收件者: 副本: 主旨: 附件:	tpbpd/PLAND Yen PY LEUNG/PLAND; Jet Sze Jet CHEUNG/PLAND Fw: S. 16 Planning Application No. A/YL-KTN/1160 AYL-KTN 1160 20250910.pdf
From: Tang Lok San	
Andrea,	
Thank you for the phone call. Please of and Drainage Proposal. Please of any questions regarding to the ca	
Yours sincerely, Mr. Tang	

2025年09月11日星期四 11:58

寄件日期:

Catchment Area	=	1,317.6 m ²	(About)	C:	0.95 (Covered with Concrete)
	=	1413.4 m^2	(About)	C:	0.25 (Covered with Grassland (heavy soil)
	=	$2,731.0 \text{ m}^2$	(About)		

Calculation of Desgin Runoff of the Proposed Development, For the design of drains inside the site, For Concrete

 $Q_p = 0.278C I A$

A = 1,317.6 m^2 = 1,317.6 m^2 = 0.0013176 km^2

 $t = 0.14465L/H^{0.2}A^{0.1}$ = 0.14465*86.6/80^{0.2}*1317.6^{0.1} = 6.810 min

 $i = 1.111*a/(t+b)^{c}$ = 1.111*505.5/(6.81+3.29)^{0.355} = 247.11271

Q = 0.278*0.95*247*1317.6/1000000= 0.0859898 m³/sec = 5159 lit/min (50 years return period, Table 3a, Corrigendum 2024, SDM) and

(11.1% increase due to climate change)

Catchment Area	=	1,317.6 m ²	(About)	C:	0.95 (Covered with Concrete)
	=	1413.4 m^2	(About)	C:	0.25 (Covered with Grassland (heavy soil)
	=	2,731.0 m ²	(About)		
Calculation of Desgin Run	off of the P	roposed Devel	lopment,		
For the design of drains in		•	d (Heavy Soil)		
	$Q_p = 0.$	278C I A			
	A = 1,	413.4	m^2		
	= 1,	413.4	m^2		
	= 0.	0014134	km²	2	
	t = 0.	14465L/H ^{0.2} A).1		
	= 0.	14465*73/80 ^{0.5}	² *1413.4 ^{0.1}		
	= 5.	701	min	l	
	i = 1.	111*a/(t+b) ^c			(50 years return period, Table 3a,
	= 1.	111*505.5/(5.7	$701+3.29)^{0.355}$		Corrigendum 2024, SDM) and
	= 25	57.53621			(11.1% increase due to climate change)
	Q = 0.	278*0.25*258	*1413.4/100000	00	
	_	0252981	$m^3/$		
	= 15	518	lit/r		
Total Rainfall lit/min	= 51		1518 lit/r		
Catchment	= 66	677	lit/r	nin	
Provide 3'	75UC (1:200)) has enough (capacity to acco	mend the	runoff of the Catchment area

Check 375mm dia. Pipes by Colebrook-White Equation

By Colebrook White Equation

$$V = -\sqrt{(8gDs)} \log \left(\frac{k_s}{3.7D} + \frac{2.51v}{D\sqrt{(2gDs)}} \right)$$

where:

V = mean velocity (m/s)

g = gravitational acceleration (m/s²)

D = internal pipe diameter (m)

k_s = hydraulic pipeline roughness (m) (Table 14, from DSD SDM 2018, concrete pipe)

v = kinematic viscosity of fluid (m²/s) (Transitional flow and water at 15 degree celcius)

s = hydraulic gradient (energy loss per unit length due to friction)

 $g = 9.81 m/s^2$

D = 0.375 m

 $k_s = 0.00015$ m

 $v = 1.14E-06 \text{ m/s}^2$

s = 0.01

Therefore, design V of pipe capacit = 2.0971193 m/s

Q = 0.8VA (0.8 factor for sedimentation)

 $= 0.2106109 \text{ m}^3/\text{s}$

= 12637 lit/min

> 6677 lit/min

Provide 375mm dia. pipe (1:200) has enough capacity to accomend the runoff of the proposed development

Slopes

Guidelines

on Hydraulic Design of U-shaped and

Half-round Channels on

GEO

Technical

Guidance Note

Figure 1 - Chart for the rapid design of U-shaped and half-round channels up to 600 mm

Note:

(1) Refer to the latest CEDD Standard Drawings for the details of U-shaped (U) and half-round (HR) channels.

CATCHPIT WITH TRAP (SHEET 1 OF 2)

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT SCALE 1:20 DRAWING NO.

DATE JAN 1991

C2406 /1

卓越工程 建設香港

We Engineer Hong Kong's Development

ALTERNATIVE TOP SECTION FOR PRECAST CONCRETE COVERS / GRATINGS

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE SHALL BE GRADE 20 /20.
- 3. CONCRETE SURFACE FINISH SHALL BE CLASS U2 OR F2 AS APPROPRIATE.
- 4. FOR DETAILS OF JOINT, REFER TO STD. DRG. NO. C2413.
- 5. CONCRETE TO BE COLOURED AS SPECIFIED.
- UNLESS REQUESTED BY THE MAINTENANCE PARTY AND AS DIRECTED BY THE ENGINEER, CATCHPIT WITH TRAP IS NORMALLY NOT PREFERRED DUE TO PONDING PROBLEM.
- 7. UPON THE REQUEST FROM MAINTENANCE PARTY, DRAIN PIPES AT CATCHPIT BASE CAN BE USED BUT THIS IS FOR CATCHPITS LOCATED AT SLOPE TOE ONLY AND AS DIRECTED BY THE ENGINEER.
- FOR CATCHPITS CONSTRUCTED ON OR ADJACENT TO A FOOTPATH, STEEL GRATINGS (SEE DETAIL 'A' ON STD. DRG. NO. C2405) OR CONCRETE COVERS (SEE STD. DRG. NO. C2407) SHALL BE PROVIDED AS DIRECTED BY THE ENGINEER.
- 9. IF INSTRUCTED BY THE ENGINEER, HANDRAILING (SEE DETAIL 'G' ON STD. DRG. NO. C2405; EXCEPT ON THE UPSLOPE SIDE) IN LIEU OF STEEL GRATINGS OR CONCRETE COVERS CAN BE ACCEPTED AS AN ALTERNATIVE SAFETY MEASURE FOR CATCHPITS NOT ON A FOOTPATH NOR ADJACENT TO IT. TOP OF THE HANDRAILING SHALL BE 1 000 mm MIN. MEASURED FROM THE ADJACENT GROUND LEVEL.
- 10. MINIMUM INTERNAL CATCHPIT WIDTH SHALL BE 1 000 mm FOR CATCHPITS WITH A HEIGHT EXCEEDING 1 000 mm MEASURED FROM THE INVERT LEVEL TO THE ADJACENT GROUND LEVEL. AND, STEP IRONS (SEE DSD STD. DRG. NO. DS1043) AT 300 ℃ STAGGERED SHALL BE PROVIDED. THICKNESS OF CATCHPIT WALL FOR INSTALLATION OF STEP IRONS SHALL BE INCREASED TO 150 mm.
- FOR RETROFITTING AN EXISTING CATCHPIT WITH STEEL GRATING, SEE DETAIL 'F' ON STD. DRG. NO. C2405.
- SUBJECT TO THE APPROVAL OF THE ENGINEER, OTHER MATERIALS CAN ALSO BE USED AS COVERS / GRATINGS.

- FORMER DRG. NO. C2406J. Original Signed 03.2015

REF. REVISION SIGNATURE DATE

CIVIL ENGINEERING AND

DEVELOPMENT DEPARTMENT

CATCHPIT WITH TRAP (SHEET 2 OF 2)

 SCALE 1:20
 DRAWING NO.

 DATE JAN 1991
 C2406 /2

卓越工程 建設香港 We Engineer Hong Kong's Development

Figure 8.10 - Typical Details of Catchpits

Figure 8.11 - Typical U-channel Details

Table 3a – Storm Constants for Different Return Periods of HKO Headquarters

Return Period T (years)	2	5	10	20	50	100	200	500	1000
a	446.1	470.5	485.0	496.0	505.5	508.6	508.8	504.6	498.7
b	3.38	3.11	3.11	3.17	3.29	3.38	3.46	3.53	3.55
С	0.463	0.419	0.397	0.377	0.355	0.338	0.322	0.302	0.286

Table 3d – Storm Constants for Different Return Periods of North District Area

Return Period T (years)	2	5	10	20	50	100	200
a	439.1	448.1	454.9	462.3	474.6	486.6	501.4
b	4.10	3.67	3.44	3.21	2.90	2.67	2.45
С	0.484	0.437	0.412	0.392	0.371	0.358	0.348

Table 13 - Values of n to be used with the Manning equation

Source: Brater, E.F. & King, H.W. (1976)

Surface	Best	Good	Fair	Bad
Uncoated cast-iron pipe	0.012	0.013	0.014	0.015
Coated cast-iron pipe	0.011	0.012*	0.013*	
Commercial wrought-iron pipe, black	0.012	0.013	0.014	0.015
Commercial wrought-iron pipe, galvanized	0.013	0.014	0.015	0.017
Smooth brass and glass pipe	0.009	0.010	0.011	0.013
Smooth lockbar and welded "OD" pipe	0.010	0.011*	0.013*	
Riveted and spiral steel pipe	0.013	0.015*	0.017*	
Vitrified sewer pipe	0.010	0.013*	0.015	0.017
Common clay drainage tile	0.011	0.012*	0.014*	0.017
Glazed brickwork	0.011	0.012	0.013*	0.015
Brick in cement mortar; brick sewers	0.012	0.013	0.015*	0.017
Neat cement surfaces	0.010	0.011	0.012	0.013
Cement mortar surfaces	0.011	0.012	0.013*	0.015
Concrete pipe	0.012	0.013	0.015*	0.016
Wood stave pipe	0.010	0.011	0.012	0.013
Plank flumes - Planed	0.010	0.012*	0.013	0.014
- Unplaned	0.011	0.013*	0.014	0.015
- With battens	0.012	0.015*	0.016	
Concrete-lined channels	0.012	0.014*	0.016*	0.018
Cement-rubble surface	0.017	0.020	0.025	0.030
Dry-rubble surface	0.025	0.030	0.033	0.035
Dressed-ashlar surface	0.013	0.014	0.015	0.017
Semicircular metal flumes, smooth	0.011	0.012	0.013	0.015
Semicircular metal flumes, corrugated	0.0225	0.025	0.0275	0.030
Canals and ditches				
1. Earth, straight and uniform	0.017	0.020	0.0225*	0.025
2. Rock cuts, smooth and uniform	0.025	0.030	0.033*	0.035
3. Rock cuts, jagged and irregular	0.035	0.040	0.045	
4. Winding sluggish canals	0.0225	0.025*	0.0275	0.030
5. Dredged-earth channels	0.025	0.0275*	0.030	0.033
6. Canals with rough stony beds, weeds on earth banks	0.025	0.030	0.035*	0.040
7. Earth bottom, rubble sides	0.028	0.030*	0.033*	0.035
Natural-stream channels				
1. Clean, straight bank, full stage, no rifts or deep pools	0.025	0.0275	0.030	0.033
2. Same as (1) but some weeds and stones	0.030	0.033	0.035	0.040
3. Winding some pools and shoals, clean	0.033	0.035	0.040	0.045
Same as (3), lower stages, more ineffective slope and sections	0.040	0.045	0.050	0.055

Table 13 (Cont'd)

Surface	Best	Good	Fair	Bad
5. Same as (3) some weeds and stones	0.035	0.040	0.045	0.050
6. Same as (4) stony sections	0.045	0.050	0.055	0.060
7. Sluggish river reach, rather weedy or with very deep pools	0.050	0.060	0.070	0.080
8. Very weedy reaches	0.075	0.100	0.125	0.150

Notes: *Values commonly used for design.

	Proposed Structures Details									
	Structures Gross Floor Area (GFA) Height (Not Exceeding) No. of Storey Unit(s)									
Α	Farm Lounge	About 9m x 6m = 54 m^2	4m	1	1					
В	Ancillary Office	About 6m x 6m = 36 m ²	4m	1	1					
	Total	About 90 m ²								
	Private Car Parking Space			3						
	LGV L/UL Space	7m x 3.5m			1					

- *All FSI (includes installation/maintenance/modification/repair work) will be completed by RFSIC. For Emergency Vehicular Access, Please see Appendix 7.1
- *All the enclosed structures are provided with access for emergency vehicles to reach within 30m travel distance from the structures.

Legend:

O 3 kg Portable Dry Powder Type Fire Extinguisher (2 in Total)

Stand-alone Fire Detector (Smoke Detector) (In accordance with the Stand-alone Fire Detector General Guidelines on Purchase, Installation & Maintenance [Sep 2021]) (2 in Total)

· · · Emergency Vehicular Access

Private Car Parking Space

□ LGV L/UL Space

	.GV L/UL Space			
Location:	Appendix 7 DD 107 Lot 1025 (Part)	Proposed Fire Service Installation Plan 擬議消防設備安裝計劃圖	SCALE	
	DD 107 Lot 1026 RP DD 107 Lot 1027 (Part)		1:500	
OZP:	DD 107 Lot 1033 RP DD 107 Lot 1034 RP S/YL-KTN/11	擬議臨時康體文娱場所 (休閒農場) 連附屬設施及相關填土工程(為期5年)	@A4	
District: Zoning:	Kam Tin North Agriculture	Proposed Temporary Place of Recreation, Sports or Culture (Hobby Farm) with Ancillary Facilities and	For Identification Only	Drawing No.:
Date:	10 September 2025	Associated Filling of Land For a Period of 5 Years	For Identification Only	7-01

Appendix 7.1

Location: D.D. 107 Lot 1025 (Part), 1026 RP, 1027 (Part),

OZP: S/YL-KTN/11 **Emergency Vehicular** Access

1033 RP and 1034 RP District: Kam Tin North Zoning: Agriculture

Project:

Proposed Temporary Place of Recreation, Sports or Culture (Hobby Farm) with Ancillary Facilities and Associated Filling of Land For a Period of 5 Years

Width of Mei Fung Road: 3-5m (About) with passing space

Map Legend:

•••• Road Path Site Boundary Drawing No.: 7.1-1

For Identification Only

Date: 10/09/2025