寄件者: charlie.tsui@

寄件日期: 2025年10月17日星期五 17:31

收件者: tpbpd/PLAND

副本: Andrea Wing Yin YAN/PLAND; Ivan Sze Yuet FUNG/PLAND

主旨: Planning Application No. A/YL-KTN/1159 - Submission of Further

Information 2

附件: A_YL-KTN_1159_FI2_Attachment 1_RtoC.pdf; A_YL-KTN_1159_FI2

_Attachment 2_DIA.pdf; A_YL-KTN_1159_FI2_Attachment 3 & 4 _Tree Survey_Landscape Proposal.pdf; A_YL-KTN_1159_FI2

_Attachments 5 & 6.pdf

類別: Internet Email

Your Ref.: TPB/A/YL-KTN/1159

Dear Sir/Madam,

Application for Permission under Section 16 of the Town Planning Ordinance (Cap.131)

Proposed Temporary Open Storage of Vehicles and Construction Materials with Ancillary Office and

Associated Filling of Land for a Period of 3 Years at

Lots 1512, 1513 S.A, 1513 S.B, 1513 RP, 1514 S.A, 1514 S.B, 1514 RP, 1515, 1516 and 1632 in D.D. 107 and Adjoining Government Land, Fung Kat Heung,

Yuen Long, New Territories (Planning Application No. A/YL-KTN/1159)

Submission of Further Information 2

Reference is made to the captioned planning application and the departmental comments received via emails from the Planning Department (PlanD) on 18.9.2025.

In response to the comments from the Drainage Services Department and the Landscape Unit of PlanD, we are pleased to submit further information including the following documents for your consideration:

Attachment 1 - Responses-to-Comments Table

Attachment 2 - Drainage Impact Assessment

Attachment 3 - Tree Survey Report

Attachment 4 - Landscape Proposal

Attachment 4 Lanascape i Toposai

Attachment 5 - Replacement Pages of Application Form

Attachment 6 - Revised Filling of Land Plan

Due to the proposed landscape treatment measures, the total land filling area is reduced from 7,627m² to 7,600m² (-27m²) to make room for the proposed planter area for new trees. Please refer to **Attachments 5** and **6** for the subject change.

Should you have any queries, please contact the undersigned at 3406 8867. Thank you.

Best regards, Charlie TSUI Town Planner

United Crown Holdings Limited

Attachment 1

Responses-to-Comments Table

<u>Attachment 1 - Response-to-Comments Table</u>

No.	Comments	Responses
1	Drainage Services Department (Contact Person: Ms. Jessica KWAN), dated 18.9.2025	
	(a) After reviewing the applicant's submission, there is no substantiation to show how the overland flow from adjacent areas would not be interrupted by the proposed works.	Noted. The applicant has prepared a Drainage Impact Assessment (Attachment 2) to demonstrate that with the implementation of drainage facilities, such as periphery u-channel, the proposed development will not obstruct overland flow nor cause any adverse
	I have reservation on the proposed application from drainage point of view unless the applicant can submit satisfactory drainage proposal during planning application stage to demonstrate that the proposed works will not obstruct the overland flow nor cause any adverse drainage impact to the adjacent areas.	drainage impact to the adjacent areas.
2	Landscape Unit, Planning Department (Contact Person: Mr. Samuel HUI), dated 18.9.2025	
	(a) According to site photos, the application site ("the Site") is partly hard paved and partly covered by vegetation. Some temporary structures and existing trees are observed within the Site. No tree information, proposed tree treatment and mitigation measure(s) has been provided in the application.	According to the Tree Survey Report (Attachment 3) prepared by the applicant, a total no. of 5 trees, including 4 <i>Ficus benjamina</i> and 1 <i>Roystonea regia</i> , were recorded within the Site. All the existing trees are proposed to be felled to facilitate the proposed development. A total of 5 new <i>Ficus benjamina</i> are to be planted to achieve a 1:1 compensatory ratio. Please refer to the landscape proposal (Attachment 4) for the details of the tree treatment measures.

Attachment 2

Drainage Impact Assessment

United Crown Holdings Limited

Proposed Temporary Open Storage of Vehicles and Construction Materials with Ancillary Office and Associated Filling of Land for A Period of 3 YEARS, Various Lots in D.D. 107 and Adjoining Government Land, Fung Kat Heung, Kam Tin Yuen Long, New Territories

Drainage Impact Assessment (Section 16 Planning Application No. A/YL-KTN/1159)

Document No. V1094/03 Issue 1

October 2025

V1094/03 Issue 1 October 2025

Proposed Temporary Open Storage of Vehicles and Construction Materials with Ancillary Office and Associated Filling of Land for A Period of 3 YEARS, Various Lots in D.D. 107 and Adjoining Government Land, Fung Kat Heung, Kam Tin Yuen Long, New Territories

Drainage Impact Assessment (Section 16 Planning Application No. A/YL-KTN/1159)

Approved for Issue by:

Kenny W K Lam RPE (Civil) FW0275905

Position:

Deputy Managing Director

Date:

17 Oct 2025

United Crown Holdings Ltd Resident Letter Box 223, D.D. 125 Lot 1194, Ha Tsuen Road, Yuen Long, New Territories

Mannings (Asia) Consultants Ltd 5/F, Winning Commercial Building 46-48 Hillwood Road Tsim Sha Tsui Kowloon

Drainage Impact Assessment (Section 16 Planning Application No. A/YL-KTN/1159)

Issue	Prepared by	Reviewed by	Date
1	CC	BLE	17 Oct 2025

.Mannings (Asia) Consultants Limited owned copyright of this report. All rights reserved.

This report is produced for authorized usage only. No part of this report may be copied or reproduced by any means without prior written permission from Mannings (Asia) Consultants Limited. If you have received this report in error, please destroy all copies in your possession or control and notify Mannings (Asia) Consultants Limited. This report has been prepared for the exclusive use of the commissioning party and unless otherwise agreed in writing by Mannings (Asia) Consultants Limited, no other party may use, make use of or rely on the contents of the report. No liability is accepted by Mannings (Asia) Consultants Limited for any use of this report, other than for the purposes for which it was originally prepared and provided.

Opinions and information provided in the report are on the basis of Mannings (Asia) Consultants Limited using due skill, care and diligence in the preparation of the same and no explicit warranty is provided as to their accuracy. It should be noted and it is expressly stated that no independent verification of any of the documents or information supplied to Mannings (Asia) Consultants Limited has been made

Content

1.0	Introduction	1
2.0	Design Methodology and Assumptions	2
3.0	Current Flooding Susceptibility and Proposed Drainage	5
4.0	Changes to the Drainage Characteristics and Potential Drainage Impact	7
5.0	Drainage Impact Mitigation Measures	10
6.0	Monitoring Requirements	
7.0	Conclusion	

List of Appendix

Appendix A: Drawing

Appendix B: Design Calculation

Appendix C: Site Photos

Appendix D: Layout Plans of Future Development for Adjacent Area

Drawing List

V1094/201	Layout Plan
V1094/202	Cross Section
V1094/203	Drainage Layout Plan
V1094/204	Catchment Plan – Before Development
V1094/205	Catchment Plan – After Development
V1094/206	Typical Details of Drainage

List of Tables

Table 2-1:	Runoff Coefficient
Table 2-2:	Minimum Pipeline Cover and Manhole Spacing Requirements
Table 2-3:	Storm Constant for SDM
Table 4-1:	Changes in Time of Concentration
Table 4-2:	Design Runoff, Capacity and Utilization of the Proposed U-channels
Table 4-3:	Design Runoff, Capacity and Utilization of the Proposed Pipes
Table 4-4:	Changes in Existing Drainage Systems
Table 4-5:	Estimated Runoff and Capacities of Existing Drainage

Abbreviations

D.D.	Demarcation District
DSD	Drainage Services Department
SDM	Stormwater Drainage Manual

V1094/03 Issue 1 Drainage Impact Assessment

1.0 Introduction

- 1.1 This submission presents the drainage impact assessment of the Proposed Temporary Open Storage of Vehicles and Construction Materials with Ancillary Office and Associated Filling of Land for A Period of 3 Years, at various lots in D.D. 107 and the adjoining government land at Fung Kat Heung, Kam Tin, Yuen Long, New Territories ("Site")
- The Site has an area of about 7,627m² and it is currently 32.3% covered in grassland (about 2,687 m²) and 67.7% hard-paved with concrete (about 4,940m²). The entire site is proposed to be filled with soil with concrete and asphalt surface to a depth not exceeding 0.8m. A 1-storey ancillary site office and a 1-storey electricity meter room are proposed at the site with total GFA of about 225 m² and 6 m² respectively. And a planter with 5 Nos. new trees is proposed at the site with area of 27 m². The general layout plan and cross sections of the Site are shown on the **Drawing Nos. V1094/201 and V1094/202** enclosed in **Appendix A.**
- Due to the concerns of possible drainage impact arising from the change of uses, Mannings (Asia) Consultants Limited (MACL) was appointed by the United Crown Holdings Limited to undertake a Drainage Impact Assessment (DIA) to demonstrate the acceptability of drainage impact upon the surrounding environment.

2.0 Design Methodology and Assumptions

Design Code

- 2.1 The below design codes are to be followed for this design assessment:
 - Stormwater Drainage Manual (DSD) Fifth Edition, January 2018;
 - Stormwater Drainage Manual (DSD) Corrigendum No. 1/2022;
 - Stormwater Drainage Manual (DSD) Corrigendum No. 1/2024;
 - Stormwater Drainage Manual (DSD) Corrigendum No. 2/2024;
 - BS 5911 Code of Practice for Precast Concrete Pipe Design
 - DSD Standard Drawings

Design Parameters

2.2 Design Parameters

a) Runoff Coefficient

Table 2-1 Runoff Coefficients

Surface Characteristic	Runoff Coefficient, C
Hard Paving, paved area	0.95
Roof area for structure	1.00
Grassland (heavy soil Flat), unpaved area	0.25

Roughness Coefficient for pipe flow k_s= 3

b) Minimum Pipeline Cover and Manhole Spacing Requirements

Table 2-2 Minimum Pipeline Cover and Manhole Spacing Requirements

Minimum pipeline cover		
In Roads	0.9 m	
In footways and verges	0.45 m	
Manhole spacing requirements		
D < 675 mm 80 m		
675 < D < 1050	100 m	
D > 1050	120 m	

c) Bedding factors

-	Granular bedding	: 1.9
-	Plain concrete bedding	: 2.6
-	Reinforced concrete bedding with allowance	: 3.4
	for minimum steel area	
-	Concrete Surround	: 4.5

d) Design Flow Velocity

- Minimum : 1 m/s

- Maximum : 3 m/s (desirable)

: 6 m/s (absolute)

Return Period

2.3 The Site falls within an area zoned "Agriculture" ("AGR") on the Approved Kam Tin North Outline Zoning Plan No. S/YL-KTN/11 (the OZP). According to Table 10 in Stormwater Drainage Manual (DSD) - Fifth Edition, January 2018, the recommended design return periods based on flood levels of "Intensively Used Agricultural Land" is 2-5 years.

2.4 In order to provide a conservative drainage impact assessment, return period of 1 in 50 years is adopted under this assessment.

Analysis Method

2.5 Description of Analysis Method

a) Rational method is to be adopted for calculation of the peak runoff. The formula is extracted from Section 7.5.2(a) of Stormwater Drainage Manual (SDM) which is to estimate the stormwater runoff as shown below:

$$Q_p = 0.278 \text{ CiA}$$

Where $Q_p = peak runoff in m^3/s$

C = runoff coefficient (dimensionless)

i = rainfall intensity in mm/hr

A = catchment area in km^2

b) 10% reduction of the flow area is allowed taken into account of the decomposition of siltation as per DSD's SDM 2018.

c) The time of concentration used for determining the duration of the design storm is considered by the time of entry and the time of flow,

$$t_c = t_o + t_f$$
 $t_f = L/V$

where t_o =inlet time (time taken for flow from the remotest point to reach the most upstream point of the urban drainage system)

 $t_f = \text{flow time}$

L = Length of drain

V = flow velocity

e) The time of entry or time of flow in the hinterland is calculated using the Bransby William's Equation.

$$t_e = \frac{0.14465 \ L}{A^{0.1} H^{0.2}}$$

Where $t_e = time of concentration (min)$

L = catchment length (m) A = catchment area (m2)

H = average catchment slope (m/100m)

f) The rainfall intensity is extracted from the Section 4.3.2 of SDM which is to estimate the Intensity-Duration –Frequency (IDF) Relationship.

$$i = a / (t_d + b)^c$$

Where i = extreme mean intensity in mm/hr

 t_d = duration in minutes (td<240)

a,b,c = storm constants given in table 3 of SDM as below

Table 2-3 Storm Constant of SDM – Corrigendum No.1/2024

Return Period T (years)	50
a	505.5
Ъ	3.29
С	0.355

g) Colebrook-White Equation is used in hydraulic design for pipe flow.

$$V = -\sqrt{(32gRs)}\log\left(\frac{k_s}{14.8R} + \frac{1.255v}{R\sqrt{(32gRs)}}\right)$$

Where:

 $V = mean \ velocity \ (m/s)$

g = gravitational acceleration (m/s²)

R = hydraulic radius (m)

D = pipe diameter (m)

 k_s = equivalent sand roughness (m)

v = kinematic viscosity of fluid (m^2/s)

s = frictional slope (energy gradient due to frictional loss)

3.0 Current Flooding Susceptibility and Proposed Drainage

Current Site Condition and Flooding Susceptibility

- 3.1 The topography of the Site is generally flat and currently situated with levels around +4.0 mPD. In general, the direction of existing surface runoff flows from north to south. Since the proposed ground levels of the Site are generally higher than the existing surrounding area, flooding susceptibility of the Site is considered as low.
- 3.2 Catchment plan before development is shown in **Drawing No. V1094/204** in **Appendix A**.

Proposed Development

3.3 A 1-storey ancillary site office and 1-storey electricity meter room are proposed at the Site as stated in Para. 1.2. After completion of the project, the finished ground level of the Site will be raised to approximately +4.6 mPD to +4.8mPD. All unpaved areas within the site will is proposed to be filled concrete or asphalt surface. A layout plan of the proposed development with **Drawing No. V1094/201** is enclosed in **Appendix A**.

Proposed Drainage

- 3.4 According to the site survey and observations, there is an existing 600mm U-channel (No. SUP1019846) and an existing 750mm U-channel (No. SUP1019843) located at the southern part of the site and an existing 800mm diameter concrete pipe connecting the existing 750mm U-channel, collecting the runoff from the original site and surrounding area. And the runoff will finally flow through the two U-channels into the existing 750mm diameter outlet concrete pipe (No. SWD1065685), which ultimately discharges into a 7.5m wide open channel. After development, runoff from the site will be conveyed into the existing 800mm diameter concrete pipe and flow into the existing 750 mm U-channel and then into the existing 750mm diameter outlet pipe and the existing 7.5m wide open channel. The photo records of the existing drainage are presented in Appendix C.
- As illustrated in **Drawing Nos. V1094/204** in **Appendix A**, a portion of the runoff from the surrounding area will flow through the site and into the existing 600 mm U-channel. The site formation level will be raised from +4.0 mPD to +4.8 mPD, exceeding the existing level of +4.2 mPD at the northern boundary of the site. As such, 375 mm U-channels will be provided at both the northern and southern perimeters of the site to collect the runoff inside and in the vicinity of the site. These channels will capture runoff from Catchment Area D, while the paved areas within the site (i.e., Catchment Areas C1 C8) will also be directed into the U-channels. The collected runoff will be conveyed to the existing 750 mm U-channels through proposed catchpits and manholes.
- 3.6 The drainage layout plan and detailed drainage are shown in **Drawing Nos. V1094/203** and **V1094/206** in **Appendix A**. Calculation of the proposed drainage are presented in Section 4 and enclosed in **Appendix B**.

3.7 The proposed U-channels and drainage pipes are designed to have sufficient capacities for the estimated runoff from the paved area in the Site. Details of the calculation are enclosed in **Appendix B**.

Changes in Land Use and Planned Drainage Works in Adjacent Area

- 3.8 It is noted that changes of land use might happen at the adjacent area of south of the Site. The layout plans of the proposed works and the proposed drainage works for the adjacent area are attached in **Appendix D** for information.
- 3.9 Since the surface runoff of the adjacent area will be collected and discharged to another existing drainage system near Shui Mei Road as shown in **Drawing No. W1010/113**, **114** in **Appendix D**, no drainage impact to the Site in this report is anticipated.

4.0 Changes to the Drainage Characteristics and Potential Drainage Impact

Changes in Land Use and Surface Runoff Characteristics

4.1 currently 32.3% covered in grassland (about 2,687 m²) and 67.7% hard-paved with concrete (about 4,940m²). After completion of the project, the Site will be filled with soil with concrete and asphalt surface. Runoff coefficients are shown in Table 2-1 under Para. 2.2.

Changes to Surface Runoff Hydrographs

4.2 Changes in land use from unpaved area to paved area would lead to higher and faster surface runoff. However, considering the scale of the proposed development is relatively small, the changes to surface runoff hydrographs is considered as negligible.

Changes in Flood Storage

4.3 According to the site survey and observation, there is no flood storage was found near the Site

Changes in Timing of Peak runoff

4.4 Changes of time of concentration of Outfall from catchpit SCH1028765 to 750 mm diameter outlet pipe SNF1009820 before and after development are summarized in below table. The calculation is attached in Appendix B.

Table 4-1 Changes in Time of Concentration

Outlet	Time of concentration (min)	
	Before Development	After Development
SCH1028765 to SNF1009820	39.55	26.00

Hydraulic Bankfull Capacity of the Proposed Drainage System

- 4.5 The proposed drainage system mentioned in Para. 3.4 to Para 3.6 are designed to have sufficient capacity to cater the flow from the Site. Detailed calculation is attached in **Appendix B**.
- 4.6 The design runoff, capacity and utilization of the U-channels are summarized in below table.

Table 4-2 Design Runoff, Capacity and Utilization of the Proposed U-channels

Proposed U-Channel	Design Runoff	Capacity	Utilization
	(m^3/s)	(m^3/s)	
UC1 (375UC)	0.099	0.432	23.0%
UC2 (375UC)	0.139	0.483	28.9%
UC3 (375UC)	0.155	0.520	29.7%
UC4 (375UC)	0.195	0.526	37.0%
UC5 (375UC)	0.049	0.100	48.7%
UC6 (375UC)	0.146	0.511	28.5%
UC7 (375UC)	0.166	0.570	29.1%
UC8 (375UC)	0.200	0.578	38.4%

4.7 The design runoff, capacity and utilization of the proposed pipes are summarized in below table.

Table 4-3 Design Runoff, Capacity and Utilization of the Proposed Pipes

Proposed Pipe	Design Runoff (m ³ /s)	Capacity (m ³ /s)	Utilization
To Existing 800 Dia. Concrete	Pipe:		
CP4 to SMH01 (750 Dia.)	0.371	0.710	52.2%

<u>Changes in Peak Runoff and Peak Velocity at existing drainage system (Existing 600 UC and 750UC, and 750 Dia. Outlet pipe)</u>

4.8 Below table shows the comparison of the peak runoff and peak velocity of the existing drainage system before and after the development. Detailed calculation is attached in **Appendix B**.

Table 4-4 Changes in Existing Drainage Systems

	800 D	ia. Pipe		n. Outlet ipe	600	UC	750	UC
	Peak Runoff (m ³ /s)	Peak Velocity (m/s)						
Before Development	0.121	1.536	0.539	2.212	0.224	1.81	0.320	2.05
After Development	0.454	1.536	0.821	2.212	0.180	1.81	0.688	2.05

Potential Drainage Impact to Existing Drainage System

- 4.9 The proposed drainage systems are proposed to discharge to existing 750mm diameter outlet pipe (No. **SWD1065685**) as mentioned in Para. 3.4. Flows to the outlet will be increased.
- 4.10 For the existing drainage system, the two existing U-channels and outlet pipe located at the south of the Site are checked. Both outfall drainage systems have sufficient capacities to cater for the additional runoff upon completion of the proposed development. The estimated runoffs and capacities after development are summarized in Table 4-5.

Table 4-5 Estimated Runoff and Capacities of Existing Drainage

Existing Drainage	Estimated runoff (m ³ /s)	Capacity (m ³ /s)	Utilization
600 U-channel	0.180	1.432	12.6%
800 Dia. Pipe	0.455	0.772	59.0%
750 U-channel	0.688	1.998	34.4%
750 Dia. Outlet Pipe	0.821	0.977	84.0%

Temporary Drainage during Construction

4.11 According to the site survey and observation, there is no existing drainage system in the Site. Therefore, no existing drainage system would be affected during the construction. Temporary drainage is considered not necessary.

Details of Works to Existing Drainage System

4.12 Proposed drainage systems are connecting to existing drainage system as shown in **Drawing No. V1094/003** in **Appendix A**.

Potential Drainage Impacts to Other Land Users

4.13 All runoff in the Site will be collected and drain to existing drainage system as stated in Para. 3.4, no drainage impact to other land users is anticipated.

5.0 Drainage Impact Mitigation Measures

- 5.1 As discussed in Para. 4.11 and 4.13, no existing drainage system would be affected and no drainage impact to other land users is anticipated. Therefore, Mitigation measures is considered not necessary.
- 5.2 The Contractor should monitor during the construction to ensure that there is no adverse drainage impact to the nearby drainage systems and adjacent land users.

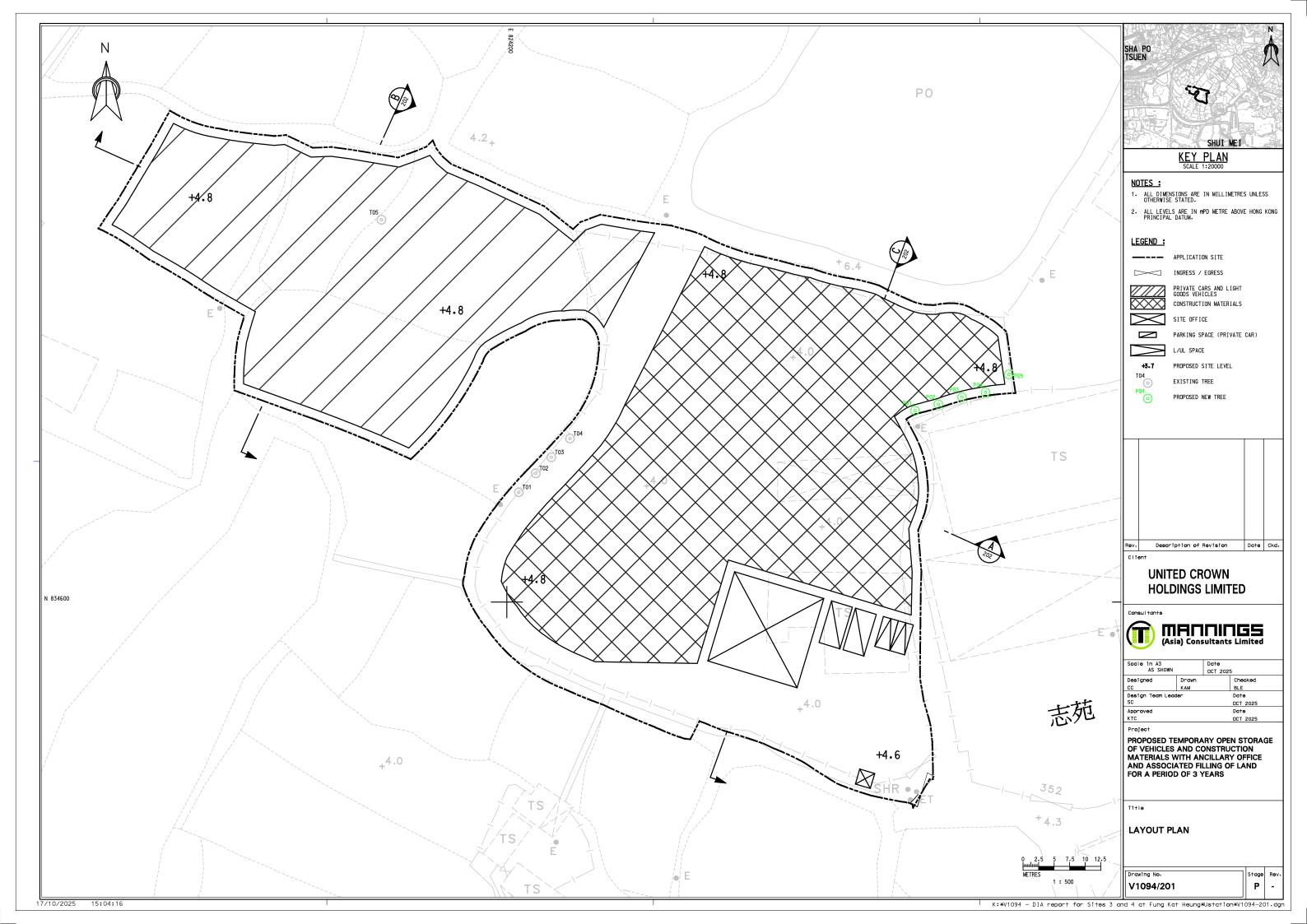
6.0 Monitoring Requirements

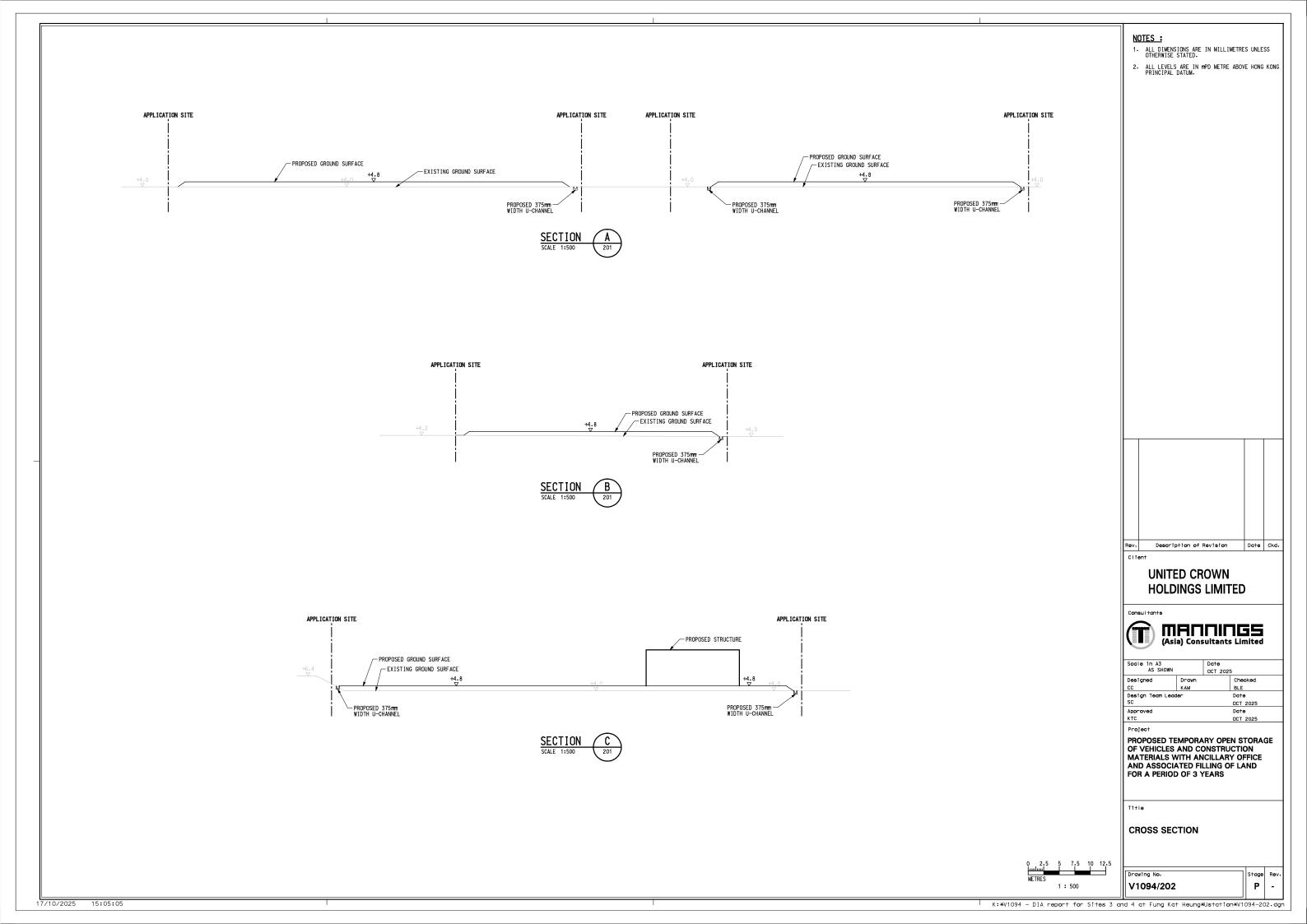
Monitoring During Construction

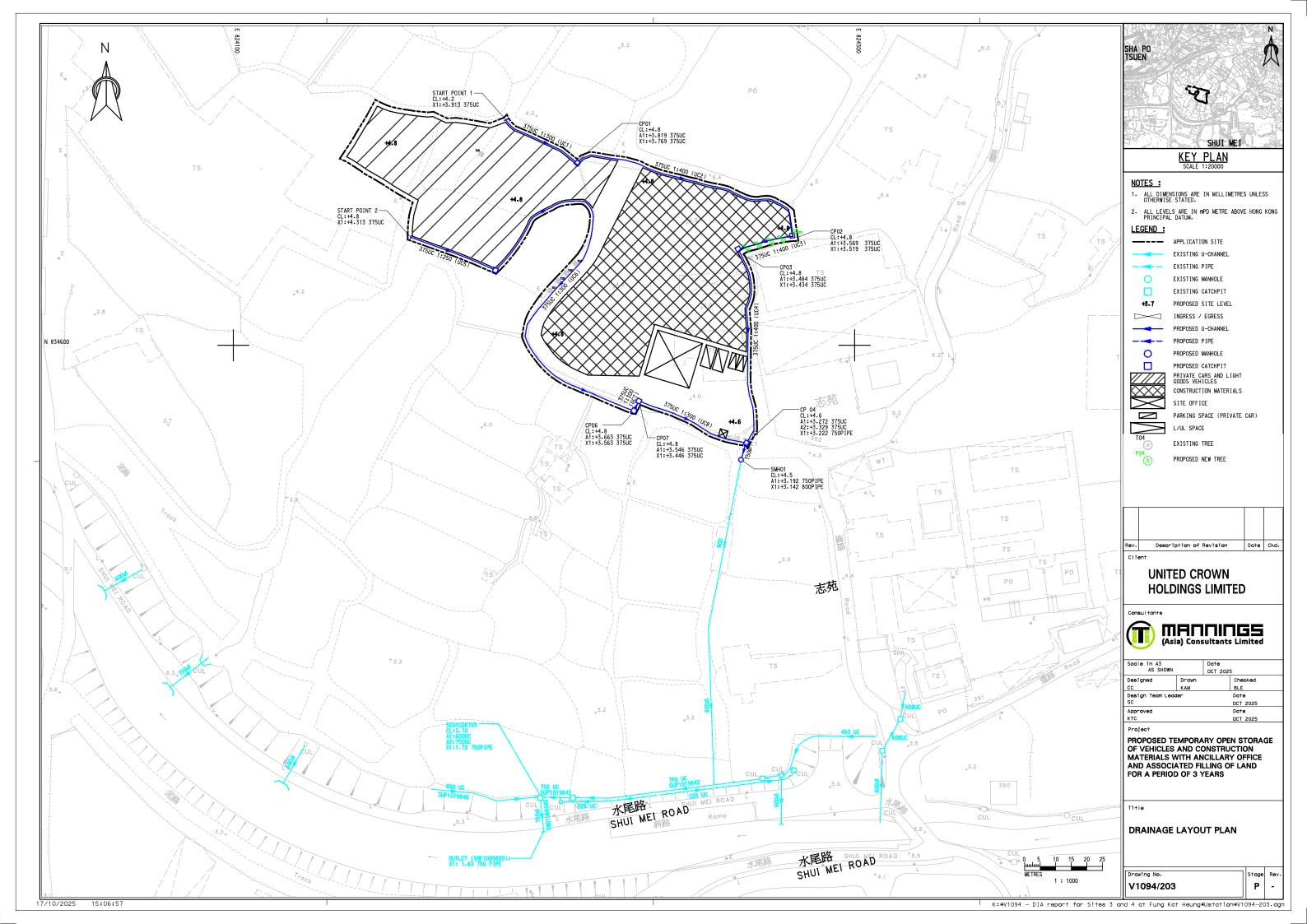
- 6.1 Monitoring of the drainage system is required during construction to ensure that there are no adverse impacts which may result in flooding or deterioration in the water quality.
- 6.2 Monitoring shall include:
 - any siltation or blockages in channels, slit traps or sediment basins;
 - checking the drainage is performing in accordance with the design;
 - checking for damage; and
 - visual inspection of any high sediment levels
- 6.3 The detailed requirements of drainage monitoring should be as shown in the following table:

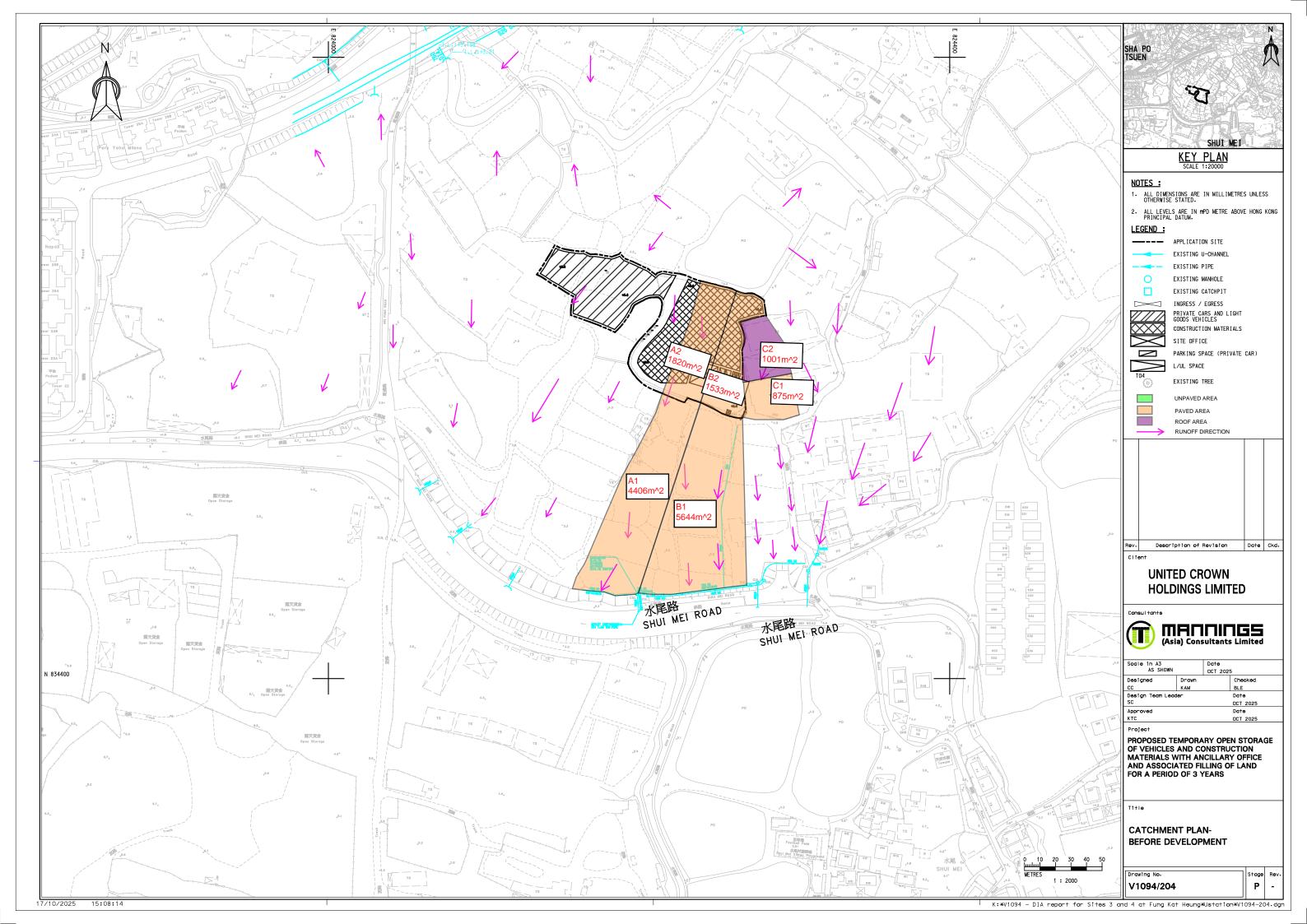
Table 6.1 – Detailed Requirements for Drainage Monitoring

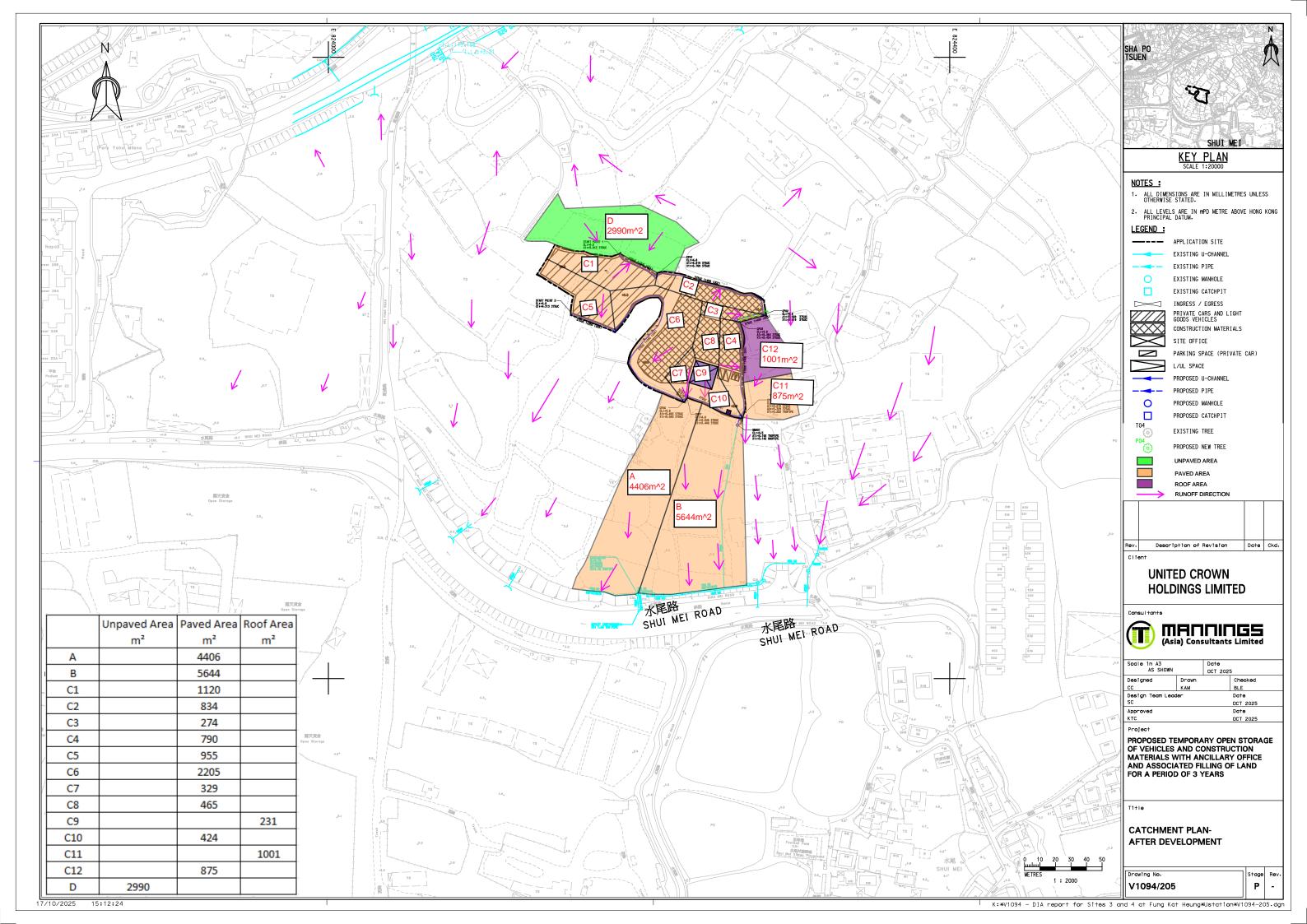
Type / location of monitoring	Minimum Frequency	Action by
Prepare method statements	Before the start of any works that could impact on drainage	Contractor
	D 11 W 11 D 0	
Inspect existing drainage systems and all construction drainage systems for blockages or breakages	Daily, Weekly, Before every rainstorm warning	Contractor
	After every rainstorm	Contractor
Inspect sedimentation basins and silt traps	Daily, Weekly, Before every rainstorm warning	Contractor
	After every rainstorm	Contractor

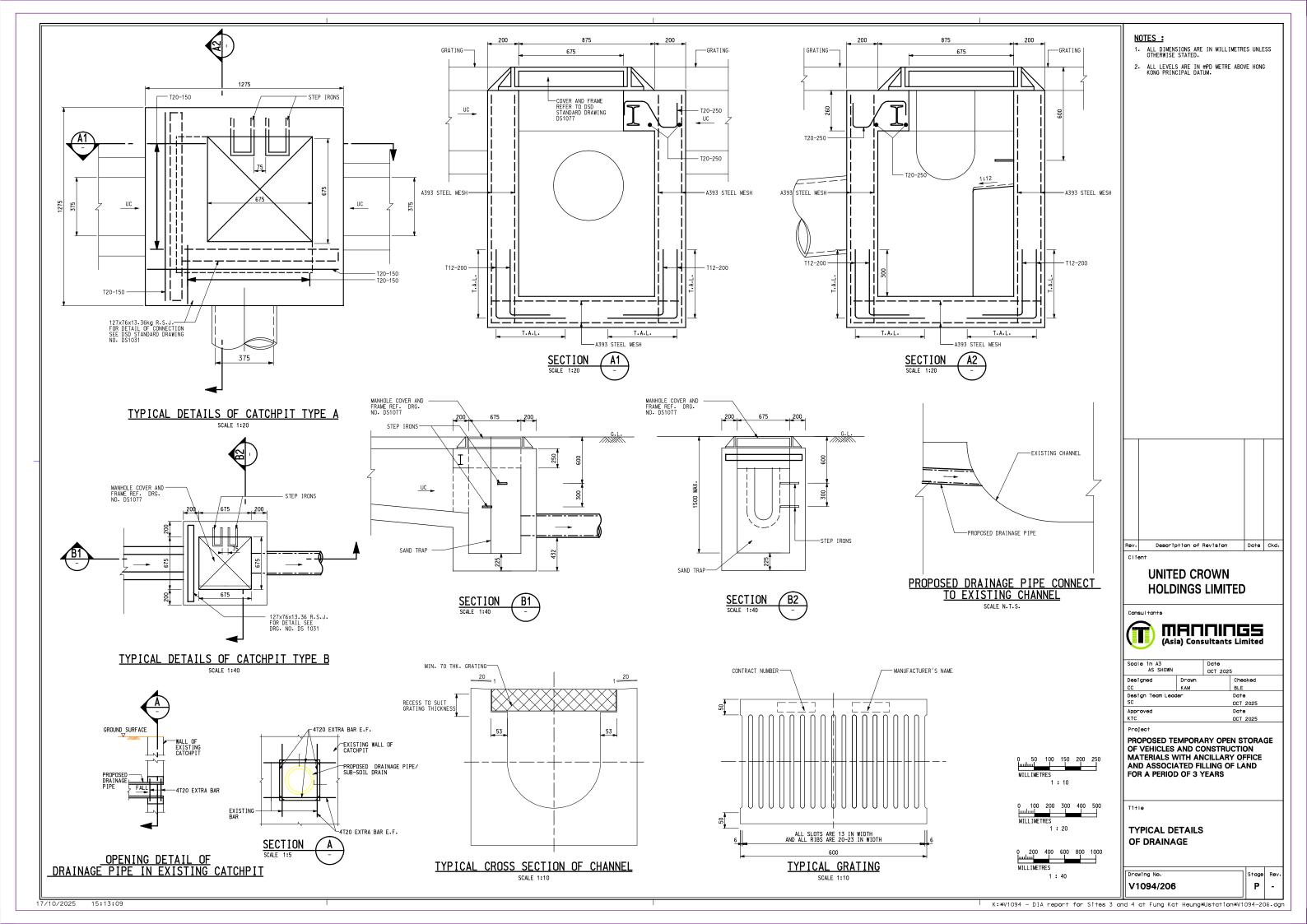

7.0 Conclusion


7.1 A Drainage Impact Assessment has been conducted for the proposed land use changes in Fung Kat Heung. The existing drainage system has been checked for the updated runoff from the catchment area and based on our assessment, the existing drainage system would provide sufficient capacity to cater for this additional stormwater. No adverse drainage impact shall be aroused due to the development.




Appendix A


Drawings



Appendix B

Design Calculations

Before Development U channel Capcity Checking

Table 1 Capacity Check - U-Channel Before Development

Existing	; 600 U	-Channel	(Route	e left)
----------	---------	----------	--------	---------

			Incre	e. Area (m²)	Acc	um. Area (m ²)			U	Channel							Rain	fall					Mann	ing's Equati	on	
U/S ID	D/S ID	Catchment No.	unpaved	Roof	paved	unpaved	Roof	paved	U/S Ground Level	D/S Ground Level	U/S I.L.	D/S I.L.	Size	Length	Gradient	Manning's	Longest Flow Path	Flow Path Gradient	to (min) = 0.14465L/ (H ^{0.2} A ^{0.1})	tf = L/v (min)	Time of Concentration	Intensity	Runoff	Wetted Area	Hydraulic Radius	Velocity	Capacity	Runoff / Capacity
			0.25	1.00	0.95	0.25	1.00	0.95	(mPD)	(mPD)	(mPD)	(mPD)	(mm)	(m)	(1 in)		(m)	(m/100m)	(min)	(min)	(min)	(mm/hr)	(l/s)	(m ²)	(m)	(m/s)	(I/s)	(%)
SUP1019846	SCH1028765	A1+A2	0	0	6226	0	0	6226	3.10	3.10	-	1.720	600	35	250	0.014	215.00	0.006	36.643	0.322	36.96	136	224	0.7894	0.2544	1.81	1432	15.6%

Existing 750 U-Channel (Route right)

			Incr	e. Area (m	1 ²)	Acc	um. Area ((m ²)			U	Channel							Raint	all					Mann	ing's Equati	on	
U/S ID	D/S ID	Catchment No.	unpaved	Roof	paved	unpaved	Roof	paved	U/S Ground Level	D/S Ground Level	U/S I.L.	D/S I.L.	Size	Length	Gradient	Manning's n	Longest Flow Path	Flow Path Gradient	to (min) = 0.14465L/ (H ^{0.2} A ^{0.1})	tf = L/v (min)	Time of Concentration	Intensity	Runoff	Wetted Area	Hydraulic Radius	Velocity	Capacity	Runoff / Capacity
			0.25	1.00	0.95	0.25	1.00	0.95	(mPD)	(mPD)	(mPD)	(mPD)	(mm)	(m)	(1 in)		(m)	(m/100m)	(min)	(min)	(min)	(mm/hr)	(I/s)	(m ²)	(m)	(m/s)	(I/s)	(%)
SUP1019842	SCH1028766	B1+B2+C	0	1001	8052	0	1001	8052	3.50	3.15	-	1.980	750	65	250	0.014	200.00	0.003	39.009	0.541	39.55	133	320	0.8171	0.2952	2.00	1637	19.6%
SCH1028766	SCH1028765	B1+B2+C	0	1001	8052	0	1001	8052	3.15	3.10	-	1.720	750	10	250	0.014	200.00	0.003	39.009	0.541	39.55	133	320	0.9746	0.3057	2.05	1998	16.0%

	50 year
а	505.500
b	3.290
	0.255

Before Development Pipe Capcity Checking

Table 3 Capacity Check - Pipes Before Development

Existing 800 Dia. Pipe Checking

From Catchpit/Manhol	e To Catchpit/Manhole	Sub-Catchment	Paved Catchment Area (m²)	Roof Catchment Area (m²)	Unpaved Catchment Area (m²)	t _c (min)	Intensity (mm/hr)	Peak Flow m ³ /s	Pipe Length (m)	Upstream Invert Level (m PD)	Downstream Invert Level (m PD)	Diameter (mm)	Gradient (1 in)	Total Catchment Area (m²)	Velocity (m/s)	Capacity (m³/s)	Pipe Capcity Check (Flow / Capacity)
SMH01	SUP1019842 (750UC)	С	875	1001	0	5.00	238.6	0.121	105.00	3.142	2.700	800	237.74	875.00	1.536	0.772	15.7%

Existing 750 Dia. Outlet Pipe Checking

From Catchpit/Manhole	To Catchpit/Manhole	Sub-Catchment	Paved Catchment Area (m²)	Roof Catchment Area (m²)	Unpaved Catchment Area (m ²)	t _c (min)	Intensity (mm/hr)	Peak Flow m³/s	Pipe Length (m)	Upstream Invert Level (m PD)	Downstream Invert Level (m PD)	Diameter (mm)	Gradient (1 in)	Total Catchment Area (m²)	Velocity (m/s)	Capacity (m³/s)	Pipe Capcity Check (Flow / Capacity)
SCH1028765	SNF1009820	A+B+C	14278	1001	0	39.55	133.2	0.539	9.50	1.72	1.63	750	105.56	14278.00	2.212	0.977	55.1%

Rain Storm Return Perio	od = 50year
а	505.500
b	3.290
С	0.355
Rainfall Intensity i=a	/(t_+b) ^c

Parameters:

Roughness K _s (Conc. Pipe) =	3
Kinematic Viscosity (v) =	1.14E-06
Paved Area Runoff Coefficient =	0.95
Unpaved Area Runoff Coefficient =	0.25
Roof Area Runoff Coefficient =	1.00
(Refer to Fluid Mechanics)	

$$\overline{V} = -\sqrt{32gRS_f} \log \left[\frac{k_s}{14.8R} + \frac{1.255v}{R\sqrt{32gRS_f}} \right]$$

m²/s

v =Kinematic viscosity (kg/ms) R =Hydraulic Diameter (m) Ks =Surface Roughness (m) V =Kinematic viscosity (kg/ms)

Sf =Slope of Hydraulic Gradient

g =Gravity (m/s2)

After Development U channel Capcity Checking

Table 2 Capacity Check - U-Channel After Development

Troposed o-charmer (North Side)																													
				Incre. Area (m²)	Acc	cum. Area	(m ²)				U	Channel							Rain	nfall					Manni	ing's Equati	on	
U/S ID	D/S ID	Catchment No.	unpaved	Roof	paved	unpaved	Roof	paved	U/S Ground Level	D/S Ground Level	U/S I.L.	D/S I.L.	Channel Height	Size	Length	Gradient	Manning's	Longest Flow Path	Flow Path Gradient	to (min) = 0.14465L/ (H ^{0.2} A ^{0.1})	tf = L/v (min)	Time of Concentration · tc	Intensity	Runoff	Wetted Area	Hydraulic Radius	Velocity	Capacity	Runoff / Capacity
			0.25	1	0.95	0.25	1	0.95	(mPD)	(mPD)	(mPD)	(mPD)	(m)	(mm)	(m)	(1 in)		(m)	(m/100m)	(min)	(min)	(min)	(mm/hr)	(l/s)	(m ²)	(m)	(m/s)	(Vs)	(%)
UC 01	CP 01	D + C1	2990	0	1120	2990	0	1120	4.20	4.80	3.913	3.819	0.793	375	28	300	0.014	58.00	0.005	10.462	0.381	10.84	197	99	0.3527	0.1621	1.23	432	23.0%
UC 02	CP 02	C2	0	0	834	0	0	834	4.80	4.80	3.769	3.569	1.043	375	80	400	0.014	71.000	0.010	13.166	1.232	14.40	182	139	0.4465	0.1669	1.08	483	28.9%
UC 03	CP 03	C3	0	0	274	0	0	274	4.80	4.80	3.519	3.484	1.128	375	14	400	0.014	39.000	0.010	8.084	0.215	8.30	212	155	0.4783	0.1681	1.09	520	29.7%

Proposed U-Channel (South Side)																												
UC 05	CP 05	C5	0	0	955	0	0	955	4.80	4.80	4.313 4.213	0.400	375	25	250	0.014	61.000	0.010	11.160	0.384	11.54	194	49	0.0927	0.1175	1.08	100	48.7%
UC 06	CP 06	C6	0	0	2205	0	0	2205	4.80	4.80	4.113 3.663	0.950	375	135	300	0.014	105.000	0.010	17.667	1.811	19.48	167	146	0.4115	0.1653	1.24	511	28.5%
UC 07	CP 07	C7	0	0	329	0	0	329	4.80	4.80	3.563 3.546	1.067	375	5	300	0.014	30.000	0.010	6.105	0.067	6.17	228	166	0.4552	0.1672	1.25	570	29.1%
UC 08	CP 04	C8	0	231	889	0	231	889	4.60	4.60	3,446 3,329	1.083	375	35	300	0.014	68,000	0.010	12.243	0.466	12.71	189	222	0.4615	0.1675	1.25	578	38.4%

		Incre. Area (m2	١																								
)	Acc	um. Area	(m ²)				U	Channel							Rain	fall					Manni	ng's Equation	n	
U/S ID D/S ID Catchmer No.	unpaved	Roof	paved	unpaved	Roof	paved	U/S Ground Level	D/S Ground Level	U/S I.L.	D/S I.L.	Channel Height	Size	Length	Gradient	Manning's	Longest Flow Path	Flow Path Gradient	to (min) = 0.14465L/ (H ^{0.2} A ^{0.1})	tf = L/v (min)	Time of Concentration	Intensity	Runoff	Wetted Area	Hydraulic Radius	Velocity	Capacity	Runoff / Capacity
	0.25	1	0.95	0.25	1	0.95	(mPD)	(mPD)	(mPD)	(mPD)	(m)	(mm)	(m)	(1 in)		(m)	(1 in)	(min)	(min)	(min)	(mm/hr)	(l/s)	(m ²)	(m)	(m/s)	(Vs)	(%)
SUP1019846 SCH1028765 A	0	0	4406	0	0	4406	3.10	3.10	-	1.720	1.080	600	35	250	0.014	142.000	0.006	24.424	0.322	24.75	155	180	0.7894	0.2544	1.81	1432	12.6%

Existing 750 U-Channel (Route right))																												
			- 1	ncre. Area (m²)	Acc	cum. Area ((m ²)				UC	Channel							Rair	nfall					Mann	ing's Equati	on	
U/S ID	D/S ID	Catchment No.	unpaved	Roof	paved	unpaved	Roof	paved	U/S Ground Level	D/S Ground Level	U/S I.L. D	/S I.L.	Channel Height	Size	Length	Gradient	Manning's	Longest Flow Path	Flow Path Gradient	to (min) = 0.14465L/ (H ^{0.2} A ^{0.1})	tf = L/v (min)	Time of Concentration	Intensity	Runoff	Wetted Area	Hydraulic Radius	Velocity	Capacity	Runoff / Capacity
			0.25	1	0.95	0.25	1	0.95	(mPD)	(mPD)	(mPD) (r	mPD)	(m)	(mm)	(m)	(1 in)		(m)	(1 in)	(min)	(min)	(min)	(mm/hr)	(l/s)	(m ²)	(m)	(m/s)	(Vs)	(%)
SUP1019842	SCH1028766	B+C+D	2990	1232	13915	2990	1232	13915	3.50	3.15	- 1	1.980	0.795	750	65	250	0.014	125.000	0.004	20.463	0.541	21.00	163	688	0.8171	0.2952	2.00	1637	42.0%
SCH1028766	SCH1028765	B+C+D	0	0	0	0	0	0	3.15	3.10	- 1	1.720	1.005	750	10	250	0.014	-	-	-	-	21.00	163	688	0.9746	0.3057	2.05	1998	34.4%

50 ye	ar
a	505.500
b	3.290
	0.355

After Development Pipe Capcity Checking

Table 4 Capacity Check - Pipes After Development

Proposed Pipe Checking

From Catchpit/Manhole	To Catchpit/Manhole	Sub-Catchment	Paved Catchment Area (m²)	Roof Catchment Area (m²)	Unpaved Catchment Area (m²)	t _c (min)	Intensity (mm/hr)	Peak Flow m³/s	Pipe Length (m)	Upstream Invert Level (m PD)	Downstream Invert Level (m PD)	Diameter (mm)	Gradient (1 in)	Total Catchment Area (m²)	Velocity (m/s)	(m ³ /s)	Pipe Capcity Check (Flow / Capacity)
CP 04	SMH01	C(1-10)+D	7396	231	2990	19.48	166.7	0.371	6.00	3.222	3.192	750	200.00	10386.00	1.606	0.710	52.2%

Existing 800 Dia. Pipe Checking

From Catchpit/Ma	nhole To Cat	atchpit/Manhole	Sub-Catchment	Paved Catchment Area (m²)	Roof Catchment Area (m²)	Unpaved Catchment Area (m²)	t _c (min)	Intensity (mm/hr)	Peak Flow m³/s	I enath	Upstream Invert Level (m PD)	Downstream Invert Level (m PD)	Diameter (mm)	Gradient (1 in)	Total Catchment Area (m²)	Velocity (m/s)	Capacity (m³/s)	Pipe Capcity Check (Flow / Capacity)
SMH01	SUP10	019842 (750UC)	C(1-12)+D	8271	1232	2990	19.48	166.7	0.455	105.00	3.142	2.700	800	237.74	11261.00	1.536	0.772	59.0%

Existing 750 Dia. Outlet Pipe Checking

From Catchpit/Manhole	To Catchpit/Manhole/Out let	Sub-Catchment	Paved Catchment Area (m²)	Roof Catchment Area (m²)	Unpaved Catchment Area (m²)	t _c (min)	Intensity (mm/hr)	Peak Flow m³/s	Pipe Length (m)	Upstream Invert Level (m PD)	Downstream Invert Level (m PD)	Diameter (mm)	Gradient (1 in)	Total Catchment Area (m²)	Velocity (m/s)	(m³/s)	Pipe Capcity Check (Flow / Capacity)
SCH1028765	SNF1009820	A1+B1+C(1-9)+D	18321	1232	2990	26.00	152.4	0.821	9.50	1.720	1.63	750	105.56	21311.00	2.212	0.977	84.0%

Rain Storm Return Perio	od = 50year
а	505.500
b	3.290
С	0.355
Rainfall Intensity i=a	/(t _d +b) ^c

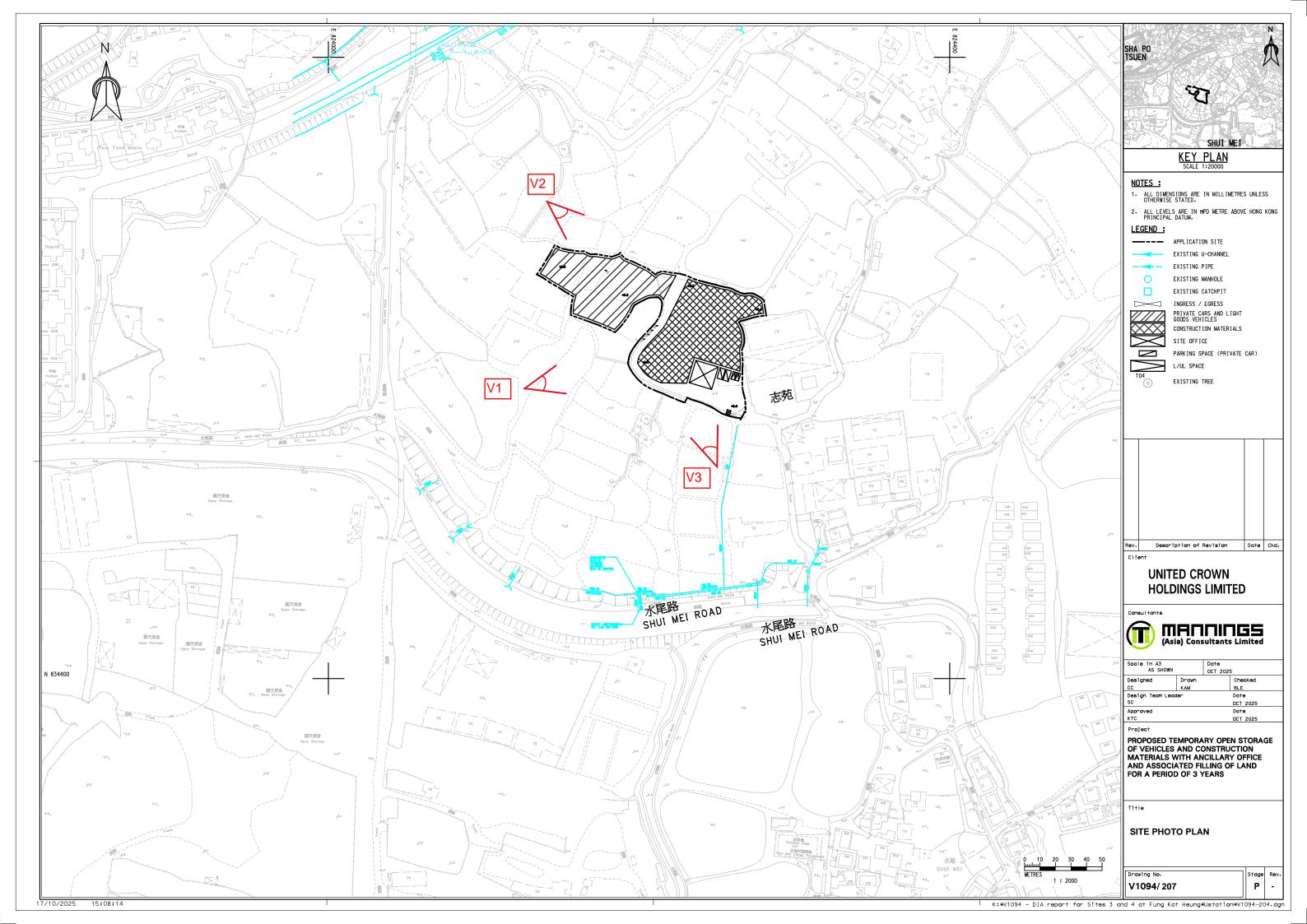
Parameters:

Roughness K _s (Conc. Pipe) =	3
Kinematic Viscosity (v) =	1.14E-06
Paved Area Runoff Coefficient =	0.95
Unpaved Area Runoff Coefficient =	0.25
Roof Area Runoff Coefficient =	1.00
(Refer to Fluid Mechanics)	

$$\overline{V} = -\sqrt{32gRS_f} \log \left[\frac{k_s}{14.8R} + \frac{1.255\nu}{R\sqrt{32gRS_f}} \right]$$

Where:

m²/s


v = Kinematic viscosity (kg/ms)
 R = Hydraulic Diameter (m)
 Ks = Surface Roughness (m)
 V = Kinematic viscosity (kg/ms)
 Sf = Slope of Hydraulic Gradient

g =Gravity (m/s2)

Appendix C

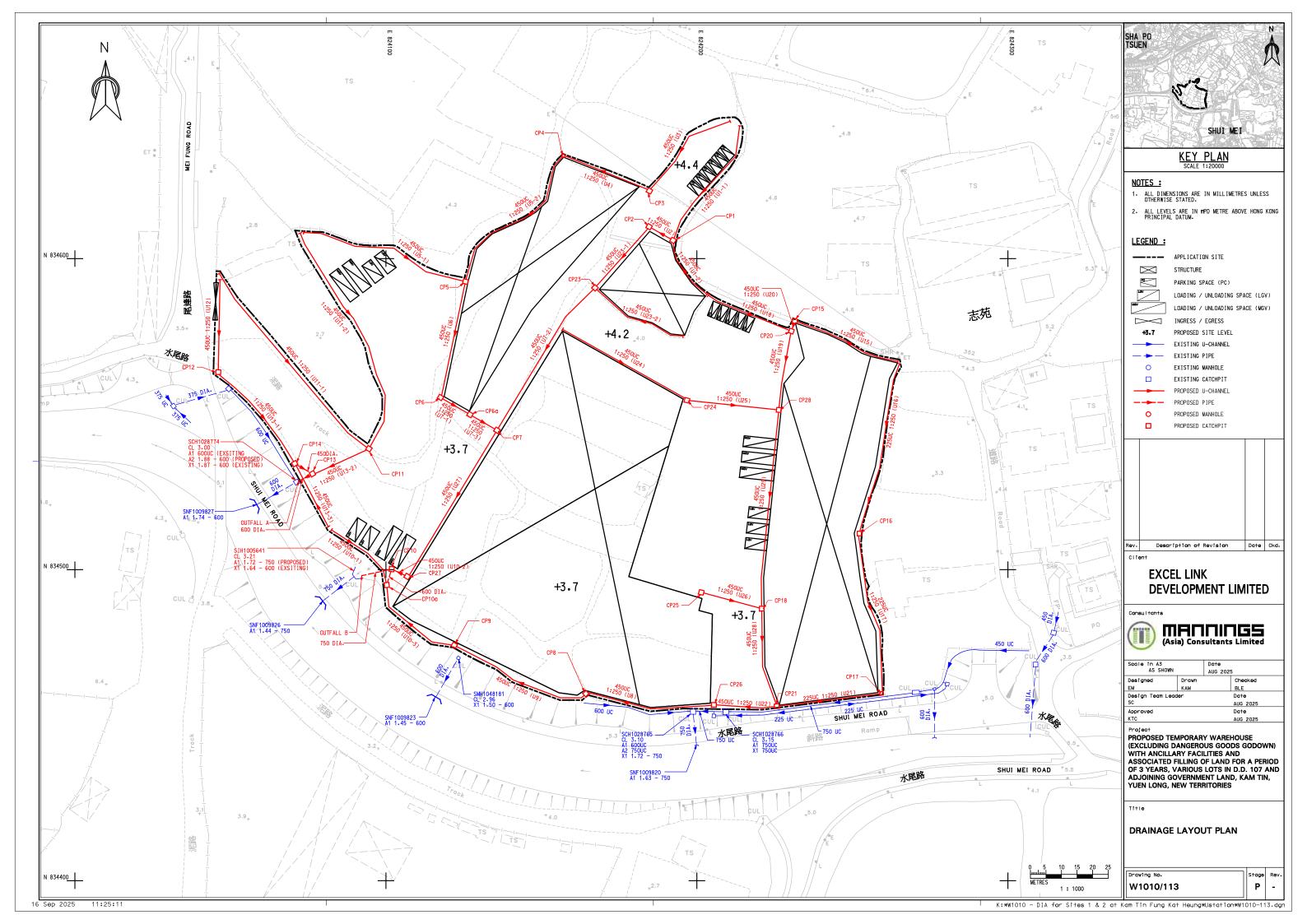
Site Photos

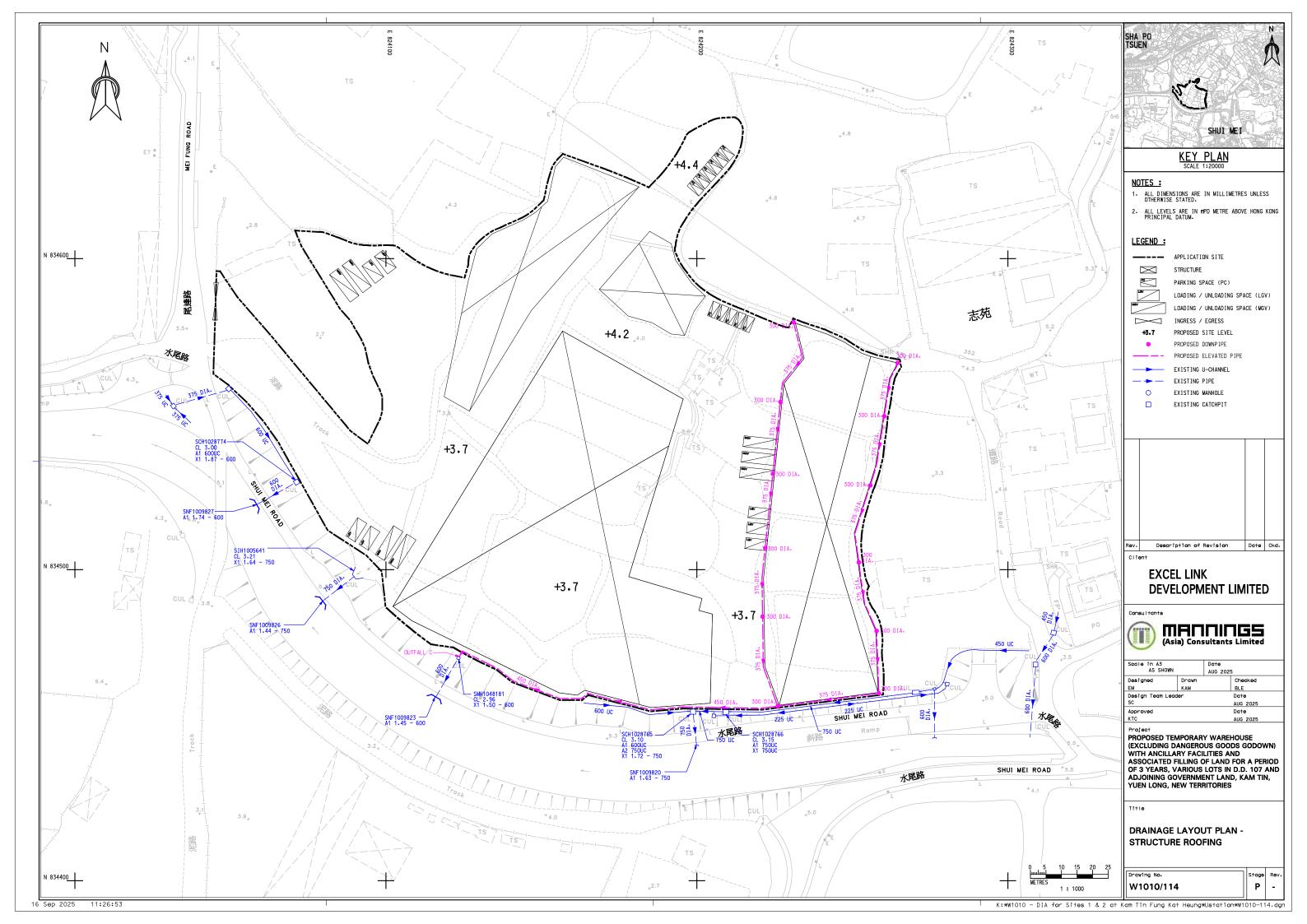
Photo Top View

Photo V1

Proposed Temporary Open Storage of Vehicles and Construction Materials with Ancillary Office and Associated Filling of Land for A Period of 3 Years, Various Lots in D.D. 107 and Adjoining Government Land, Fung Kat Heung, Kam Tin Yuen Long, New Territories

Photo V2





Proposed Temporary Open Storage of Vehicles and Construction Materials with Ancillary Office and Associated Filling of Land for A Period of 3 Years, Various Lots in D.D. 107 and Adjoining Government Land, Fung Kat Heung, Kam Tin Yuen Long, New Territories

Appendix D

Layout Plans of Future Development for Adjacent Area

Attachment 3

Tree Survey Report

Tree Survey Report of LOTS 1512, 1513, 1514, 1515, 1516 AND 1532 IN D.D. 107 AND ADJOINING GOVERNMENT LAND, FUNG KAT HEUNG, YUEN LONG, NEW TERRITORIES

Prepared by:

Wong Wai Chun AA- Technician Member

Report Date: 13rd October 2025

1) <u>INTRODUCTION</u>

We are commissioned to prepare a tree survey report to record the health condition of the existing trees at the proposed survey area at LOTS 1512, 1513, 1514, 1515, 1516 AND 1532 IN D.D. 107 AND ADJOINING GOVERNMENT LAND, FUNG KAT HEUNG, YUEN LONG, NEW TERRITORIES.

2) DATE OF INSPECTION

The inspections were conducted on 13rd October 2025.

3) SITE ADDRESS AND LOCATIONS OF TREES

The inspected trees were located at the designated working area at LOTS 1512, 1513, 1514, 1515, 1516 AND 1532 IN D.D. 107 AND ADJOINING GOVERNMENT LAND, FUNG KAT HEUNG, YUEN LONG, NEW TERRITORIES. Please find the Tree Location Plan in Appendix C.

4) METHODOLOGY OF TREE INSPECTION

The tree inspection basically adopted the Visual Tree Assessment (VTA) techniques. All vegetation present with a trunk diameter larger than 95mm when measured at a point 1300mm above ground level was considered as a 'tree'. These have been surveyed and identified with the information recorded on the following pages. The tree assessment is undertaken in accordance with the 'Development Bureau Technical Circular (Works) No. 4/2020 Tree preservation' and 'Guidelines for Tree Risk Assessment and Management Arrangement' (4/2020 9th Edition) from the Greening, Landscape and Tree Management Section of Development Bureau.

(A) Tree ID No.: The individual trees have been tagged on site using weatherproof labels with the abbreviated number T- which correspond with those in survey plans.

- (B) Species: The botanical and Chinese names of the trees have been used for ease of reference. The botanical name takes precedence wherever there is any ambiguity.
- (C) Tree Size:
 - (1) Overall height: Height measured in meters from ground level to the top of the tallest branch.
 - (2) Trunk Diameter: Diameter of the main trunk measured in millimeters at 1.3 m high above ground level.
 - (3) Crown Spread : Average diameter of the foliage canopy.
- (D) Form:
 - (1) Good Well-balanced crown and straight strong trunk(s);
 - (2) Fair Slightly unbalanced crown and non-straight trunk(s);
 - (3) Poor Misshapen or awkwardly forked trunk and/or unbalanced crown.
- (G) Health: The health condition of each tree shall be evaluated according to the following criteria (Webb 1991):
 - (1) Good Trees of good form, moderate to large size and in good health are classified as *good*;
 - (2) Fair Trees of reasonable form, with few or no visible defects or health problems are classified as being *fair*;
 - (3) Poor Trees that are of poor form, badly damaged or clearly suffering from decay, dying back or the effects of very heavy vine growth are classified as *poor*.

- (H) Amenity Value: The Amenity Value rating is the intrinsic value of each tree derived from the combination of the tree's health and form, cultural significance and the economic value contributed to the property owner/community. The following ratings are developed in conjunction with 'Development Bureau Technical Circular (Works) No.4/2020 Tree preservation'.
 - (1) High Trees included in the Register of Old and Valuable Trees
 (OVT) under the Works Branch of Development Bureau
 OR similar trees potentially registrable under the same
 criteria OR trees of particular value as specified under
 lease or property owner's consent
 - (2) Moderate Non-invasive, healthy trees with fair health and form which contribute to the local greenery and have a fair chance of surviving and growing if optimal conditions are favored
 - (3) Low Trees with poor health and form or with declining conditions OR invasive species which can potentially threaten other native species OR hazardous trees causing public safety concerns

Photographic record in JPEG format showing the overall view from the trunk base up to the canopy of each surveyed tree shall be attached at the end of the tree survey report.

All surveyed trees shall be marked on Tree Survey Plans with their tree ID.

The biographical information for the trees is as per attached Tree Assessment Schedule. Please refer to **Appendix A**.

The photographic record of individual trees are referred to **Appendix B**.

The location plan of surveyed trees is referred to **Appendix C.**

5) FINDINGS

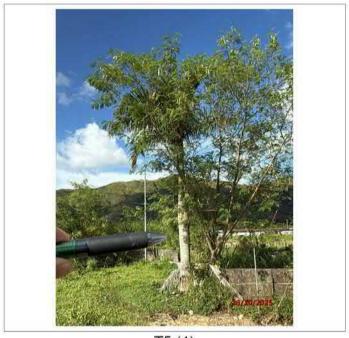
There was total 5 trees observed at the designated working area at LOTS 1512, 1513, 1514, 1515, 1516 AND 1532 IN D.D. 107 AND ADJOINING GOVERNMENT LAND, FUNG KAT HEUNG, YUEN LONG, NEW TERRITORIES. No Old and Valuable Tree (OVT) or rare tree species could be found. No tree failure was observed.

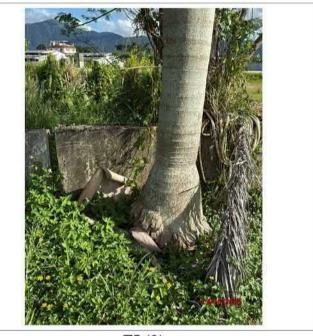
Most trees were found serve leaning. It is believed that the recent tilt was caused by a previous typhoon.


Tree survey schedule

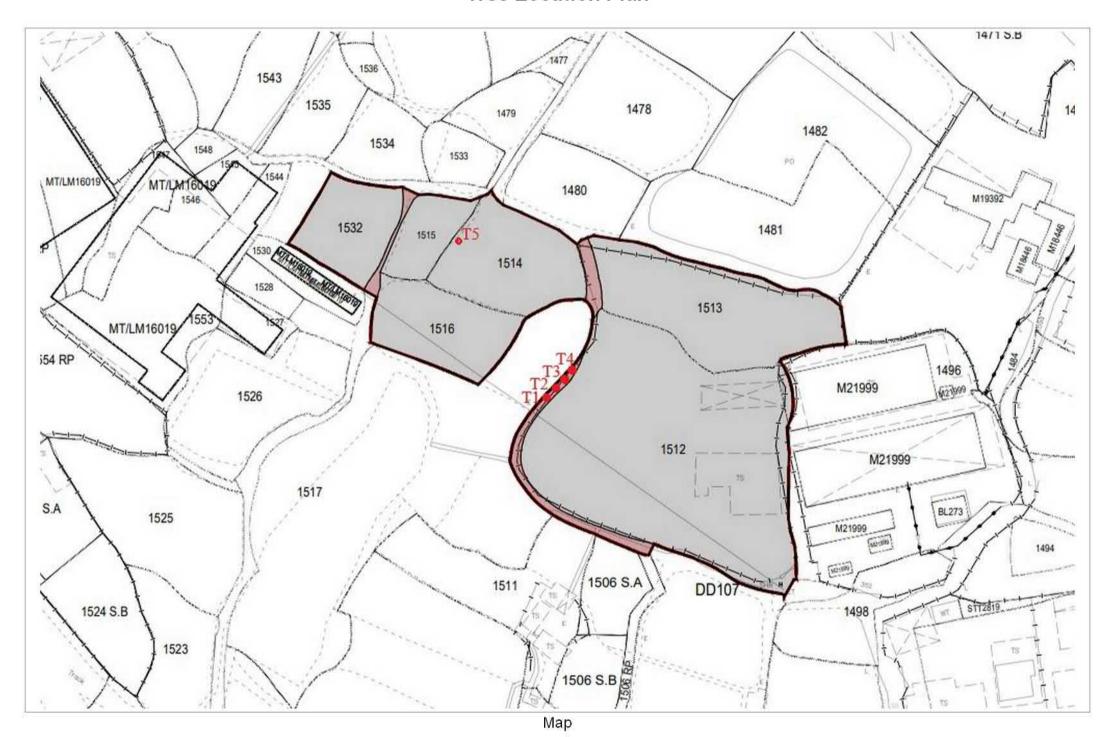
Location: LOTS 1512, 1513, 1514, 1515, 1516 AND 1532 IN D.D. 107 AND ADJOINING GOVERNMENT LAND, FUNG KAT HEUNG, YUEN LONG, NEW TERRITORIES Date: 13-Oct-25

	. Species:		Size		Status					
Tree No.			Overall Height(m)	Diameter (mm)	Average Crown Spread (m)	Health Condition (Good, Fair, Poor, Dead)	Form (Good, Fair, Poor)	Amenity Value (High, Medium, Low)	Observable Defects / Damages of Trees	
T01	Ficus benjamina L.	垂葉榕	3	148	2	F	P	L	Crossed with other tree	
T02	Ficus benjamina L.	垂葉榕	3	150	2	F	P	L	Leaning 30, Crossed with other trees	
T03	Ficus benjamina L.	垂葉榕	3	140	2	F	P	L	Leaning 45, Crossed with other trees	
T04	Ficus benjamina L.	垂葉榕	3	142	2	F	P	L	Leaning 60, Crossed with other trees	
T05	Roystonea regia (Kunth) O.F. Cook)	干棕	6	261	3	F	F	M	Crossed with other tree. Restricted root	


Photographic record of trees


Photographic record of trees

Photographic record of trees



T5 (1) T5 (2) T5 (3)

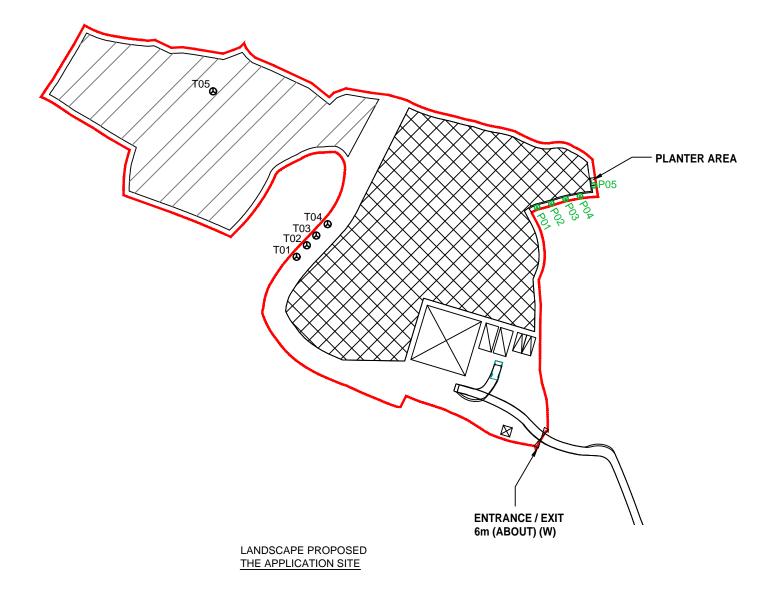
Tree Location Plan

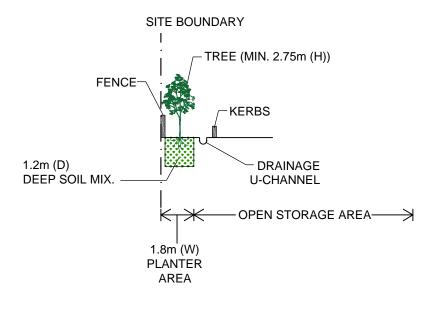
Attachment 4

Landscape Proposal

LANDSCAPE PROPOSAL

APPLICATION SITE AREA : 7,627 m² (ABOUT)


NO. OF EXISTING TREES : 5 (T01 TO T05)


SPECIES OF EXISTING TREES : FICUS BENJAMINA (T01 TO T04), ROYSTONEA REGIA (T05)

NO. OF TREES TO BE FELLED : 5 (T01 TO T05)

: 5 (P01 TO P05) NO. OF NEW TREES TO BE PLANTED : FICUS BENJAMINA SPECIES OF NEW TREES : NOT LESS THAN 2.75M HEIGHT OF NEW TREES SPACING OF NEW TREES : NOT LESS THAN 4M

: 22.3M (L) X 1.8M (W) X 1.2M (D) DIMENSION OF PLANTING AREA

TYPICAL SECTION (INDICATIVE ONLY)

NOTES:

- THE APPLICANT SHALL MAINTAIN THE PLANTS IN GOOD CONDITION DURING THE PLANNING APPROVAL PERIOD.
- THE APPLICANT SHALL REPLACE PLANTS WHICH ARE DYING OR DEAD DURING THE PLANNING APPROVAL PERIOD.
- THE APPLICANT SHALL PROVIDE ADEQUATE IRRIGATION FOR THE PLANTS. 3.

ALL DIMENSIONS ARE IN MILLIMETER EXCEPT OTHERWISE NOTED DO NOT SCALE DRAWING

<u>LEGEND</u>

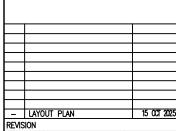
APPLICATION SITE

PRIVATE CARS AND LIGHT

CONSTRUCTION MATERIALS

STRUCTURE

PARKING SPACE (Private Car) 2.5 m (W) X 5 m (L)


L/UL SPACE (Light Goods Vehicles) 3.5 m (W) X 7 m (L)

EXISTING TREE

PROPOSED NEW TREES

drawn DATE 20 AUG 202 checked contract no. project no. DD107

TITLE:

PROPOSED TEMPORARY OPEN STORAGE OF VEHICLES AND CONSTRUCTION MATERIALS WITH ANCILLARY OFFICE AND ASSOCIATED FILLING OF LAND FOR A PERIOD OF 3 YEARS

SITE LOCATION: LOTS 1512, 1513 S.A, 1513 S.B, 1513 RP, 1514 S.A, 1514 S.B, 1514 RP, 1515, 1516 AND 1632 IN D.D. 107 AND ADJOINING GOVERNMENT LAND, FUNG KAT HEUNG, YUEN LONG, NEW TERRITORIES

rev. scale - N.T.S.

drawing title.

LANDSCAPE PROPOSAL

drawing no.

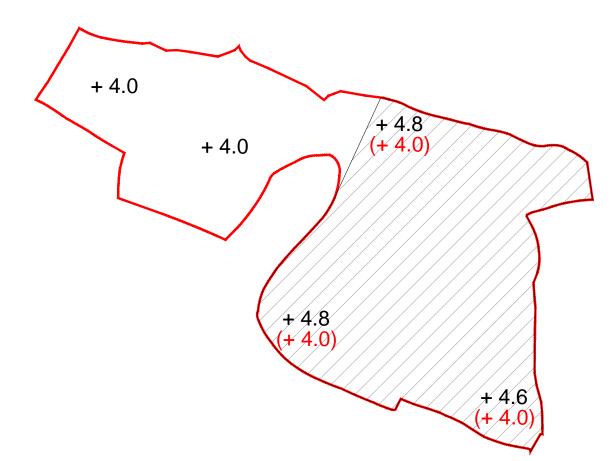
Attachment 5

Replacement Pages of Application Form

Proposed operating hours 擬議營運時間 9:00 a.m. to 7:00 p.m. from Mondays to Saturdays (excluding Sundays and Public Holidays)									
(d)	Any vehicular acce the site/subject buildi 是否有車路通往地 有關建築物?	ing?	 ✓ There is an existing access. (please indicate the street name, where appropriate) 有一條現有車路。(請註明車路名稱(如適用)) Local track leading from Shui Mei Road □ There is a proposed access. (please illustrate on plan and specify the width) 有一條擬議車路。(請在圖則顯示,並註明車路的闊度) 						
(e)									
(ii)	Does the development proposal involve alteration of existing building? 擬議發展計劃是否包括現有建築物的改動? Does the development proposal involve the operation on the right? 擬議發展是否涉及右列的工程?		Please provide details 請提供詳情 (Please indicate on site plan the boundary of concerned land/pond(s), and particulars of stream diversion, the extent of filling of land/pond(s) and/or excavation of land) (請用地盤平面圖顯示有關土地/池塘界線,以及河道改道、填塘、填土及/或挖土的細節及/或範圍) Diversion of stream 河道改道 Filling of pond 填塘 Area of filling 填塘面積 sq.m 平方米 □ About 約 Depth of filling 填生面積 7,600 sq.m 平方米 □ About 約 Depth of filling 填土直積 7,600 sq.m 平方米 □ About 約 Depth of filling 填土厚度 Not more than 0.8 m 米 □ About 約 □ Excavation of land 挖土 Area of excavation 挖土面積 sq.m 平方米 □ About 約 Depth of excavation 挖土面積 sq.m 平方米 □ About 約 Depth of excavation 挖土面積 sq.m 平方米 □ About 約 Depth of excavation 挖土面積 sq.m 平方米 □ About 約						
(iii)	Would the development proposal cause any adverse impacts? 擬議發展計劃會否造成不良影響?	Landscape Imp Tree Felling Visual Impact	交通 Yes 會 □ No 不會 ☑ bly 對供水 Yes 會 □ No 不會 ☑ b排水 Yes 會 □ No 不會 ☑ Abb Yes 會 □ No 不會 ☑ Opes 受斜坡影響 Yes 會 □ No 不會 ☑ pact 構成景觀影響 Yes 會 □ No 不會 ☑						

diameter 請註明盡 幹直徑及 Please	ate measure(s) to minimise the impact(s). For tree felling, please state the number, at breast height and species of the affected trees (if possible) 虚量减少影響的措施。如涉及砍伐樹木,請說明受影響樹木的數目、及胸高度的樹、品種(倘可) refer to the landscape proposal. Temporary Use or Development in Rural Areas or Regulated Areas 臨時用途/發展的許可續期
(a) Application number to which the permission relates 與許可有關的申請編號	A//
(b) Date of approval 獲批給許可的日期	(DD 日/MM 月/YYYY 年)
(c) Date of expiry 許可屆滿日期	(DD 日/MM 月/YYYY 年)
(d) Approved use/development 已批給許可的用途/發展	
(e) Approval conditions 附帶條件	□ The permission does not have any approval condition 許可並沒有任何附帶條件 □ Applicant has complied with all the approval conditions 申請人已履行全部附帶條件 □ Applicant has not yet complied with the following approval condition(s): 申請人仍未履行下列附帶條件: □ Reason(s) for non-compliance: 仍未履行的原因: □ (Please use separate sheets if the space above is insufficient) (如以上空間不足,請另頁說明)
(f) Renewal period sought 要求的續期期間	□ year(s) 年 □ month(s) 個月

Attachment 6
Revised Filling of Land Plan


EXISTING CONDITION OF THE APPLICATION SITE

: 7,627 m² (ABOUT) APPLICATION SITE AREA

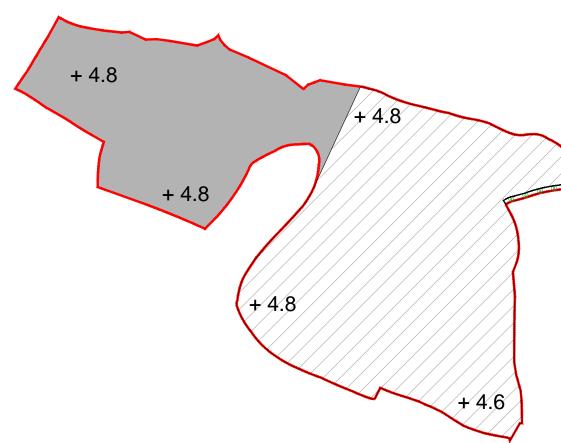
: SOILED GROUND AND CONCRETE EXISTING SITE SURFACE

: +4.0 mPD TO +4.8 mPD EXISTING SITE LEVELS EXISTING HARD-PAVED SURFACE AREA : 4,940 m² (ABOUT)

SITE LEVELS ARE FOR INSICATIVE PURPOSE ONLY

EXISTING SITE LEVEL THE APPLICATION SITE

(INDICATION ONLY)


PROPOSED FILLING OF LAND AREA OF THE APPLICATION SITE

: 7,627 m² (ABOUT) APPLICATION SITE AREA

PROPOSED PLANTER AREA : 27 m² (ABOUT)

TOTAL HARD-PAVED AREA : 7,600 m² (ABOUT) EXISTING HARD-PAVED SURFACE AREA : 4,913 m² (ABOUT) : 2,687 m² (ABOUT) PROPOSED FILLING OF LAND AREA PROPOSED LAND FILLING DEPTH : NOT MORE THAN 0.8 m PROPOSED SITE LEVELS : +4.0 mPD TO +4.8 mPD

: SOIL WITH CONCRETE AND ASPHALT MATERIAL OF FILLING FOR SITE FORMATION

PROPOSED SITE LEVEL THE APPLICATION SITE

ALL DIMENSIONS ARE IN MILLIMETER EXCEPT OTHERWISE NOTED DO NOT SCALE DRAWING

<u>LEGEND</u>

APPLICATION SITE

PROPOSED FILLING OF LAND AREA

HARD PAVING

PROPOSED PLANTER

+00.0 PROPOSED SITE LEVEL +00.0 ORIGINAL SITE LEVEL

PROPOSED NEW TREES

Α	REVI					15	OCT	2025
-	LAYC)UT PLAN				20	AUG	2025
REVISION								
			name					
drawn		CY			D/	- NTE 20	AUG	2025

	name	
drawn	CY	- DATE 20 AUG 202
checked	-	DATE -
approved	-	DATE.
contract n	0. –	
project no	. DD107	

TITLE :

PROPOSED TEMPORARY OPEN STORAGE OF VEHICLES AND CONSTRUCTION MATERIALS WITH ANCILLARY OFFICE AND ASSOCIATED FILLING OF LAND FOR A PERIOD OF 3 YEARS

SITE LOCATION: LOTS 1512, 1513 S.A, 1513 S.B, 1513 RP, 1514 S.A, 1514 S.B, 1514 RP, 1515, 1516 AND 1632 IN D.D. 107 AND ADJOINING GOVERNMENT LAND, FUNG KAT HEUNG, YUEN LONG, NEW TERRITORIES

drawing title.

FILLING OF LAND PLAN

drawing no. PLAN 4

rev. scale

N.T.S.