Appendix D – Traffic Impact Assessment

Traffic Impact Assessment

March 2025

AECOM

Table of Contents

		F	Page
1	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Objectives	1
	1.3	Report Structure	1
2	PRO	POSED DEVELOPMENT	3
	2.1	Development Schedule	3
	2.2	Development Access at Site A	3
	2.3	Internal Transport Facilities	3
3	EXIS	TING TRAFFIC CONDITIONS	6
	3.1	Existing Road Network	6
	3.2	Traffic Survey	6
	3.3	Junction Assessment	6
	3.4	Existing Public Transport Facilities	7
4	FUT	URE TRAFFIC CONDITIONS	10
	4.1	Design Year	10
	4.2	Traffic Forecast	10
	4.3	Planned / Potential Future Developments	11
	4.4	Traffic Generation of the Proposed Development	12
	4.5	2033 Traffic Forecasts	14
5	TRA	FFIC IMPACT ASSESSMENT	15
	5.1	Junction Capacity Assessment	15
6	REV	IEW ON FUTURE PUBLIC TRANSPORT DEMAND	16
	6.1	Future Public Transport Demand	16
	6.2	Future Public Transport Proposal	16
7	SUM	MARY AND CONCLUSION	18
	7.1	Summary	18
	7.2	Conclusion	19

List of Tables

	Pa	ge
Table 2.1	Development Schedule	. 3
Table 2.2	Provision of Car Parking and Servicing Facilities (Site A)	. 4
Table 2.3	Provision of Car parking and Servicing Facilities (Site B – Site F)	. 5
Table 3.1	Critical Junctions	. 6
Table 3.2	Existing Junction Performance	. 7
Table 3.3	Public Transport Services	. 8
Table 4.1	Historical Annual Average Daily Traffic (AADT) Flows from ATC	10
Table 4.2	2019-based TPEDM Planning Data	11
Table 4.3	Planned / Potential Future Developments in the Vicinity	11
Table 4.4	Estimated Trip Generation for the Planned / Potential Future Developments	12
Table 4.5	Adopted Trip Rate for the Subject Site under Permitted Scheme	12
Table 4.6 Scheme	Estimated Trip Generation and Attraction for the Subject Site under Permitted	12
Table 4.7	Adopted Trip Rate for the Subject Site under Proposed Scheme	13
Table 4.8 Scheme	Estimated Trip Generation and Attraction for the Subject Site under Proposed	13
Table 4.9	Estimated Traffic Flows for the Proposed Development	13
Table 5.1	Junction Performance in 2033	15
Table 6.1	Estimation on Future Public Transport Demand for the Proposed Development	Ι
Table 6.2	Summary of Anticipated Future Public Transport Demand	17

List of Figures

Figure 1.1	Site Location Plan
Figure 2.1	Master Layout Plan
Figure 2.2	Vehicular Access Arrangement
Figure 3.1	Existing Road Network and Critical Junctions
Figure 3.2	Existing Layout for Junction of Sha Tsui Road / Kwan Mun Hau Street /
	Luen Yan Street (J1)
Figure 3.3	Existing Layout for Junction of Sha Tsui Road / Texaco Road (J2)
Figure 3.4	Existing Layout for Junction of Yeung Uk Road / Texaco Road / Kwai Fuk
	Road (J3)
Figure 3.5	Existing Layout for Junction of Yeung Uk Road / Luen Yan Street /
	Ma Tau Pa Road (J4)
Figure 3.6	Existing Layout for Junction of Wang Wo Tsai Street / Kwu Hang Road (J5)
Figure 3.7	Existing Layout for Junction of Yeung Uk Road / Wang Wo Tsai Street (J6)
Figure 3.8	2023 Observed Traffic Flows
Figure 3.9	Existing Public Transport Facilities
Figure 4.1	Future Potential Developments in Vicinity of the Application Site
Figure 4.2	2033 Reference Traffic Flows
Figure 4.3	2033 Design Traffic Flows

Appendix

- Annex A Swept Path Analysis for the Proposed Development Access at Site A
- Annex B Junction Capacity Calculation Sheets
- Annex C Approved Technical Note on Parking Provision Requirement

1 INTRODUCTION

1.1 Background

- 1.1.1 The Application Site is located in the northern fringe of the Tsuen Wan East industrial area at various lots in D.D. 443 and bounded by Yeung Uk Road, Kwu Hang Road and Wang Wo Tsai Street as shown in **Figure 1.1.** It is currently zoned "Comprehensive Development Area (5)" ("CDA(5)") in Tsuen Wan OZP No. S/TW/37 and covers a total site area of approximately 7,353m².
- 1.1.2 To well utilize of the subject site, the Applicant proposes to increase the plot ratio from 5.0 to 6.11 and the total flat units will be increased from about 738 to 886.
- 1.1.3 AECOM Asia Co. Ltd was commissioned by the Applicant to prepare a Traffic Impact Assessment (TIA) report in support of the Section 16 planning application.

1.2 Objectives

- 1.2.1 The main objectives of this report are as follows: -
 - Outline the proposed development parameters and internal transport facilities;
 - Review the current traffic condition in the vicinity of the Application Site;
 - Estimate the potential traffic generations and attractions of the proposed development;
 - Produce traffic forecasts on the surrounding road network at the adopted design vear:
 - Assess traffic impact on the surrounding road network induced from the proposed development; and
 - Develop traffic improvement proposal(s) if necessary

1.3 Report Structure

- 1.3.1 Following this introductory chapter, the TIA is structured as follows:
 - Chapter 2: Proposed Development, describes the development schedule of the proposed development and its internal traffic facilities provisions, access arrangement, etc.;
 - Chapter 3: Existing Traffic Conditions, reviews the current traffic conditions in the vicinity;
 - Chapter 4: Future Traffic Conditions, describes the traffic forecasting methodology and presents the estimated traffic flows in design year;
 - Chapter 5: Traffic Impact Assessment, assesses the traffic impact induced on the surrounding road network and recommends improvement schemes, if considered necessary; and
 - Chapter 6: Future Public Transport Proposal, elaborates the anticipated public transport demand and discusses the future possible public transport proposal;

• Chapter 7: Summary and Conclusion, summarizes the findings of the study and presents the conclusion of this TIA.

2 PROPOSED DEVELOPMENT

2.1 Development Schedule

2.1.1 The development schedule of the Proposed Development is presented in **Table 2.1**. The proposed indicative Master Layout Plan (MLP) under the current application is presented in **Figure 2.1** for reference.

Table 2.1 Development Schedule

Parameter	Phase 1 (Site A)	Phase 2a (Site B)	Phase 2b (Site C)	Phase 2c (Site D)	Phase 2d (Site E)	Phase 2e (Site F)
Site Area	1,858m²	929m²	956m²	1,057m ²	697m ²	1,331m ²
Domestic Plot Ratio			6.	0		
Non- Domestic Plot Ratio	0.25	0.15	0.15	1	1	-
Total GFA	11,607m ²	5,714m ²	5,880m ²	6,342m ²	4,812m ²	7,986m²
No. of Flats	About 277 flats	About 116 flats	About 116 flats	About 145 flats	About 87 flats	About 145 flats
Average Flat Size	About 40.2m ²	About 48.1m ²	About 49.4m ²	About 43.7m ²	About 48.1m ²	About 55.1m ²

2.2 Development Access at Site A

- 2.2.1 The vehicular access for the Proposed Development at Site A would be shifted to the east by approximately 8m, whilst the existing bus stop would be maintained in **Figure 2.2**. Swept path analysis for the Proposed Development access at Site A is shown in **Annex A** for reference.
- 2.2.2 To enhance visibility from the vehicular access of the subject site, the existing bus stop along Yeung Uk Road near the development will be relocated westward. The proposed location of the bus stop is presented in **Figure 2.2**.

2.3 Internal Transport Facilities

2.3.1 The parking and loading/unloading facilities of the Proposed Development will be provided in accordance with the requirements as stipulated in the Hong Kong Planning Standards and Guidelines (HKPSG) to cater for the transport demand. The respective requirements for all sites are summarized in **Table 2.2** and **Table 2.3** respectively.

Table 2.2 Provision of Car Parking and Servicing Facilities (Site A)

I able 2		0.011 01 041	and game	Servicing racinities	5 (G.165 7 1)		
Parking/ Servicing Facilities	HKPSG Requirements		No. of Unit	No. of Internal Transport Facilities required by HKPSG	Proposed Internal Transport Facilities ⁽¹⁾		
	Flat Size≤40m²	1 space per 8.9-15.6 units ⁽²⁾	247	16 - 28	19		
Residential Parking	40m² <flat Size≤70m²</flat 	1 space per 3.7-6.5 units ⁽³⁾	28	5 - 8	6		
Spaces	70m² <flat Size≤100m²</flat 	1 space per 1.9-3.2 units ⁽⁴⁾	2	1 - 2	1		
		Total	277	22 - 38	26 ⁽⁵⁾		
Visitor Parking Spaces	5 spaces per block		1 block	5	5		
Motorcycle Parking Spaces	1 space per 100 -150 units		277	2-3	3		
Loading/ Unloading Bays	1 bay p	er block	1 block	1	1		
Retail Component (2)	80m²)						
Retail Parking 1 space per Spaces 150m² - 300m² GFA		240m²	1 - 2	2			
Retail Loading / 1 space per Unloading Bays 800m² - 1200m² GFA			240m²	1	1		
Social Work Service Team for Pre-primary Institutions (SWSPPI)							
Private Light Bus Parking Space	-						

Notes

- (1) Figures are rounded up to nearest number.
- (2) According to HKPSG, Parking Requirement = Global Parking Standard (GPS) x Demand Adjustment Ratio (R1) x Accessibility Adjustment Ratio (R2) x Development Intensity Adjustment Ratio (R3), i.e. 1 car space per 4-7 units x 0.5 x 1.0 x 0.9 = 1 car space per 8.9-15.6 units.
- (3) According to HKPSG, Parking Requirement = Global Parking Standard (GPS) x Demand Adjustment Ratio (R1) x Accessibility Adjustment Ratio (R2) x Development Intensity Adjustment Ratio (R3), i.e. 1 car space per 4-7 units x 1.2 x 1.0 x 0.9 = 1 car space per 3.7-6.5 units.
- (4) According to HKPSG, Parking Requirement = Global Parking Standard (GPS) x Demand Adjustment Ratio (R1) x Accessibility Adjustment Ratio (R2) x Development Intensity Adjustment Ratio (R3), i.e. 1 car space per 4-7 units x 2.4 x 1.0 x 0.9 = 1 car space per 1.9-3.2 units.
- x 0.9 = 1 car space per 1.9-3.2 units.
 Taken into consideration the proximity to public transport services, availability of public car parking space, traffic conditions and the illegal parking condition in the vicinity, it is proposed to adopt a GPS of 6 for calculating the carparking provision according to HKPSG. Prior agreement with TD on adopting GPS 6 has been obtained on 14 February 2025 separately. The approved technical note is enclosed in Annex C for reference.

Provision of Car parking and Servicing Facilities (Site B - Site F) Table 2.3

								_			
D. 11/		Si	te B	Sit	te C	Sit	e D	Sit	e E	Sit	e F
Parking/ Servicing Facilities	HKPSG Requirements	No. of Units/ No. of Blocks	Proposed Provision								
Residential (Component										
Residential Parking Spaces	40m ²	116	21	116	21	145	27	87	16	145	27
Visitor Parking Spaces	5 spaces per block	1	5	1	5	1	5	1	5	1	5
Motorcycle Parking Spaces	1 space per 100 -150 units	116	2	116	2	145	2	87	2	145	2
Loading/ Unloading Bays	1 bay per block	1	1	1	1	1	1	1	1	1	1
Retail Component											
Retail Parking Spaces	1 space per 150m² - 300m² GFA	140	1	144	1	-	-	-	-	-	-
Retail Loading / Unloading Bays	1 space per 800m² - 1200m² GFA	140	1	144	1	-	-	-	-	-	-

Figures are rounded up to nearest number.

Taken into consideration the proximity to public transport services, availability of public car parking space, traffic conditions and the illegal parking condition in the vicinity, it is proposed to adopt a GPS of of calculating the carparking provision according to HKPSG.

3 EXISTING TRAFFIC CONDITIONS

3.1 Existing Road Network

- 3.1.1 The existing road network in the vicinity of the Application Site is shown in **Figure 3.1**.
- 3.1.2 Texaco Road is a District Distributor (DD) running in north-south direction. It connects Tsuen Kam Interchange on its north leading to Tuen Mun and Shatin via Cheng Pei Sha Road (i.e. Route 9), and Tsuen Tsing Interchange on its south leading to Tsing Yi and Lantau Island via Tsuen Tsing Road as well as Kowloon via Tsuen Wan Road (i.e. Route 5).
- 3.1.3 Sha Tsui Road is a District Distributor (DD) running in east-west direction. It connects Texaco Road on its east and Castle Peak Road Tsuen Wan on its west.
- 3.1.4 Yeung Uk Road is a District Distributor (DD) running in east-west direction. It connects Texaco Road on its east and Tai Ho Road on its west.

3.2 Traffic Survey

3.2.1 Total of 6 critical junctions have been identified for assessment and listed in **Table 3.1** and shown in **Figure 3.1**.

Table 3.1 Critical Junctions

Ref.	Junction	Type	Fig. No.
J1	Sha Tsui Road / Kwan Mun Hau Street / Luen Yan Street	Signal	3.2
J2	Sha Tsui Road / Texaco Road	Signal	3.3
J3	Texaco Road / Yeung Uk Road / Kwai Fuk Road	Signal	3.4
J4	Yeung Uk Road / Luen Yan Street / Ma Tau Pa Road	Signal	3.5
J5	Wang Wo Tsai Street / Kwu Hang Road	Priority	3.6
J6	Yeung Uk Road / Wang Wo Tsai Street	Priority	3.7

- 3.2.2 The existing layout of the above junctions is shown in Figure 3.2 to Figure 3.7.
- 3.2.3 Series of manual classified traffic counts surveys were carried out to establish the current traffic condition in the vicinity. The surveys were undertaken on a typical weekday on December 2023 at 07:30 09:30 and 17:00 19:00 to appraise the existing traffic conditions of the above junctions.
- 3.2.4 The survey results indicated that the commuting morning (AM) and evening (PM) peak hours were at 08:30 09:30 and 17:30 18:30 respectively.
- 3.2.5 The 2023 observed AM and PM peak hour traffic flows are shown in Figure 3.8.

3.3 Junction Assessment

3.3.1 Junction capacity analysis was carried out for the above surveyed junctions which are located in the vicinity of the Site to appraise the existing traffic condition based on the 2023 observed peak hour traffic flows.

- 3.3.2 Based on the turning flows at the above junctions, capacity assessments were carried out in accordance with the methodology documented in the appendices of Transport Planning and Design Manual (TPDM) Vol.2 Ch.4 on priority junction and roundabout capacity assessment. Signal junction assessments were based on TPDM Vol.4.
- 3.3.3 The existing junction performances of the critical junctions are summarized in **Table** 3.2. Capacity calculation sheets are attached in **Annex B**.

Table 3.2 Existing Junction Performance

Ref.	Junction	Indicator ⁽¹⁾	2023 Observed		
Rei.	Junction	indicator	AM Peak	PM Peak	
J1	Sha Tsui Road / Kwan Mun Hau Street / Luen Yan Street	RC	45%	46%	
J2	Sha Tsui Road / Texaco Road	RC	48%	33%	
J3	Texaco Road / Yeung Uk Road / Kwai Fuk Road	RC	33%	28%	
J4	Yeung Uk Road / Luen Yan Street / Ma Tau Pa Road	RC	65%	77%	
J5	Wang Wo Tsai Street / Kwu Hang Road	DFC	0.13	0.17	
J6	Yeung Uk Road / Wang Wo Tsai Street	DFC	0.33	0.36	

Note:

(1) RC = Reserve Capacity for signal junction; DFC = Design Flow / Capacity ratio for priority junction or roundabout

3.3.4 At present, all critical junctions are operating within capacity.

3.4 Existing Public Transport Facilities

- 3.4.1 The Application Site is located outside 500m radius of railway stations. The distance from the Application Site to Tsuen Wan Station / Tai Wo Hau Station of MTR Tsuen Wan Line and Tsuen Wan West Station of MTR West Rail Line are about 700m and 1km respectively.
- 3.4.2 Apart from railway transit, there are franchised bus, green minibus and public light bus services with on-street passenger pick-up/ drop-off points along Sha Tsui Road, Texaco Road, Yeung Uk Road, Luen Yan Street and Kwan Mun Hau Street in the vicinity of the proposed development. The respective servicing schedules are listed in Table 3.3. The location of the bus stop and minibus stops are presented in Figure 3.9.

Table 3.3 Public Transport Services

Route No.	Origin – Destination	Frequency (min.)
Franchis	ed Bus	1
30	Allway Gardens B/T - Cheung Sha Wan B/T	25 - 30
31	Tsuen Wan West Railway Station B/T - Shek Lei (Circular)	12 - 20
33A	Tsuen Wan (Nina Tower) - Mong Kok (Park Avenue)	15 - 20
34	Kwai Shing B/T (Central) - Bayview Garden B/T	15 - 20
36	Lei Muk Shue B/T - Tsuen Wan West Railway Station B/T	10 - 20
38A	Riviera Gardens B/T - Mei Foo B/T	20 - 30
39A	Tsuen Wan West Railway Station B/T - Allway Gardens (Circular)	20 - 25
41M	Tsing Yi Ferry B/T - Tsuen Wan Railway Station B/T	12 - 25
42	Cheung Hong B/T - Shun Lee B/T	15 - 20
42C	Cheung Hang B/T - Lam Tin Railway Station B/T	5 - 13
42M	Cheung Wang - Discovery Park B/T	7 - 15
43	Cheung Hong B/T - Tsuen Wan West Railway Station B/T	12 - 20
43B	Cheung Ching B/T - Tsuen Wan West Railway Station B/T	12 - 25
49X	Kwong Yuen B/T - Tsing Yi Ferry B/T	5 - 15
235	On Yam B/T - Tsuen Wan (Circular)	8 - 15
238M	Riviera Gardens B/T - Tsuen Wan Railway Station B/T	8 - 15
243M	Mayfair Garden B/T - Discovery Park B/T	10 - 15
243P	Mayfair Garden B/T - Allway Gardens	7:20, 8:00
251M	Sheung Tsuen B/T - Tsing Yi Railway Station B/T	7:00, 8:00, 9:00
848	Shatin Race Course B/T - Kwai Fong Railway Station B/T	-
930	Tsuen Wan West Railway Station - Exhibition Centre Station B/T	10 - 15
930A	Tsuen Wan West Station - Exhibition Centre Station B/T (3 trips in AM peak)	-
E31	Discovery Park B/T - Tung Chung (Yat Tung)	15 - 25
N31	Discovery Park B/T - Airport (Ground Transportation Centre)	45
R42	Disneyland - Tai Wai Railway Station B/T (1 trip after fireworks)	-
Green Mi	ni-Bus (GMB)	
80	Tsuen Wan (Chuen Lung Street / Shiu Wo Street) - Chuen Lung	7 – 15
81	Tsuen Wan (Siu Wo Street) - Lo Wai	6 - 25
81M	Tsuen Wan (Siu Wo Street) - Shek Wai Kok Estate	10 - 20
82	82 Tsuen Wan (Siu Wo Street) - Shing Mun Reservoir	
82M	Tsuen Wan (Siu Wo Street) - Cheung Shan Estate	
83A	Tsuen Wan (Chuen Lung Street) - On Yam Estate (On Chit Street)	8 - 30
85	Tsuen Wan (Siu Wo Street) - Fu Yung Shan (Chuk Lam Sim Yuen)	15 – 30
86	Tsuen Wan (Hoi Kwai Road) - Shek Lei (Lei Pui Street)	10 - 20
86A	Tsuen Wan (Chuen Lung Street) - Shek Lei (Lei Pui Street)	15 - 30

Route No.	Origin – Destination	Frequency (min.)
86M	Tsuen Wan (Chuen Lung Street) - Shek Lei (Lei Pui Street)	5 - 20
87	Kwai Shing (Shing Fong Street) - Tsuen Wan (Ham Tin Street)	8 - 10
87K	Kwai Fong Station - Tsuen Wan West Railway Station	
89	Shek Tau Street - Tsuen Wan (Ho Pui Street)	5 - 10
89A	Kwai Hing Station - Tsuen Wan (Ho Pui Street)	8 - 18
89B	Tsuen Wan (Hoi Kwai Road) - Kwai Shing North (Kwai Hau Street)	8 - 12
91	Highland Park - Tsuen Wan (Ham Tin Street)	7 - 10
93	Wah Yuen Chuen - Tsuen Wan (Ham Tin Street)	6 - 15
98	Kwai Shing North (Kwai Hau Street) – Kwai Chung Plaza	4 - 8
302	Hong Kong Garden - Kwai Fong	5 – 8
312	Tsing Yi Station - Lei Muk Shue Estate PTI	4 - 8
313	Tsuen Wan (Tso Kung Street) - Princess Margaret Hospital	6 - 11
401	Tsing Yi Ferry Pier - Shek Yam	7 - 10
406	Shek Lei - Kwai Shing	-
Public L	ight Bus (PLB)	
-	Tsuen Wan (Hoi Pa Street) – Shek Wai Kok	-
-	Tsuen Wan (Vision City) – Lei Muk Shue	-
-	Tsuen Wan (Chuen Lung Street) - Shatin Race Course	-
-	Tsuen Wan (Market Street) – Kwun Tong (Yee On Street)	-
-	Tsuen Wan (Market Street) – Yau Tong/ Lei Yue Mun	-
-	Tsuen Wan (Market Street) – San Po Kong/ Ping Shek	-
-	Tsuen Wan (Hoi Pa Street) – Tsz Wan Shan	-
-	Tsuen Wan (Chuen Lung Street) – To Kwa Wan (Jubilant Place)	-
-	Tsuen Wan (Vision City) – Jordan Road	-
-	Tsuen Wan (Hoi Pa Street) – Jordan Road	-
-	Tsuen Wan (Hoi Pa Street) – Mong Kok (Langham Place)	-
-	Tsuen Wan (Market Street) – Sheung Wan	-

4 FUTURE TRAFFIC CONDITIONS

4.1 Design Year

4.1.1 The proposed development is tentatively scheduled for completion in 2030. Year 2033 is selected as a design year in this TIA for assessment purpose (i.e. 3 years after the planned completion).

4.2 Traffic Forecast

- 4.2.1 The traffic forecast for the Reference Case (year 2033 with the Permitted Scheme of proposed development) were formulated by (i) applying the annual growth rate to the 2023 observed traffic flows to derive 2033 background traffic flows and (ii) superimposing the traffic flows generated from the Permitted Scheme and other planned / potential future developments in the vicinity of the Site.
- 4.2.2 The traffic forecast for the Design Case (year 2033 with the Proposed Scheme of proposed development) would be the traffic forecast in Reference Case plus the net changes of traffic generation due to the Proposed Scheme of proposed development.
- 4.2.3 To obtain the aforesaid annual growth rate, two sets of data was referenced. The data include (i) the historical traffic data in Annual Traffic Census (ATC) and (ii) the planning data in "2019-based Territorial Population and Employment Data Matrix" (TPEDM) published by the Planning Department in the website.

Historical Traffic Data from ATC

4.2.4 The annual average daily traffic (AADT) flow and annual growths of the nearby counting stations from 2017 to 2022 as presented in the ATC reports published annually by Transport Department are summarized in below **Table 4.1**.

Table 4.1 Historical Annual Average Daily Traffic (AADT) Flows from ATC

ATC Stn.	Dood Name	A.A.D.T. (veh/day)							
No.	Road Name	2017	2018	2019	2020	2021	2022		
5830	Sha Tsui Rd	18,950	19,230	19,160	18,980	19,890	20,400		
5831	Yeung Uk Rd	23,620	23,970	23,890	23,660	28,290	28,810		
5833	Texaco Rd	31,740	32,210	32,100	31,780	32,420	33,240		
6028	Texaco Rd	30,060	27,600	27,510	27,240	25,240	25,540		
Total		104,370	103,010	102,660	101,660	105,840	107,990		
_	Average Traffic Growth Rate from 2017 to 2022 = +0.7% per annum								

4.2.5 As shown in **Table 4.1**, the average growth rate from 2017 to 2022 is about **+0.7%** per annum according to the historical ATC data.

Population and Employment estimates from TPEDM

4.2.6 The traffic growth rate was also referred to 2019-based TPEDM data which is available in Planning Department's website. **Table 4.2** shows the years 2019 and 2031 population and employment planning data in Tsuen Wan district.

Table 4.2 2019-based TPEDM Planning Data

Planning Data	Year	2019	Year 2031			
District	Population	Employment	Population	Employment		
Tsuen Wan	293,700	165,000	249,400	160,650		
	458,700 410,050					
Total	Annual Growth Rate = -0.93%					

Adopted Annual Growth Rate

4.2.7 Based on the results given by TPEDM estimates and AADT historical data, an annual growth rate of **0.7%** per annum is adopted for projecting the peak hour traffic flows from 2023 to 2033 for conservative assessments.

4.3 Planned / Potential Future Developments

4.3.1 There are several planned / potential future developments adjacent to the Proposed Development. The development parameters of the planned / potential future developments and their location are shown in **Table 4.3** and **Figure 4.1** respectively.

Table 4.3 Planned / Potential Future Developments in the Vicinity

Ref.	Development Site	Land Use	Assumed Development Parameter
1	A/TW/537	Private Housing	629 flats with average flat size of 43m ²
2	A/TW/527	Private Housing	1,330 flats with average flat size of 47m ²
3	A/TW/505	Industrial	Additional 3,530m² Industrial GFA
4	A/TW/514	Industrial	Additional 1,127m² Industrial GFA
5	A/TW/521	Industrial	Additional 2,926m² Industrial GFA
6	R(A)	Private Housing	790 flats with average flat size of 50m ²
7	C(7)	Commercial	52,513m² Commercial GFA

4.3.2 Estimation of the traffic generation and attraction volume are derived from the trip rates as stipulated in Annex C of Transport Planning and Design Manual (TPDM) Volume 1 Chapter 3 published by Transport Department.

4.3.3 **Table 4.4** summarizes the estimated trip generations of the above Planned and Potential Future Developments.

Table 4.4 Estimated Trip Generation for the Planned / Potential Future Developments

		Estimated Trips (pcu/hr)				
Ref.	Development Site	AM Peak		PM Peak		
		Gen.	Att.	Gen.	Att.	
1	A/TW/537	54	32	22	28	
2	A/TW/527	96	57	39	50	
3	A/TW/505	4	5	5	4	
4	A/TW/514	2	2	2	2	
5	A/TW/521	3	5	4	4	
6	R(A)	57	34	23	30	
7	C(7)	89	129	83	62	

4.4 Traffic Generation of the Proposed Development

4.4.1 Based on the development scheme as mentioned in Section 2, the adopted trip rate extracted from Annex D of TPDM Volume 1 Chapter 3 and the development trip generation and attraction under the Permitted Scheme and Proposed Scheme for the Subject Site are illustrated in below tables.

Table 4.5 Adopted Trip Rate for the Subject Site under Permitted Scheme

	Adopte	Adopted Trip Rates (pcu/hr/flat)				
Average Flat Size	AM	AM Peak		Peak	Note	
	Gen.	Att.	Gen.	Att.		
≤ 60 m²	0.0718	0.0425	0.0286	0.0370	(1)	

Note:

Table 4.6 Estimated Trip Generation and Attraction for the Subject Site under Permitted Scheme

Subject Site (Permitted Scheme)			Trip Generation and Attraction (pcu/hr)				
	Average No. of Flat / AM Peak		Peak	PM I	Peak		
	Flat Size GFA	GFA	Gen.	Att.	Gen.	Att.	
Residential	40m²	739	54	32	22	28	

⁽¹⁾ Based on the traffic rates for private housing: high-density/R(A) with average flat size $60m^2$

Table 4.7 Adopted Trip Rate for the Subject Site under Proposed Scheme

	Adopte				
Average Flat Size / GFA	AM Peak		PM Peak		Note
	Gen.	Att.	Gen.	Att.	
Residential (≤ 60 m²)	0.0718	0.0425	0.0286	0.0370	(1)
Retail (pcu/hr/100 m² GFA)	0.2296	0.2434	0.3100	0.3563	(2)

Note:

Table 4.8 Estimated Trip Generation and Attraction for the Subject Site under Proposed Scheme

	under i repecca conome						
Subject Site (Proposed Scheme)			Trip Generation and Attraction (pcu/hr)				
	Average	No. of Flat /	AM I	AM Peak		Peak	
	Flat Size	GFA	Gen.	Att.	Gen.	Att.	
Residential	40m²	886	64	38	26	33	
Retail	-	280m²	1	1	1	1	

4.4.2 By comparing the total development trip generated and attracted by the Subject Site under the Permitted Scheme and Proposed Scheme, the net differences of the development trips are presented in **Table 4.9**.

Table 4.9 Estimated Traffic Flows for the Proposed Development

	Estimated Trips (pcu/hr)					
Subject Development	AM	Peak	PM Peak			
	Gen.	Att.	Gen.	Att.		
Permitted Scheme	54	32	22	28		
Proposed Scheme	65	39	27	34		
Net Difference = Proposed Scheme – Permitted Scheme in OZP	11	7	5	6		

4.4.3 As shown in **Table 4.9**, 2-way traffic of the Proposed Development will be increased +18 pcu/hr and +11 pcu/hr during AM and PM peak hour respectively. Thus, it is anticipated that the Proposed Development would have minimal impact to the road network.

⁽¹⁾ Based on the mean traffic rates for private housing: high-density/R(A) with average flat size 60m²

⁽²⁾ Based on the mean traffic rates for Retail / Shopping Complex (Office + Retail)

4.5 2033 Traffic Forecasts

- 4.5.1 By applying the adopted growth rate +0.7% per annum to 2023 existing traffic flow and superimposing the planned / potential future developments trips as listed in **Table 4.4**, the 2033 background traffic forecast (without proposed development) has been obtained. Based on the 2033 background traffic forecasts (without proposed development) as described in **Section 4.3**, the 2033 reference traffic flows were produced by adding the trips generated by the proposed development as permitted in OZP as listed in **Table 4.9**. The 2033 reference traffic flows are shown in **Figure 4.2**.
- 4.5.2 The net increase of the Proposed Development as estimated in **Table 4.9** were superimposed to 2033 reference traffic flows to produce 2033 design traffic flows. The 2033 design traffic flows are shown in **Figure 4.3**.

5 TRAFFIC IMPACT ASSESSMENT

5.1 Junction Capacity Assessment

- 5.1.1 The operational performance of the 6 critical junctions based on year 2033 traffic forecasts as mentioned in **Section 4** have been assessed.
- 5.1.2 The results of junction capacity analysis are summarized in **Table 5.1.**

Table 5.1 Junction Performance in 2033

			2033				
Ref.	Junction	Indicator ⁽¹⁾	Referen	ce Case	Design Case		
			AM Peak	PM Peak	AM Peak	PM Peak	
J1	Sha Tsui Road / Kwan Mun Hau Street / Luen Yan Street	RC	30%	34%	30%	34%	
J2	Sha Tsui Road / Texaco Road	RC	30%	21%	29%	21%	
J3	Texaco Road / Yeung Uk Road / Kwai Fuk Road	RC	19%	18%	19%	18%	
J4	Yeung Uk Road / Luen Yan Street / Ma Tau Pa Road	RC	40%	53%	39%	52%	
J5	Wang Wo Tsai Street / Kwu Hang Road	DFC	0.20	0.24	0.20	0.24	
J6	Yeung Uk Road / Wang Wo Tsai Street	DFC	0.54	0.46	0.55	0.46	

Note:

5.1.3 As shown in **Table 5.1**, all junctions would be operating within capacity in 2033. As such, it is considered that the proposed development would have no significant traffic impact onto the surrounding road network.

⁽¹⁾ RC = Reserve Capacity for signal junction; DFC = Design Flow / Capacity ratio for priority junction or roundabout

6 REVIEW ON FUTURE PUBLIC TRANSPORT DEMAND

6.1 Future Public Transport Demand

6.1.1 To review the appropriate public transport provision to be provided due to the population intake of the Proposed Development, the future public transport demand for the Proposed Development is reviewed with reference to the information/data as available in the Travel Characteristics Survey 2011 Final Report as available in Transport Department's website. The estimation of future public transport demand is summarized in **Table 6.1**.

Table 6.1 Estimation on Future Public Transport Demand for the Proposed Development

Parameters	Formula	Proposed Scheme
Estimated Population	(a)	748 ⁽¹⁾
Average daily mechanised trips per person	(b)	1.83 ⁽²⁾
Peak hour factor (AM/PM) to daily total	(c)	12% ⁽³⁾
Modal Split for Public Transport	(d)	73%(4)
Estimated public transport demand per hour during peak hours	$(e) = (a) \times (b) \times (c) \times (d)$	120

Notes:

- (1) The anticipated population is derived by assuming 2.7 persons per flat as per the average household size of Tsuen Wan District in 2022 under General Household Survey by Census and Statistics Department. The estimated population 748 persons (277 flats*2.7 persons per flat=748 persons) only included site A under proposed development.
- (2) The daily mechanised trip rate per population is 1.83 trips according to the Travel Characteristics Survey 2011 Final Report.
- (3) The peak hour factor is about 12% of daily trips according to the Travel Characteristics Survey 2011 Final Report.
- (4) Modal split for public transport is made reference with Table 3.6 of Travel Characteristics Survey 2011 Final Report.

6.2 Future Public Transport Proposal

- 6.2.1 Currently, it was observed that approximately 46% of the existing public transport demand going to Tsuen Wan and Kwai Chung direction whilst 29% are travelling to Tsing Yi, and the remaining 25% of the public transport demand going to other destinations. Meanwhile, about 97% of the public transport demand to Tsuen Wan and Kwai Chung would take 243M and GMB 409K and 87K etc. whilst approximately 82% of those would take 42M and 49X to Tsing Yi.
- 6.2.2 Taking into account the existing public transport pattern as observed on site, the anticipated pattern future public demand for the Proposed Development is summarized in **Table 6.2**.

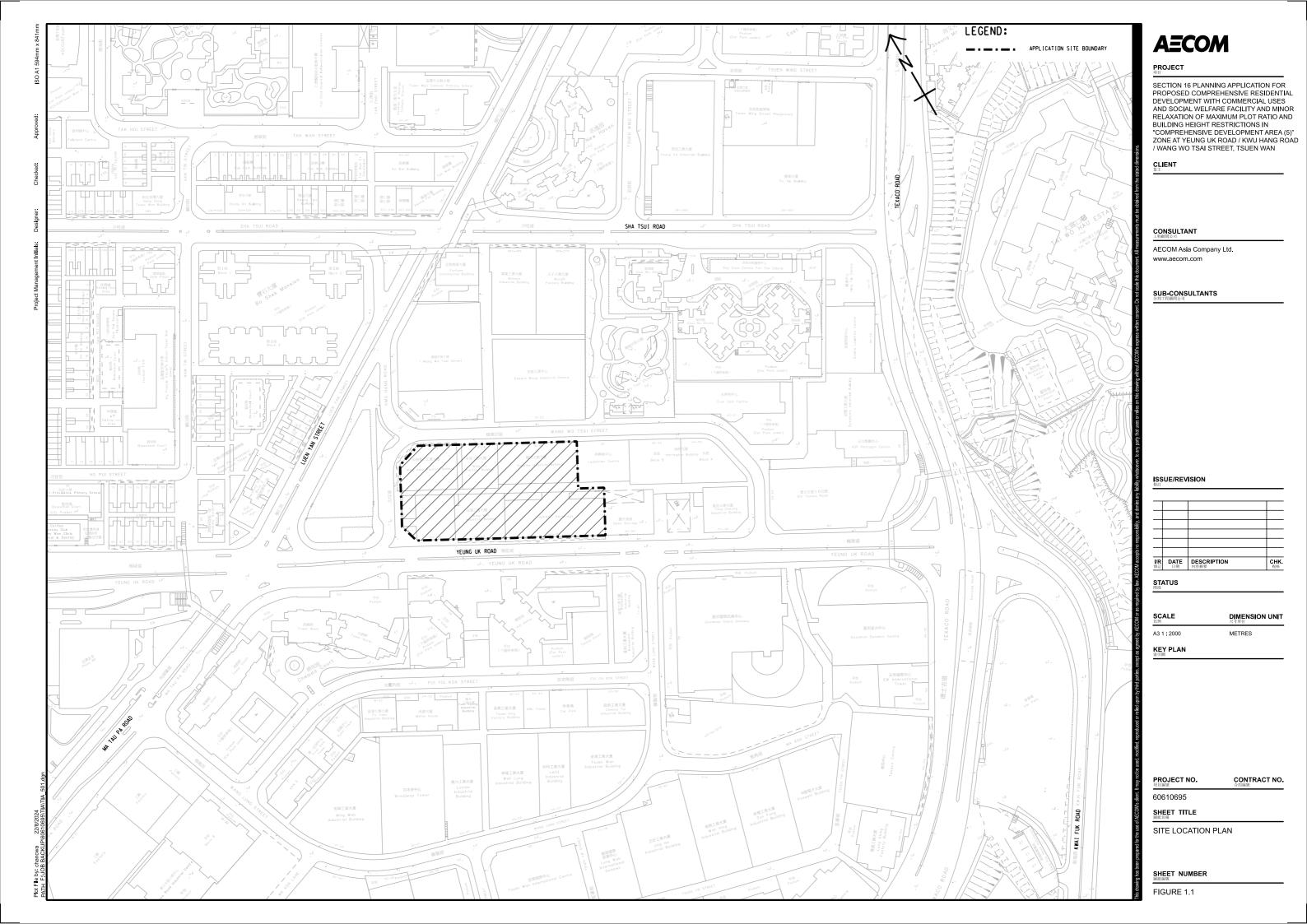
Table 6.2 Summary of Anticipated Future Public Transport Demand

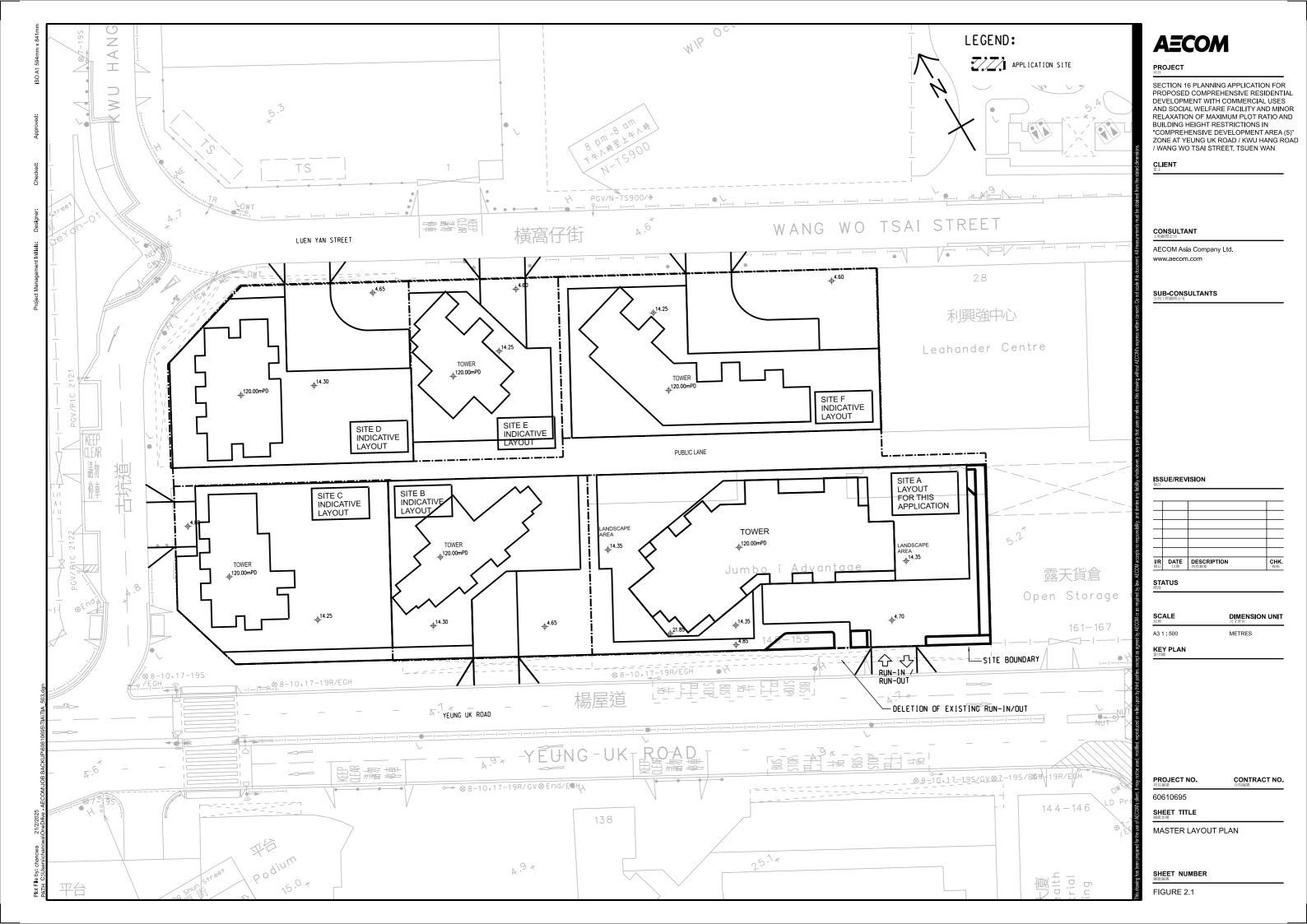
Direction	Bus F	Total		
To Tsuen Wan /	Route 243M	1 Other Routes		
Kwai Chung	54 (97%)	1 (3%)	55 (46%)	
To Toing Vi	Route 42M	Other Routes	25 (200/)	
To Tsing Yi	29(82%)	6 (18%)	35 (29%)	
To Others	Route 30X	Other Routes	30 (25%)	
Destination	18 (60%)	12 (40%)	30 (25%)	
Total Public Transport Demand				

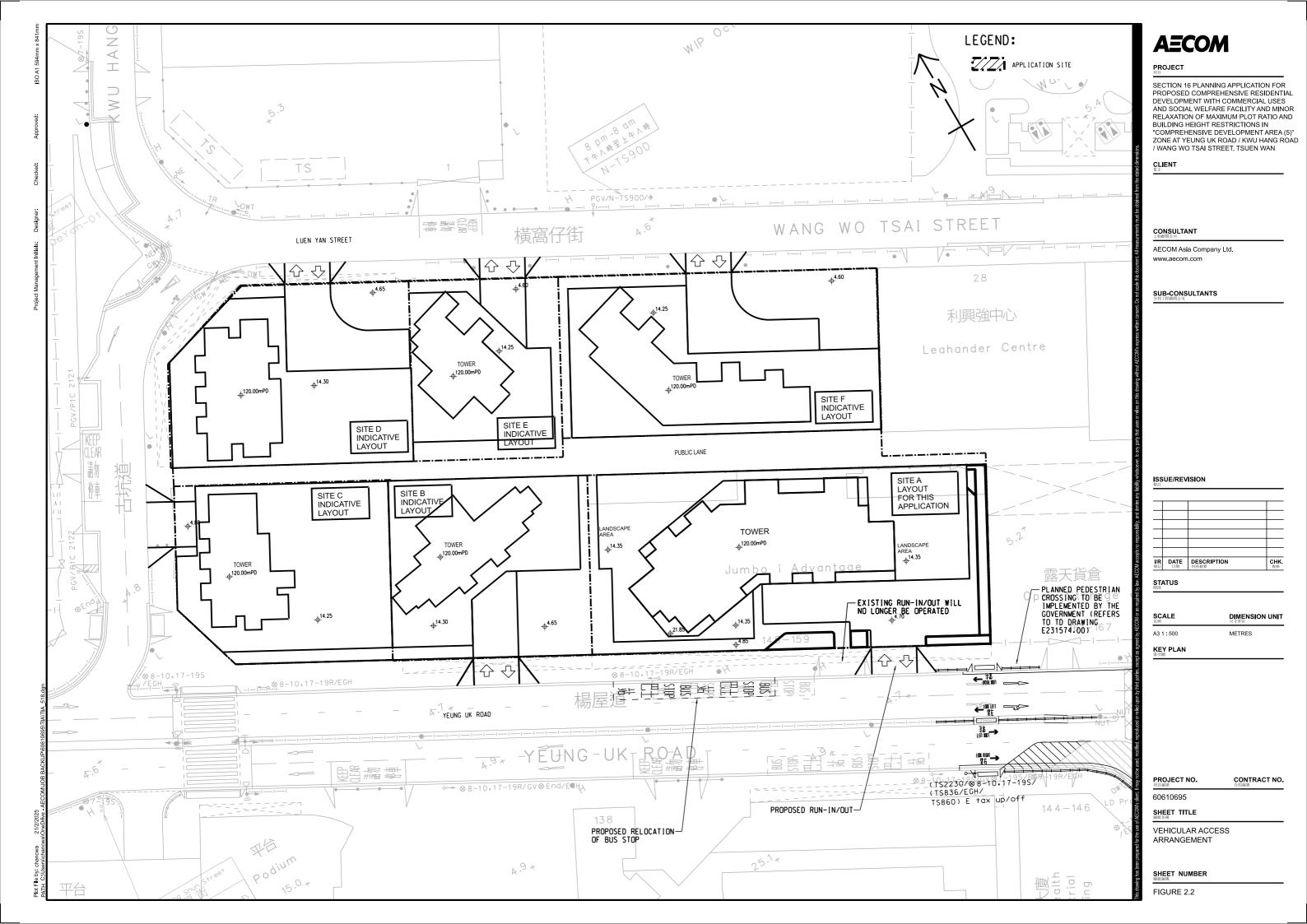
6.2.3 Based on survey result, the occupancy of existing bus route was approximately 40% during the morning peak period. It is anticipated that the existing bus service would be sufficient to accommodate the additional public transport demand generation by the subject site as estimated in **Table 6.1**.

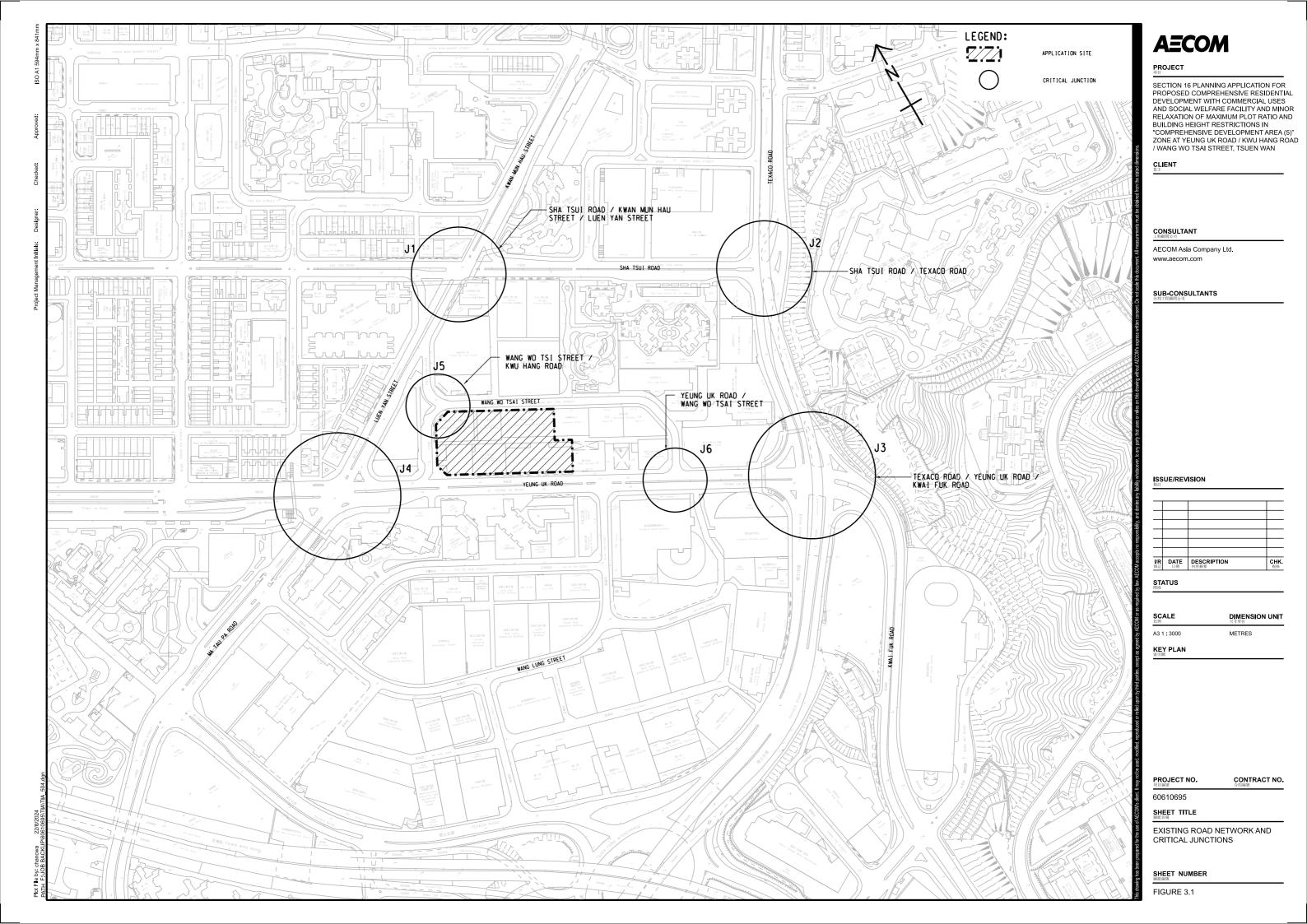
7 SUMMARY AND CONCLUSION

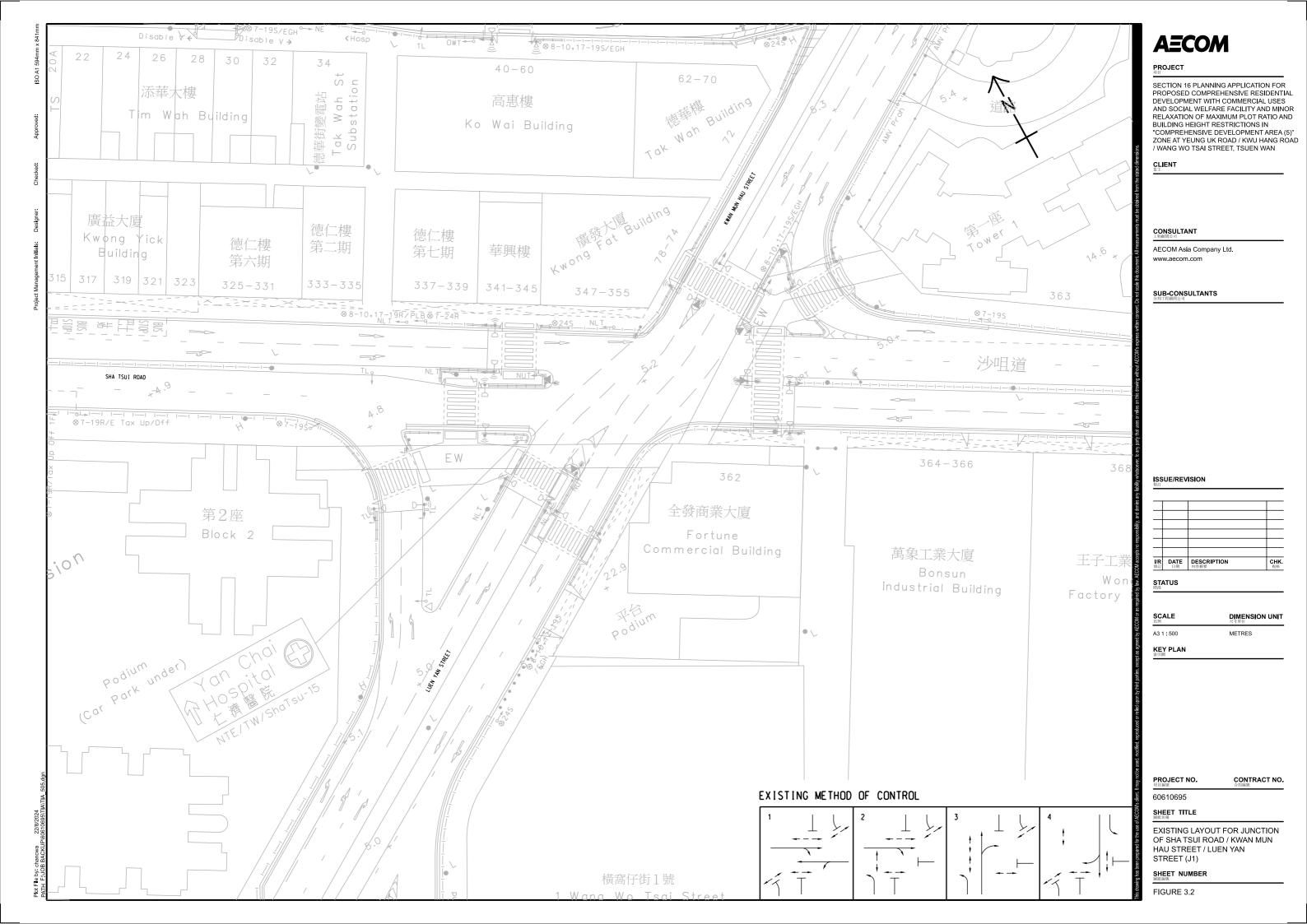
7.1 Summary

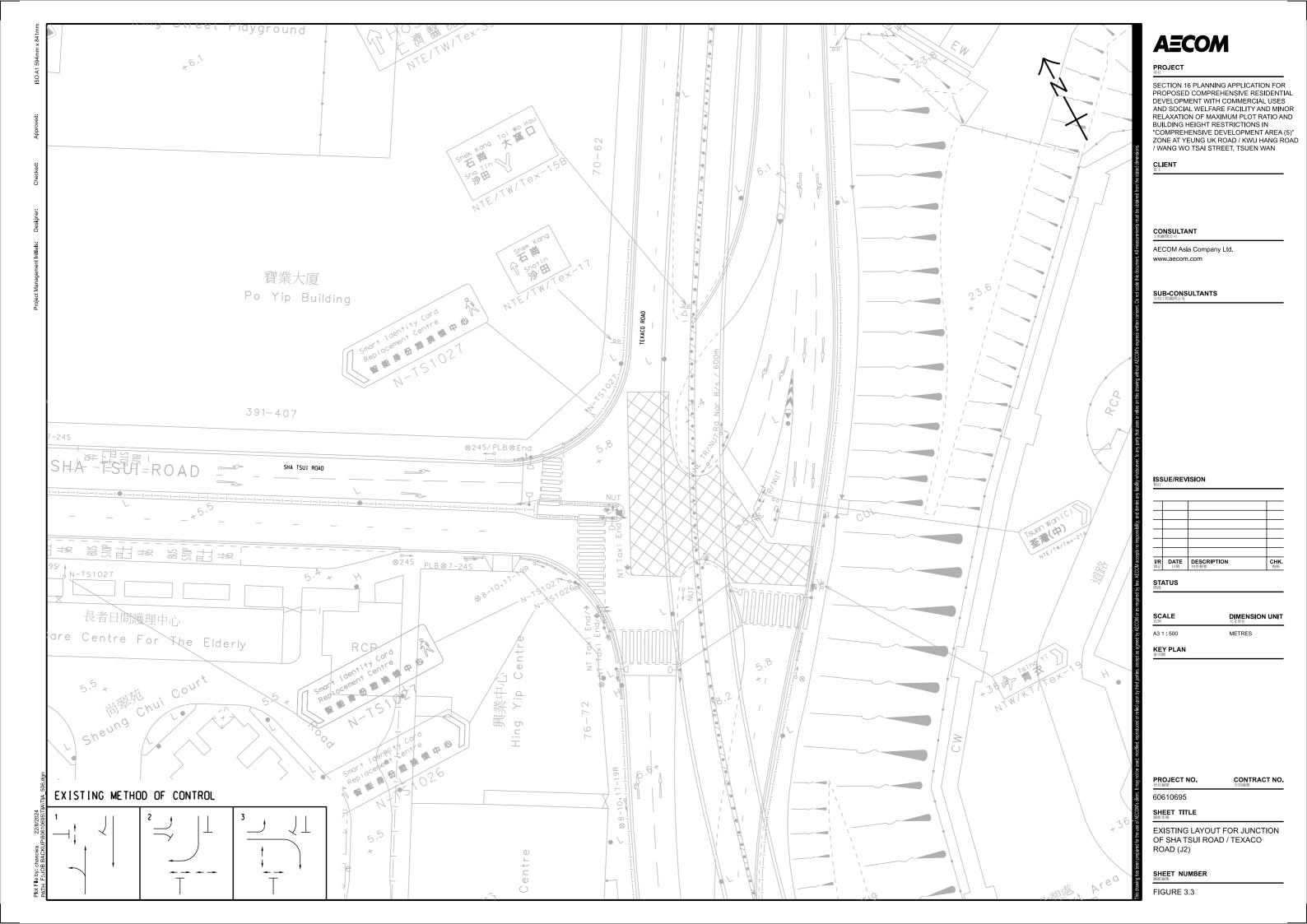

- 7.1.1 The Application Site is located in the northern fringe of the Tsuen Wan East industrial area at various lots in D.D. 443 and bounded by Yeung Uk Road, Kwu Hang Road and Wang Wo Tsai Street. The Applicant proposes to increase plot ratio from 5.0 to 6.11 for the subject site and the total flat units will be increased from about 738 to 886.
- 7.1.2 AECOM Asia Co. Ltd was commissioned by the Applicant to prepare a TIA report in support of the Section 16 planning application.
- 7.1.3 In order to review the existing traffic condition, traffic count surveys at identified critical junctions were conducted to investigate the peak hour traffic condition. The critical junctions include: -
 - J/O Sha Tsui Road / Kwan Mun Hau Street / Luen Yan Street (J1)
 - J/O Sha Tsui Road / Texaco Road (J2)
 - J/O Texaco Road / Yeung Uk Road / Kwai Fuk Road (J3)
 - J/O Yeung Uk Road / Luen Yan Street / Ma Tau Pa Road (J4)
 - J/O Wang Wo Tsai Street / Kwu Hang Road (J5)
 - J/O Yeung Uk Road / Wang Wo Tsai Street (J6)
- 7.1.4 Junction capacity analysis revealed that all the critical junctions are operating within capacity currently.
- 7.1.5 The Proposed Development is scheduled for completion in 2030 tentatively. Traffic forecast for design year 2033 was produced to assess the traffic impact arising from the Proposed Development.
- 7.1.6 Peak hour traffic forecasts in design year 2033 were established based on the growth rate determined by the Historical Traffic Data from ATC and 2019-based TPEDM data.
- 7.1.7 Traffic trip generation and attraction volumes for Proposed Scheme are estimated with reference to the latest TPDM and the respective development schedule. The difference in the total development trips generated/ attracted by the proposed development under the Permitted Scheme and Proposed Scheme are compared in **Table 4.9**.
- 7.1.8 It is anticipated that the 2-way traffic of the Application Site will be increased by about +18 pcu/hr and +11 pcu/hr during the AM and PM peak hour for the Proposed Scheme comparing to the conforming development.
- 7.1.9 Junction capacity assessment was conducted for both 2033 reference and design scenarios. The results revealed that the traffic impact induced by the Proposed Development would be minimal. All junctions would be operating within capacity under both reference and design case in 2033.

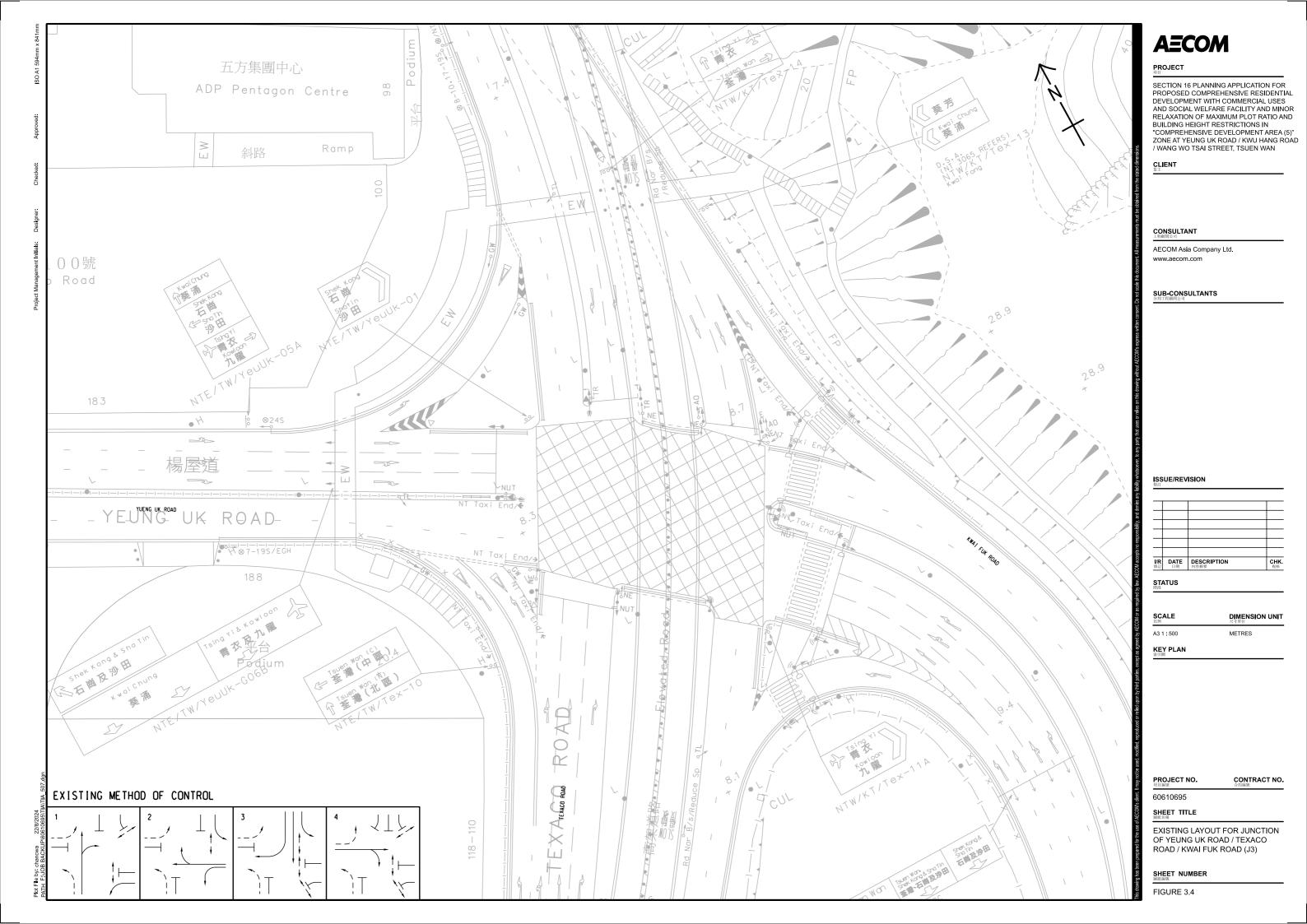


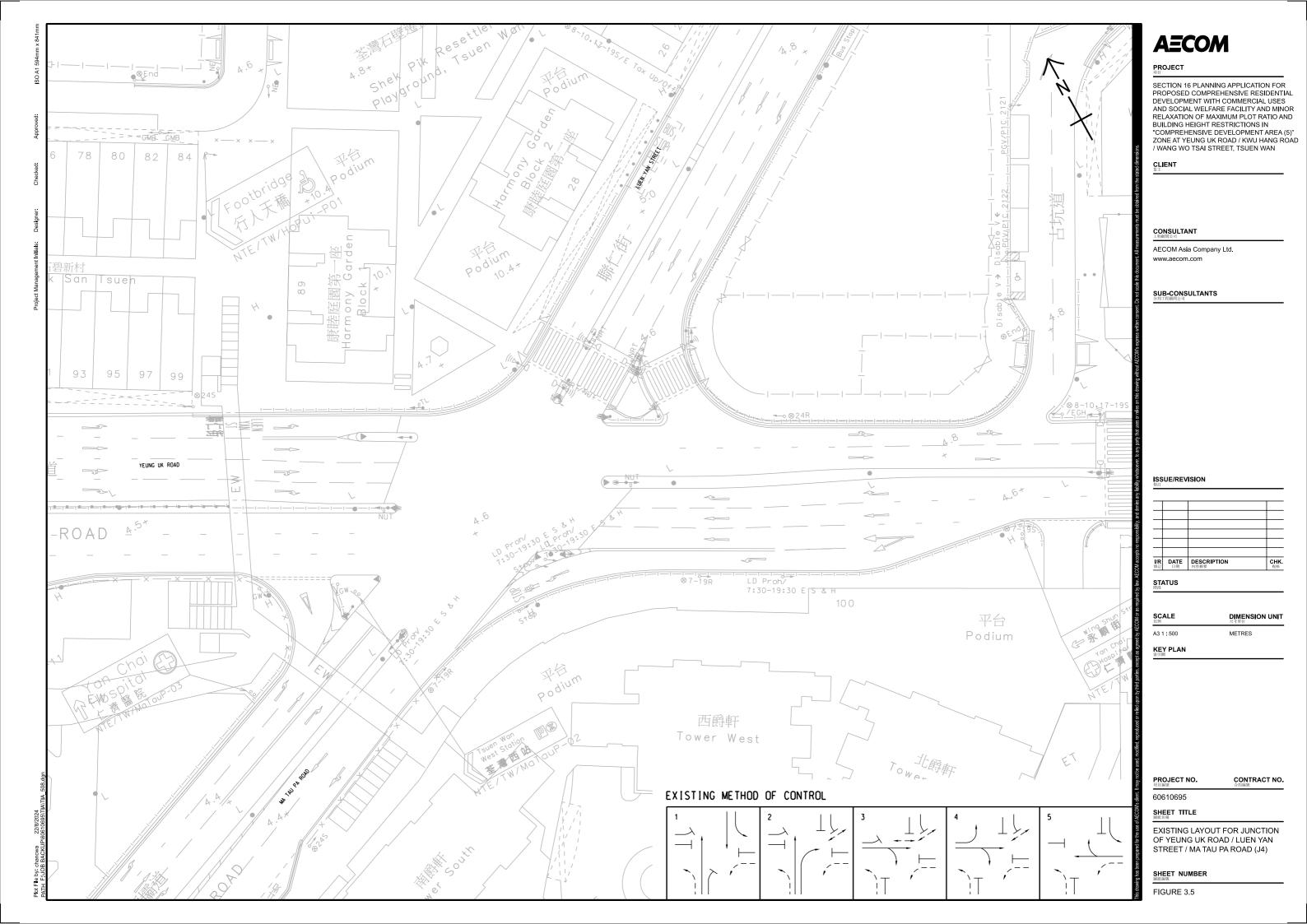

7.2 Conclusion

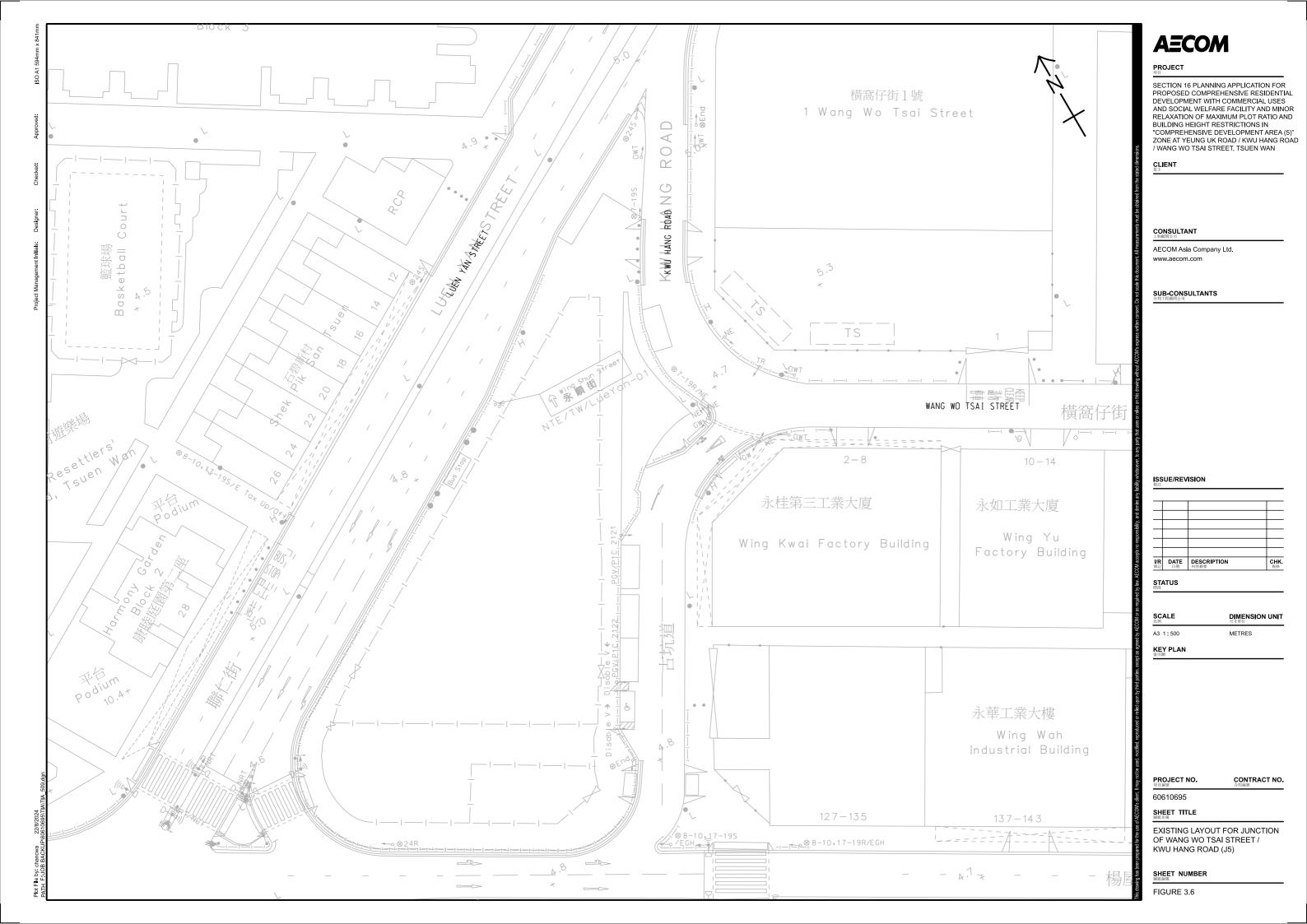

7.2.1 In light of the findings of this TIA, it is concluded that the Proposed Development would be acceptable in traffic terms.

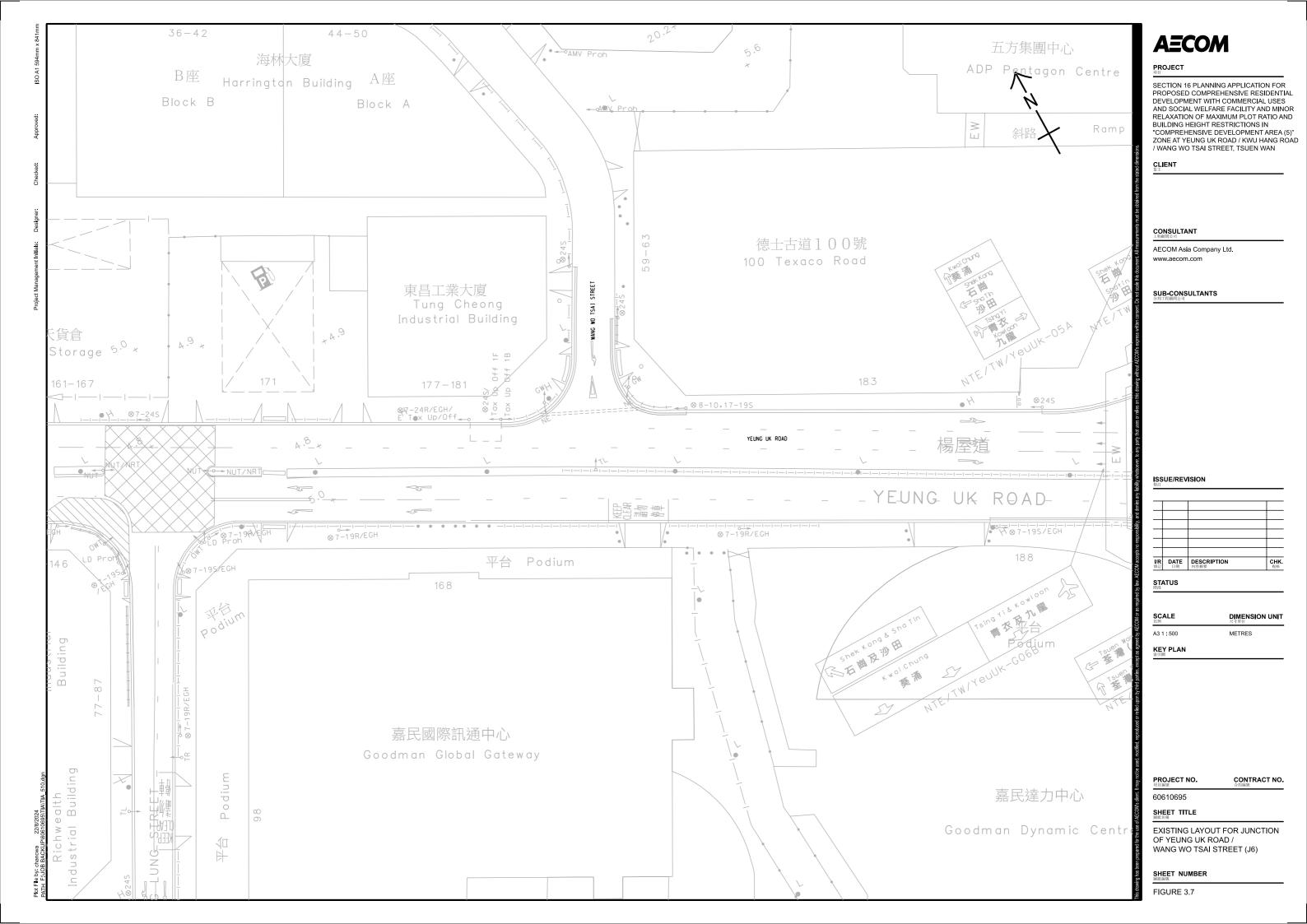

Figure

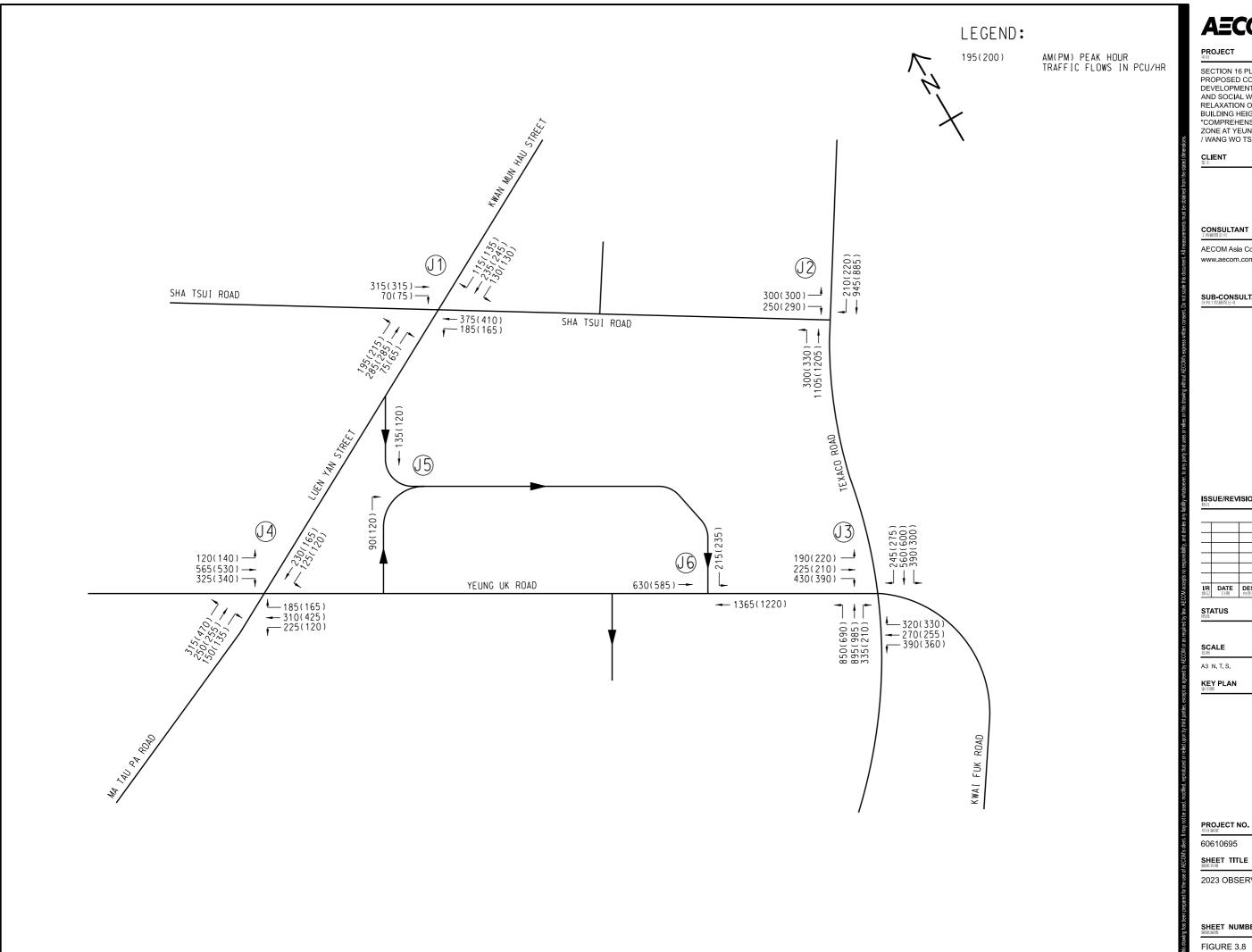




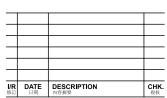








AECOM


SECTION 16 PLANNING APPLICATION FOR PROPOSED COMPREHENSIVE RESIDENTIAL DEVELOPMENT WITH COMMERCIAL USES AND SOCIAL WELFARE FACILITY AND MINOR RELAXATION OF MAXIMUM PLOT RATIO AND BUILDING HEIGHT RESTRICTIONS IN "COMPREHENSIVE DEVELOPMENT AREA (5)"
ZONE AT YEUNG UK ROAD / KWU HANG ROAD / WANG WO TSAI STREET, TSUEN WAN

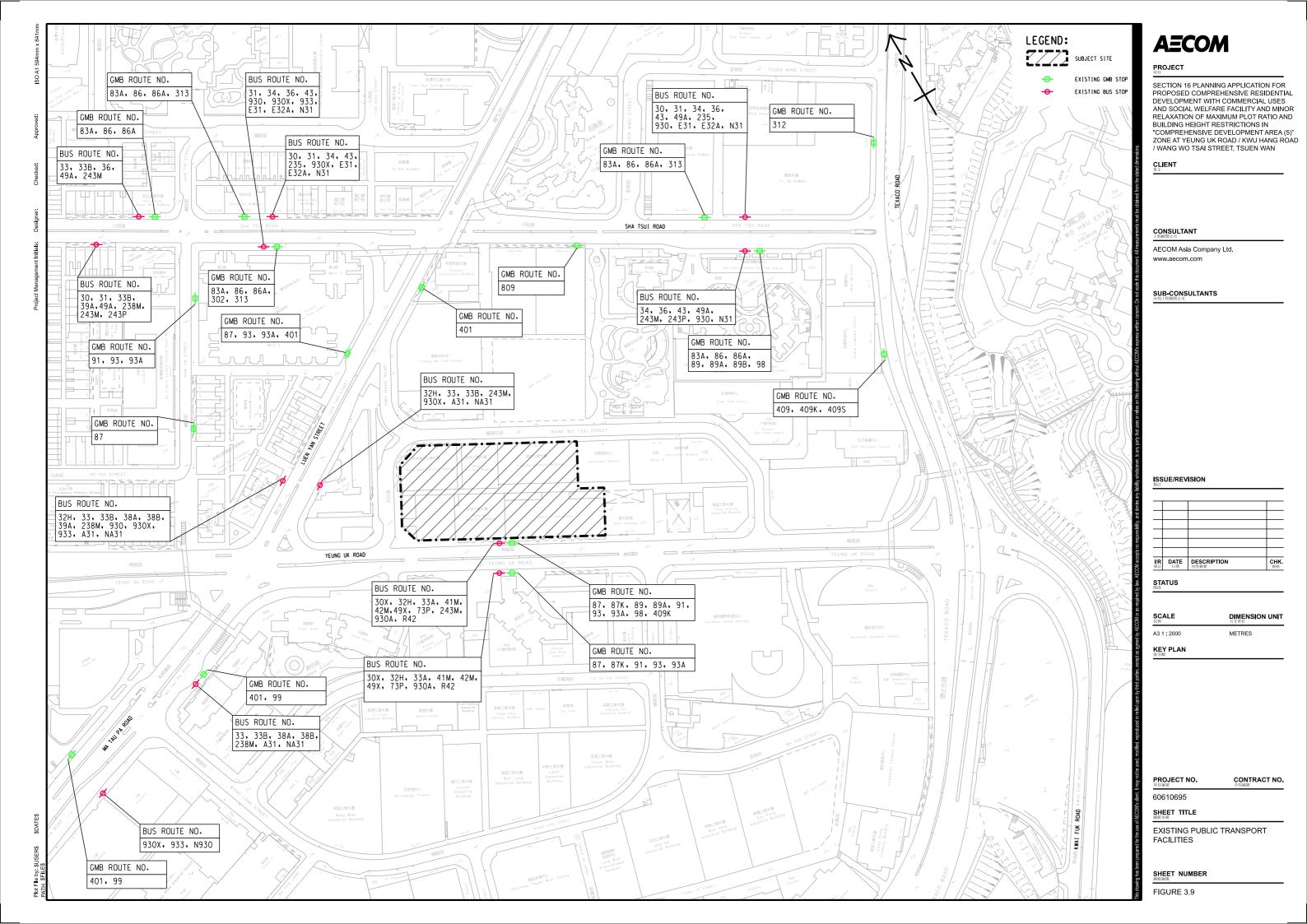
CONSULTANT

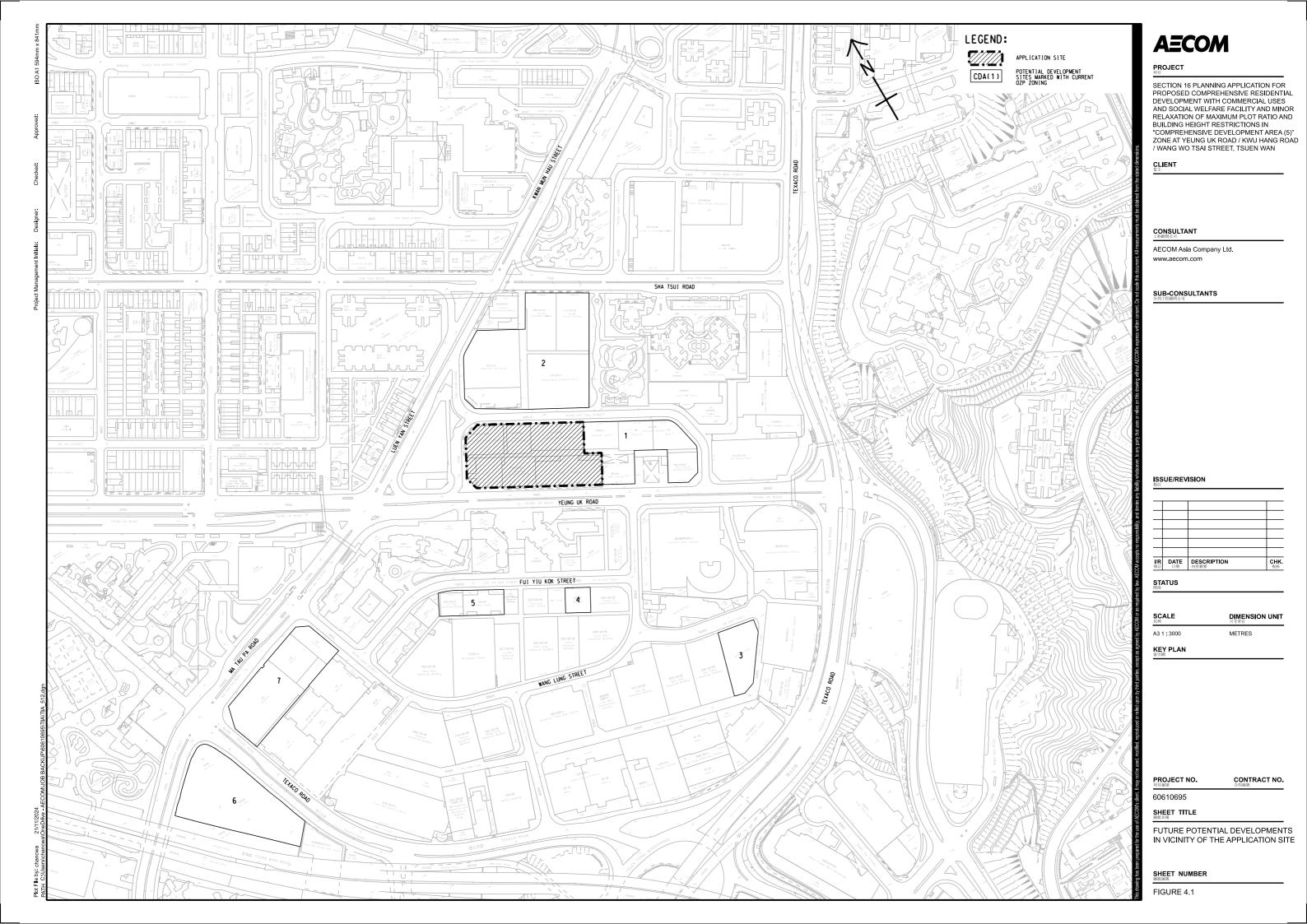
AECOM Asia Company Ltd.

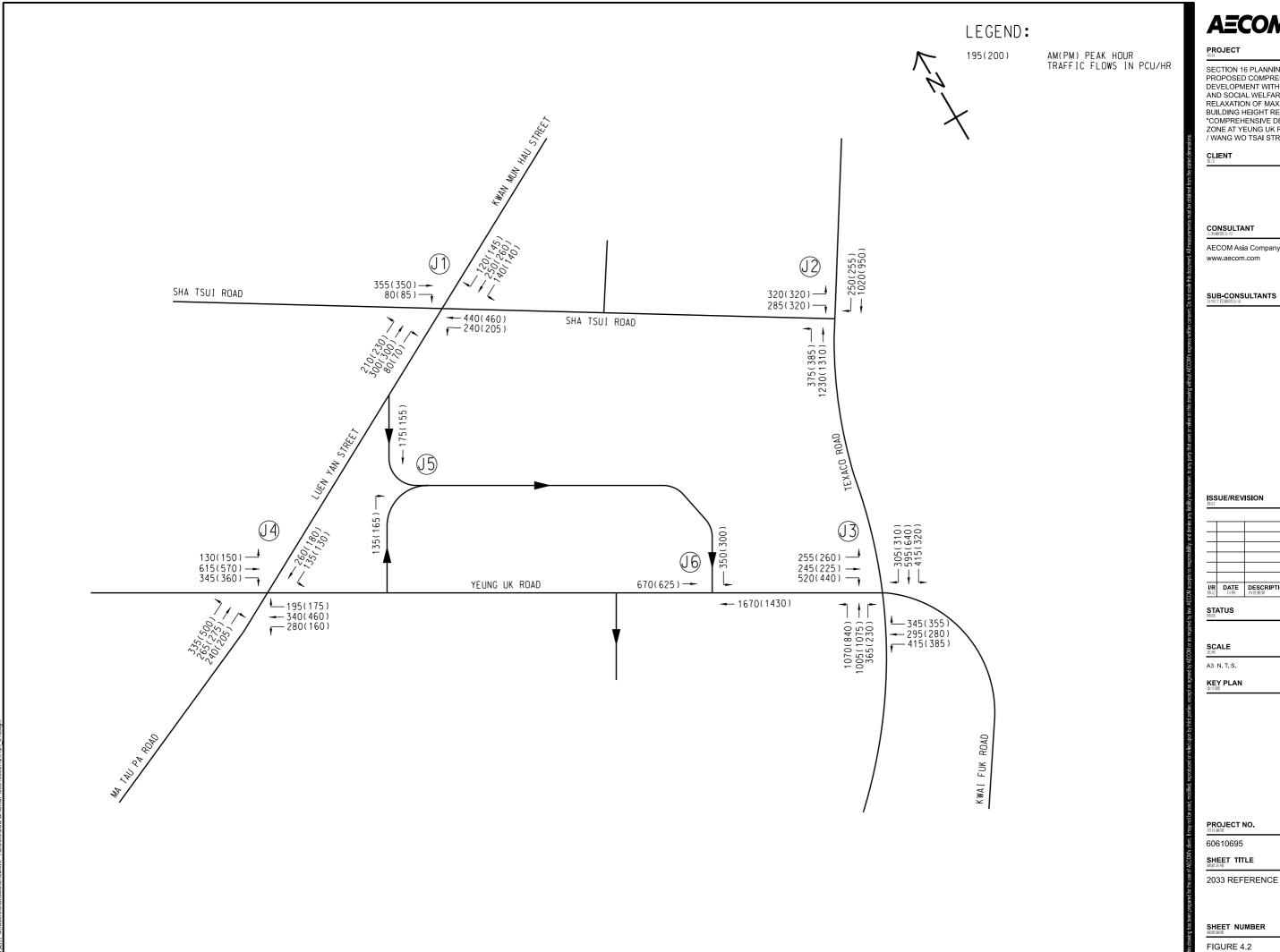
SUB-CONSULTANTS

ISSUE/REVISION

DIMENSION UNIT

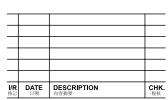

METRES


CONTRACT NO.


2023 OBSERVED TRAFFIC FLOWS

SHEET NUMBER

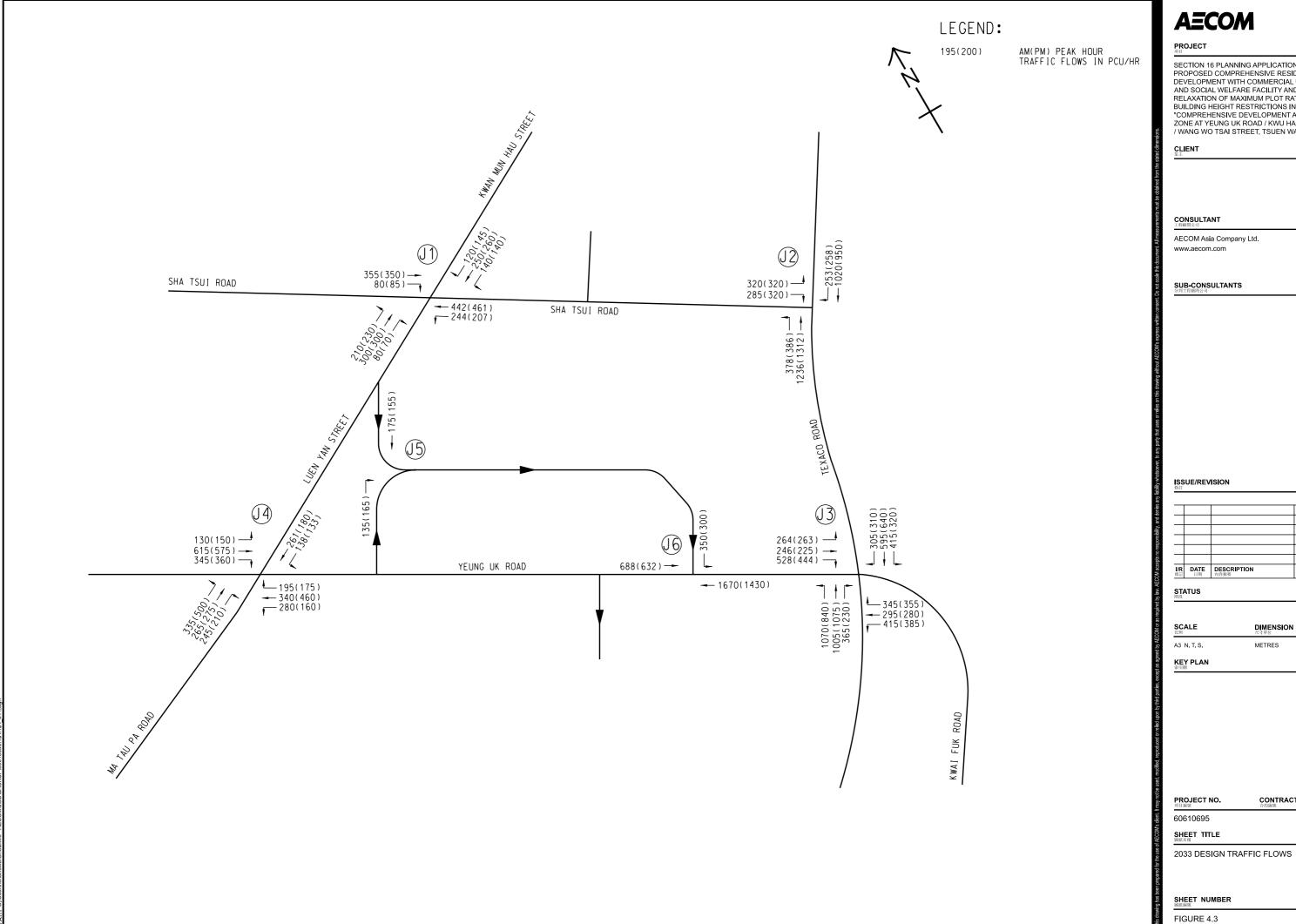
FIGURE 3.8



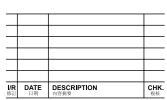
AECOM

SECTION 16 PLANNING APPLICATION FOR PROPOSED COMPREHENSIVE RESIDENTIAL DEVELOPMENT WITH COMMERCIAL USES AND SOCIAL WELFARE FACILITY AND MINOR RELAXATION OF MAXIMUM PLOT RATIO AND BUILDING HEIGHT RESTRICTIONS IN "COMPREHENSIVE DEVELOPMENT AREA (5)"
ZONE AT YEUNG UK ROAD / KWU HANG ROAD / WANG WO TSAI STREET, TSUEN WAN

AECOM Asia Company Ltd.



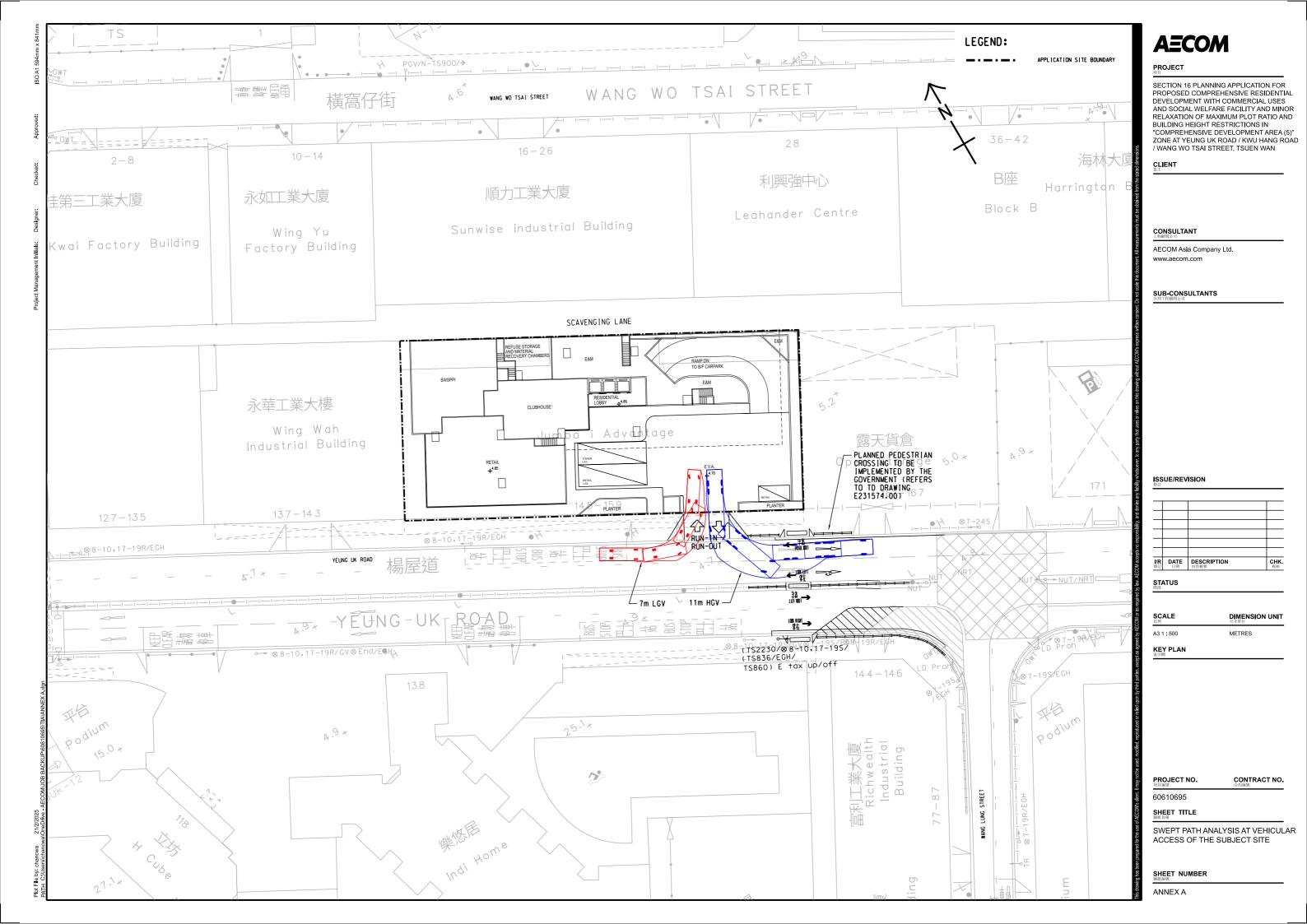
DIMENSION UNIT


METRES

CONTRACT NO.

2033 REFERENCE TRAFFIC FLOWS

SECTION 16 PLANNING APPLICATION FOR PROPOSED COMPREHENSIVE RESIDENTIAL DEVELOPMENT WITH COMMERCIAL USES AND SOCIAL WELFARE FACILITY AND MINOR RELAXATION OF MAXIMUM PLOT RATIO AND BUILDING HEIGHT RESTRICTIONS IN "COMPREHENSIVE DEVELOPMENT AREA (5)"
ZONE AT YEUNG UK ROAD / KWU HANG ROAD / WANG WO TSAI STREET, TSUEN WAN

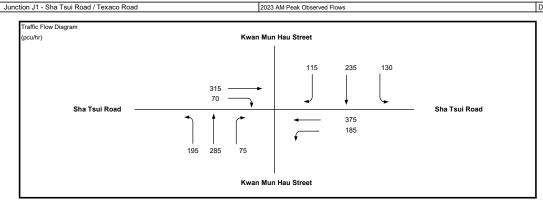


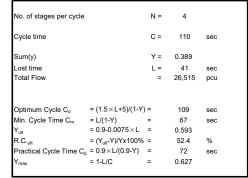
DIMENSION UNIT

CONTRACT NO.

Annex A

Swept Path Analysis for the Proposed Development Access at Site A




Annex B Junction Capacity Calculation Sheets

CHECK: #VALUE! DATE: 十月 20

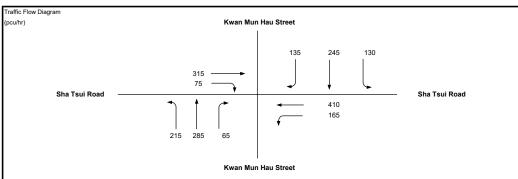
AECOM

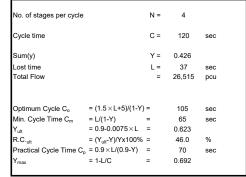
(J1)

R.C.(C) = $(0.9xY_{max}-Y)/Yx100\%$ = 45%

Critical Case: A,B2,D,F

> Hp	Jp. V		Kp; yX Jp; C D Lp ←>	Kp¦	
Stage 1	Stage 2		Stage 3	Stage 4	
I/G =	12 G = 9	I/G = 5	5 I/G =	12 I/G =	6


Stage/Phase Diagrams

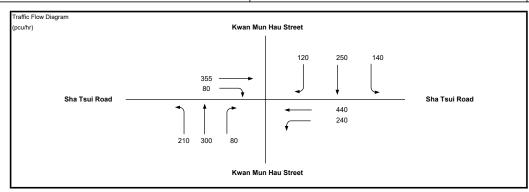

Ę				LANE			DIUS	9 o	3	UPHILL	GRADIEN	ADDITIONA		F	LOW (pcu/h	r)	TOTAL	PROPOR	TION OF VEHICLES	REVISED	FLOW	
TMBMBVCM		PHASE	STAGE	WIDTH	NO. OF LANES	(1	n)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)	T EFFECT	L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW		6)	SAT. FLOW	FACTOR	CRITICAL
2		۱ "	0)	(m)		LEFT	RIGHT	B F	Ä	1 (70)	(pcu/hr)	(pcu/hr)	(pcu/hr)	LEFI	T AHEAD	KIGHI	(pcu/hr)	LEFT	RIGHT	(pcu/hr)	У	
F			1	3.300	1	15			1		0		1945	185			185	100%		1768	0.105	
_ *		A A	1	3.300	1	15			0		0		2085	100	375		375	100%		2085	0.103	0.180
-	•	B1 B2 B2	1 2	3.300 3.300 3.300	1 1 2		15		1		0 0 0		1945 1945 4170		315 0 0	70	315 0 70		100%	1945 1945 3791	0.162 0.000 0.018	
_		D2	2	3.300	2		15	0	0		U		4170		"	70	70		100%	3/91	0.016	
† 		C D	2,3 3 3	3.500 3.300 3.300	2 1 1	20	30	0	1 0 0		0 0 0		4070 2085 2085	195	285	75	195 285 75	100%	100%	3786 2085 1986	0.052 0.137 0.038	0.137
		F E E	4 4 4	4.000 3.300 3.300	1 1 1	12.5	25	0	1 0 0		0 0 0		2015 2085 2085	130	178 57	115	130 178 172	100%	67%	1799 2085 2004	0.072 0.086 0.086	0.072
Pe		trian (Gp Hp Ip Jp Kp Lp Mp	Crossin 1,4 1,4 1,2 2,3 3,4 3 4 1,2,3	g min. min. min. min. min. min. min. min.	GM 5 5 5 5 5 5 5	+ + + + + +	FGM 9 7 10 6 6 7 7	= = = = = =	14 12 15 11 11 11 12	sec sec sec sec sec sec sec												

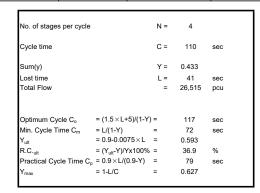
Junction J1 - Sha Tsui Road / Texaco Road 2023 PM Peak Observed Flows DESIGN: CHECK: #VALUE! DATE: 十月 20

AECOM

(J1)

Stage/Phase Diagrams E| |F


R.C.(C) = $(0.9xY_{max}-Y)/Yx100\%$ =


Critical Case: A,B2,D,E

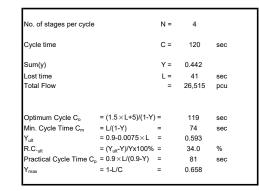
	Ip Np .77	Np 7	Kpî M M Gp7<>	
Stage 1	Stage 2	Stage 3	Stage 4	
I/G =	12 G = 9 I/G =	5 I/G =	8 I/G =	6

R	ų,	<u>س</u>	LANE	NO. OF		DIUS	9 D	IDE E	UPHILL	GRADIEN	ADDITIONA	STRAIGHT- AHEAD SAT.	F	LOW (pcu/h	r)	TOTAL	PROPOR TURNING	RTION OF VEHICLES	REVISED	FLOW	00171041
MOVEMENT	PHASE	STAGE	WIDTH (m)	LANES	1)	n)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)	T EFFECT (pcu/hr)	CAPACITY	FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)	(9	%)	SAT. FLOW (pcu/hr)	FACTOR y	CRITICAL y
×			, ,		LEFT	RIGHT	9 -	ž	. ,	. ,	(pcu/hr)	(pcu/hr)		T AHEAD		" ,	LEFT	RIGHT	u · ,		
F	A	1	3.300	1	15			1		0		1945	165			165	100%		1768	0.093	
•	A	1	3.300	1	'3			0		0		2085	100	410		410	10070		2085	0.197	0.197
	B1	1	3.300	1				1		0		1945		315		315			1945	0.162	
-	B2	2	3.300	1				1		0		1945		0		0			1945	0.162	
→	B2 B2	2	3.300	2		15	0	0		0		4170		0	75	75		100%	3791	0.000	
₩	62		3.300	2		15	"	U		0		4170			75	75		100%	3/91	0.020	
◆	С	2,3	3.500	2	20			1		0		4070	215			215	100%		3786	0.057	
↑	D	3	3.300	1				0		0		2085		285		285			2085	0.137	0.137
1	D	3	3.300	1		30	0	0		0		2085			65	65		100%	1986	0.033	
1	F	4	4.000	1	12.5			1		0		2015	130			130	100%		1799	0.072	
1	I E	4	3.300	1	12.0			0		0		2085	100	194		194	10070		2085	0.093	0.093
اً ا	E	4	3.300	1		25	0	0		0		2085		51	135	186		73%	1998	0.093	0.000
17	-	'					-														
Ped	l lestria	l n Crossir	l Ig	GM		FGM															
	Gp		min.	5	+	9	=	14	sec												
	Hp	1,4	min.	5	+	7	=	12	sec												
	lp	1,2	min.	5	+	10	=	15	sec												
	Jp	2,3	min.	5	+	6	=	11	sec												
	Kp	3,4	min.	5	+	6	=	11	sec												
	Lp	3	min.	5	+	6	=	11	sec												
	Mp	4	min.	5	+	7	=	12	sec												
	Np	1,2,3	min.	5	+	7	=	12	sec												

AECOM Junction J1 - Sha Tsui Road / Texaco Road 2033 AM Peak Reference Flows DESIGN: CHECK: #VALUE! DATE: 十月 20

(J1)


lp Np 7 B1 ← A Gp 7 Hp	Ip Np 7 B2	Np. 7	Kp. M Kp. M Gp. A	
Stage 1	Stage 2	Stage 3	Stage 4	
I/G =	12 G = 9 I/G =	5 I/G =	12 I/G =	6


Critical Case: A,B2,D,F

$R.C.(C) = (0.9xY_{max}-Y)/Yx100\% =$	30%
---------------------------------------	-----

Part	Z	Τ.,,	Τ.,	Τ.	LANE			DIUS	S C	DE	UPHILL	GRADIEN	ADDITIONA		F	LOW (pcu/h	r)	TOTAL		TION OF VEHICLES	REVISED	FLOW	
Image: Control of the contr	I W	HASE	TAGE	l v	WIDTH	NO. OF LANES	1)	n)	POSII	AR SI ANE	GRADIEN	T EFFECT	L CAPACITY	AHEAD SAT. FLOW	LEET	STRAIGH	DIOLIT	FLOW			SAT. FLOW	FACTOR	CRITICAL y
→ B1 1 3.300 1	Ş		0.		(m)		LEFT	RIGHT	P H	NE.	I (%)	(pcu/nr)	(pcu/hr)	(pcu/hr)	LEFI	T AHEAD	KIGHT	(pcu/nr)	LEFT	RIGHT	(pcu/nr)	У	
→ B1	F	A	1		3.300	1	15			1		0		1945	240			240	100%		1768	0.136	
Reduction Crossing	-	· A	1	:	3.300	1				0		0		2085		440		440			2085	0.211	0.211
Pedestrian Crossing	-		- 1	- 1		1				1												ı	
↑ C 2.3 3.500 2 20 1 0 4070 210 210 300 100% 3786 2085 2085 0.144 0.55 2085 2085 0.144 0.55 2085 2085 0.144 0.55 2085 2085 0.144 0.55 2085 2085 0.144 0.55 2085 2085 0.144 0.55 2085 2085 0.144 0.55 2085 2085 0.144 0.55 2085 2085 0.040 100% 1986 0.040 1986 0.040 0.040		- B2	! 2	(3.300	1				1		0		1945		0		0			1945	0.000	
Pedestrian Crossing GM FGM FGM FGM FGM Fight F	-₩	► B2	! 2	;	3.300	2		15	0	0		0		4170		0	80	80		100%	3791	0.021	
Pedestrian Crossing GM FGM F	1	С				2	20			1		0			210				100%				
F 4 4.000 1 12.5	1	D	3	(3.300	1				0		0		2085		300		300			2085	0.144	0.144
↓ E 4 3.300 1 25 0 0 0 2085 189 189 189 66% 2005 0.090 Pedestrian Crossing GM FGM F	1	D	3	:	3.300	1		30	0	0		0		2085			80	80		100%	1986	0.040	
Pedestrian Crossing GM FGM Sec Gp 1,4 min. 5 + 9 = 14 sec FGM FG	L.	F	4	- 1		1	12.5			1		0			140				100%			ı	0.078
Pedestrian Crossing GM FGM Gp 1,4 min. 5 + 9 = 14 sec Hp 1,4 min. 5 + 7 = 12 sec Ip 1,2 min. 5 + 10 = 15 sec Jp 2,3 min. 5 + 6 = 11 sec Kp 3,4 min. 5 + 6 = 11 sec Lp 3 min. 5 + 6 = 11 sec Mp 4 min. 5 + 7 = 12 sec	↓		4			1				0		0											
Gp 1,4 min. 5 + 9 = 14 sec Hp 1,4 min. 5 + 7 = 12 sec Ip 1,2 min. 5 + 10 = 15 sec Jp 2,3 min. 5 + 6 = 11 sec Kp 3,4 min. 5 + 6 = 11 sec Lp 3 min. 5 + 6 = 11 sec Mp 4 min. 5 + 7 = 12 sec	4	E	4	;	3.300	1		25	0	0		0		2085		61	120	181		66%	2005	0.090	
Gp 1,4 min. 5 + 9 = 14 sec Hp 1,4 min. 5 + 7 = 12 sec Ip 1,2 min. 5 + 10 = 15 sec Jp 2,3 min. 5 + 6 = 11 sec Kp 3,4 min. 5 + 6 = 11 sec Lp 3 min. 5 + 6 = 11 sec Mp 4 min. 5 + 7 = 12 sec																							
Gp 1,4 min. 5 + 9 = 14 sec Hp 1,4 min. 5 + 7 = 12 sec Ip 1,2 min. 5 + 10 = 15 sec Jp 2,3 min. 5 + 6 = 11 sec Kp 3,4 min. 5 + 6 = 11 sec Lp 3 min. 5 + 6 = 11 sec Mp 4 min. 5 + 7 = 12 sec																							
Gp 1,4 min. 5 + 9 = 14 sec Hp 1,4 min. 5 + 7 = 12 sec Ip 1,2 min. 5 + 10 = 15 sec Jp 2,3 min. 5 + 6 = 11 sec Kp 3,4 min. 5 + 6 = 11 sec Lp 3 min. 5 + 6 = 11 sec Mp 4 min. 5 + 7 = 12 sec																							
Hp 1,4 min. 5 + 7 = 12 sec Ip 1,2 min. 5 + 10 = 15 sec Jp 2,3 min. 5 + 6 = 11 sec Kp 3 min. 5 + 6 = 11 sec Lp 3 min. 5 + 6 = 11 sec Mp 4 min. 5 + 7 = 12 sec	Pe	l destria	l n Cros	l sing		GM		FGM															
Ip 1,2 min. 5 + 10 = 15 sec Jp 2,3 min. 5 + 6 = 11 sec Kp 3,4 min. 5 + 6 = 11 sec Lp 3 min. 5 + 6 = 11 sec Mp 4 min. 5 + 7 = 12 sec		G	1,	4	min.	5	+	9	=	14	sec												
Ip 1,2 min. 5 + 10 = 15 sec Jp 2,3 min. 5 + 6 = 11 sec Kp 3,4 min. 5 + 6 = 11 sec Lp 3 min. 5 + 6 = 11 sec Mp 4 min. 5 + 7 = 12 sec		Hp	1,	4	min.	5	+	7	=	12	sec												
Jp 2,3 min. 5 + 6 = 11 sec Kp 3,4 min. 5 + 6 = 11 sec Lp 3 min. 5 + 6 = 11 sec Mp 4 min. 5 + 7 = 12 sec				2	min.	5	+	10	=	15	sec												
Kp 3,4 min. 5 + 6 = 11 sec Lp 3 min. 5 + 6 = 11 sec Mp 4 min. 5 + 7 = 12 sec				3	min.	5	+	6	=	11	sec												
Mp 4 min. 5 + 7 = 12 sec				4	min.	5	+	6	=	11	sec												
		Lp	3		min.	5	+	6	=	11	sec												
Np 12.3 min. 5 + 7 = 12 sec		Mp) 4		min.	5	+	7	=	12	sec												
1.15 1.55 1.1111 1.1111 1.1111 1.11111 1.11111111		Np	1,2	,3	min.	5	+	7	=	12	sec												

Junction J1 - Sha Tsui Road / Texaco Road 2033 PM Peak Reference Flows DESIGN: CHECK: #VALUE! DATE: 十月 20

AECOM

(J1)

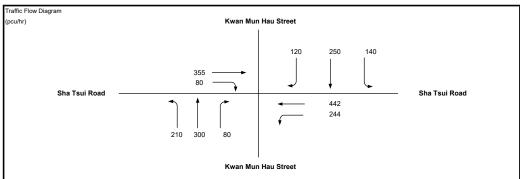
Stage/Phase Diagrams

Np 7	Ip Np 7	Np ₹	E	
Stage 1	Stage 2	Stage 3	Stage 4	
I/G =	12 G = 9 I/G =	5 I/G =	12 I/G =	6

Critical Case: A,B2,D,F

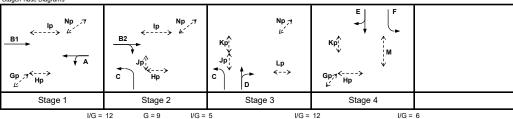
R.C.(C)	$= (0.9xY_{max}-Y)/Yx100\% =$	34%
---------	-------------------------------	-----

Ę	Ī			LANE			DIUS	9 o	DE	UPHILL	GRADIEN	ADDITIONA		F	LOW (pcu/h	ır)	TOTAL	PROPOR TURNING		REVISED	FLOW	
L		PHASE	STAGE	WIDTH (m)	NO. OF LANES	1)	n)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)	T EFFECT (pcu/hr)	L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)		6)	SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y
2			0)	(111)		LEFT	RIGHT	Q F	Ä	1 (70)	(pcu/iii)	(pcu/hr)	(pcu/hr)	LLIT	T AHEAD	KIGITI	(pcu/iii)	LEFT	RIGHT	(реалт)	y	
₽ +		A A	1	3.300 3.300	1	15			1 0		0		1945 2085	205	460		205 460	100%		1768 2085	0.116 0.221	0.221
- -	• !	B1 B2 B2	1 2 2	3.300 3.300 3.300	1 1 2		15	0	1 1 0		0 0 0		1945 1945 4170		350 0 0	85	350 0 85		100%	1945 1945 3791	0.180 0.000 0.022	
† †		C D	2,3 3 3	3.500 3.300 3.300	2 1 1	20	30	0	1 0 0		0 0 0		4070 2085 2085	230	300	70	230 300 70	100%	100%	3786 2085 1986	0.061 0.144 0.035	0.144
l, ↓ •		F E E	4 4 4	4.000 3.300 3.300	1 1 1	12.5	25	0	1 0 0		0 0 0		2015 2085 2085	140	207 53	145	140 207 198	100%	73%	1799 2085 1997	0.078 0.099 0.099	0.078
Pi	edesti	rian (Crossin	a	GM		FGM															
P	1	Gp Hp Ip Jp Kp Lp Mp	1,4 1,4 1,2 2,3 3,4 3 4 1,2,3	g min. min. min. min. min. min. min.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	+ + + + + + +	9 7 10 6 6 6 7	= = = = = = =	14 12 15 11 11 11 12 12	sec sec sec sec sec sec sec												


Junction J1 - Sha Tsui Road / Texaco Road 2033 AM Peak Design Flows CHECK:

#VALUE!

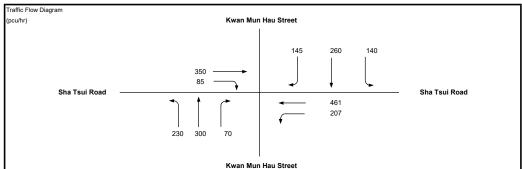
DATE: 十月 20

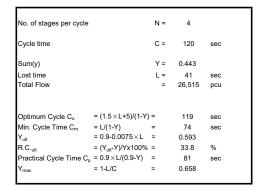

AECOM

(J1)

No. of stages per cycle		N =	4	
Cycle time		C =	110	sec
Sum(y)		Y =	0.434	
Lost time		L=	41	sec
Total Flow		=	26,515	pcu
Optimum Cycle C _o	= (1.5×L+5)/(1-Y)) =	117	sec
Min. Cycle Time C _m	= L/(1-Y)	=	72	sec
Y _{ult}	= $0.9 - 0.0075 \times L$	=	0.593	
R.C. _{ult}	= (Y _{ult} -Y)/Yx100%	=	36.6	%
Practical Cycle Time C	$_{0} = 0.9 \times L/(0.9 - Y)$	=	79	sec
Y _{max}	= 1-L/C	=	0.627	

Stage/Phase Diagrams


Critical Case: A,B2,D,F


 $R.C.(C) = (0.9xY_{max}-Y)/Yx100\% =$

F	RADIL	RADIUS (m)	S S	DE	UPHILL	GRADIEN	ADDITIONA	STRAIGHT-	F	LOW (pcu/h	r)	TOTAL	PROPOR	TION OF VEHICLES	REVISED	FLOW					
MOVEMENT	PHASE	STAGE	WIDTH	NO. OF LANES	1)	n)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)	T EFFECT (pcu/hr)	L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)		6)	SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y
MO	_	o o	(m)		LEFT	RIGHT	9 #	NE.	1 (%)	(pcu/nr)	(pcu/hr)	(pcu/hr)	LEFI	T AHEAD	KIGHT	(pcu/nr)	LEFT	RIGHT	(pcu/nr)	У	
F	A	1	3.300	1	15			1		0		1945	244			244	100%		1768	0.138	
-	Α	1	3.300	1				0		0		2085		442		442			2085	0.212	0.212
-	В1	1	3.300	1				1		0		1945		355		355			1945	0.183	
→	B2	2	3.300	1				1		0		1945		0		0			1945	0.000	
→	B2	2	3.300	2		15	0	0		0		4170		0	80	80		100%	3791	0.021	
1	С	2,3	3.500	2	20			1		0		4070	210			210	100%		3786	0.055	
Ţ	D	3	3.300	1				0		0		2085		300		300			2085	0.144	0.144
r	D	3	3.300	1		30	0	0		0		2085			80	80		100%	1986	0.040	
 	F	4	4.000	1	12.5			1		0		2015	140			140	100%		1799	0.078	0.078
↓	E	4	3.300	1				0		0		2085		189		189			2085	0.090	
↓	E	4	3.300	1		25	0	0		0		2085		61	120	181		66%	2005	0.090	
Ped	estrian Gp Hp	Crossin 1,4	ng min. min.	GM 5 5	+ +	FGM 9 7	= =	14 12	sec sec												
	lp	1,2	min.	5	+	10	=	15	sec												
	Jp	2,3	min.	5	+	6	=	11	sec												
	Kp	3,4	min.	5	+	6	=	11	sec												
	Lp	3	min.	5	† †	6 7	=	11	sec												
	Mp	4	min.	5 5	+ +	7	=	12 12	sec												
	Np	1,2,3	min.	э			_ =	12	sec								l				

2033 PM Peak Design Flows

CHECK: #VALUE!

AECOM

(J1)

DATE: 十月 20

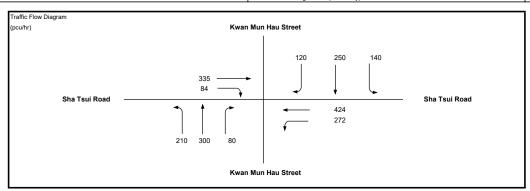
Ip Np 77 B1 Gp 74 Hp	Np .77 Np .77 P P P P P P P P P	Np ₹	E	
Stage 1	Stage 2	Stage 3	Stage 4	
I/G =	12 G = 9 I/G =	5 I/G =	12 I/G =	6

Critical Case: A,B2,D,F

R.C.(C)	$= (0.9xY_{max}-Y)/Yx100\% =$	34%	

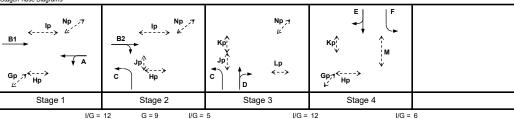
Į	Ι	l	LANE			DIUS	S C	DE	UPHILL	GRADIEN	ADDITIONA	STRAIGHT-	F	LOW (pcu/h	r)	TOTAL		RTION OF VEHICLES	REVISED	FLOW	
TNEMENT	PHASE	STAGE	WIDTH	NO. OF LANES	1)	n)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)		L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW		%)	SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y
Ş		0)	(m)		LEFT	RIGHT	P E	N H	1 (70)	(pcu/iir)	(pcu/hr)	(pcu/hr)	LEFI	T AHEAD	RIGHT	(pcu/hr)	LEFT	RIGHT	(pcu/iii)	У	
Ţ.	A	1	3.300	1	15			1		0		1945	207			207	100%		1768	0.117	
, -	A	1	3.300	1				0		0		2085	201	461		461	100%		2085	0.221	0.221
_	. B1	1	3.300	1				1		0		1945		350		350			1945	0.180	
-	. B2	2	3.300	1				1		0		1945		0		0			1945	0.000	
-	- B2	2	3.300	2		15	0	0		0		4170		0	85	85		100%	3791	0.022	
1	С	2,3	3.500	2	20			1		0		4070	230			230	100%		3786	0.061	
↑	D	3	3.300	1				0		0		2085		300		300			2085	0.144	0.144
1	D	3	3.300	1		30	0	0		0		2085			70	70		100%	1986	0.035	
l,	F	4	4.000	1	12.5			1		0		2015	140			140	100%		1799	0.078	0.078
↓	E	4	3.300	1				0		0		2085		207		207			2085	0.099	
┪	E	4	3.300	1		25	0	0		0		2085		53	145	198		73%	1997	0.099	
Pe	 destria	 n Crossi	 ng	GM		FGM															
	Gp	1,4	min.	5	+	9	=	14	sec												
	Нр	1,4	min.	5	+	7	=	12	sec												
	lp	1,2	min.	5	+	10	=	15	sec												
	Jp	2,3	min.	5	+	6	=	11	sec												
	Кр		min.	5	+	6	=	11	sec												
	Lp	3	min.	5	+	6	=	11	sec												
	Mp		min.	5	+	7	=	12	sec												
	Np	1,2,3	min.	5	+	7	=	12	sec												

Junction J1 - Sha Tsui Road / Texaco Road 2033 AM Peak Design Flows (Sensitivity) DESIGN:


CHECK:

#VALUE!

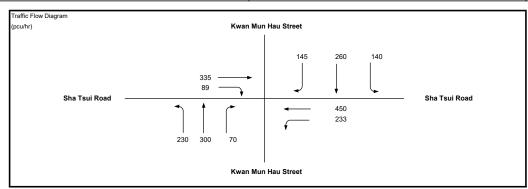
DATE: 十月 20

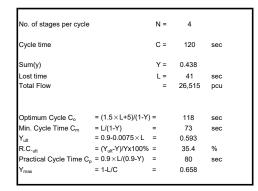

(J1)

AECOM

No. of stages per cycle		N =	4	
Cycle time		C =	110	sec
Sum(y)		Y =	0.425	
Lost time		L=	41	sec
Total Flow		=	26,515	pcu
Optimum Cycle C _o	= (1.5×L+5)/(1-Y)	=	116	sec
Min. Cycle Time C _m	= L/(1-Y)	=	71	sec
Y _{ult}	$= 0.9 - 0.0075 \times L$	=	0.593	
R.C. _{ult}	= (Y _{ult} -Y)/Yx100%	=	39.4	%
Practical Cycle Time Cp	$= 0.9 \times L/(0.9-Y)$	=	78	sec
Y _{max}	= 1-L/C	=	0.627	

Stage/Phase Diagrams




Critical Case: A,B2,D,F

$ R.C.(C) = (0.3 \times 1_{\text{max}} - 1)/1 \times 100 / 0 = 33 / 0$	R.C.(C)	$= (0.9xY_{max}-Y)/Yx100\% =$	33%
---	---------	-------------------------------	-----

Ę	l		LANE			DIUS	S C	DE	UPHILL	GRADIEN	ADDITIONA	STRAIGHT-	F	LOW (pcu/h	r)	TOTAL		RTION OF VEHICLES	REVISED	FLOW	
MOVEMENT	PHASE	STAGE	WIDTH	NO. OF LANES	1)	n)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)		L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW		%)	SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y
MO		0)	(m)		LEFT	RIGHT	P H	N H	1 (70)	(pcu/iir)	(pcu/hr)	(pcu/hr)	LEFI	T AHEAD	RIGHT	(pcu/hr)	LEFT	RIGHT	(pcu/iii)	У	
₽	A	1	3.300	1	15			1		0		1945	272			272	100%		1768	0.154	
-	Α	1	3.300	1				0		0		2085		424		424			2085	0.203	0.203
-	B1	1	3.300	1				1		0		1945		335		335			1945	0.172	
→	B2	2	3.300	1				1		0		1945		0		0			1945	0.000	
→	B2	2	3.300	2		15	0	0		0		4170		0	84	84		100%	3791	0.022	
4	С	2,3	3.500	2	20			1		0		4070	210			210	100%		3786	0.055	
1	D	3	3.300	1				0		0		2085		300		300			2085	0.144	0.144
	D	3	3.300	1		30	0	0		0		2085			80	80		100%	1986	0.040	
l,	F	4	4.000	1	12.5			1		0		2015	140			140	100%		1799	0.078	0.078
↓	E	4	3.300	1				0		0		2085		189		189			2085	0.090	
4	E	4	3.300	1		25	0	0		0		2085		61	120	181		66%	2005	0.090	
Ped	 estrian	Crossin	l Ig	GM		FGM															
	Gp	1,4	min.	5	+	9	=	14	sec												
	Нр	1,4	min.	5	+	7	=	12	sec												
	lp	1,2	min.	5	+	10	=	15	sec												
	Jp	2,3	min.	5	+	6	=	11	sec												
	Кр	3,4	min.	5	+	6	=	11	sec												
	Lp	3	min.	5	+	6	=	11	sec												
	Мр	4	min.	5	+	7	=	12	sec												
	Np	1,2,3	min.	5	+	7	=	12	sec												

Junction J1 - Sha Tsui Road / Texaco Road 2033 PM Peak Design Flows (Sensitivity) DESIGN: CHECK: #VALUE!

AECOM

(J1)

DATE: 十月 20

 Stage IP hase Diagrams

 Ip Np 7
 Ip Np 7

 Ip Np 7
 Ip Np 7

 Ip Np 7
 Ip Np 7

 Kpi V IP Np 7
 Kpi V IP Np 7

 Ip Np 7
 Ip Np 7

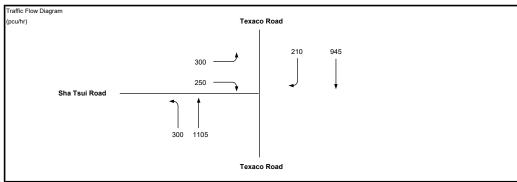
 Kpi V IP Np 7
 Kpi V IP Np 7

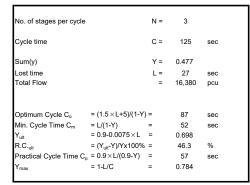
 Ip Np 7
 Ip Np 7

 Ip Np 7
 Kpi V IP Np 7

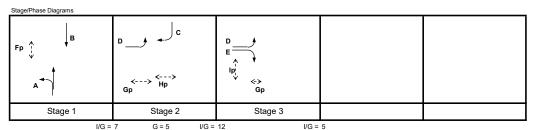
 Ip Np 7
 Ip Np 7

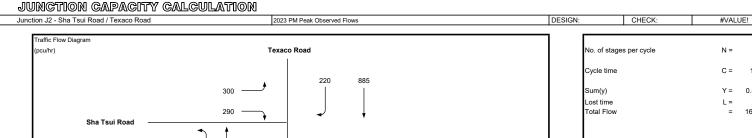
I/G = 5

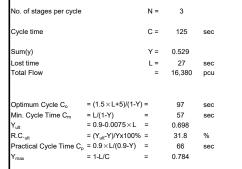

 $R.C.(C) = (0.9xY_{max}-Y)/Yx100\% = 35\%$


Critical Case: A,B2,D,F

!				LANE			DIUS	9 o	DE	UPHILL	GRADIEN	ADDITIONA	STRAIGHT-	F	LOW (pcu/h	r)	TOTAL	PROPOR	RTION OF VEHICLES	REVISED	FLOW	
į	MOVEMEN	PHASE	STAGE	WIDTH (m)	NO. OF LANES	(r	n)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)		L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)		%)	SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y
3	2		0)	(III)		LEFT	RIGHT	OP TF	N	1 (%)	(pcu/iii)	(pcu/hr)	(pcu/hr)	LEFI	T AHEAD	KIGHT	(pcu/ii)	LEFT	RIGHT	(pcu/iii)	У	
ŧ	- 1	A A	1	3.300 3.300	1	15			1 0		0		1945 2085	233	450		233 450	100%		1768 2085	0.132 0.216	0.216
-	* * *	B1 B2 B2	1 2 2	3.300 3.300 3.300	1 1 2		15	0	1 1 0		0 0 0		1945 1945 4170		335 0 0	89	335 0 89		100%	1945 1945 3791	0.172 0.000 0.023	
1		C D	2,3 3 3	3.500 3.300 3.300	2 1 1	20	30	0	1 0 0		0 0 0		4070 2085 2085	230	300	70	230 300 70	100%	100%	3786 2085 1986	0.061 0.144 0.035	0.144
ļ,	,	F E E	4 4 4	4.000 3.300 3.300	1 1 1	12.5	25	0	1 0 0		0 0 0		2015 2085 2085	140	207 53	145	140 207 198	100%	73%	1799 2085 1997	0.078 0.099 0.099	0.078
Pi	edes	trian (Crossin	a	GM		FGM															
Ι΄.		Gp	1,4	min.	5	+	9	=	14	sec												
	- 1	Нр	1,4	min.	5	+	7	=	12	sec												
		lp	1,2	min.	5	+	10	=	15	sec												
		Jp	2,3	min.	5	+	6	=	11	sec												
		Kp	3,4	min.	5	+	6	=	11	sec												
		Lp	3	min.	5	+	6	=	11	sec												
	- [Мр	4	min.	5	+	7	=	12	sec												
		Np	1,2,3	min.	5	+	7	=	12	sec												

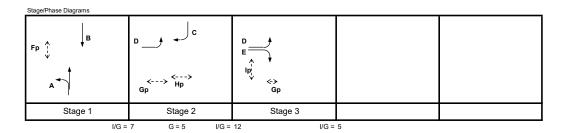

I/G = 12




(J2)

R.C.(C)	$= (0.9xY_{max}-Y)/Yx100\% =$	48%

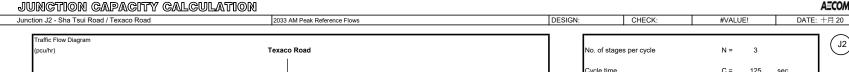
E			ш	LANE			DIUS	© №	DE	UPHILL	GRADIEN	ADDITIONA	STRAIGHT-	F	LOW (pcu/h	ır)	TOTAL	PROPOR	TION OF VEHICLES	REVISED	FLOW	
FMENTYCEN		PHASE	STAGE	WIDTH (m)	NO. OF LANES	(r	n)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)	T EFFECT (pcu/hr)	L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)		6)	SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y
_			.,	()		LEFT	RIGHT	P L	Ä	. (///	(pod/iii)	(pcu/hr)	(pcu/hr)		T AHEAD	1410111	(pourii)	LEFT	RIGHT	(pourm)	,	
4		A A	1	3.500 3.500	1	20			1		0		1965 2105	300	367 738		667 738	45%		1901 2105	0.351 0.351	0.351
↓ ↓		B C	1 2	3.300 3.500	2 2		25	0	1		0 0		4030 4210		945	210	945 210		100%	4030 3972	0.234 0.053	
4	- 1	D E	2,3 3	3.500 3.500	1 1	20	25	0	1 0		0 0		1965 2105	300		250	300 250	100%	100%	1828 1986	0.164 0.126	0.126
Pe		trian (Fp Gp Hp Ip	Crossini 1 2,3 2 3	g min. min. min. min.	GM 8 5 5 5	+ + + +	FGM 8 10 10 14	= = =	16 15 15 19	sec sec sec sec												

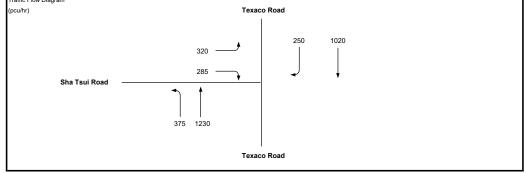


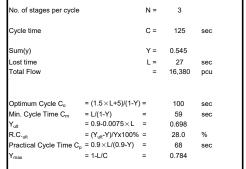
AECOM

(J2)

DATE: 十月 20

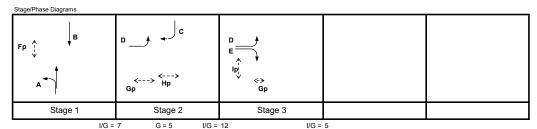



Texaco Road

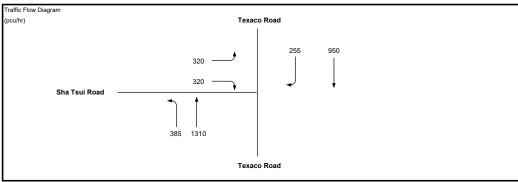

330 1205

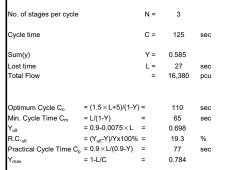
Critical Ca	ase: A,Hp,E		
R.C.(C)	$= (0.9xY_{max}-Y)/Yx100\% =$	33%	

!	_		=	LANE			DIUS	NG C	DE	UPHILL	GRADIEN		STRAIGHT-	F	LOW (pcu/h	ır)	TOTAL	PROPOR		REVISED	FLOW	
į	MOVEMEN	PHASE	STAGE	WIDTH (m)	NO. OF LANES	(r	n)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)		CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)		6)	SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y
- [≧		0,	(111)		LEFT	RIGHT	P I	N	1 (70)	(реали)	(pcu/hr)	(pcu/hr)	CCI I	T AHEAD	TUOTIT	(pouriii)	LEFT	RIGHT	(pouriii)	,	
		A	1	3.500	1	20			1		0		1965	330	398		728	45%		1900	0.383	0.383
	 	Α	1	3.500	1				0		0		2105		807		807			2105	0.383	
	,	В	1	3.300	2				1		0		4030		885		885			4030	0.220	
-	'	С	2	3.500	2		25	0	0		0		4210			220	220		100%	3972	0.055	
	•	D	2,3	3.500	1	20			1		0		1965	300			300	100%		1828	0.164	
	₹	E	3	3.500	1		25	0	0		0		2105			290	290		100%	1986	0.146	0.146
					014		FGM															
		Fp	Crossin 1	-	GM 8	+		=	16	200												
	- 1	Gp	2,3	min. min.	5	+	8 10	=	15	sec sec												
		Hp	2,3	min.	5	+	10	=	15	sec												
		lp	3	min.	5	+	14	=	19	sec												
		·	-																			
L																						



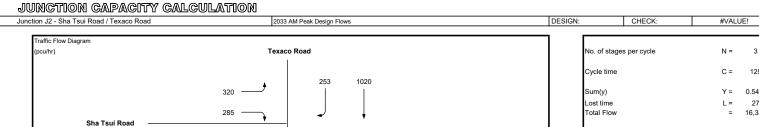
A=COM

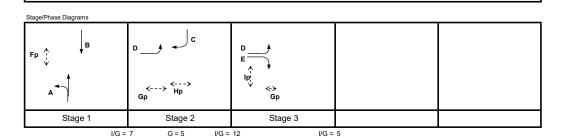

(J2)



R.C.(C)	$= (0.9xY_{max}-Y)/Yx100\% =$	30%	

TNEMENT	<u> </u>	PHASE	STAGE	LANE WIDTH	NO. OF		DIUS n)	SING	NEAR SIDE LANE	UPHILL GRADIEN	GRADIEN T EFFECT	ADDITIONA L	STRAIGHT- AHEAD SAT.	F	LOW (pcu/h	ır)	TOTAL FLOW	PROPOR TURNING		REVISED SAT. FLOW	FLOW FACTOR	CRITICAL
Ž T	à	Ì	STA	(m)	LANES	LEFT	RIGHT	OPPOSING TRAFFIC	NEAR	T (%)	(pcu/hr)	(pcu/hr)	FLOW (pcu/hr)	LEFT	STRAIGH T AHEAD	RIGHT	(pcu/hr)	LEFT	RIGHT	(pcu/hr)	y	У
4	- 1 '	A A	1	3.500 3.500	1	20			1 0		0		1965 2105	375	385 845		760 845	49%		1895 2105	0.401 0.401	0.401
1	- 1	ВС	1 2	3.300 3.500	2 2		25	0	1 0		0 0		4030 4210		1020	250	1020 250		100%	4030 3972	0.253 0.063	
<u>-</u>		D E	2,3 3	3.500 3.500	1 1	20	25	0	1 0		0 0		1965 2105	320		285	320 285	100%	100%	1828 1986	0.175 0.144	0.144
Pe	F	ian C Fp 3p 1p	Crossini 1 2,3 2 3	g min. min. min. min.	GM 8 5 5 5	+ + + +	FGM 8 10 10 14	= = =	16 15 15 19	sec sec sec sec												





Stage/Phase Diagrams				
Fp 🗼	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	D E <- 10; → GB		
ľ		•		
Stage 1	Stage 2	Stage 3		
I/G =	7 G = 5 I/G =	12 I/G =	5	-

R.C.(C)	$= (0.9xY_{max}-Y)/Yx100\% =$	21%

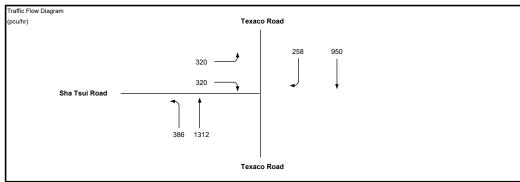
Ė		ш	Ε	LANE			DIUS	NG IC	DE	UPHILL	GRADIEN		STRAIGHT-	F	LOW (pcu/h	r)	TOTAL		RTION OF VEHICLES	REVISED	FLOW	
THEMENT		PHASE	STAGE	WIDTH (m)	NO. OF LANES	(r	n)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)		L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)	(9		SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y
2	2		0,	()		LEFT	RIGHT	OF T	Ä	1 (70)	(реали)	(pcu/hr)	(pcu/hr)	CEII	T AHEAD	TUGITI	(powiii)	LEFT	RIGHT	(pourii)	,	
4		A	1	3.500	1	20			1		0		1965	385	418		803	48%		1897	0.424	0.424
}	! !	A	1	3.500	1	20			0		0		2105	000	892		892	1070		2105	0.424	0.12.
↓		В	1	3.300	2				1		0		4030		950		950			4030	0.236	
į		С	2	3.500	2		25	0	0		0		4210			255	255		100%	3972	0.064	
4	•	D	2,3	3.500	1	20			1		0		1965	320			320	100%		1828	0.175	
-	۱	Е	3	3.500	1		25	0	0		0		2105			320	320		100%	1986	0.161	0.161
Pe			Crossin	- 1	GM		FGM															
		Fp	1	min.	8	+	8	=	16	sec												
		Gp Hp	2,3 2	min. min.	5 5	+	10 10	=	15 15	sec sec												
	- 1	lp	3	min.	5	+	14	_	19	sec												
		"							.5	- 550												
L																						

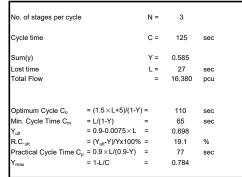
Texaco Road

378 1236

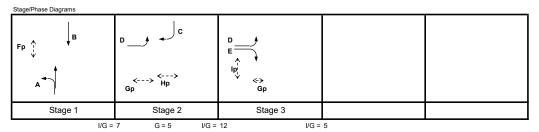
No. of stages per cycle		N =	3	
Cycle time		C =	125	sec
Sum(y)		Y =	0.547	
Lost time		L=	27	sec
Total Flow		=	16,380	pcu
Optimum Cycle C _o	= (1.5×L+5)/(1-Y)	=	100	sec
Min. Cycle Time C _m	= L/(1-Y)	=	60	sec
Yult	= 0.9-0.0075×L	=	0.698	
R.C. _{ult}	= $(Y_{ult}-Y)/Yx100\%$	=	27.5	%
Practical Cycle Time C _p	$= 0.9 \times L/(0.9-Y)$	=	69	sec
Y _{max}	= 1-L/C	=	0.784	

A=COM


(J2)


DATE: 十月 20

R.C.(C)	$= (0.9xY_{max}-Y)/Yx100\% =$	29%	

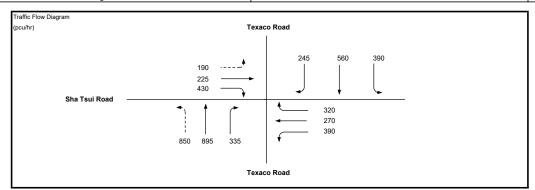

ļ	-	Е	Е	LANE			DIUS	NG IC	IDE:	UPHILL	GRADIEN	ADDITIONA		F	LOW (pcu/h	ır)	TOTAL		TION OF VEHICLES	REVISED	FLOW	
į	MOVEMEN	PHASE	STAGE	WIDTH (m)	NO. OF LANES	(r	n)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)		L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)		6)	SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y
Ŀ	ž		.,	()		LEFT	RIGHT	P L	Ä	. (%)	(pod/iii)	(pcu/hr)	(pcu/hr)		T AHEAD	1410111	(pourii)	LEFT	RIGHT	(pourit)	,	
	,	А	1	3.500	1	20			1		0		1965	378	387		765	49%		1895	0.404	
	 	Α	1	3.500	1				0		0		2105		849		849			2105	0.404	0.404
	,	В	1	3.300	2				1		0		4030		1020		1020			4030	0.253	
	J	С	2	3.500	2		25	0	0		0		4210			253	253		100%	3972	0.064	
_	•	D	2,3	3.500	1	20			1		0		1965	320			320	100%		1828	0.175	
	→	Е	3	3.500	1		25	0	0		0		2105			285	285		100%	1986	0.144	0.144
P	edes		Crossin	-	GM		FGM															
		Fp	1	min.	8	+	8	=	16	sec												
1		Gp Hp	2,3	min. min.	5 5	+	10 10	=	15 15	sec												
		Пр	3	min.	5	+	14	=	19	sec sec												
		יף	J	111111.		'	'*	_	10	300												
L																						

(J2)

R	2.C.(C)	$= (0.9xY_{max}-Y)/Yx100\% =$	21%

		ш	ш	LANE		RAI		<u>გ</u> ი	9	UPHILL	GRADIEN	ADDITIONA	STRAIGHT-	F	LOW (pcu/h	r)	TOTAL	PROPOR TURNING	TION OF	REVISED	FLOW	
	MOVEMENT	PHASE	STAGE	WIDTH (m)	NO. OF LANES	1)	n)	OPPOSING TRAFFIC	NEAR SIDE LANE			L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)		6)	SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y
L	ž		.,	()		LEFT	RIGHT	9 -	Ä	. (/0)	(pod/iii)	(pcu/hr)	(pcu/hr)		T AHEAD	1410111	(pourii)	LEFT	RIGHT	(pourm)	,	
	4	А	1	3.500	1	20			1		0		1965	386	419		805	48%		1897	0.424	0.424
	†	А	1	3.500	1				0		0		2105		893		893			2105	0.424	
	↓	В	1	3.300	2				1		0		4030		950		950			4030	0.236	
-	1	С	2	3.500	2		25	0	0		0		4210			258	258		100%	3972	0.065	
	•	D	2,3	3.500	1	20			1		0		1965	320			320	100%		1828	0.175	
-	→	E	3	3.500	1		25	0	0		0		2105			320	320		100%	1986	0.161	0.161
			0		014		FOM															
P	eaes	Fp	Crossin 1	g min.	GM 8	+	FGM 8	=	16	sec												
		Gp	2,3	min.	5	+	10	=	15	sec												
		Нр	2	min.	5	+	10	=	15	sec												
		lp	3	min.	5	+	14	=	19	sec												
L																						

2023 AM Peak Observed Flows


DESIGN:

JOB NO: 60223708

DATE: 十月 20

A=COM

(13)

No. of stages per cycle		N =	4	
Cycle time		C =	125	sec
Sum(y)		Y =	0.563	
Lost time		L=	21	sec
Total Flow		=	31,045	pcu
Optimum Cycle C _o	= (1.5×L+5)/(1-Y)	=	84	sec
Min. Cycle Time C _m	= L/(1-Y)	=	48	sec
Yult	= 0.9-0.0075×L	=	0.743	
R.C. _{ult}	$= (Y_{ult}-Y)/Yx100\%$	=	31.9	%
Practical Cycle Time Cp	$= 0.9 \times L/(0.9-Y)$	=	56	sec
Y _{max}	= 1-L/C	=	0.832	

Stage/Phase Diagrams Gp ↓ Stage 1 Stage 2 Stage 3 Stage 4

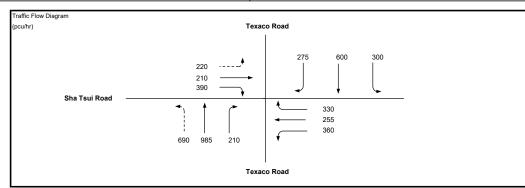
I/G = 9

Critical Case: A,C,E,F

 $R.C.(C) = (0.9xY_{max}-Y)/Yx100\% =$

F	ŧΤ	ш	ш	LANE		RAI		S S	DE	UPHILL	GRADIEN		STRAIGHT-	F	LOW (pcu/h	r)	TOTAL	PROPOR		REVISED	FLOW	
FNBMBVCM		PHASE	STAGE	WIDTH (m)	NO. OF LANES	1)	n)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)	T EFFECT (pcu/hr)	L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)	(%		SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y
2			0)	(111)		LEFT	RIGHT	OP TT	Ä	1 (70)	(pcu/iii)	(pcu/hr)	(pcu/hr)	LLIT	T AHEAD	KIGITI	(pcu/iii)	LEFT	RIGHT	(pcu/iii)	y	
1		A	1	3.500	2				1		0		4070		895		895			4070	0.220	0.220
ļ	. 1	А	1	3.500	1		15	0	0		0		2105			335	335		100%	1914	0.175	
F		В	1,2	3.600	1	20			1		0		1975	390			390	100%		1837	0.212	
-	٠	С	2	3.600	1				0		0		2115		205		205			2115	0.097	
- 4	- 1	С	2	3.600	1		20	0			0		2115		65	130	195		66%	2015	0.097	0.097
_ ♣_	-	С	2	3.600	1		20	0	0		0		2115			190	190		100%	1967	0.097	
l,		D	2,3	4.000	1	100			1		0		2015	390			390	100%		1985	0.196	
↓		E	3	3.500	2				0		0		4210		560		560			4210	0.133	0.133
-		E	3	3.500	2		20	0	0		0		4210			245	245		100%	3916	0.063	
-	-	F	4	3.300	1				1		0		1945		221		221			1945	0.113	
₹	١.	F	4	3.300	1		19	0			0		2085		4	215	219		98%	1935	0.113	
-	,	F	4	3.300	1		15	0	0		0		2085			215	215		100%	1895	0.113	0.113
Pe	dest	rian (Crossin	in a	GM		FGM															
Ι.			1,3,4	l min.	7	+	12	=	19	sec												
	- 1	Hp	1,4	min.	4	+	7	=	11	sec												
	- 1	lp	2,3	min.	6	+	8	=	14	sec												
	- 1	Jp	3,4	min.	7	+	6	=	13	sec												

2023 PM Peak Observed Flows


DESIGN:

JOB NO: 60223708

DATE: 十月 20

A=COM

(13)

No. of stages per cycle		N =	4	
Cycle time		C=	125	sec
Sum(y)		Y =	0.584	
Lost time		L=	21	sec
Total Flow		=	31,045	pcu
Optimum Cycle C _o	= (1.5×L+5)/(1-Y)	=	88	sec
Min. Cycle Time C _m	= L/(1-Y)	=	51	sec
Y _{ult}	= 0.9-0.0075×L	=	0.743	
R.C. _{ult}	$= (Y_{ult}-Y)/Yx100\%$	=	27.0	%
Practical Cycle Time Cp	$= 0.9 \times L/(0.9-Y)$	=	60	sec
Y _{max}	= 1-L/C	=	0.832	

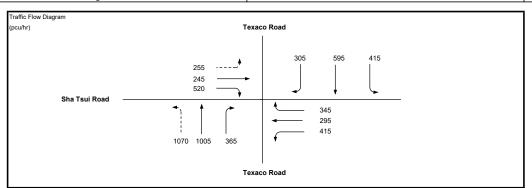
Stage/Phase Diagrams Gp ↓ Stage 1 Stage 2 Stage 3 Stage 4 I/G = 9

Critical Case: A,C,E,F

 $R.C.(C) = (0.9xY_{max}-Y)/Yx100\% = 28\%$

F	MOVEMENT PHASE STAGE	LANE			DIUS	S S	DE	UPHILL	GRADIEN	ADDITIONA	STRAIGHT-	F	LOW (pcu/h	r)	TOTAL	PROPOR	TION OF VEHICLES	REVISED	FLOW		
VEME	PHASE	STAGE	WIDTH (m)	NO. OF LANES	(r	n)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)	T EFFECT (pcu/hr)	L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)	(9		SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y
W W		.,	()		LEFT	RIGHT	P L	Ä	. (%)	(pourin)	(pcu/hr)	(pcu/hr)		T AHEAD	1410111	(pourii)	LEFT	RIGHT	(pourm)	,	
1	A	1	3.500	2				1		0		4070		985		985			4070	0.242	0.242
ŀ	А	1	3.500	1		15	0	0		0		2105			210	210		100%	1914	0.110	
₽	В	1,2	3.600	1	20			1		0		1975	360			360	100%		1837	0.196	
-	С	2	3.600	1				0		0		2115		203		203			2115	0.096	0.096
-	С	2	3.600	1		20	0			0		2115		52	141	193		73%	2005	0.096	
←	С	2	3.600	1		20	0	0		0		2115			189	189		100%	1967	0.096	
l _e	D	2,3	4.000	1	100			1		0		2015	300			300	100%		1985	0.151	
↓	E	3	3.500	2				0		0		4210		600		600			4210	0.143	0.143
الله ا	E	3	3.500	2		20	0	0		0		4210			275	275		100%	3916	0.070	
-	F	4	3.300	1				1		0		1945		202		202			1945	0.104	0.104
₩	F	4	3.300	1		19	0			0		2085		8	193	201		96%	1938	0.104	
-	F	4	3.300	1		15	0	0		0		2085			197	197		100%	1895	0.104	
Ped	estrian	Crossin	g	GM		FGM															
	Gp	1,3,4	min.	7	+	12	=	19	sec												
	Нр	1,4	min.	4	+	7	=	11	sec												
	lp	2,3	min.	6	+	8	=	14	sec												
	Jp	3,4	min.	7	+	6	=	13	sec												
																					·

2033 AM Peak Reference Flows


DESIGN:

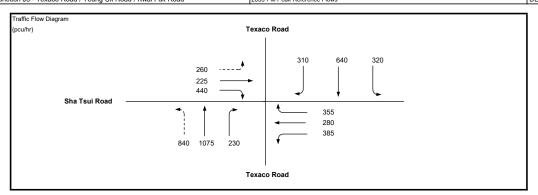
JOB NO: 60223708

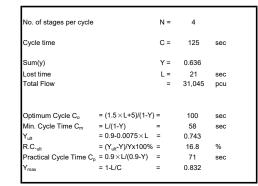
DATE: 十月 20

(13)

AECOM

No. of stages per cycle)	N =	4	
Cycle time		C =	125	sec
Sum(y)		Y =	0.629	
Lost time		L =	21	sec
Total Flow		=	31,045	pcu
Optimum Cycle C _o	= (1.5×L+5)/(1-Y) =	98	sec
Min. Cycle Time C _m	= L/(1-Y)	=	57	sec
Y _{ult}	= $0.9 - 0.0075 \times L$	=	0.743	
R.C. _{ult}	= (Y _{ult} -Y)/Yx100%	. =	18.0	%
Practical Cycle Time C	$s_p = 0.9 \times L/(0.9-Y)$	=	70	sec
Y _{max}	= 1-L/C	=	0.832	


Stage/Phase Diagrams Gp ↓ Stage 1 Stage 2 Stage 3 Stage 4 I/G = 6 I/G = 9 I/G = 5


Critical Case: A,C,E,F

 $R.C.(C) = (0.9xY_{max}-Y)/Yx100\% = 19\%$

	Ä	ш	ш	LANE			DIUS	<u>გ</u> ი	30	UPHILL	GRADIEN	ADDITIONA	STRAIGHT-	F	LOW (pcu/h	r)	TOTAL			REVISED	FLOW	
	MOVEMENT	PHASE	STAGE	WIDTH (m)	NO. OF LANES	1)	m)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)	T EFFECT (pcu/hr)	L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)	(9		SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y
L	ω	_	3	()		LEFT	RIGHT	A L	Z	. (,0)	(роштт)	(pcu/hr)	(pcu/hr)		T AHEAD	11.0111	(pourii)	LEFT	RIGHT	(pourin)	,	
	†	A A	1	3.500 3.500	2		15	0	1 0		0 0		4070 2105		1005	365	1005 365		100%	4070 1914	0.247 0.191	0.247
	F 4 4	B C C	1,2 2 2 2	3.600 3.600 3.600 3.600	1 1 1 1	20	20 20	0	1 0 0		0 0 0 0		1975 2115 2115 2115	415	222 73	139 206	415 222 212 206	100%	65% 100%	1837 2115 2016 1967	0.226 0.105 0.105 0.105	0.105
	↓	D E E	2,3 3 3	4.000 3.500 3.500	1 2 2	100	20	0	1 0 0		0 0 0		2015 4210 4210	415	595	305	415 595 305	100%	100%	1985 4210 3916	0.209 0.141 0.078	0.141
	→ * ¬	F F	4 4 4	3.300 3.300 3.300	1 1 1		19 15	0	1 0		0 0 0		1945 2085 2085		245 0	263 257	245 263 257		100% 100%	1945 1932 1895	0.126 0.136 0.136	0.136
	Pede	strian Gp Hp Ip Jp	Crossin 1,3,4 1,4 2,3 3,4	g min. min. min. min.	GM 7 4 6 7	+ + + + +	FGM 12 7 8 6	= = =	19 11 14 13	sec sec sec sec												

(13)

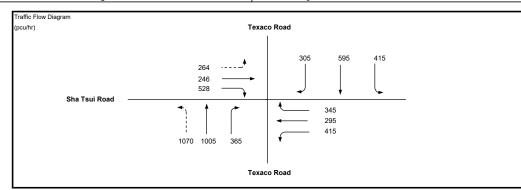
Stage/Phase Diagrams				
Hp	D ^Ip	E □ □ ↑ip	Hp ₽	
G∳ V _B	↓ C F B	Gb> 7-3	Gp	
Stage 1	Stage 2	Stage 3	Stage 4	
I/G =	6 I/G =	9 I/G =	5 I/G =	5

R.C.(C)	$= (0.9xY_{max}-Y)/Yx100\% =$	18%

Critical Case: A,C,E,F

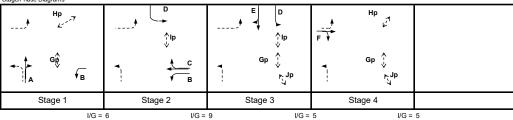
ENT	ш	ш	LANE			DIUS	<u>8</u> 0	DE	UPHILL	GRADIEN		STRAIGHT-	F	LOW (pcu/h	nr)	TOTAL		RTION OF VEHICLES	REVISED	FLOW		
MOVEMENT	PHASE	STAGE	WIDTH (m)	NO. OF LANES	(m)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)	T EFFECT (pcu/hr)	L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)		%)	SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y	
Θ		٠,	(111)		LEFT	RIGHT	P E	Ä	1 (70)	(pcu/iii)	(pcu/hr)	(pcu/hr)	LLI I	T AHEAD	NOTT	(powiii)	LEFT	RIGHT	(решліт)	,		
1	A	1	3.500	2				1		0		4070		1075		1075			4070	0.264	0.264	
1	A	1	3.500	1		15	0	0		0		2105		1010	230	230		100%	1914	0.120	0.201	
Ŀ	В	1,2	3.600	1	20			1		0		1975	385			385	100%		1837	0.210		
 *_	l c l	2	3.600	1	==			0		0		2115	000	221		221	10070		2115	0.104		
	c	2	3.600	1		20	0			0		2115		59	150	209		72%	2007	0.104	0.104	
4_	С	2	3.600	1		20	0	0		0		2115			205	205		100%	1967	0.104		
L	D	2,3	4.000	1	100			1		0		2015	320			320	100%		1985	0.161		
*	E	3	3.500	2				0		0		4210		640		640			4210	0.152	0.152	
🕽	E	3	3.500	2		20	0	0		0		4210			310	310		100%	3916	0.079		
→	F	4	3.300	1				1		0		1945		224		224			1945	0.115	0.115	
₩	F	4	3.300	1		19	0			0		2085		1	222	223		100%	1933	0.115		
-	F	4	3.300	1		15	0	0		0		2085			218	218		100%	1895	0.115		
Pede	ı ı estrian (ı Crossin	g	GM		FGM																
	Gp	1,3,4	min.	7	+	12	=	19	sec													
	Нр	1,4	min.	4	+	7	=	11	sec													
	lp	2,3	min.	6	+	8	=	14	sec													
	Jp	3,4	min.	7	+	6	=	13	sec													

2033 AM Peak Design Flows


DESIGN:

JOB NO: 60223708

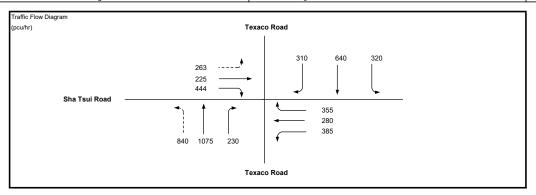
DATE: 十月 20

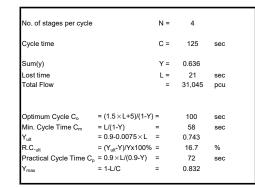

AECOM

(13)

No. of stages per cycle		N =	4	
Cycle time		C=	125	sec
Sum(y)		Y =	0.631	
Lost time		L=	21	sec
Total Flow		=	31,045	pcu
Optimum Cycle C _o	= (1.5×L+5)/(1-Y)	=	99	sec
Min. Cycle Time C _m	= L/(1-Y)	=	57	sec
Yult	$= 0.9 - 0.0075 \times L$	=	0.743	
R.C. _{ult}	$= (Y_{ult}-Y)/Yx100\%$	=	17.6	%
Practical Cycle Time Cp	$= 0.9 \times L/(0.9-Y)$	=	70	sec
Y _{max}	= 1-L/C	=	0.832	

Stage/Phase Diagrams

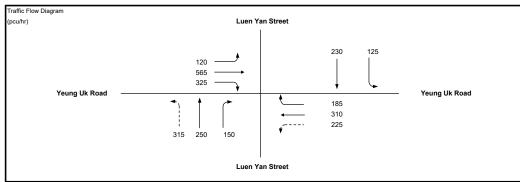


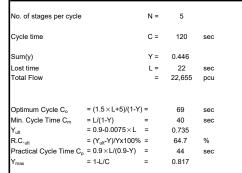

Critical Case: A,C,E,F

 $R.C.(C) = (0.9xY_{max}-Y)/Yx100\% = 19\%$

	MOVEMENT	ш	LANE			DIUS	9 <u>0</u>	DE	UPHILL	GRADIEN	ADDITIONA		F	LOW (pcu/h	nr)	TOTAL	PROPOR	TION OF VEHICLES	REVISED	FLOW		
	VEM	PHASE	STAGE	WIDTH (m)	NO. OF LANES	1)	m)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)	T EFFECT (pcu/hr)	L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)	(9		SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y
	δ		0,	(11)		LEFT	RIGHT	P E	Ä	1 (70)	(pod/iii)	(pcu/hr)	(pcu/hr)	CCII	T AHEAD	NOTT	(pcaiii)	LEFT	RIGHT	(решліт)	,	
	<u>†</u>	A A	1	3.500 3.500	2 1		15	0	1		0		4070 2105		1005	365	1005 365		100%	4070 1914	0.247 0.191	0.247
	- ← •	B C C	1,2 2 2 2	3.600 3.600 3.600 3.600	1 1 1	20	20 20	0	1 0 0		0 0 0		1975 2115 2115 2115	415	222 73	139 206	415 222 212 206	100%	65% 100%	1837 2115 2016 1967	0.226 0.105 0.105 0.105	0.105
	↓	D E E	2,3 3 3	4.000 3.500 3.500	1 2 2	100	20	0	1 0 0		0 0 0		2015 4210 4210	415	595	305	415 595 305	100%	100%	1985 4210 3916	0.209 0.141 0.078	0.141
	→ * ¬	F F	4 4 4	3.300 3.300 3.300	1 1 1		19 15	0	0		0 0 0		1945 2085 2085		246 0	267 261	246 267 261		100% 100%	1945 1932 1895	0.126 0.138 0.138	0.138
F	Pede	strian (Gp Hp Ip Jp	Crossin 1,3,4 1,4 2,3 3,4	g min. min. min. min.	GM 7 4 6 7	+ + + +	FGM 12 7 8 6	= = =	19 11 14 13	sec sec sec sec												

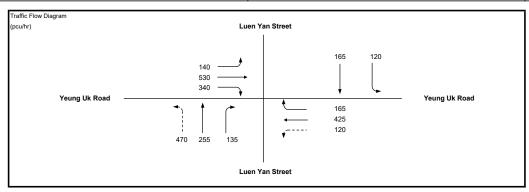
(13)

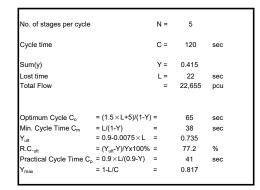

Stage/Phase Diagrams				
Hp -7	D Alp	E D	Hp 🗗	
GÔ VB	↓ C → B	Gp - → ∠,Jp	Gp → Jp	
Stage 1	Stage 2	Stage 3	Stage 4	
I/G =	6 I/G =	9 I/G =	5 I/G =	5


R.C.(C)	$= (0.9xY_{max}-Y)/Yx100\% =$	18%

Critical Case: A,C,E,F

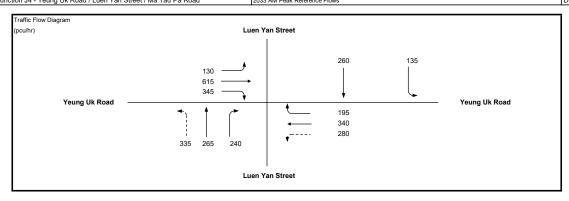
ENT	ш	ш	LANE			DIUS	S S	DE	UPHILI	GRADIEN	ADDITIONA		F	LOW (pcu/h	nr)	TOTAL		RTION OF VEHICLES	REVISED	FLOW		
MOVEMENT	PHASE	STAGE	WIDTH (m)	NO. OF LANES	(1	m)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)		L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)		%)	SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y	
Θ		0,	()		LEFT	RIGHT	P L	Z	1 (70)	(pcu/iii)	(pcu/hr)	(pcu/hr)		T AHEAD	NOTT	(pcu/iii)	LEFT	RIGHT	(решліі)	,		
A		_	2 500					1		0		4070		1075		1075			4070	0.264	0.264	
	A	1 1	3.500 3.500	2 1		15	0	0		0		2105		1075	230	230		100%	1914	0.264	0.264	
₩.	В	1,2	3.600	1	20			1		0		1975	385			385	100%		1837	0.210		
≠	C	2 2	3.600 3.600	1		20	_	0		0		2115 2115		221 59	150	221 209		72%	2115 2007	0.104 0.104	0.104	
<u>+</u>	c	2	3.600	1		20	0	0		0		2115		39	205	209		100%	1967	0.104	0.104	
_																						
l _{>}	D	2,3	4.000	1	100			1		0		2015	320			320	100%		1985	0.161		
↓,	E E	3	3.500 3.500	2		20	,	0		0		4210 4210		640	310	640 310		100%	4210 3916	0.152 0.079	0.152	
 ♣	-	۰	3.500			20	0	"		U		4210			310	310		100%	3910	0.079		
-	F	4	3.300	1				1		0		1945		225		225			1945	0.116		
₩	F	4	3.300	1		19	0			0		2085		0	224	224		100%	1932	0.116	0.116	
~	F	4	3.300	1		15	0	0		0		2085			220	220		100%	1895	0.116		
Pede	 estrian (Crossin	a	GM		FGM																
	Gp	1,3,4	min.	7	+	12	=	19	sec													
	Нр	1,4	min.	4	+	7	=	11	sec													
	lp	2,3	min.	6	+	8	=	14	sec													
	Jp	3,4	min.	7	+	6	=	13	sec													
					<u> </u>	L																

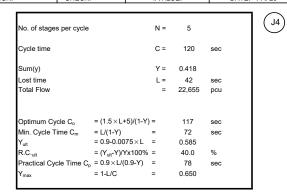

Stage/Phase Diagrams				
F G	D E	HD> P	C ID A	G
Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
I/G =	6 I/G =	I/G =	7 I/G =	7 I/G = 6

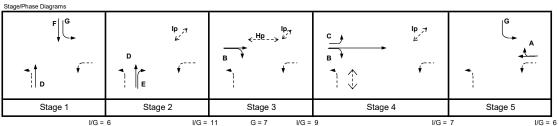

R.C.(C)	$= (0.9xY_{max}-Y)/Yx100\% =$	65%	

Critical Case: F,E,B,A

i i	MO CIMICA	PHASE	STAGE	LANE WIDTH	NO. OF	RAI (r		OPPOSING TRAFFIC	NEAR SIDE LANE	UPHILL GRADIEN	GRADIEN T EFFECT	ADDITIONA L CAPACITY	STRAIGHT- AHEAD SAT. FLOW		LOW (pcu/h		TOTAL FLOW	PROPOR TURNING (9	VEHICLES	REVISED SAT. FLOW	FLOW FACTOR	CRITICAL y
2	É	Δ.	S)	(m)		LEFT	RIGHT	PP.	NEA	T (%)	(pcu/hr)	(pcu/hr)	(pcu/hr)	LEFT	T AHEAD	RIGHT	(pcu/hr)	LEFT	RIGHT	(pcu/hr)	У	
←	- 1	A A	5	3.300 3.400	2		20	0	0		0		4170 2095		310	185	310 185		100%	4170 1949	0.074 0.095	0.095
_4 → ∓	•	C B B	4 3,4 3,4 3,4	3.500 3.500 3.500 3.500	1 1 1	20	20 15	0	1 0 0		0 0 0		1965 2105 2105 2105	120	347 338	9 316	120 347 347 316	100%	3% 100%	1828 2105 2101 1914	0.066 0.165 0.165 0.165	0.165
1		D E	1,2 2	3.500 3.500	1		20	0	1 0		0 0		1965 2105		250	150	250 150		100%	1965 1958	0.127 0.077	0.077
1		G F	1,5 1	3.300 3.400	1	15			1		0 0		1945 2095	125	230		125 230	100%		1768 2095	0.071 0.110	0.110
P€		Нр	Crossin 3 2,3,4	g min. min.	GM 7 5	+ +	FGM 7 7	= =	14 12	sec sec												

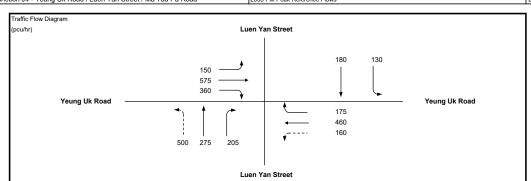

(J4)

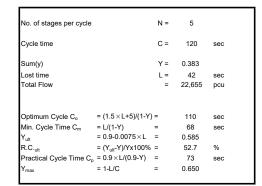

Stage/Phase Diagrams F G	D E	«HP> L	C A IP 77	A A
Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
I/G =	6 I/G =	I/G =	7 I/G =	7 I/G =


R.C.(C)	$= (0.9xY_{max}-Y)/Yx100\% =$	77%	

Critical Case: F,E,B,A

MOVEMENT	PHASE	STAGE	LANE WIDTH	NO. OF	RAI (r	DIUS n)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN		ADDITIONA L CAPACITY	STRAIGHT- AHEAD SAT. FLOW		LOW (pcu/h STRAIGH		TOTAL FLOW	PROPOR TURNING	VEHICLES	REVISED SAT. FLOW	FLOW FACTOR	CRITICAL
MOV	Ы	.s	(m)	2,1,20	LEFT	RIGHT	OPF TR	NEA	T (%)	(pcu/hr)	(pcu/hr)	(pcu/hr)	LEFT	T AHEAD	RIGHT	(pcu/hr)	LEFT	RIGHT	(pcu/hr)	У	,
←	A A	5 5	3.300 3.400	2		20	0	0		0 0		4170 2095		425	165	425 165		100%	4170 1949	0.102 0.085	0.102
± ≠ ∓	C B B	4 3,4 3,4 3,4	3.500 3.500 3.500 3.500	1 1 1	20	20 15	0	1 0 0		0 0 0		1965 2105 2105 2105	140	348 322	24 316	140 348 346 316	100%	7% 100%	1828 2105 2094 1914	0.077 0.165 0.165 0.165	0.165
†	D E	1,2 2	3.500 3.500	1 1		20	0	1 0		0 0		1965 2105		255	135	255 135		100%	1965 1958	0.130 0.069	0.069
ļ	G F	1,5 1	3.300 3.400	1 1	15			1 0		0 0		1945 2095	120	165		120 165	100%		1768 2095	0.068 0.079	0.079
Pede	strian Hp Ip	Crossin 3 2,3,4	ig min. min.	GM 7 5	+	FGM 7 7	=	14 12	sec sec												

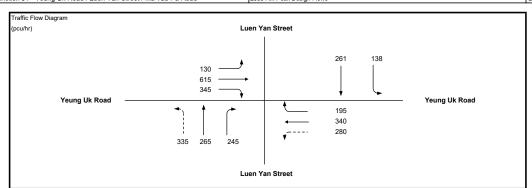


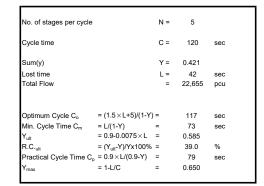

R.C.(C)	$= (0.9xY_{max}-Y)/Yx100\% =$	40%	

Critical Case: F,E,Hp,C,A

Ë	ш	ш	LANE		RAD		S S	1DE	UPHILL	GRADIEN	ADDITIONA	STRAIGHT-	ADJ.	F	LOW (pcu/h	r)	TOTAL	PROPOR TURNING		REVISED	FLOW	
MOVEMENT	PHASE	STAGE	WIDTH (m)	NO. OF LANES	(n	n)	OPPOSING TRAFFIC	NEAR SIDE LANE	GRADIEN T (%)		CAPACITY	AHEAD SAT. FLOW	SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)	(9		SAT. FLOW (pcu/hr)	FACTOR	CRITICAL
¥			. ,		LEFT	RIGHT	ō F	ž	` '	4 . ,	(pcu/hr)	(pcu/hr)			T AHEAD		u · /	LEFT	RIGHT	,		
-	A	5	3.300	2				0		0		4170	4170		340		340			4170	0.082	
<u></u>	Α	5	3.400	1		20	0	0		0		2095	2095			195	195		100%	1949	0.100	0.100
<u>+</u>	С	4	3.500	1	20			1		0		1965	1965	130			130	100%		1828	0.071	0.071
-	В	3,4	3.500	1				0		0		2105	2105		375		375			2105	0.178	
₩	В	3,4	3.500	1		20	0			0		2105	2105		370	4	374		1%	2103	0.178	
-	В	3,4	3.500	1		15	0	0		0		2105	2105			341	341		100%	1914	0.178	
↑	D	1,2	3.500	1				1		0		1965	1965		265		265			1965	0.135	
1	E	2	3.500	1		20	0	0		0		2105	2105			240	240		100%	1958	0.123	0.123
l,	G	1,5	3.300	1	15			1		0		1945	1945	135			135	100%		1768	0.076	
↓	F	1	3.400	1				0		0		2095	2095		260		260			2095	0.124	0.124
Ped	estriar Hp Ip	Crossir 3 2,3,4	ng min. min.	GM 7 5	+ +	FGM 7 7	= =	14 12	sec sec													

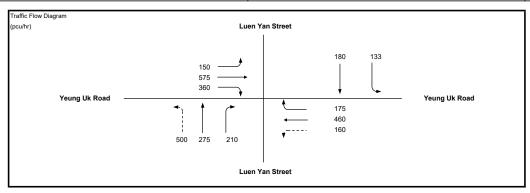
JUNCTION CAPACITY CALCULATION Junction J4 - Yeung Uk Road / Luen Yan Street / Ma Tau Pa Road | 2033 PM Peak Reference Flows | DESIGN: CHECK: #VALUE! DATE: 十月 20

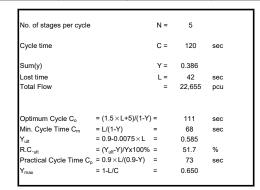

(J4)


Critical Case :	F,E,Hp,C,A
-----------------	------------

R.C.(C)	$= (0.9xY_{max}-Y)/Yx100\% =$	53%	

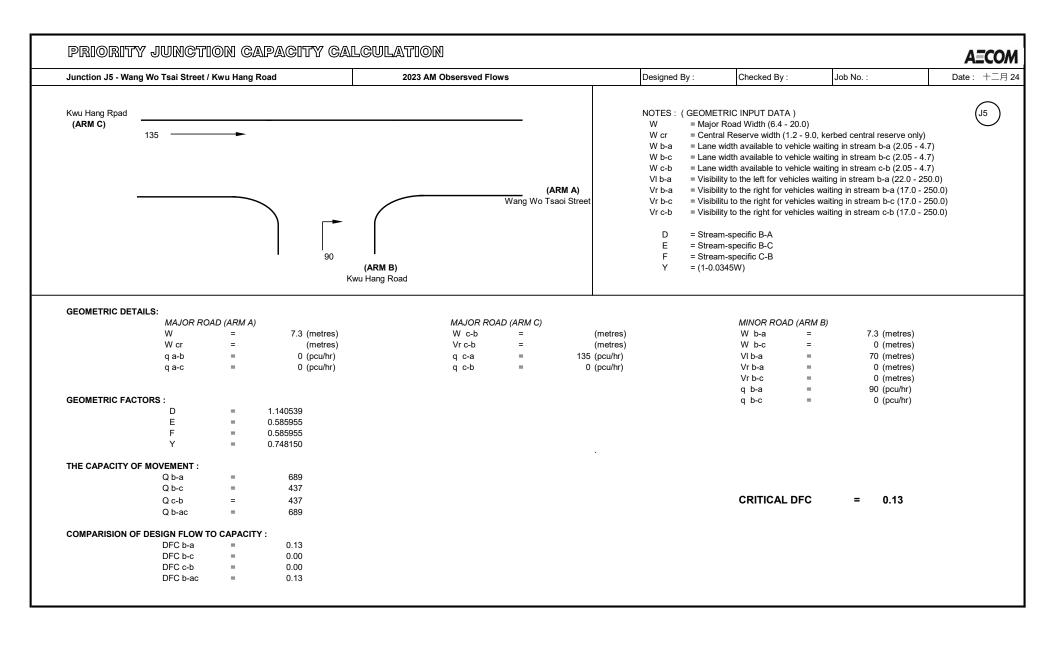
MOVEMENT	PHASE	STAGE	LANE WIDTH	NO. OF		DIUS n)	OPPOSING TRAFFIC	NEAR SIDE LANE	UPHILL GRADIEN	GRADIEN T EFFECT	L	STRAIGHT- AHEAD SAT.	F	LOW (pcu/h	r)	TOTAL FLOW	PROPOR TURNING (9	VEHICLES	REVISED SAT. FLOW	FLOW FACTOR	CRITICAL
MOV	Ŧ	ST	(m)	LANES	LEFT	RIGHT	OPP TRA	NEAI	T (%)	(pcu/hr)	(pcu/hr)	FLOW (pcu/hr)	LEFT	STRAIGH T AHEAD	RIGHT	(pcu/hr)	LEFT	RIGHT	(pcu/hr)	У	У
←	A A	5 5	3.300 3.400	2		20	0	0		0		4170 2095		460	175	460 175		100%	4170 1949	0.110 0.090	0.110
_ → →	C B B	3,4 3,4 3,4	3.500 3.500 3.500 3.500	1 1 1 1	20	20 15	0	1 0 0		0 0 0		1965 2105 2105 2105	150	373 352	20 340	150 373 372 340	100%	6% 100%	1828 2105 2096 1914	0.082 0.177 0.177 0.177	0.082
†	D E	1,2 2	3.500 3.500	1 1		20	0	1 0		0 0		1965 2105		275	205	275 205		100%	1965 1958	0.140 0.105	0.105
↓	G F	1,5 1	3.300 3.400	1 1	15			1 0		0 0		1945 2095	130	180		130 180	100%		1768 2095	0.074 0.086	0.086
Ped	lestriai Hp Ip	Crossir 3 2,3,4	ig min. min.	GM 7 5	+ +	FGM 7 7	= =	14 12	sec sec												

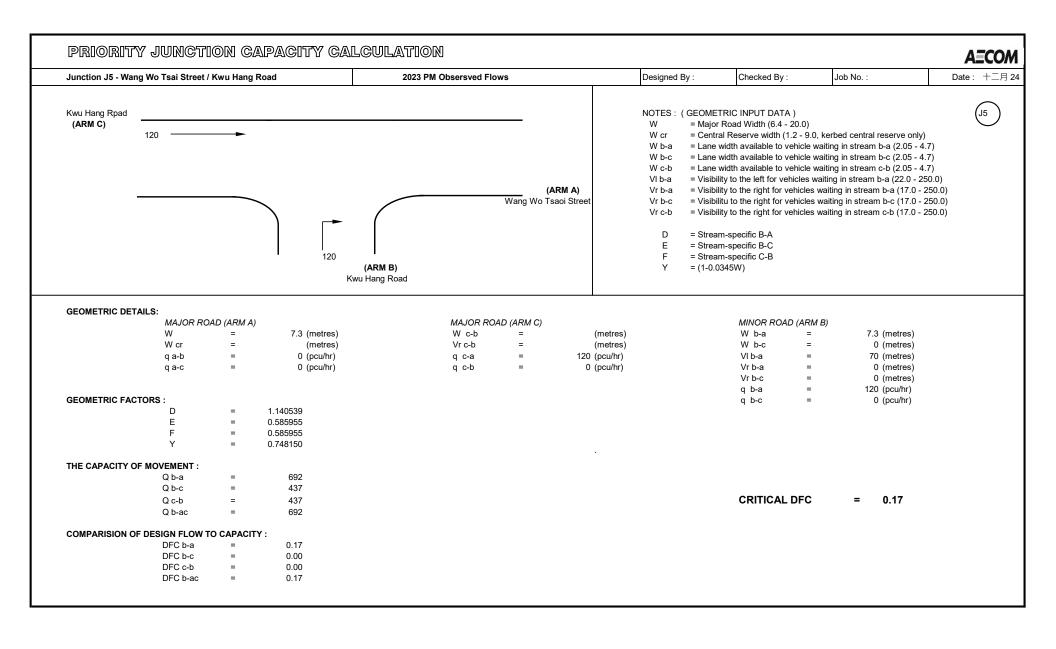


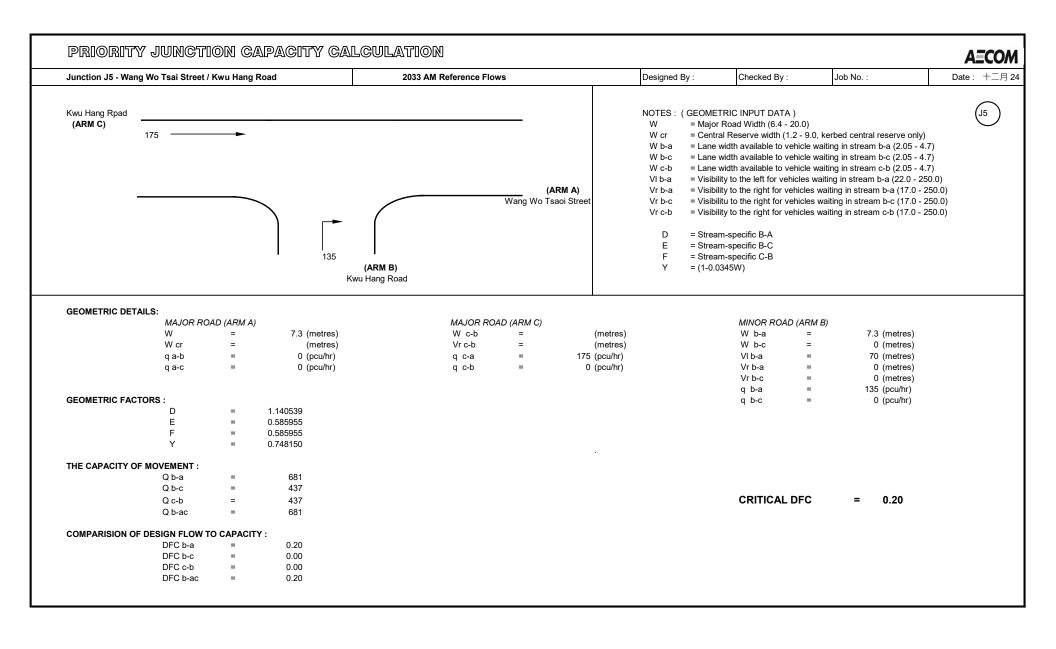

(J4)

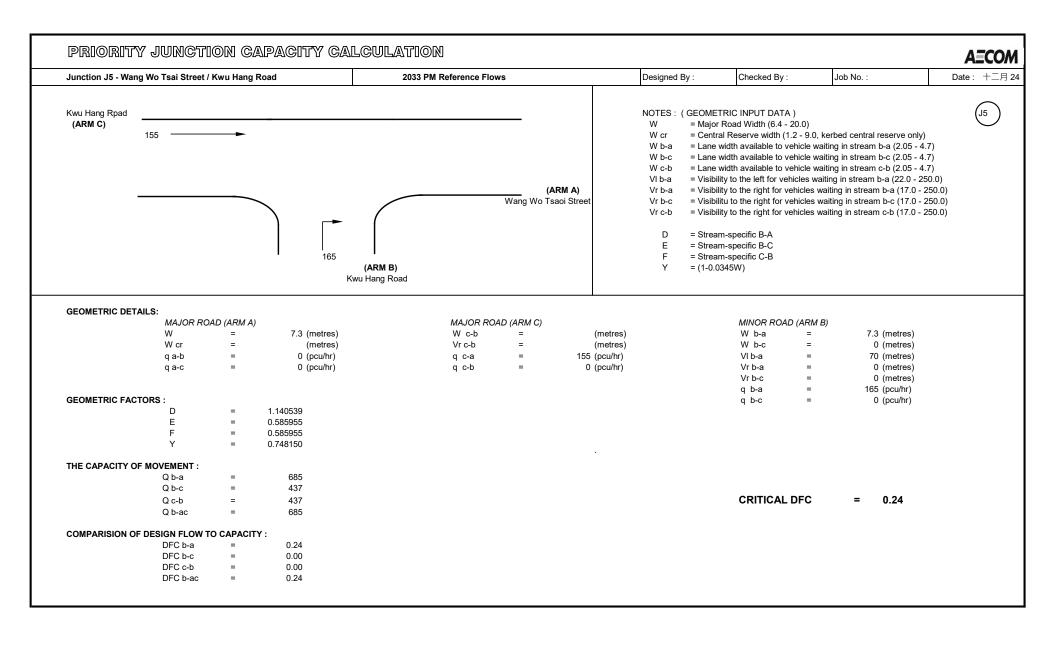
 $R.C.(C) = (0.9xY_{max}-Y)/Yx100\% =$

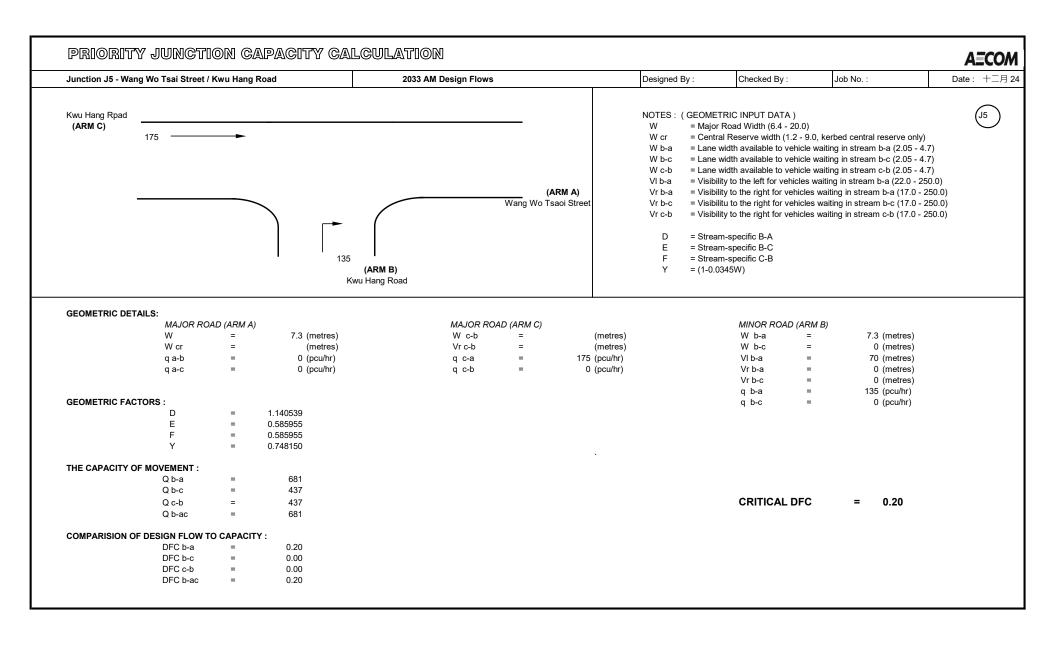
F N	ш	ш	LANE			DIUS	§ 5	DE	UPHILL	GRADIEN	ADDITIONA		F	LOW (pcu/h	nr)	TOTAL		RTION OF VEHICLES	REVISED	FLOW	
MOVEMENT	PHASE	STAGE	WIDTH (m)	NO. OF LANES	(r	n)	OPPOSING TRAFFIC	NEAR SIDE LANE		T EFFECT (pcu/hr)	L CAPACITY	AHEAD SAT. FLOW	LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)		%)	SAT. FLOW (pcu/hr)	FACTOR	CRITICAL
MO	п.	o)	(III)		LEFT	RIGHT	OP T	NE	1 (70)	(pcu/iii)	(pcu/hr)	(pcu/hr)	LEFI	T AHEAD	RIGHT	(pcu/ii)	LEFT	RIGHT	(pcu/iii)	У	
-	А	5	3.300	2				0		0		4170		340		340			4170	0.082	
Ł _	A	5	3.400	1		20	0	0		0		2095			195	195		100%	1949	0.100	0.100
<u>*</u>	С	4	3.500	1	20			1		0		1965	130			130	100%		1828	0.071	0.071
→	В	3,4	3.500	1				0		0		2105		375		375			2105	0.178	
→	В	3,4	3.500	1		20	0			0		2105		370	4	374		1%	2103	0.178	
7	В	3,4	3.500	1		15	0	0		0		2105			341	341		100%	1914	0.178	
1	D	1,2	3.500	1				1		0		1965		265		265			1965	0.135	
ľ	Е	2	3.500	1		20	0	0		0		2105			245	245		100%	1958	0.125	0.125
l _e	G	1,5	3.300	1	15			1		0		1945	138			138	100%		1768	0.078	
↓	F	1	3.400	1				0		0		2095		261		261			2095	0.125	0.125
Pede	 estrian	l Crossin	g	GM		FGM															
	Нр	3	min.	7	+	7	=	14	sec												
	lp	2,3,4	min.	5	+	7	=	12	sec												
	I	1		i		l	1							1			l	1	I		I

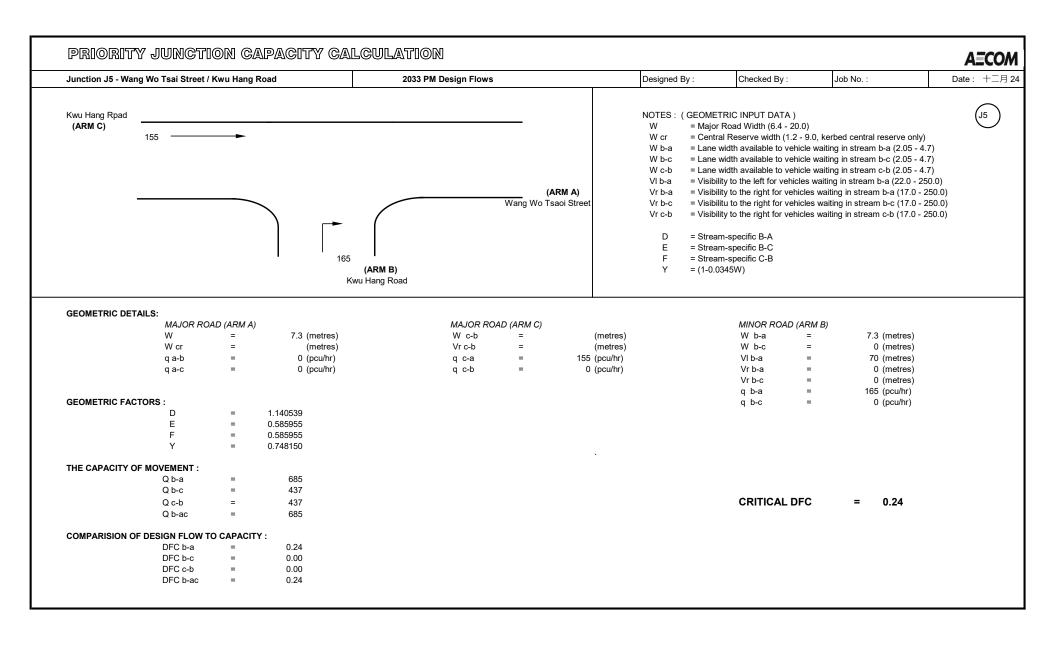


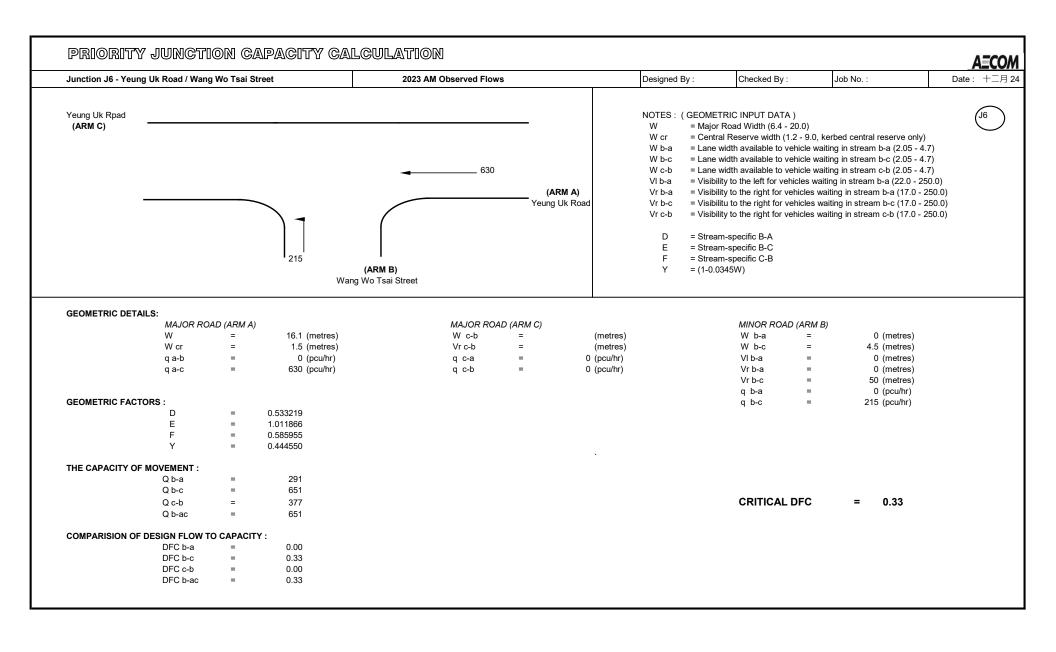

(J4)

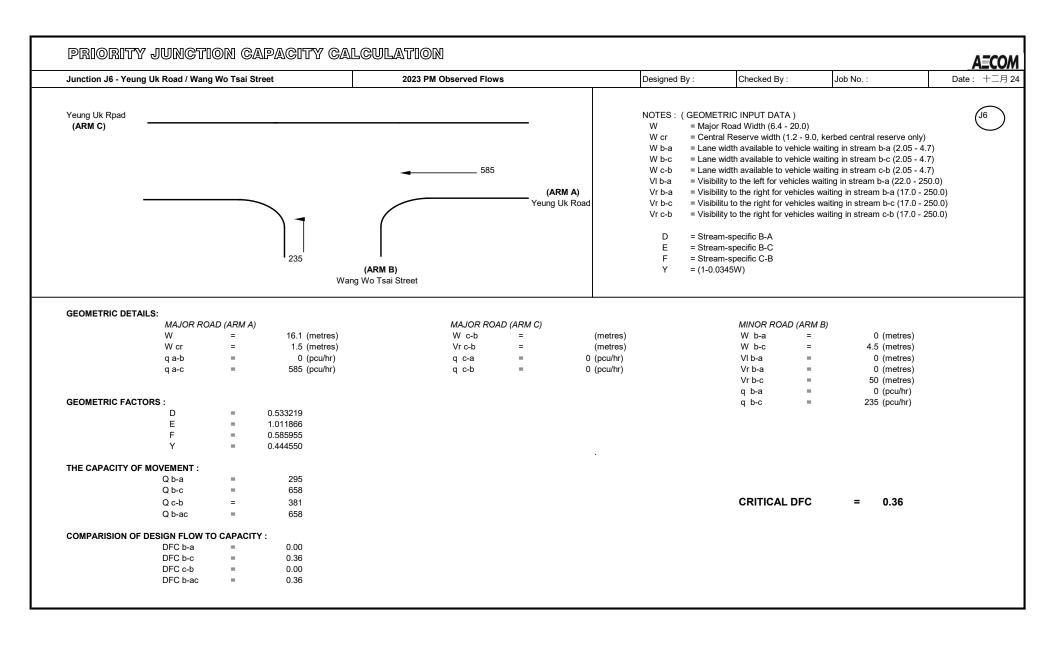

Stage/Phase Diagrams						
F G	IP 7	Hp> L7	C IP 7	G A		
Stage 1	Stage 2	Stage 3	Stage 4	Stage 5		
I/G =	6 I/G =	11 G = 7 I/G =	9 I/G =	7 I/G =		

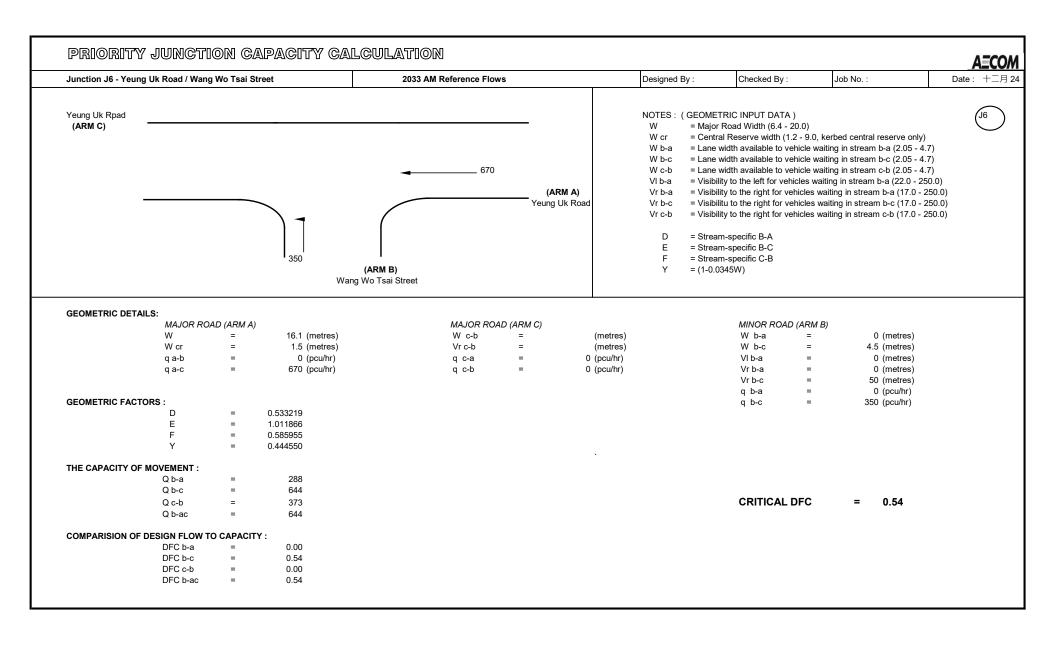

Critical Case: F,E,Hp,C,A									
R.C.(C)	$= (0.9xY_{max}-Y)/Yx100\% =$	52%							

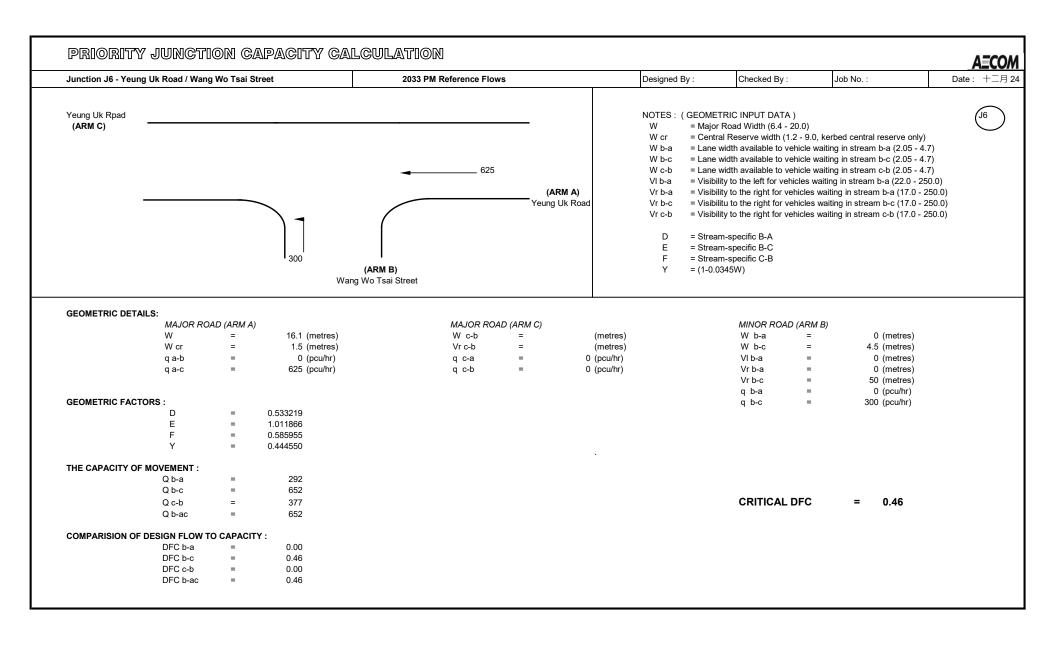

MOVEMENT	ш	ш	LANE	NO. OF LANES	RADIUS (m)		NG IC	DE	UPHILL GRADIEN T (%)	GRADIEN T EFFECT (pcu/hr)	ADDITIONA L CAPACITY	AHEAD SAT. FLOW	FLOW (pcu/hr)		TOTAL	PROPORTION OF TURNING VEHICLES		REVISED	FLOW		
	HASE	STAGE	WIDTH (m)				OPPOSING TRAFFIC	NEAR SIDE LANE					LEFT	STRAIGH	RIGHT	FLOW (pcu/hr)	(%)		SAT. FLOW (pcu/hr)	FACTOR	CRITICAL y
		.,			LEFT	RIGHT	8 #	Ä	1 (70)	(pcu/iii)	(pcu/hr)	(pcu/hr)	CEII	T AHEAD	KIGITI	(pourii)	LEFT	RIGHT	(решліт)	y	
_	A	5	3.300	2				0		0		4170		460		460			4170	0.110	0.110
←	A	5	3.400	1		20	0	0		0		2095			175	175		100%	1949	0.090	
<u>+</u>	С	4	3.500	1	20			1		0		1965	150			150	100%		1828	0.082	0.082
→	В	3,4	3.500	1				0		0		2105		373		373			2105	0.177	
→	В	3,4	3.500	1		20	0			0		2105		352	20	372		6%	2096	0.177	
7	В	3,4	3.500	1		15	0	0		0		2105			340	340		100%	1914	0.177	
↑	D	1,2	3.500	1				1		0		1965		275		275			1965	0.140	
	Е	2	3.500	1		20	0	0		0		2105			210	210		100%	1958	0.107	0.107
l _s	G	1,5	3.300	1	15			1		0		1945	133			133	100%		1768	0.075	
Į į	F	1	3.400	1				0		0		2095		180		180			2095	0.086	0.086
Pede	estrian Hp Ip	Crossin 3 2,3,4	g min. min.	GM 7 5	+ +	FGM 7 7	11 11	14 12	sec sec												

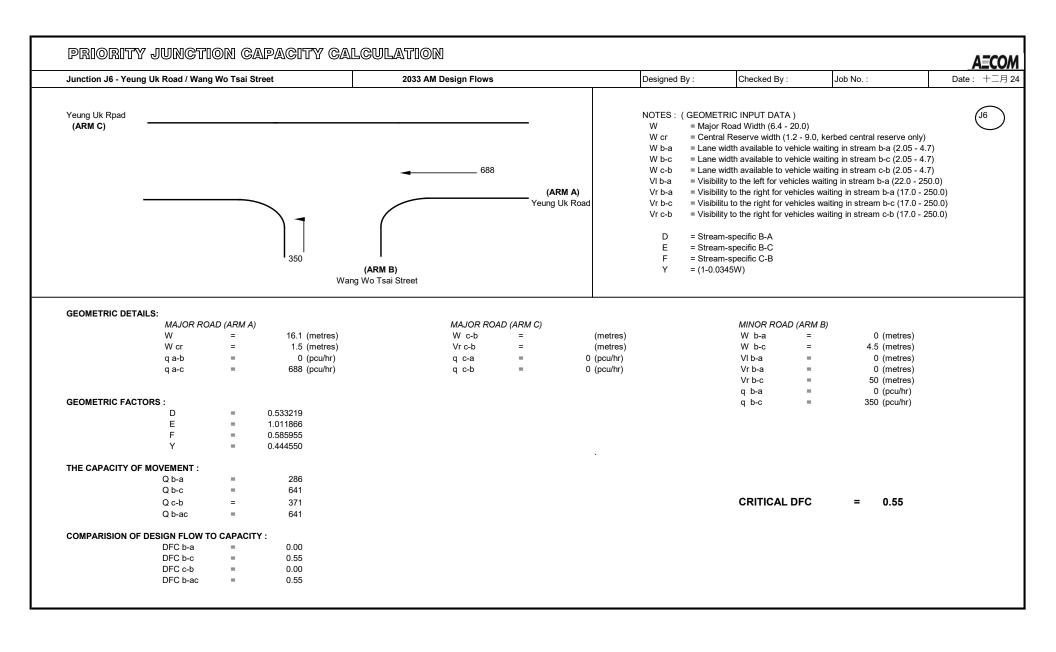


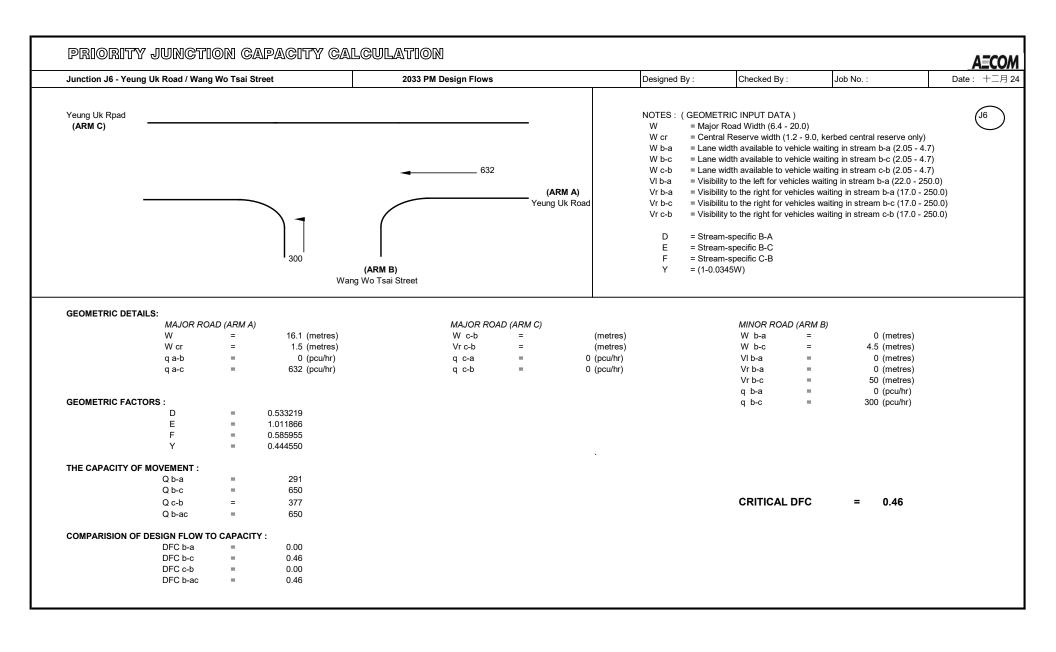












Annex C

Approved Technical Note on Parking Provision Requirement

Yeung, David

From: Ken HK CHEUNG <kenhkcheung@td.gov.hk>

Sent: Friday, February 14, 2025 5:04 PM

To: Yeung, David

Cc: Edwin Wing Chow CHAN; Lei, Gary; Ken HK CHEUNG; Kit Ying LI

Subject: RE: Proposed Comprehensive Residential (Flat), Commercial and Social Welfare

Facility Development in CDA5 at Lots 459 RP, 461, 469, 475 and 476 in D.D. 443,

TWTL11 - Technical Note on Parking Provision Requirements

Attachments: 20250123 TW Jumbo GPSI.pdf; Appendix A.pdf

This Message Is From an External Sender

This message came from outside your organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Report Suspicious

Dear David,

I have no further comment from traffic engineering point of view.

Regards,

Ken H.K. CHEUNG

E/TW4

Transport Department Tel. No.: 2399 6985

From: "Yeung, David" <David.Yeung@aecom.com>
To: "Ken HK CHEUNG" <kenhkcheung@td.gov.hk>

Cc: "Edwin Wing Chow CHAN" <edwinchan@td.gov.hk>, "Lei, Gary" <Gary.LEI@aecom.com>, "Kit Ying LI"

<kityingli@td.gov.hk>

Date: 06/02/2025 11:07 AM

Subject: RE: Proposed Comprehensive Residential (Flat), Commercial and Social Welfare Facility Development in CDA5 at

Lots 459 RP, 461, 469, 475 and 476 in D.D. 443, TWTL11 - Technical Note on Parking Provision Requirements

Dear Ken,

Please find attached Appendix A for the observed public carparking spaces availability for your review and consideration.

Should you have any queries or require further information, please feel free to call me.

Thank you for your kind assistance,

Regards,

David Yeung

Senior Engineer, Traffic & Transport Planning,

Land Supply / Municipal, Hong Kong D +852-3856 5538 david.yeung@aecom.com

AECOM

18/F, Grand Central Plaza Tower 2, 138 Shatin Rural Committee Road Shatin, Hong Kong T +852-3922-9000 aecom.com

From: Ken HK CHEUNG < kenhkcheung@td.gov.hk> **Sent:** Wednesday, February 5, 2025 11:35 AM **To:** Yeung, David < David. Yeung@aecom.com>

Cc: Edwin Wing Chow CHAN <edwinchan@td.gov.hk>; Lei, Gary <Gary.LEI@aecom.com>; Ken HK CHEUNG

<kenhkcheung@td.gov.hk>; Kit Ying LI <kityingli@td.gov.hk>

Subject: RE: Proposed Comprehensive Residential (Flat), Commercial and Social Welfare Facility Development in CDA5 at Lots 459 RP, 461, 469, 475 and 476 in D.D. 443, TWTL11 - Technical Note on Parking Provision Requirements

Dear David,

As discussed, please provide the survey record of the said 25% of public car parking spaces available during the peak hours for further review. Thanks

Regards,

Ken H.K. CHEUNG E/TW4 Transport Department Tel. No.: 2399 6985

From: "Yeung, David" < <u>David.Yeung@aecom.com</u>>
To: "Ken HK CHEUNG" < <u>kenhkcheung@td.gov.hk</u>>

Cc: "Lei, Gary" < Gary.LEl@aecom.com >, "Edwin Wing Chow CHAN" < edwinchan@td.gov.hk >, "Kit Ying Ll"

<<u>kityingli@td.gov.h</u>k>

Date: 23/01/2025 01:50 PM

Subject: RE: Proposed Comprehensive Residential (Flat), Commercial and Social Welfare Facility Development in CDA5 at Lots 459 RP, 461, 469, 475 and 476 in D.D. 443, TWTL11 - Technical Note on Parking Provision Requirements

Dear Ken,

By excluding the public parking spaces at Kwun Hang Road and Tsuen Wing Street (a total of 7 disable parking spaces), the remaining number parking spaces in the vicinity of the subject development would be 483. This is still considered sufficient for the subject development. Therefore, the findings listed in Table 2.3 remain valid.

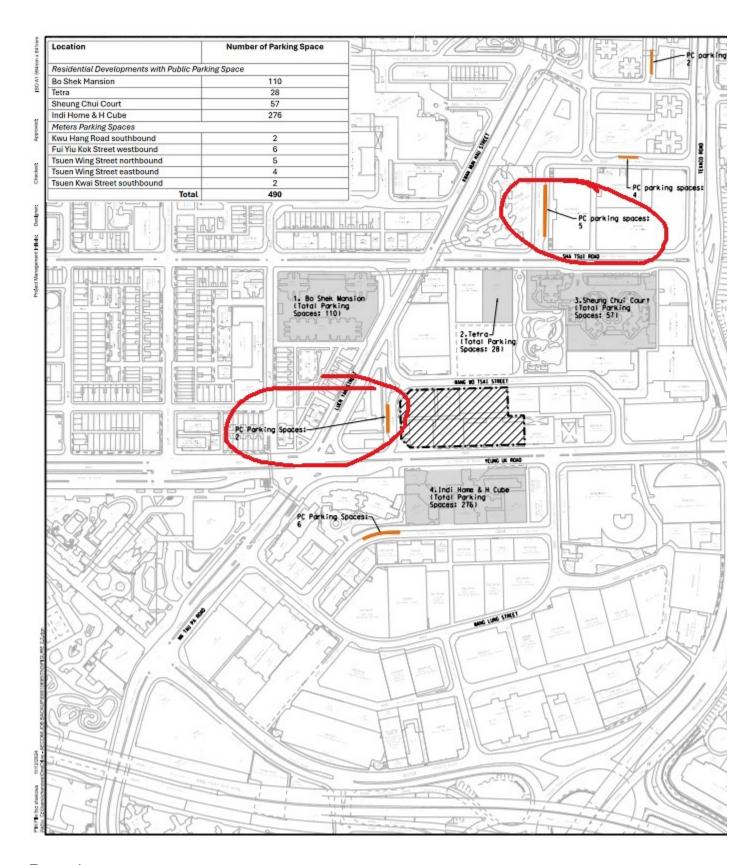
Please find attached revised TN for your review and further consideration.

Should you have any queries or require further information, please feel free to call me.

Thank you for your kind assistance.

Regards, David

From: Ken HK CHEUNG < kenhkcheung@td.gov.hk > Sent: Wednesday, January 22, 2025 6:51 PM
To: Yeung, David < David. Yeung@aecom.com >


Cc: Lei, Gary < <u>Gary.LEI@aecom.com</u>>; <u>kenhkcheung@td.gov.hk</u>; Edwin Wing Chow CHAN < <u>edwinchan@td.gov.hk</u>>;

Kit Ying LI <kityingli@td.gov.hk>

Subject: Re: Proposed Comprehensive Residential (Flat), Commercial and Social Welfare Facility Development in CDA5 at Lots 459 RP, 461, 469, 475 and 476 in D.D. 443, TWTL11 - Technical Note on Parking Provision Requirements

Dear David,

Please note that no parking spaces for PCs were provided at Kwu Hang Road and Tsuen Wing Street and only metered parking spaces for GV and disabled parking spaces. Please review Figure 2.2 and the said public parking spaces are considered quite available as specified in Table 2.3.

Regards,

Ken H.K. CHEUNG E/TW4 Transport Department

Tel. No.: 2399 6985

From: "Yeung, David" < David. Yeung@aecom.com>

To: "kenhkcheung@td.gov.hk" <kenhkcheung@td.gov.hk>

Cc: "Lei, Gary" < Gary.LEI@aecom.com>

Date: 11/12/2024 10:18 PM

Subject: Proposed Comprehensive Residential (Flat), Commercial and Social Welfare Facility Development in CDA5 at Lots

459 RP, 461, 469, 475 and 476 in D.D. 443, TWTL11 - Technical Note on Parking Provision Requirements

Dear Mr. Cheung,

We refer to your comments (item 3) regarding the parking provision for the captioned project.

The Global Parking Standard (GPS) under the Hong Kong Planning Standards and Guidelines (HKPSG) is determined by several key factors:

Availability of Public Transport (PT) Services: The extent and efficiency of public transport options in the area.

Availability of Public Car Parking Spaces: The existing supply of public parking spaces nearby.

Traffic Conditions: The current traffic flow and congestion levels.

Level of Illegal Parking: The frequency and impact of illegal parking in the area.

Considering these factors, a GPS of 6 is considered appropriate for the Proposed Development. This aligns with the HKPSG's goal to balance parking needs with available transport options and overall traffic management strategies.

We would be grateful if you could provide your comments, if any, at your earliest convenience.

Should you have any queries, please feel free to call me.

Thank you for your kind assistance.

Regards,

David Yeung

Senior Engineer, Traffic & Transport Planning,

Land Supply / Municipal, Hong Kong D +852-3856 5538 david.yeung@aecom.com

AECOM

11/F, Grand Central Plaza Tower 2, 138 Shatin Rural Committee Road Shatin, Hong Kong T +852-3922-9000 aecom.com

Section 16 Planning Application for Proposed Comprehensive residential Development with Uses and Social Commercial Welfare Facility and Minor Relaxation of Maximum Plot Ratio Restrictions in and Building Height "Comprehensive Development Area (5)"

Zone at Yeung Uk Road / Kwu Hang Road / Wang Wo Tsai Street, Tsuen Wan Technical Note on Parking Provision Requirements

1 Background

- 1.1 The Application Site is located in the northern fringe of the Tsuen Wan East industrial area at various lots in D.D. 443 and bounded by Yeung Uk Road, Kwu Hang Road and Wang Wo Tsai Street as indicated in **Figure 1.1**. It is currently zoned "Comprehensive Development Area (5)" ("CDA(5)") in Tsuen Wan OZP No. S/TW/37 and covers a total site area of approximately 7,353m².
- 1.2 To well utilize of the subject site, the Applicant proposes to increase the plot ratio from 5.0 to 6.11 and the total flat units will be increased from about 738 to 886.
- 1.3 Reference is also made to the lease modification for residential development at TWTL 160 in Wang Wo Tsai Street executed on 29 May 2024. The parking requirements for residential parking spaces stipulated in the lease condition adopted GPS "1 space per 7 flats", extract of the relevant lease conditions is shown in Annex A. Since TWTL 160 site is located in close proximity to the subject site, with a similar scale and nature of development as well as comparable site characteristic, the approved parking requirements are good benchmark for the subject site.
- 1.4 This technical note is to assess/ determine the GPS (Global Parking Standard) under HKPSG adopted for the development site.

2 Factors affecting GPS

2.1 Table **2.1** and Table **2.2** summarize the factors and their weighting/ value for determining GPS.

Section 16 Planning Application for Proposed Comprehensive residential Development with Uses and Social Commercial Welfare Facility and Minor Relaxation of Maximum Plot Ratio Restrictions in and Building Height "Comprehensive Development Area (5)"

Zone at Yeung Uk Road / Kwu Hang Road / Wang Wo Tsai Street, Tsuen Wan Technical Note on Parking Provision Requirements

Table 2.1 Factors And Their Weighting/ Value For Determining GPS

Factor	Weighting	Value				
Proximity and convenience for access to public	20%	Remote and not accessible	Marginally accessible	Moderately accessible	Quite accessible	Close and easy accessible
transport services (1) (excluding rail)		1	0.75	0.5	0.25	0
Availability of public car parking spaces	30%	Not available	Slightly available	Moderately available	Quite Available	Easily Available
during peak hours (2)		1	0.75	0.5	0.25	0
Traffic conditions (3)	10%	Smooth	Slightly congested	Moderately congested	Quite congested	Seriously congested
		1	0.75	0.5	0.25	0
Level of illegal parking (4)	40%	Severe	Quite severe	Moderately severe	Slightly severe	None
		1	0.75	0.5	0.25	0

Notes:

- (1) A development within 100m from a public transport corridor such as Nathan Road, is considered "close and easily accessible" to public transport services, whereas a development located in the remote area in the New Territories is considered to be "remote and not accessible" to public transport services.
- (2) A development within 100m from public car parking facilities (e.g. on-street parking, public car park, etc.) with reasonably available (i.e. not utilised) parking spaces during peak hours is considered to have "easily available" parking, whereas a development with no public car parking facility in the vicinity (within 300m) is considered to have no available parking.
- (3) Traffic condition is "smooth" if traffic flows smoothly without any traffic queue, whereas traffic condition is "seriously congested" if the general daily traffic movements are very slow with long traffic queues before road junctions.
- (4) Level of illegal parking is considered "severe" if illegal parking is common in the vicinity of a development, whereas it is considered "none" if no such activity can generally be found in the vicinity of a development.

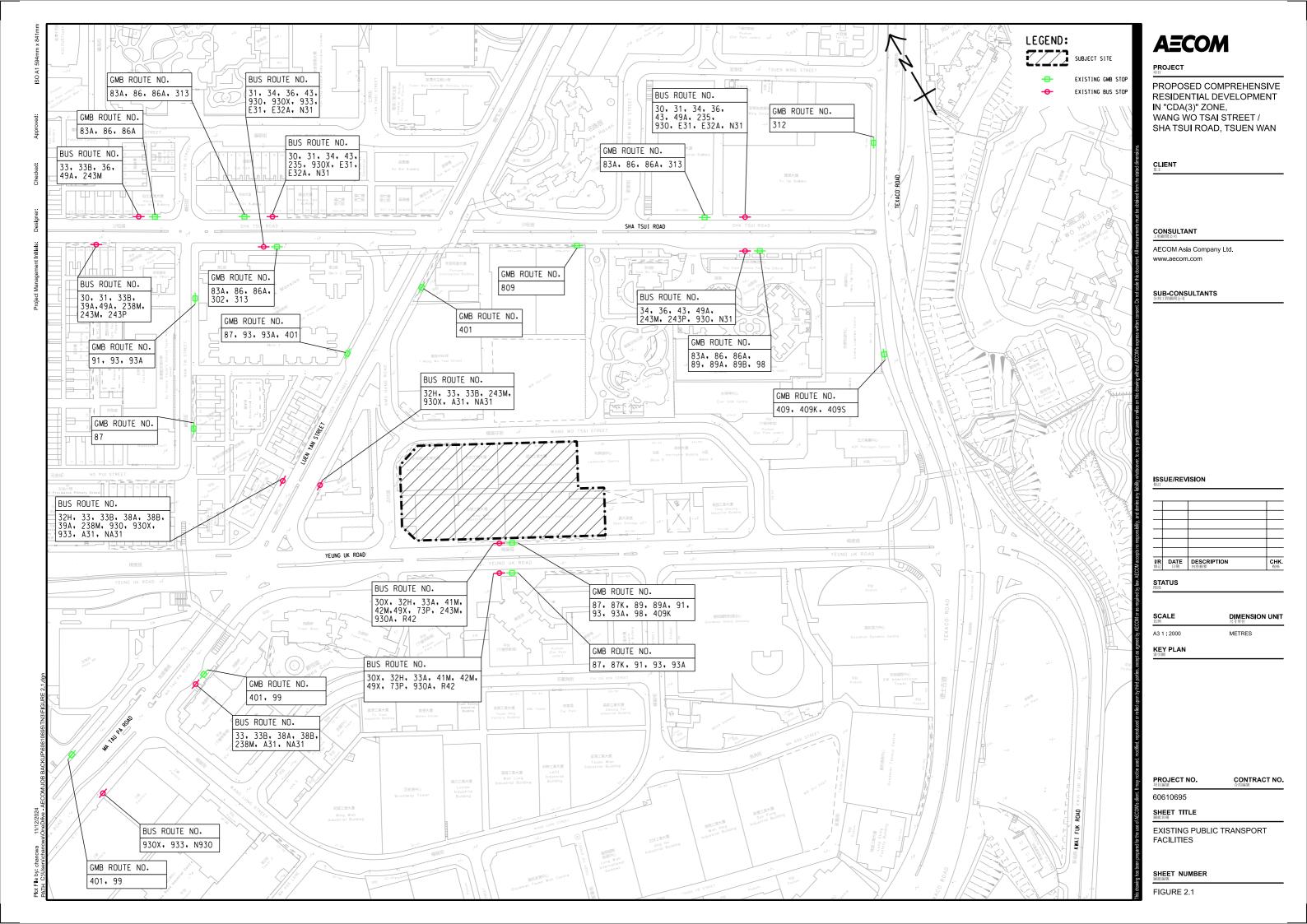
Table 2.2 GPS value based on GPSI

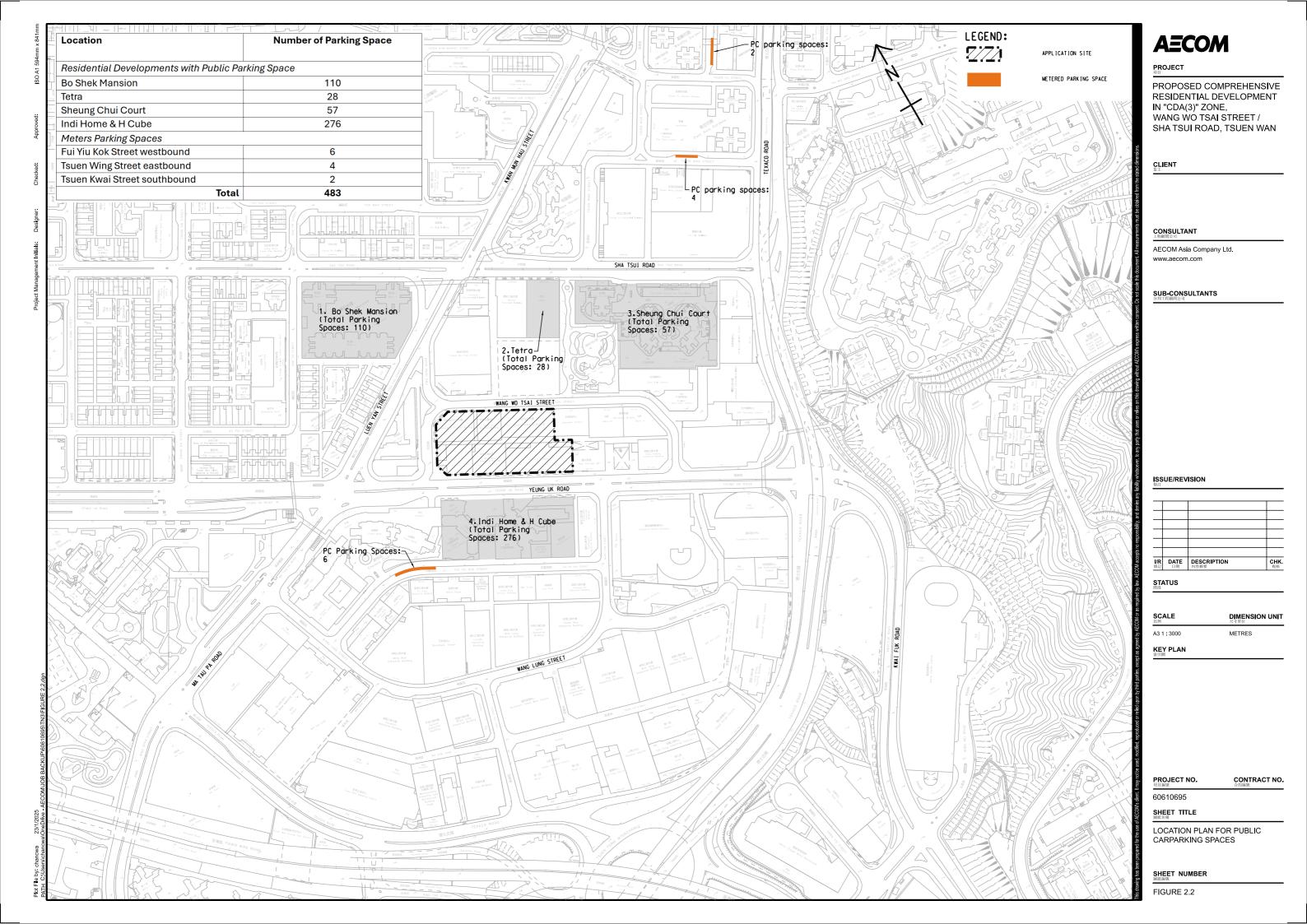
	GPS
GPSI≥0.7	4
0.4≤GPSI<0.7	5
0.2≤GPSI<0.4	6
GPSI<0.2	7

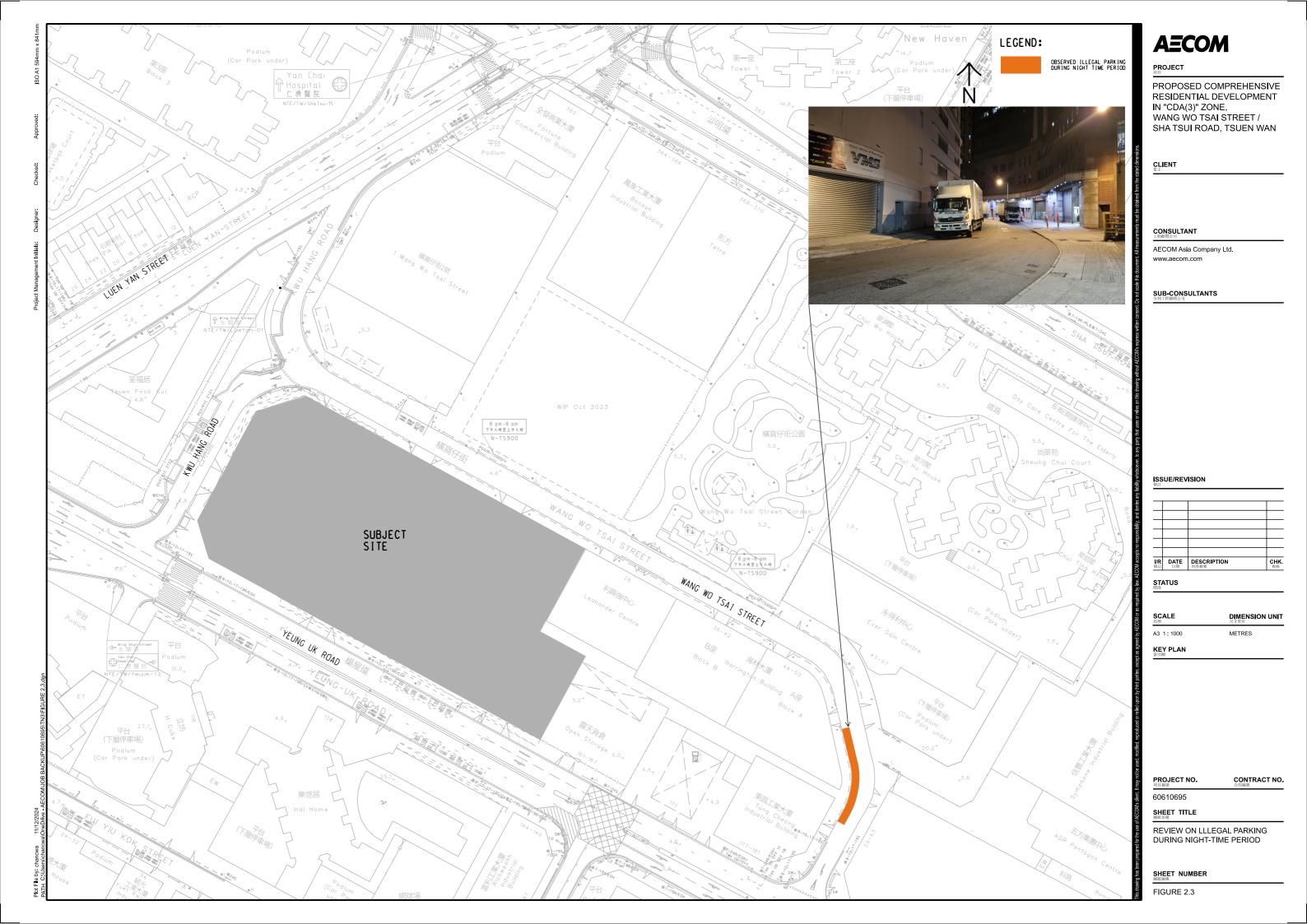
2.2 Based on the above tables, an assessment on the values of various factors have been carried out and summarized as follows:

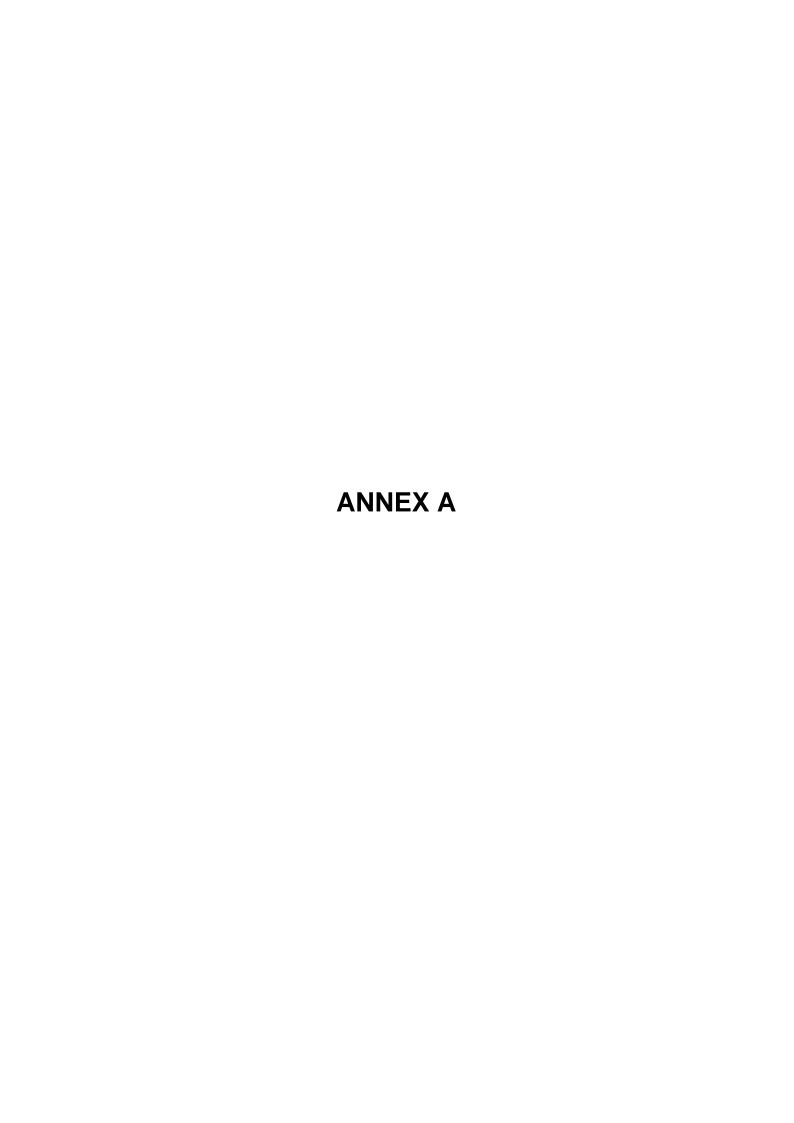
Section 16 Planning Application for Proposed Comprehensive residential Development with Uses and Social Commercial Welfare Facility and Minor Relaxation of Maximum Plot Ratio Restrictions in and Building Height "Comprehensive Development Area (5)"

Zone at Yeung Uk Road / Kwu Hang Road / Wang Wo Tsai Street, Tsuen Wan Technical Note on Parking Provision Requirements


Table 2.3 Adopted Values and Justifications

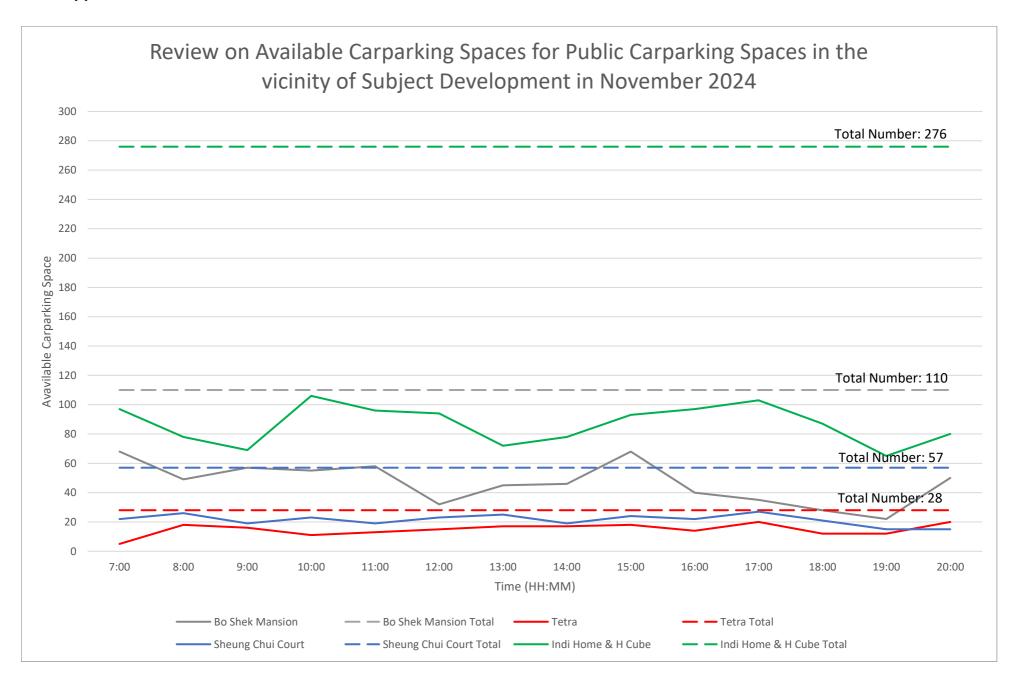

	Assessment	Adopted Values	Weighting
Proximity and convenience for access to public transport services (excluding rail)	There are over 60 routes of franchised bus, green minibus and public light bus services along Sha Tsui Road, Texaco Road, Yeung Uk Road, Luen Yan Street and Kwan Mun Hau Street in the vicinity of the subject site in particular that there are bus stops next to the vehicular access of the subject site. Hence, the development site is considered to be moderately accessible to the public transport services. The location of bus stops and minibus stops are presented in Figure 2.1 .	0.25	20%
Availability of public car parking spaces during peak hours	There are several on-street public carpark provided at Fui Yui Kok Street, Tsuen Kwai Street and Tseun Wing Street, which are in close proximity to the development site. Additionally, there are numerous other parking facilities in the vicinity of the subject development. According to the survey, there are approx. 25% of public car parking spaces available during the peak hours. Therefore, the public parking spaces are considered to be <u>quite available</u> for the Subject Development. The location plan of on-street public carpark as well as the car parking is enclosed in Figure 2.2 for information.	0.25	30%
Traffic conditions	The nearby critical junctions in the vicinity have been assessed in the submitted TIA. All the assessed junctions will operate within capacity. Hence, the traffic conditions is considered to be <u>quite congested</u> .	0.25	10%
Level of illegal parking	An overnight parking survey has been carried out in the vicinity of the development site. There are 3 nos. of private cars were observed near Wang Wo Tsai Street, Kwu Hang Road, Sha Tsui Road and Yeung Uk Road around the development site. Hence, the level of illegal parking in the vicinity is considered to be moderately severe . The summary plan of illegal parking is enclosed in Figure 2.3 .	0.5	40%


2.3 Based on the above assessment and the adopted values for respective factors, the GPSI is determined as 0.35 (i.e. 0.25 x 20% + 0.25 x 30% + 0.25 x 10% + 0.5 x 40%), which is less than 0.4. Referring to **Table 2.2**, a GPS of 6 would be adopted.


3 Conclusion

3.1 Having review the various factors for determining the GPS for the Proposed Development, it is concluded that a GPS of 6 would be appropriate for calculating the carparking provision at the Proposed Development according to HKPSG requirements.

1	6	


Size of each residential unit	Number of the residential parking spaces to be provided under this sub- clause (a)(i)
Less than 40 square metres	One space for every 15.6 residential units or part thereof
Not less than 40 square metres but less than 70 square metres	One space for every 6.5 residential units or part thereof
Not less than 70 square metres but less than 100 square metres	One space for every 3.2 residential units or part thereof
Not less than 100 square metres but less than 130 square metres	One space for every 1.9 residential units or part thereof
Not less than 130 square metres but less than 160 square metres	One space for every 1.4 residential units or part thereof
Not less than 160 square metres	One space for every 1.1 residential units or part thereof

The spaces to be provided under this sub-clause (a)(i) (as may be varied under Special Condition No. 50 hereof) are hereinafter referred to as "the Residential Parking Spaces".

- (ii) For the purpose of sub-clause (a)(i) of this Special Condition, the total number of the Residential Parking Spaces to be provided shall be the aggregate of the respective number of the Residential Parking Spaces calculated by reference to the respective size of each residential unit in terms of gross floor area as set out in the table of sub-clause (a)(i) of this Special Condition and for the purpose of these Conditions, the term "size of each residential unit in terms of gross floor area" shall mean the sum of (I) and (II) below:—
 - (I) the gross floor area of a residential unit exclusively used and enjoyed by the resident of that unit, which shall be measured from the exterior of the enclosing walls or parapet of such unit except where such enclosing walls separate two adjoining units in which case the measurement shall be taken from the middle of those walls, and shall include the internal partitions and columns within such unit, but, for the avoidance of doubt, shall exclude all floor area within such unit which is not taken into account for the calculation of gross floor area stipulated in Special Condition No. 34(a) hereof; and
 - (II) the pro-rata gross floor area of the Residential Common Area (as hereinafter defined) in respect of a residential unit, and in so calculating, the total gross floor area of residential common area, which is for common use and benefit of the residents of the residential block or blocks erected or to be erected on the lot, outside the enclosing walls of the residential units but, for the avoidance of doubt, excluding all floor area which is not taken into account for the

(i-.

RtoC Appendix A

