%</mark>	<mark>14%</mark>
J6	Tai Lam Chung Road / Luen Hong Lane ⁽⁴⁾	DFC	0.04	0.05	0.22	0.16	0.39	0.29

Notes:

- (1) RC = Reserve Capacity for signal junction; DFC = Design Flow / Capacity ratio for priority junction or roundabout
- (2) Committed junction improvement layout refers Figure 6.1.
- (3) Cycle time of 90s to be adopted
- (4) The road layout of approved Road Gazette 2728 refers to Annex A
- 6.1.4 As shown in **Table 6.1**, all junctions will be operating within capacity in 2033 except J5.

6.2 Further Junction Improvement for Junction of Castle Peak Road – Tai Lam / Tai Lam Chung Road (J5)

6.2.1 To enhance junction capacity of J5, a left turn lane at Castle Peak Road – Tai Lam southbound will be proposed. Also, according to the latest requirement as stipulated in TPDM, the use of staggered crossing should be avoided. Therefore, the straight crossing at Tai Lam Chung Road will be adopted in the junction improvement scheme as illustrated in **Figure 6.2**. The junction performance is reassessed by taking into consideration the further junction improvement and the junction would operate with sufficient capacity as shown in **Table 6.2**.

 Table 6.2
 2033 Junction Performance with Further Improvement Scheme

Def		Indicator*	2033 Des	ign Case			
Ret.	Ref. Junction		AM Peak PM Peak				
J5	Castle Peak Road – Tai Lam / Tai Lam Chung Road	RC	24%	59%			

Notes:

6.2.2 Apart from the junction assessments, queue length analysis for J5 with further improvement is also conducted for Design case of 2033. The analysis results are summarized in **Table 6.5**.

Table 6.3 Queue Length Analysis Result of J5 with Further Junction Improvement

Oritinal Arms	Available Length	2033 Design Case			
Critical Arm	for Queuing (m)	AM Peak	PM Peak		
Castle Peak Road – Tai Lam SB	<mark>42m⁽¹⁾</mark> / 280m ⁽²⁾	30m ⁽¹⁾ / 36m ⁽²⁾	18m ⁽¹⁾ / 24m ⁽²⁾		
Castle Peak Road – Tai Lam NB	86m	12m	18m		
Tai Lam Chung Road WB	95m	54m	36m		

Notes:

6.3 Road Link Capacity Assessments

6.3.1 Road link capacity assessments are also conducted to assess the V/C ratio of the key road links in both the Reference and Design Cases of year 2033. The assessment results are summarized in **Table 6.6**.

Table 6.4 Road Link Capacity Assessment in Design Year 2033

			Link	Yea		raffic Flo u/hr)	ows	F		acity Rat Ratio)	io
Ref. ⁽¹⁾	Road Link	Direction	Capacity ⁽²⁾ (pcu/hr)		rence ise	Desig	n Case	Reference Case		Design Case	
			(pod/iii)	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak Peak 6 0.93 0.66 1 0.61 0.91 9 0.80 0.84 0.23 1 0.37 0.28	
L1	Tuen Mun	EB	<mark>5,640</mark>	5,245	3,730	5,265	3,745	0.93	<mark>0.66</mark>	0.93	0.66
L2	Road	WB	5,640	3,385	5,125	3,415	5,155	0.60	0.91	0.61	0.91
L3	Castle Peak Road	EB	1,320	990	1,045	1,050	1,110	0.75	0.79	0.80	0.84
L4	– Tai Lam	WB	1,320	300	260	365	300	0.23	0.20	0.28	0.23
L5	Tai Lam Chung	NB	1,020	295	210	380	290	0.29	0.21	0.37	0.28
L6	Road	SB	1,020	365	290	485	360	0.36	0.28	0.48	0.35
L7	Luen Hong	EB	1,020	110	110	200	195	0.11	0.11	0.20	0.19
L8	Lane	WB	1,020	165	95	290	175	0.16	0.09	0.28	0.17
L9	Castle Peak Road - Tai Lam	EB	3,600	2,085	1,030	2,105	1,050	0.58	0.29	0.58	0.29
L10		WB	3,600	725	1,275	745	1,295	0.20	0.35	0.21	0.36
L11	Castle	EB	3,600	1,580	390	1,595	395	0.44	0.11	0.44	0.11

⁽¹⁾ RC = Reserve Capacity for signal junction

⁽²⁾ Cycle time of 90s to be adopted for design purpose

⁽¹⁾ Traffic queue for flared lane (Castle Peak Road – Tai Lam straight and right turn traffic)

⁽²⁾ Traffic queue for nearside lane (Castle Peak Road – Tai Lam left turn traffic)

AECOM

L12	Peak Road – Tai Lam	WB	3,600	270	395	295	420	0.08	0.11	0.08	0.12
L13	Tuen Mun	EB	7,560	5,970	4,245	5,990	4,265	0.79	0.56	0.79	0.56
L14	Road	WB	5,640	3,385	5,125	3,415	5,155	0.60	0.91	0.61	0.91
L15	Slip Road of Tuen	EB	1,320	810	415	880	445	0.61	0.31	0.67	0.34
L16	Mun Road	WB	1,320	665	910	695	940	0.50	0.69	0.53	0.71
L17	Tuen Mun Road	WB	<mark>5,640</mark>	<mark>3,525</mark>	<mark>4,625</mark>	<mark>3,595</mark>	<mark>4,660</mark>	<mark>0.63</mark>	0.82	<mark>0.64</mark>	0.83
L18	Slip Road of Tuen Mun Road	EB	1,320	<mark>340</mark>	<mark>700</mark>	340	<mark>700</mark>	0.26	0.53	0.26	0.53

Note:

- Refer to Figure 3.1
- (2) Derived with reference to Table 2.4.1.1 in TPDM Volume 2 Chapter 2.4
- 6.3.2 The assessment results presented that Tuen Mun Road will be operating at capacity during the peak hours. However, the results reflected the effects on V/C ratios of the road links due to the Proposed Scheme is negligible. It should also be noted that an investigation study on Route 11 (section between Yuen Long and North Lantau) had commenced 2023 with a target to commissioning this major road by 2033. Subsequent to the commissioning of Route 11, the V/C ratio of the concerned road link are expected to improve.
- 6.3.3 Apart from Tuen Mun Road, all other road links will be operating with adequate capacities in both Reference and Design Case.

6.4 Pedestrian Assessment

Existing Pedestrian Condition

- 6.4.1 To review the existing pedestrian situation, pedestrian head count surveys have been conducted at the footpath sections in the vicinity of the subject site on 17 January 2025 during AM and PM peak period. The observed AM and PM peak hour fall within 8:10am to 9:10am and 5:10pm to 6:10pm respectively. The observed pedestrian flows are shown in **Figure 6.3**.
- 6.4.2 The footpath sections are assessed by the observed peak pedestrian flows with reference to the criteria of Level-Of-Service (LOS) from HCM 2000 as exhibited in TPDM. The LOS assessment results are summarized in **Table 6.7**.

Table 6.5 Existing Footpath Operation Performance

Location ⁽¹⁾	Clear Width (m)	Effective Width ⁽²⁾ (m)	Observed 2-way Pedestrian (Ped/hr) (b)			Services ⁽³⁾ a) / 60mins		
	(,	(a)	AM	PM	AM	A) / 60mins PM A A		
FP1	1.6	0.6	10	20	Α	Α		
FP2	2.0	1.0	40	125	Α	Α		
FP3	3.6	2.6	45	120	Α	Α		
FP4	2.7	1.7	30	95	A	A		

Note:

- (1) Refer to Figure 6.3
- Effective width = Clear width 0.5m dead width on both sides.
- (3) Based on the criteria of LOS from HCM 2000 as exhibited in TPDM. In general, LOS A & B provide a good walking environment; LOS C & D are acceptable values; and LOS E & F reflect the design volume has approached or over the limit of walking capacity.
- 6.4.3 As shown in **Table 6.7**, it is indicated that the footpath sections in the vicinity of the subject site are currently operating at acceptable LOS during peak hours.

Future Pedestrian Condition

- 6.4.4 As discussed in **Section 4**, a transport interchange will be provided within the Proposed Development to cope with the public transport demand induced by the subject site. It is anticipated that the proposed transport interchange would serve most of the public transport demand to various destinations via Tuen Mun Bus-Bus interchange.
- 6.4.5 However, it is understood that the future public transport proposal as discussed in **Section 4.2** is still under reviewed by the relevant government departments as well as local stakeholders. To review the future pedestrian condition surrounding the Proposed Development, it is assumed that all the future public transport demand as derived in **Table 4.1** would use the Tai Lam Chung Bus Terminus to Tuen Mun BBI for conservative assessments.
- 6.4.6 Therefore, a set of future pedestrian flows on the key routes to Tai Lam Chung Bus Terminus in design year 2033 are derived by applying a growth rate of 1.86% p.a. (refers to **Section 5.2**) onto the observed pedestrian flows (**Figure 6.3**) upto the design year 2033 and superimposing the potential future public demand induced by the Proposed Development as derived in **Table 4.1** with anticipated pedestrian routing as demonstrated in **Figure 6.4**. The future year 2033 pedestrian flows are shown in **Figure 6.5**.
- 6.4.7 The LOS assessments for design year 2033 pedestrian flows are conducted, and the results are summarized in **Table 6.8**.

Table 6.6 2033 Design Pedestrian Assessment Results

Location ⁽¹⁾	Clear Width (m)	Effective Width ⁽²⁾ (m)	Observed 2-way Pedestrian (Ped/hr) (b)			Services ⁽³⁾ a) / 60mins
	,	(a)	AM	PM	AM	PM
FP1	1.6	0.6	145	160	Α	Α
FP2	2.0	1.0	1,115	1,215	В	В
FP3	3.6	2.6	1,255	1,345	Α	Α
FP4 ⁽⁴⁾	2.0	1.0	1,240	1,315	В	В

Note:

- (1) Refer to Figure 6.5
- (2) Effective width = Clear width 0.5m dead width on both sides.
- (a) Based on the criteria of LOS from HCM 2000 as exhibited in TPDM. In general, LOS A & B provide a good walking environment; LOS C & D are acceptable values; and LOS E & F reflect the design volume has approached or over the limit of walking capacity.
- (4) The road layout of approved Road Gazette 2728 refers to Annex A
- 6.4.8 The LOS assessment results suggested that all the footpath sections will still be operating at acceptable LOS in design year 2033.

Section 16 Planning Application for Proposed Amendments to an Approved Comprehensive Residential Development Scheme and Minor Relaxation of Gross Floor Area and Building Height Restrictions at Various Lots in D.D. 385 and Adjoining Government Land, Tai Lam Chung, Tuen Mun Traffic Impact Assessment Report

7 TRAFFIC IMPACT ASSESSMENT FOR SENSITIVITY TEST

7.1 Traffic Forecast for Sensitivity Test

- 7.1.1 To ensure a comprehensive review of the TIA report, a traffic model is carried out as a sensitivity test for traffic forecasting in this study.
- 7.1.2 For the projection of background traffic flows in Area of Influence, an in-house 2-tier modelling approach (Strategic Transport Model (STM) and Local Area Traffic Model (LATM)) have been adopted. Based on the planning data published on the website of Planning Department, together with other information (such as population distribution and employment type from Census) available in public domain, a simplified Strategic Transport Model (STM) was developed for cordoning board vehicle trip matrices for local area traffic modelling.
- 7.1.3 For the Local Area Traffic Model (LATM), the Base District Traffic Model (BDTM) "NTW1" covering Tai Lam Chung Area has been adopted as the base traffic model for this study.
- 7.1.4 The LATM has been validated against the 2025 traffic data in the area of influence to ensure that the base year LATM could satisfactorily replicate the base year traffic patterns and volumes before the model is used to produce future years traffic forecasts.
- 7.1.5 The STM cordoned matrices were fed into the LATM for projecting the traffic flows from year 2025 to year 2033. In addition, the trip ends of traffic zones were adjusted and controlled by the following parameters:
 - The trip generations of the planned / potential future developments (listed in Table 5.5);
 - Estimated traffic flows for the Proposed Development in Approved Scheme (listed in **Table 5.7**)
- 7.1.6 The year 2033 reference traffic flows for sensitivity test are shown in **Figure 7.1**.
- 7.1.7 The year 2033 design flows for sensitivity test are derived by superimposing (i) the net increases in development traffic of the Proposed Development as listed in Table 5.9; and (ii) the additional bus trips onto the year 2033 reference traffic flows for sensitivity (Figure 7.1). The year 2033 design traffic flows for sensitivity test are shown in Figure 7.2.

7.2 Junction Capacity Assessment under Sensitivity Test

7.2.1 The operational performances of the identified critical junctions are assessed with the derived year 2033 traffic flows for sensitivity test, and the assessment results are summarized in **Table 7.1**. The junction calculation sheets are shown in **Appendix B**.

Table 7.1 Sensitivity Test Junction Performance in 2033

				20	<mark>33</mark>	
Ref.	Junction	Indicator ⁽¹⁾		vity Test ce Case) PM	Sensitivity Test (Design Case) AM PM	
			<mark>Peak</mark>	<mark>Peak</mark>	<mark>Peak</mark>	<mark>Peak</mark>
J1	Castle Peak Road – Tai Lam / Castle Peak Road – New Tai Lam	DFC	0.81	0.68	0.82	0.71
<mark>J2</mark>	Castle Peak Road – New Tai Lam / Castle Peak Road – Tsing Lung Tau	DFC	0.51	0.25	0.58	0.26
J3	Castle Peak Road – Tai Lam / Slip Road from Tuen Mun Road	RC	>100%	<mark>63%</mark>	>100%	<mark>60%</mark>
<mark>J4</mark>	Castle Peak Road – Tai Lam / Slip Road to Tuen Mun Road	RC	<mark>>100%</mark>	<mark>>100%</mark>	<mark>>100%</mark>	<mark>>100%</mark>
<mark>J5</mark>	Castle Peak Road – Tai Lam / Tai Lam Chung Road ^{(2) (3)}	RC	<mark>41%</mark>	<mark>80%</mark>	<mark>20%</mark>	<mark>43%</mark>
<mark>J6</mark>	Tai Lam Chung Road / Luen Hong Lane ⁽⁴⁾	DFC	0.22	0.16	0.39	0.28

Notes:

- (1) RC = Reserve Capacity for signal junction; DFC = Design Flow / Capacity ratio for priority junction or roundabout
- (2) Proposed junction improvement layout refers Figure 6.2.
- (3) Cycle time of 90s to be adopted
- (4) The road layout of approved Road Gazette 2728 refers to Annex A
- 7.2.2 The assessments in **Table 7.1** have reflected that all junctions will be still operated within capacity under the sensitivity test scenario.
- 7.2.3 Apart from the junction assessments, queue length analysis for J5 with further improvement is also conducted for Sensitivity Test of 2033. The analysis results are summarized in **Table 7.2**.

Table 7.2 Queue Length Analysis Result of J5 under Sensitivity Test

Cuiti a al Aura	Available Length	2033 Sensitivity Test			
Critical Arm	for Queuing (m)	AM Peak	PM Peak		
Castle Peak Road – Tai Lam SB	42m ⁽¹⁾ / 280m ⁽²⁾	30m ⁽¹⁾ / 36m ⁽²⁾	30m ⁽¹⁾ / 55m ⁽²⁾		
Castle Peak Road – Tai Lam NB	<mark>86m</mark>	<mark>12m</mark>	<mark>18m</mark>		
Tai Lam Chung Road WB	<mark>95m</mark>	<mark>54m</mark>	<mark>30m</mark>		

Notes:

- (3) Traffic queue for flared lane (Castle Peak Road Tai Lam straight and right turn traffic)
- (4) Traffic queue for nearside lane (Castle Peak Road Tai Lam left turn traffic)

8 REVIEW ON TRAFFIC IMPACT DURING CONSTRUCTION STAGE

8.1 Construction Year

8.1.1 Considering the completion of the Proposed Development is scheduled in 2030, the traffic impact induced by the construction traffic in year 2030 is assessed for conservative approach.

8.2 Traffic Forecast for Construction Stage

Growth Factor

8.2.1 As discussed in **Section 5**, an annual growth factor of 1.86% per annum as derived in **Table 5.1** is applied onto the traffic flows as observed in year 2023 to project the peak hour traffic flows from year 2023 to 2030.

Anticipated Construction Traffic

8.2.2 Taking into account of the site area of the Proposed Development, it is preliminary estimated that the construction traffic to/from the Application Site would be approximately 30 pcu/hr. The anticipated peak hourly construction traffic demand are summarized in **Table 8.1**.

Table 8.1 Anticipated Peak Hourly Construction Traffic

Anticipated Peak Hour Construction Traffic				
Generation Attraction				
30 pcu/hr	30 pcu/hr			

- 8.2.3 The ingress and egress routes of the construction traffic are subject to approval of the Waste Management Plan and the future contactors/suppliers to be awarded. Nevertheless, it is assumed that construction trucks would mainly for delivery to/from Tuen Mun Area 38 fill bank.
- 8.2.4 The traffic forecasts are derived by applying a growth factor onto the observed background traffic flows and superimposing the traffic of the planned future development as listed in **Table 5.4** as well as the construction traffic as derived in **Table 8.1**. The future year 2030 traffic flows are presented in **Figure 8.1**.

8.3 Junction Assessments during Construction Stage

8.3.1 The performance of the road junctions are assessed with the derived 2030 traffic flows for the construction stage are summarized in **Table 8.2** respectively.

Table 8.2 Junction Performance in 2030 during Construction Stage

Ref.	Junction	Indicator ⁽¹⁾			
			2030 Construction Stage AM Peak PM Peak 0.82		
J1	Castle Peak Road – Tai Lam / Castle Peak Road – New Tai Lam	DFC	0.82	0.71	
J2	Castle Peak Road – New Tai Lam / Castle Peak Road – Tsing Lung Tau	DFC	0.93	0.27	
J3	Castle Peak Road – Tai Lam / Slip Road from Tuen Mun Road	RC	>100%	60%	
J4	Castle Peak Road – Tai Lam / Slip Road to Tuen Mun Road	RC	>100%	>100%	
J5	Castle Peak Road – Tai Lam / Tai Lam Chung Road ⁽²⁾	RC	54%	8%	
J6	Tai Lam Chung Road / Luen Hong Lane ⁽³⁾	DFC	0.39	0.29	

Notes

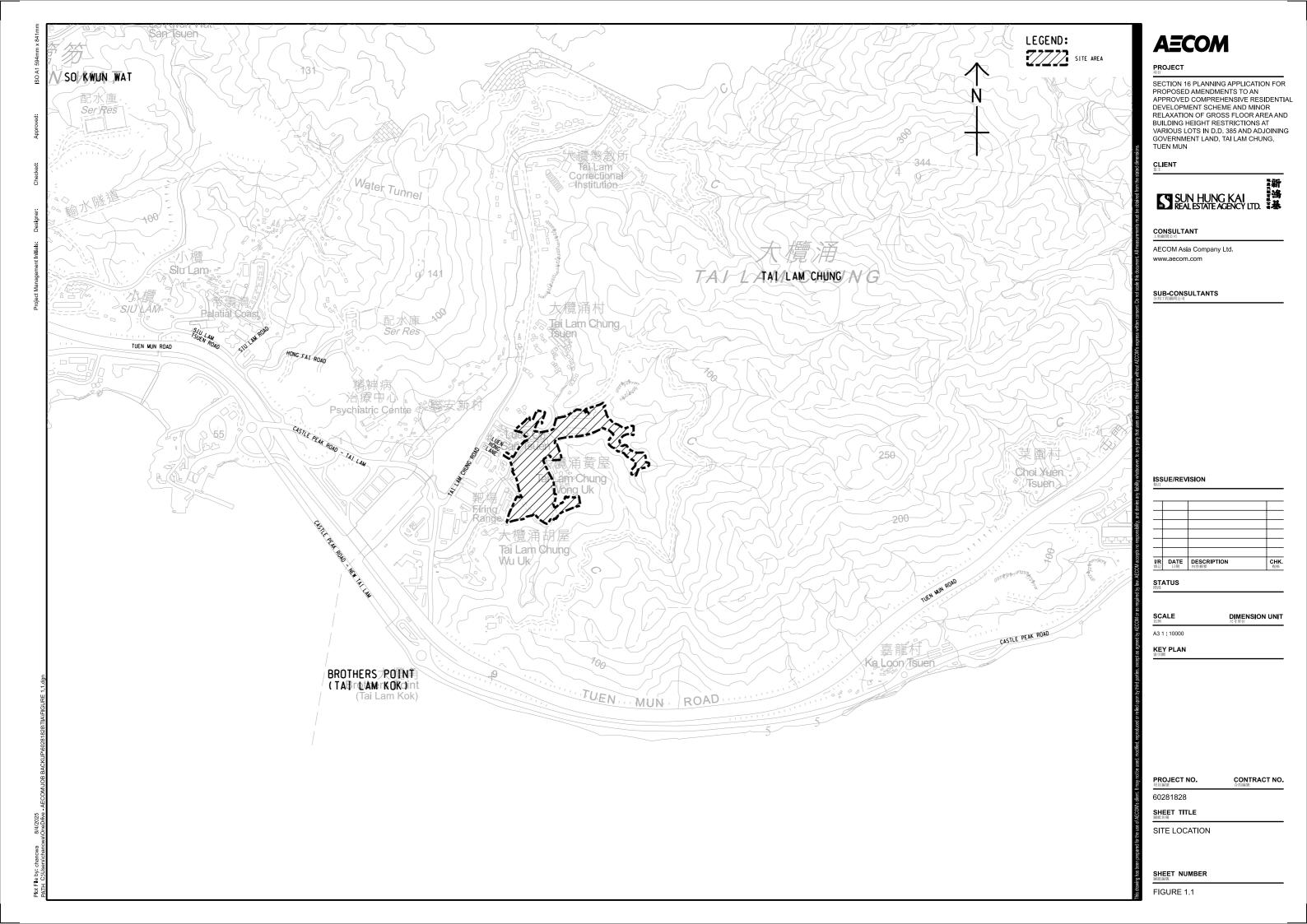
- (1) RC = Reserve Capacity for signal junction; DFC = Design Flow / Capacity ratio for priority junction or roundabout
- (2) Existing road layout refers to Figure 3.6
- (3) Existing road layout refers to Figure 3.7
- 8.3.2 The assessment results in **Table 8.2** showed that the road junctions in the vicinity of the Proposed Development will be operating within capacities during the peak hours in year 2030 with the construction works at the subject site. The corresponding junction calculation sheets are attached in **Annex B**.

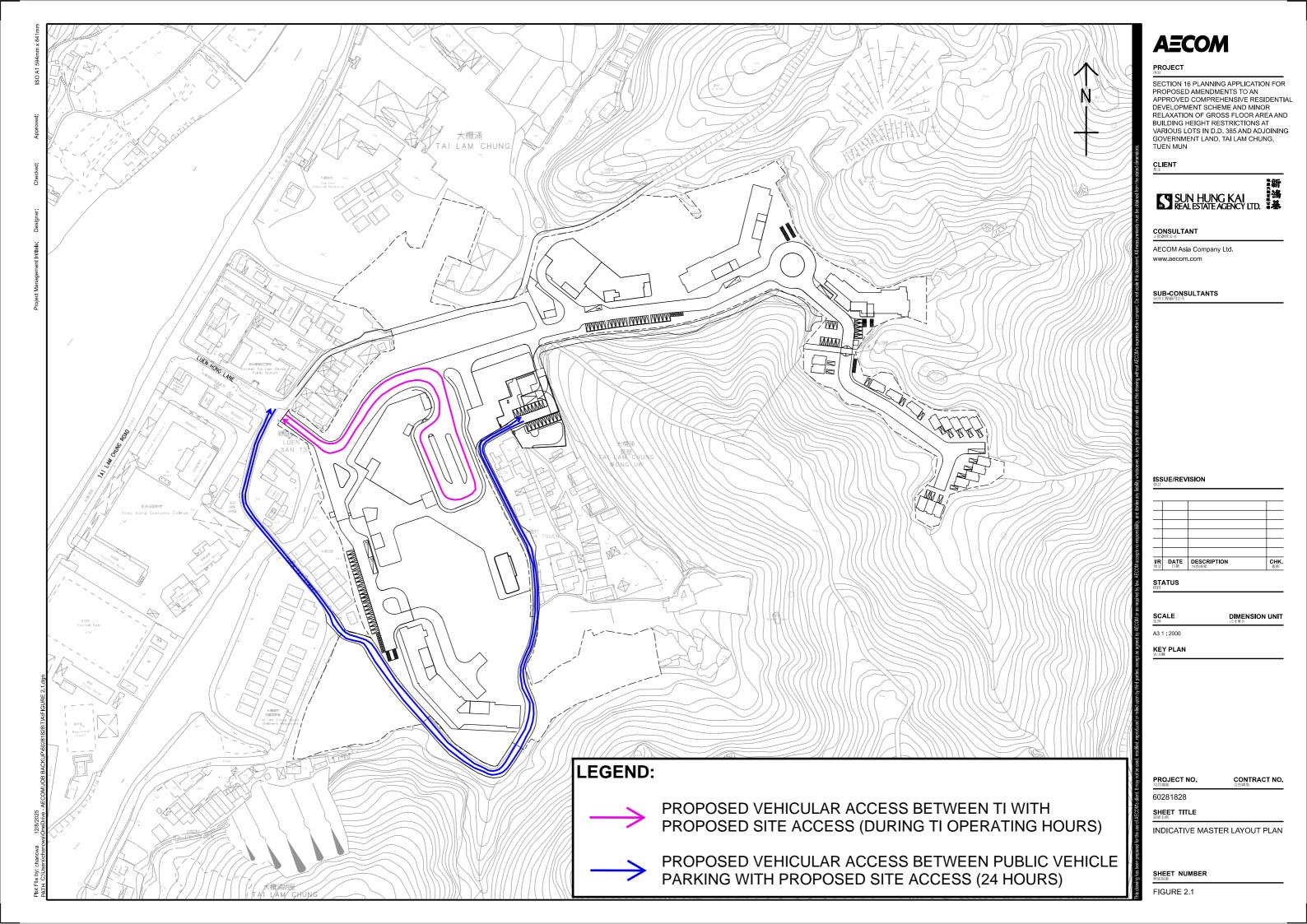
AECOM

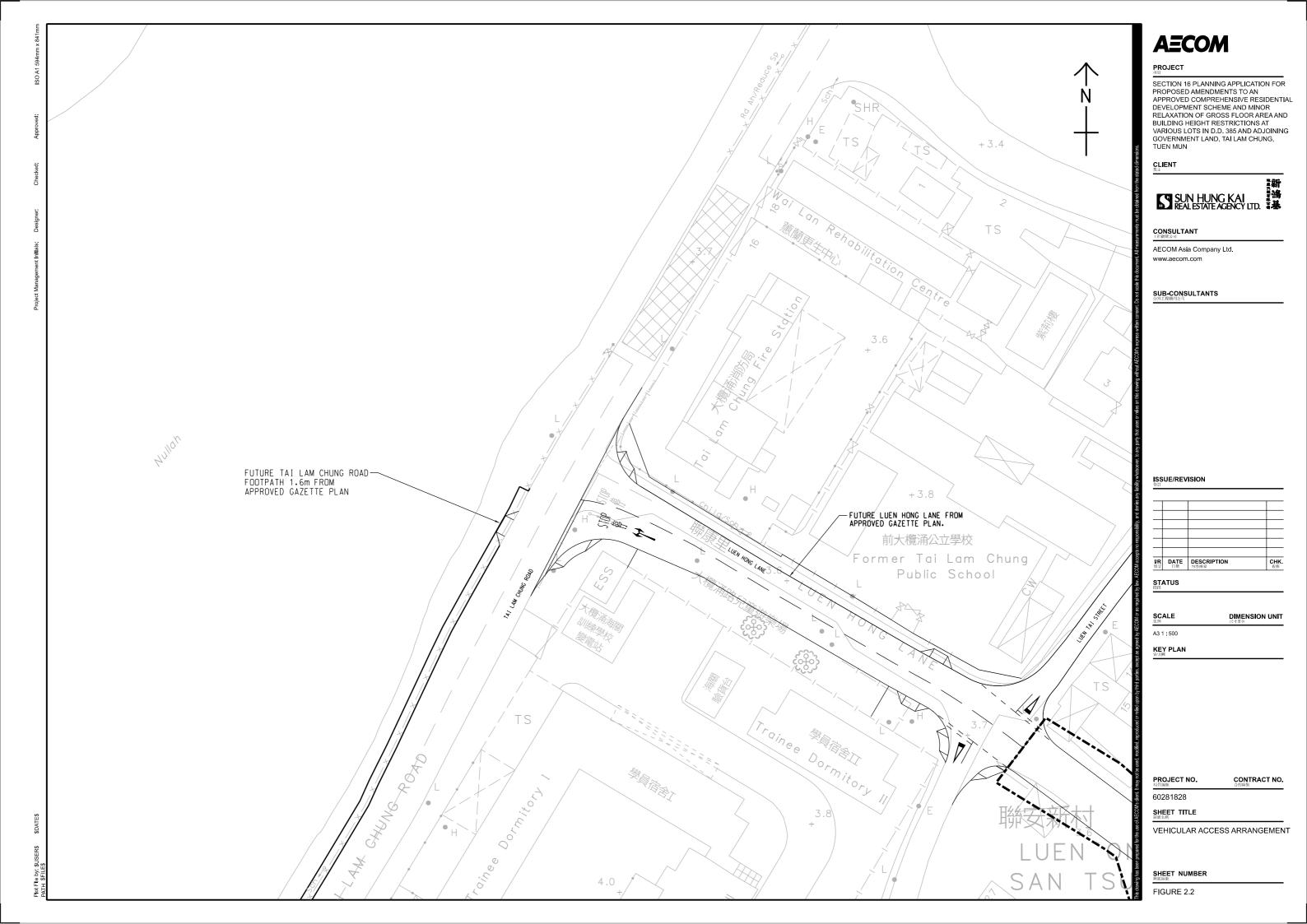
9 CONCLUSION

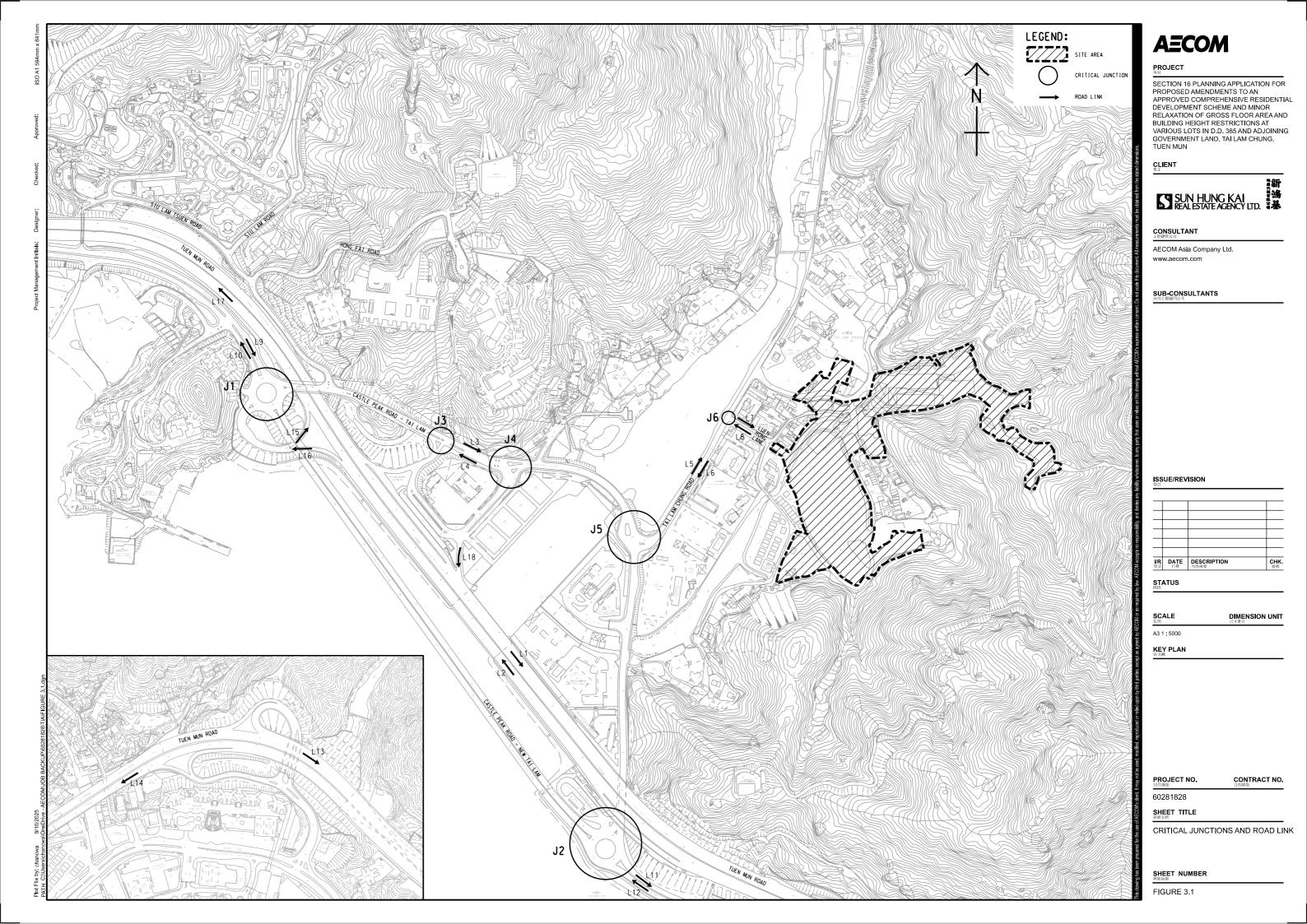
9.1 Summary

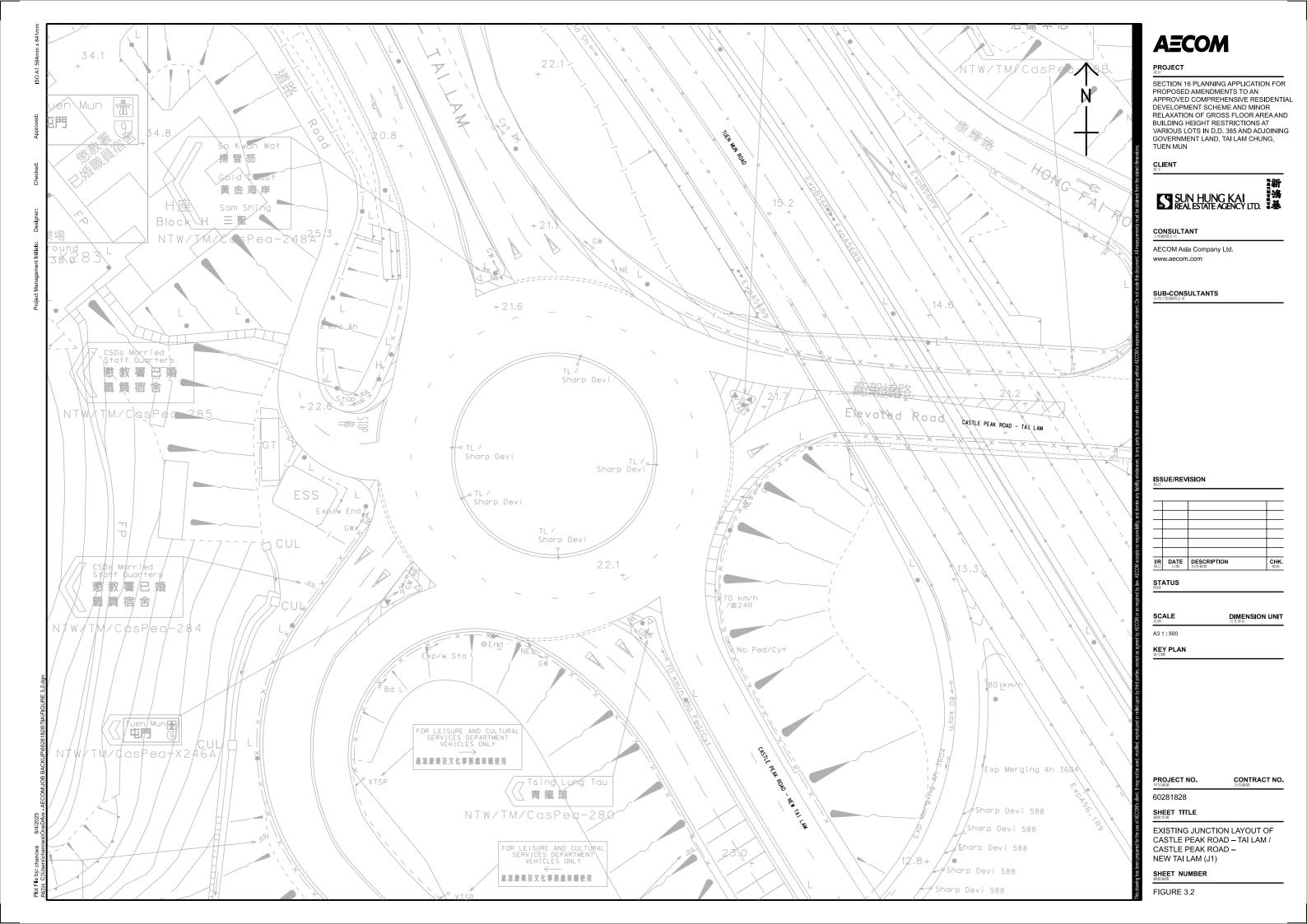
- 9.1.1 The Application Site covers various lots and adjacent Government land in DD 385, Tai Lam Chung, Tuen Mun, New Territories. The Site is bounded by Luen Hong Lane to the west with a development site area for private residential development of about 46,493m².
- 9.1.2 Compared to the Approved Scheme, the Applicant now proposed a higher domestic plot ratio of 2.107 which comprises of 2,670 nos. of residential units with an average flat size of about 40.6m².
- 9.1.3 The parking and loading/unloading facilities of the proposed development would be provided in accordance with the requirements as stipulated in the HKPSG.
- 9.1.4 In order to review the existing traffic condition, traffic count surveys were conducted at the following 6 identified critical junctions to investigate the traffic condition during commuting peak hours. At present, all the critical junctions are operating within capacity.
 - Castle Peak Road Tai Lam / Castle Peak Road New Tai Lam (J1)
 - Castle Peak Road New Tai Lam / Castle Peak Road Tsing Lung Tau (J2)
 - Castle Peak Road Tai Lam / Slip Road from Tuen Mun Road (J3)
 - Castle Peak Road Tai Lam / Slip Road to Tuen Mun Road (J4)
 - Castle Peak Road Tai Lam / Tai Lam Chung Road (J5)
 - Tai Lam Chung Road / Luen Hong Lane (J6)
- 9.1.5 To serve the additional public transport demand as induced by the Proposed Development, additional bus trips will be introduced during the peak hours. Also, 3 nos. of bus layby and 4 nos. of GMB layby are proposed at proposed privately-operated transport interchange to cater for the potential transport demand arising from the proposed development.
- 9.1.6 By comparing the trip generation/ attractions of the proposed development under Approved Scheme and Proposed Scheme, the Proposed Scheme will induce additional 208 pcu/hr (two-way) during AM peak hour and 160 pcu/hr (two-way) during PM peak hour.
- 9.1.7 The proposed development is tentatively scheduled for completion in 2030. According to Guidelines and Requirements of TIA Studies, the TIA should assess at least 3 years after the planned completion of the Proposed Development. Hence, 2033 is adopted as the design year for this TIA.
- 9.1.8 In order to carry out traffic forecast and examine traffic impact due to the Proposed Development in year 2033, Annual Growth Rate method is applied to estimate the traffic forecast year 2033. The annual growth rate is made reference to 2019-based TPEDM, Projection of Population Distribution from Planning Department and the historical traffic data from ATC which is available on Transport Department's website. It is proposed to adopt an annual growth rate of 1.86% per annum for projecting the peak hour traffic flow from 2023 to 2033.

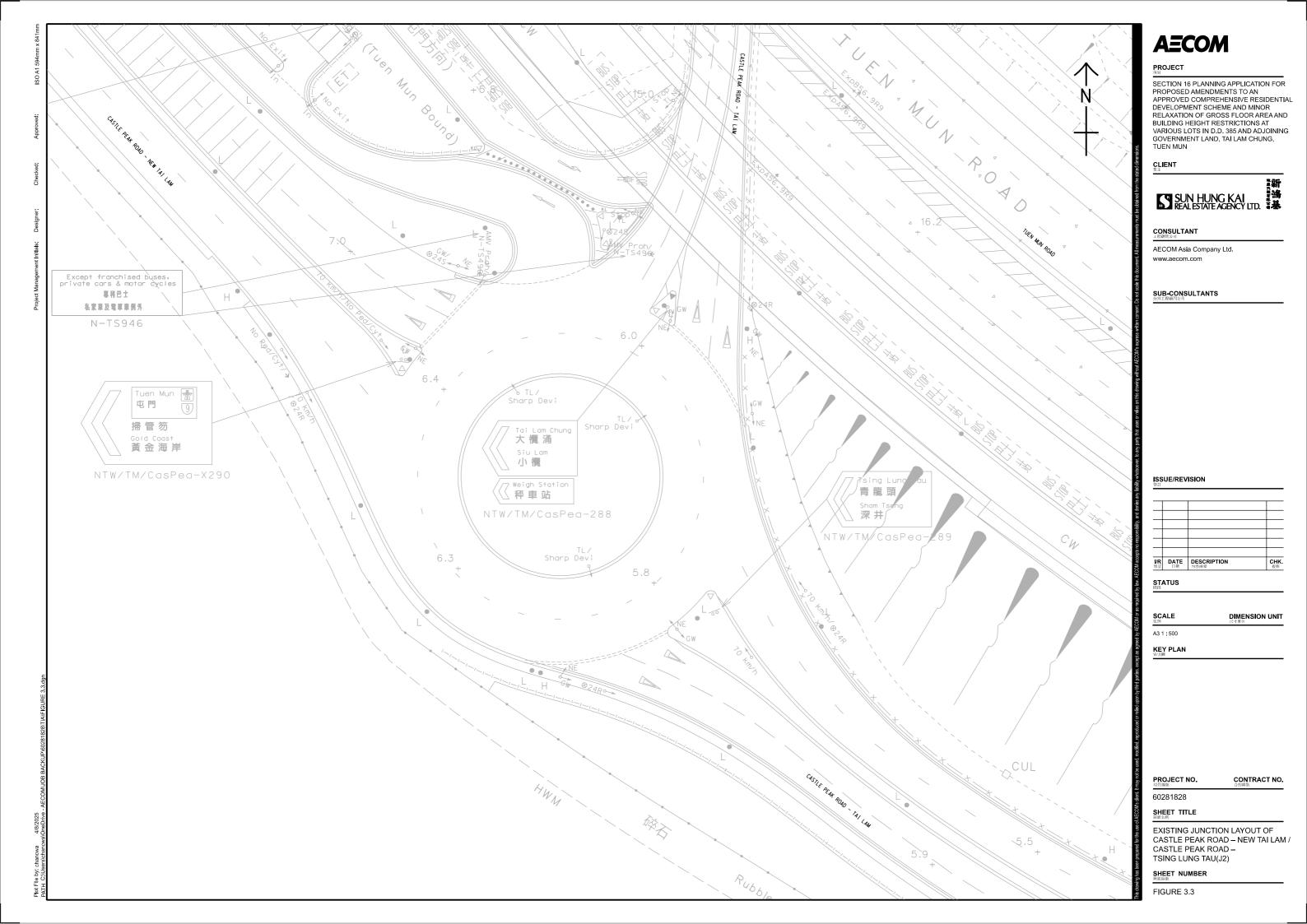

AECOM

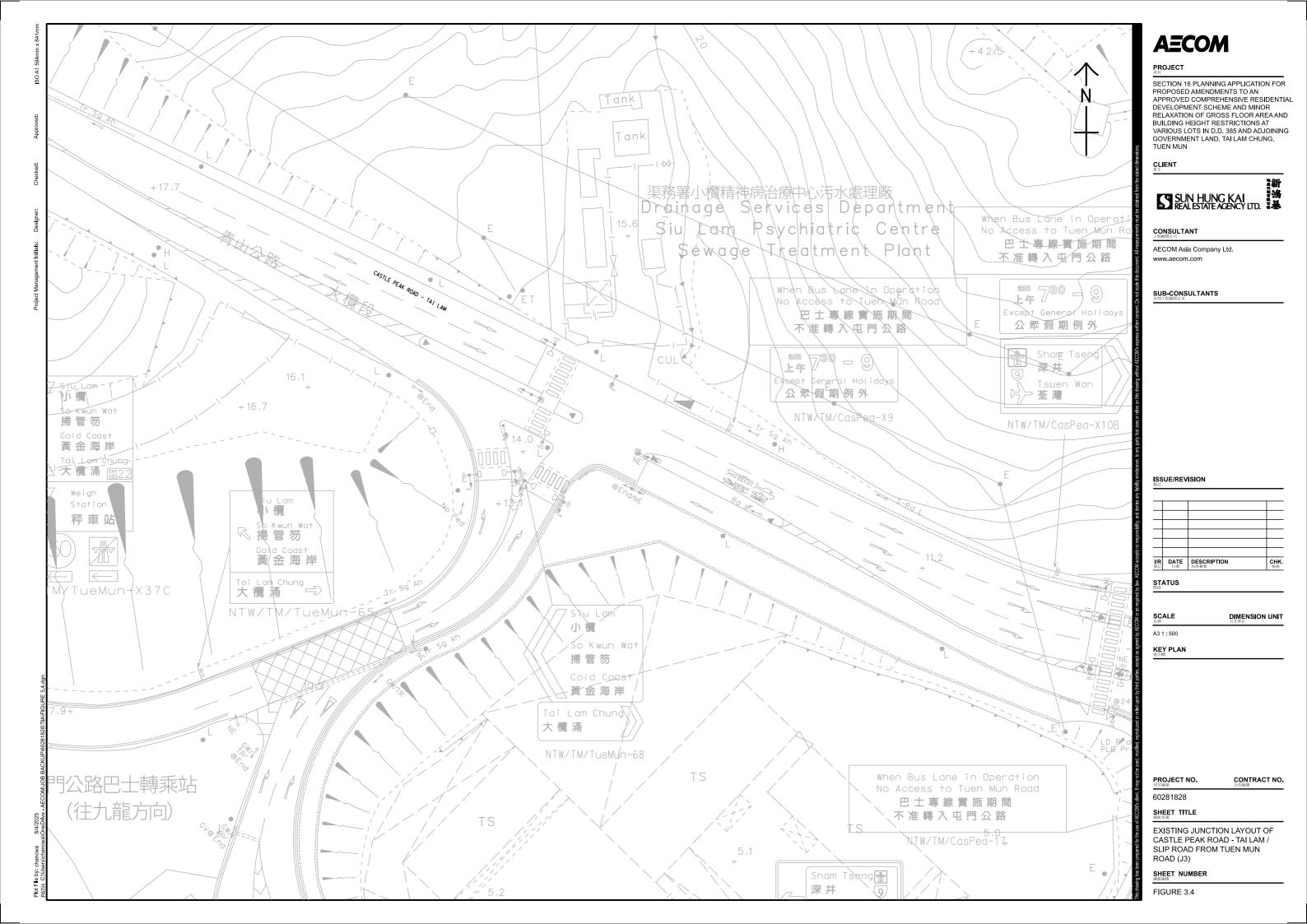

- 9.1.9 The 2033 reference traffic flows were derived based on the observed traffic demands and circulation pattern by adopting an appropriate growth rate with consideration of the planned developments within the vicinity and the anticipated trips generated by the Approved Scheme.
- 9.1.10 The additional trip due to the Proposed Scheme have been superimposed onto the anticipated 2033 reference traffic flows to produce 2033 design traffic flows.
- 9.1.11 Junction capacity assessment was conducted for both 2033 reference and design scenarios, taking into consideration the committed junction improvement at Junction of Castle Peak Road Tai Lam / Tai Lam Chung Road (J5) under previously approved planning application and the approved gazette plan of Luen Hong Lane (J6). The results revealed that all junctions would be operating within capacity under the design case in 2033 except for J5. In light of this, further junction improvement scheme at J5 is formulated for improving the junction performance and will be carried out by the project proponent prior to the completion of the Proposed Development. With the said further junction improvement scheme, J5 would operate with sufficient capacity in 2033 design case. In addition, a traffic model as sensitivity test for comprehensive review is also conducted in this study, and the test results indicated that the key road junctions in the vicinity of the Proposed Development would still be operate within their capacity in year 2033 under the sensitivity test scenario.
- 9.1.12 The performance of footpath surrounding the subject site will also operate in adequate capacity together with the proposed public transport demand induced by the Proposed Development.
- 9.1.13 The traffic impact during the construction stage is also reviewed. Taking into consideration the site area of the subject site, it is preliminary estimated that the construction to/from the Application Site would be approximately 30 pcu/hr, and is assumed that the construction traffic would be mainly for delivery to/from Tuen Mun Area 38 fill bank subject to further construction arrangement by the future contractor. The results revealed that all junctions will be operating within capacity in year 2030 (i.e. completion year of the proposed development).

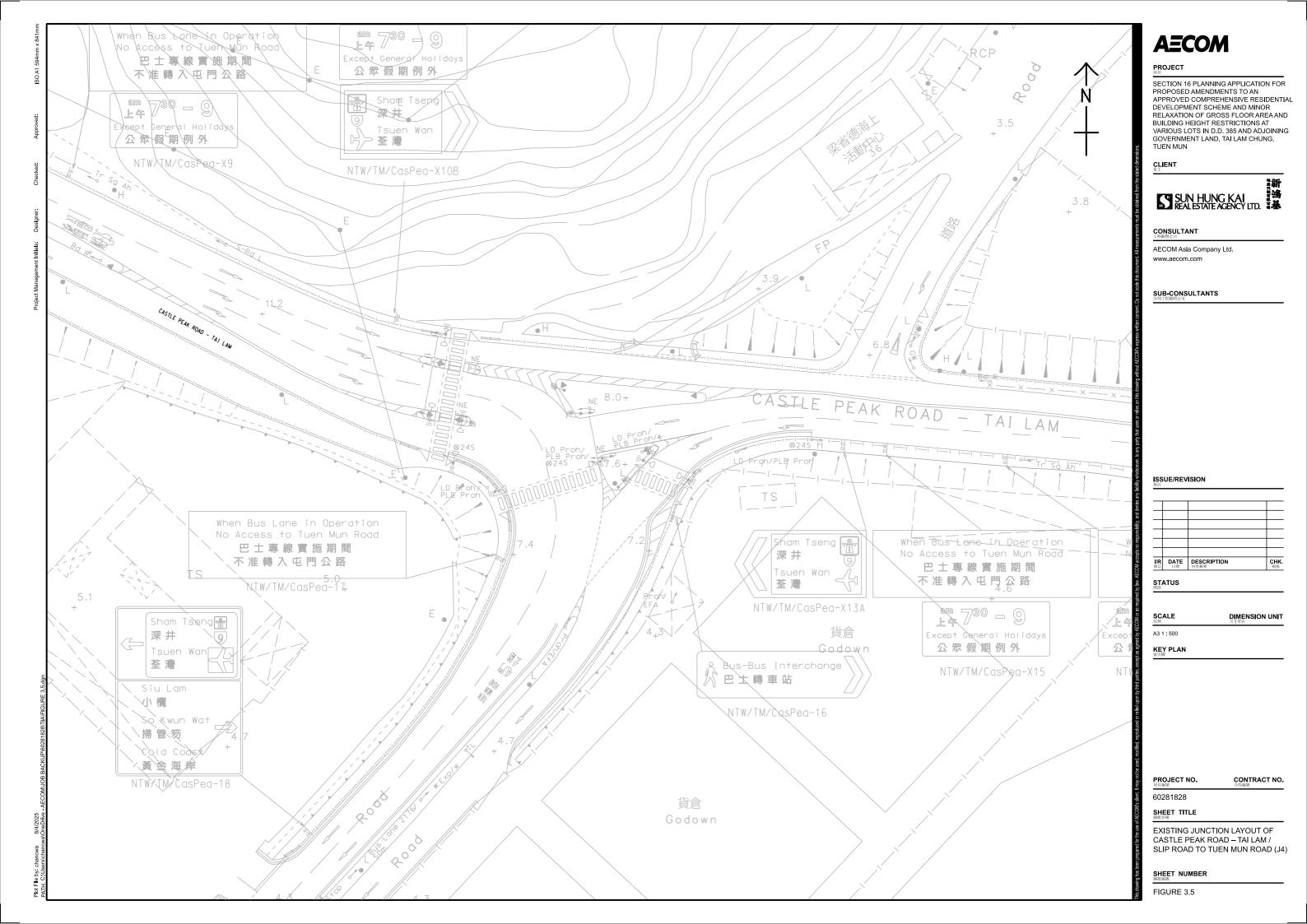

9.2 Conclusion

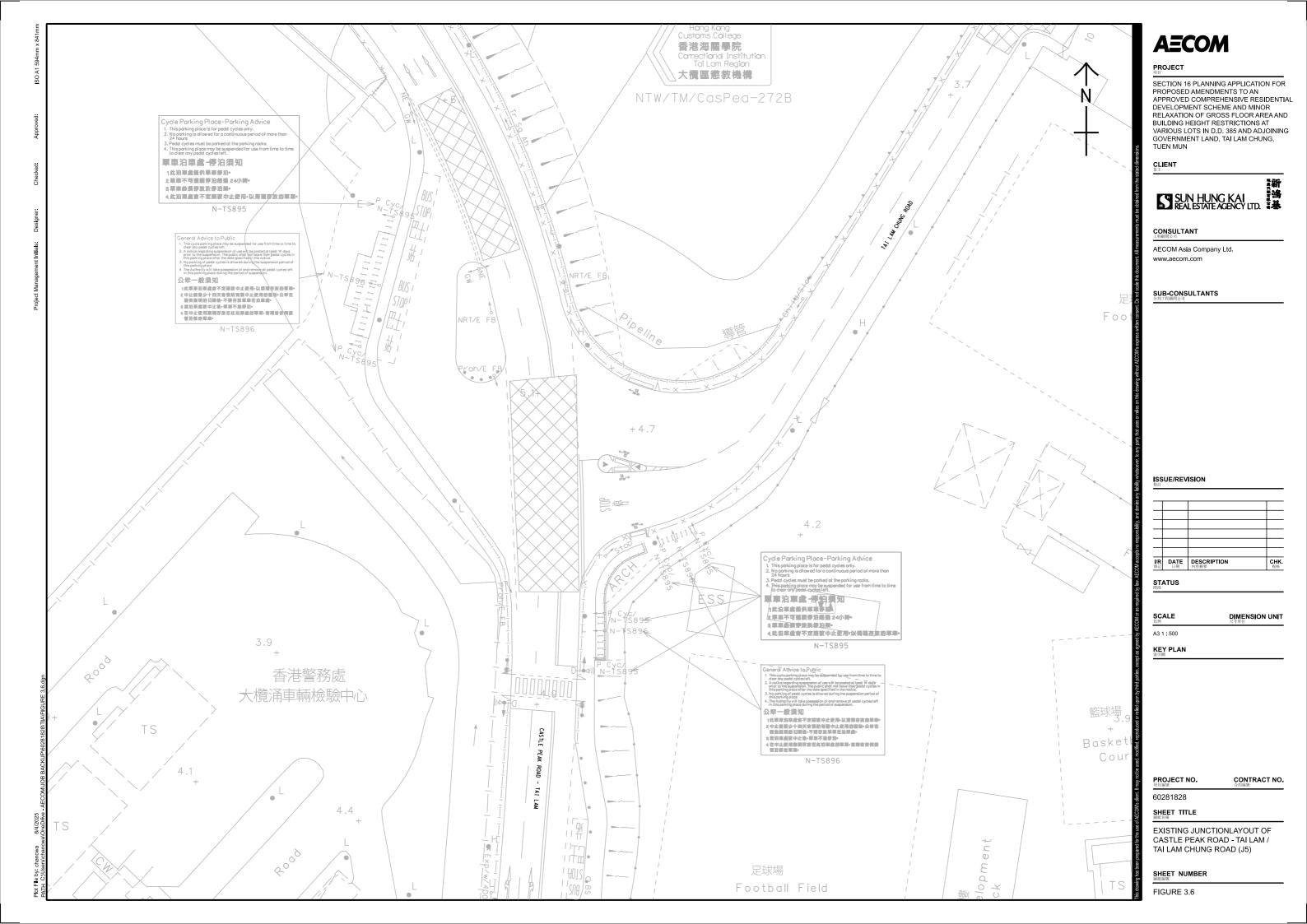

9.2.1 In light of the findings of this TIA, it is concluded that there is no insurmountable traffic impact imposed onto the local road network due to the Proposed Development. With the proposed mitigation measures in place, the Proposed Development is technically feasible in traffic terms.

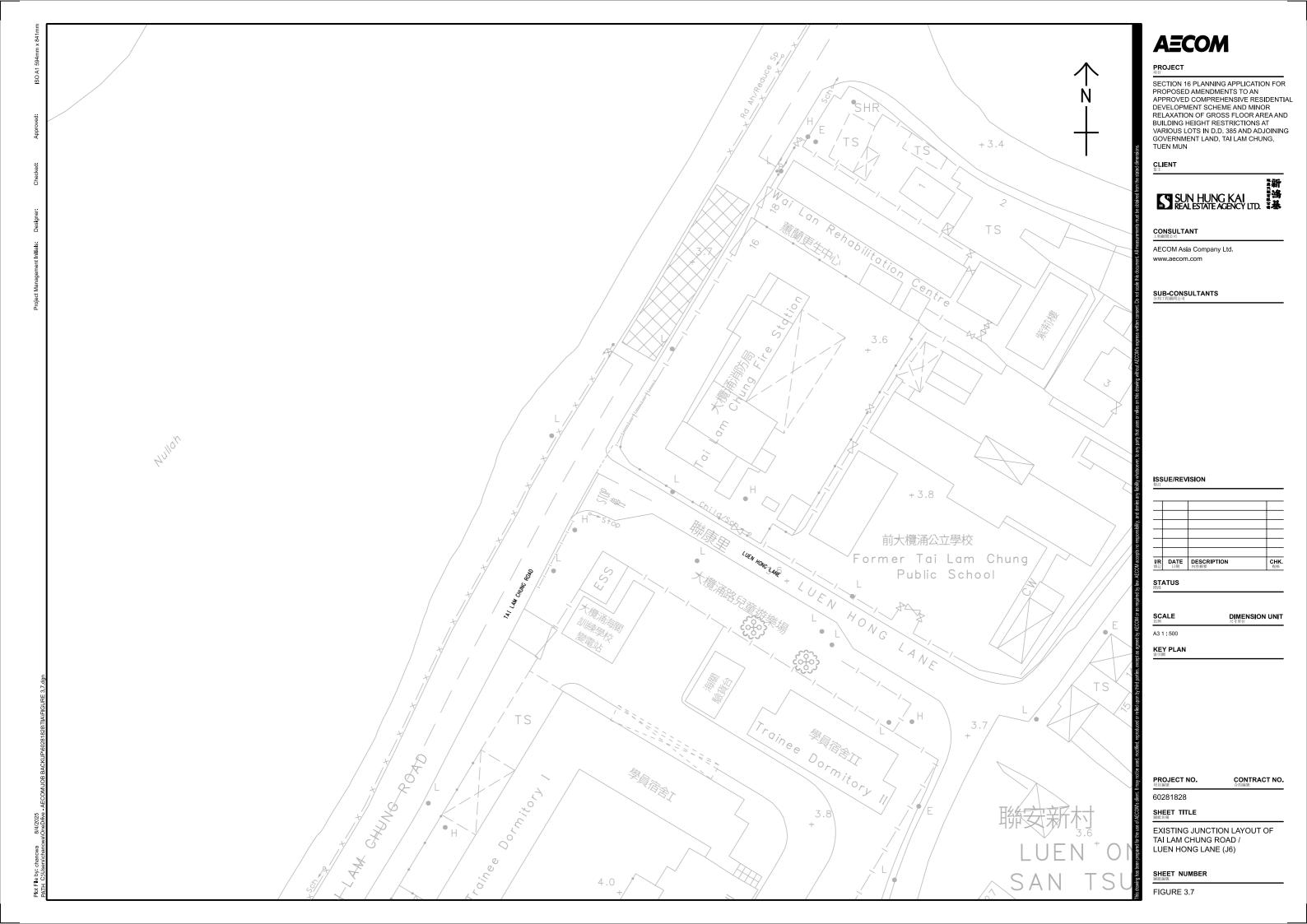

Figure

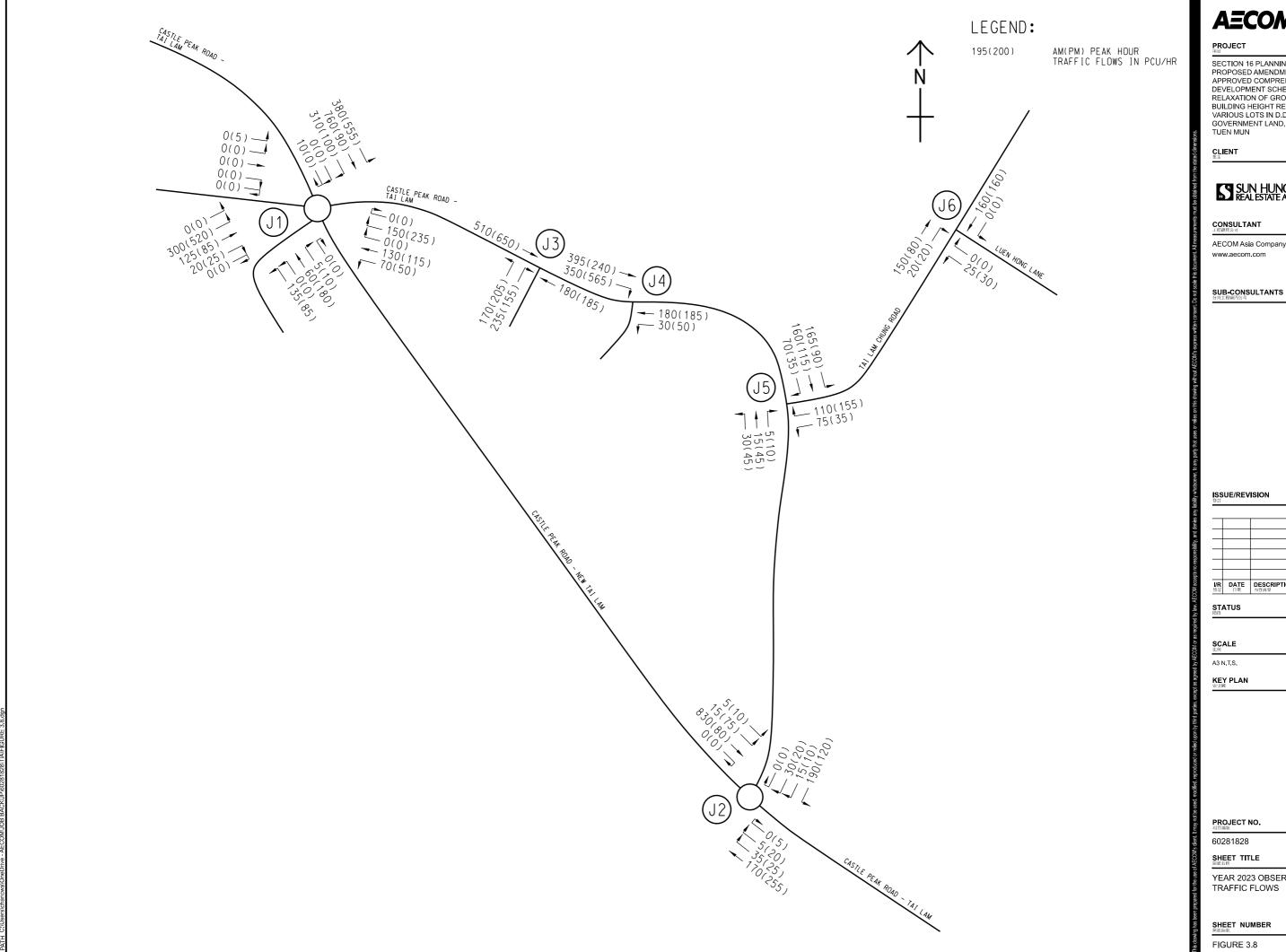


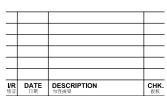




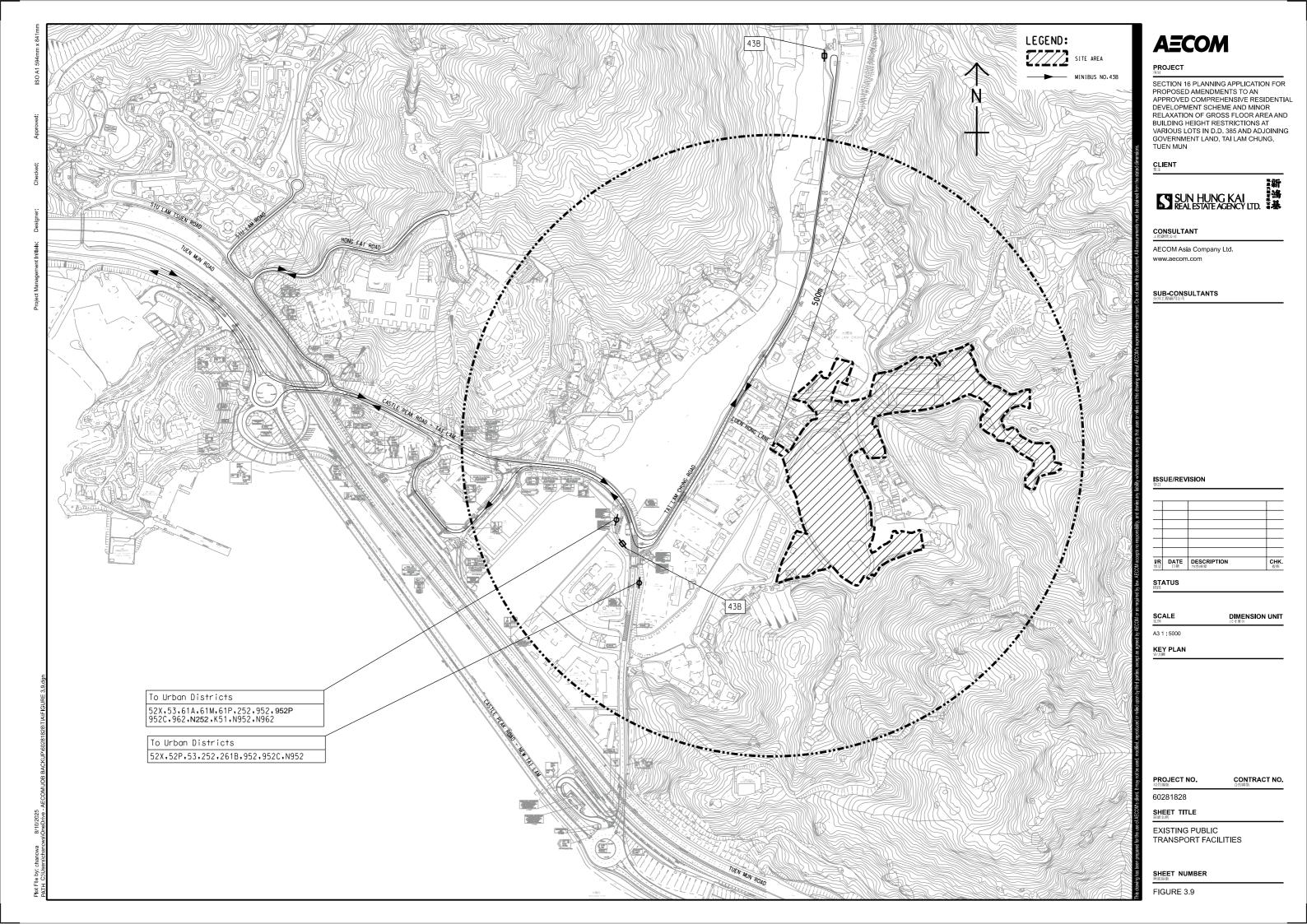


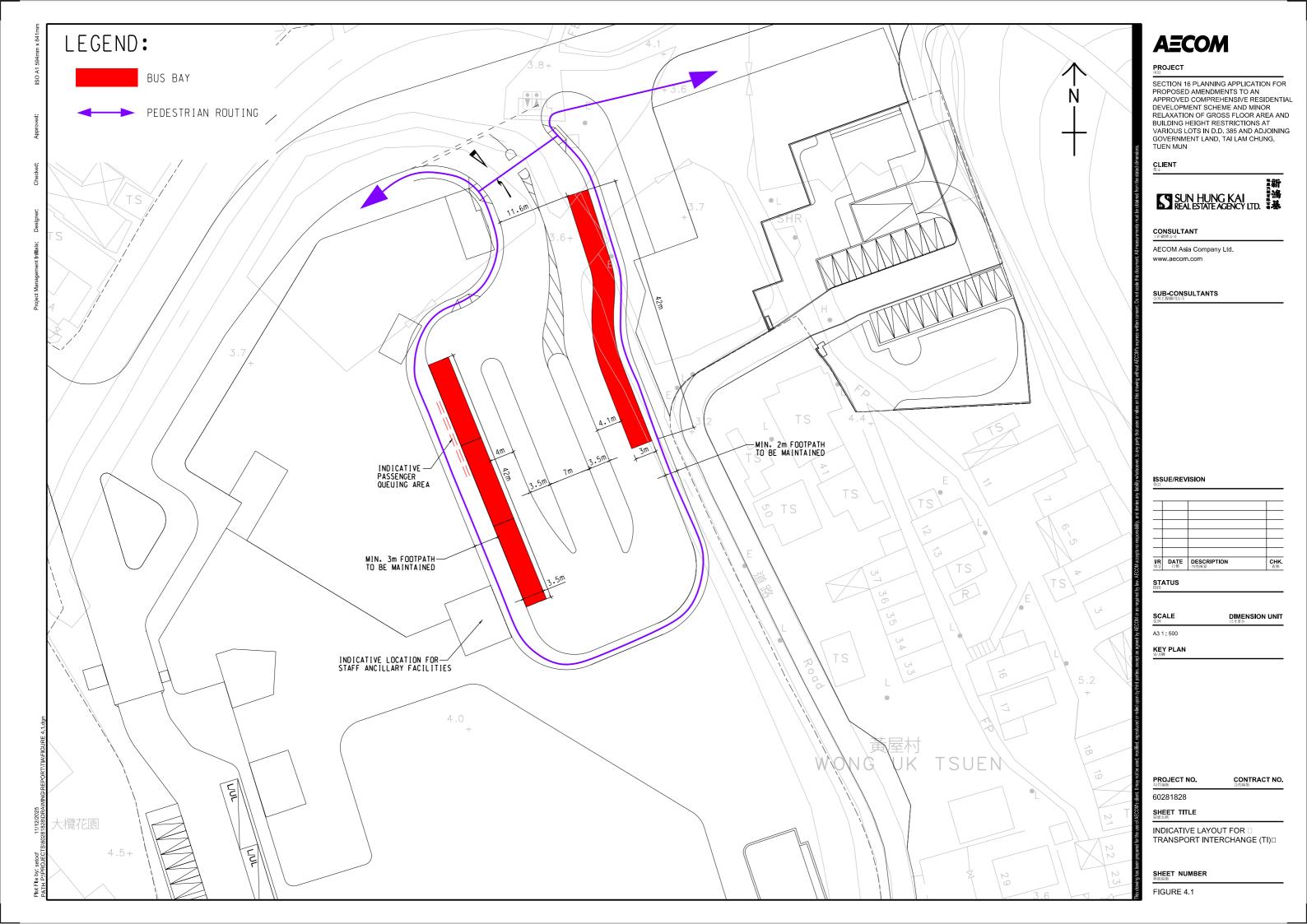


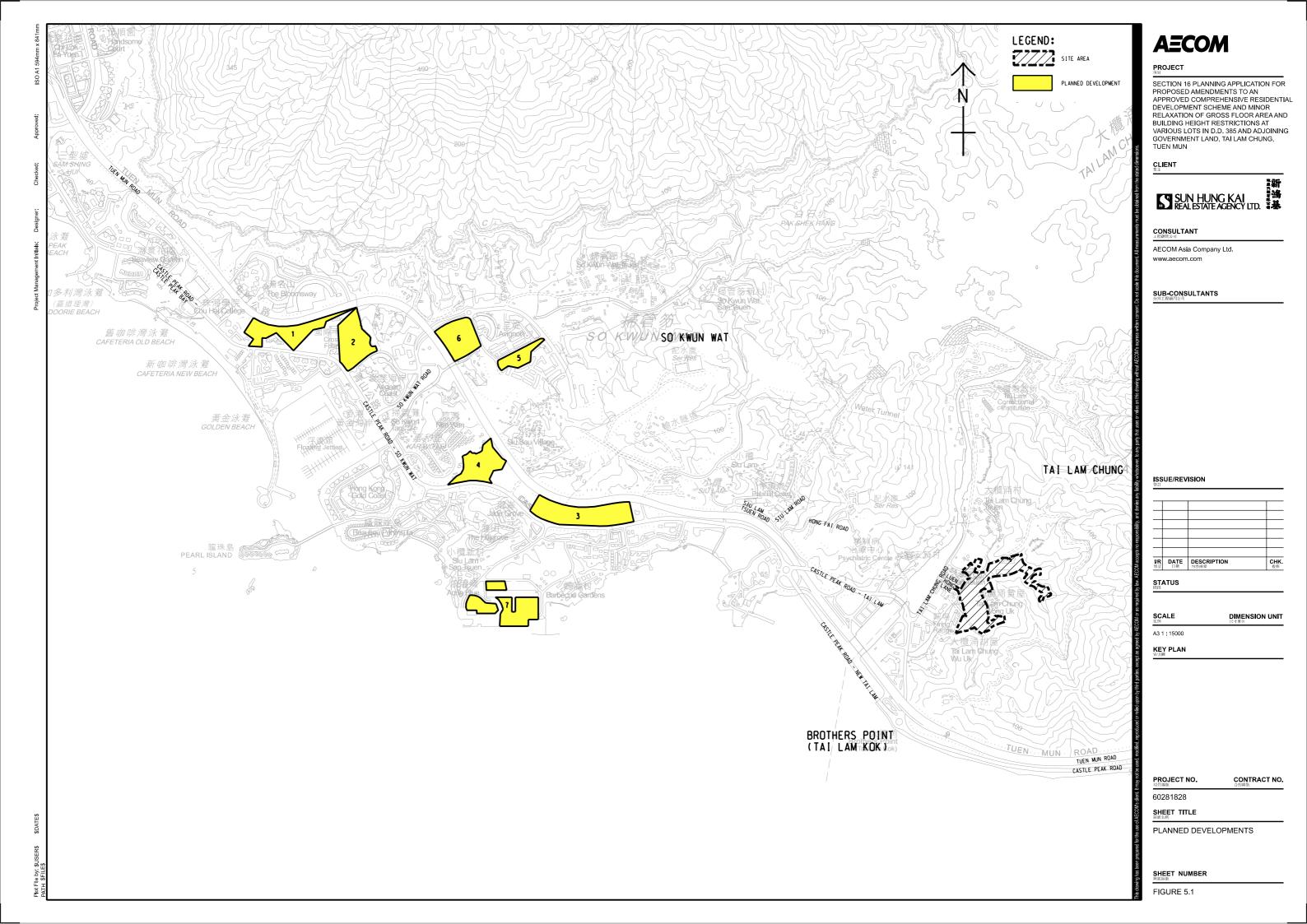


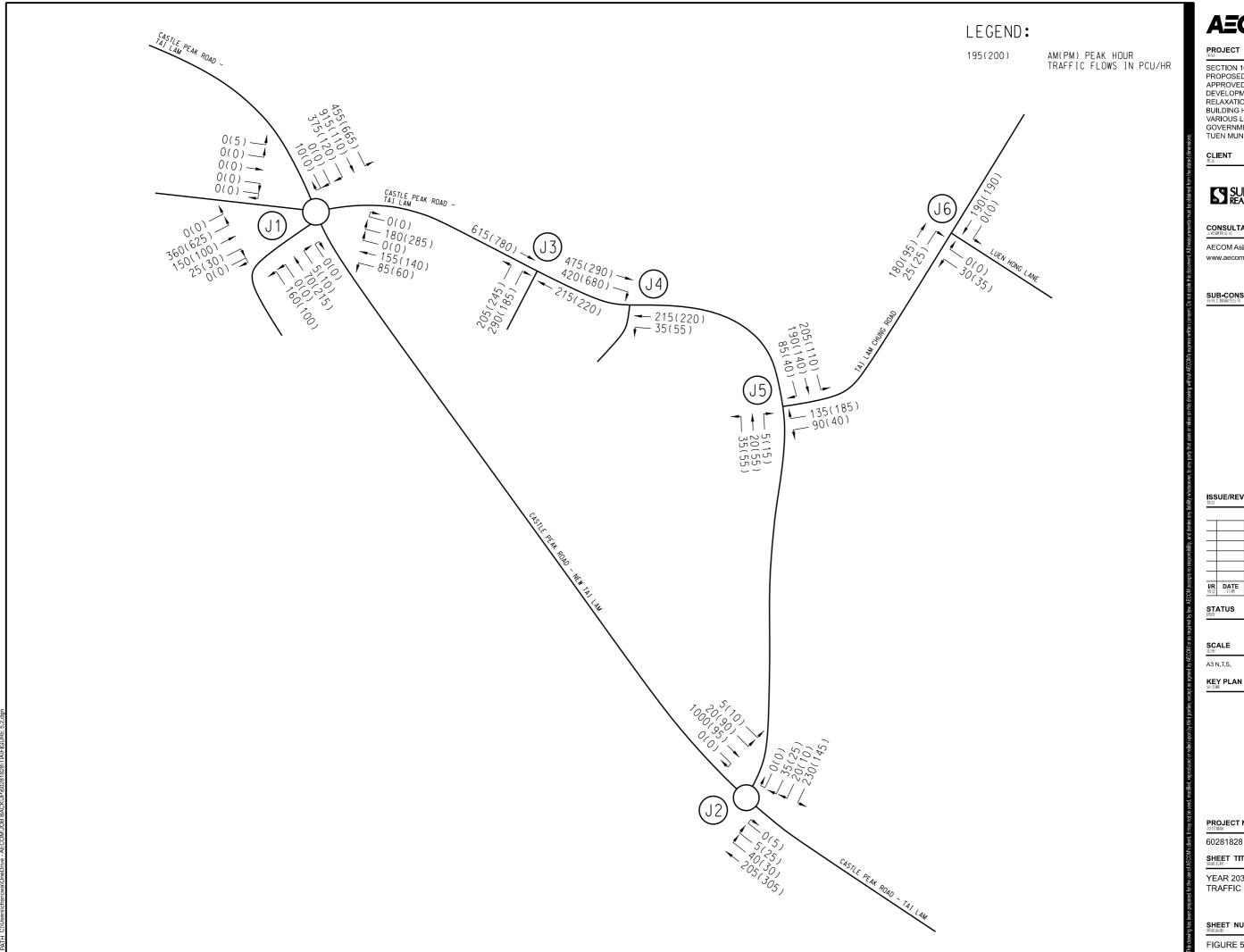


SECTION 16 PLANNING APPLICATION FOR PROPOSED AMENDMENTS TO AN APPROVED COMPREHENSIVE RESIDENTIAL DEVELOPMENT SCHEME AND MINOR
RELAXATION OF GROSS FLOOR AREA AND BUILDING HEIGHT RESTRICTIONS AT VARIOUS LOTS IN D.D. 385 AND ADJOINING GOVERNMENT LAND, TAI LAM CHUNG,


AECOM Asia Company Ltd.



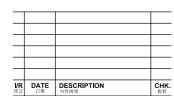

DIMENSION UNIT


CONTRACT NO.

YEAR 2023 OBSERVED TRAFFIC FLOWS

PROJECT

SECTION 16 PLANNING APPLICATION FOR PROPOSED AMENDMENTS TO AN APPROVED COMPREHENSIVE RESIDENTIAL DEVELOPMENT SCHEME AND MINOR
RELAXATION OF GROSS FLOOR AREA AND BUILDING HEIGHT RESTRICTIONS AT VARIOUS LOTS IN D.D. 385 AND ADJOINING GOVERNMENT LAND, TAI LAM CHUNG, TUEN MUN



CONSULTANT

AECOM Asia Company Ltd.

SUB-CONSULTANTS

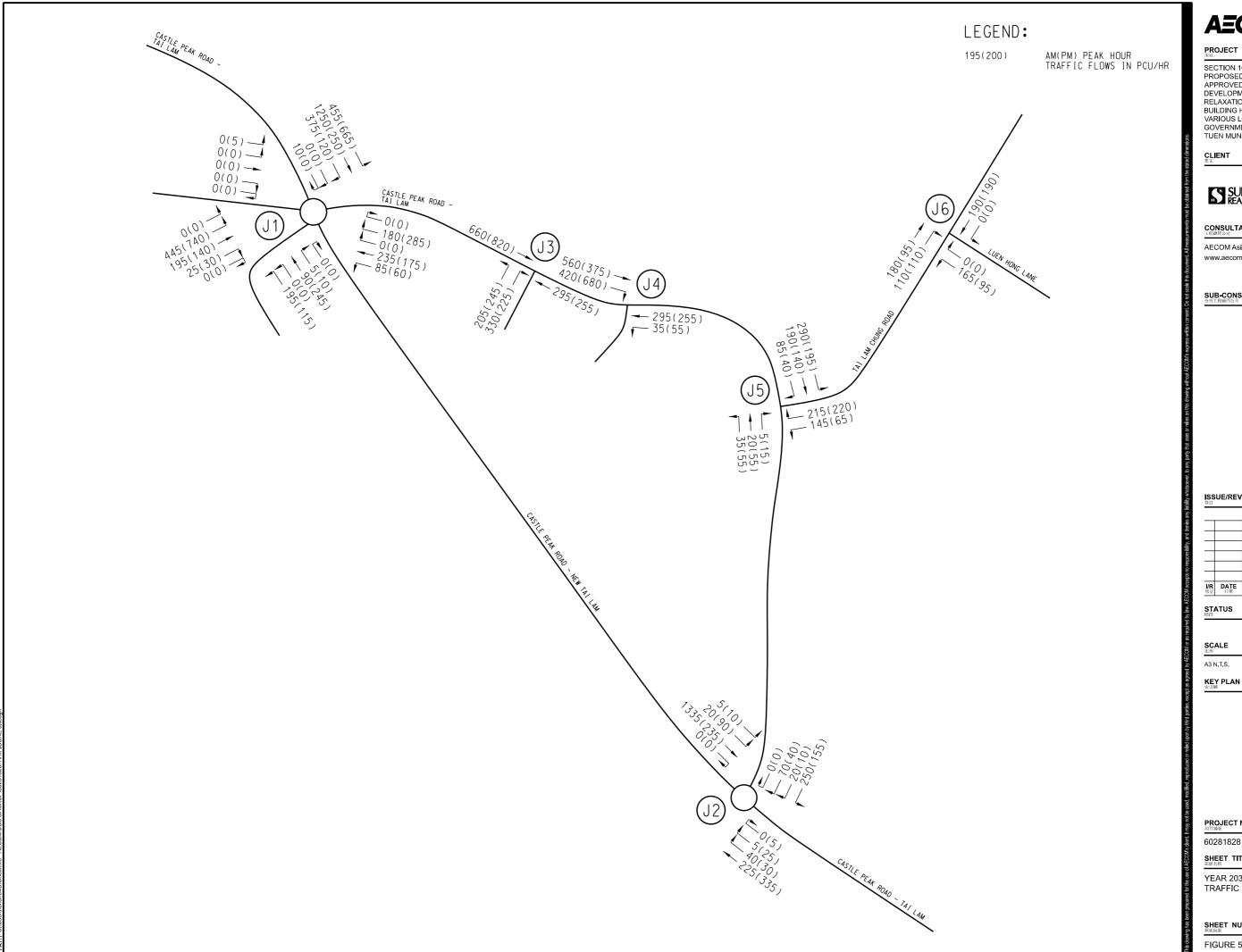
ISSUE/REVISION

STATUS

DIMENSION UNIT

PROJECT NO.

CONTRACT NO.


60281828

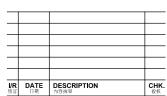
SHEET TITLE

YEAR 2033 BACKGROUND TRAFFIC FLOWS

SHEET NUMBER

FIGURE 5.2

SECTION 16 PLANNING APPLICATION FOR PROPOSED AMENDMENTS TO AN APPROVED COMPREHENSIVE RESIDENTIAL DEVELOPMENT SCHEME AND MINOR
RELAXATION OF GROSS FLOOR AREA AND BUILDING HEIGHT RESTRICTIONS AT VARIOUS LOTS IN D.D. 385 AND ADJOINING GOVERNMENT LAND, TAI LAM CHUNG, TUEN MUN



CONSULTANT

AECOM Asia Company Ltd.

SUB-CONSULTANTS

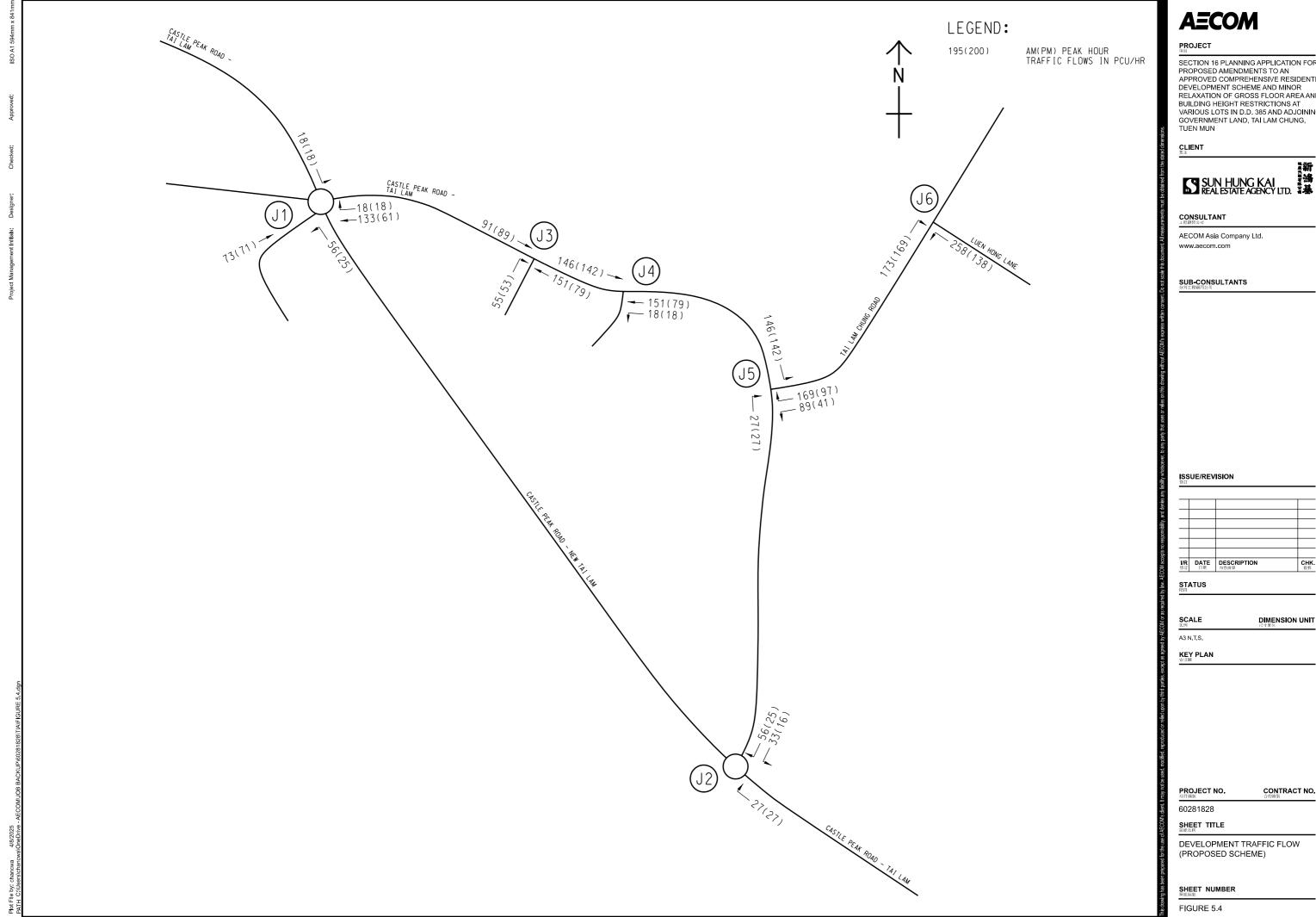
ISSUE/REVISION

STATUS

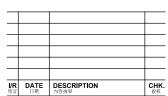
DIMENSION UNIT

PROJECT NO.

CONTRACT NO.

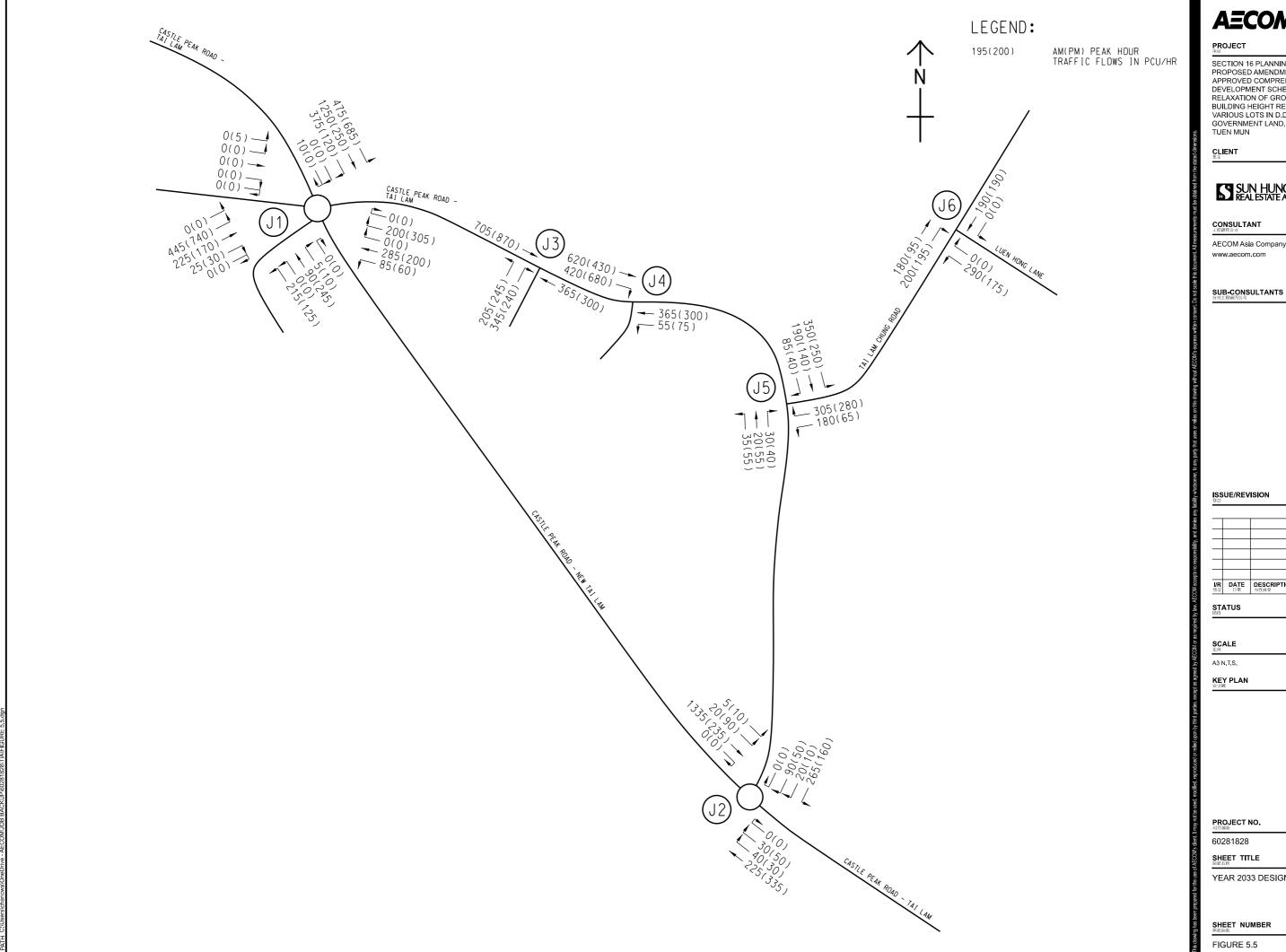

60281828

SHEET TITLE


YEAR 2033 REFERENCE TRAFFIC FLOWS

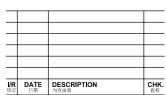
SHEET NUMBER

FIGURE 5.3

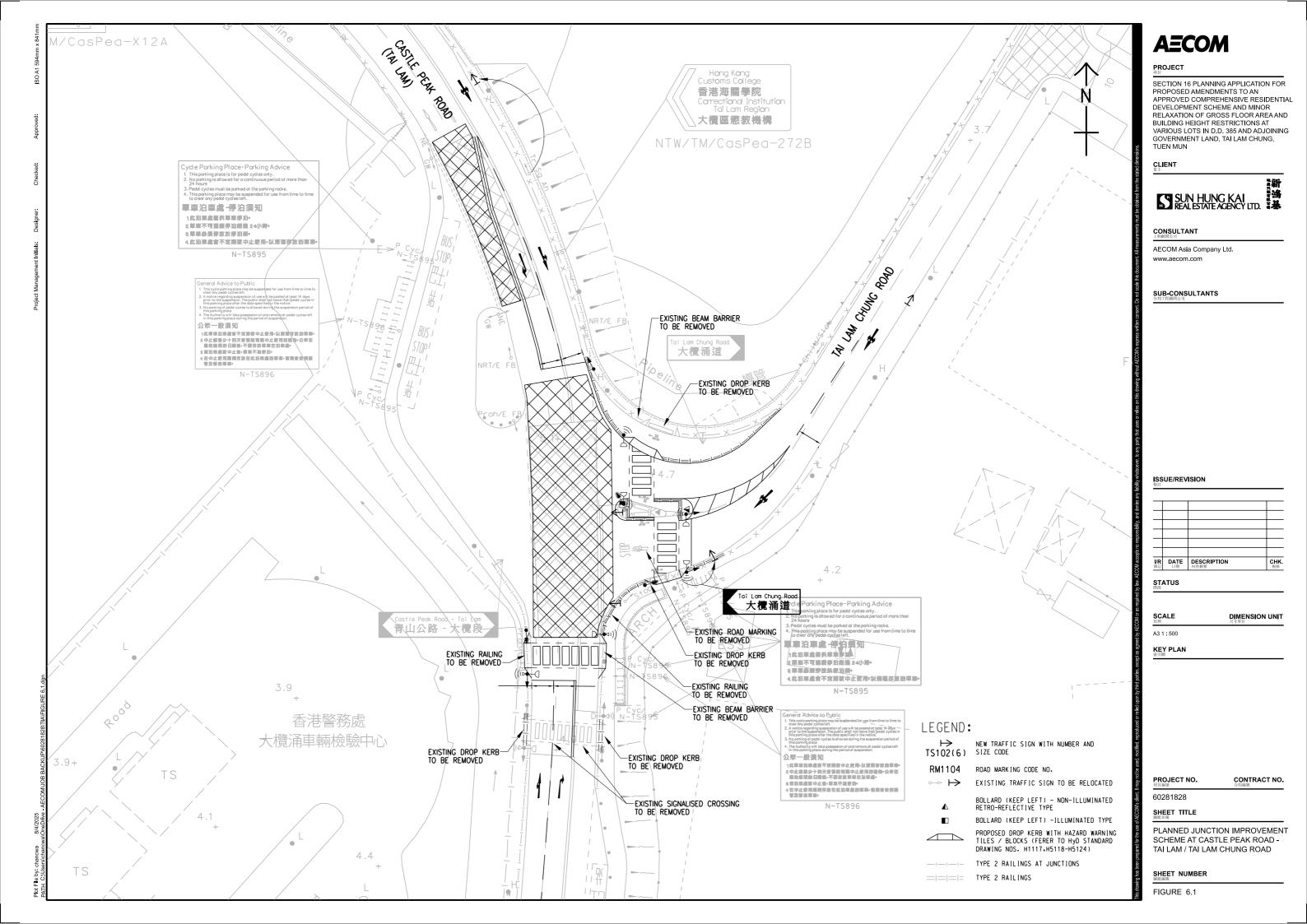


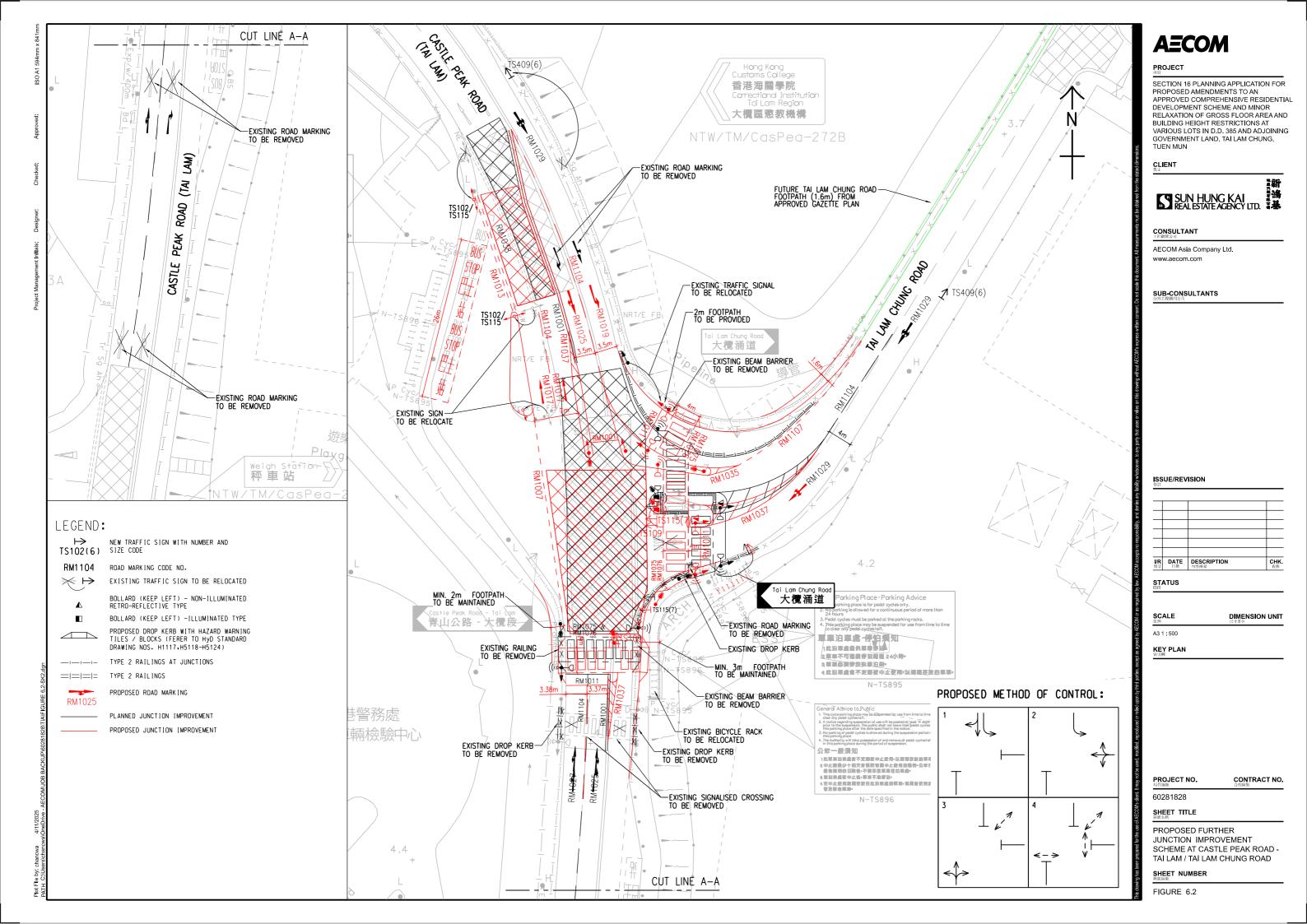
SECTION 16 PLANNING APPLICATION FOR PROPOSED AMENDMENTS TO AN APPROVED COMPREHENSIVE RESIDENTIAL DEVELOPMENT SCHEME AND MINOR RELAXATION OF GROSS FLOOR AREA AND BUILDING HEIGHT RESTRICTIONS AT VARIOUS LOTS IN D.D. 385 AND ADJOINING GOVERNMENT LAND, TAI LAM CHUNG, TUEN MUN

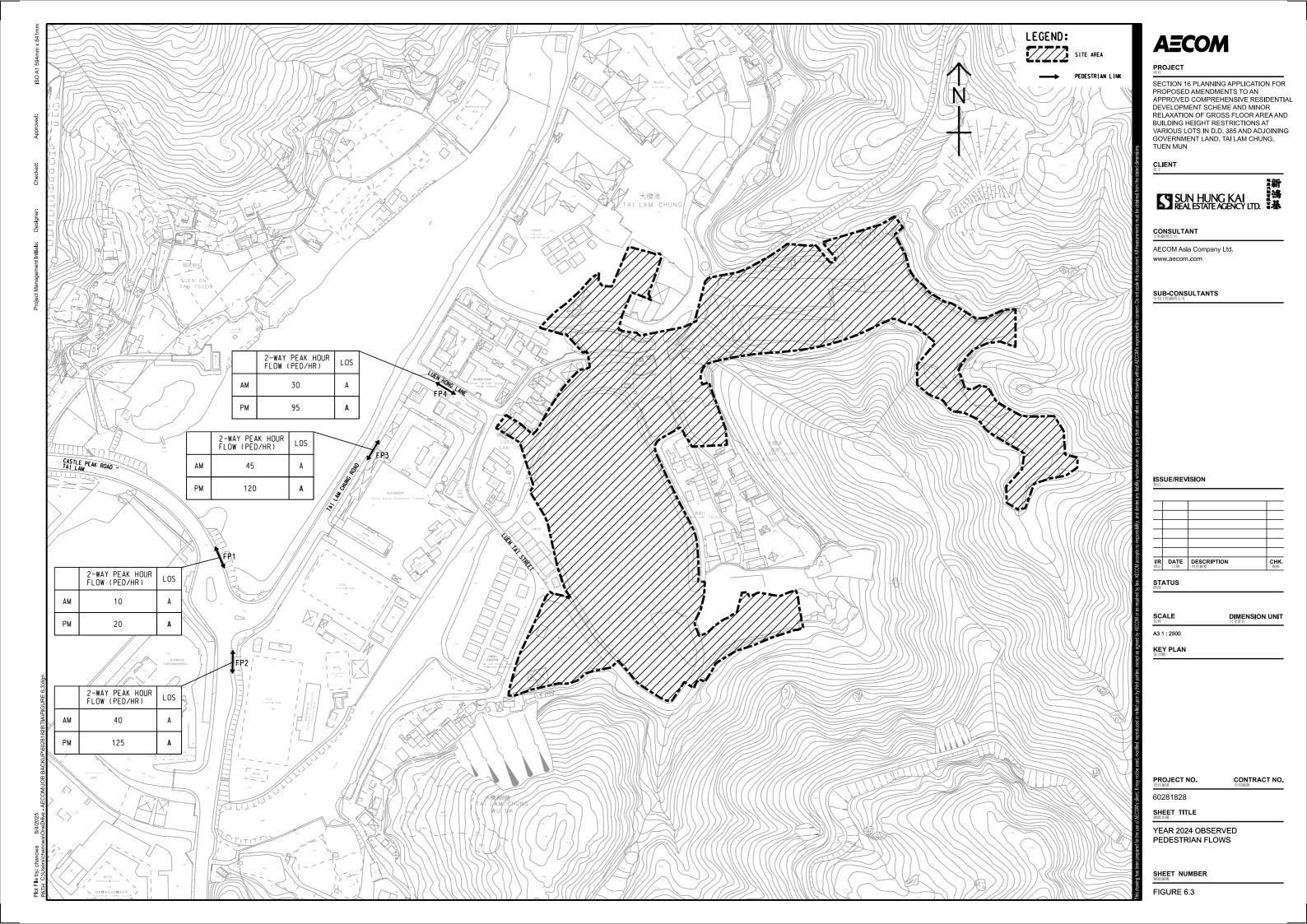
DIMENSION UNIT

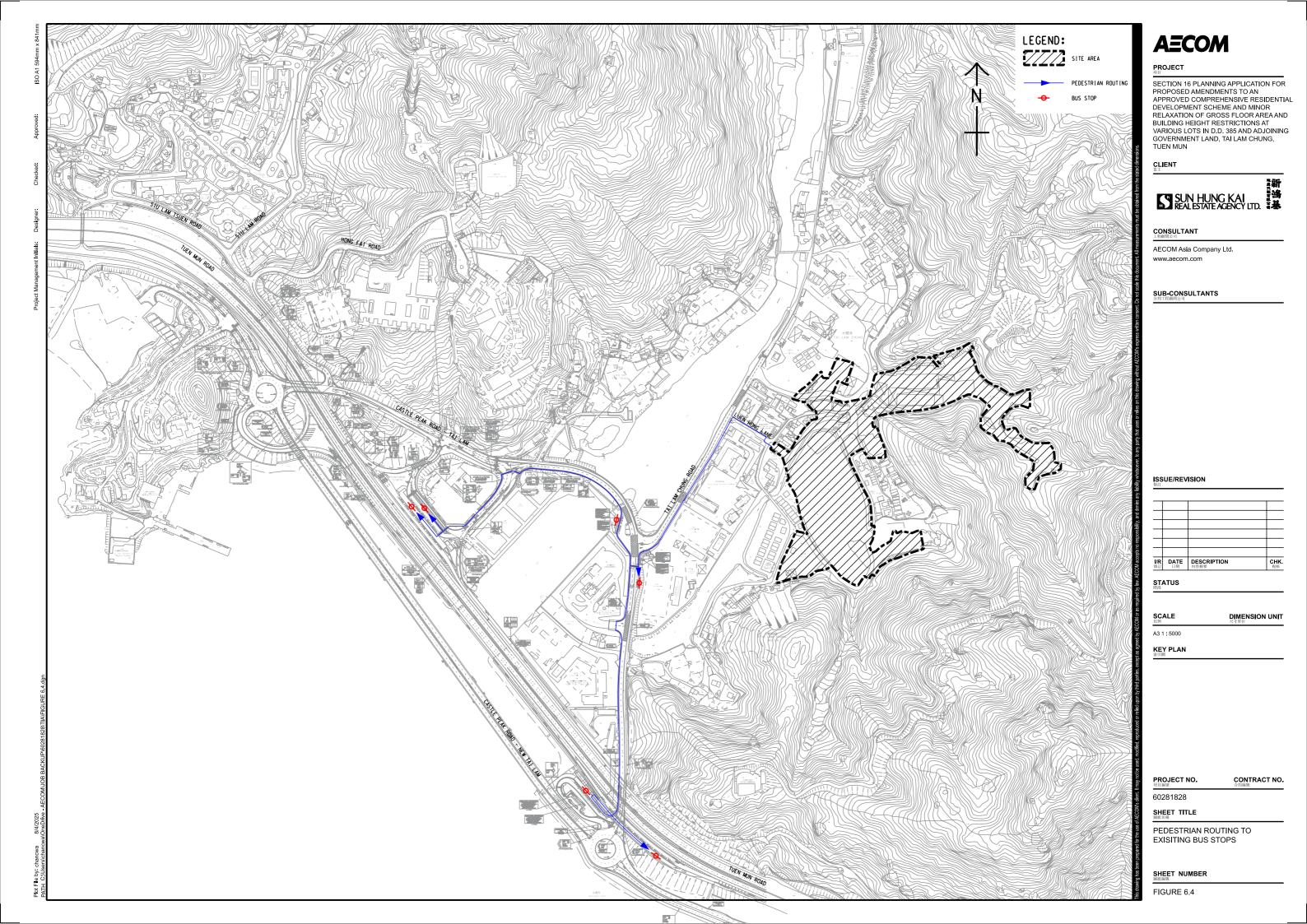

CONTRACT NO.

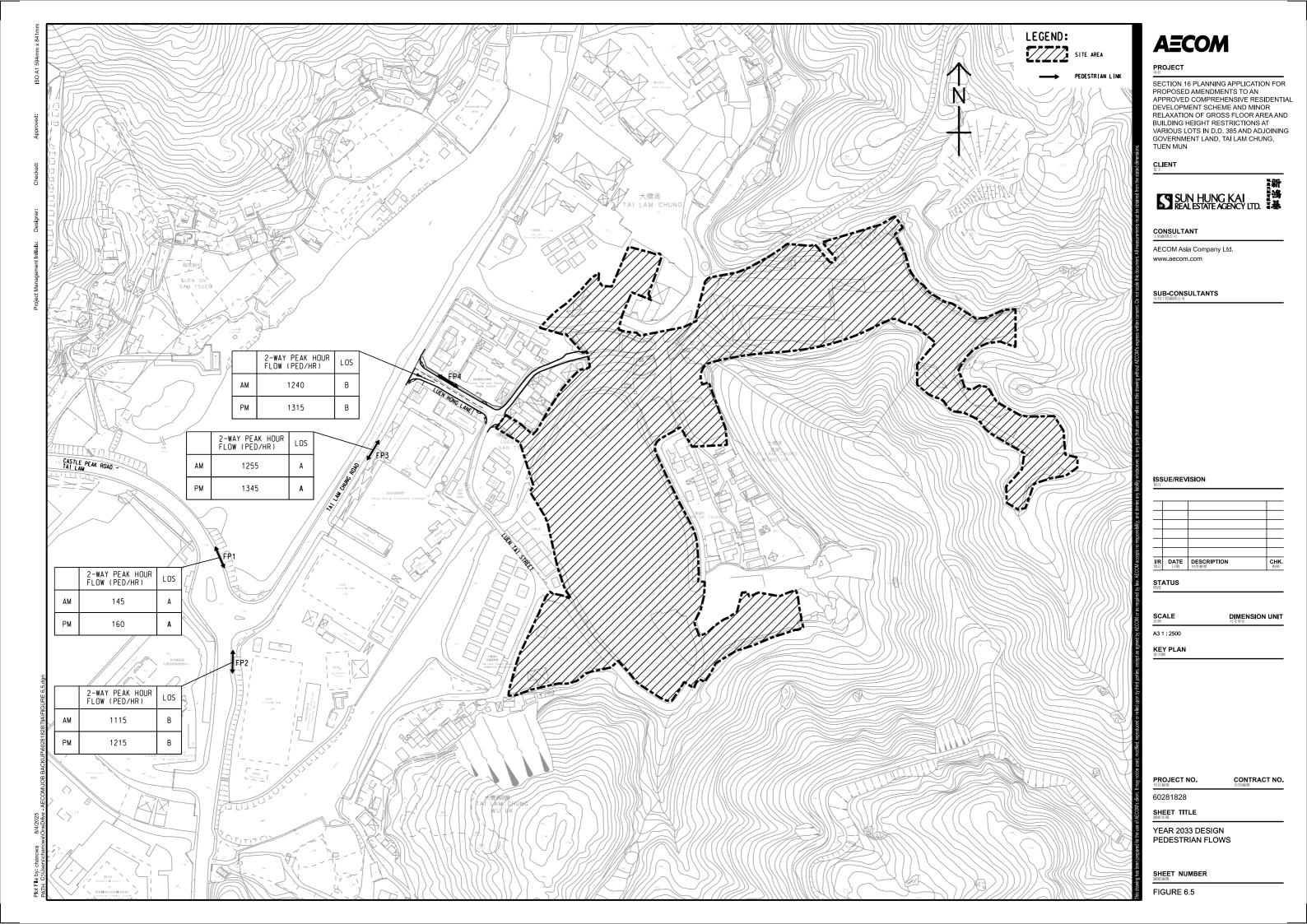
SECTION 16 PLANNING APPLICATION FOR PROPOSED AMENDMENTS TO AN APPROVED COMPREHENSIVE RESIDENTIAL DEVELOPMENT SCHEME AND MINOR
RELAXATION OF GROSS FLOOR AREA AND BUILDING HEIGHT RESTRICTIONS AT VARIOUS LOTS IN D.D. 385 AND ADJOINING GOVERNMENT LAND, TAI LAM CHUNG,

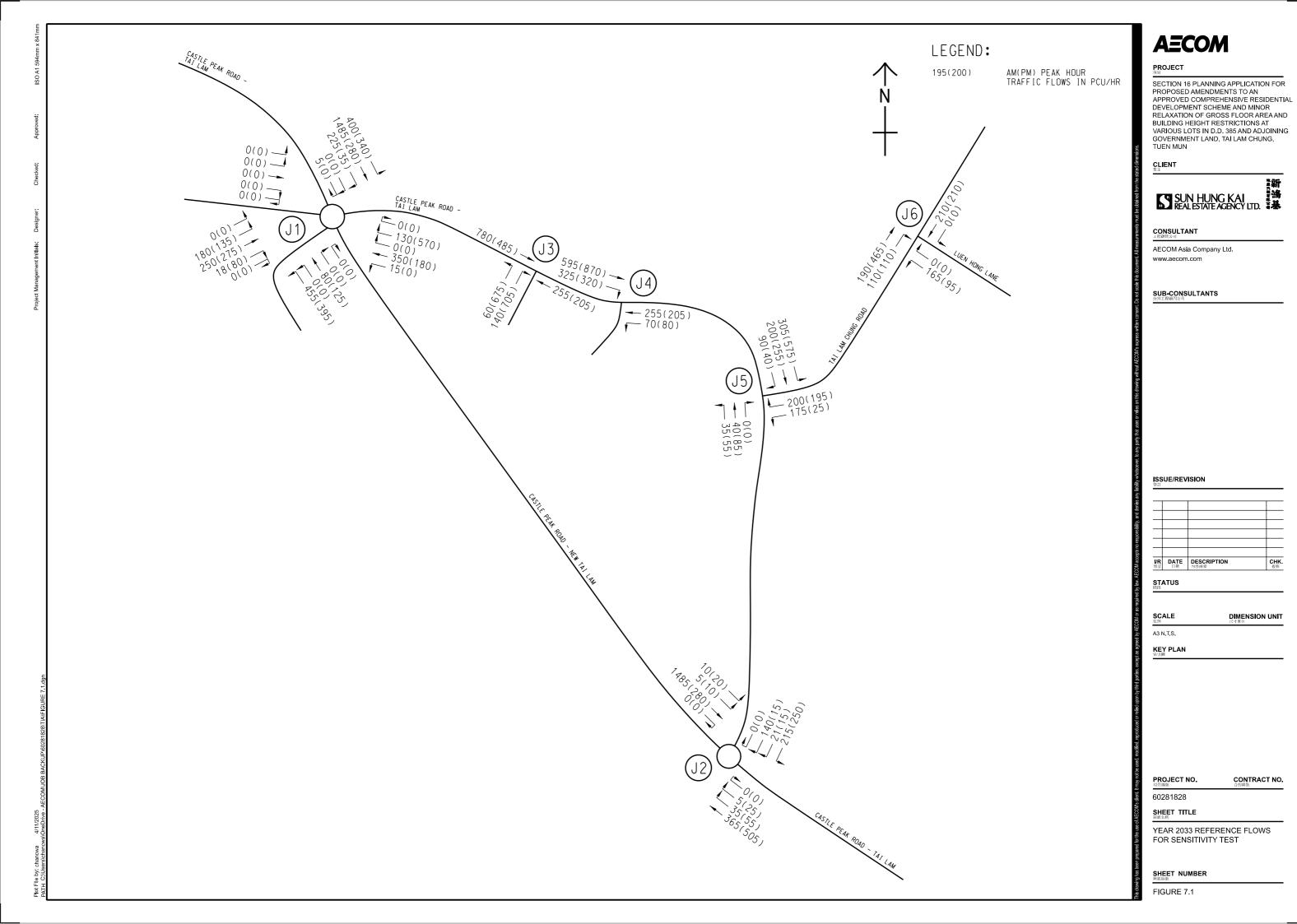

AECOM Asia Company Ltd.

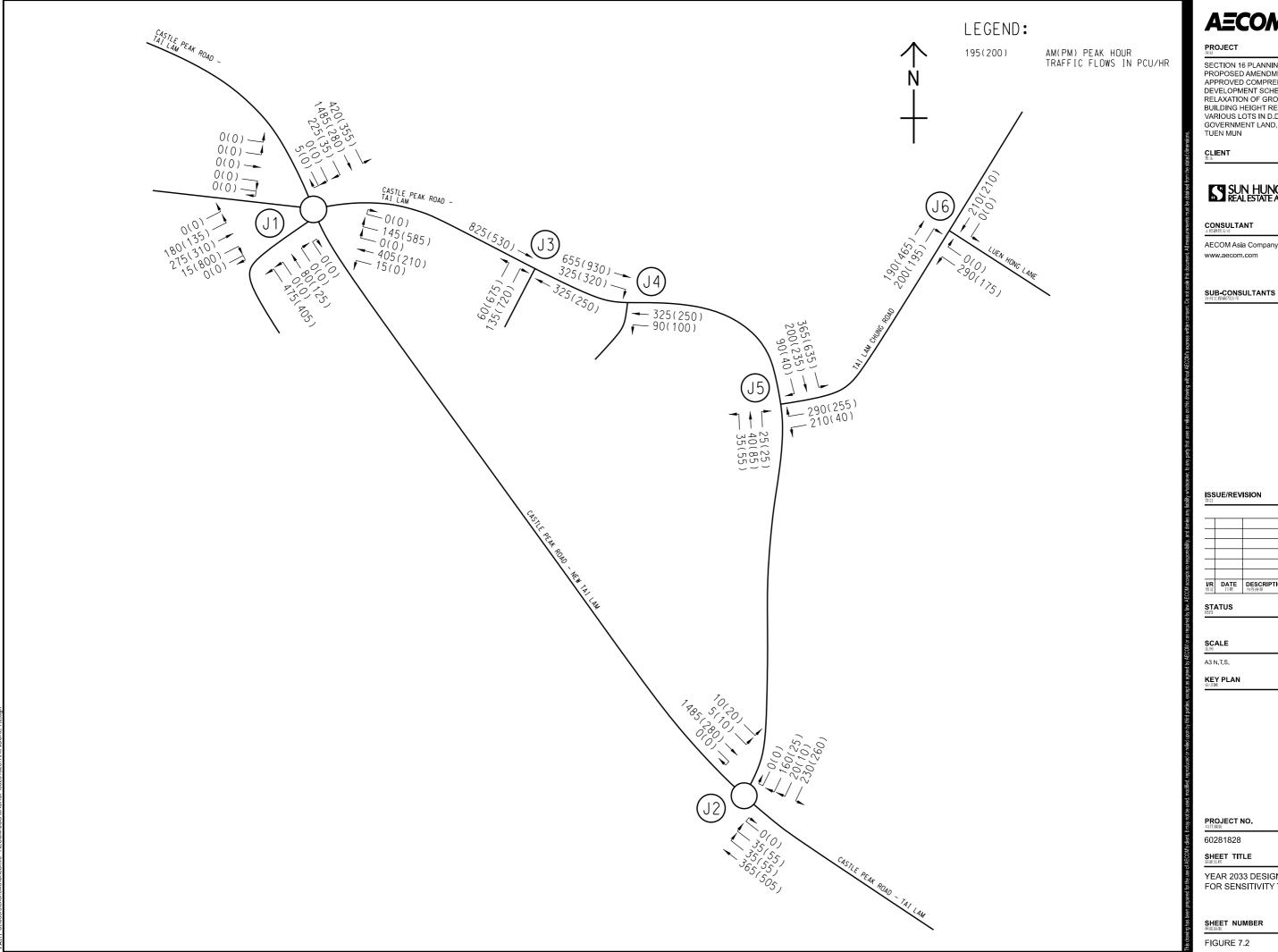


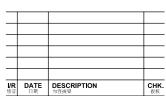

DIMENSION UNIT


CONTRACT NO.

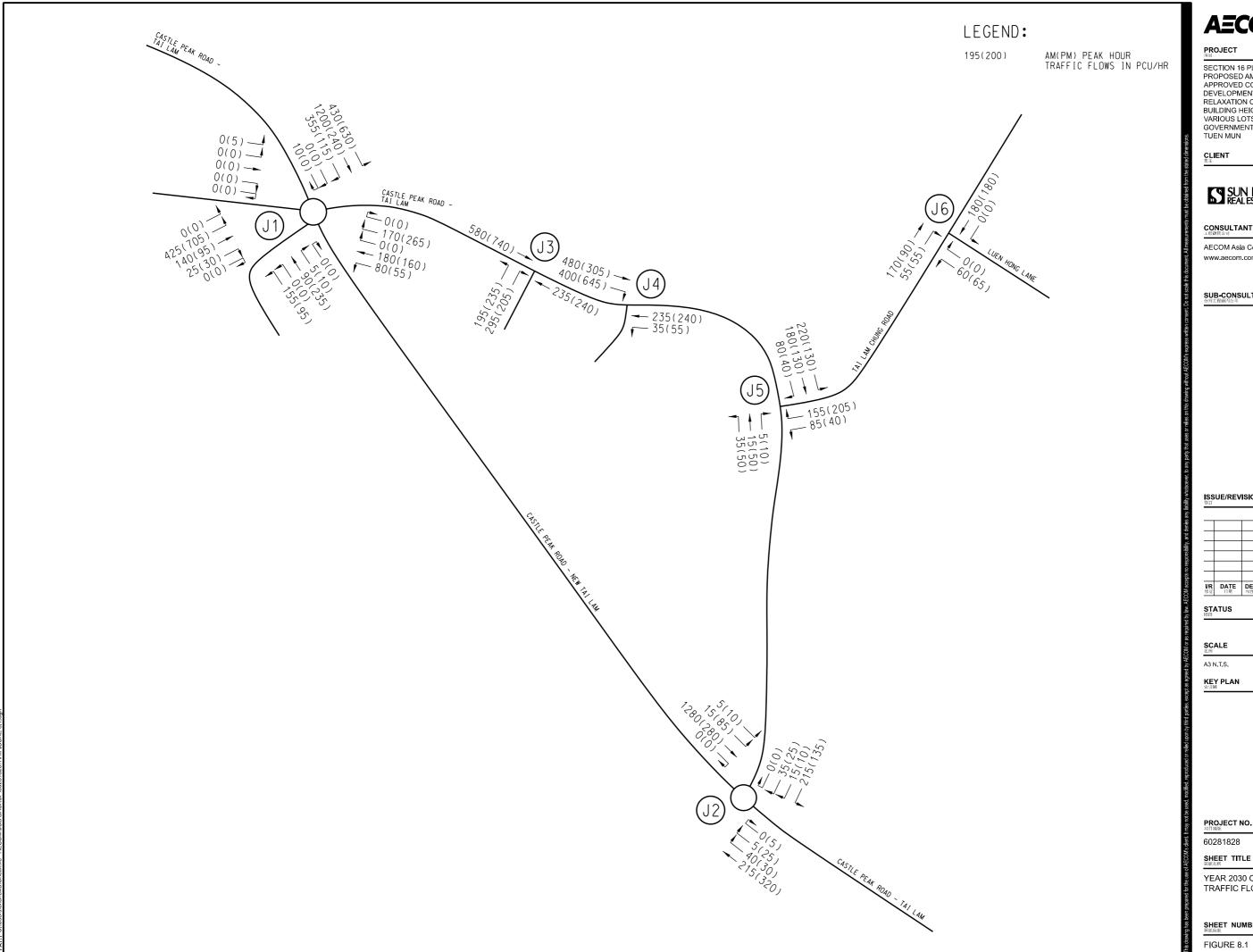

YEAR 2033 DESIGN TRAFFIC FLOWS







SECTION 16 PLANNING APPLICATION FOR PROPOSED AMENDMENTS TO AN APPROVED COMPREHENSIVE RESIDENTIAL DEVELOPMENT SCHEME AND MINOR
RELAXATION OF GROSS FLOOR AREA AND BUILDING HEIGHT RESTRICTIONS AT VARIOUS LOTS IN D.D. 385 AND ADJOINING GOVERNMENT LAND, TAI LAM CHUNG,

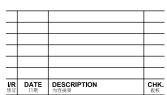

AECOM Asia Company Ltd.

DIMENSION UNIT

CONTRACT NO.

YEAR 2033 DESIGN FLOWS FOR SENSITIVITY TEST

SECTION 16 PLANNING APPLICATION FOR PROPOSED AMENDMENTS TO AN APPROVED COMPREHENSIVE RESIDENTIAL DEVELOPMENT SCHEME AND MINOR
RELAXATION OF GROSS FLOOR AREA AND BUILDING HEIGHT RESTRICTIONS AT VARIOUS LOTS IN D.D. 385 AND ADJOINING GOVERNMENT LAND, TAI LAM CHUNG, TUEN MUN



CONSULTANT

AECOM Asia Company Ltd.

SUB-CONSULTANTS

ISSUE/REVISION

STATUS

DIMENSION UNIT

CONTRACT NO.

60281828

SHEET TITLE

YEAR 2030 CONSTRUCTION TRAFFIC FLOWS

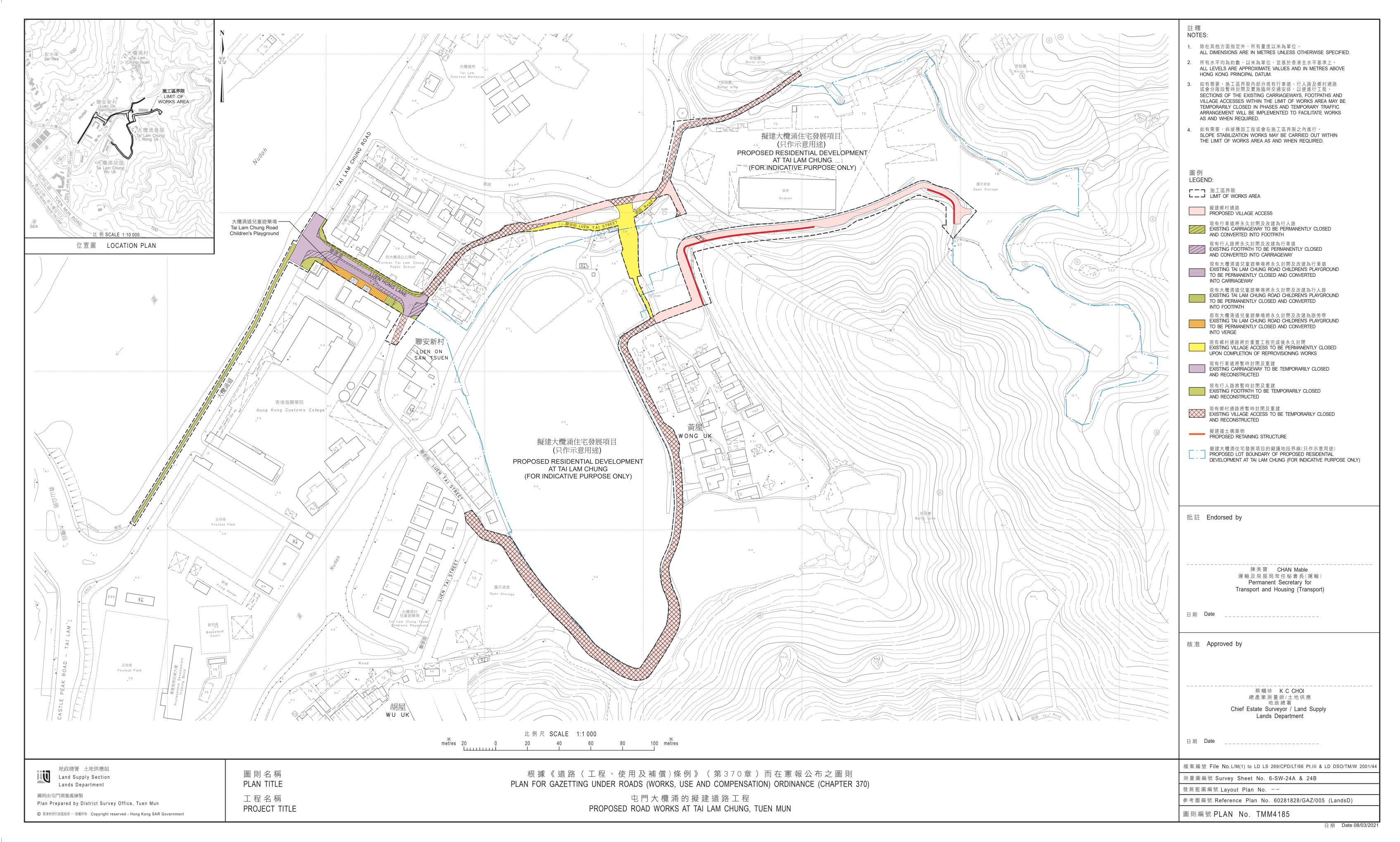
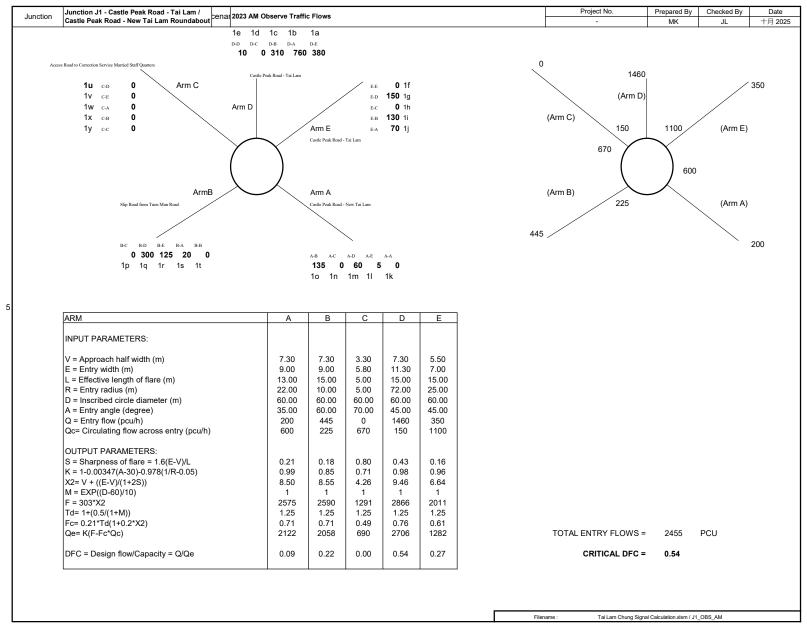
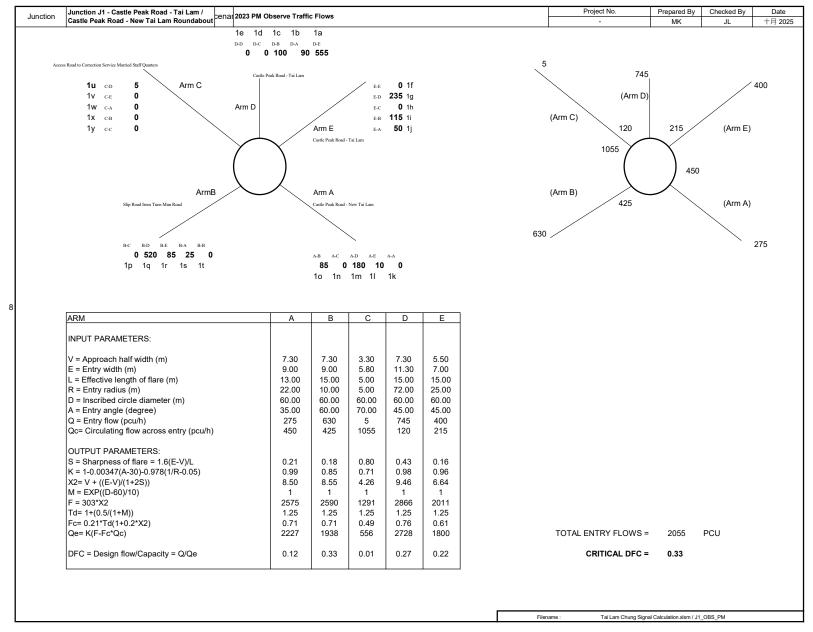

SHEET NUMBER

FIGURE 8.1

Annex A

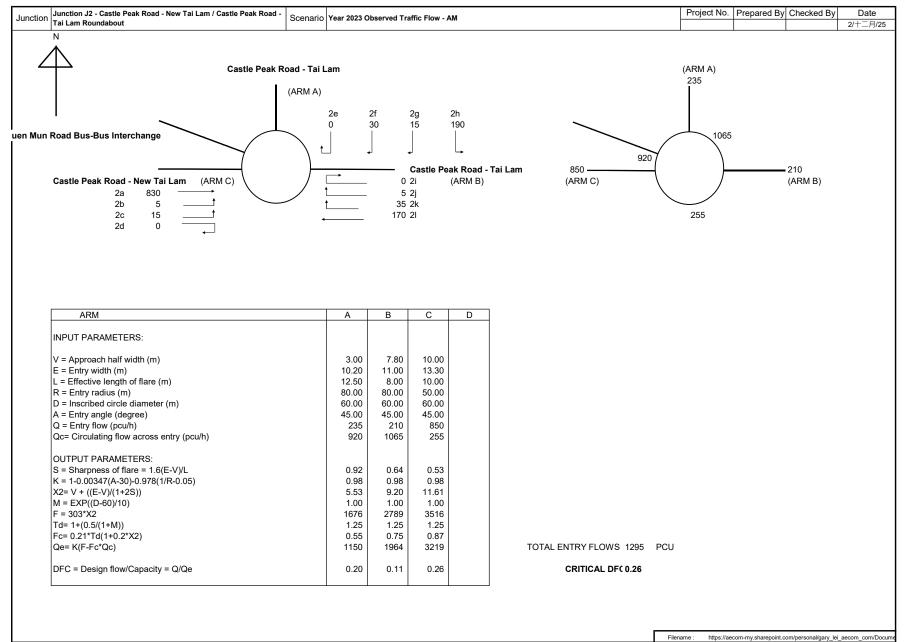
Approved Gazette Plan for Luen Hong Lane


_

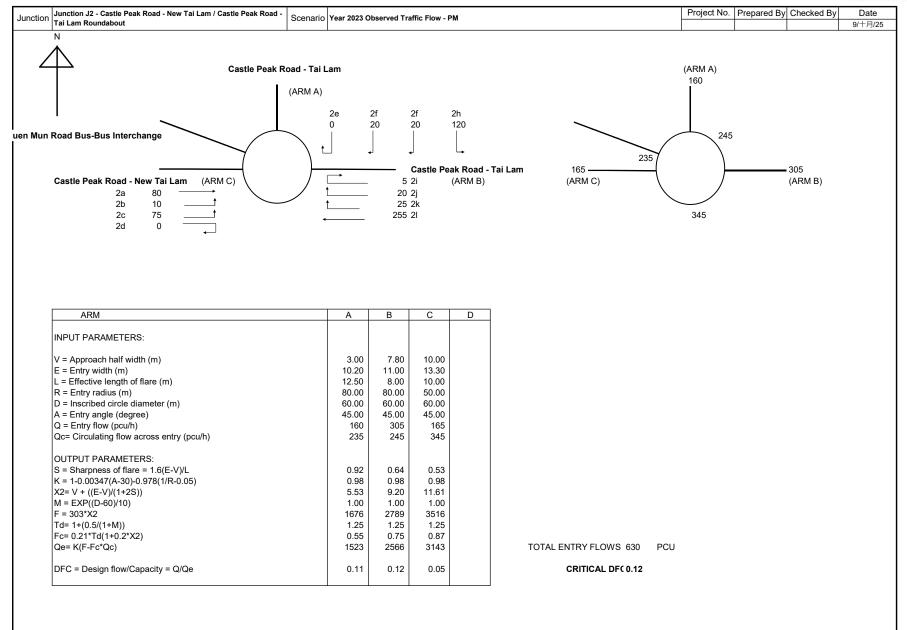

Annex B

Junction Capacity Calculation Sheets

ROUNDABOUT CAPACITY CALCUL AECOM



ROUNDABOUT CAPACITY CALCUL AECOM


ROUNDABOUT CAPACITY CALCULATIO

ROUNDABOUT CAPACITY CALCULATIO

Filename :

https://aecom-my.sharepoint.com/personal/gary_lei_aecom_com/Docum

	Checked By			Note:
Castle Peak Road - Tai Lam / Tuen Mun Road J3	Reviewed By			
2023	Design Date	十月 20	6:11:01 下午	
AM Peak		1/120	0.11.01	
Observed Flows	_			

Job Title :						Checked By Reviewed By Design Date									-			Note:							
AM/PM State	eal .	:	AM Peak Observed				=	=		- - -		Design Date				0.11.0) · +·		-						
				APAC				AT!										1							AECOM
Ju	Junction J3 - Castle Peak Road - Tai Lam / Tuen Mun Road 20 Traffic Flow Diagram								2023 AM Pe	eak Observed F	lows						DESIGN:		CHECK:		#VA	LUE!	DAT	TE: 十月 20	
	(pcu/hr)																		No. of stages	s per cycle		N =	2		(J3)
																			Cycle time			C =	90	sec	
	3a 510 ──➤ Castle Peak Road - Tai Lam																		Sum(y) Lost time Total Flow			Y = L = =	9	sec pcu	
	`	20001	sak Road	- rai caiii				1	_	← 180 3b									Optimum Cy	cle C.	= (1.5×L+	+5)/(1-Y) =	24	sec	
								 170	235										$\begin{array}{llllllllllllllllllllllllllllllllllll$						
								3с	3d										$ \begin{array}{llllllllllllllllllllllllllllllllllll$						
										uen Mun Ro	ad]	Y _{max}		= 1-L/C	=	0.900		
	Stage	e/Phase D	iagrams		1													1							
	A																	Critical							
	B v																R.C.(C)	= (0	.9xY _{max}	_x -Y)/Yx10	0% =	269%]		
	Ep A «> C D																								
	Stage 1 Stage 2																								
	_			I/G =	6			I/G =	5									ı			5				
Ę	Τ	Ι	LANE		RAI	DIUS	§ 0	T	UPHILI	GRADIENT	ADDITIONA	STRAIGHT-	-	FLOW (pcu/hr)			PROPOR	RTION OF VEHICLES	REVISED	FLOW]			
MOVEMENT	PHASE	STAGE	WIDTH (m)	NO. OF LANES	(1	m)	OPPOSING	NEAR SIDE LANE	GRADIEN T (%)		L CAPACITY (pcu/hr)		LEFT	STRAIGH T AHEAD		FLOW (pcu/hr)	(9	%)	SAT. FLOW (pcu/hr)		CRITICAL y				
l H	+				LEFT	RIGHT	Ť		-				\vdash			-	LEFT	RIGHT							
			3.650	2				1		0		4100		510		510			4100	0.124	0.124				
1		1 2	4.500 3.500	1	45			1		0		2065 1965	170	180		180 170	100%		2065 1786	0.087	0.095				
ا ا			4.500	1	15	25	0	1		0		2065	170		235	235	100%	100%	1948	0.095	0.095				
'		-	4.500			25						2005			255	255		10070	1340	0.121					
Pe	l destriar Ep	Crossin	g min.	GM 5		FGM 5	_	10	sec																
	Fp Gp	1	min. min.	5	+	6 7	=	11	sec sec																
, –	-	-																			-				

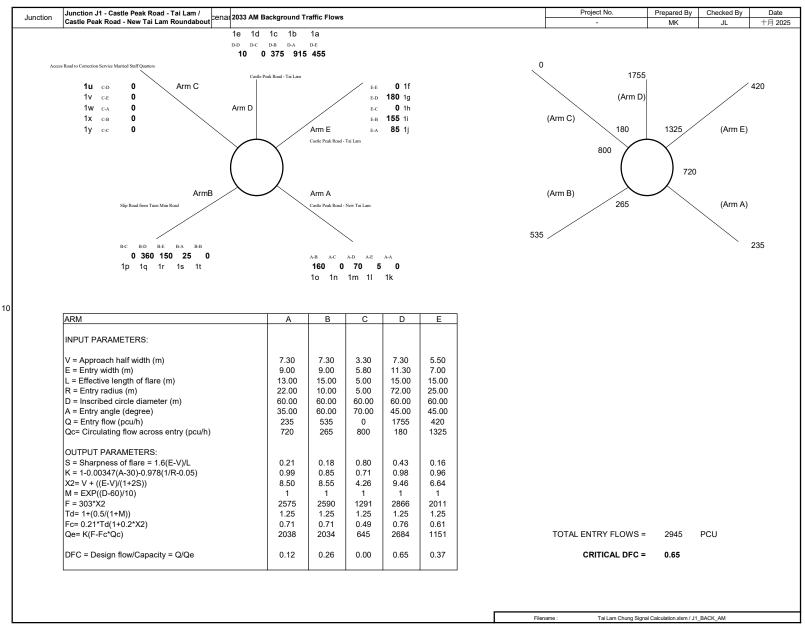
Job No. Job Title Junction Name Junction No Design Year AM/PM State				Castle Pe J3 2023 PM Peak Observed	eak Road -	Tai Lam /	Tuen Mur	n Road					Designed By Checked By Reviewed By Design Date	,	十月 20		6:11:0	01 下午		- - -			Reminder: Ente Note:	r "P" next to the	pedestrian phase u	ader column B
	JW	NC	710	ONI CA			CAL(CUL	ATI	<u> </u>																AECOM
Junction J3 - Castle Peak Road - Tai Lam / Tuen Mun Road								2023 PM Pe	ak Observed F	Flows						DESIGN:		CHECK:		#V	ALUE!	DATE	: 十月 20			
		pcu/hr			- Tai Lam			3a	650	155	•		185	3b						No. of stages Cycle time Sum(y) Lost time Total Flow Optimum Cy Min. Cycle Ti Yut	cle C _o	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			sec sec pcu	J3
	֭֭֓֞֝֟֝֟֝֟֝	3c 3d						uen Mun Ro	oad								R.C. _{ut} Practical Cyc Y _{max} Critical		= 1-L/C		204.6 13 0.900	% sec				
		B →	B Ep														R.C.(C)	= (0	.9xY _{ma}	_x -Y)/Yx10	00% =	196%				
	1	C D																								
			S	stage 1	I/G =	6	Stag	e 2	I/G =	5												5	_			
THOMENEN	MOVEMEN	PHASE	STAGE	LANE WIDTH (m)	NO. OF LANES		DIUS m)	OPPOSING TRAFFIC	NEAR SIDE LANE	UPHILL GRADIEN T (%)	GRADIENT EFFECT (pcu/hr)	ADDITIONA L CAPACITY (pcu/hr)	STRAIGHT- AHEAD SAT. FLOW (pcu/hr)	LEFT	STRAIGH T AHEAD	RIGHT	TOTAL FLOW (pcu/hr)	TURNING	RTION OF VEHICLES %)	REVISED SAT. FLOW (pcu/hr)	FLOW FACTOR y	CRITICAL y				
-	t	А	1	3.650	2				1		0		4100		650		650			4100	0.159	0.159				
'	t	В	1	4.500	1				1		0		2065		185		185			2065	0.090					
•	ነ	С	2	3.500	1	15			1		0		1965	205			205	100%		1786	0.115	0.115				
	*	D	2	4.500	1		25	0	1		0		2065			155	155		100%	1948	0.080					
Pe	edes	trian C Ep Fp Gp	Crossing 1 1 2	min. min. min.	GM 5 5 8	+ + +	FGM 5 6 7	= = =	10 11 15	sec sec sec																

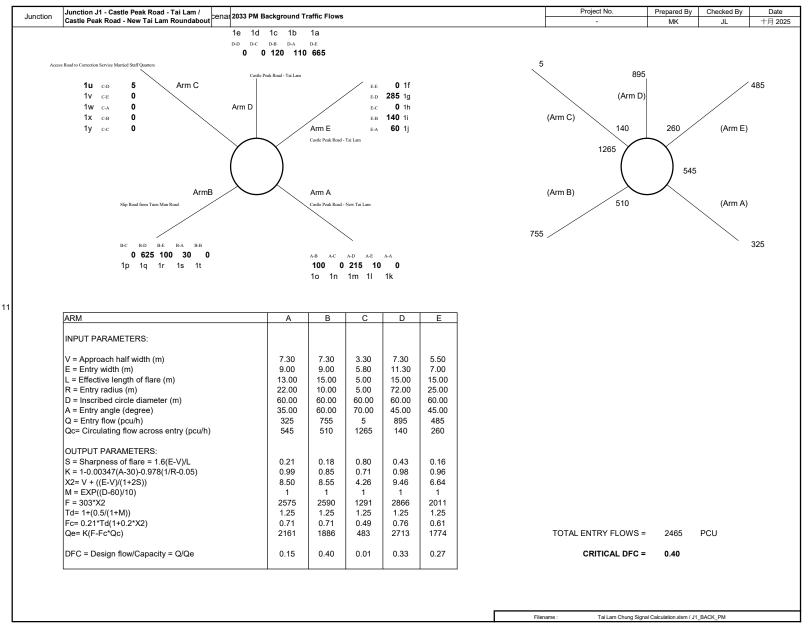
Job No. Designed By Reminder: Enter "P" next to the pedestrian phase under column B Job Title Checked By Note: Castle Peak Road - Tai Lam / Slip Road to Tuen Mun Road Junction Name Reviewed By Design Year Design Date AM/PM AM Peak State Observed Flows A=COM JUNCTION CAPACITY CALCULATION Junction J4 - Castle Peak Road - Tai Lam / Slip Road to Tuen Mun Road 2023 AM Peak Observed Flows DESIGN: CHECK: #VALUE! DATE: 十月 20 Traffic Flow Diagram (pcu/hr) No. of stages per cycle Cycle time C = 90 sec Y = 0.189 Sum(y) 4a 395 4b 350 L = 32 sec = 9,564 pcu Lost time Total Flow Castle Peak Road - Tai Lam → 180 4c 4d Optimum Cycle $C_o = (1.5 \times L+5)/(1-Y) =$ 65 sec ___ 30 Min. Cycle Time C_m = L/(1-Y) = 0.9-0.0075×L = 0.660 R.C._{ult} = (Y_{ult}-Y)/Yx100% = 248.9 % Practical Cycle Time C_p = 0.9 × L/(0.9-Y) = 41 sec Slip Road to Tuen Mun Road = 1-L/C 0.644 Stage/Phase Diagrams Critical Case: B,C,Gp ↑Gp $R.C.(C) = (0.9xY_{max}-Y)/Yx100\% =$ 207% Ep ⋪ ħ Fp ₹ Ep ⊅ D Stage 1 Stage 2 Stage 3 PROPORTION OF TURNING VEHICLES STRAIGHTAMEDIAN AMEDIAN AMED FLOW (pcu/hr) LANE WIDTH TOTAL FLOW REVISED SAT. FLOW FLOW FACTOR NO. OF LANES CRITICAL (m) (%) STRAIGH LEFT RIGHT (m) (pcu/hr) (pcu/hr) LEFT RIGHT T AHEAD LEFT RIGHT 1,2 3.500 0 1965 395 395 0.201 3.500 2105 180 2105 0.086 0.086 1,3 3.000 15 0 30 100% С 2 3.500 25 0 -631.5 4210 100% 3376 0.104 FGM Ep 1,3 21 Fp 2 min. 12 22 sec Gp min. 11 sec

Job No. Designed By Reminder: Enter "P" next to the pedestrian phase under column B Job Title Checked By Note: Castle Peak Road - Tai Lam / Slip Road to Tuen Mun Road Junction Name Reviewed By Design Year Design Date AM/PM AM Peak State Observed Flows A=COM JUNCTION CAPACITY CALCULATION Junction J4 - Castle Peak Road - Tai Lam / Slip Road to Tuen Mun Road 2023 PM Peak Observed Flows DESIGN: CHECK: #VALUE! DATE: 十月 20 Traffic Flow Diagram (pcu/hr) No. of stages per cycle Cycle time C = 90 sec Y = 0.255 Sum(y) 4a 240 _____ L = 32 sec = 9,564 pcu Lost time Total Flow Castle Peak Road - Tai Lam 4c 4d Optimum Cycle $C_o = (1.5 \times L+5)/(1-Y) =$ 71 sec → 185 - 50 Min. Cycle Time C_m = L/(1-Y) 43 sec = 0.9-0.0075×L = 0.660 R.C._{ult} = (Y_{ut}-Y)/Yx100% = 158.6 % Practical Cycle Time C_p = 0.9 × L/(0.9-Y) = 45 sec Slip Road to Tuen Mun Road = 1-L/C 0.644 Stage/Phase Diagrams Critical Case: B,C,Gp ↑Gp R.C.(C) = $(0.9xY_{max}-Y)/Yx100\%$ = 127% Ep ⋪ ħ Fp ₹ Ep ⊅ D Stage 1 Stage 2 Stage 3 PROPORTION OF TURNING VEHICLES STRAIGHTAMEDIAN AMEDIAN AMED FLOW (pcu/hr) LANE WIDTH TOTAL FLOW REVISED SAT. FLOW FLOW FACTOR NO. OF LANES CRITICAL (m) (%) STRAIGH LEFT RIGHT (m) (pcu/hr) (pcu/hr) LEFT RIGHT T AHEAD LEFT RIGHT 1,2 3.500 0 1965 240 240 0.122 3.500 2105 185 2105 0.088 0.088 1,3 3.000 15 0 50 100% 0.029 С 2 3.500 25 0 -631.5 4210 100% 3376 0.167 FGM Ep 1,3 21 Fp 2 min. 12 22 sec Gp min. 11 sec

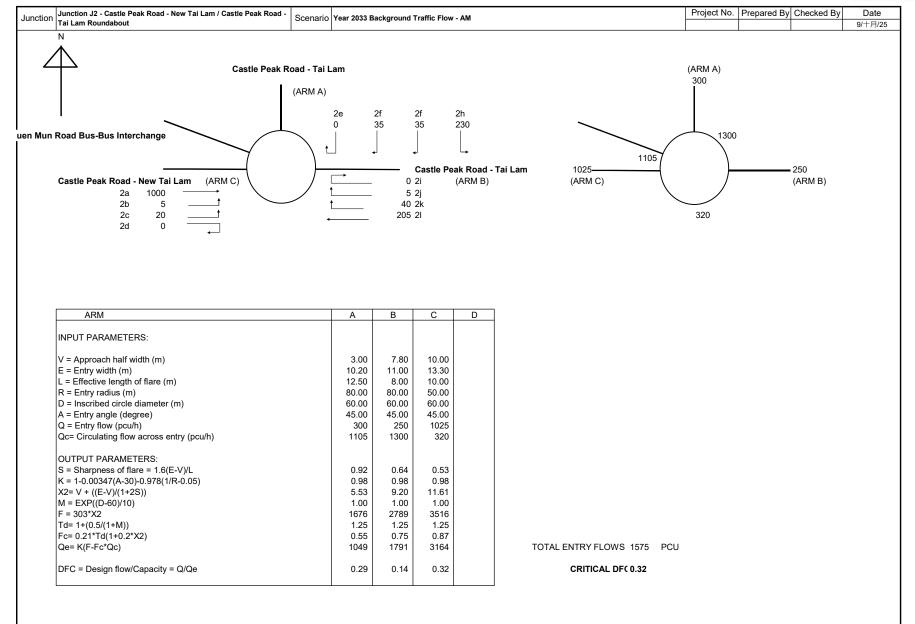
Junc	itle ion Na ion No In Yea M	0	:	Castle Peak Road - Tai Lam / Tai Lam Chung Road J5 2023 AM Peak Observed Flows									Designed By Checked By Reviewed By Design Date	,	十月 20		6:11:0	01 下午		- - -			Reminder: Enter Note:	"P" next to the	pedestrian phase un	ler column B
	JU	JNC	T10	ON CA		TY	CAL	CUL	ATI	9NI																AECOM
	Junction J5 - Castle Peak Road - Tai Lam / Tai Lam Chung Road 20										2023 AM Pe	ak Observed F	lows						DESIGN:		CHECK:		#VA	LUE!	十月 20	
		Traffic (pcu/h	Flow Dia	agram						Castle F	Peak Road (5e	5f 165						No. of stages Cycle time Sum(y)	per cycle		N = C = Y=	60	sec	J5)	
			Та	i Lam Ch	ung Road				30 5a		5 5c	•	- 110 5g - 0 - 75 5h							Cost time Total Flow Optimum Cy Min. Cycle Ti Yut R.C.ut		= (1.5×L- = L/(1-Y) = 0.9-0.00 = (Y _{ut} -Y)/\(\dot\)	L = = +5)/(1-Y) = = = !75×L =	24 6,035 52 30 0.720 242.9	sec pcu sec sec	
		Castle Pez StagelPhase Diagrams								Peak Road (Tai Lam)] 1	Practical Cyc		= 0.9×L/(= 1-L/C		31 0.600	sec		
		Cp Cp																	R.C.(C)			_x -Y)/Yx10	0% =	157%]	
			S	Stage 1	I/G =	4	Stag G = 18		I/G =	3												5				
	MOVEMENT	PHASE	STAGE	LANE WIDTH (m)	NO. OF LANES		DIUS m) RIGHT	OPPOSING TRAFFIC	NEAR SIDE LANE	UPHILL GRADIEN T (%)	GRADIENT EFFECT (pcu/hr)	ADDITIONA L CAPACITY (pcu/hr)	STRAIGHT- AHEAD SAT. FLOW (pcu/hr)	LEFT	STRAIGH T AHEAD	RIGHT	TOTAL FLOW (pcu/hr)	TURNING	RTION OF VEHICLES %)	REVISED SAT. FLOW (pcu/hr)	FLOW FACTOR y	CRITICAL y				
	*	А	1	3.500	1	20	20	0	1		0		1965	165	160	70	395	42%	18%	1881	0.210	0.210				
	4	ВВ	1 1	3.500 3.500	1 1	15	15	0	1 0		0 0		1965 2105	30	0 15	5	30 20	100%	25%	1786 2054	0.017 0.010					
	Pede	Cp	Crossin 2	g min.	GM 9	+	FGM 9	=	18	sec																

		:	Castle Peak Road - Tai Lam / Tai Lam Chung Road J5 2023								Designed By Checked By Reviewed By					04404 T/T			- - -			Reminder: Ente Note:	r "P" next to the	pedestrian phase un	der column B	
Design AM/PM State	AM/PM State		:	2023 Design Date +月 20 6:11:01 下午 PM Peak Observed Flows															-							
,	JU		T10	ON C	APAC	TY	CAL	CUL	ATI(0N																AECOM
J	uncti	ion J5	- Castle	Peak Ro	ad - Tai La	m / Tai La	m Chung	Road			2023 PM Pe	ak Observed F	Flows						DESIGN:		CHECK:		#V	ALUE!	DATE	: 十月 20
		Traffic (pcu/hr	Flow Dia	igram						Castle F	e Peak Road (Tai Lam) 5d									No. of stages Cycle time Sum(y)	per cycle		N = C = Y =	60	sec	J5)
			Та	i Lam Ch	ung Road				45 5a	5b	10 5c		155 0 35	5g 5h		Tai Lam (Chung Road	1		Min. Cycle Time $C_m = L/(1 + 1)$ $Y_{ult} = 0.9$			$0.075 \times L = 0.720$ $0.075 \times$		sec pcu sec sec %	
	[Stage/l	Phase D	agrams			^													Critical			_c -Y)/Yx10	00% =	326%	1
			, B ♣				Ср													K.O.(O)		max max	() /	70 70	320 /6	1
	į		Stage 1				Stage 2 G = 18 I/G =				3											5				
	MOVEMENT	PHASE	STAGE	LANE WIDTH (m)	NO. OF LANES	RA (DIUS m)	OPPOSING TRAFFIC	NEAR SIDE LANE	UPHILL GRADIEN T (%)	GRADIENT EFFECT (pcu/hr)	ADDITIONA L CAPACITY (pcu/hr)	STRAIGHT- AHEAD SAT. FLOW (pcu/hr)	LEFT	STRAIGH T AHEAD	RIGHT	TOTAL FLOW (pcu/hr)	TURNING	RTION OF VEHICLES %)	REVISED SAT. FLOW (pcu/hr)	FLOW FACTOR y	CRITICAL y				
-	+	Α	1	3.500	1	20	20	0	1		0		1965	90	115	35	240	38%	15%	1891	0.127	0.127				
	†	ВВ	1 1	3.500 3.500	1 1	15	15	0	1 0		0		1965 2105	45	1 44	10	46 54	97%	19%	1791 2066	0.026 0.026					
F	edessed	Cp	Crossini 2) min.	GM 9	+	FGM 9	=	18	sec																

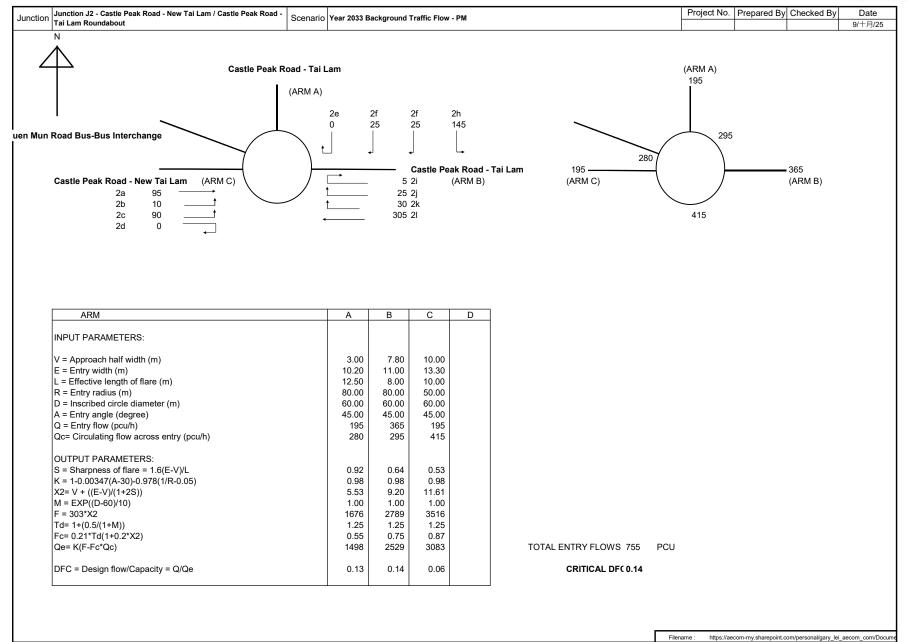

PRIORITY JUNCTION CAPACITY CALCULATION A=COM Junction J6 - Tai Lam Chung Road / Luen Hong Lane 2023 AM Observed Traffic Flows Designed By : Checked By: Job No. : Date: 十月 25 (J6 Tai Lam Chung Road NOTES: (GEOMETRIC INPUT DATA) (ARM C) = Major Road Width (6.4 - 20.0) = Central Reserve width (1.2 - 9.0, kerbed central reserve only) 150 W cr 6b 20 = Lane width available to vehicle waiting in stream b-a (2.05 - 4.7) W b-c = Lane width available to vehicle waiting in stream b-c (2.05 - 4.7) 160 6c W c-b = Lane width available to vehicle waiting in stream c-b (2.05 - 4.7) 0 6d = Visibility to the left for vehicles waiting in stream b-a (22.0 - 250.0) (ARM A) Vr b-a = Visibility to the right for vehicles waiting in stream b-a (17.0 - 250.0) Tai Lam Chung Road Vr b-c = Visibilitu to the right for vehicles waiting in stream b-c (17.0 - 250.0) = Visibility to the right for vehicles waiting in stream c-b (17.0 - 250.0) D = Stream-specific B-A = Stream-specific B-C Ε 25 = Stream-specific C-B 0 F (ARM B) = (1-0.0345W)Luen Hong Lane GEOMETRIC DETAILS: MAJOR ROAD (ARM A) MAJOR ROAD (ARM C) MINOR ROAD (ARM B) W c-b W 7.55 (metres) 4 (metres) 5.7 (metres) = W b-a W cr 0 (metres) Vr c-b = 50 (metres) W b-c 5.7 (metres) 0 (pcu/hr) = 150 (pcu/hr) 20 (metres) q a-b q c-a VI b-a 160 (pcu/hr) 20 (pcu/hr) Vr b-a 16 (metres) q a-c q c-b Vr b-c 16 (metres) q b-a 0 (pcu/hr) **GEOMETRIC FACTORS:** 25 (pcu/hr) q b-c D 0.996740 Ε 1.081063 F 0.967827 0.739525 THE CAPACITY OF MOVEMENT: Q b-a 549 Q b-c 759 **CRITICAL DFC** 0.03 Q c-b 679 Q b-ac 759 COMPARISION OF DESIGN FLOW TO CAPACITY: DFC b-a 0.00 DFC b-c 0.03 DFC c-b 0.03 DFC b-ac 0.03

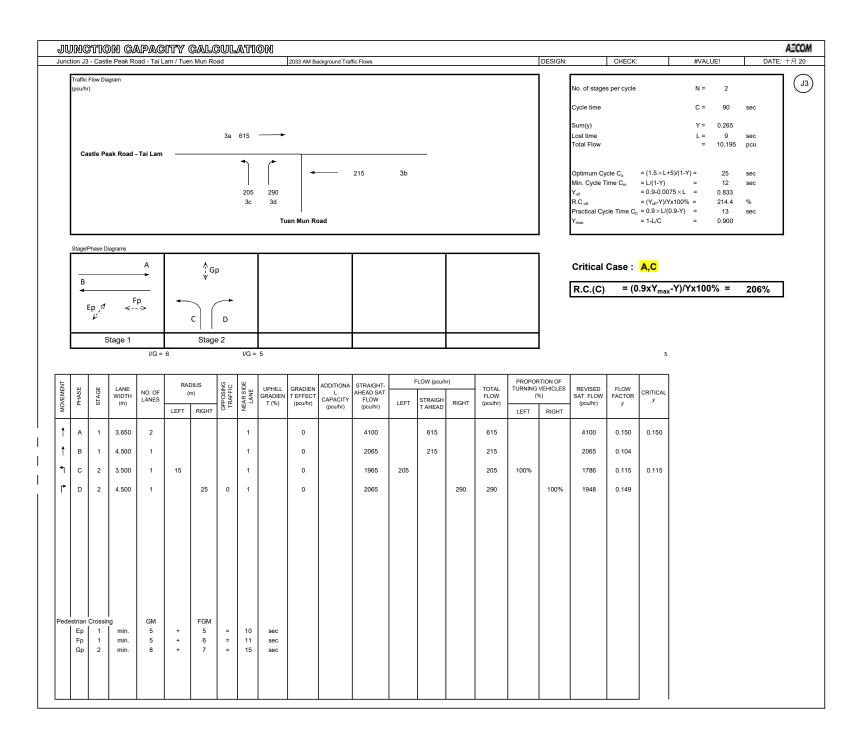


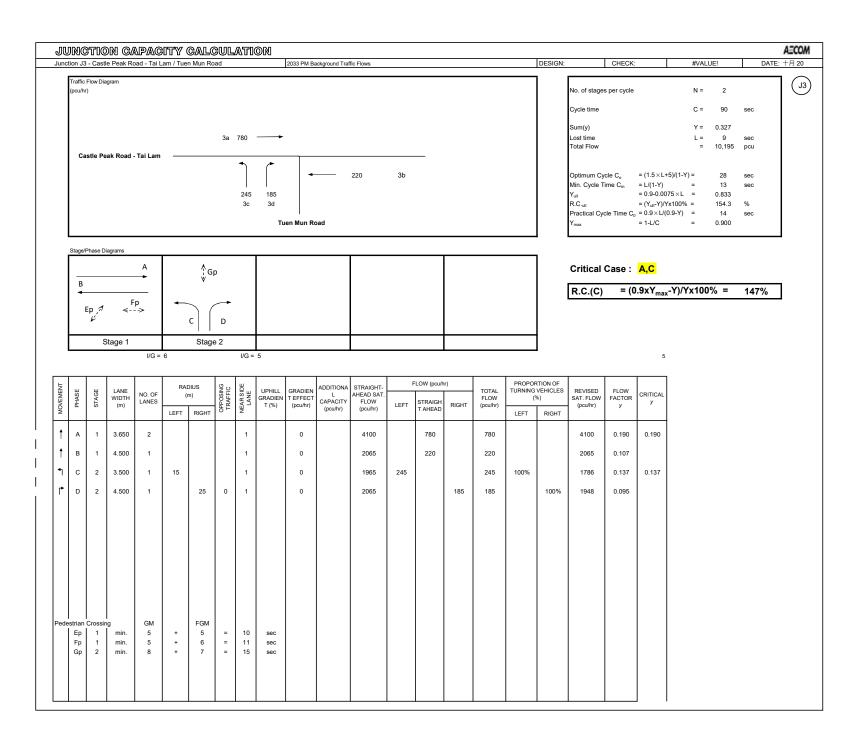
PRIORITY JUNCTION CAPACITY CALCULATION A=COM Junction J6 - Tai Lam Chung Road / Luen Hong Lane 2023 AM Observed Traffic Flows Designed By : Checked By: Job No. : Date: 十月 25 (J6 Tai Lam Chung Road NOTES: (GEOMETRIC INPUT DATA) (ARM C) = Major Road Width (6.4 - 20.0) = Central Reserve width (1.2 - 9.0, kerbed central reserve only) 80 W cr 6b 20 W b-a = Lane width available to vehicle waiting in stream b-a (2.05 - 4.7) W b-c = Lane width available to vehicle waiting in stream b-c (2.05 - 4.7) 160 6c W c-b = Lane width available to vehicle waiting in stream c-b (2.05 - 4.7) 0 6d = Visibility to the left for vehicles waiting in stream b-a (22.0 - 250.0) (ARM A) Vr b-a = Visibility to the right for vehicles waiting in stream b-a (17.0 - 250.0) Tai Lam Chung Road Vr b-c = Visibilitu to the right for vehicles waiting in stream b-c (17.0 - 250.0) = Visibility to the right for vehicles waiting in stream c-b (17.0 - 250.0) D = Stream-specific B-A = Stream-specific B-C Ε 30 = Stream-specific C-B F (ARM B) = (1-0.0345W)Luen Hong Lane GEOMETRIC DETAILS: MAJOR ROAD (ARM A) MAJOR ROAD (ARM C) MINOR ROAD (ARM B) W c-b W 7.55 (metres) 4 (metres) 5.7 (metres) = W b-a W cr 0 (metres) Vr c-b = 50 (metres) W b-c 5.7 (metres) 0 (pcu/hr) = 80 (pcu/hr) VI b-a 20 (metres) q a-b q c-a 160 (pcu/hr) 20 (pcu/hr) Vr b-a 16 (metres) q a-c q c-b Vr b-c 16 (metres) q b-a 0 (pcu/hr) **GEOMETRIC FACTORS:** 30 (pcu/hr) q b-c D 0.996740 Ε 1.081063 F 0.967827 0.739525 THE CAPACITY OF MOVEMENT: Q b-a 561 Q b-c 759 **CRITICAL DFC** 0.04 Q c-b 679 Q b-ac 759 COMPARISION OF DESIGN FLOW TO CAPACITY: DFC b-a 0.00 DFC b-c 0.04 DFC c-b 0.03 DFC b-ac 0.04

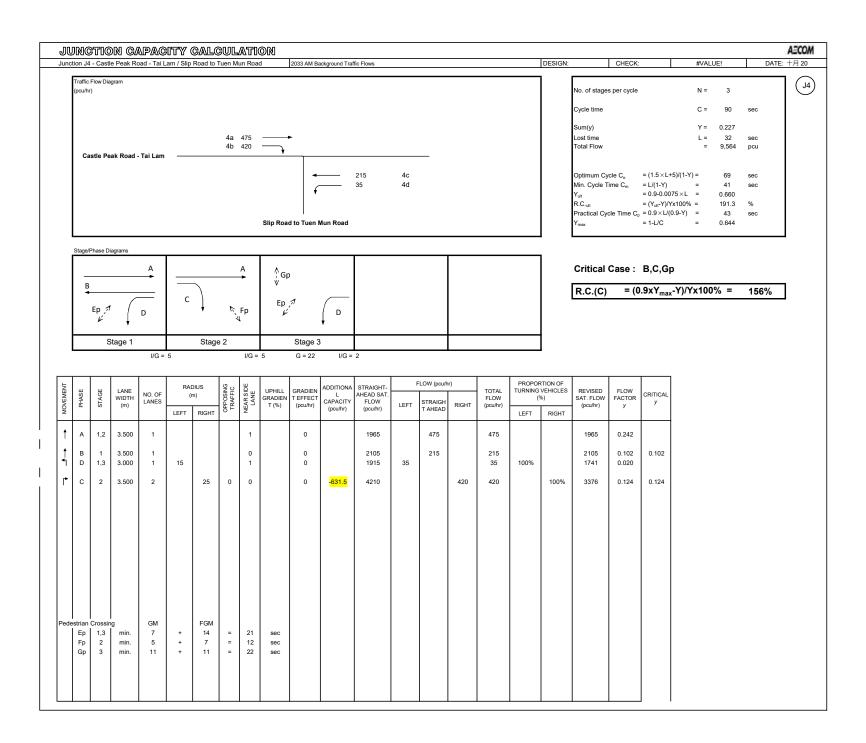


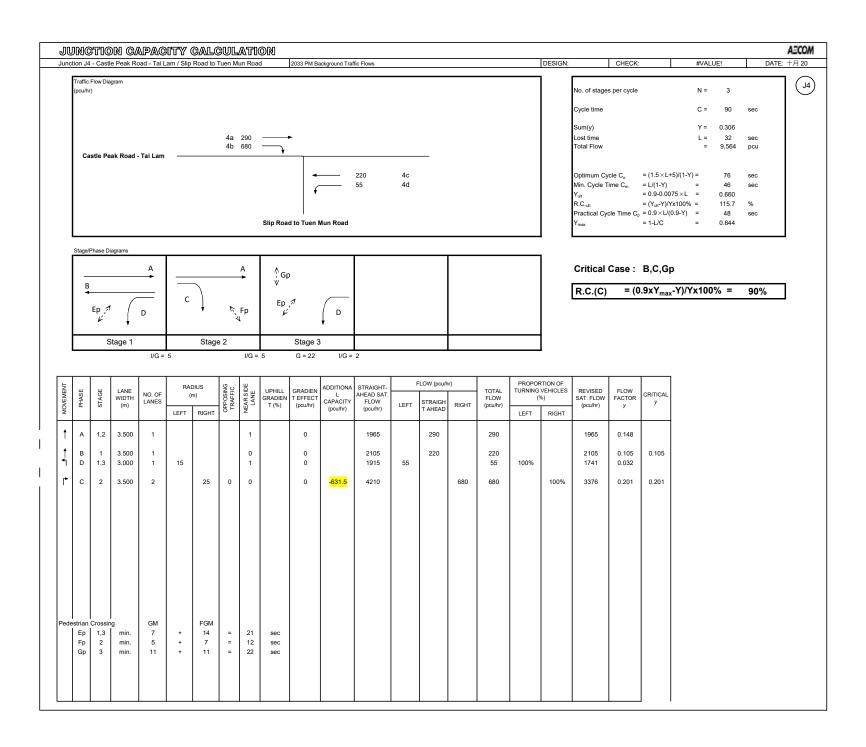
AECOM

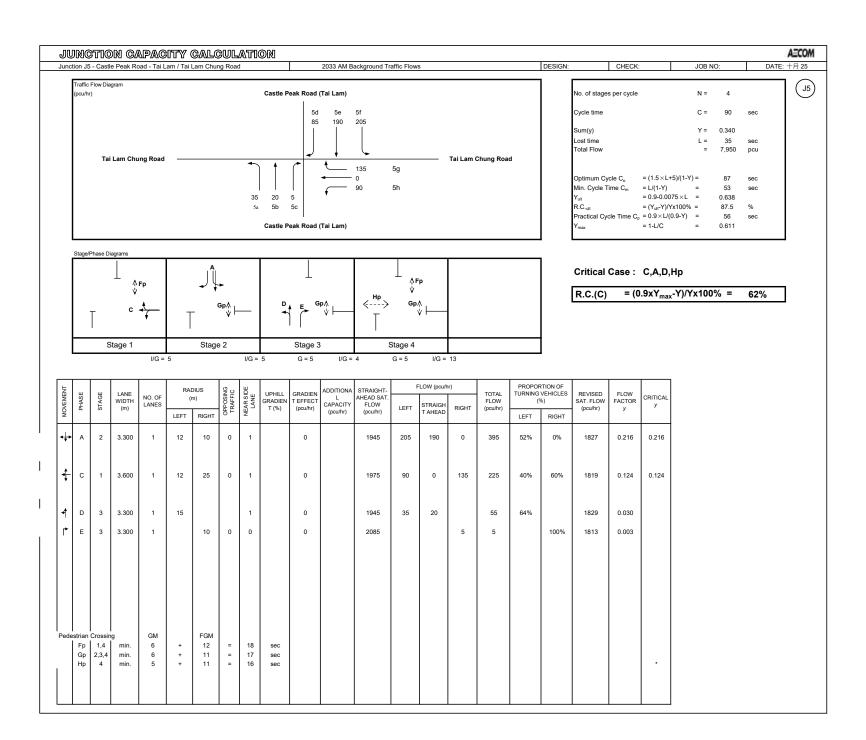


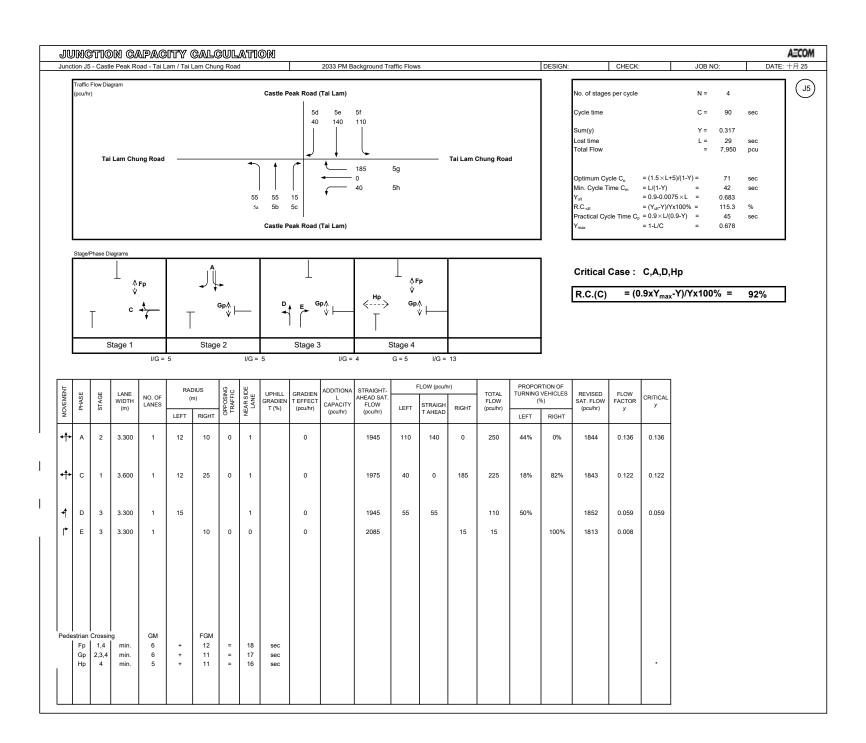


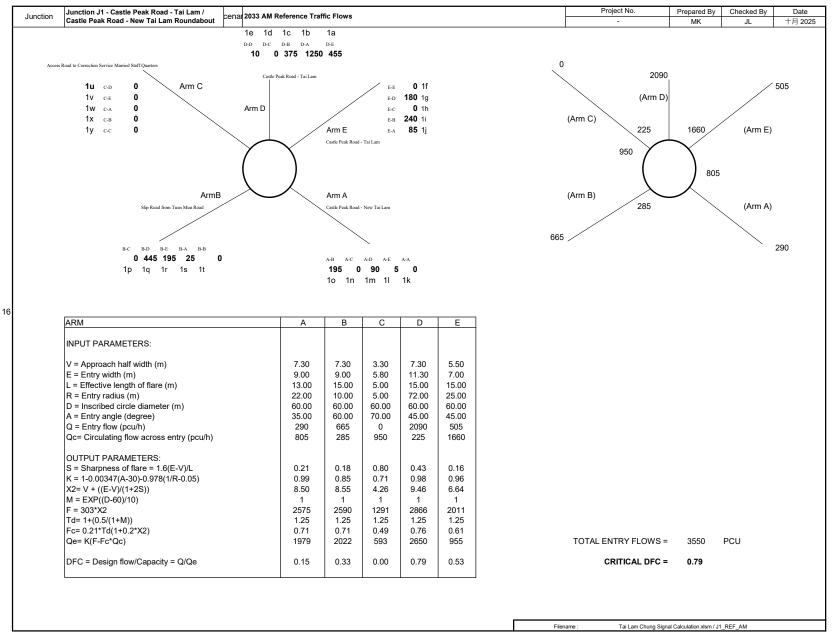

Filename :

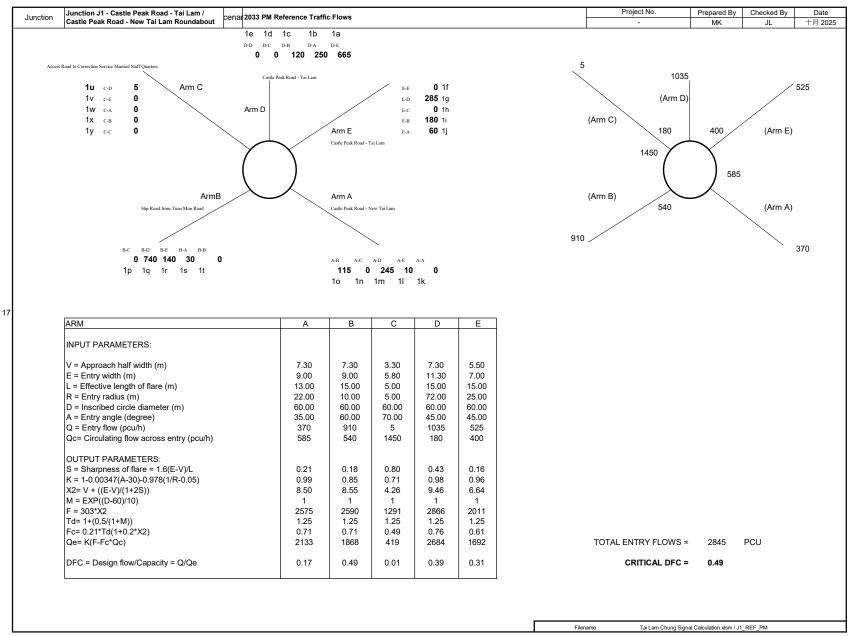

https://aecom-my.sharepoint.com/personal/gary_lei_aecom_com/Docum



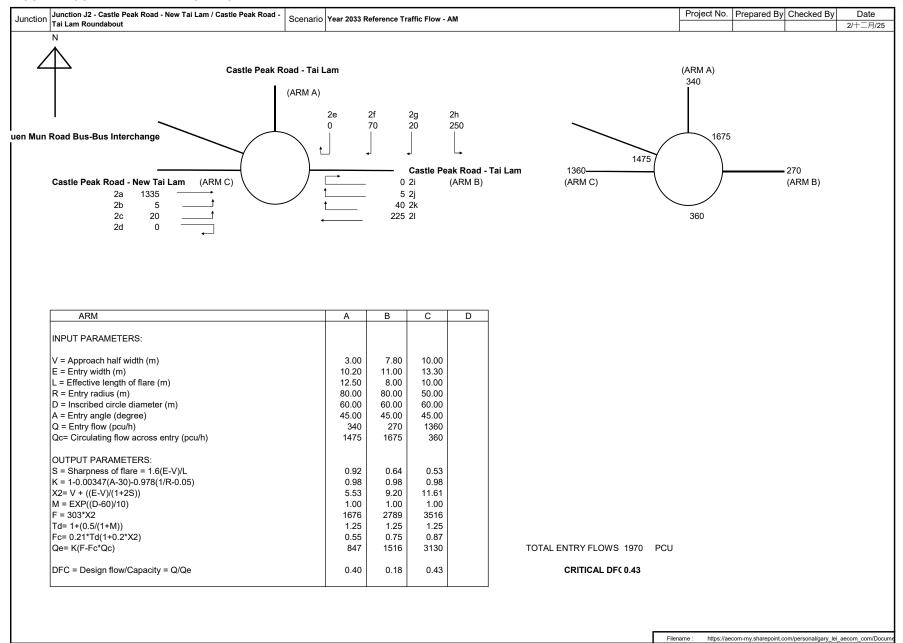


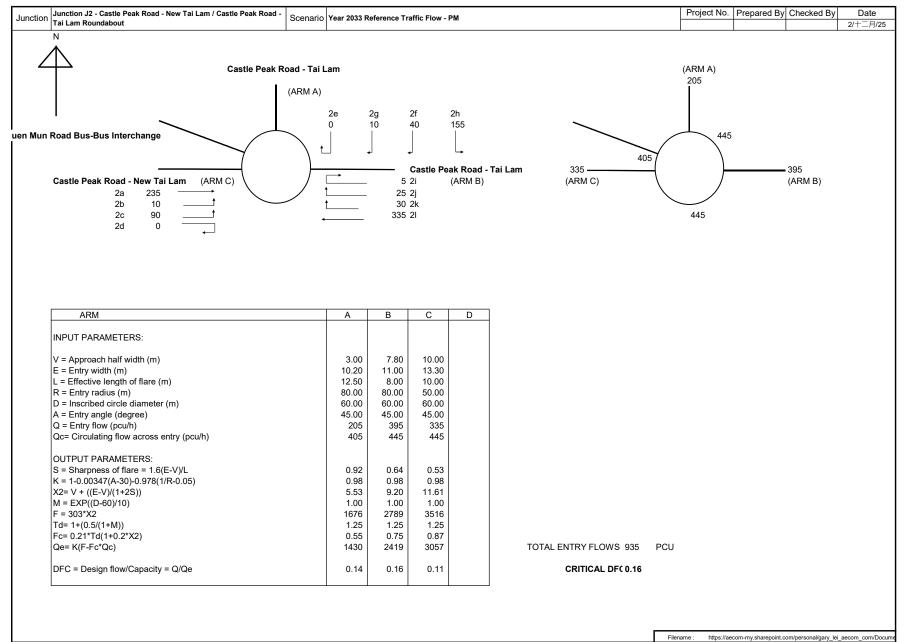


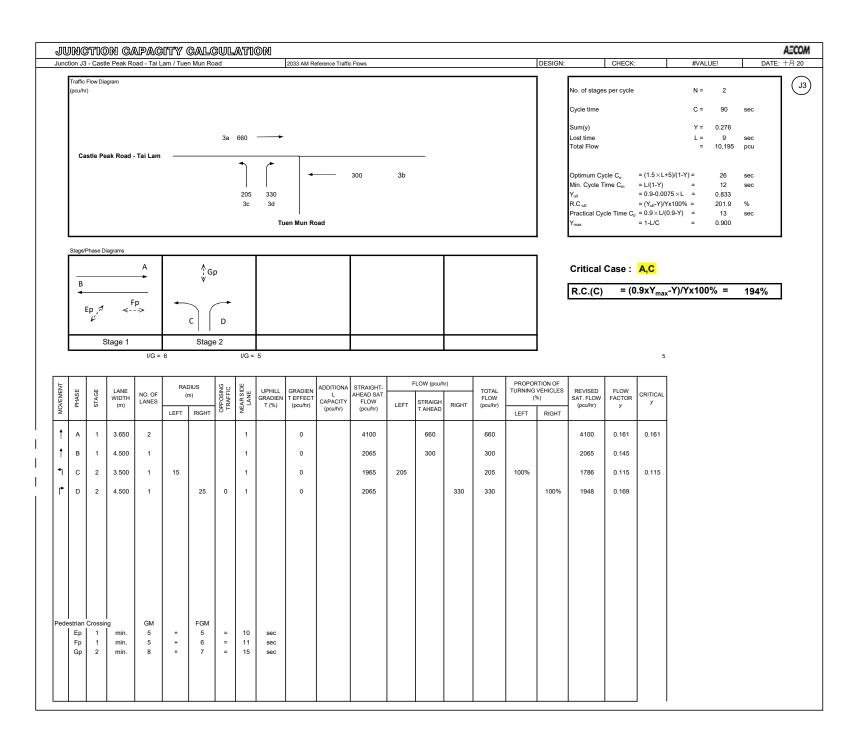


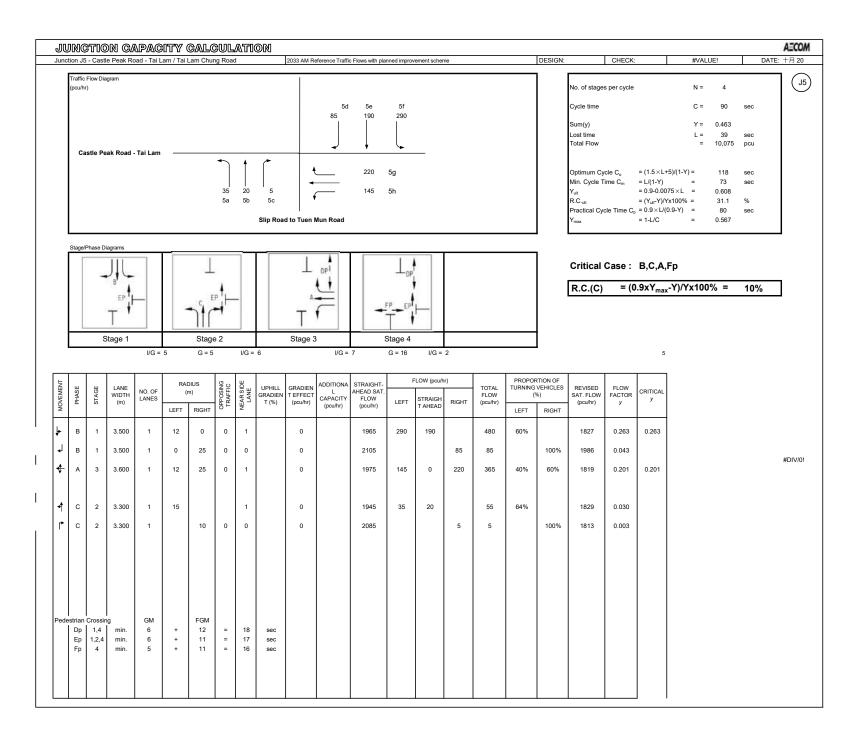


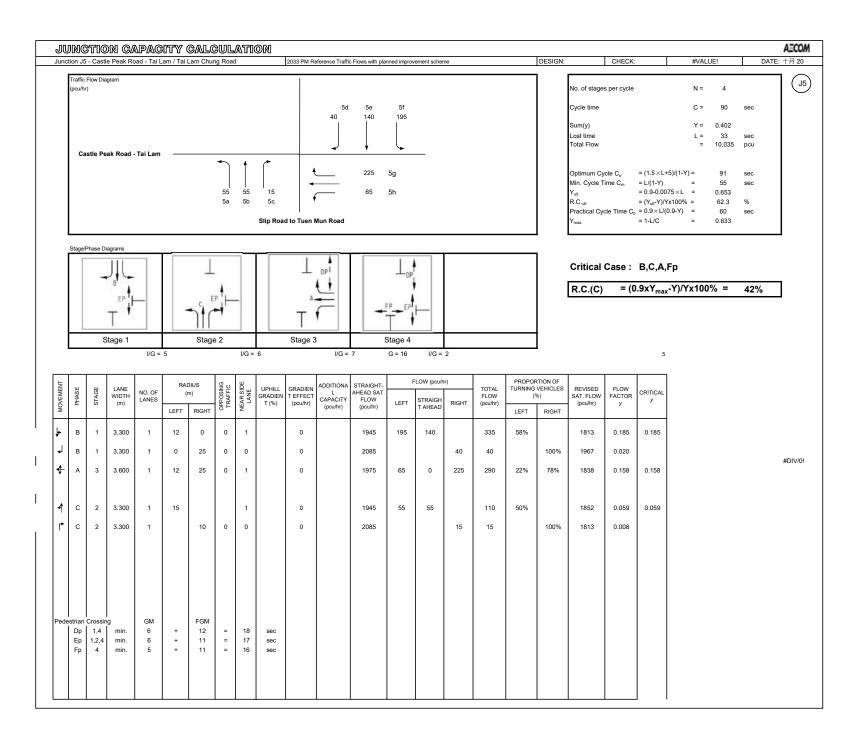
PRIORITY JUNGTION CAPACITY CALCULATION A=COM Job No. : Date: 十月 25 Junction J6 - Tai Lam Chung Road / Luen Hong Lane 2033 AM Background Traffic Flows Designed By: Checked By: J6 NOTES: (GEOMETRIC INPUT DATA) Tai Lam Chung Road (ARM C) = Major Road Width (6.4 - 20.0) = Central Reserve width (1.2 - 9.0, kerbed central reserve only) 180 6b 25 = Lane width available to vehicle waiting in stream b-a (2.05 - 4.7) = Lane width available to vehicle waiting in stream b-c (2.05 - 4.7) = Lane width available to vehicle waiting in stream c-b (2.05 - 4.7) 190 6c 0 6d = Visibility to the left for vehicles waiting in stream b-a (22.0 - 250.0) (ARM A) = Visibility to the right for vehicles waiting in stream b-a (17.0 - 250.0) Tai Lam Chung Road = Visibilitu to the right for vehicles waiting in stream b-c (17.0 - 250.0) = Visibility to the right for vehicles waiting in stream c-b (17.0 - 250.0) Vr c-b D = Stream-specific B-A Ε = Stream-specific B-C 30 = Stream-specific C-B 6f (ARM B) = (1-0.0345W) Luen Hong Lane **GEOMETRIC DETAILS:** MAJOR ROAD (ARM A) MAJOR ROAD (ARM C) MINOR ROAD (ARM B) W b-a 7.55 (metres) W c-b 4 (metres) 5.7 (metres) W cr 0 (metres) Vr c-b 50 (metres) W b-c 5.7 (metres) 0 (pcu/hr) 180 (pcu/hr) VI b-a 20 (metres) q a-b q c-a q a-c 190 (pcu/hr) q c-b 25 (pcu/hr) Vr b-a = 16 (metres) Vr b-c 16 (metres) q b-a 0 (pcu/hr) **GEOMETRIC FACTORS:** q b-c 30 (pcu/hr) 0.996740 Е 1.081063 F 0.967827 0.739525 THE CAPACITY OF MOVEMENT: Q b-a 534 Q b-c 750 **CRITICAL DFC** 0.04 Q c-b 672 Q b-ac 750 COMPARISION OF DESIGN FLOW TO CAPACITY: DFC b-a 0.00 DFC b-c = 0.04 DFC c-b 0.04 DFC b-ac 0.04


PRIORITY JUNGTION CAPACITY CALCULATION A=COM Date: 十月 25 Junction J6 - Tai Lam Chung Road / Luen Hong Lane 2033 PM Background Traffic Flows Designed By: Checked By: Job No.: J6 NOTES: (GEOMETRIC INPUT DATA) Tai Lam Chung Road (ARM C) = Major Road Width (6.4 - 20.0) = Central Reserve width (1.2 - 9.0, kerbed central reserve only) 6b 25 = Lane width available to vehicle waiting in stream b-a (2.05 - 4.7) = Lane width available to vehicle waiting in stream b-c (2.05 - 4.7) = Lane width available to vehicle waiting in stream c-b (2.05 - 4.7) 190 6c 0 6d = Visibility to the left for vehicles waiting in stream b-a (22.0 - 250.0) (ARM A) = Visibility to the right for vehicles waiting in stream b-a (17.0 - 250.0) Tai Lam Chung Road = Visibilitu to the right for vehicles waiting in stream b-c (17.0 - 250.0) = Visibility to the right for vehicles waiting in stream c-b (17.0 - 250.0) Vr c-b D = Stream-specific B-A Ε = Stream-specific B-C 35 = Stream-specific C-B 6f (ARM B) = (1-0.0345W) Luen Hong Lane **GEOMETRIC DETAILS:** MAJOR ROAD (ARM A) MAJOR ROAD (ARM C) MINOR ROAD (ARM B) W b-a 7.55 (metres) W c-b 4 (metres) 5.7 (metres) W cr 0 (metres) Vr c-b 50 (metres) W b-c 5.7 (metres) 0 (pcu/hr) 95 (pcu/hr) VI b-a 20 (metres) q a-b q c-a q a-c 190 (pcu/hr) q c-b 25 (pcu/hr) Vr b-a = 16 (metres) Vr b-c 16 (metres) q b-a 0 (pcu/hr) **GEOMETRIC FACTORS:** q b-c 35 (pcu/hr) 0.996740 Е 1.081063 F 0.967827 0.739525 THE CAPACITY OF MOVEMENT: Q b-a 548 Q b-c 750 **CRITICAL DFC** 0.05 Q c-b 672 Q b-ac 750 COMPARISION OF DESIGN FLOW TO CAPACITY: DFC b-a 0.00 DFC b-c = 0.05 DFC c-b 0.04 DFC b-ac 0.05


AECOM

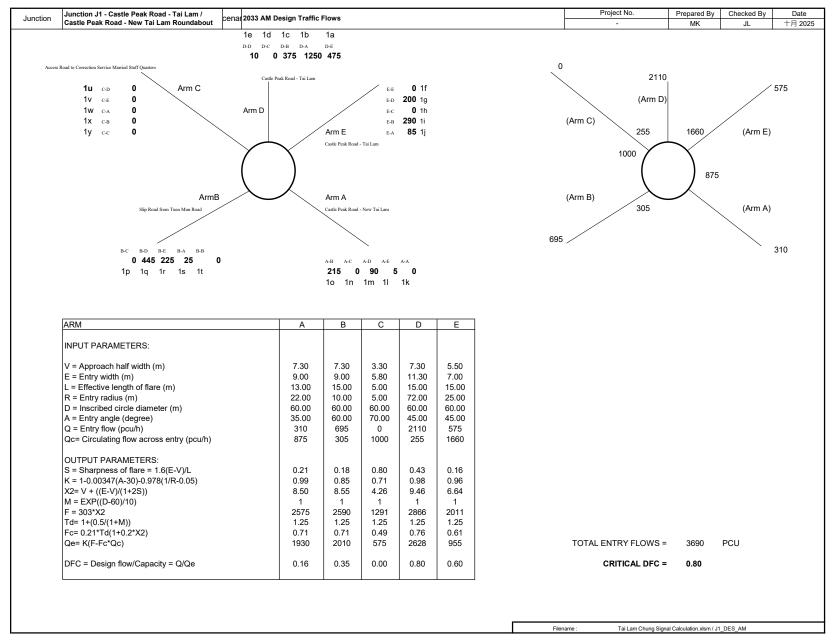


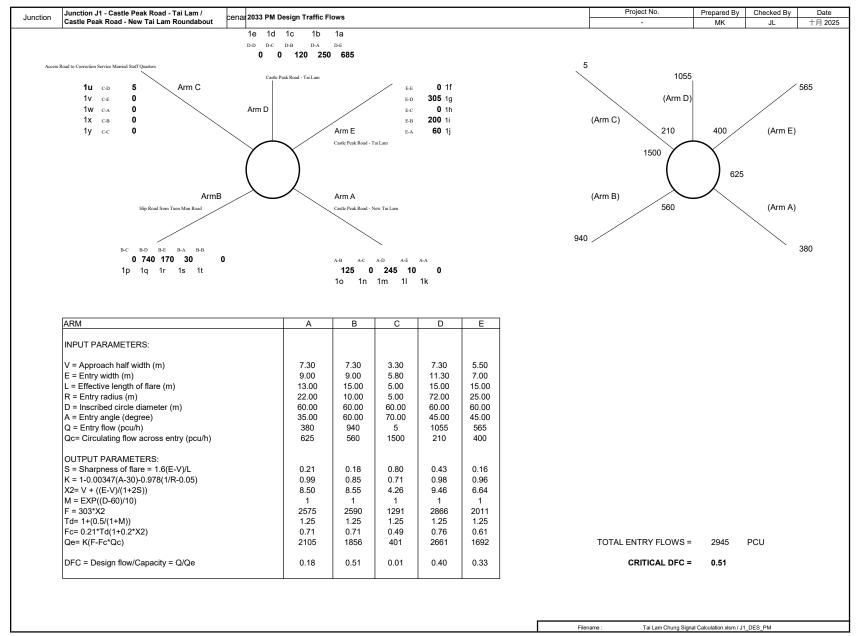


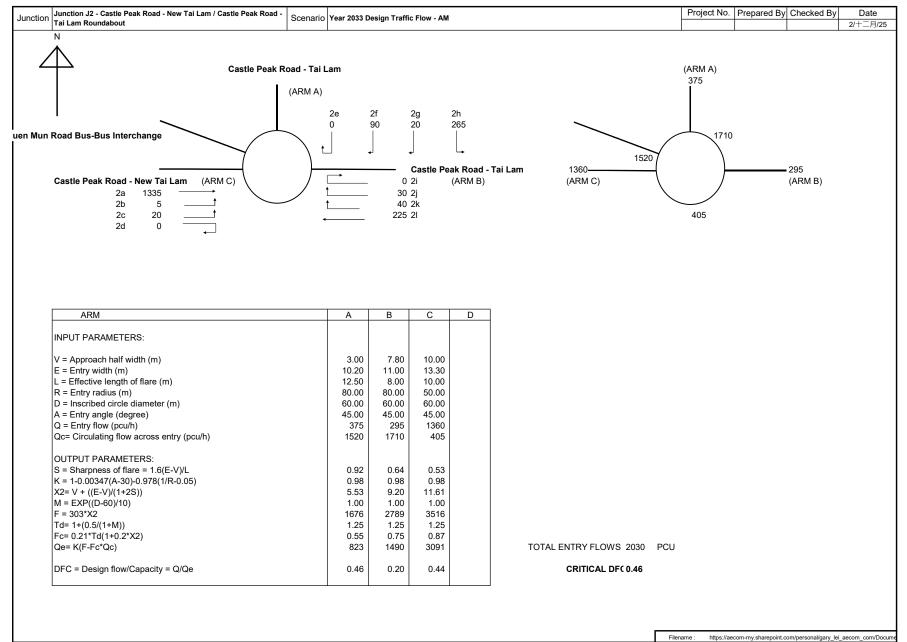


Job No. : Job Title : Junction Name : Junction No : Design Year : AM/PM : State :		:	Castle Peak Road - Tal Lam / Tuen Mun Road J3 2033 PM Reference Traffic Flows							Designed By Checked By Reviewed By Design Date						6:11:0	- - -			Reminder: Note:	Enter "P"	next to the p	sedestrian phas	under column B			
-	JW	NIC	T10	ON CA			CAL	. . .	ATI0	 DNI																	AECOM
					ad - Tai La						2033 PM Re	ference Traffi	Flows						DESIGN:		CHECK:			#VALU	JE!	DA	TE: 十月 20
		pcu/hr			- Tai Lam	_		3a	820 245 3c	225 3d	+		260	3b	_						= L/(1-Y) = 0.9-0.00 = (Y _{uft} -Y)/ = 0.9 × L/(N = 2 C = 90 Y = 0.337 L = 9 10,195 × L+5)/(1-Y) = 28 -Y) = 14 0.0075 L = 0.833 -Y)/Yx100% = 146,9 146,9 146,9 146,9			sec sec pcu sec sec sec	(J3)	
	L									Tu	Mun Road									Y _{max}		= 1-L/C	-	=	0.900		
		Stage/i	B A A GP														Il Case : A,C			-Y)/Yx100% =			_				
		1	Ep											R.C.(C)	= (0	0.9xY _{ma}	_{ix} -Y)/Y	x100	% =	140%							
	İ		Stage 1 Stage 2															5	5								
	MOVEMEN	PHASE	STAGE	LANE WIDTH (m)	NO. OF LANES		DIUS m) RIGHT	OPPOSING TRAFFIC	NEAR SIDE LANE	UPHILL GRADIEN T (%)	GRADIENT EFFECT (pcu/hr)	ADDITIONA L CAPACITY (pcu/hr)	STRAIGHT- AHEAD SAT. FLOW (pcu/hr)	LEFT	STRAIGH T AHEAD	RIGHT	TOTAL FLOW (pcu/hr)	PROPOR TURNING (9	VEHICLES	REVISED SAT. FLOW (pcu/hr)	FLOW FACTOR y	CRITICAL y					
	t	Α	1	3.650	2				1		0		4100		820		820			4100	0.200	0.200					
	†	В	1	4.500	1				1		0		2065		260		260			2065	0.126						
*	٦	С	2	3.500	1	15			1		0		1965	245			245	100%		1786	0.137	0.137					
		Ep	2 Crossing	min.	1 GM 5	+	FGM 5	=	10	SBC	0		2065			225	225		100%	1948	0.115						
		Fp Gp	1 2	min. min.	5 8	+	6 7	=	11 15	sec sec																	

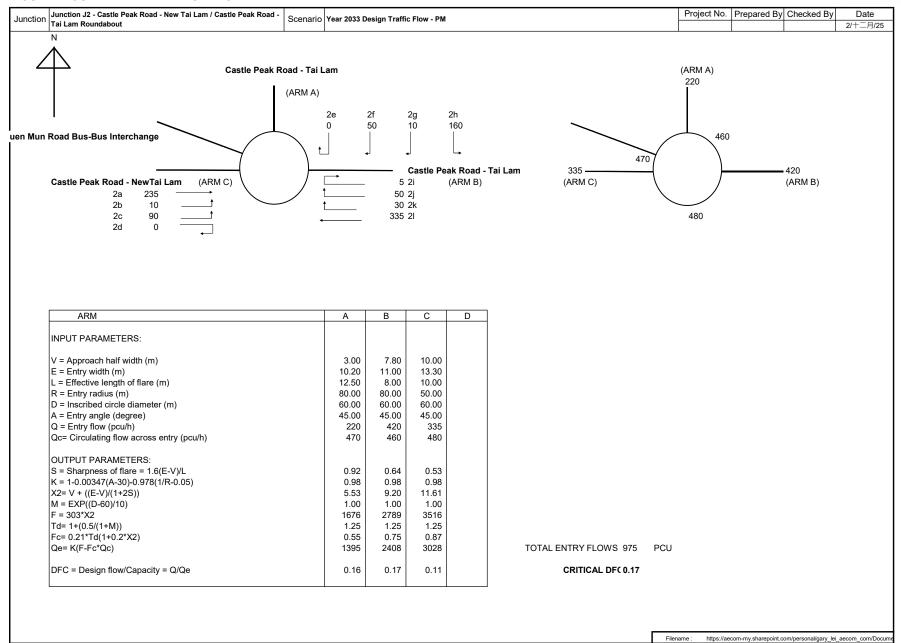
Job No. Designed By Reminder: Enter "P" next to the pedestrian phase under column B Job Title Checked By Note: Castle Peak Road - Tai Lam / Slip Road to Tuen Mun Road Junction Name Reviewed By Design Year Design Date AM/PM AM State Reference Traffic Flows A=COM JUNCTION CAPACITY CALCULATION Junction J4 - Castle Peak Road - Tai Lam / Slip Road to Tuen Mun Road 2033 AM Reference Traffic Flows DESIGN: CHECK: #VALUE! DATE: 十月 20 Traffic Flow Diagram (pcu/hr) No. of stages per cycle Cycle time C = 90 sec Y = 0.267 Sum(y) 4a 560 4b 420 L = 32 sec = 9,564 pcu Lost time Total Flow Castle Peak Road - Tai Lam → 300 4c 4d Optimum Cycle $C_o = (1.5 \times L+5)/(1-Y) =$ 72 sec 44 sec - 35 Min. Cycle Time C_m = L/(1-Y) = 0.9-0.0075×L = 0.660 R.C._{ult} = (Y_{ult}-Y)/Yx100% = 147.3 % Practical Cycle Time C_p = 0.9 × L/(0.9-Y) = 45 sec Slip Road to Tuen Mun Road = 1-L/C 0.644 Stage/Phase Diagrams Critical Case: B,C,Gp ↑Gp R.C.(C) = $(0.9xY_{max}-Y)/Yx100\%$ = 117% Ep ⋪ ħ Fp ₹ Ep ⊅ D Stage 1 Stage 2 Stage 3 PROPORTION OF TURNING VEHICLES STRAIGHTAMEDIAN AMEDIAN AMED FLOW (pcu/hr) LANE WIDTH TOTAL FLOW REVISED SAT. FLOW FLOW FACTOR NO. OF LANES CRITICAL (m) (%) STRAIGH LEFT RIGHT (m) (pcu/hr) (pcu/hr) LEFT RIGHT T AHEAD LEFT RIGHT 1,2 3.500 0 1965 560 560 0.285 3.500 2105 300 2105 0.143 1,3 3.000 15 0 100% 0.020 С 2 3.500 25 0 -631.5 4210 100% 3376 0.124 FGM Ep 1,3 21 Fp 2 min. 12 22 sec Gp min. 11 sec

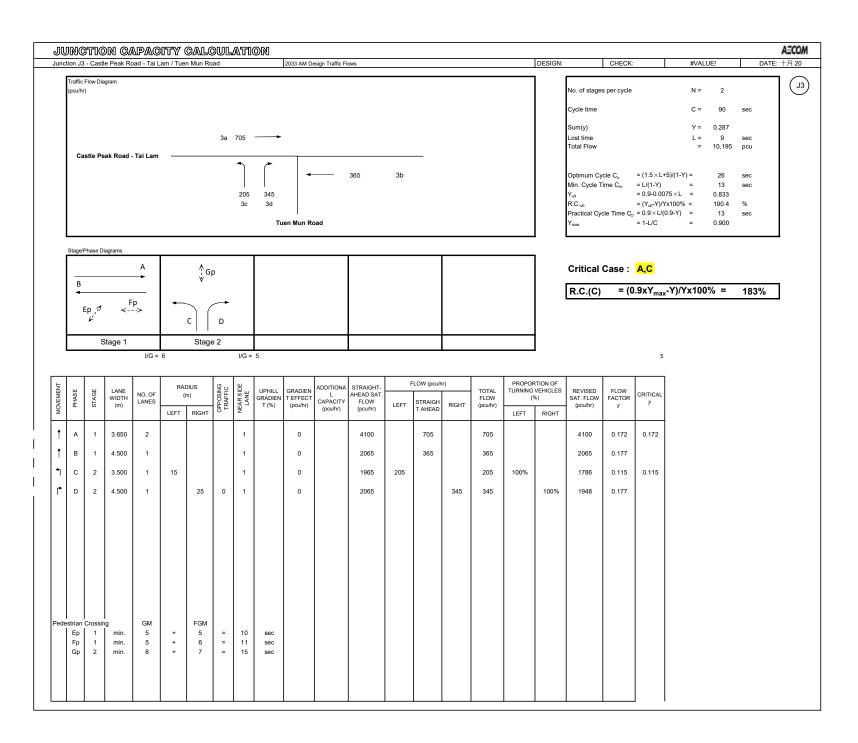

Job No. Designed By Reminder: Enter "P" next to the pedestrian phase under column B Job Title Checked By Note: Castle Peak Road - Tai Lam / Slip Road to Tuen Mun Road Junction Name Reviewed By Design Year Design Date AM/PM State Reference Traffic Flows A=COM JUNCTION CAPACITY CALCULATION Junction J4 - Castle Peak Road - Tai Lam / Slip Road to Tuen Mun Road 2033 PM Reference Traffic Flows DESIGN: CHECK: #VALUE! DATE: 十月 20 Traffic Flow Diagram (pcu/hr) No. of stages per cycle Cycle time C = 90 sec Y = 0.325 Sum(y) 4a 375 4b 680 L = 32 sec = 9,564 pcu Lost time Total Flow Castle Peak Road - Tai Lam **←** 260 4c 4d Optimum Cycle $C_o = (1.5 \times L+5)/(1-Y) =$ 79 sec 47 sec **—** 55 Min. Cycle Time C_m = L/(1-Y) = 0.9-0.0075×L = 0.660 R.C._{ult} = (Y_{ut}-Y)/Yx100% = 103.1 % Practical Cycle Time C_p = 0.9 × L/(0.9-Y) = 50 sec Slip Road to Tuen Mun Road = 1-L/C 0.644 Stage/Phase Diagrams Critical Case: B,C,Gp ↑Gp $R.C.(C) = (0.9xY_{max}-Y)/Yx100\% =$ 78% Ep ⋪ ħ Fp ₹ Ep ⊅ D D Stage 1 Stage 2 Stage 3 PROPORTION OF TURNING VEHICLES STRAIGHTAMEDIAN AMEDIAN AMED FLOW (pcu/hr) LANE WIDTH TOTAL FLOW REVISED SAT. FLOW FLOW FACTOR NO. OF LANES CRITICAL (m) (%) STRAIGH LEFT RIGHT (m) (pcu/hr) (pcu/hr) LEFT RIGHT T AHEAD LEFT RIGHT 1,2 3.500 0 1965 375 375 0.191 3.500 2105 260 2105 0.124 0.124 1,3 3.000 15 0 55 100% 0.032 С 2 3.500 25 0 -631.5 4210 100% 3376 0.201 FGM Ep | 1,3 21 Fp 2 min. 12 22 sec Gp min. 11 sec

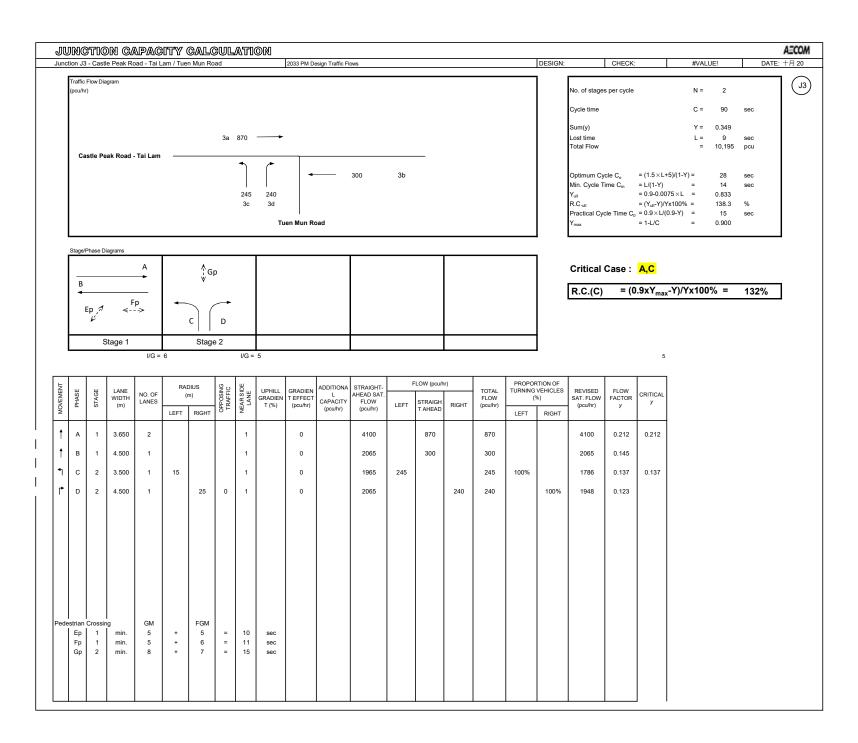


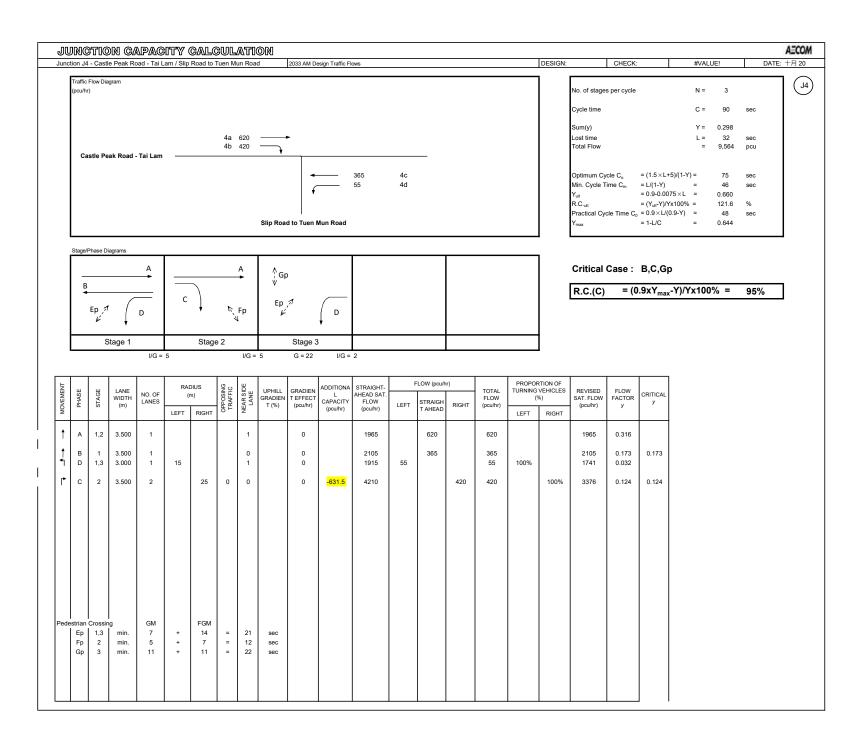

PRIORITY JUNGTION CAPACITY CALCULATION A=COM 2033 AM Reference Traffic Flows Job No. : Date: 十月 25 Junction J6 - Tai Lam Chung Road / Luen Hong Lane Designed By: Checked By: J6 NOTES: (GEOMETRIC INPUT DATA) Tai Lam Chung Road (ARM C) = Major Road Width (6.4 - 20.0) 180 = Central Reserve width (1.2 - 9.0, kerbed central reserve only) 6b 110 = Lane width available to vehicle waiting in stream b-a (2.05 - 4.7) = Lane width available to vehicle waiting in stream b-c (2.05 - 4.7) = Lane width available to vehicle waiting in stream c-b (2.05 - 4.7) 190 6c 0 6d = Visibility to the left for vehicles waiting in stream b-a (22.0 - 250.0) (ARM A) = Visibility to the right for vehicles waiting in stream b-a (17.0 - 250.0) Tai Lam Chung Road = Visibilitu to the right for vehicles waiting in stream b-c (17.0 - 250.0) = Visibility to the right for vehicles waiting in stream c-b (17.0 - 250.0) Vr c-b D = Stream-specific B-A Ε = Stream-specific B-C = Stream-specific C-B 165 6f (ARM B) = (1-0.0345W) Luen Hong Lane **GEOMETRIC DETAILS:** MAJOR ROAD (ARM A) MAJOR ROAD (ARM C) MINOR ROAD (ARM B) W c-b W b-a 7.55 (metres) 4 (metres) 5.7 (metres) W cr 0 (metres) Vr c-b 50 (metres) W b-c 5.7 (metres) 0 (pcu/hr) 180 (pcu/hr) VI b-a 20 (metres) q a-b q c-a q a-c 190 (pcu/hr) q c-b 110 (pcu/hr) Vr b-a = 16 (metres) Vr b-c 16 (metres) q b-a 0 (pcu/hr) **GEOMETRIC FACTORS:** q b-c 165 (pcu/hr) 0.996740 Е 1.081063 F 0.967827 0.739525 THE CAPACITY OF MOVEMENT: Q b-a 501 Q b-c 750 **CRITICAL DFC** 0.22 Q c-b 672 Q b-ac 750 COMPARISION OF DESIGN FLOW TO CAPACITY: DFC b-a 0.00 DFC b-c = 0.22 DFC c-b 0.16 DFC b-ac 0.22

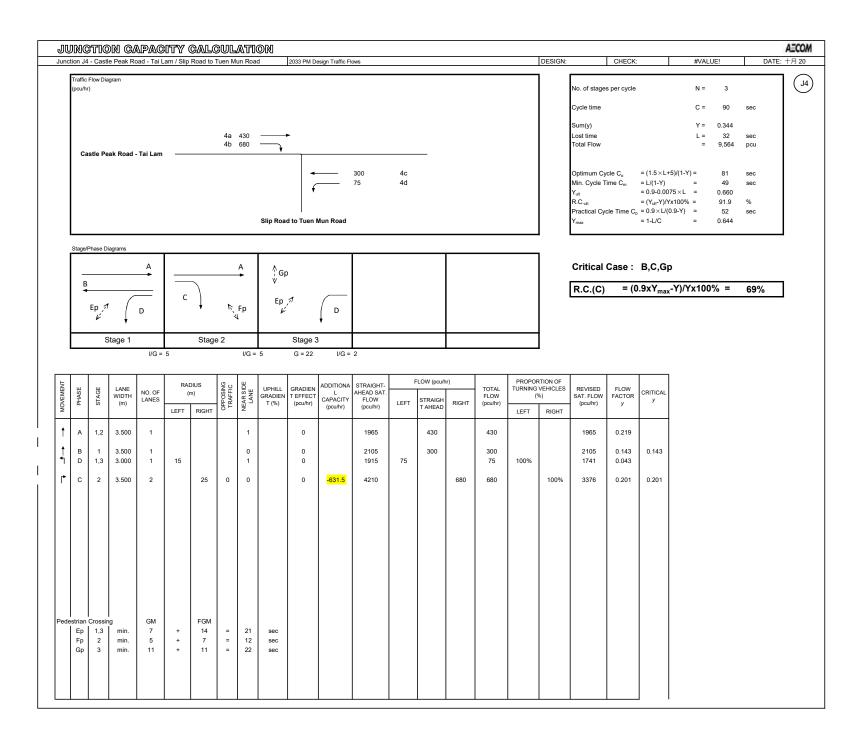
PRIORITY JUNGTION CAPACITY CALCULATION A=COM 2033 PM Reference Traffic Flows Date: 十月 25 Junction J6 - Tai Lam Chung Road / Luen Hong Lane Designed By: Checked By: Job No.: J6 NOTES: (GEOMETRIC INPUT DATA) Tai Lam Chung Road (ARM C) = Major Road Width (6.4 - 20.0) = Central Reserve width (1.2 - 9.0, kerbed central reserve only) 6b 110 = Lane width available to vehicle waiting in stream b-a (2.05 - 4.7) = Lane width available to vehicle waiting in stream b-c (2.05 - 4.7) = Lane width available to vehicle waiting in stream c-b (2.05 - 4.7) 190 6c 0 6d = Visibility to the left for vehicles waiting in stream b-a (22.0 - 250.0) (ARM A) = Visibility to the right for vehicles waiting in stream b-a (17.0 - 250.0) Tai Lam Chung Road = Visibilitu to the right for vehicles waiting in stream b-c (17.0 - 250.0) = Visibility to the right for vehicles waiting in stream c-b (17.0 - 250.0) Vr c-b D = Stream-specific B-A Ε = Stream-specific B-C 95 = Stream-specific C-B 6f (ARM B) = (1-0.0345W) Luen Hong Lane **GEOMETRIC DETAILS:** MAJOR ROAD (ARM A) MAJOR ROAD (ARM C) MINOR ROAD (ARM B) W c-b W b-a 7.55 (metres) 4 (metres) 5.7 (metres) W cr 0 (metres) Vr c-b 50 (metres) W b-c 5.7 (metres) 0 (pcu/hr) 95 (pcu/hr) VI b-a 20 (metres) q a-b q c-a q a-c 190 (pcu/hr) q c-b 110 (pcu/hr) Vr b-a = 16 (metres) Vr b-c 16 (metres) q b-a 0 (pcu/hr) **GEOMETRIC FACTORS:** q b-c 95 (pcu/hr) 0.996740 Е 1.081063 0.967827 0.739525 THE CAPACITY OF MOVEMENT: Q b-a 516 Q b-c 750 **CRITICAL DFC** 0.16 Q c-b 672 Q b-ac 750 COMPARISION OF DESIGN FLOW TO CAPACITY: DFC b-a 0.00 DFC b-c = 0.13 DFC c-b 0.16 DFC b-ac 0.13

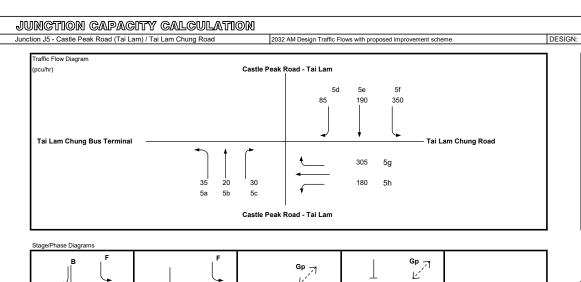


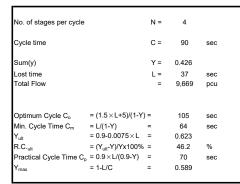












#VALUE!

CHECK:

Critical Case: B,A,C,Ep

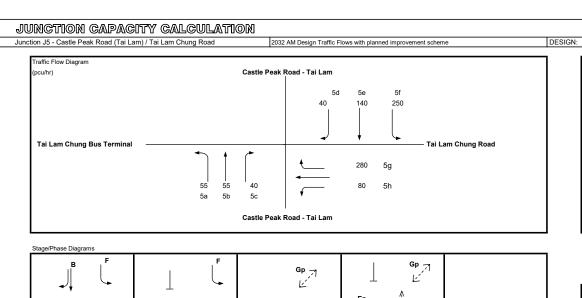
A=COM

(J5)

DATE: 十月 20

Stage 1

Stage 2


Stage 3

Stage 4

|//G = 5

R.C.(C) = $(0.9xY_{max}-Y)/Yx100\%$ = 24%

	MOVEMENT	PHASE	STAGE	LANE WIDTH (m)	NO. OF LANES	RAE (n	DIUS n)	OPPOSING TRAFFIC	NEAR SIDE LANE	UPHILL GRADIEN T (%)	GRADIEN T EFFECT (pcu/hr)	ADDITIONA L CAPACITY (pcu/hr)	STRAIGHT- AHEAD SAT. FLOW	LEFT	LOW (pcu/h	r) RIGHT	TOTAL FLOW (pcu/hr)	PROPORTION OF TURNING VEHICLES (%)		REVISED SAT. FLOW (pcu/hr)	FLOW FACTOR	CRITICAL y	Queue Length (Per Vehicle)
	§	-	0,	(111)		LEFT	RIGHT		쀨	1 (70)	(pcu/iii)		(pcu/hr)		T AHEAD	1410111		LEFT	RIGHT	(pouriii)	,		
-	ŧ	В	1	3.500	1		25	0	0		0	-421	2105		190	85	275		31%	1653	0.166	0.166	5
	↑	C C	2	3.380 3.370	1	30	25	0	1 0		0		1953 2092	35	6 14	30	41 44	85%	68%	1873 2010	0.022 0.022		1
	+	А	3	3.600	1	30	25	0	1		0		1975	180	0	305	485	37%	63%	1870	0.259	0.259	9
	Ļ	F	1,2	3.500	1	15			1		0		1965	350			350	100%		1786	0.196		6
F	Pedes	strian (Dp Ep Gp	Crossin 4 4 4 3,4	g min. min. min.	GM 5 5 5	+ + +	FGM 7 10 5	= =	12 15 10	Sec Sec Sec													

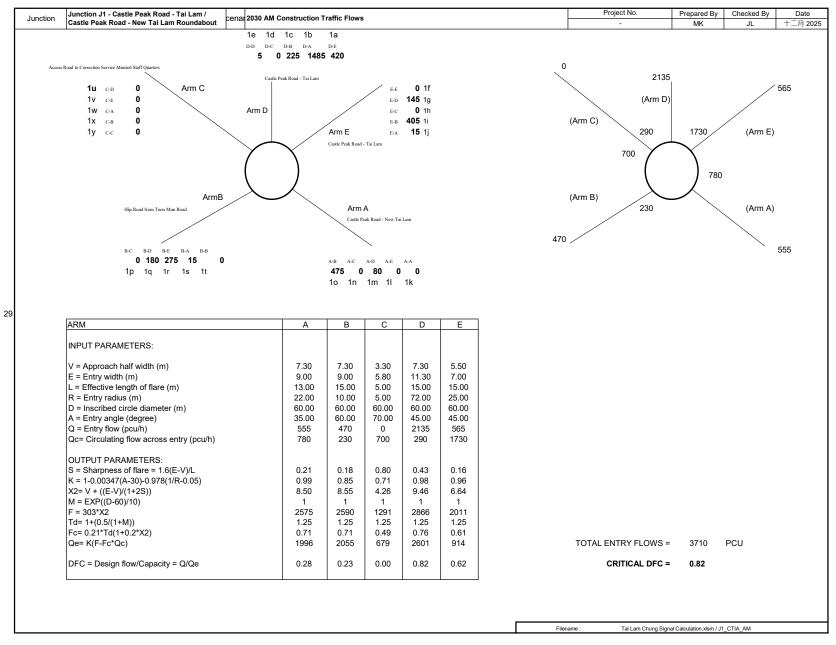
No. of stages per cycle		N =	4	
Cycle time		C =	90	sec
Sum(y)		Y =	0.339	
Lost time		L=	36	sec
Total Flow		=	9,669	pcu
Optimum Cycle C _o	= (1.5×L+5)/(1-Y)	=	89	sec
Min. Cycle Time C _m	= L/(1-Y)	=	55	sec
Yult	= $0.9 - 0.0075 \times L$	=	0.630	
R.C. _{ult}	$= (Y_{ult}-Y)/Yx100\%$	=	85.6	%
Practical Cycle Time C _p	$= 0.9 \times L/(0.9-Y)$	=	58	sec
Y _{max}	= 1-L/C	=	0.600	

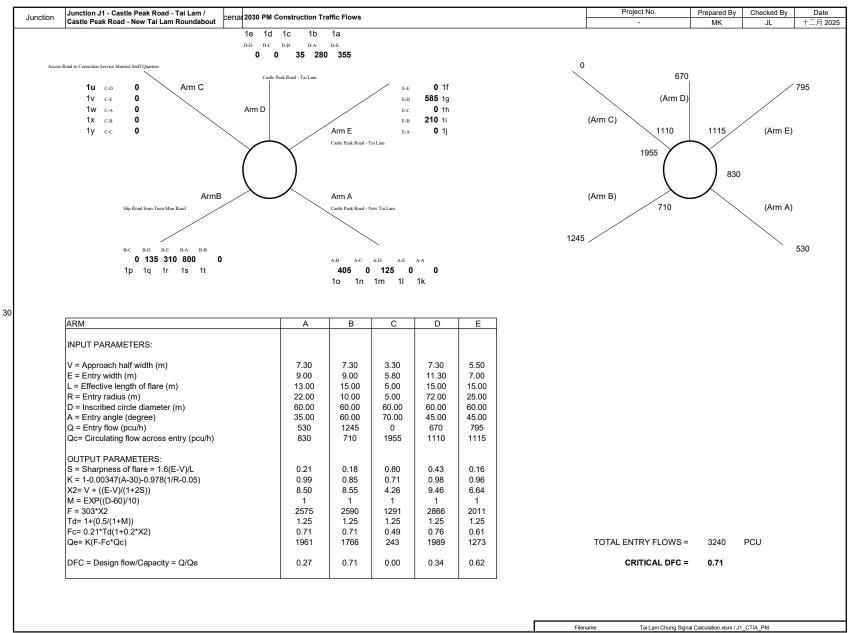
#VALUE!

A=COM

(J5)

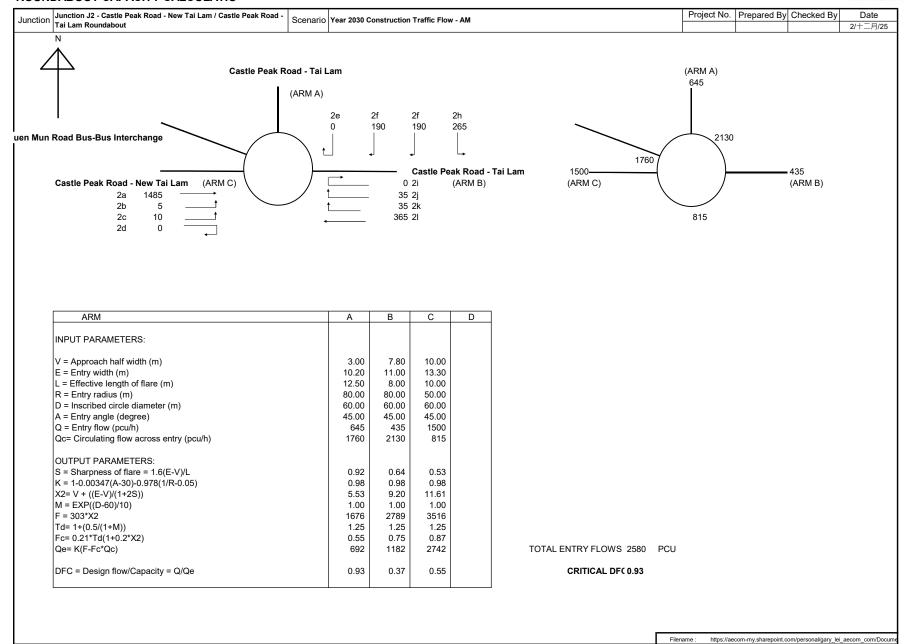
DATE: 十月 20

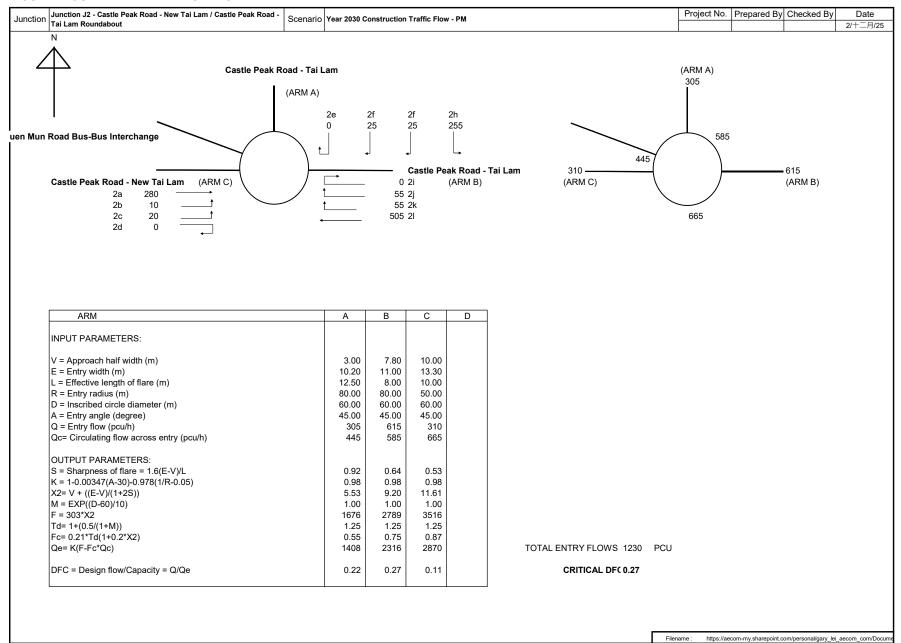

Critical Case: B,A,C,Ep


CHECK:

	MOVEMENT	PHASE	STAGE	LANE WIDTH (m)	NO. OF LANES	RAI (r	DIUS n)	OPPOSING TRAFFIC	NEAR SIDE LANE	UPHILL GRADIEN T (%)	GRADIEN T EFFECT (pcu/hr)	L CAPACITY	STRAIGHT- AHEAD SAT. FLOW	LEFT	LOW (pcu/h	r) RIGHT	TOTAL FLOW (pcu/hr)		RTION OF VEHICLES %)	REVISED SAT. FLOW (pcu/hr)	FLOW FACTOR	CRITICAL y	Queue Length (Per Vehicle)
	ĕ	_	0,	()		LEFT	RIGHT	P L	쀨	. (///	(родліі)	(pcu/hr)	(pcu/hr)		T AHEAD	140111	(роштт)	LEFT	RIGHT	(pourin)	,		
7	4	В	1	3.500	1		25	0	0		0	-421	2105		140	40	180		22%	1662	0.108	0.108	3
	↑	C C	2	3.380 3.370	1	30	25	0	1 0		0		1953 2092	55	17 38	40	72 78	76%	51%	1881 2029	0.038 0.038	0.038	1
4	+	A	3	3.600	1	30	25	0	1		0		1975	80	0	280	360	22%	78%	1867	0.193	0.193	6
ı	l.	F	1,2	3.500	1	15			1		0		1965	250			250	100%		1786	0.140		4
P	edessedess	strian (Dp Ep Gp	Crossir 4 4 4 3,4	g min. min. min.	GM 5 5 5	+ + +	FGM 7 10 5	= = =	12 15 10	sec sec sec													

PRIORITY JUNGTION CAPACITY CALCULATION A=COM Job No. : Date: 十月 25 Junction J6 - Tai Lam Chung Road / Luen Hong Lane 2033 AM Design Traffic Flows Designed By: Checked By: J6 NOTES: (GEOMETRIC INPUT DATA) Tai Lam Chung Road (ARM C) = Major Road Width (6.4 - 20.0) 180 W cr = Central Reserve width (1.2 - 9.0, kerbed central reserve only) 6b 200 = Lane width available to vehicle waiting in stream b-a (2.05 - 4.7) = Lane width available to vehicle waiting in stream b-c (2.05 - 4.7) = Lane width available to vehicle waiting in stream c-b (2.05 - 4.7) 190 6c 0 6d = Visibility to the left for vehicles waiting in stream b-a (22.0 - 250.0) (ARM A) = Visibility to the right for vehicles waiting in stream b-a (17.0 - 250.0) Tai Lam Chung Road = Visibilitu to the right for vehicles waiting in stream b-c (17.0 - 250.0) = Visibility to the right for vehicles waiting in stream c-b (17.0 - 250.0) Vr c-b D = Stream-specific B-A Ε = Stream-specific B-C = Stream-specific C-B 290 6f (ARM B) = (1-0.0345W) Luen Hong Lane **GEOMETRIC DETAILS:** MAJOR ROAD (ARM A) MAJOR ROAD (ARM C) MINOR ROAD (ARM B) W b-a 7.55 (metres) W c-b 4 (metres) 5.7 (metres) W cr 0 (metres) Vr c-b 50 (metres) W b-c 5.7 (metres) 0 (pcu/hr) 180 (pcu/hr) VI b-a 20 (metres) q a-b q c-a q a-c 190 (pcu/hr) q c-b 200 (pcu/hr) Vr b-a = 16 (metres) Vr b-c 16 (metres) q b-a 0 (pcu/hr) **GEOMETRIC FACTORS:** q b-c 290 (pcu/hr) 0.996740 Ε 1.081063 F 0.967827 0.739525 THE CAPACITY OF MOVEMENT: Q b-a 467 Q b-c 750 **CRITICAL DFC** 0.39 Q c-b 672 Q b-ac 750 COMPARISION OF DESIGN FLOW TO CAPACITY: DFC b-a 0.00 DFC b-c = 0.39 DFC c-b 0.30 DFC b-ac 0.39


PRIORITY JUNGTION CAPACITY CALCULATION A=COM Job No. : Date: 十月 25 Junction J6 - Tai Lam Chung Road / Luen Hong Lane 2033 PM Design Traffic Flows Designed By: Checked By: J6 NOTES: (GEOMETRIC INPUT DATA) Tai Lam Chung Road (ARM C) = Major Road Width (6.4 - 20.0) 95 = Central Reserve width (1.2 - 9.0, kerbed central reserve only) 6b 195 = Lane width available to vehicle waiting in stream b-a (2.05 - 4.7) = Lane width available to vehicle waiting in stream b-c (2.05 - 4.7) = Lane width available to vehicle waiting in stream c-b (2.05 - 4.7) 190 6c 0 6d = Visibility to the left for vehicles waiting in stream b-a (22.0 - 250.0) (ARM A) = Visibility to the right for vehicles waiting in stream b-a (17.0 - 250.0) Tai Lam Chung Road = Visibilitu to the right for vehicles waiting in stream b-c (17.0 - 250.0) = Visibility to the right for vehicles waiting in stream c-b (17.0 - 250.0) Vr c-b D = Stream-specific B-A Ε = Stream-specific B-C = Stream-specific C-B 175 6f (ARM B) = (1-0.0345W) Luen Hong Lane **GEOMETRIC DETAILS:** MAJOR ROAD (ARM A) MAJOR ROAD (ARM C) MINOR ROAD (ARM B) W c-b W b-a 7.55 (metres) 4 (metres) 5.7 (metres) W cr 0 (metres) Vr c-b 50 (metres) W b-c 5.7 (metres) 0 (pcu/hr) 95 (pcu/hr) VI b-a 20 (metres) q a-b q c-a q a-c 190 (pcu/hr) q c-b 195 (pcu/hr) Vr b-a = 16 (metres) Vr b-c 16 (metres) q b-a 0 (pcu/hr) **GEOMETRIC FACTORS:** q b-c 175 (pcu/hr) 0.996740 Ε 1.081063 F 0.967827 0.739525 THE CAPACITY OF MOVEMENT: Q b-a 483 Q b-c 750 **CRITICAL DFC** 0.29 Q c-b 672 Q b-ac 750 COMPARISION OF DESIGN FLOW TO CAPACITY: DFC b-a 0.00 DFC b-c = 0.23 DFC c-b 0.29 DFC b-ac 0.23

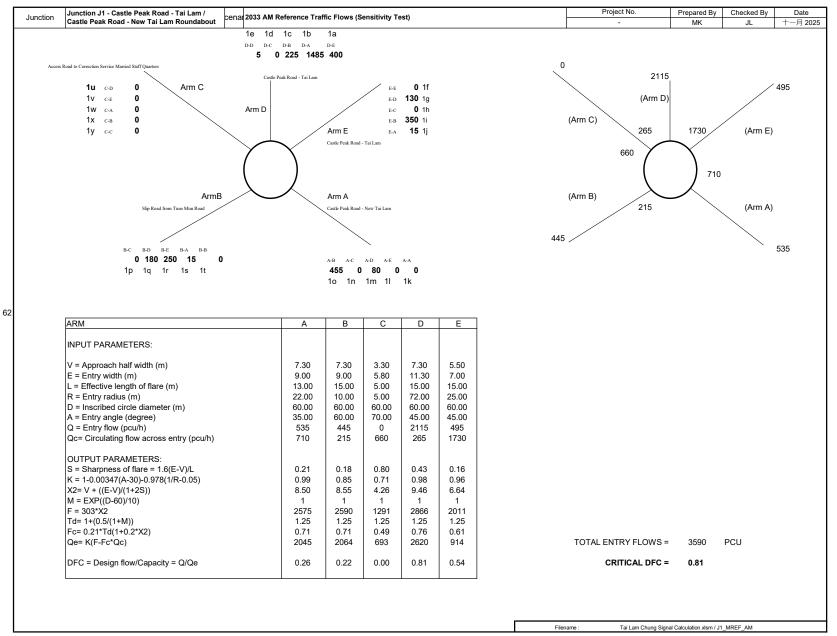


AECOM

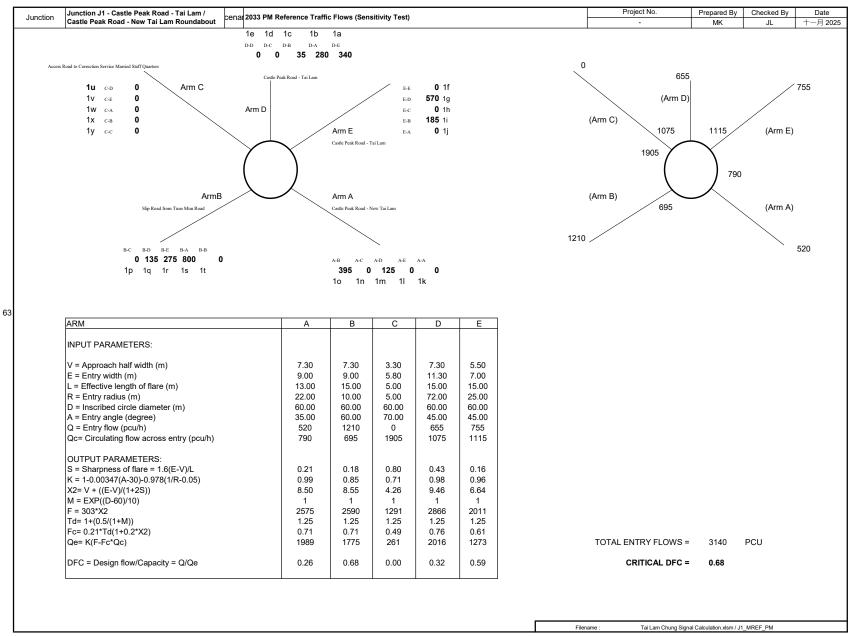
Job No. Job Title Junction Junction Design Y AM/PM State	Nan No	ne	:	J3 2030 AM	ak Road -		Tuen Mur	n Road					Designed By Checked By Reviewed By Design Date		十月 20		6:11:0	1下午		- - -			Reminder: Enter "P" n Note:	ext to the pe	rdestrian phase unc	ier column B
٩	U	NC	710	NO CA			CAL	.		9NI																A=COM
Ju	nctio	on J3	- Castle	Peak Roa	ad - Tai La	m / Tuen M	Mun Road				2030 AM Co	nstruction Tra	ffic Flows						DESIGN:		CHECK:		#VALUE	1	DATE	十月 20
		pcu/hr			- Tai Lam			3a	825 60 3c	155 3d	→	oad oad	325	3b	_					No. of stages Cycle time Sum(y) Lost time Total Flow Optimum Cycle Ti Y _{ut} R.C. ₁ R.C. ₁ Practical Cyc Y _{max}	cle C _o me C _m	= (Y _{ult} -Y)/	L = = +5)/(1-Y) = = 975 × L = 4x100% = 0.9-Y) =	2 90 0.201 21 10,195 46 26 0.743 269.0 27 0.767	sec sec sec sec sec sec sec	J3)
	L Ľ	Stage/F	Phase D	agrams	A	1	^ c													Critical	Case ·					J
		В			-		∱G _l	р																		1
		-		F		│	_	_												R.C.(C)	= (0	.9xY _{ma}	_x -Y)/Yx100%	₀ =	243%	ļ
		E	p A	F ≪-	>		c	D																		
	L		S	tage 1	I/G =	5	Stage G = 15		I/G =	2												5	i			
MONGMENT	MOVEMENT	PHASE	STAGE	LANE WIDTH (m)	NO. OF LANES		DIUS m)	OPPOSING	NEAR SIDE LANE	UPHILL GRADIEN T (%)	GRADIENT EFFECT (pcu/hr)	ADDITIONA L CAPACITY (pcu/hr)	STRAIGHT- AHEAD SAT. FLOW (pcu/hr)	LEFT	STRAIGH T AHEAD	RIGHT	TOTAL FLOW (pcu/hr)	TURNING	RTION OF VEHICLES %)	REVISED SAT. FLOW (pcu/hr)	FLOW FACTOR y	CRITICAL y				
-	1	А	1	3.650	2				1		0		4100		825		825			4100	0.201	0.201	-			
<u> </u>	1	В	1	4.500	1				1		0		2065		325		325			2065	0.157					
¦ ∙	١	С	2	3.500	1	15			1		0		1965	60			60	100%		1786	0.034					
ı	•	D	2	4.500	1		25	0	1		0		2065			155	155		100%	1948	0.080					
Pe		trian C Ep Fp Gp	Crossing 1 1 2	min. min. min.	GM 5 5 8	+ + +	FGM 5 6 7	= = =	10 11 15	sec sec sec																

Job No. Job Title Junction Junction Design N AM/PM State	Nan No	me	:	J3 2030 PM	eak Road - tion Traffic		Tuen Mur	n Road					Designed By Checked By Reviewed By Design Date		十月 20		6:11:0	1下午		- - -			Reminder: Enter "P" next to the Note:	edestrian phase und	er column B
ل	JW	NC	710	ON CA			CAL	SUL	ATI	ON															A=COM
Ju	incti	on J3	- Castle	Peak Roa	ad - Tai La	m / Tuen M	Mun Road				2030 PM Co	nstruction Tra	ffic Flows						DESIGN:		CHECK:		#VALUE!	DATE:	十月 20
		pcu/hr			- Tai Lam			3a	530 675 3c	720 3d	→	nad sad	250	3b	_					No. of stages Cycle time Sum(y) Lost time Total Flow Optimum Cy Min. Cycle Ti Y _{ut} R.C. _{ut} P.C. _{ut} Y _{max}	cle C_{o} ime C_{m}	= L/(1-Y) = 0.9-0.00 = (Y _{ult} -Y)/	075×L = 0.833 Yx100% = 64.2	sec sec sec sec % sec	J3
	ل آ	Stage/i	Phase D	iagrams	A		∱g	p]]	Critical	Case :				l
		B •	р Л К	F ≪-	>	•	, v -													R.C.(C)	= (0).9xY _{ma}	_x -Y)/Yx100% =	60%]
	ŀ		S	stage 1	I/G =	6	Stag	e 2	I/G =	5												5	i		
FIREMENT	MOVEMEN	PHASE	STAGE	LANE WIDTH (m)	NO. OF LANES		DIUS m)	OPPOSING TRAFFIC	NEAR SIDE LANE	UPHILL GRADIEN T (%)	GRADIENT EFFECT (pcu/hr)	ADDITIONA L CAPACITY (pcu/hr)	STRAIGHT- AHEAD SAT. FLOW (pcu/hr)	LEFT	STRAIGH T AHEAD	RIGHT	TOTAL FLOW (pcu/hr)	PROPOF TURNING (9	RTION OF VEHICLES %)	REVISED SAT. FLOW (pcu/hr)	FLOW FACTOR y	CRITICAL y			
	t	Α	1	3.650	2				1		0		4100		530		530			4100	0.129	0.129			
1	†	В	1	4.500	1				1		0		2065		250		250			2065	0.121				
1	ןו	С	2	3.500	1	15			1		0		1965	675			675	100%		1786	0.378	0.378			
	→ des	D trian (2 Crossin	4.500	1 GM 5	+	25 FGM 5	=	1 10	SBC	0		2065			720	720		100%	1948	0.370				
		Fp Gp	1 2	min. min.	5 8	+	6 7	=	11 15	sec sec															

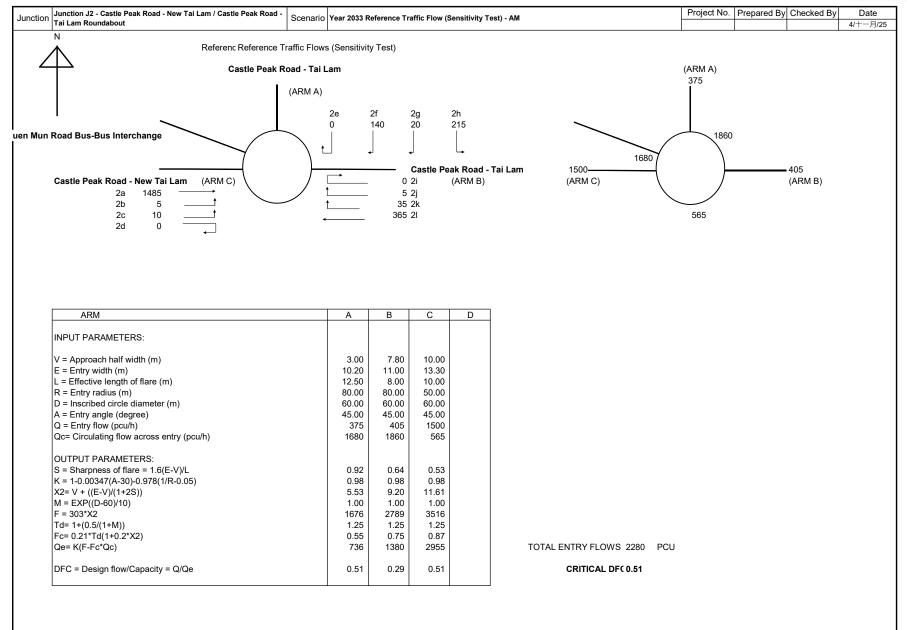
Job No. Designed By Reminder: Enter "P" next to the pedestrian phase under column B Job Title Checked By Note: Castle Peak Road - Tai Lam / Slip Road to Tuen Mun Road Junction Name Reviewed By Design Year Design Date AM/PM AM State Construction Traffic Flows A=COM JUNCTION CAPACITY CALCULATION Junction J4 - Castle Peak Road - Tai Lam / Slip Road to Tuen Mun Road 2030 AM Construction Traffic Flows DESIGN: CHECK: #VALUE! DATE: 十月 20 Traffic Flow Diagram (pcu/hr) No. of stages per cycle Cycle time C = 90 sec Y = 0.251 Sum(y) 4a 655 4b 325 L = 32 sec = 9,564 pcu Lost time Total Flow Castle Peak Road - Tai Lam 4c 4d Optimum Cycle $C_o = (1.5 \times L+5)/(1-Y) =$ 71 sec → 325 **—** 95 Min. Cycle Time C_m = L/(1-Y) 43 sec = 0.9-0.0075×L = 0.660 R.C._{ult} = (Y_{ut}-Y)/Yx100% = 163.3 % Practical Cycle Time C_p = 0.9 × L/(0.9-Y) = 44 sec Slip Road to Tuen Mun Road = 1-L/C 0.644 Stage/Phase Diagrams Critical Case: B,C,Gp ↑Gp R.C.(C) = $(0.9xY_{max}-Y)/Yx100\%$ = 131% Ep ⋪ ħ Fp ₹ Ep ⊅ D Stage 1 Stage 2 Stage 3 PROPORTION OF TURNING VEHICLES STRAIGHTAMEDIAN AMEDIAN AMED FLOW (pcu/hr) LANE WIDTH TOTAL FLOW REVISED SAT. FLOW FLOW FACTOR NO. OF LANES CRITICAL (m) (%) STRAIGH LEFT RIGHT (m) (pcu/hr) (pcu/hr) LEFT RIGHT T AHEAD LEFT RIGHT 1,2 3.500 0 1965 655 655 0.333 3.500 2105 325 2105 0.154 0.154 1,3 3.000 15 0 100% 0.055 С 2 3.500 25 0 -631.5 4210 325 100% 3376 FGM Ep | 1,3 21 Fp 2 min. 12 22 sec Gp min. 11 sec


Job No. Designed By Reminder: Enter "P" next to the pedestrian phase under column B Job Title Checked By Note: Castle Peak Road - Tai Lam / Slip Road to Tuen Mun Road Junction Name Reviewed By Design Year Design Date AM/PM State Construction Traffic Flows A=COM JUNCTION CAPACITY CALCULATION Junction J4 - Castle Peak Road - Tai Lam / Slip Road to Tuen Mun Road 2030 PM Construction Traffic Flows DESIGN: CHECK: #VALUE! DATE: 十月 20 Traffic Flow Diagram (pcu/hr) No. of stages per cycle Cycle time C = 90 sec Y = 0.211 Sum(y) L = 32 sec = 9,564 pcu Lost time Total Flow Castle Peak Road - Tai Lam 67 sec **←** 250 4c 4d Optimum Cycle $C_o = (1.5 \times L+5)/(1-Y) =$ _____ 100 Min. Cycle Time C_m = L/(1-Y) 41 sec = 0.9-0.0075×L = 0.660 R.C._{ult} = (Y_{ult}-Y)/Yx100% = 213.4 % Practical Cycle Time C_p = 0.9 × L/(0.9-Y) = 42 sec Slip Road to Tuen Mun Road = 1-L/C 0.644 Stage/Phase Diagrams Critical Case: B,C,Gp ↑Gp R.C.(C) = $(0.9xY_{max}-Y)/Yx100\%$ = 175% Ep ⋪ ħ Fp ₹ Ep ⊅ D Stage 1 Stage 2 Stage 3 PROPORTION OF TURNING VEHICLES STRAIGHTAMEDIAN AMEDIAN AMED FLOW (pcu/hr) LANE WIDTH TOTAL FLOW REVISED SAT. FLOW FLOW FACTOR NO. OF LANES CRITICAL (m) (%) STRAIGH LEFT RIGHT (m) (pcu/hr) (pcu/hr) LEFT RIGHT T AHEAD LEFT RIGHT 1,2 3.500 0 1965 940 940 0.478 3.500 2105 250 2105 0.119 0.119 1,3 3.000 15 0 100 100% 0.057 С 2 3.500 25 0 -631.5 4210 100% 3376 0.092 FGM Ep | 1,3 21 Fp 2 min. 12 22 sec Gp min. 11 sec

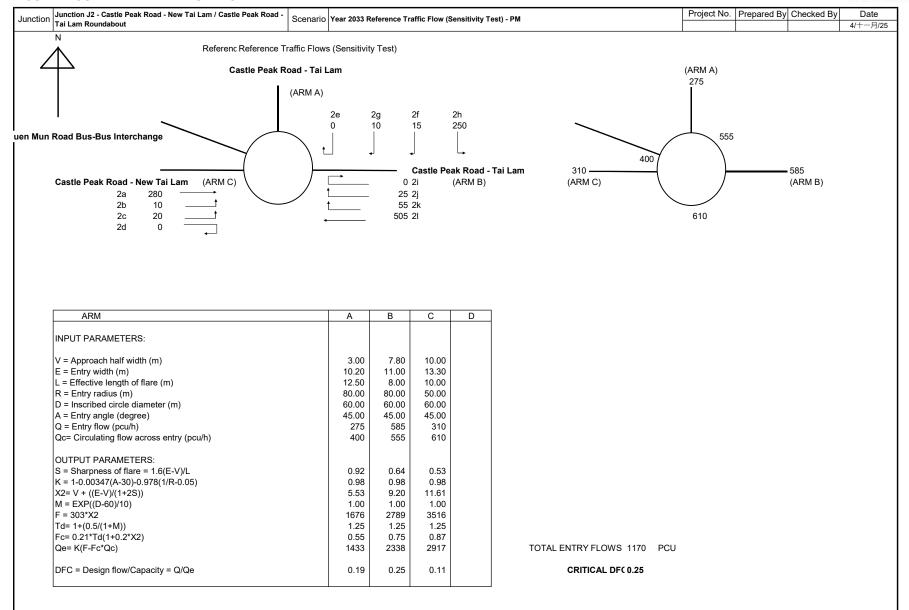
Juno	Title tion Na tion No gn Yea PM	0		J5 2030 AM Peak	eak Road (Tai Lam (Chung F	Road				Designed By Checked By Reviewed By Design Date		十月 20		6:11:0	01 下午		- - -			Reminder: Enter Note:	"P" next to the	pedestrian phase	under column B
	JU	JNC	TIC	ON CA	APAC	TY	CAL	CUL	ATI	<u> </u>																AECOM
					ad (Tai Lar						2030 AM Pe	ak Contruction	Traffic Flows						DESIGN:		CHECK:		#VA	LUE!	DA	TE: 十月 20
		Traffic (pcu/h	Flow Dia	agram						Castle F	Peak Road (5f							No. of stages	per cycle		N =	2	sec	J5)
			Ta	i Lam Ch	ung Road				_		90	200	365			Tai Lam (Chung Road	ı		Sum(y) Lost time Total Flow			Y = L = =		sec pcu	
									35 5a	5b	25 5c Peak Road (290 0 210	5g 5h						Optimum Cy Min. Cycle Ti Y _{ut} R.C. _{ut} Practical Cyc Y _{max}	ime C _m	= (1.5×L- = L/(1-Y) = 0.9-0.00 = (Y _{ult} -Y)/\) = 0.9×L/(= 1-L/C	= 75×L = ′x100% =	63 37 0.720 105.3 39 0.600	sec sec % sec	
		Stage/	Phase D	iagrams			^													Critical	Case :	A,Cp				
		-	•	B♣	•			Ср												R.C.(C)	= (0	.9xY _{ma}	_c -Y)/Yx10	0% =	54%	
			S	Stage 1	I/G =	4	Stag		I/G =	3												5				
	MOVEMENT	PHASE	STAGE	LANE WIDTH (m)	NO. OF LANES	(DIUS m)	OPPOSING TRAFFIC	NEAR SIDE LANE	UPHILL GRADIEN T (%)	GRADIENT EFFECT (pcu/hr)	ADDITIONA L CAPACITY (pcu/hr)	STRAIGHT- AHEAD SAT. FLOW (pcu/hr)	LEFT	FLOW (pcu/l STRAIGH T AHEAD	nr) RIGHT	TOTAL FLOW (pcu/hr)	TURNING ('	RTION OF VEHICLES %)	REVISED SAT. FLOW (pcu/hr)	FLOW FACTOR y	CRITICAL y				
	<u>-</u>	А	1	3.500	1	LEFT 20	RIGHT 20	0	1		0		1965	365	200	90	655	LEFT 56%	RIGHT 14%	1868	0.351	0.351				
	4	ВВ	1 1	3.500 3.500	1 1	15	15	0	1 0		0		1965 2105	35	13 27	25	48 52	73%	48%	1831 2009	0.026 0.026					
	Pede	estrian (Crossin 2	3 min.	GM 9	+	FGM 9	=	18	sec																

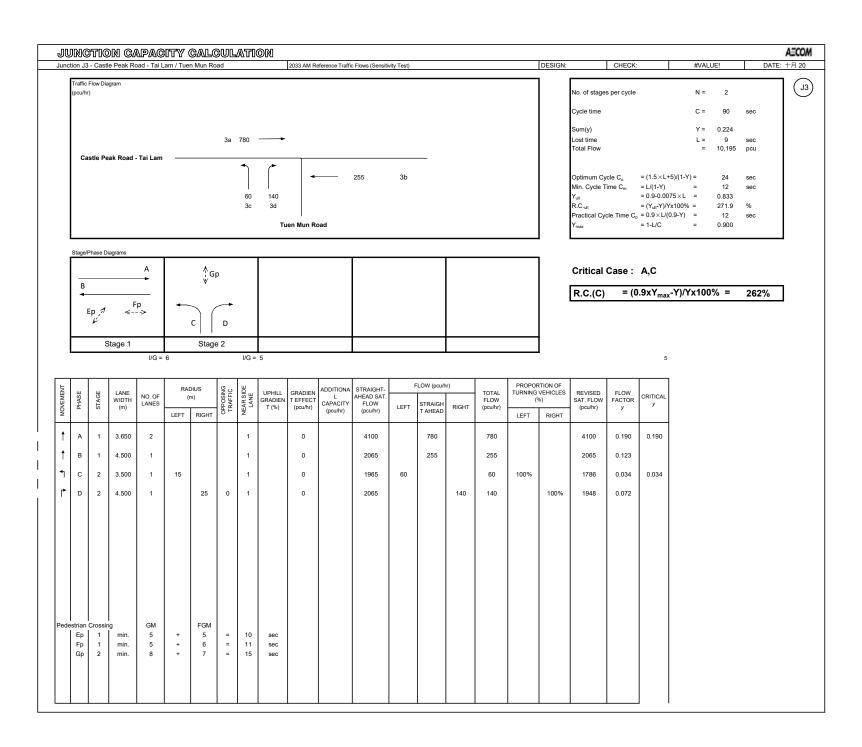

Job No Job Tit Junctic Junctic Design AM/PM State	e n Nar n No Year		:	J5 2030 PM Peak	eak Road (Tai Lam (Chung R	load				Designed By Checked By Reviewed By Design Date		十月 20		6:11:0	1下午		• • •			Reminder: Enter' Note:	P" next to the	pedestrian pha	se under column B	
	JU		T10	ON CA			CAL	.		0N																AECON	И
٠,	luncti	ion J5	- Castle	Peak Roa	ad (Tai Lar	n) / Tai La	m Chung	Road			2030 PM Pe	ak Contruction	Traffic Flows						DESIGN:		CHECK:		#VAL	UE!	D	ATE: 十月 20	_
		Traffic (pcu/h			ung Road				55	\$	reak Road (5e 255	0	5g 5h		Tai Lam (Chung Road	ı		No. of stages Cycle time Sum(y) Lost time Total Flow Optimum Cyc Min. Cycle Ti Yut	cle C _o	= L/(1-Y) = 0.9-0.00)75×L =	2 60 0.499 24 6,035 82 48 0.720	sec sec pcu	J5	
		Stage/	Phase D	iagrams					5a		5c	Tai Lam)								R.C. _{ut} Practical Cyc Y _{max} Critical	Case :	= 0.9×L/(= 1-L/C	=	44.3 54 0.600	% sec		
			• 👉	B→	-		V	Ср												R.C.(C)	= (0	.9xY _{ma}	_x -Y)/Yx10	0% =	8%		
	L			stage 1	I/G =	4	Stag G = 18		I/G =	3												5	i				
	MOVEMENT	PHASE	STAGE	LANE WIDTH (m)	NO. OF LANES		DIUS m)	OPPOSING	NEAR SIDE LANE	UPHILL GRADIEN T (%)	GRADIENT EFFECT (pcu/hr)	ADDITIONA L CAPACITY (pcu/hr)	STRAIGHT- AHEAD SAT. FLOW (pcu/hr)	LEFT	STRAIGH T AHEAD	RIGHT	TOTAL FLOW (pcu/hr)	PROPOR TURNING (*)	RTION OF VEHICLES (6)	REVISED SAT. FLOW (pcu/hr)	FLOW FACTOR y	CRITICAL y					
	+	А	1	3.500	1	20	20	0	1		0		1965	635	255	40	930	68%	4%	1864	0.499	0.499	-				
	♣ ♣	B B	1 1	3.500 3.500	1 1 1 GM	15	15	0	1 0		0 0		1965 2105	55	23 62	25	78 87	70%	29%	1836 2046	0.043 0.043						
		Ср	2	min.	9	+	9	=	18	sec																	

PRIORITY JUNGTION CAPACITY CALCULATION A=COM 2030 AM Contruction Traffic Flows Date: 十二月 25 Junction J6 - Tai Lam Chung Road / Luen Hong Lane Designed By: Checked By: Job No.: J6 NOTES: (GEOMETRIC INPUT DATA) Tai Lam Chung Road (ARM C) = Major Road Width (6.4 - 20.0) 180 = Central Reserve width (1.2 - 9.0, kerbed central reserve only) 6b 200 = Lane width available to vehicle waiting in stream b-a (2.05 - 4.7) = Lane width available to vehicle waiting in stream b-c (2.05 - 4.7) = Lane width available to vehicle waiting in stream c-b (2.05 - 4.7) 190 6c 0 6d = Visibility to the left for vehicles waiting in stream b-a (22.0 - 250.0) (ARM A) = Visibility to the right for vehicles waiting in stream b-a (17.0 - 250.0) Tai Lam Chung Road = Visibilitu to the right for vehicles waiting in stream b-c (17.0 - 250.0) = Visibility to the right for vehicles waiting in stream c-b (17.0 - 250.0) Vr c-b D = Stream-specific B-A Ε = Stream-specific B-C = Stream-specific C-B 290 6f (ARM B) = (1-0.0345W) Luen Hong Lane **GEOMETRIC DETAILS:** MAJOR ROAD (ARM A) MAJOR ROAD (ARM C) MINOR ROAD (ARM B) W b-a 7.55 (metres) W c-b 4 (metres) 5.7 (metres) W cr 0 (metres) Vr c-b 50 (metres) W b-c 5.7 (metres) 0 (pcu/hr) 180 (pcu/hr) VI b-a 20 (metres) q a-b q c-a q a-c 190 (pcu/hr) q c-b 200 (pcu/hr) Vr b-a = 16 (metres) Vr b-c 16 (metres) q b-a 0 (pcu/hr) **GEOMETRIC FACTORS:** q b-c 290 (pcu/hr) 0.996740 Ε 1.081063 F 0.967827 0.739525 THE CAPACITY OF MOVEMENT: Q b-a 467 Q b-c 750 **CRITICAL DFC** 0.39 Q c-b 672 Q b-ac 750 COMPARISION OF DESIGN FLOW TO CAPACITY: DFC b-a 0.00 DFC b-c = 0.39 DFC c-b 0.30 DFC b-ac 0.39


PRIORITY JUNGTION CAPACITY CALCULATION A=COM 2030 PM Construction Traffic Flows Date: 十二月 25 Junction J6 - Tai Lam Chung Road / Luen Hong Lane Designed By: Checked By: Job No.: J6 NOTES: (GEOMETRIC INPUT DATA) Tai Lam Chung Road (ARM C) = Major Road Width (6.4 - 20.0) 100 = Central Reserve width (1.2 - 9.0, kerbed central reserve only) 6b 195 = Lane width available to vehicle waiting in stream b-a (2.05 - 4.7) = Lane width available to vehicle waiting in stream b-c (2.05 - 4.7) = Lane width available to vehicle waiting in stream c-b (2.05 - 4.7) 190 6c 0 6d = Visibility to the left for vehicles waiting in stream b-a (22.0 - 250.0) (ARM A) = Visibility to the right for vehicles waiting in stream b-a (17.0 - 250.0) Tai Lam Chung Road = Visibilitu to the right for vehicles waiting in stream b-c (17.0 - 250.0) = Visibility to the right for vehicles waiting in stream c-b (17.0 - 250.0) Vr c-b D = Stream-specific B-A Ε = Stream-specific B-C = Stream-specific C-B 175 6f (ARM B) = (1-0.0345W) Luen Hong Lane **GEOMETRIC DETAILS:** MAJOR ROAD (ARM A) MAJOR ROAD (ARM C) MINOR ROAD (ARM B) W b-a 7.55 (metres) W c-b 4 (metres) 5.7 (metres) W cr 0 (metres) Vr c-b 50 (metres) W b-c 5.7 (metres) 0 (pcu/hr) 100 (pcu/hr) VI b-a 20 (metres) q a-b q c-a q a-c 190 (pcu/hr) q c-b 195 (pcu/hr) Vr b-a = 16 (metres) Vr b-c 16 (metres) q b-a 0 (pcu/hr) **GEOMETRIC FACTORS:** q b-c 175 (pcu/hr) 0.996740 Ε 1.081063 F 0.967827 0.739525 THE CAPACITY OF MOVEMENT: Q b-a 482 Q b-c 750 **CRITICAL DFC** 0.29 Q c-b 672 Q b-ac 750 COMPARISION OF DESIGN FLOW TO CAPACITY: DFC b-a 0.00 DFC b-c = 0.23 DFC c-b 0.29 DFC b-ac 0.23

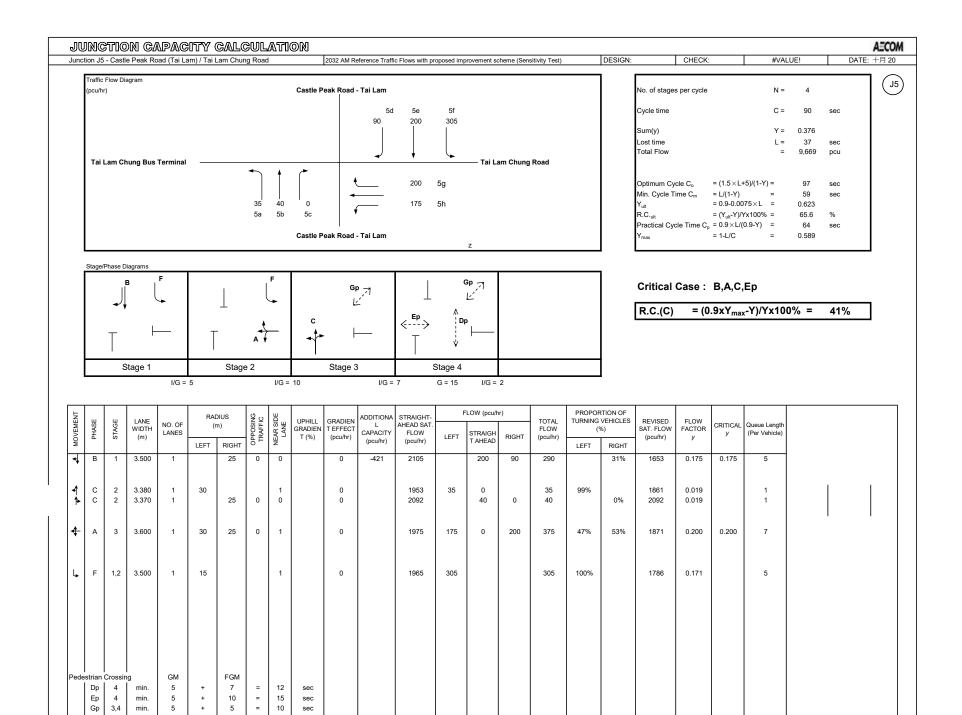
AECOM

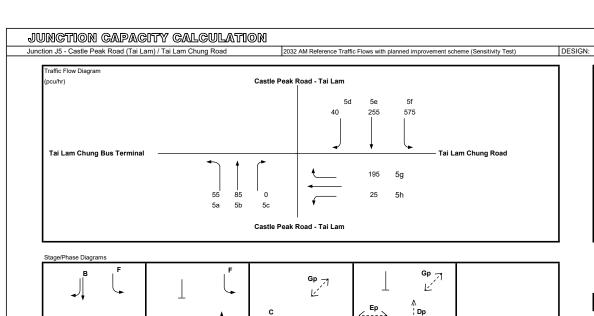




Filename :

https://aecom-my.sharepoint.com/personal/gary_lei_aecom_com/Docum





Job No. Job Title Junction N Junction N Design Ye AM/PM State aren	No ear		: 2	J3 2033 PM	ak Road - 033 Refere	nce Traffic	Flow (Ser	nsitivity 7	Γest) - Al	M			Designed By Checked By Reviewed By Design Date		十月 20		6:11:0	11 下午		- - -			Reminder: Note:	Enter "P"	next to the p	edestrian ph	use under column B	j
JI	UIN	JC1	710	n c <i>a</i>			CALC	ewl evel	ATI	0NI																	AECO	м
Jun	ction	13 - C	Castle	Peak Roa	ıd - Tai La	m / Tuen M	Mun Road				2033 PM Re	ference Traffi	Flows (Sensit	ivity Test)					DESIGN:		CHECK:			#VALU	E!	D	ATE: 十月 20	_
		effic Flo cu/hr)			- Tai Lam			3a	485 675 3c	705 3d	+		205	3b	_					No. of stages Cycle time Sum(y) Lost time Total Flow Optimum Cy Min. Cycle Ti Yut R.C.ut	cle C _o	= $(1.5 \times L)$ = $L/(1-Y)$ = $0.9-0.00$ = $(Y_{ub}-Y)/(1-Y)$	075×L =	=	2 90 0.496 9 10,195 37 18 0.833 67.8	sec sec pcu	JS	3)
	Sta	age/Pha	ase Dia	ıgrams					JC		en Mun Ro	oad								Practical Cyc	ele Time C _o			=	20 0.900	sec		
		В	000 010	gramo	A		∱G _l	р												Critical		•					_	
		Ep	, A L	F ≪	p >	-	c	D												R.C.(C)	= (0).9xY _{ma}	_{ix} -Y)/Y	x100°	% =	63%		
_			St	age 1	I/G =	6	Stage	e 2	I/G =	5												5	5					
MOVEMENT	LOSING	PHASE	STAGE	LANE WIDTH (m)	NO. OF LANES		DIUS m) RIGHT	OPPOSING	NEAR SIDE LANE	UPHILL GRADIEN T (%)	GRADIENT EFFECT (pcu/hr)	ADDITIONA L CAPACITY (pcu/hr)	STRAIGHT- AHEAD SAT. FLOW (pcu/hr)	LEFT	STRAIGH T AHEAD	r) RIGHT	TOTAL FLOW (pcu/hr)	PROPOR TURNING (9	RTION OF VEHICLES (6) RIGHT	REVISED SAT. FLOW (pcu/hr)	FLOW FACTOR y	CRITICAL y						
† †			1	3.650 4.500	2				1		0		4100 2065		485 205		485			4100 2065	0.118	0.118						
			1		1				1		0				205		205											
 			2	3.500 4.500	1	15	25	0	1		0		1965 2065	675		705	675 705	100%	100%	1786 1948	0.378	0.378						
Pec	E	Fp	ossing 1 1 2	min. min. min.	GM 5 5 8	+ + +	FGM 5 6 7	= = =	10 11 15	sec sec sec																		

ob No. ob Title unction Na unction No Design Yea M/PM State arenc	ır	:	J4 2033 AM	eak Road - 033 Refere e Traffic F	ence Traffic	Flow (Ser	sitivity '			- - - -		Designed By Checked By Reviewed By Design Date	,	十月 20		6:11:0	11 下午		- - -			Reminder: Ente Note:	r "P" next to the	pedestrian phase	under column B
				APAC					0N																AECOM
June	tion J4	- Castle	Peak Roa	ad - Tai La	m / Slip Ro	oad to Tue	en Mun I	Road		2033 AM Re	eference Traffi	c Flows (Sensit	ivity Test)					DESIGN:		CHECK:		#V	ALUE!	DA*	E: 十月 20
	(pcu/h			- Tai Lam	_			595 325	Slip Roa	d to Tuen N		255 70	4c 4d	_					No. of stages Cycle time Sum(y) Lost time Total Flow Optimum Cy Min. Cycle Ti Yot R.C.; Practical Cyc Y _{max}	cle C _o me C _m	= (1.5 × L+ = L/(1-Y) = 0.9-0.001 = (Y _{ut} -Y)/Y = 0.9 × L/((= 1-L/C)	= 75×L = 'x100% =	90 0.217 32	sec sec pcu sec sec sec % sec	J4)
	Ct	D D																ı							_
	Stage/	Phase D	lagrams	А				А	٨٠										Critical	Case :	B,C,G	o			
	- В			_	=	$\overline{}$		*	∱ Gr)									R.C.(C)			-Y)/Yx1	00% =	167%	7
		Ep 🎜		D	С	1	r	Fp	Ep	л	D								(-)		max	` ,			_
		'نط	+				٦	1			+														
		S	stage 1	I/G =		Stag	e 2	I/G =		Stage 3	3 I/G =														
				1/6 =	5			1/G =	5	G = 22	I/G =	2													
MOVEMENT	PHASE	STAGE	LANE WIDTH (m)	NO. OF LANES		DIUS m)	OPPOSING TRAFFIC	NEAR SIDE LANE	UPHILL GRADIEN T (%)	GRADIENT EFFECT (pcu/hr)	ADDITIONA L CAPACITY (pcu/hr)	FLOW	LEFT	LOW (pcu/l	DICUT	TOTAL FLOW (pcu/hr)	TURNING	RTION OF VEHICLES %)	REVISED SAT. FLOW (pcu/hr)	FLOW FACTOR y	CRITICAL y				
Mo	_		()		LEFT	RIGHT	9 -	쒿	. (%)	(pourit)	(pourii)	(pcu/hr)		T AHEAD	RIGHT	(pourit)	LEFT	RIGHT	(pourin)	,					
1	А	1,2	3.500	1				1		0		1965		595		595			1965	0.303					
1	B D	1 1,3	3.500 3.000	1	15			0		0		2105 1915	70	255		255 70	100%		2105 1741	0.121 0.040	0.121				
	С	2	3.500	2		25	0	0		0	-631.5	4210			325	325		100%	3376	0.096	0.096				
Pede	estrian	Crossin		GM		FGM																			
	Ep Fp	1,3 2	min. min.	7 5	+	14 7	=	21 12	sec sec																
	Gp	3	min.	11	+	11	=	22	sec																

lob No. lob Title lunction N	lo	:	J4	eak Road - 033 Refere						- - -		Designed By Checked By Reviewed By	,						- - -			Reminder: Enter' Note:	P* next to the	pedestrian phase	under column B
Design Ye AM/PM		:	2033 PM							-		Design Date		十月 20		6:11:0	01 下午								
State aren	ce Traff	ic Flows	Referenc	e Traffic F	lows (Sen	sitivity Tes	st)			-															
J	שוש	T10	ON CA			CAL	CUL	ATO	0N																AECOM
Jun	ction J4	- Castle	Peak Roa	ad - Tai La	m / Slip R	oad to Tue	en Mun I	Road		2033 PM Re	eference Traffi	c Flows (Sensit	ivity Test)					DESIGN:		CHECK:		#VAL	UE!	DAT	E: 十月 20
	Traffic	Flow Dia	agram]	No. of stages	ner cycle		N =	3		J4)
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,																	Cycle time			C =	90	sec	
																						-		Sec	
	1						4a	870		-									Sum(y) Lost time			Y = L =	0.192 32	sec	
	0	astle Pe	ak Road	- Tai Lam	_		4b	320	<u> </u>	_				_					Total Flow			=	9,564	pcu	
	1											205	4c						Optimum Cyr	cle C _o	= (1.5×L+	·5)/(1-Y) =	66	sec	
	1									- •		80	4d						Min. Cycle Ti Y _{ut}		= L/(1-Y) = 0.9-0.00	=	40 0.660	sec	
																			R.C. _{ut} Practical Cyc	i. Tim. O	= (Y _{ut} -Y)/Y	x100% =	243.4 41	%	
	1								Slip Roa	d to Tuen I	Mun Road								Y _{max}	ae rime C _o	= 1-L/C	=	0.644	sec	
	_																	I							_
	Stage/	Phase D	iagrams		Ι				1			l .			I			1							
	-			A				A	∱G _l)									Critical						
	B			_	С						_								R.C.(C)	= (0	.9xY _{max}	-Y)/Yx10	0% =	202%	
		Ep A	· (D		¥	ħ,	Fp	Ep ⊮	,31	D														
		v	*					1			*							1							
		S	stage 1			Stag	e 2			Stage 3]							
				I/G =	5			I/G =	5	G = 22	I/G =	2													
Ę	Τ				RA.	DIUS	٥.,	ш				STRAIGHT-	F	LOW (pcu/l	hr)		PROPOF	RTION OF							
MOVEMENT	PHASE	STAGE	LANE WIDTH (m)	NO. OF LANES		m)	OPPOSING	NEAR SIDE LANE	UPHILL GRADIEN T (%)	GRADIENT EFFECT (pcu/hr)	ADDITIONA L CAPACITY (pcu/hr)	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)		VEHICLES %)	REVISED SAT. FLOW (pcu/hr)	FLOW FACTOR y	CRITICAL y				
Mo	Ľ.	٠,	(,		LEFT	RIGHT	9 -	¥	. (%)	(pourin)	(pourit)	(pcu/hr)	CCIT	T AHEAD	RIGHT	(pourin)	LEFT	RIGHT	(powin)	,					
l t	A	1,2	3.500	1				1		0		1965		870		870			1965	0.443					
1	В	1	3.500	1				0		0		2105		205		205			2105	0.097	0.097				
1	D	1,3	3.000	1	15			1		0		1915	80			80	100%		1741	0.046					
↑	С	2	3.500	2		25	0	0		0	-631.5	4210			320	320		100%	3376	0.095	0.095				
Ped		Crossin	 	GM		FGM																			
	Ep Fp	1,3 2	min. min.	7 5	+	14 7	=	21 12	sec sec																
	Gp	3	min.	11	+	11	=	22	sec																

Stage 3

I/G = 7

Stage 1

I/G = 5

Stage 2

I/G = 10

No. of stages per cycle		N =	4	
Cycle time		C =	90	sec
Sum(y)		Y =	0.295	
Lost time		L=	37	sec
Total Flow		=	9,669	pcu
Optimum Cycle C _o	= (1.5×L+5)/(1-Y)	=	86	sec
Min. Cycle Time C _m	= L/(1-Y)	=	52	sec
Yult	= 0.9-0.0075×L	=	0.623	
R.C. _{ult}	= $(Y_{ult}-Y)/Yx100\%$	=	111.3	%
Practical Cycle Time C _p	$= 0.9 \times L/(0.9-Y)$	=	55	sec
Y _{max}	= 1-L/C	=	0.589	

#VALUE!

A=COM

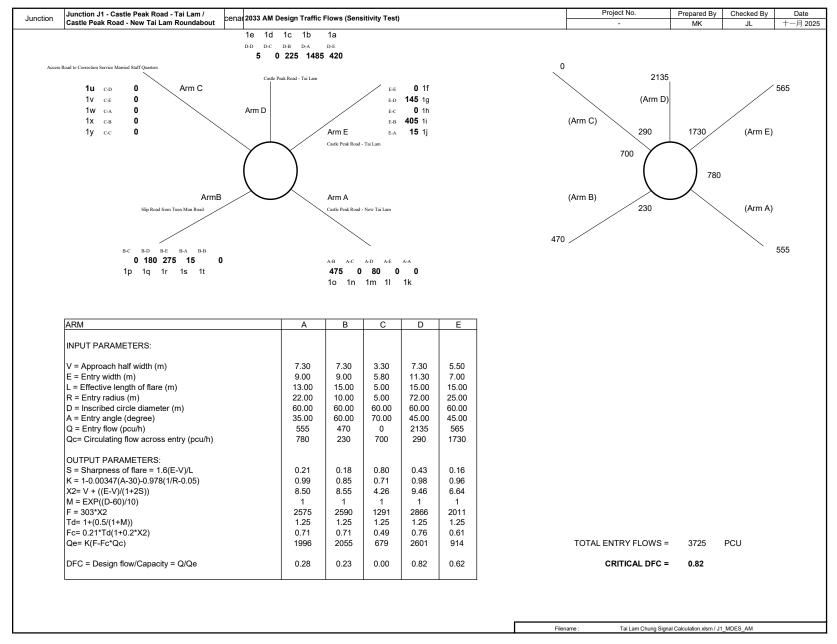
(J5)

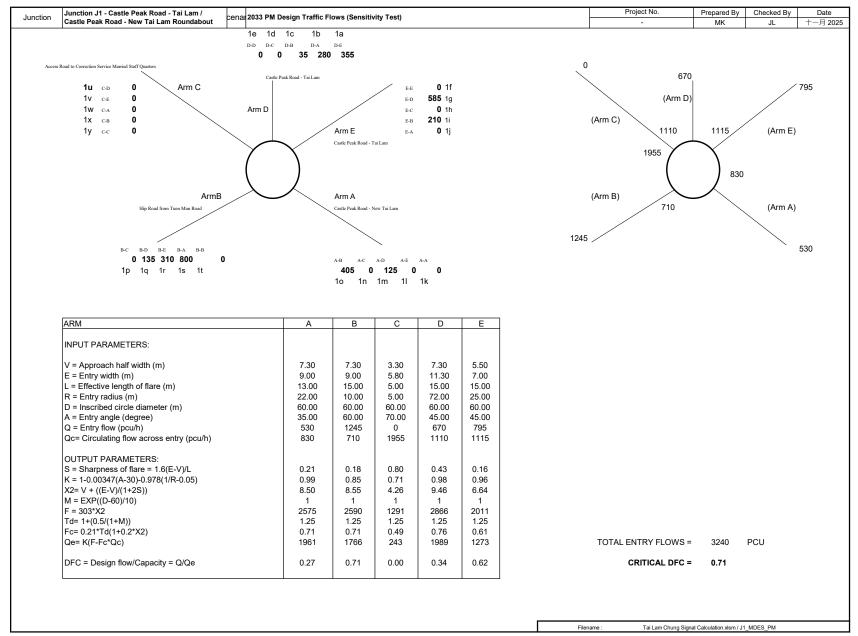
DATE: 十月 20

Critical Case: B,A,C,Ep

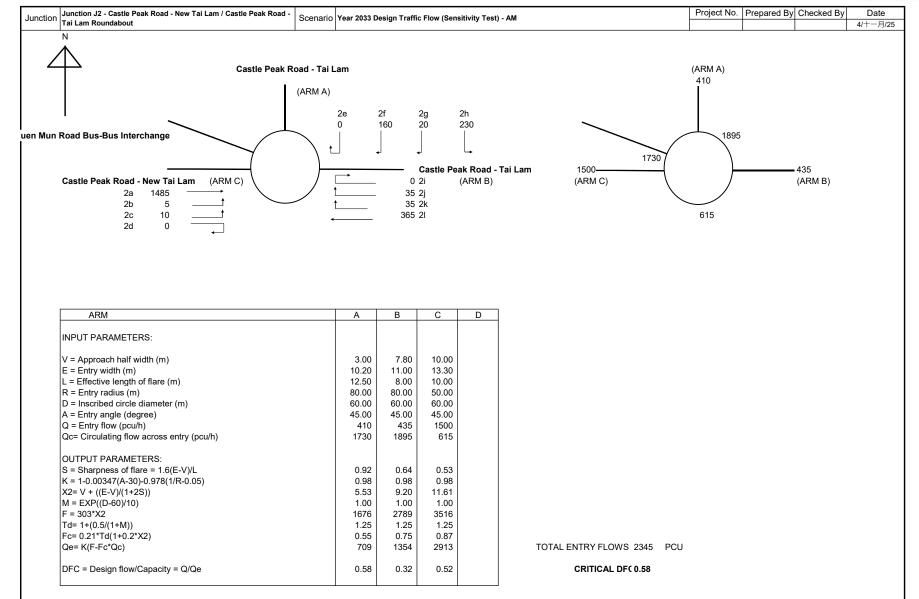
CHECK:

$R.C.(C) = (0.9xY_{max}-Y)/Yx100\% =$	= 80	%
---------------------------------------	------	---

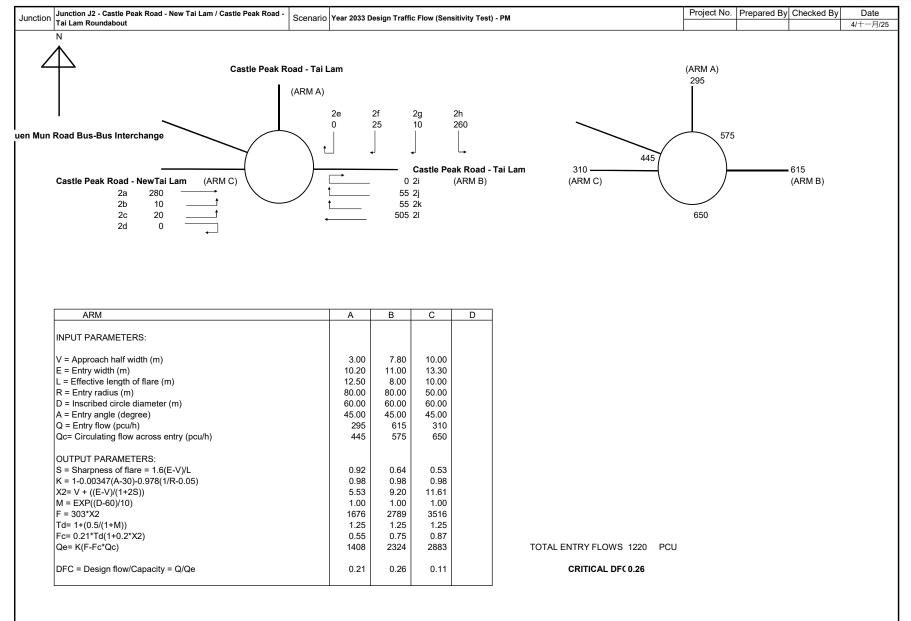

į	5 I		ш	LANE WIDTH (m)	NO. OF LANES	RADIUS (m)		OPPOSING TRAFFIC	NEAR SIDE LANE	UPHILL GRADIEN T (%)	GRADIEN T EFFECT (pcu/hr)	CAPACITY	STRAIGHT- AHEAD SAT. FLOW (pcu/hr)	FLOW (pcu/hr)			TOTAL	PROPORTION OF TURNING VEHICLES		REVISED	FLOW	ODJETIO AL	0
MOVEMENT		PHASE	STAGE											LEFT	STRAIGH T AHEAD	RIGHT	FLOW (pcu/hr)	(%)		SAT. FLOW (pcu/hr)		CRITICAL	Queue Length (Per Vehicle)
						LEFT	RIGHT					(pcu/hr)	, ,					LEFT	RIGHT				
•	∜	В	1	3.500	1		25	0	0		0	-421	2105		255	40	295		14%	1670	0.177	0.177	5
•	↑	C C	2	3.380 3.370	1 1	30	25	0	1		0 0		1953 2092	55	11 74	0	66 74	83%	0%	1875 2092	0.035 0.035		1
4	+	А	3	3.600	1	30	25	0	1		0		1975	25	0	195	220	11%	89%	1865	0.118	0.118	4
l	I	F	1,2	3.500	1	15			1		0		1965	575			575	100%		1786	0.322		10
P	 edestrian Crossi		Crossin	l Ig	GM		FGM																
		Dp	4	min.	5	+	7	=	12	sec													
		Ep Gp	4 3,4	min. min.	5 5	+	10 5	=	15 10	sec sec													
		56	3, .						.,														


Stage 4

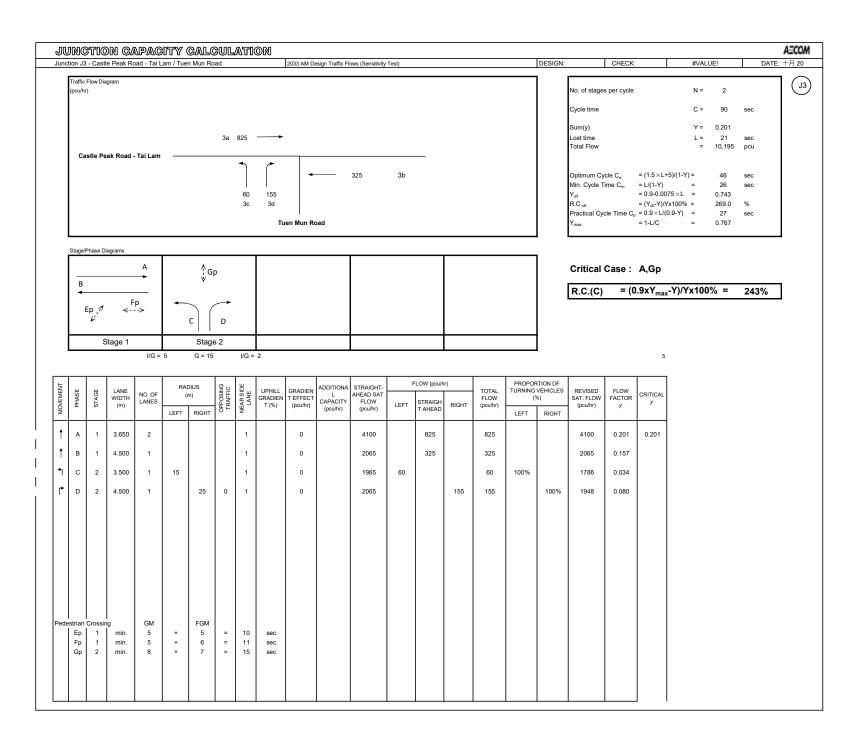
I/G = 2

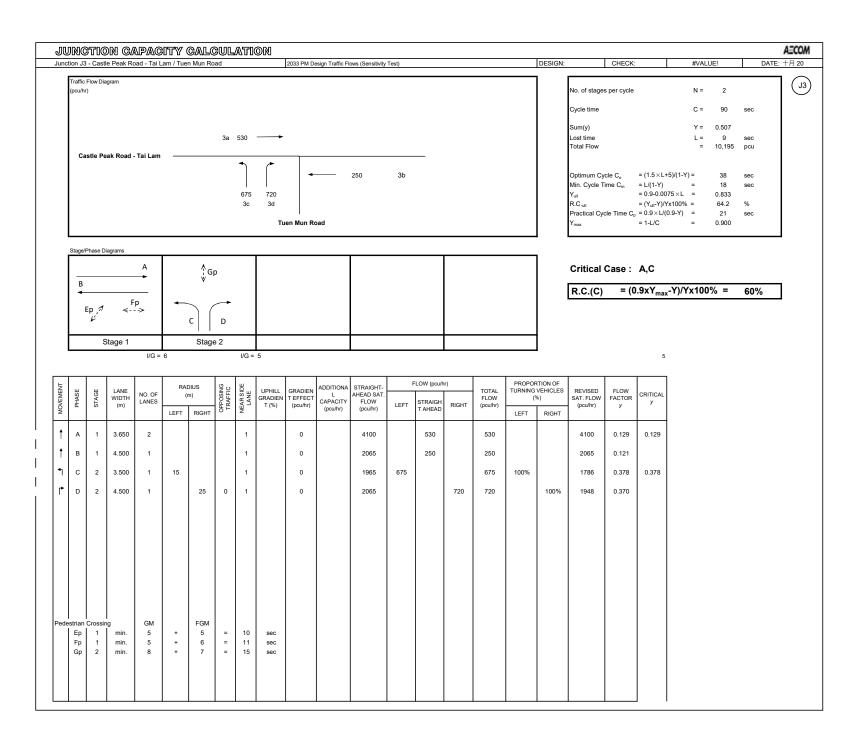

PRIORITY JUNGTION CAPACITY CALCULATION A=COM 2033 AM Reference Traffic Flows (Sensitivity Test) Date: 十一月 25 Junction J6 - Tai Lam Chung Road / Luen Hong Lane Designed By: Checked By: Job No.: J6 NOTES: (GEOMETRIC INPUT DATA) Tai Lam Chung Road (ARM C) = Major Road Width (6.4 - 20.0) 190 W cr = Central Reserve width (1.2 - 9.0, kerbed central reserve only) 6b 110 = Lane width available to vehicle waiting in stream b-a (2.05 - 4.7) = Lane width available to vehicle waiting in stream b-c (2.05 - 4.7) = Lane width available to vehicle waiting in stream c-b (2.05 - 4.7) 210 6c 0 6d = Visibility to the left for vehicles waiting in stream b-a (22.0 - 250.0) (ARM A) = Visibility to the right for vehicles waiting in stream b-a (17.0 - 250.0) Tai Lam Chung Road = Visibilitu to the right for vehicles waiting in stream b-c (17.0 - 250.0) = Visibility to the right for vehicles waiting in stream c-b (17.0 - 250.0) Vr c-b D = Stream-specific B-A Ε = Stream-specific B-C = Stream-specific C-B 165 6f (ARM B) = (1-0.0345W) Luen Hong Lane **GEOMETRIC DETAILS:** MAJOR ROAD (ARM A) MAJOR ROAD (ARM C) MINOR ROAD (ARM B) W c-b W b-a 7.55 (metres) 4 (metres) 5.7 (metres) W cr 0 (metres) Vr c-b 50 (metres) W b-c 5.7 (metres) 0 (pcu/hr) 190 (pcu/hr) VI b-a 20 (metres) q a-b q c-a q a-c 210 (pcu/hr) q c-b 110 (pcu/hr) Vr b-a = 16 (metres) Vr b-c 16 (metres) q b-a 0 (pcu/hr) **GEOMETRIC FACTORS:** q b-c 165 (pcu/hr) 0.996740 Ε 1.081063 F 0.967827 0.739525 THE CAPACITY OF MOVEMENT: Q b-a 494 Q b-c 744 **CRITICAL DFC** 0.22 Q c-b 666 Q b-ac 744 COMPARISION OF DESIGN FLOW TO CAPACITY: DFC b-a 0.00 DFC b-c = 0.22 DFC c-b 0.17 DFC b-ac 0.22

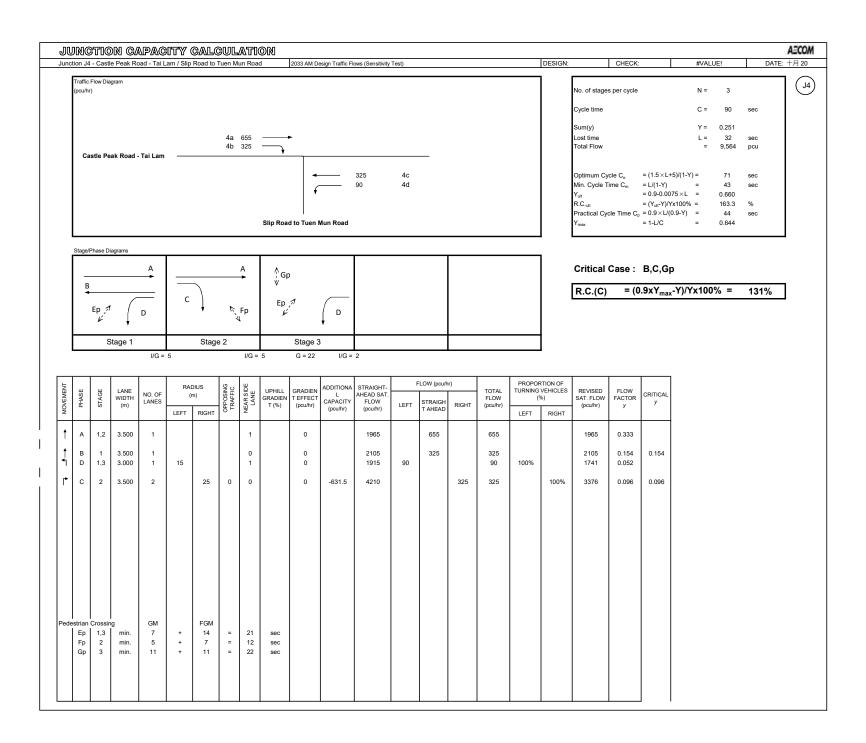
PRIORITY JUNGTION CAPACITY CALCULATION A=COM 2033 PM Reference Traffic Flows (Sensitivity Test) Designed By : Date: 十一月 25 Junction J6 - Tai Lam Chung Road / Luen Hong Lane Checked By: Job No.: J6 NOTES: (GEOMETRIC INPUT DATA) Tai Lam Chung Road (ARM C) = Major Road Width (6.4 - 20.0) 465 W cr = Central Reserve width (1.2 - 9.0, kerbed central reserve only) 6b 110 = Lane width available to vehicle waiting in stream b-a (2.05 - 4.7) = Lane width available to vehicle waiting in stream b-c (2.05 - 4.7) = Lane width available to vehicle waiting in stream c-b (2.05 - 4.7) 120 6c 0 6d = Visibility to the left for vehicles waiting in stream b-a (22.0 - 250.0) (ARM A) = Visibility to the right for vehicles waiting in stream b-a (17.0 - 250.0) Tai Lam Chung Road = Visibilitu to the right for vehicles waiting in stream b-c (17.0 - 250.0) = Visibility to the right for vehicles waiting in stream c-b (17.0 - 250.0) Vr c-b D = Stream-specific B-A Ε = Stream-specific B-C 95 = Stream-specific C-B 6f (ARM B) = (1-0.0345W) Luen Hong Lane **GEOMETRIC DETAILS:** MAJOR ROAD (ARM A) MAJOR ROAD (ARM C) MINOR ROAD (ARM B) W b-a 7.55 (metres) W c-b 4 (metres) 5.7 (metres) W cr 0 (metres) Vr c-b 50 (metres) W b-c 5.7 (metres) 0 (pcu/hr) 465 (pcu/hr) VI b-a 20 (metres) q a-b q c-a q a-c 120 (pcu/hr) q c-b 110 (pcu/hr) Vr b-a = 16 (metres) Vr b-c 16 (metres) q b-a 0 (pcu/hr) **GEOMETRIC FACTORS:** q b-c 95 (pcu/hr) 0.996740 Ε 1.081063 F 0.967827 0.739525 THE CAPACITY OF MOVEMENT: Q b-a 472 Q b-c 770 **CRITICAL DFC** 0.16 Q c-b 690 Q b-ac 770 COMPARISION OF DESIGN FLOW TO CAPACITY: DFC b-a 0.00 DFC b-c = 0.12 DFC c-b 0.16 DFC b-ac 0.12

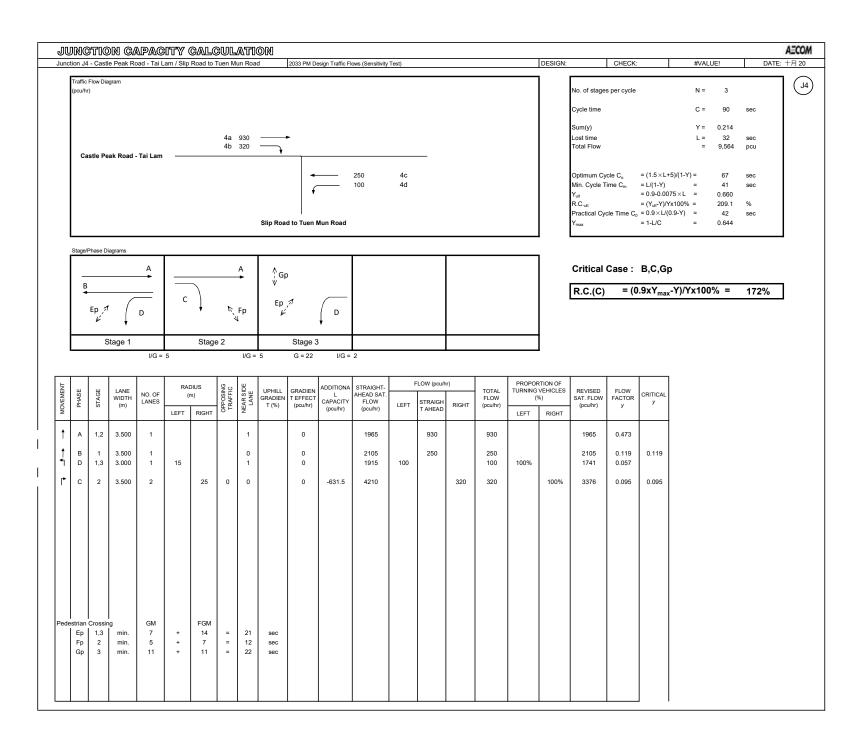


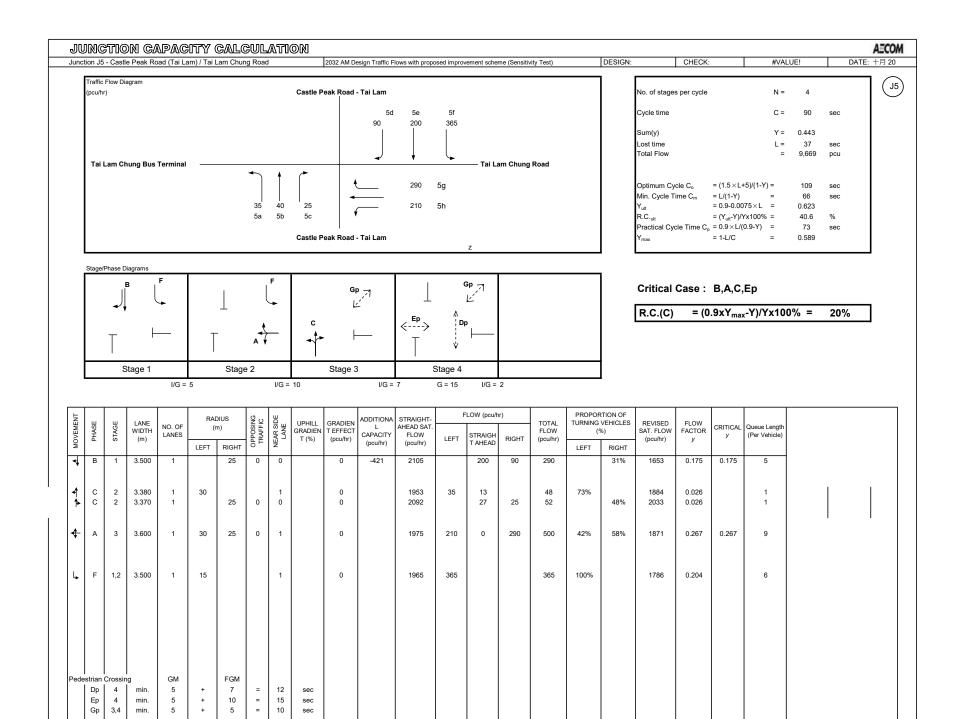
Filename :

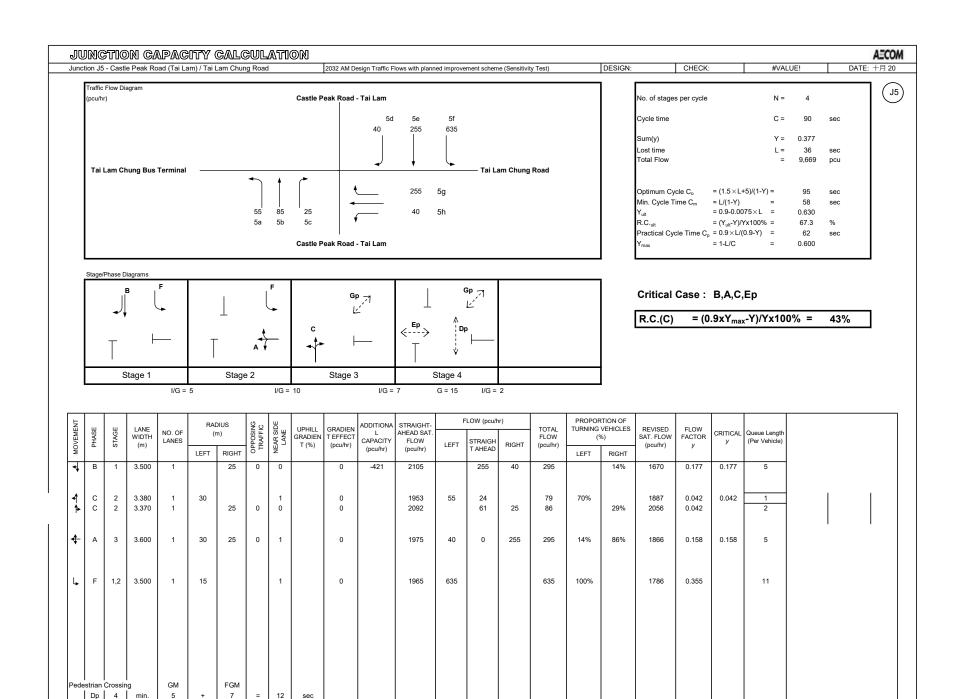

https://aecom-my.sharepoint.com/personal/gary_lei_aecom_com/Docum






Filename :


https://aecom-my.sharepoint.com/personal/gary_lei_aecom_com/Docum

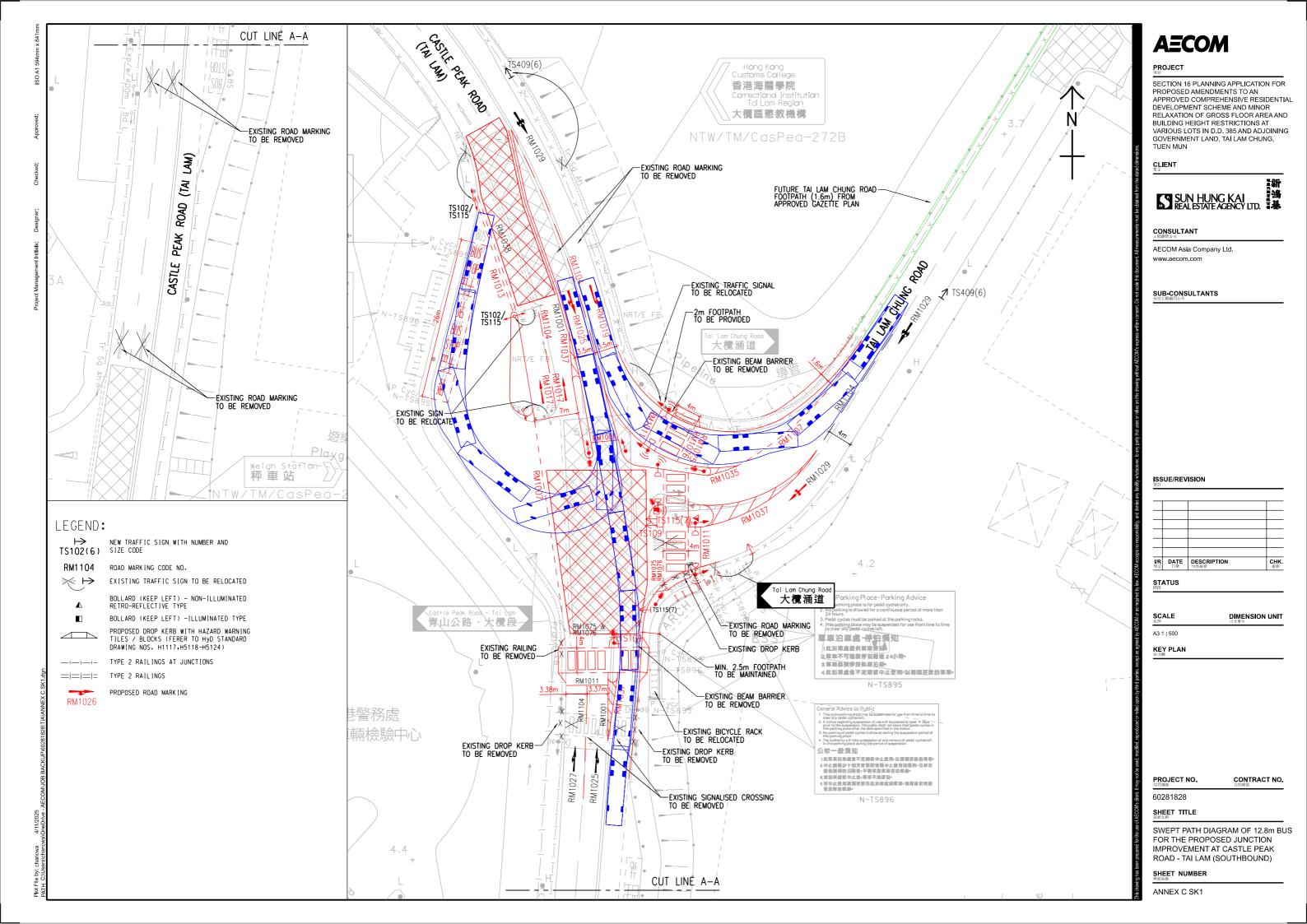


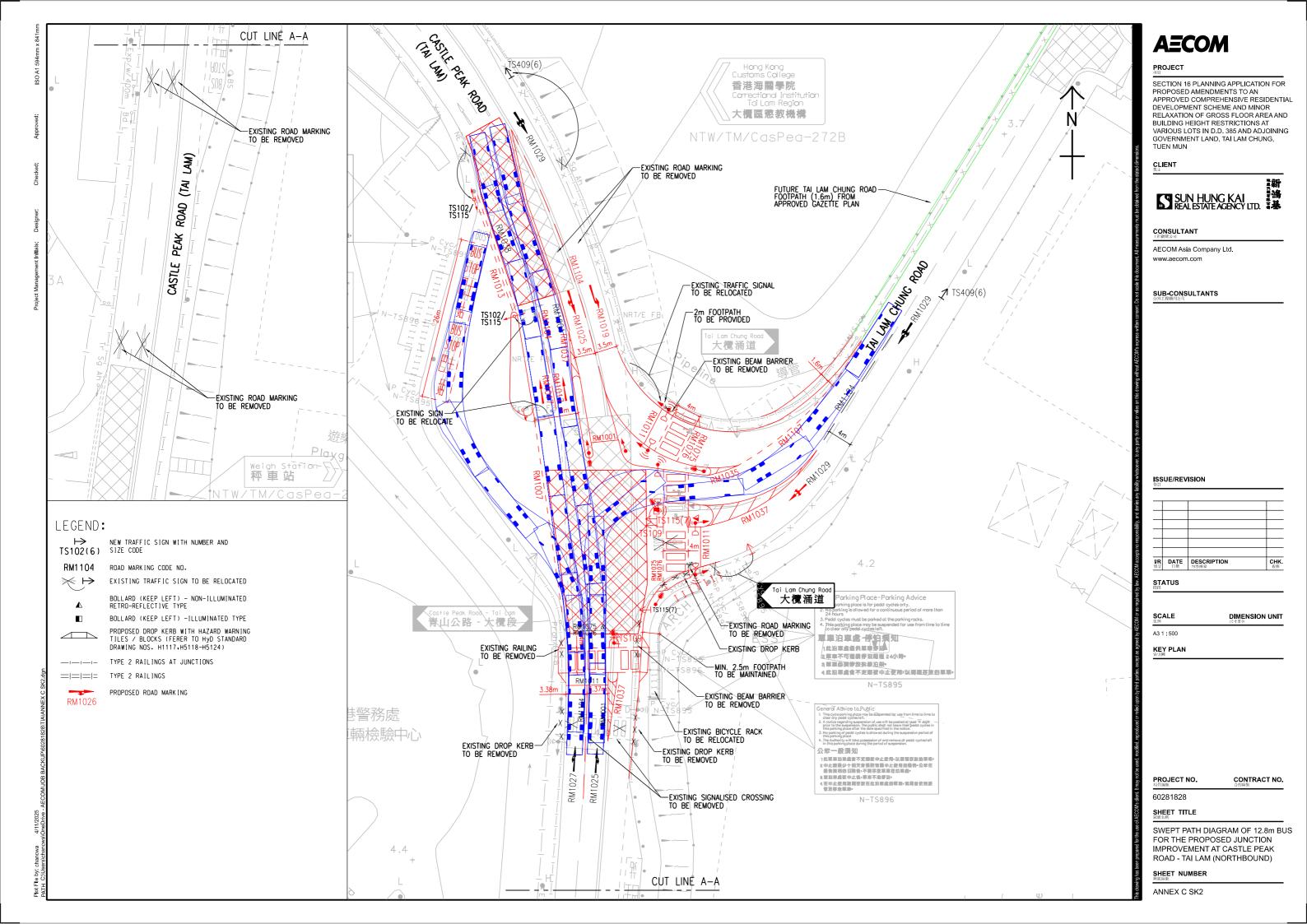
sec

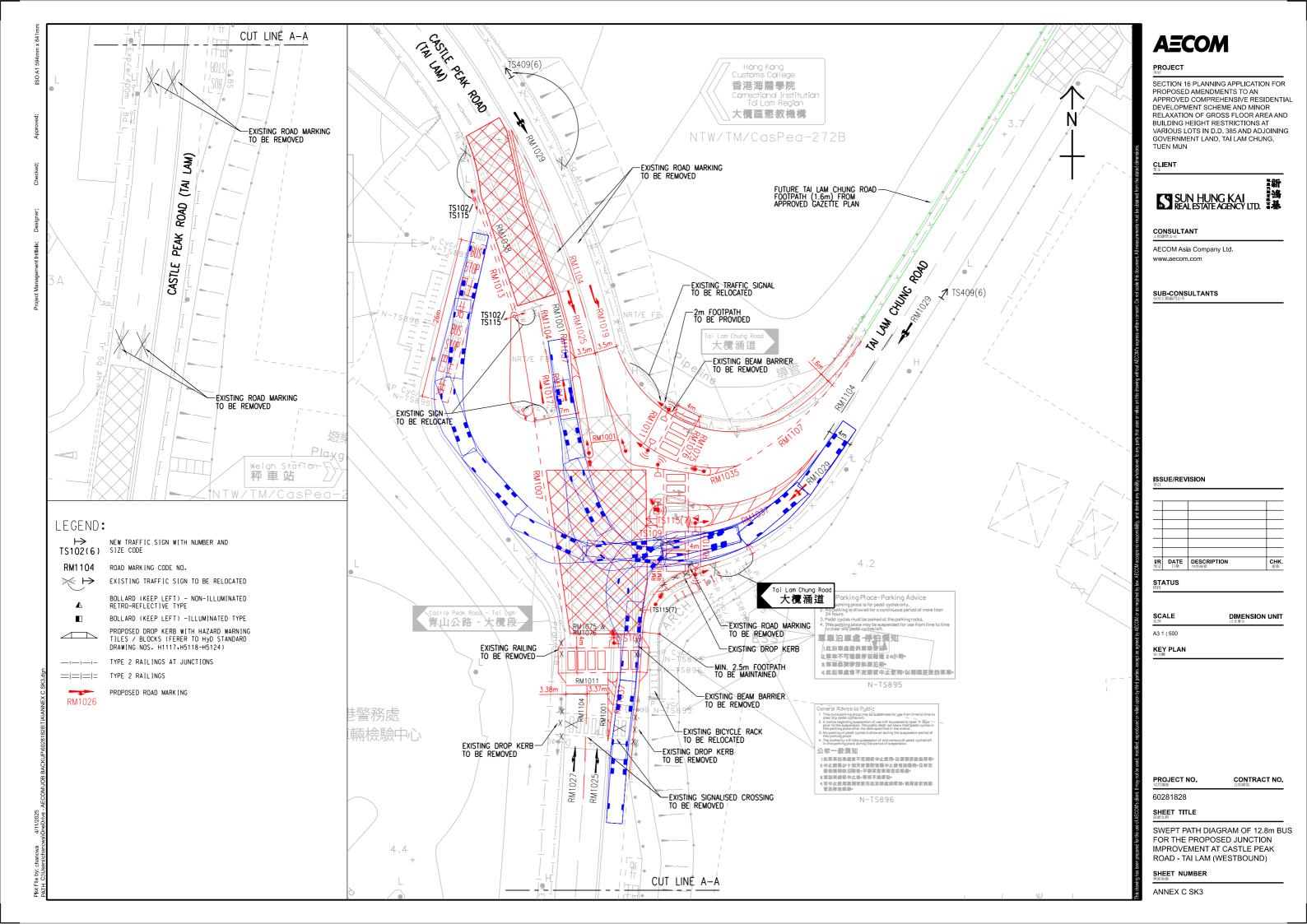
sec

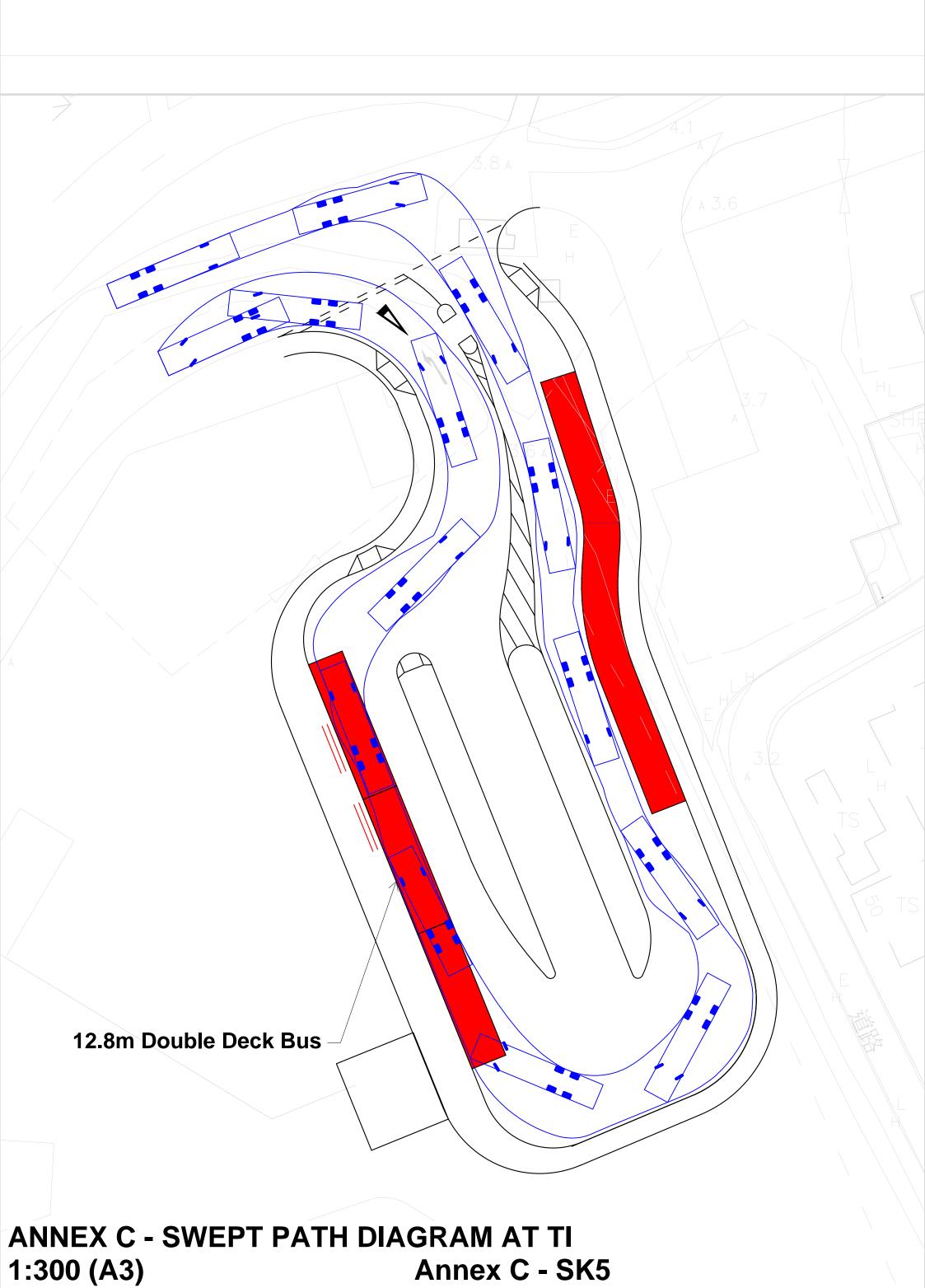
15

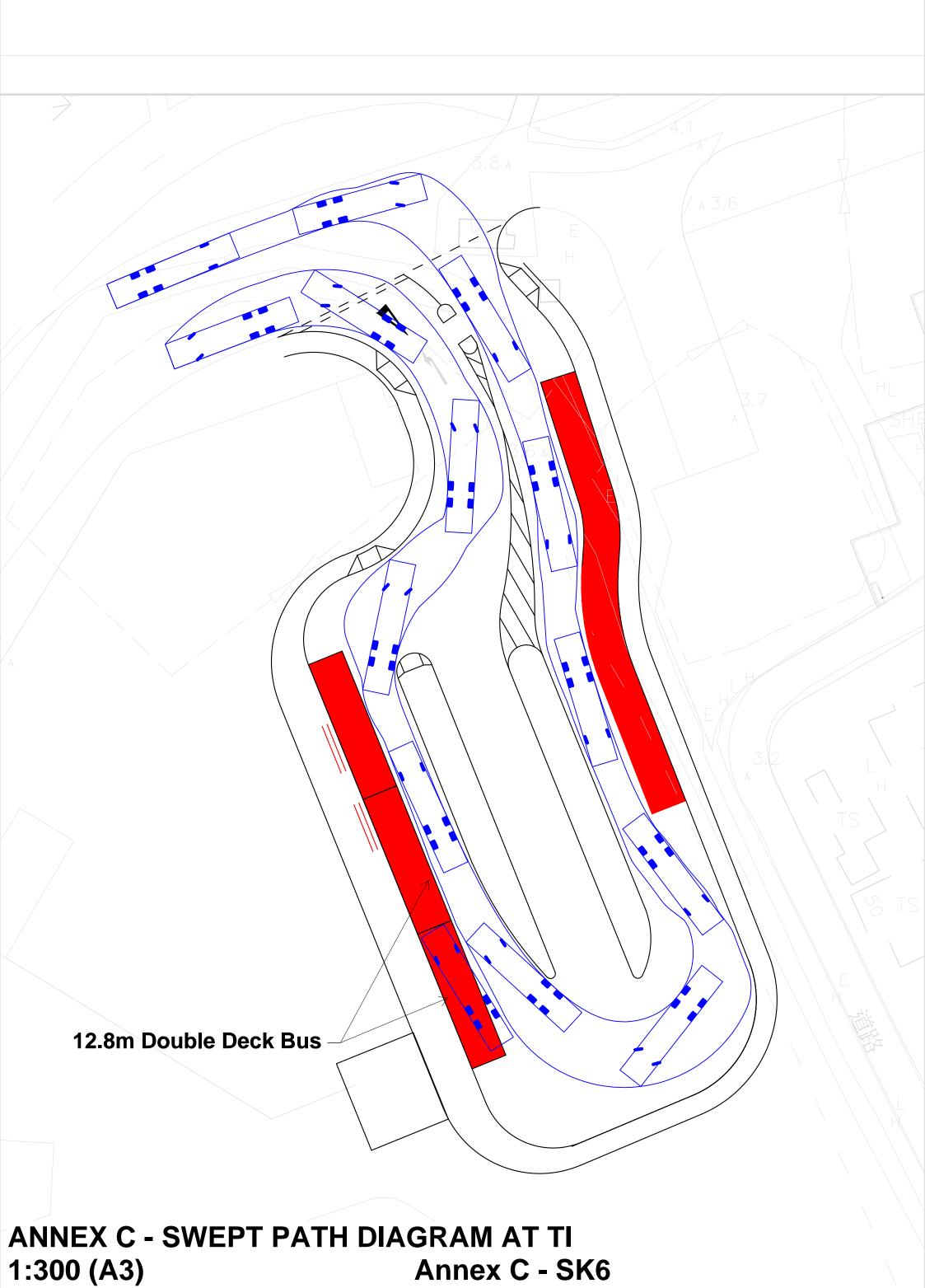
10

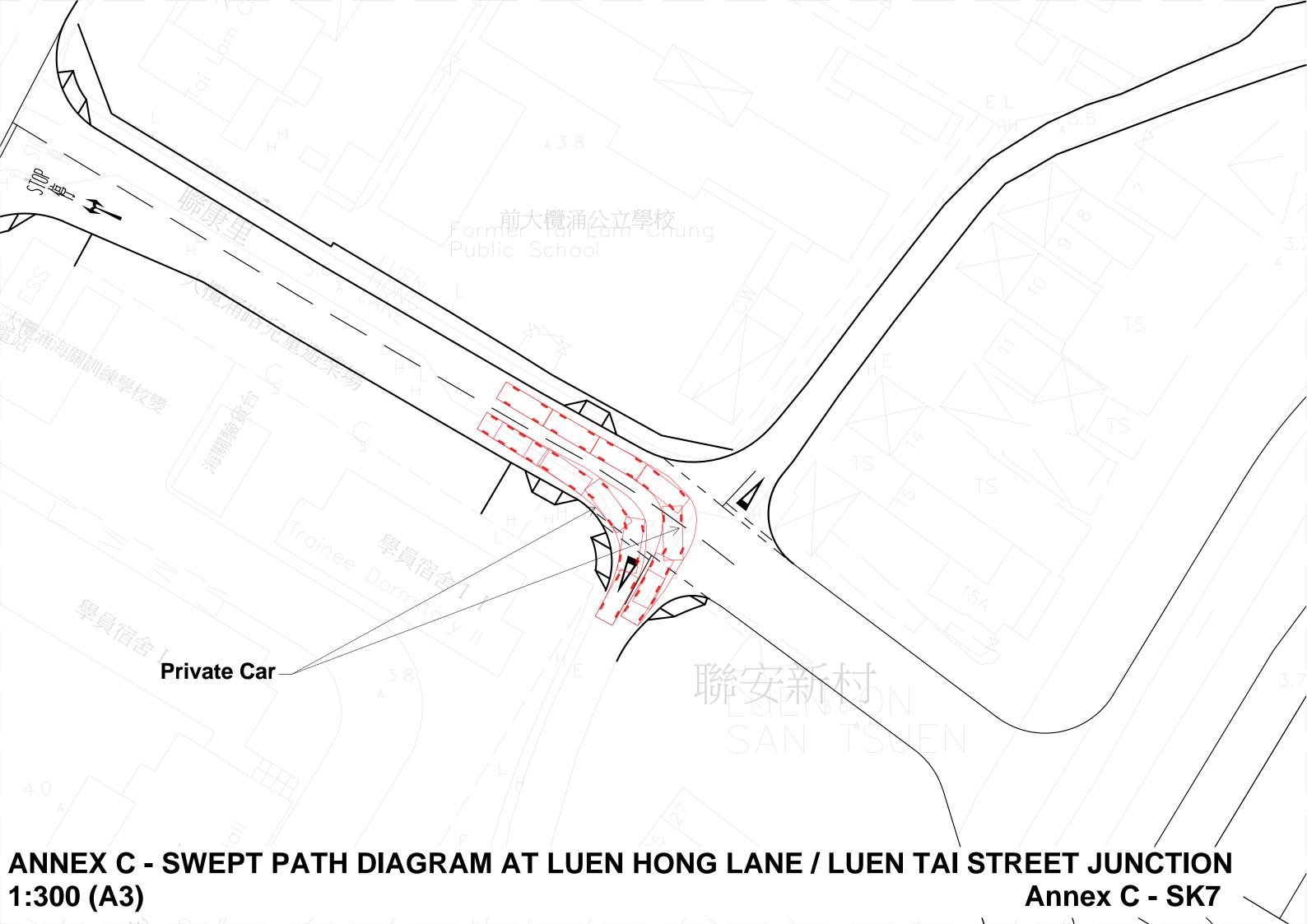

Ep

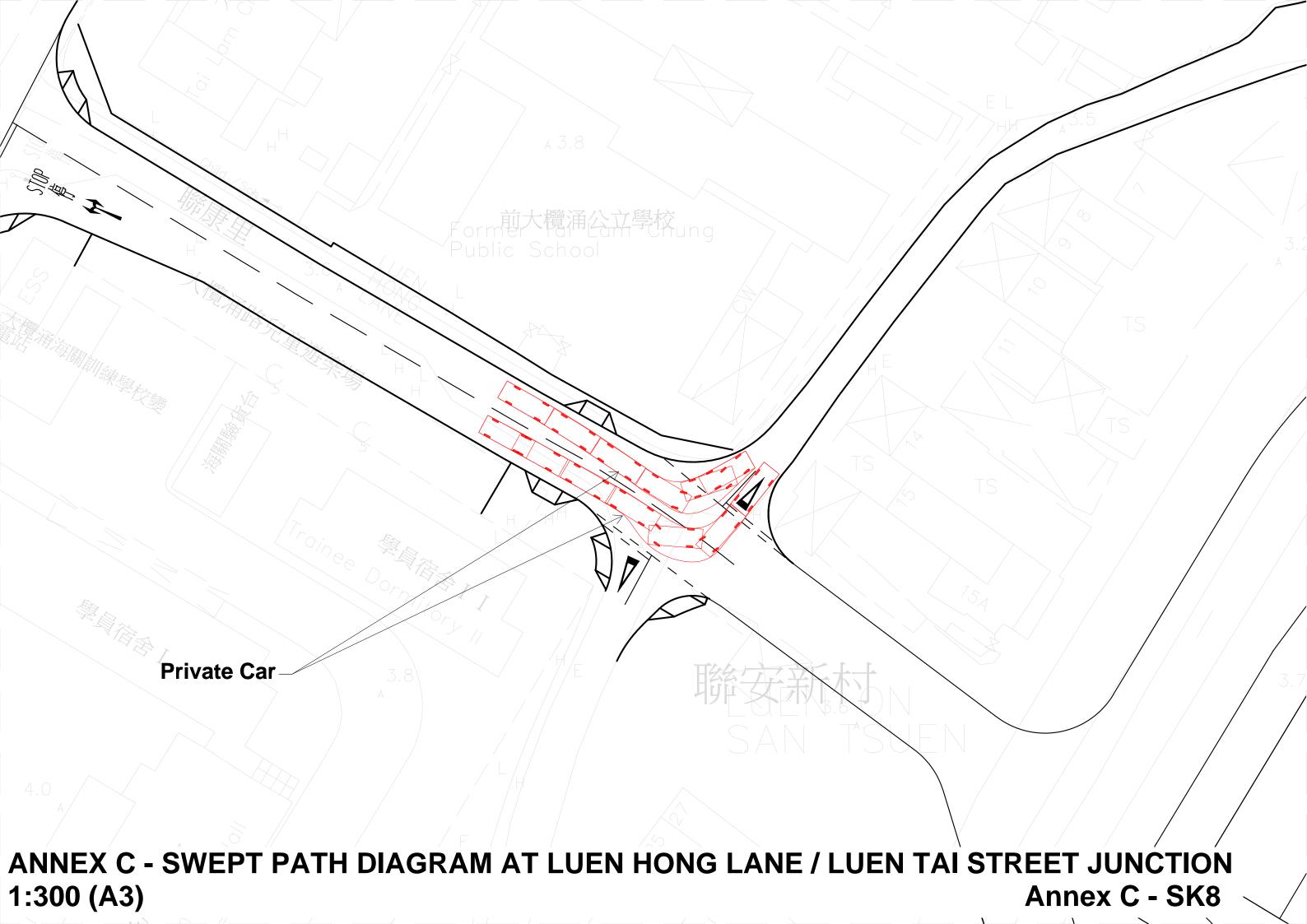

Gp 3,4 min.

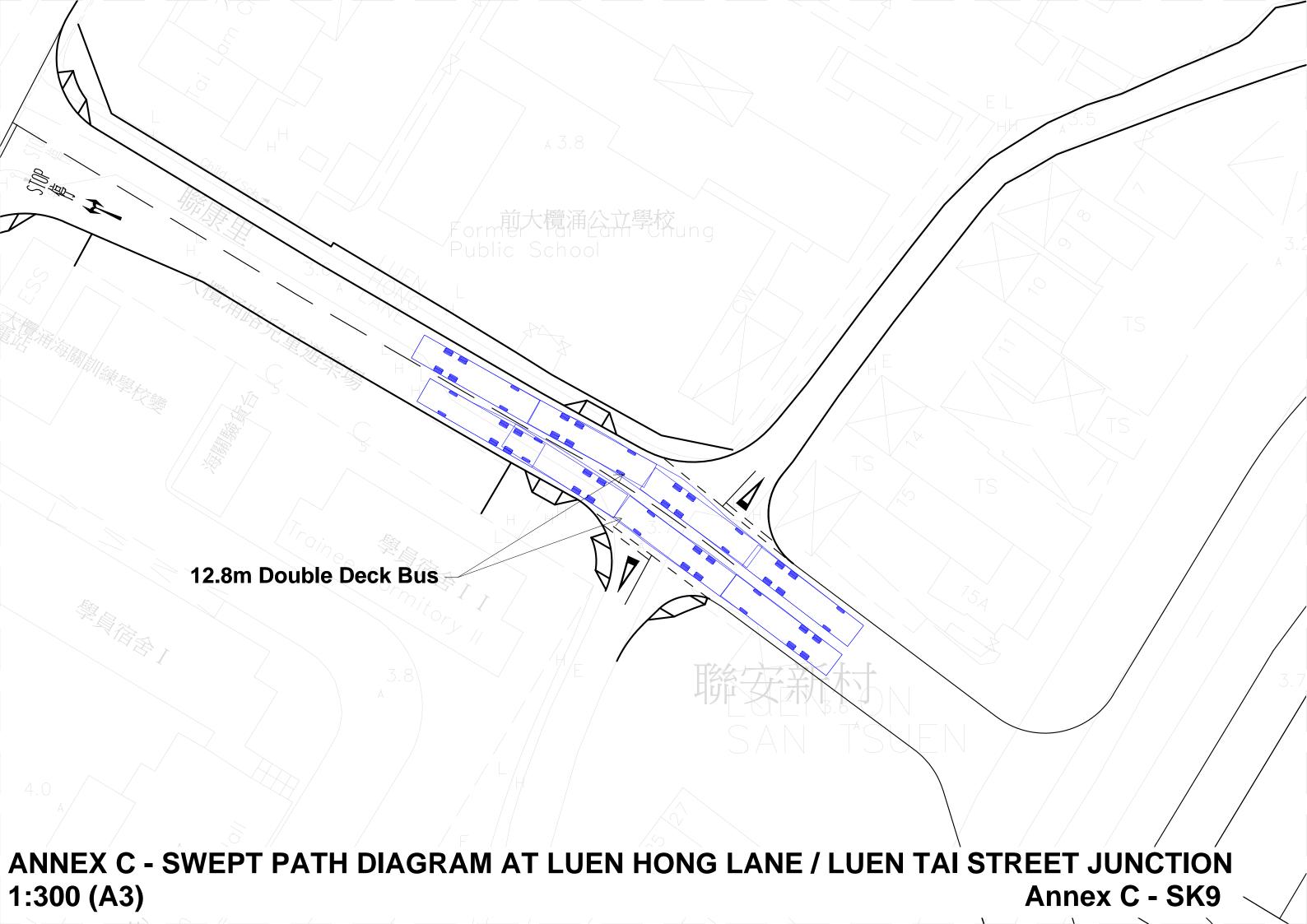

PRIORITY JUNGTION CAPACITY CALCULATION A=COM 2033 AM Design Traffic Flows (Sensitivity Test) Date: 十一月 25 Junction J6 - Tai Lam Chung Road / Luen Hong Lane Designed By: Checked By: Job No.: J6 NOTES: (GEOMETRIC INPUT DATA) Tai Lam Chung Road (ARM C) = Major Road Width (6.4 - 20.0) 190 W cr = Central Reserve width (1.2 - 9.0, kerbed central reserve only) 6b 200 = Lane width available to vehicle waiting in stream b-a (2.05 - 4.7) = Lane width available to vehicle waiting in stream b-c (2.05 - 4.7) = Lane width available to vehicle waiting in stream c-b (2.05 - 4.7) 210 6c 0 6d = Visibility to the left for vehicles waiting in stream b-a (22.0 - 250.0) (ARM A) = Visibility to the right for vehicles waiting in stream b-a (17.0 - 250.0) Tai Lam Chung Road = Visibilitu to the right for vehicles waiting in stream b-c (17.0 - 250.0) = Visibility to the right for vehicles waiting in stream c-b (17.0 - 250.0) Vr c-b D = Stream-specific B-A Ε = Stream-specific B-C = Stream-specific C-B 290 6f (ARM B) = (1-0.0345W) Luen Hong Lane **GEOMETRIC DETAILS:** MAJOR ROAD (ARM A) MAJOR ROAD (ARM C) MINOR ROAD (ARM B) W c-b W b-a 7.55 (metres) 4 (metres) 5.7 (metres) W cr 0 (metres) Vr c-b 50 (metres) W b-c 5.7 (metres) 0 (pcu/hr) 190 (pcu/hr) VI b-a 20 (metres) q a-b q c-a q a-c 210 (pcu/hr) q c-b 200 (pcu/hr) Vr b-a = 16 (metres) Vr b-c 16 (metres) q b-a 0 (pcu/hr) **GEOMETRIC FACTORS:** q b-c 290 (pcu/hr) 0.996740 Ε 1.081063 F 0.967827 0.739525 THE CAPACITY OF MOVEMENT: Q b-a 460 Q b-c 744 **CRITICAL DFC** 0.39 Q c-b 666 Q b-ac 744 COMPARISION OF DESIGN FLOW TO CAPACITY: DFC b-a 0.00 DFC b-c = 0.39 DFC c-b 0.30 DFC b-ac 0.39

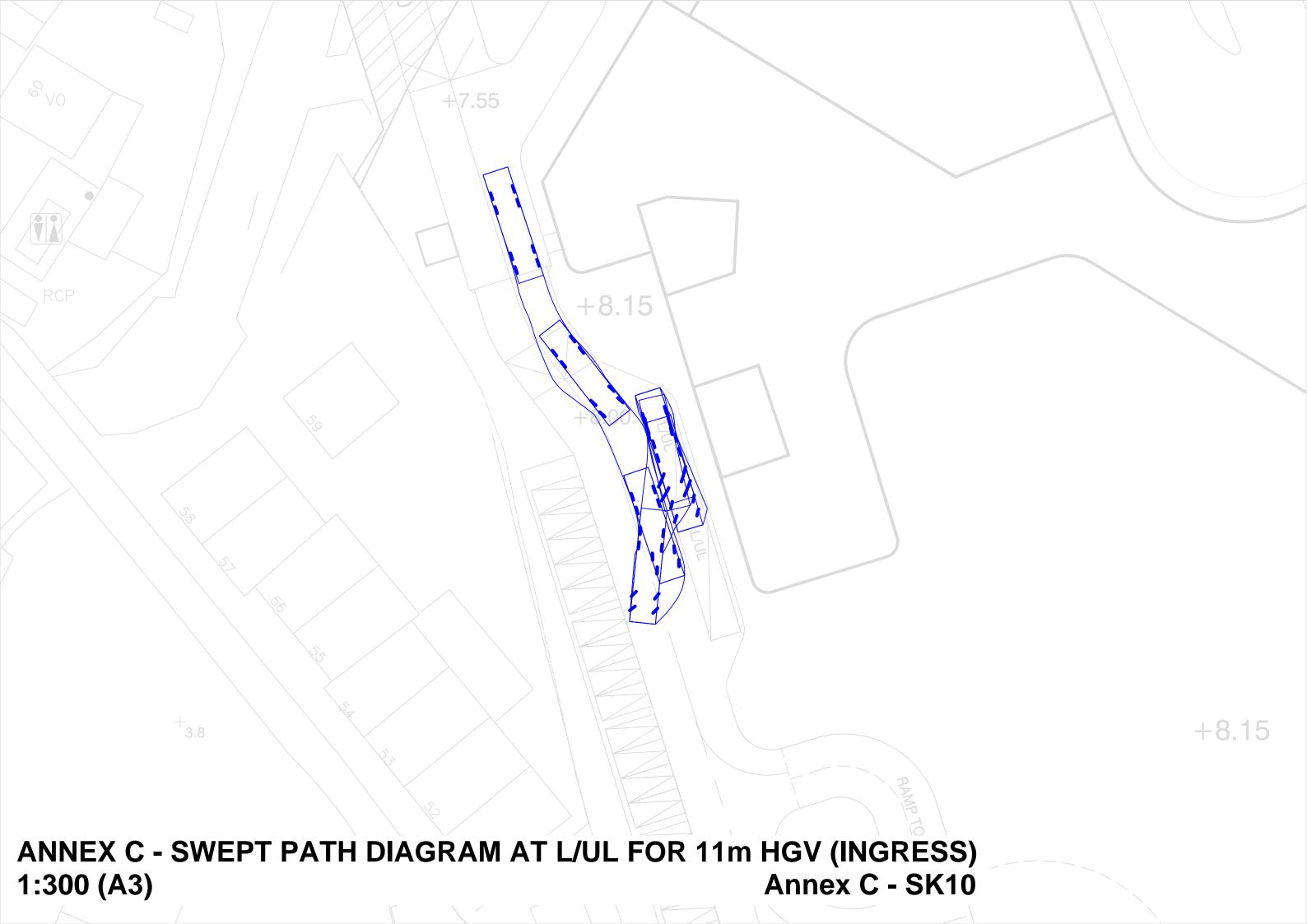

PRIORITY JUNGTION CAPACITY CALCULATION A=COM 2033 PM Design Traffic Flows (Sensitivity Test) Date: 十一月 25 Junction J6 - Tai Lam Chung Road / Luen Hong Lane Designed By: Checked By: Job No.: J6 NOTES: (GEOMETRIC INPUT DATA) Tai Lam Chung Road (ARM C) = Major Road Width (6.4 - 20.0) 465 W cr = Central Reserve width (1.2 - 9.0, kerbed central reserve only) 6b 195 = Lane width available to vehicle waiting in stream b-a (2.05 - 4.7) = Lane width available to vehicle waiting in stream b-c (2.05 - 4.7) = Lane width available to vehicle waiting in stream c-b (2.05 - 4.7) 120 6c 0 6d = Visibility to the left for vehicles waiting in stream b-a (22.0 - 250.0) (ARM A) = Visibility to the right for vehicles waiting in stream b-a (17.0 - 250.0) Tai Lam Chung Road = Visibilitu to the right for vehicles waiting in stream b-c (17.0 - 250.0) = Visibility to the right for vehicles waiting in stream c-b (17.0 - 250.0) Vr c-b D = Stream-specific B-A Ε = Stream-specific B-C = Stream-specific C-B 175 6f (ARM B) = (1-0.0345W) Luen Hong Lane **GEOMETRIC DETAILS:** MAJOR ROAD (ARM A) MAJOR ROAD (ARM C) MINOR ROAD (ARM B) W b-a 7.55 (metres) W c-b 4 (metres) 5.7 (metres) W cr 0 (metres) Vr c-b 50 (metres) W b-c 5.7 (metres) 0 (pcu/hr) 465 (pcu/hr) VI b-a 20 (metres) q a-b q c-a q a-c 120 (pcu/hr) q c-b 195 (pcu/hr) Vr b-a = 16 (metres) Vr b-c 16 (metres) q b-a 0 (pcu/hr) **GEOMETRIC FACTORS:** q b-c 175 (pcu/hr) 0.996740 Ε 1.081063 F 0.967827 0.739525 THE CAPACITY OF MOVEMENT: Q b-a 440 Q b-c 770 **CRITICAL DFC** 0.28 Q c-b 690 Q b-ac 770 COMPARISION OF DESIGN FLOW TO CAPACITY: DFC b-a 0.00 DFC b-c = 0.23 DFC c-b 0.28 DFC b-ac 0.23

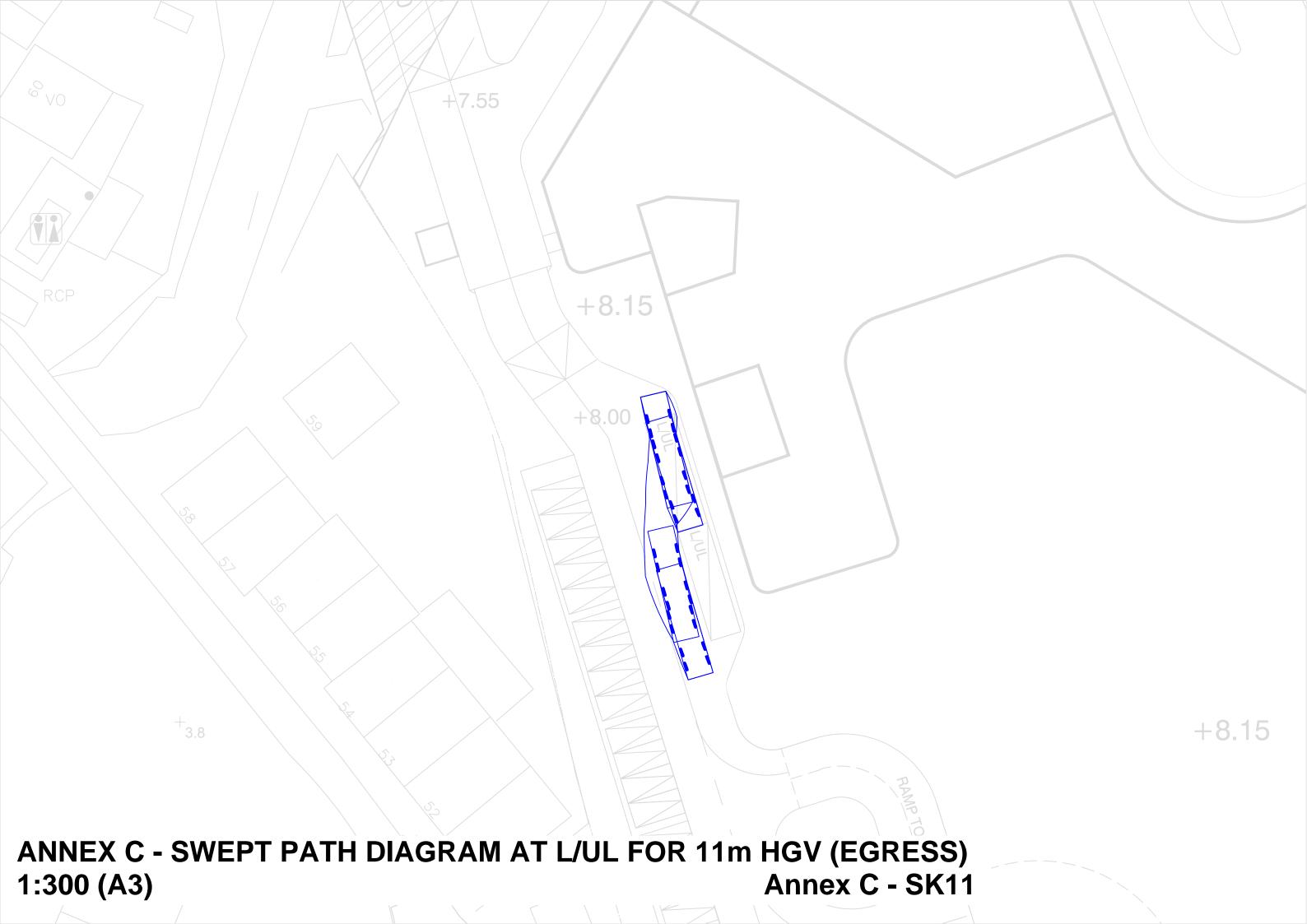

Annex C Swept Path Analysis

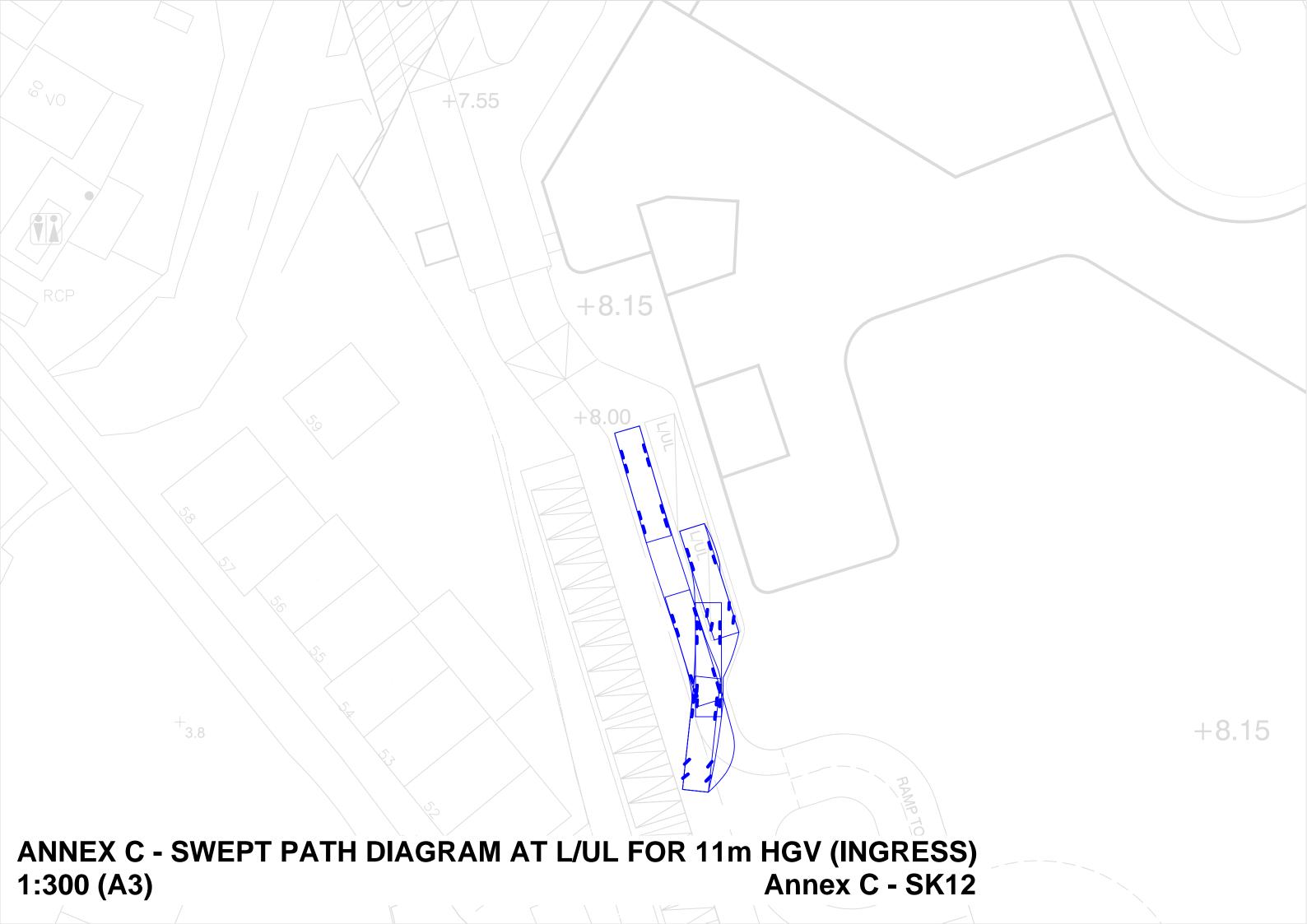


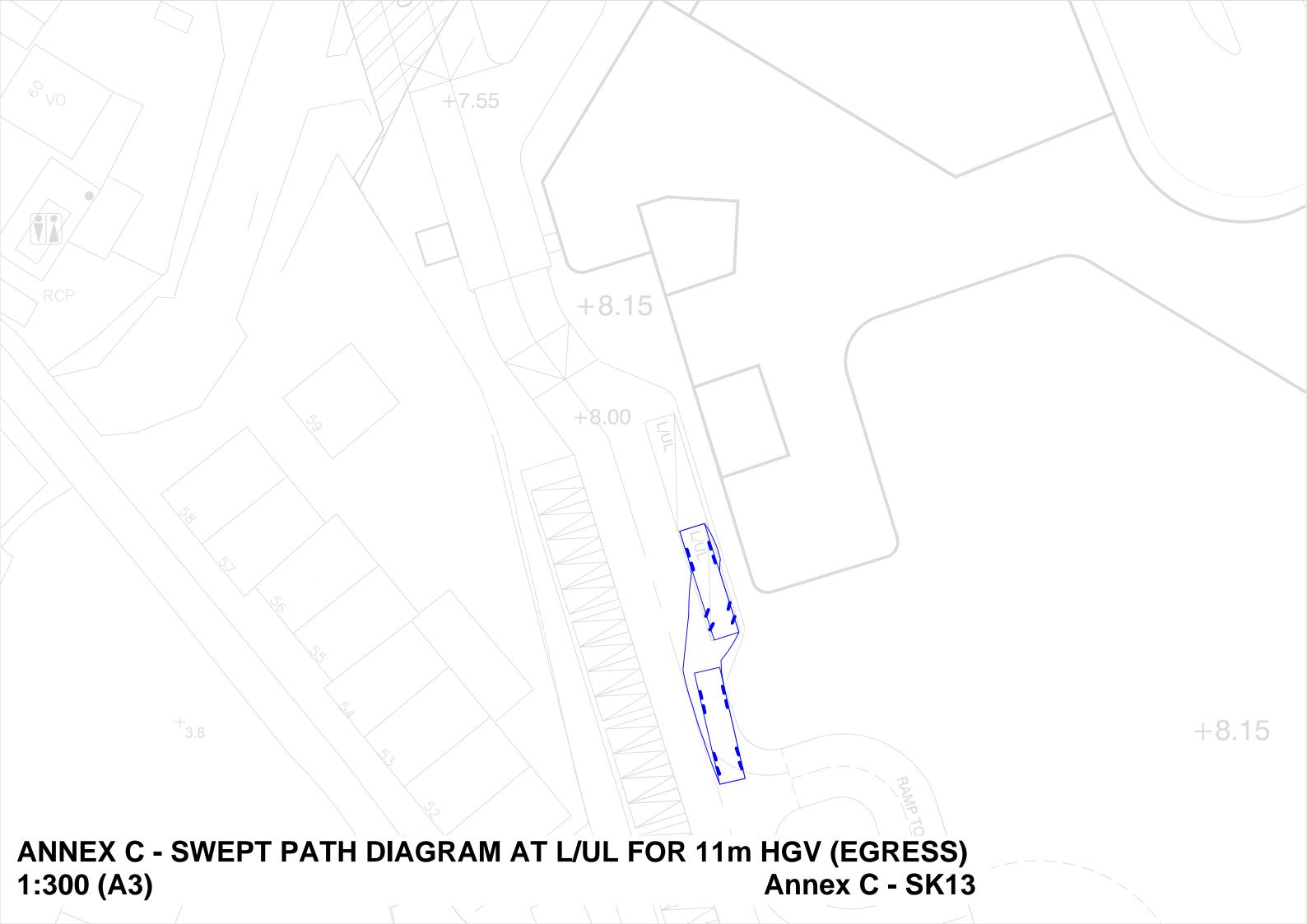


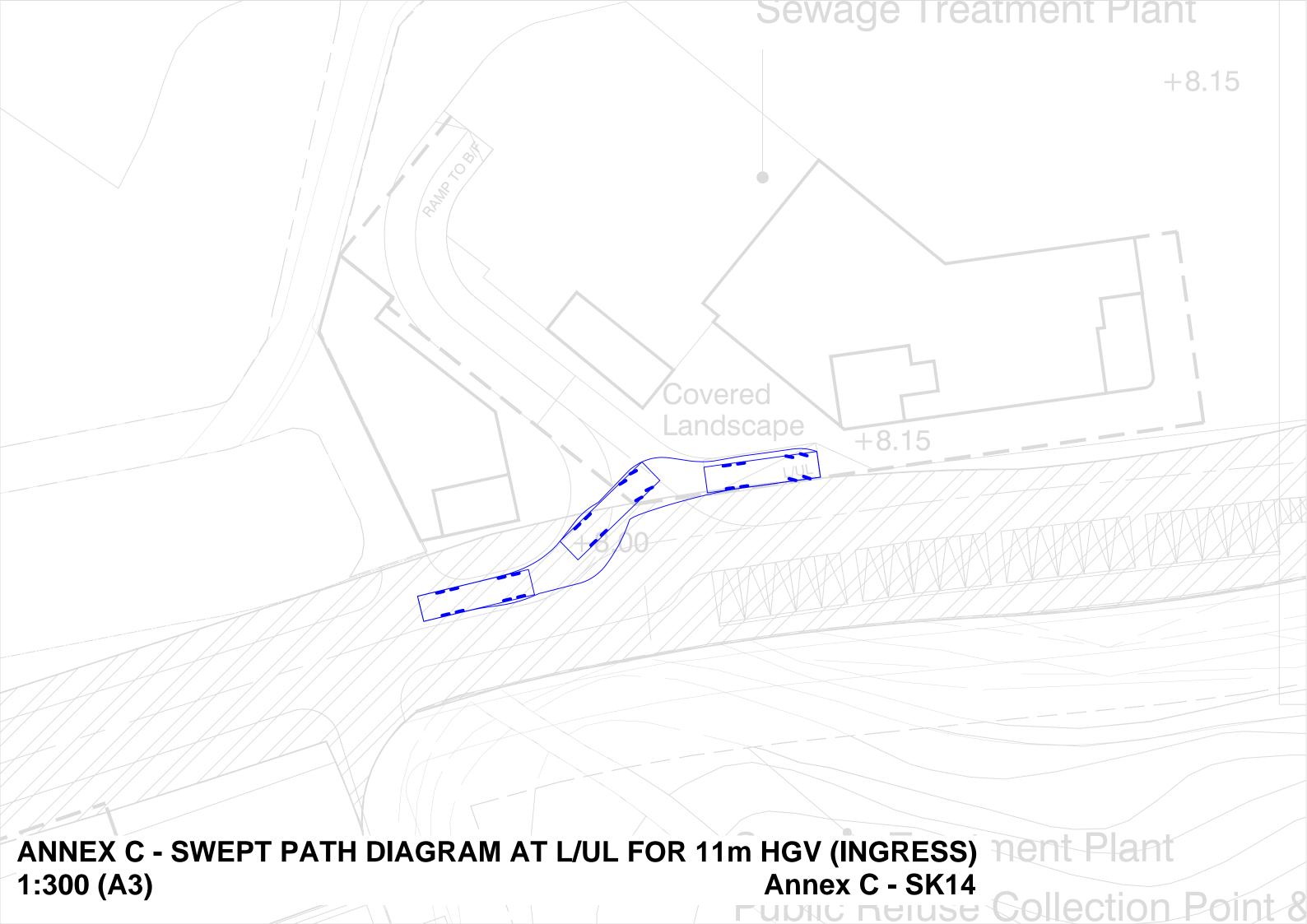


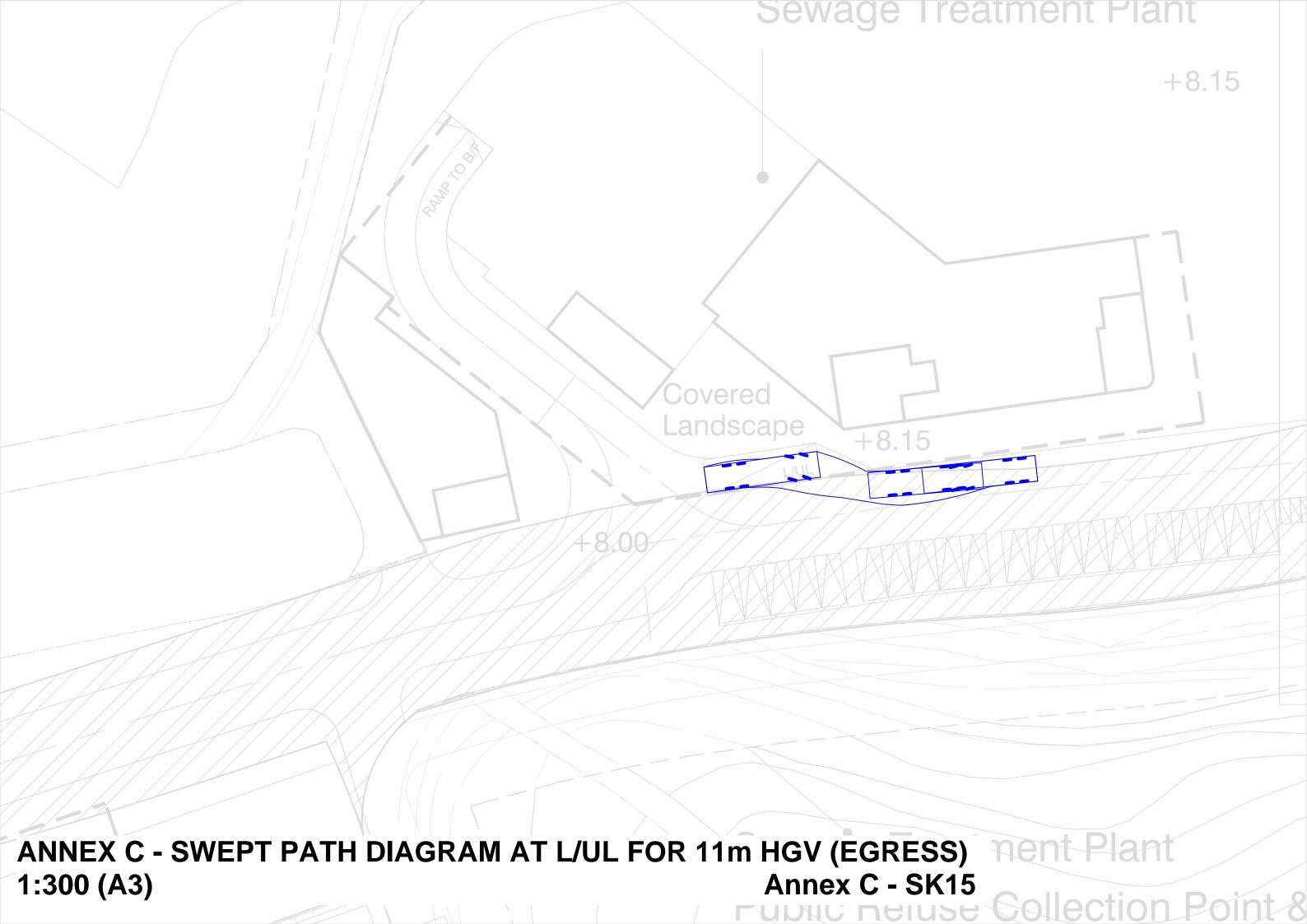


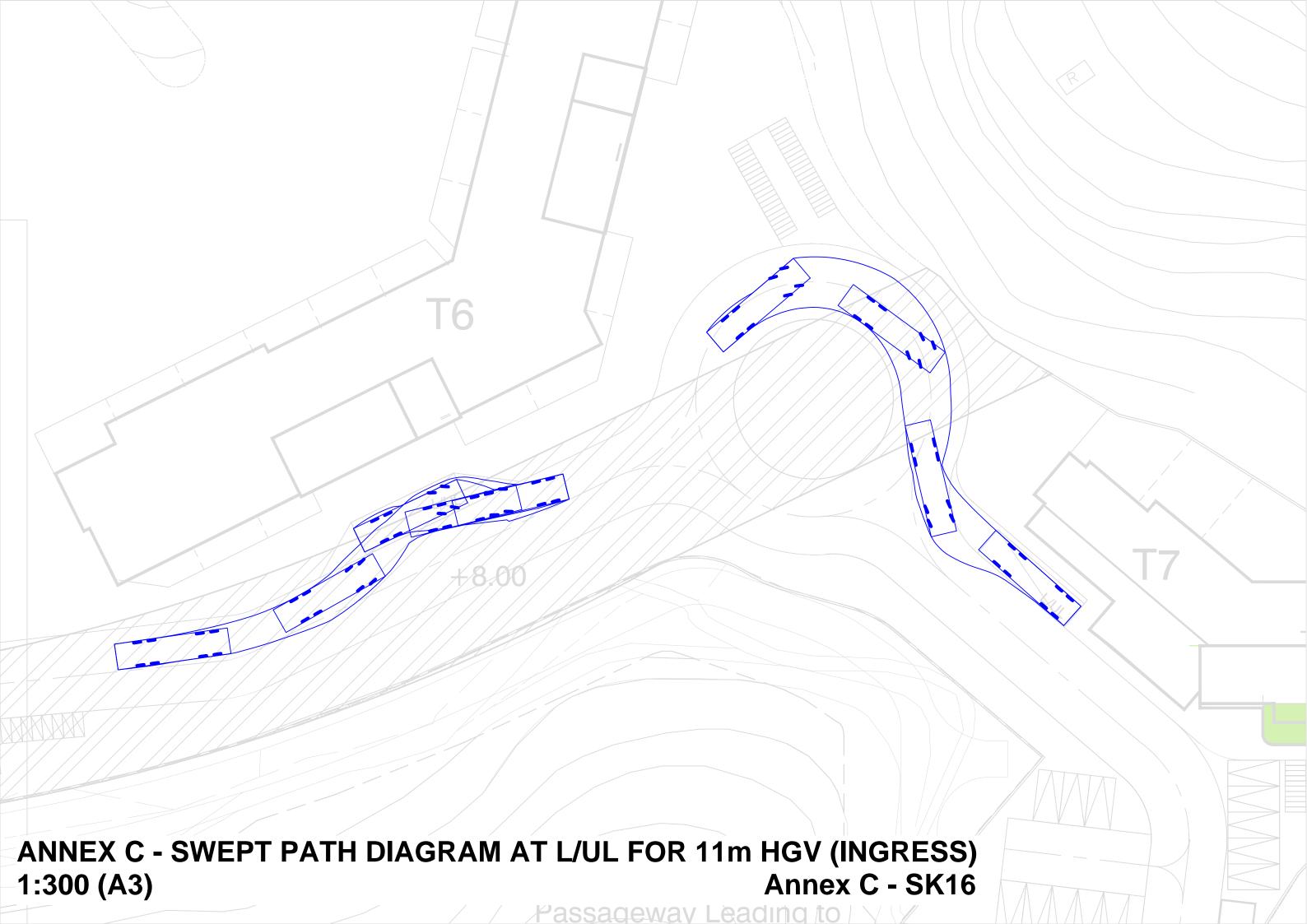


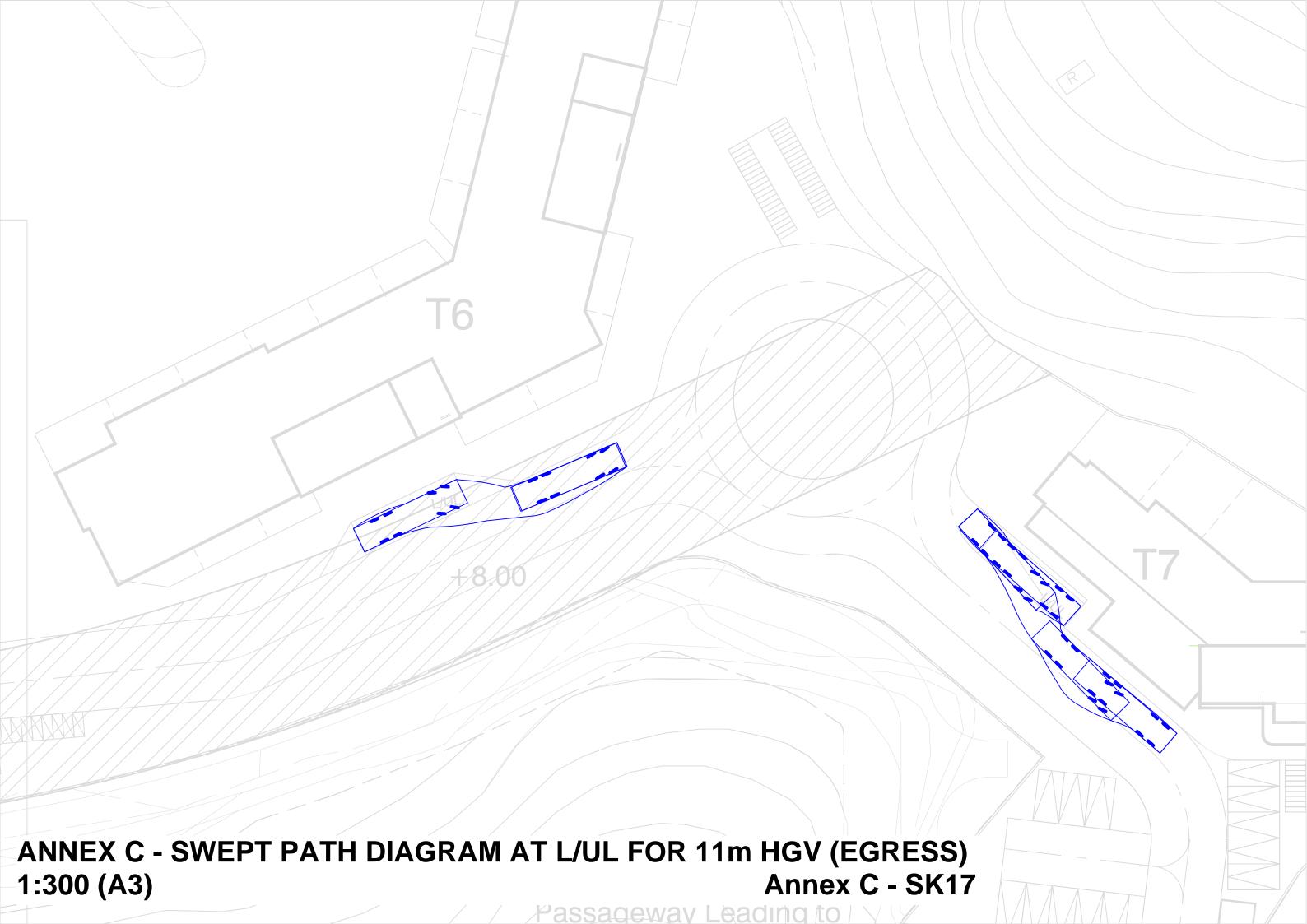


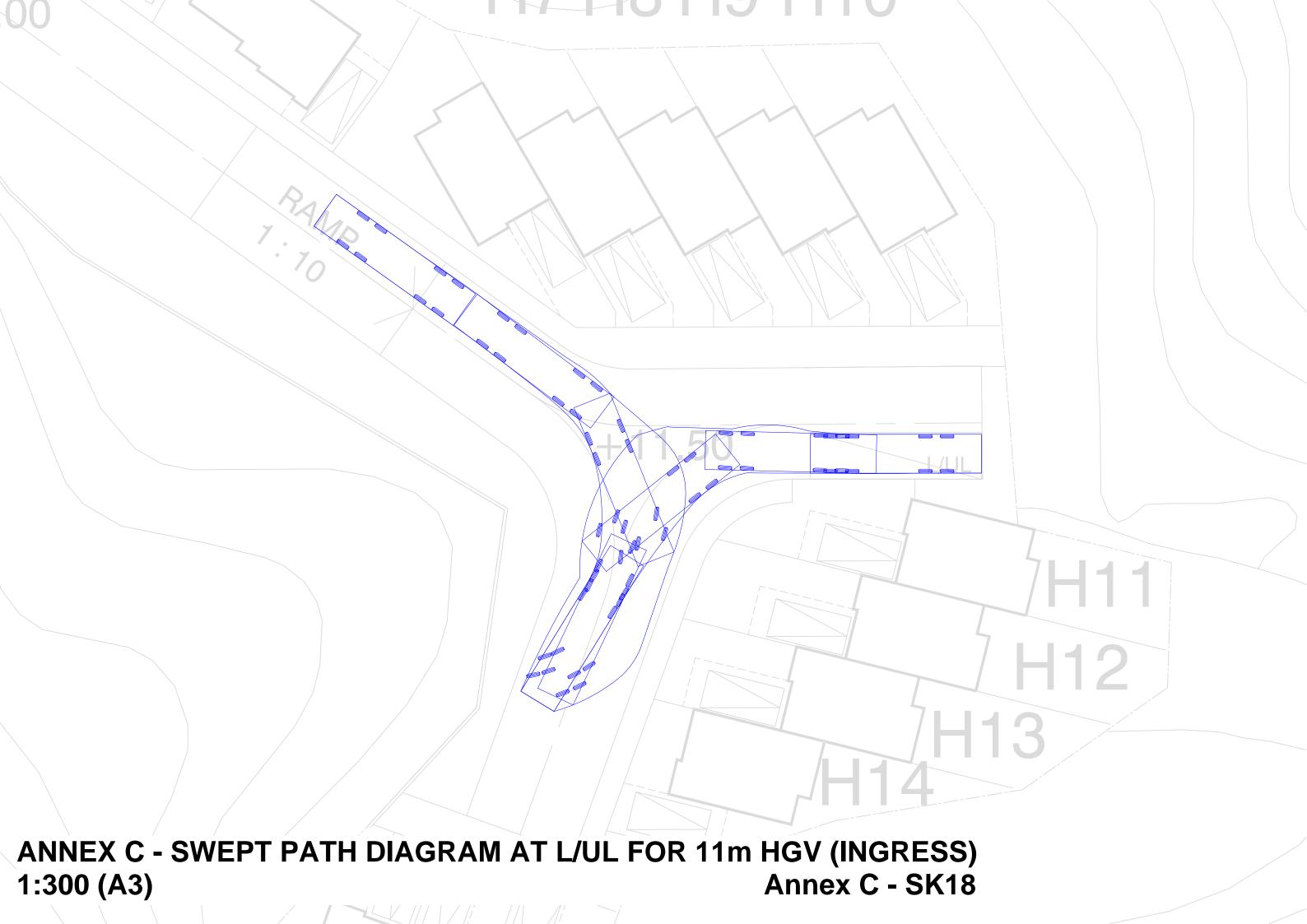


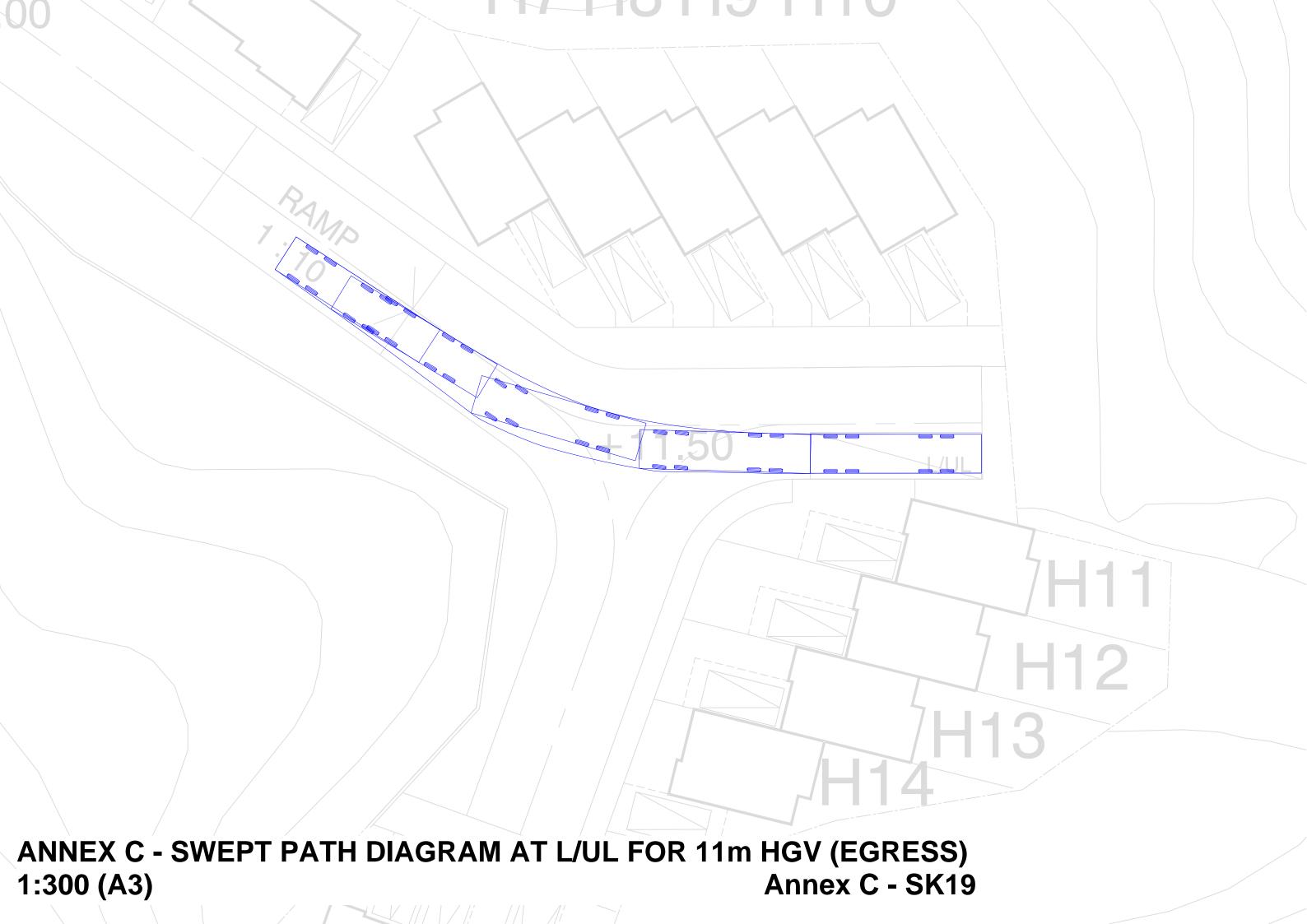


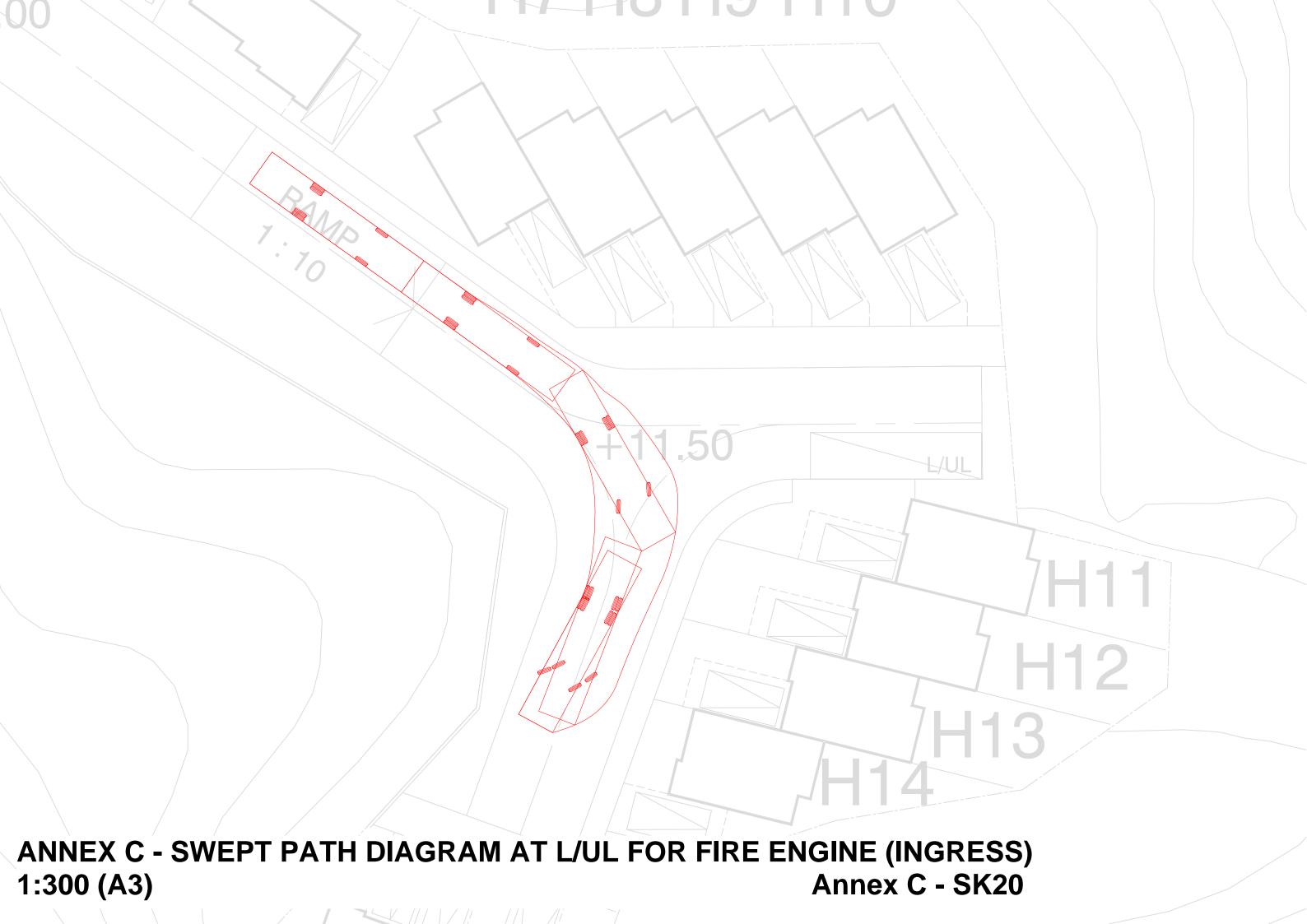


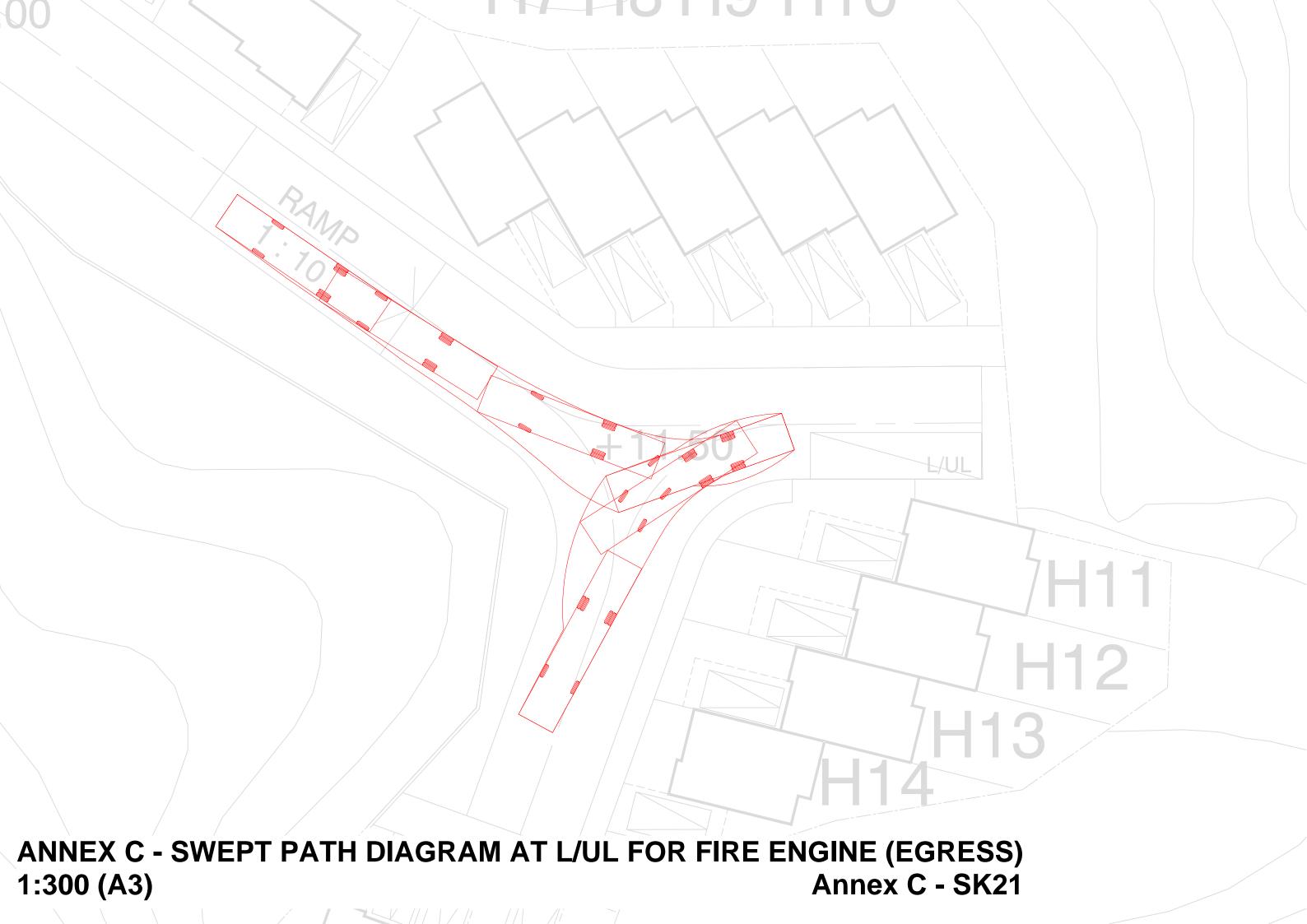


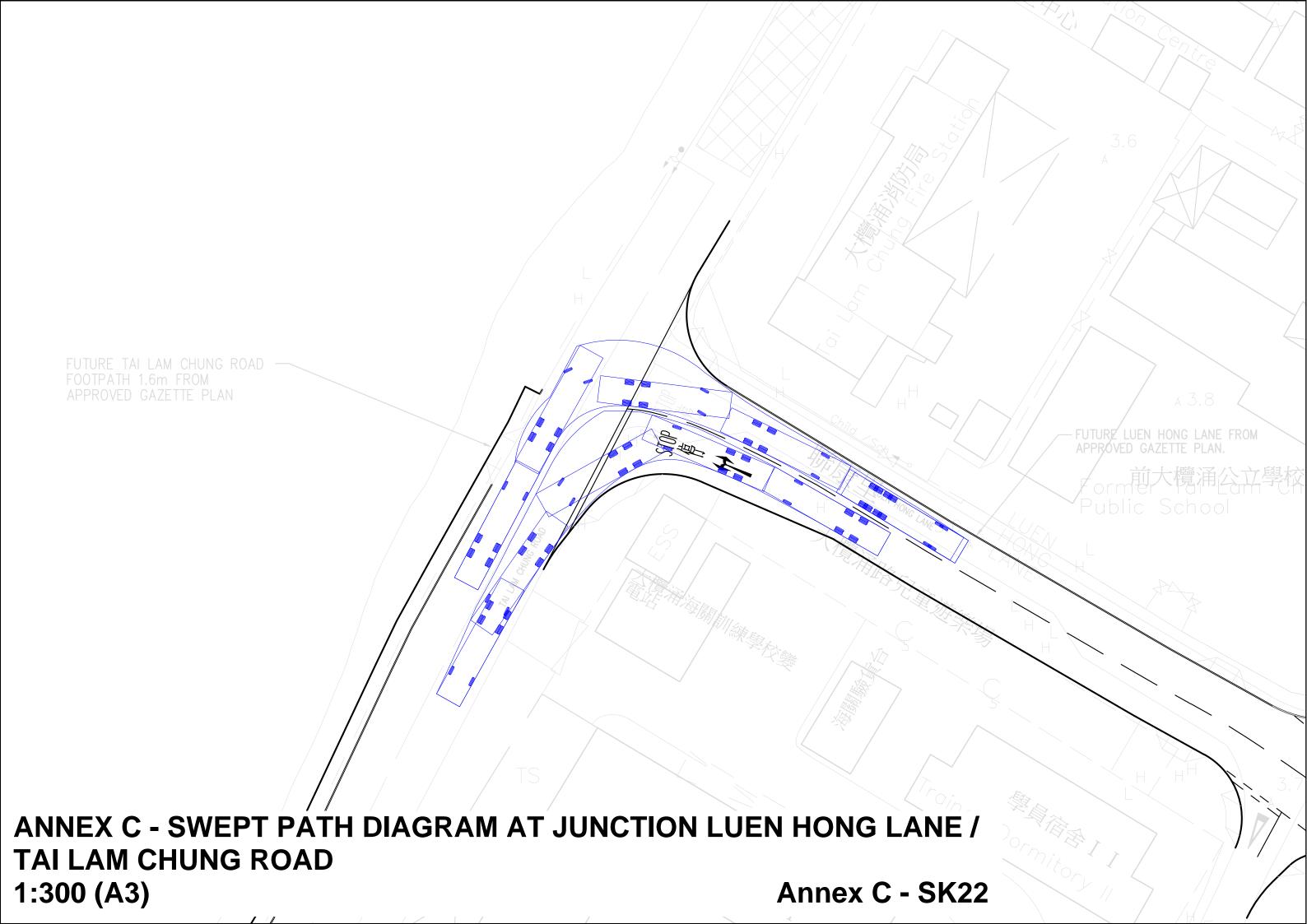


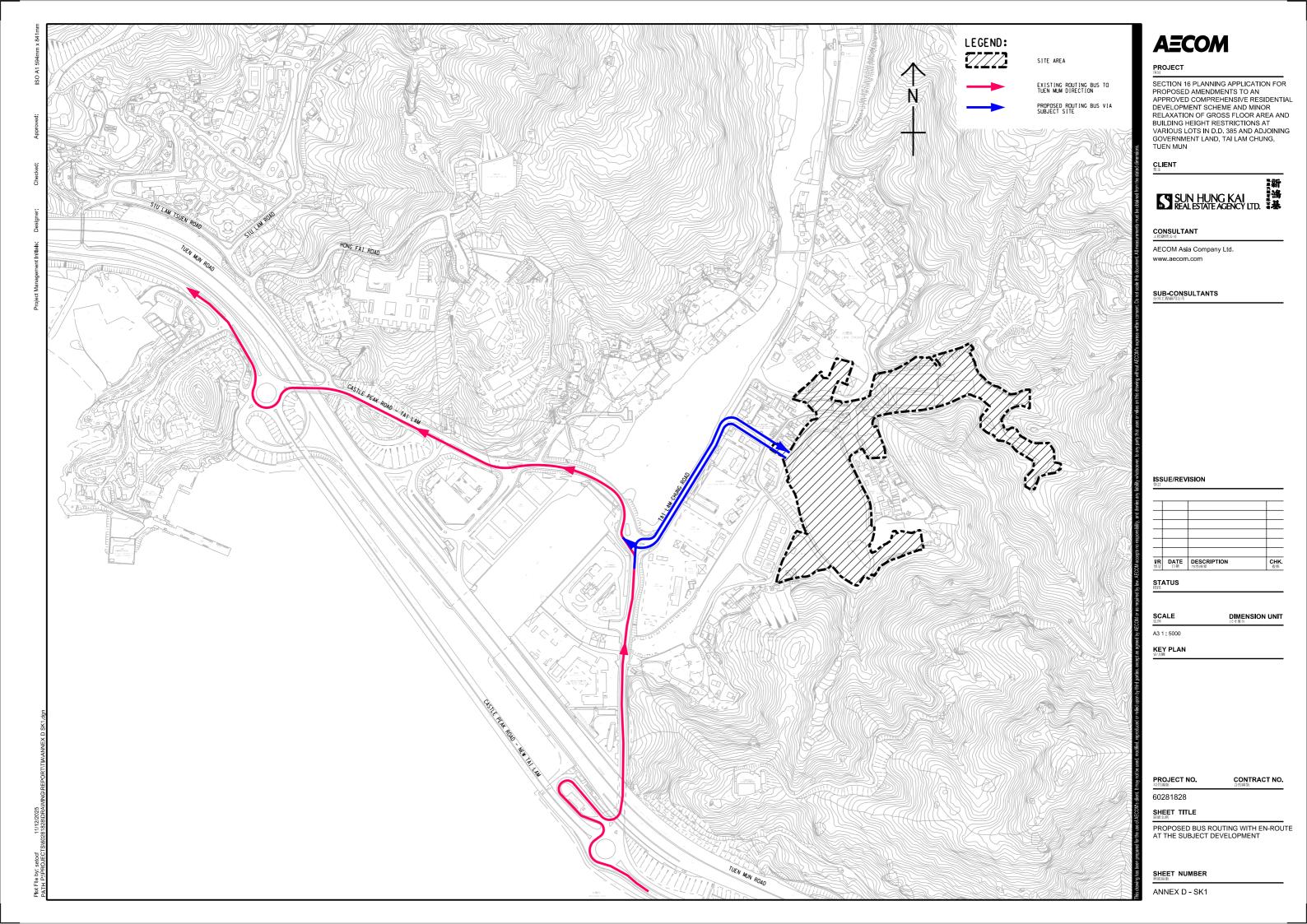


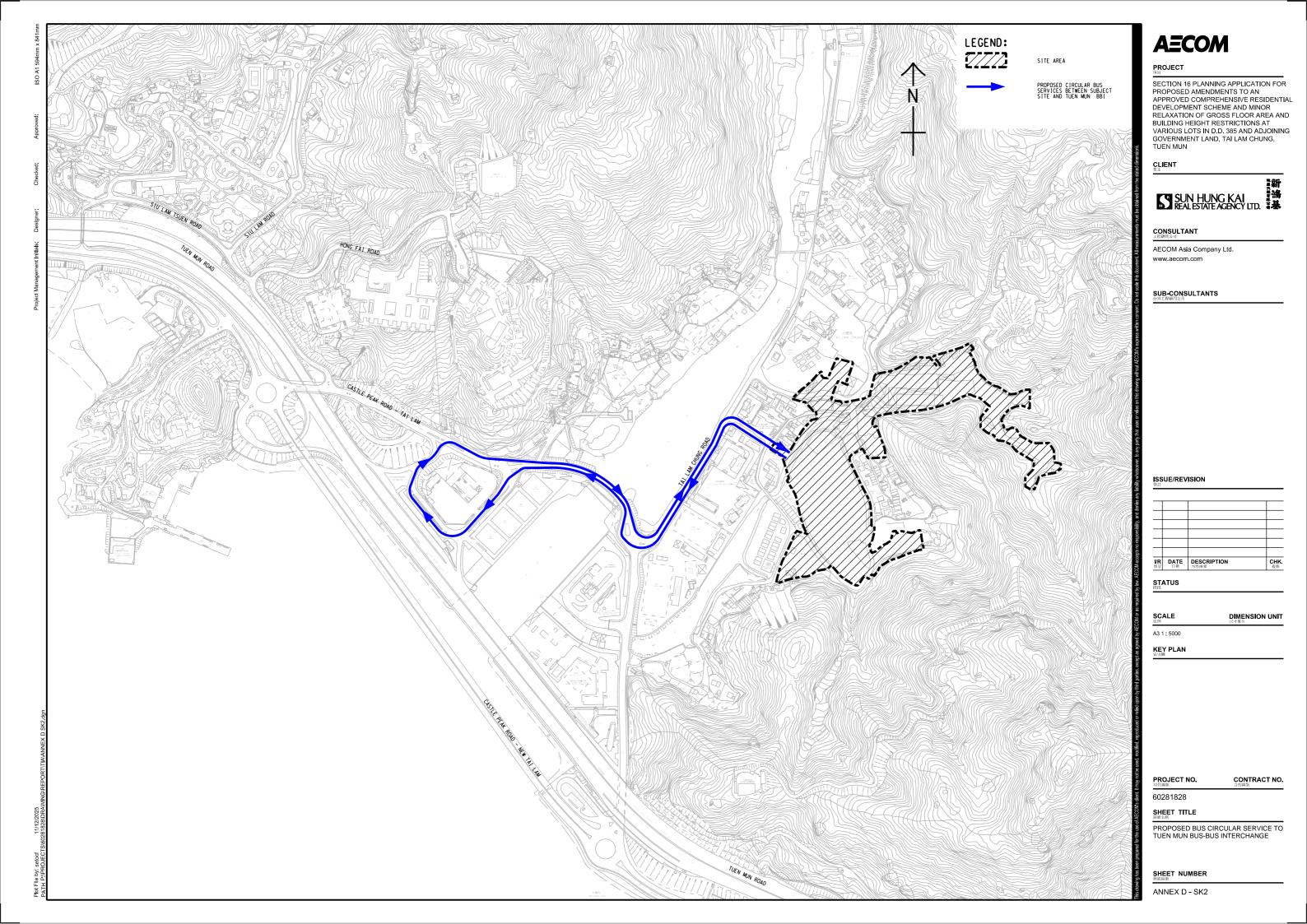












Annex D Proposed Bus Routing

Annex E

Extracted From Draft Land Grant of TMTL417

Commence and continue to operate the Public Open Space and the Public Car Park Clause 14(d)(ii)

- (II) Submit or cause to be submitted to the Director of Planning and the District Officer (Tuen Mun) for their written approval a management plan for the Public Car Park containing, among others, such details as the Director of Planning and the District Officer (Tuen Mun) may require including opening hours and any fee to be charged (which management plan as approved by the Director of Planning and the District Officer (Tuen Mun) is hereinafter referred to as "the Approved PCP Management Plan") and no amendment, variation, alteration, modification or substitution to the Approved PCP Management Plan shall be made by the Grantee thereafter except with the prior written approval of the Director of Planning and the District Officer (Tuen Mun) or except as required by the Director of Planning and the District Officer (Tuen Mun); and
- (III) Subject to the aforesaid approvals, open and commence to operate the Public Open Space and the Public Car Park.

Possession of the Orange Areas Clause 15(c)

The remaining portion or portions of the Orange Areas shall be re-delivered up to the Government on demand. The Government reserves the right to take back possession of the remaining portion or portions of the Orange Areas or any part or parts thereof for any purpose (as to which the decision of the Director shall be final and conclusive) as and when it sees fit without any payment or compensation whatsoever to the Grantee, provided always that the Government shall not be compelled to take back possession of the remaining portion or portions of the Orange Areas or any part thereof until the Director shall confirm in writing that the Government agrees to take back possession of the remaining portion or portions of the Orange Areas or any part thereof.