Gold Rich Planners & Surveyors Ltd.

金潤規劃測量師行有限公司

Your Ref.: A/YL-KTS/1084

Our Ref.: P25012/TL25315

19 September 2025

The Secretary

Town Planning Board

By Post and E-mail tpbpd@pland.gov.hk

in the second second

15/F., North Point Government Offices

333 Java Road, North Point, Hong Kong

Dear Sir,

Submission of Further Information (FI)

Proposed Temporary Warehouse (excluding Dangerous Goods Godown)
With Ancillary Office and Associated Filling of Land for a Period of 3 Years in
"Agriculture" Zone, Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B,
1015 RP, 1016 (Part), 1018, 1034 (Part) and 1035 in D.D.113,

Kam Tin, Yuen Long, New Territories
(Application No. A/YL-KTS/1084)

We write to submit FI in response to departmental comment(s) conveyed by the Planning Department for the captioned application.

Yours faithfully,
For and on behalf of
Goldrich Planners & Surveyors Ltd.

Francis Lau

c.c.

DPO/FSYLE, PlanD (Attn.: Mr. Woody LIN / Ms. Anna TONG) By E-mail only

Your Ref.: A/YL-KTS/1084 Our Ref.: P25012

Further Information for Planning Application No. A/YL-KTS/1084 Response-to-Comments

Comments from the Director of Environmental Protection, Environmental Protection Department

Contact person: Mr. Kelvin WONG (Tel.: 2835 1117)

I. Comments	Responses
Please advise the following:whether the proposed use will involve op storage of materials; and	The proposed use will not involve open storage of materials and the proposed

Comments from the District Lands Officer/Yuen Long, Lands Department

Contact person: Mr. WONG Yu Chun (Tel.: 2443 3474)

II.	Comments	Responses
1.	LandsD has reservation on the planning	The applicant will apply to the Lands
	application since there is/are unauthorized	Department for a Short Term Waiver to
	structure(s) and uses on the Lot Nos. 1013, 1015	regularize the structures on the lots.
	S.A, 1015 S.B, 1015 RP, 1016, 1034 and 1035 all	
	in D.D. 113 which is/are already subject to lease	,
	enforcement actions according to case priority.	
	The lot owner(s) should rectify/apply for	
	regularization on the lease breaches as demanded	
	by LandsD.	
	If the planning application is approved, the lot	
	owner(s) shall apply to this office for a Short Term	
	Waiver (STW) to permit the structure(s) erected	
	within the said private lot(s). The application(s)	
	for STW will be considered by the Government in	
	its capacity as a landlord and there is no guarantee	
	that it will be approved. The STW, if approved,	
	will be subject to such terms and conditions	
	including the payment of waiver fee and	
	administrative fee as considered appropriate by	
	LandsD. Besides, given the proposed use is	
	temporary in nature, only erection of temporary	
	structure(s) will be considered.	

Your Ref.: A/YL-KTS/1084 Our Ref.: P25012

Comments from the Chief Engineer/Mainland North, Drainage Services Department

Contact person: Mr. CHAN Yue Lap, Kenneth (Tel.: 2300 1259)

III.	Comments	Responses			
1.	Please submit drainage proposal for his office	Please see the drainage proposal (Plans 6.1			
	consideration.	& 6.2) with hydraulic calculation for			
		details.			
		,			

1 For Catchment Area A		Ref.		
Area, A	= 2194 m ²			
Average slope, H	= 0.1 m per 100m			
Distance on the line of natural flow, L				
Time of concentraction, t _o	= 0.14465L / (H ^{0.2} A ^{0.1}) = 0.14465 (22) / (0.1^0.2*2194^0.1) = 2.3 min	SDM 7.5.2 (d)		
	2.0 11111			
2 For Proposed UC in Catchment A	Area A			
F==	. To			
Ground level (mPD) 19.	om To .40 19.20			
	.67 18.07			
				
Width of u-channel, w	= 350 mm			
Length of u-channel, L_c				
Depth of vertical part of u-channel, d				
Gradient of u-channel, S _f	= (18.67-18.07)/119.4 = 0.005			
	2			
Cross-Section Area, a				
	= 0.382 m ²			
Wetted Perimeter, p	$= \pi r + 2 d = 3.14 \times 175 + 2 \times 955$			
	= 2.460 m	0011001		
Hydralic radius, R		SDM 8.2.1		
	= 0.155 m			
3 Use Manning Equation for estima	ting velocity of stormwater			
Take n		SDM Table 13		
Allowable velocity, v	$= R^{1/6}x (RS_f)^{1/2}/n = (0.155)^{1/6} x (0.155 \times 0.005)^{1/2} / 0.016$	SDM Table 12		
	= 1.28 m/s	1 1		
Time of flow, t _f	= 1.6 min			
4 Use "Rational Method" for calcula	tion of design flow			
Design intensity, i	= $a / (t_o + t_f + b)^c$ = $505.5 / (2.3+1.6+3.29)^0.355$ for return period T = 50 years	SDM 4.3.2 Corrigendum 1/2024		
	= 251	SDM Table 3a		
Type of surface	Runoff Coefficient C Catchment Area A (m²) C x A	SDM 7.5.2 (b)		
Flat Glassland(heavy soil)	0.25 0.0 0.0			
Concrete Paving	0.95 2194.0 2084.3 SUM = 2084.3			
	30W - 2004.3			
Upstream flow, Qս	= 0 m ³ /s			
Spottedin now, wi	· · · · · ·			
Design flow O ₂	= $0.278i \Sigma C_i A_i + Q_u$ where A_i is in km ²	SDM 7.5.2 (a)		
	= 0.278 x 251 x 2084.3 / 1000000 + 0	(-,		
	= 0.145 m ³ /s			
Allowable flow, Q _a	= axv			
, ,	$= 0.382 \times 1.28$			
	= 0.490 m ³ /s			
	> Q _d (O.K.)			
Reference was made to Stormwater Dr	rainage Manual (SDM) by DSD			
Hydraulia Calculation Goldrich Pla				
Scale: NA	HVUTAUHC CAICHIAHUH	yors Ltd.		
I.c.	ots 1012 S.B. 1012 S.C. 1013 1014 RP 1015 S.A. 1015 S.B. 1015 RP			
	16 (Part), 1018, 1034 (Part) and 1035 in D.D.113, Kam Tin, Yuen Long,	ige 1		
September 2023	New Territories (P2	5012)		

1 For Catchment Area B		Ref.		
Area, A	$A = 457 \text{ m}^2$			
Average slope,				
Distance on the line of natural flow,	L = 12 m			
Time of concentraction,	$t_o = 0.14465 L / (H^{0.2}A^{0.1}) = 0.14465 (12) / (0.1^0.2*457^0.1)$ = 1.5 min	SDM 7.5.2 (d)		
0 For Brown and HO in October and	A Assa D			
2 For Proposed UC in Catchmen	t Area B			
	From To			
	19.20 19.20 18.28 18.07			
Invert level (mPD)	<u>18.28 </u>			
Width of u-channel,	w = 350 mm			
Length of u-channel,				
Depth of vertical part of u-channel,				
Gradient of u-channel,	$S_f = (18.28-18.07)/42.5 = 0.005$			
Cross Socian Area	$a = 0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 175^2 + 350 \times 955$			
Cross-Section Area, a	$a = 0.5 \pi 1 + W 0 = 0.5 \times 3.14 \times 175^{\circ} 2 + 350 \times 955$ $= 0.382 \text{ m}^2$			
Wetted Perimeter, _I				
vvolted i chineter, i	= 2.460 m			
Hydralic radius, I		SDM 8.2.1		
	= 0.155 m			
3 Use Manning Equation for estin	nating velocity of stormwater			
Talaa	0.040 for records lived sharmals.	CDM Table 42		
Take ı		SDM Table 13		
Allowable velocity, v	$V = R^{1/6}x (RS_f)^{1/2}/n = (0.155)^{1/6}x (0.155 \times 0.005)^{1/2} / 0.016$ = 1.27 m/s	SDM Table 12		
Time of flow, t				
4 Use "Rational Method" for calcเ	ulation of design flow			
Design intensity,	$i = a / (t_o + t_f + b)^c$ = 505.5 / (1.5+0.6+3.29)^0.355 for return period T = 50 years = 279	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a		
Type of surface	Runoff Coefficient C Catchment Area A (m²) C x A	SDM 7.5.2 (b)		
Flat Glassland(heavy soil)	0.25 0.0 0.0	ODM 7.0.2 (b)		
Concrete Paving	0.95 457.0 <u>434.2</u>			
	SUM = 434.2			
Ut	$Q_{11} = 0 \text{ m}^3/\text{s}$			
Upstream flow, 0	∠u − 0 III /5			
Design flow, 0	$Q_d = 0.278i \Sigma C_j A_j + Q_u$ where A_j is in km ² = 0.278 x 279 x 434.15 / 1000000 + 0 = 0.034 m ³ /s	SDM 7.5.2 (a)		
Allowable flow, 0	= 0.382 x 1.27			
	= 0.486 m ³ /s			
	> Q _d (O.K.)			
* Reference was made to Stormwater Drainage Manual (SDM) by DSD				
Scale: NA Hydraulic Calculation Goldrich Plan				
Scale: NA Hydraulic Calculation Surveyors 1				
	Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B, 1015 RP, 1016 (Part), 1018, 1034 (Part) and 1035 in D.D. 113, Kam Tin, Yuen Long	2		
September 2025 1016 (Part), 1018, 1034 (Part) and 1035 in D.D.113, Kam Tin, Yuen Long, New Territories (P25012)				
	New Territories (F2501	4)		

1 For Connection between CF	4 and CP11	Ref.		
Area Average slope Distance on the line of natural flow				
Time of concentraction	$t_o = 0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (0) / (0.1^0.2^00.1)$ = 0.0 min	SDM 7.5.2 (d)		
2 For Proposed Pipe after CP	4			
Size(Diameter Length of Pipe Length of Pipe Design the pipe to 9/10 ful Area of ventilated portion $\frac{1}{2}$ r ² θ - $\frac{1}{2}$ r ² sin(θ θ - sin(θ	by the second s			
Area	$A = 0.9 \pi r^2$ = 0.9 x 3.14 x 350^2 = 0.346 m ²	SDM 8.2.1		
Wetted Perimete Hydralic radius	$P = 2 \pi r - r \theta = 1629 \text{ mm}$ $R = A/P$ 212.6 mm			
3 Use Manning Equation for e	stimating velocity of stormwater			
Take	S = 1: 200 S = 0.016 for concrete lined channels:- S = 0.016 for concrete lined channels:- S = 0.016 for concrete lined channels:-	SDM Table 13 SDM Table 12		
Time of flow	$t_{\rm f} = 0.06 {\rm min}$			
4 Use "Rational Method" for calculation of design flow				
	$i = a / (t_o + t_f + b)^c$ = 505.5 / (0.0+0.06+3.29)^0.355 for return period T = 50 years = 329	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a		
Type of surface Flat Glassland(heavy soil) Concrete Paving Macadam Roadways Wooded Areas Upstream flow	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SDM 7.5.2 (b)		
Design flow	$Q_d = 0.278i \Sigma C_i A_j + Q_u$ where A_j is in km ² = 0.278 x 329 x 0 / 10000000 + 0.179 = 0.179 m ³ /s	SDM 7.5.2 (a)		
Allowable flow,	$Q_a = a \times v$ = 0.3974 x 1.35 = 0.571 m ³ /s			
> Q _d (O.K.) Reference was made to Stormwater Drainage Manual (SDM) by DSD				
Goldrich Planners &				
Scale: NA	Hydraulic Calculation Surveyors	Walter and the State of the Country		
September 2025	Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B, 1015 RP, 1016 (Part), 1018, 1034 (Part) and 1035 in D.D.113, Kam Tin, Yuen Long, New Territories (P2501)			

1 For Catchment Area C		Ref.		
Area	$A = 3325 \text{ m}^2$			
Average slope				
Distance on the line of natural flow				
Time of concentraction	$t_o = 0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (25) / (0.1^0.2*3325^0.1)$ = 2.5 min	SDM 7.5.2 (d)		
2 For Proposed UC in Catchme	nt Area C			
	From To			
Ground level (mPD)	19.40 19.20			
Invert level (mPD)	19.05 18.04			
Width of u-channel	w = 350 mm			
Length of u-channel				
Depth of vertical part of u-channel				
	$S_f = (19.05-18.04)/203 = 0.005$			
Cross-Section Area				
W. II. 15	$= 0.393 \text{ m}^2$			
Wetted Perimeter				
Hydralic radius	= 2.520 m R = a/p	SDM 8.2.1		
Hydralic radius	= 0.156 m	ODW 0.2.1		
3 Use Manning Equation for est				
	n = 0.016 for concrete lined channels:-	SDM Table 13		
Allowable velocity	$V = R^{1/6}x (RS_f)^{1/2}/n = (0.156)^{1/6}x (0.156 \times 0.005)^{1/2} / 0.016$	SDM Table 12		
Time of flow	$\begin{array}{lll} = & 1.28 \text{ m/s} \\ t_f & = & 2.6 \text{ min} \end{array}$			
4 Use "Rational Method" for cal	culation of design flow			
Design intensity	$i = a/(t_o + t_f + b)^c$	SDM 4.3.2		
500	= 505.5 / (2.5+2.6+3.29)^0.355 for return period T = 50 years = 237	Corrigendum 1/2024 SDM Table 3a		
Type of surface	Runoff Coefficient C Catchment Area A (m²) C x A	SDM 7.5.2 (b)		
<u>Type of surface</u> Flat Glassland(heavy soil)	0.25 0.0 0.0	3DIVI 7.3.2 (b)		
Concrete Paving	0.95 3325.0 3158.8 SUM = 3158.8			
Upstream flow,	$Q_{II} = 0 \text{ m}^3/\text{s}$			
	,			
Design flow,	$Q_d = 0.278i \Sigma C_j A_j + Q_u$ where A_j is in km ² = 0.278 x 237 x 3158.75 / 1000000 + 0 = 0.208 m ³ /s	SDM 7.5.2 (a)		
Allowable flow,	= 0.393 x 1.28			
	= 0.502 m ³ /s			
	> Q _d (O.K.)			
Reference was made to Stormwater Drainage Manual (SDM) by DSD				
Scale: NA	Hydraulic Calculation Goldrich Plans	The second second		
September 2025	Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B, 1015 RP, 1016 (Part), 1018, 1034 (Part) and 1035 in D.D.113, Kam Tin, Yuen Long,	4		
	New Territories (P250	12)		

1 For Catchment Area D					Ref.
Area,	A =	221	m^2		
Average slope,			m per 100m		
Distance on the line of natural flow,	L =	10	m		
Time of concentraction,	t _o =		= 0.14465 (10) / (0.1^0.2*)	221^0.1)	SDM 7.5.2 (d)
	_	1.3	min		
2 For Proposed UC in Catchme	nt Area	ı D			
	From	То			
Ground level (mPD)	19.20	19.20			
Invert level (mPD)	18.17	18.04			
Width of u-channel,		350			
Length of u-channel,	- N	25.2			
Depth of vertical part of u-channel,		985			
Gradient of u-channel,	$S_f =$	(18.17-18.04)/25.2	= 0.005		
Cross-Section Area,	a =	$0.5 \pi r^2 + w d$	= 0.5 x 3.14 x 175^2 + 350 x 985	5	
453,000 5 10 650,000 7 3. 10	=	0.393			
Wetted Perimeter,	p =	π r + 2 d	$= 3.14 \times 175 + 2 \times 985$		
	=	2.520	m		SECTION AND A
Hydralic radius,	R =	a/p			SDM 8.2.1
	=	0.156	m		
3 Use Manning Equation for esti	mating	velocity of storm	water		
	n =		for concrete lined channels:-		SDM Table 13
Allowable velocity,	v =	$R^{1/6}x (RS_f)^{1/2}/n$	$= (0.156)^1/6 \times (0.156 \times 0.005)^n$	1/2 / 0.016	SDM Table 12
	=	1.30			
Time of flow,	$t_f =$	0.3	min		
4 Use "Rational Method" for calc	ulation	of design flow			
Design intensity,			9)^0.355 for return period T = 50	years	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a
			2		0014750(1)
Type of surface	<u>ł</u>	Runoff Coefficient C 0.25	Catchment Area A (m ²) 0.0	<u>C x A</u> 0.0	SDM 7.5.2 (b)
Flat Glassland(heavy soil) Concrete Paving		0.25	221.0	210.0	
Concrete Faving		0.95		210.0	
			33111		
Upstream flow,	$Q_u =$	0	m ³ /s		
Source St. Arch					
Design flow,		0.278i Σ C _i A _j + Q _u 0.278 x 287 x 209.99 0.017			SDM 7.5.2 (a)
	0				
Allowable flow,					
		0.393 x 1.3	3,		
	=	0.511	m ⁻ /s		
	> (Q _d (O.K.)			
Reference was made to Stormwate	r Draina	age Manual (SDM) b	y DSD		
Scale: NA		Hydrauli	c Calculation	Goldrich Pla	anners &
Scale. IVA				Surveyor	s Ltd.
			1014 RP, 1015 S.A, 1015 S.B, 1015 RP,	Page	5
September 2025	1016 (Pa		1 1035 in D.D.113, Kam Tin, Yuen Long,	(P250	
		Nev	r Territories	(P230	12)

1 For Connection between CF	11 to existing river	Ref.		
	, A = 0 m ²			
Distance on the line of natural flow	, H = 0.1 m per 100m , L = 0 m			
Time of concentraction	$t_0 = 0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (0) / (0.1^0.2^00.1)$ = 0.0 min	SDM 7.5.2 (d)		
2 For Pipe after Cp11				
Size(Diameter Length of Pipe Design the pipe to 9/10 ful Area of ventilated portion ½ r² θ - ½ r²sin(θ	the second state of the s			
θ	= 1.63 rad = 93.4° (By trial and error)			
Area	$A = 0.9 \pi r^{2}$ $= 0.9 \times 3.14 \times 600^{2}$ $= 1.017 m^{2}$	SDM 8.2.1		
Wetted Perimete Hydralic radius	$P = 2 \pi r - r \theta = 2792 \text{ mm}$ R = A/P			
Trydraiic radius	364.4 mm			
3 Use Manning Equation for e	stimating velocity of stormwater			
	S = 1: 200 n = 0.016 for concrete lined channels:-	SDM Table 13		
	$v = R^{1/6}x (RS_f)^{1/2}/n = (364.4)^{1/6} * (364.4/200)^{1/2} / 0.016$	SDM Table 12		
Time of flow	$\begin{array}{lll} = & 1.65 \text{ m/s} \\ t_{\rm f} = & 0.12 \text{ min} \end{array}$			
4 Use "Rational Method" for calculation of design flow				
,	$i = a / (t_0 + t_f + b)^c$ = 505.5 / (0.0+0.12+3.29)^0.355 for return period T = 50 years = 327	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a		
Type of surface Flat Glassland(heavy soil) Concrete Paving Macadam Roadways Wooded Areas	Runoff Coefficient C Catchment Area A (m²) C x A 0.25 0.0 0.0 0.95 0.0 0.0 0.425 0.0 0.0 0.105 0.0 0.0 SUM = 0.0 0.0	SDM 7.5.2 (b)		
Upstream flow,	$Q_{ij} = 0.404 \text{ m}^3/\text{s}$			
	$Q_d = 0.278i \Sigma C_j A_j + Q_u$ where A_j is in km ² = 0.278 x 327 x 0 / 1000000 + 0.404 = 0.404 m ³ /s	SDM 7.5.2 (a)		
Allowable flow, $Q_a = a \times v$				
$= 0.3974 \times 1.35$ $= 1.678 \text{ m}^3/\text{s}$				
> Q _d (O.K.) Reference was made to Stormwater Drainage Manual (SDM) by DSD				
Scale: NA	Hydraulic Calculation Goldrich Plan Surveyors			
September 2025	Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B, 1015 RP, 1016 (Part), 1018, 1034 (Part) and 1035 in D.D.113, Kam Tin, Yuen Long, New Territories (P2501)			