Proposed Temporary Animal Boarding Establishment and Associated Land Filling for a Period of 3 Years at Lot 1070 RP (Part) in D.D. 109, Kam Tin North, Yuen Long

元朗錦田北丈量約份第109約地段第1070號餘段(部分)

擬議臨時動物寄養所連相關填土工程(為期3年)

P08_Drainage Proposal

Date: 2025-06-12

TABLE OF CONTENTS

- 1. Introduction
- 2. Existing Drainage Condition
- 3. Design parameters & assumptions
- 4. Proposed Stormwater Drainage
- 5. Effect on Drainage Characteristics and potential Drainage Impacts
- 6. Conclusions

APPENDIX

Appendix A	Stormwater Drainage Proposal Plan
Appendix B	Surface Drainage Design

REFERENCES

- 1. Stormwater Drainage Manual, Planning Design and Management by DSD
- 2. Geotechnical Manual for Slopes by GEO
- 3. Standard Drawings by DSD

1. Introduction

This proposal is prepared for the proposed stormwater drainage works for the proposed temporary animal boarding establishment and associated land filling for a period of 3 years at lot 1070 RP (Part) in D.D.109, Kam Tin North, Yuen Long.

2. Existing Drainage Condition

A plan showing the existing catchments is enclosed in **Appendix B**. Currently, the surface runoff collected from the site is discharging to the existing Kam Tin River located at the west of the site as shown in **Appendix A**. As per the existing site condition, an additional peripheral U-channels area is considered necessary for the proposed development. A drainage proposal is required to be carried out for the proposed development.

3. Design Parameters & Assumptions

The design criteria to be used for the modeling assessment are based on the standards set out in the Stormwater Drainage Manual, Third Edition (SDM). According to Section 6.6.1 of the SDM, the existing village drainage system in the vicinity of the development is classified as main rural catchment drainage system. Table 10 of the SDM recommends to be adopted a 50 year design return period storm event for the urban drainage branch system.

Stormwater Runoff (Q)

The rate of stormwater runoff used in this assessment report is estimated by the "Rational method" in which the peak runoff is calculated from the formula:

$$Q = K x i x A / 3600$$

where	Q	=	maximum runoff (L/s)
	i	=	design mean intensity of rainfall (mm/hr)
	А	=	area of catchment (m ²)
	Κ	=	runoff coefficient

4. Proposed Stormwater Drainage

The proposed stormwater drainage works include surface U-channels at the peripheral of the site collecting the runoff from catchments within the site. The U-channels will connect and discharge the surface runoff to the existing Kam Tin River located at the west of the site. Catchpits with 300mm sump are proposed at the discharged points of the proposed U-Channel to desilt the surface water before discharging to the drainage outside. The proposed stormwater drainage layout plan is shown in **Appendix A**.

5. Effect on Drainage Characteristics and Potential Drainage Impact

The drainage design of the proposed U-channel is presented in **Appendix B**. Since no wall or hoarding would be erected in this development, it is considered that the existing overland flow passing through the site would not be affected.

6. Conclusion

Peripheral channels are to be provided along the site boundary where necessary to intercept runoff from crossing the site. The drainage conditions of adjacent areas will not be adversely affected.

Appendix A

Stormwater Drainage Proposal Plan

GENERAL NOTE

 THE PROPOSED DRAINAGE WORK, WHETHER WITHIN OR OUTSIDE THE LOT BOUNDARY, SHOULD BE CONSTRUCTED AND MAINTAINED BY THE LOT OWNER AT HIS OWN EXPENSE. FOR WORKS TO BE UNDERTAKEN OUTSIDE THE LOT BOUNDARY, PRIOR CONSENT AND AGREEMENT FROM DLO AND/OR RELEVANT PRIVATE LOT OWNER SHOULD BE SOUGHT.

CONCRETE STRENGTH AND STEEL REINFORCEMENT SPECIFICATION FOR DRAINAGE DETAILS

- CONCRETE GRADE FOR CATCHPITS AND U-CHANNEL SHALL BE 30D DESIGN IN COMPLIANCE WITH CS1 : 2010 FOR BLINDING LAYER SHALL BE 15D, DESIGN COMPLY WITH CS1-2010.
- ALL MAIN BARS TO BE HOT ROLLED HIGH YIELD STEEL DEFORMED BAR COMPLM WITH CS2 : 2012
 Y - HIGH YIELD BAR 500 MPa
 M - MILD STEEL BAR 250 MPa
- 3. CONCRETE COVER TO MAIN REINFORCEMENT TO BE 50mm.
- 4. LAP LENGTH FOR ALL BARS TO BE 46x DIAMETER OF LARGER BAR TO BE LAPPED.
- REACTIVE ALKALI CONTENT EXPRESSED IN SODIUM OXIDE PER CUBIC METER OF CONCRETE SHOULD NOT EXCEED 3KG AS PER PNAP APP-74.

HALF ROUND, U, AND STEPPED - CHANNELS

- 1 ALL DIMENSIONS ARE IN MILLIMETERS
- 2 CONCRETE SURFACE FINISHING SHALL BE CLASS U2 OR F2 AS APPROPRIATE
- 3 FOR HALF ROUND AND U CHANNEL, SPACING OF EXPANSION JOINT IN CHANNELS, BERMS AND APRON TO BE 10m MAXIMUN. FOR STEPPED CHANNELS, EXPANSION JOINTS TO BE PROVIDED AT A MAXIMUN SPACING OF 10m.
- 4 DIMENSIONS FOR HALF ROUND AND U-CHANNELS SEE TABLE 1.
- 5 THE COVER FOR U-CHANNELS AND CATCHPIT SHALL COMPLY WITH CEDD'S STANDARD DRAWINGS NO. C2405 TO C2407 AND C2412.
- 6 ALL PROPOSED U-CHANNELS SHALL BE COVERED WITH GRATING

TABLE 1 : DIMENSION OF U-CHANNEL AND HALF-ROUND CHANNEL

PROPOSED CATCHPIT SCHEDULE

CA	TCHPIT	NO.	C.L.	(mPD)	I.L.	(mP[))			
	CP1		8	8.80	8	.11				
	CP2	8.80			7	.62				
	CP3		8.80			8.06				
	CP4		8.80			7.81				
	CP5(s)		8	3.80	7	.60				
SS	. ,		- CAS	T IRON GATE						
REBATE TO SUIT GRATING THICKNE	50			WIDTI H+90	H 75%	60) 6		
-	TYPIĊAL	. SECT	ION		<u>CAST</u>	IRON	GRA	<u>FING</u>		
DIMENSIONS	ARE FOR	GUIDANC	e oni	LY. CONTRAC	CTOR MAY S	UBMIT E	QUIVALEN	IT TYPE)	
U-CI	HANN	EL \	NIT	H CAS	ST IR(NC	GRA ⁻	TING		
				PLAN	NING SUBMISSIO	N	RC	AY	RY	JUNE 25
		REV	DESCRIPTION				CHECKED	APPROVED	DWN	DATE
		PROJECT TITLE:								
52 MESH		STORMWATER DRAINAGE PROPOSAL								
FINISH		LOT 1070 RP IN D.D. 109								
		DRAWING TITLE:								
-	100	DRAINAGE PROPOSAL PLAN AND TYPICAL DETAILS								
		SCALE :	1	N.T.S.		CAD FIL	E: CAD_	REF		
CATC	HPIT	DRAWN S.D	-	RY		DRAWIN	G NO.			
	<u></u>	DESIGNE	D	RC			SDPOC)]		
		CHECKEI)	AY		B.D. RE	F. NO.:			
						•				

Appendix B

Surface Drainage Design

Time of Concentration (tc)

The time of concentration is defined as the time required for stormwater runoff to flow from the most remote part of the catchment area to the point in the drainage system under consideration. Based on the assumptions adopted in the Rational Method, this is the time taken for the peak runoff to become established at the considered section.

The time of concentration comprises the time for water flowing within natural catchments and along the man-made drainage pipes/channels. For natural catchments, the time of concentration is estimated by the modified form of the Brandsby William's equation.

$$t_{o} = \underline{0.14465L} \\ H^{0.2} A^{0.1}$$

Where $t_0 = time$ of concentration of a natural catchment (min.)

 $A = \text{catchment area} (m^2)$

- H = average slope (m per 100m), measured along the line of natural flow, from the summit of the catchment to the point under consideration
- L = distance (on plan) measured on the line of natural flow between the summit and the point under consideration (m)

Mean Rainfall Intensity (i)

Mean rainfall intensity-duration curves attached in this report are based on the Statistical analysis of long term rainfall records from the Hong Kong Observatory. A return period of 50 years is adopted.

Runoff Coefficient (K)

The value of K is taken as 1 for developed area. For vegetated ground, the value of K is taken as 0.3.

	Drainag	e Design at lot 107	0 RP in							
Project No.:	D.D.109	Kam Tin Village		Date:	31-May-25					
Prepared by:		Ray Cheng								
Check for the	drainage	capactiy of existing	<u>g 900mm dia</u>	<u>. pipe</u>						
Catalumantan		A 1	_	2472	2	A agazan a 1r —	10 for a	arrad arrafa a		
Catchment ar	ea,	AI	_	34/3	m ²	Assume $K =$	1.0 for pa	aved surface	;	
		AZ Total Area A	_	340 $3473 \pm 0.3 \times 340$	m	Assume $K =$	0.5 for u	npaved surfa	ace	
		Total Alea, A	=	3575	m ²					
Use Rational	Method f	rom Geo-Manual								
	Q	e = kiA/3600		where,	Q = k = i = A =	Maximum r Runoff coef Design mea Total catchn	unoff (lit/s ficient n intensity nent area (ec) of rainfall (m ²)	mm/hr)	
Longest dista Shortest dista	nce from nce from	summit point to out summit point to ou	elet, PtZ tlet, PtZ		(Ld) = (Ls) =	114.00 46.00	m m			
Elevation of r	emote po	int (Pt A)	=	8.80	mPD					
Elevation of o	outlet poin	nt, PtZ	=	7.46	mPD					
Average fall,	Н		=	(z ₁ -z ₂)/L _s x 100						
			=	2.91	m per 100m					
From TGN30										
T _c	=	0.14465 x L _d / (H ^{0.1}	$^{2} \mathrm{x} \mathrm{A}^{0.1}$)							
	=	5.84			min					
Assume a 1 ir From SDM C	n 50 orrigendu	year design rainfall Im No. 1/2024	return period	for rural area						
i	=	215	mm/hr							
Q	=	kiA/60 14860	x 1.16 lit/min							
From TGN 43	3A1		100							
For existing	900mm	dia. pipe with 1 in	100	gradient						
Maximum ca	pacity =	1.992 x 1000 x 60	=	119520	lit/min	>	14860	o.k.		

Figure 4a – Intensity-Duration-Frequency Curves of HKO Headquarters (for durations not exceeding 4 hours)

continued

- 1

'Lunui

Second and

Sec. and

Same Contract and the second second

1

ie hydraulic gradient = 1 in 333 to 1 in 13 velocities in m/s discharges in m³/s

adient	Pipe d	liameters 975	in mm · 1000	1050	1100	1200	1350	1500	1650	1800	1950	2100
0.00300	1.709	1.796	1.824	1.880	1.935	2.042	2.195	2.342	2.483	2.619	2.750	2.877
	1.087	1.341	1.433	1.628	1.839	2.309	3.142	4.139	5.309	6.663	8.212	9.963
0.00320	1.765	1.855	1.885	1.942	1.999	2.109	2.268	2.419	2.565	2.705	2,840	2.971
.,	1.123	1.385	1.480	1.682	1.700	2.385	3.246	4.275	5.484	6.883	8.482	10.292
.00340	1.820	1.913	1.943	2.003	2.061	2.175	2.338	2.494	2.644	2.789	2.928	3.063
	1.158	1.428	1.526	1.734	1,959	2.459	3.347	4.408	5.654	7.096	8.745	10.610
.00360	1.873	1.969	2.000	2.061	2.121	2.238	2.406	2.567	2.721	2.870	3.013	3.153
	1, 192	1.470	1.571	1.785	2.016	2.531	3.444	4.536	5.819	7.303	9.000	10.919
.00380	1.925	2.023	2.055	2.118	2.180	2.300	2.473	2.638	2.796	2.949	3.096	3.239
	1.225	1.510	1.614	1.834	2.071	2.601	3.539	4.661	5.979	7.504	9.247	11.220
.00400	1.975	2.076	2.109	2.173	2.237	2.360	2.537	2.707	2.869	3.026	3.177	3.324
	1.257	1.550	1.656	1.882	2.126	2.669	3.632	4.783	6.135	7.700	9.489	11.513
00420	2.025	2.127	2.161	2.227	2.292	2.419	2.600	2.774	2.940	3.101	3.256	3.40
230	1.288	1.588	1.697	1.929	2.178	2.735	3.722	4.902	6.287	7.891	9.724	11.798
.00440	2.072	2.178	2.212	2.280	2.346	2.476	2.662	2.839	3.010	3.174	3.333	3.48
221	1.318	1.626	1.738	1.974	2.230	2.800	3.810	5.018	6.436	8.078	9.954	12.077
.00460	2.119	2.227	2.262	2.332	2.400	2.532	2.722	2.904	3.078	3.246	3.408	3.56
217	1.348	1.663	1.777	2.019	2.280	2.863	3.896	5.131	6.582	8.260	10.179	12.350
00480	2.165	2.275	2.311	2.382	2.451	2.587	2.781	2.966	3.145	3.316	3.482	3.64
208	1.378	1.699	1.815	2.063	2.330	2.925	3.980	5.242	6.724	8.438	10.399	12.616
00500	2.210	2.323	2.359	2.431	2.502	2.640	2.838	3.028	3.210	3.385	3.554	3.71
200	1.406	1.734	1.853	2.105	2.378	2.986	4.063	5.351	6.863	8.613	10.614	12.877
00550	2.319	2.437	2.475	2.551	2.625	2.770	2.978	3.176	3.367	3.551	3.728	3.90
182	1.475	1.819	1.94-	2.209	2.475	3.132	4.262	5.613	7.200	9.035	11.134	13.509
00600	2.423	2.546	2.586	2.665	2.743	2.894	3.111	3.318	3.517	3.709	3.895	4.07
167	1.5-1	1.991	2.95"	2.308	2.606	3.273	4.453	5.864	7.521	9.439	11.631	14.11
00650	2.522	2.650	2.692	2.774	2.855	3.012	3.238	3.454	3.662	3.861	4.054	4.24
154	. 60.		2.114	2 22	2.7.3	5.407	4.635	6.10-	7.829	9.826	12.108	14.690
00700	2.618	2.751	2.794	2.880	2.963	3.127	3.361	3.585	3.800	4.008	4.208	4.40
/ 143	1.565	2.05-	2.195	2 73	2.8'6	3.536	4.811	6.336	8.126	10.198	12.567	15.240
00750	2.710	2.848.	2.893	2.981	3.068	3.237	3.480	3.712	3.934	4.149	4.356	4.55
/ 133	1.72-	2.126	2.272	2.581	2.916	3.661	4.981	6.559	8.413	10.557	13.009	15.78
.00800	2.800	2.942	2.988	3.079	3.169	3.343	3.594	3.834	4.064	4.285	4.499	4.70
/ 125	1.781	2.196	2.347	2.567	3.012	3.781	5.145	6.775	8.689	10.905	13.437	16.30
00850	2.886	3.033	3.081	3.175	3.267	3.447	3.705	3.952	4.189	4.418	4.638	4.85
/ 118	1.836	2.264	2.419	2.749	3.105	3.898	5.304	6.984	8.958	11.242	13.852	16.80
00900	2 970	3, 121	3,170	3.267	3.362	3.547	3.813	4.067	4.311	4.546	4.773	4.99
1/ 111	1.890	2.330	2.400	2.829	3.195	4.012	5.458	7.188	9.219	11.569	14.255	17.29
00950	1.057	3.207	3.258	3.357	3.455	3.645	3.918	4.179	4.430	4.671	4.904	5.13
105	1 942	2.394	2.558	2.907	3.283	4.122	5.508	7.385	9.472	11.887	14.647	17.77
01000	1 112	1,201	3.343	3.445	3.545	3.740	4.020	4.288	4.545	4.793	5.032	5.26
1/ 100	1 007	2.457	2.025	2.983	3.369	4.230	5.754	7.578	9.719	12.197	15.029	18.23
01100	1 285	1.49	3.506	3.614	3.719	3.923	4.217	4.498	4.768	5.028	5.279	5.52
1/ 91	3.203		5.500				4 014	7 949	10, 195	12.794	15.764	19.12

21

	Drainage	Design at lot 10	70 RP in						
Project No.:	roject No.: D.D.109 Kam Tin Village			Date:	31-May-25				
Prepared by:	pared by: Ray Cheng								
Check for the	drainage	capactiy of propo	sed 300UC						
~ .				2					
Catchment are	ea,	A3	=	791	m	Assume k =	1.0 for pa	aved surface	
		A2	=	340	m ²	Assume k =	0.3 for u	npaved surface	
		Total Area, A	=	791 + 0.3x340					
			=	893	m^2				
Use Rational N	Method fr	om Geo-Manual							
	0	1:4/2000			0		CC (1:)	``	
	Q	= K1A/3600		where,	Q =	Maximum r	unoff (lit/s	ec)	
					k = Runott coefficient				
					1 =	Design mean	n intensity	of rainfall (mm/nr)	
					A =	Total catchr	nent area (1	m ^r)	
I ongest distar	ce from s	ummit point to o	utlet CP5(s)		= (b, I)	08.00	m		
Shortest distan	nee from a	summit point to of	utlet, $CP5(s)$		(La) =	45.00	m		
Shortest dista		summit point to o	utilet, $CI J(S)$		(LS) -	45.00	111		
Elevation of re	emote noi	nt (Pt A)	=	8 80	mPD				
Elevation of o	utlet noin	t CP5(s)	=	7.60	mPD				
	uner pom	i, CI 5(3)		7.00	III D				
Average fall, I	Н		=	$(z_1-z_2)/L_c \ge 100$					
6,			=	2.67	m per 100m				
				2.07	in per 100in	L			
From TGN30									
т	= 0	$14465 \times L_{1} / (H^{0.5})$	$^{2} \mathbf{x} \mathbf{A}^{0.1}$						
¹ c	_	5 77	xm)		min				
	_	5.77			111111				
Assume a 1 in	50 x	ear design rainfall	return period f	or rural area					
From SDM Co	orrigendu	m No $1/2024$	Tetum periou i	or rurar area					
	omgonaa	11110.172021							
i	=	220	mm/hr						
0	_	kiA/60	v 1 16						
Q	_	3708	lit/min						
		5190	110/11111						
From TGN 42	Δ1								
For proposed	300	UC with 1 in	100	aradient					
i or proposed	500		100	gradient					
Maximum can	acity		=	8000	lit/min		3798	ok	
The correspon	ding velo	oity	_	1 75	m/s	/	1	o.k.	
The correspon	ung velo	ony	-	1.75	111/5	<	4	U.K.	

GEO Technical Guidance Note No. 43 (TGN 43) Guidelines on Hydraulic Design of U-shaped and Half-round Channels Slopes

ANNEX TGN 4