Gold Rich Planners & Surveyors Ltd.

金潤規劃測量師行有限公司

Your Ref.: A/YL-KTS/1084

Our Ref.: P25012/TL25361

27 October 2025

The Secretary

Town Planning Board

By E-mail tpbpd@pland.gov.hk

15/F., North Point Government Offices

333 Java Road, North Point, Hong Kong

Dear Sir,

Submission of Further Information (FI)

Proposed Temporary Warehouse (excluding Dangerous Goods Godown)
With Ancillary Office and Associated Filling of Land for a Period of 3 Years in
"Agriculture" Zone, Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B,
1015 RP, 1016 (Part), 1018, 1034 (Part) and 1035 in D.D.113,

Kam Tin, Yuen Long, New Territories
(Application No. A/YL-KTS/1084)

We write to submit FI in response to departmental comment(s) conveyed by the Planning Department for the captioned application.

Yours faithfully,
For and on behalf of
Goldrich Planners & Surveyors Ltd.

Francis Lau

Encl.

c.c.

DPO/FSYLE, PlanD (Attn.: Ms. Anna TONG)

IT IN MARKET STREET IN PROCESSOR PROCESSOR OF THE WAY VOLUME....

Your Ref.: A/YL-KTS/1084 Our Ref.: P25012

Further Information for Planning Application No. A/YL-KTS/1084 Response-to-Comments

Comments from the Chief Engineer/Mainland North, Drainage Services Department

Contact person: Mr. Kenneth CHAN (Tel.: 2300 1257)

I.	Comments	Responses
1.	The proposed development site is encroached onto an existing water retention pond for collecting surface runoff from the vicinity during rainfall. The applicant is required to submit a Drainage Impact Assessment (DIA) instead of the drainage proposal to record the existing pond details and address the impacts caused by the proposed development. The drainage impacts should include, but not limited to, the existing natural streams, drainage systems, village drains and ditches in the adjacent areas etc. The DIA should also address how the impacts caused by the proposed development could properly be mitigated. Please refer to the DIA requirement details as stipulated in "DSD Advice Note No.1" for preparation of the assessment.	The Site is the subject of a previous application No. A/YL-KTS/1011 for 'Temporary Place of Recreation, Sports or Culture (Hobby Farm and Fishing Ground), Barbecue Site and Education Centre with Ancillary Eating Place' use, which was approved by the Town Planning Board on 28.2.2025. The pond within the Site is an artificial pond constructed by the applicant in 2024, which was intended for fishing for the hobby farm business (layout plan of the previous application No. A/YL-KTS/1011 is enclosed for reference). The pond is not intended for collecting surface runoff from the vicinity during rainfall. Aerial photos dated 27.2.2023 (before the pond is constructed) and 23.10.2024 (after the pond is constructed) are also enclosed for reference.
2.	Please refer to paragraph 6 of DSD Technical Note No.1 for sizing of the drainage channels.	The proposed sizing of the drainage channels is updated to 400mm UC which is able to collect all the overland flow and the runoff of the subject site. Please refer to the revised drainage proposal (Plan 6.1) and hydraulic calculations for details.
3.	Please take into account the rainfall increase due to climate change etc., as stated in the Stormwater Drainage Manual Corrigendum No. 1/2022 for the design calculation.	Noted. Please refer to the revised hydraulic calculations for details.

DEVELOPMENT PARAMETERS		STRUCTURE	USE	COVERED	GFA	BUILDING
APPLICATION SITE AREA COVERED AREA	:5,381 m² (ABOUT) :950 m² (ABOUT) :4444 m² (ABOUT)	B1	AGRICULTURAL EDUCATION CENTRE AGR ACTIVITIES ROOM WITH RAIN SHEI TER	220m² (ABOUT) 36m² (ABOUT)	220m ² (ABOUT)	6m (ABOUT)(1-STOREY)
ONCOVERED AREA PLOT RATIO SITE COVERAGE	.4,43.1m (ABOUT) :0.2 (ABOUT) :18 % (ABOUT)	8 8 8 3 3 1 E	AGR. ACTIVITIES ROOM WITH RAIN SHELTER REFRESHIMENT KIOSK AND STORAGE OF TOOLS AGR. ACTIVITIES ROOM WITH RAIN SHELTER	36m² (ABOUT) 55m² (ABOUT) 36m² (ABOUT)	36m² (ABOUT) 110m² (ABOUT) 36m² (ABOUT)	am (ABOUT)(1-STOREY) 6m (ABOUT)(2-STOREY) 3m (ABOUT)(1-STOREY)
NO. OF STRUCTURE DOMESTIC GFA NON-DOMESTIC GFA TOTAL GFA	: 10 : NOT APPLICABLE : 1,060 m² (ABOUT) : 1,060 m² (ABOUT)	B6 B7 B8 B9 B10	AGR. ACTIVITES ROOM WITH RAIN SHELTER AGR. ACTIVITIES ROOM WITH RAIN SHELTER BRABEGOLG AREA WITH RAIN SHELTER STITE OFFICE AND STORAGE OF TOOLS ANCILLARY EATING PLACE, WASHROOM AND CHANGING ROOM	36m² (ABOUT) 36m² (ABOUT) 220m² (ABOUT) 55m² (ABOUT) 220m² (ABOUT)	36m² (ABOUT) 36m² (ABOUT) 220m² (ABOUT) 110m² (ABOUT) 220m² (ABOUT)	3m (ABOUT)(1-STOREY) 3m (ABOUT)(1-STOREY) 6m (ABOUT)(1-STOREY) 6m (ABOUT)(2-STOREY) 6m (ABOUT)(1-STOREY)
BUILDING HEIGHT NO. OF STOREY	:3m-6m (ABOUT) :1-2		TOTAL	950 m² (ABOUT)	1,060 m² (ABOUT)	

INGRESS / EGRESS 5m (ABOUT)(W)

CAR PARK

HOBBY FARM AREA

HOBBY FARM AREA

23

HOBBY FARM AREA

R-RICHES PROPERTY CONSULTANTS LIMITED

PROPOSED TEMPORARY PLACE
OF RECREATION, SPORTS OR
CULTURE (HOBBY PARM AND
FISHING GROUND), BARBECUE
SITE, EDUCATION CENTRE WITH
A NOILLARY EATING PLACE FOR
A PERIOD OF 3 YEARS AND
LAND FILLING

- APPLICATION SITE

POND FOR FISHING

99 1 99 1 99 1

HOBBY FARM AREA

메

8

SITE LOCATION
VARIOUS LOTS IN D.D. 113, KAM
TIN, YUEN LONG, NEW
TERRITORIES

_	SITELICATION VARIOUS LOTS I TIN, YUEN TERRITORIES	яте сосатом VARIOUS LOTS IN D.D. 113, КАМ TIN, YUEN LONG, NEW TERRITORIES
	scale 1:800 @ A4	
	DRAWN BY	DATE
ı	NΜ	11.5.2022
	REVISED BY	DATE
	MN	21.7.2022
	APPROVED BY	DATE

PARKING AND LOADING/UNLOADING PROVISIONS NO OF DEDIVATE CAD DADKING SEACE	ONS	ENTRANCE / EXIT 3m (ABOUT)(W)	111
NO. OT TAIVALE CAN TANKING STACE	= -		ø
DIMENSION OF PARKING SPACE	: 5m (L) X 2.5m (W)		

NO. OF L/UL SPACE FOR LIGHT GOODS VEHICLE DIMENSION OF L/UL SPACE

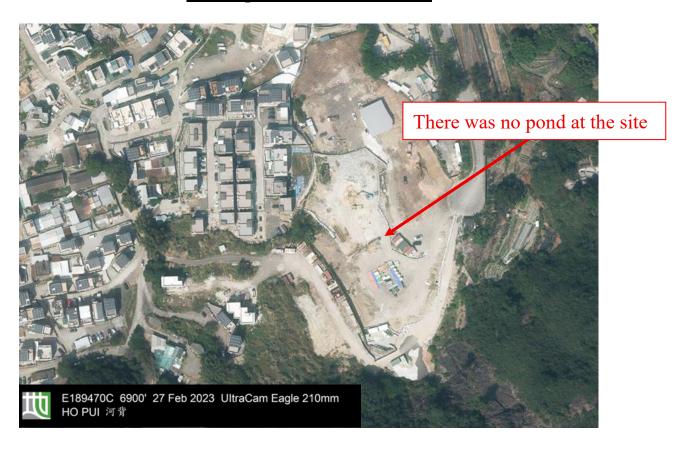
NO. OF L/UL SPACE FOR LIGHT BUS DIMENSION OF L/UL SPACE

: 1 : 8m (L) X 3m (W)

: 1 : 7m (L) X 3.5m (W)

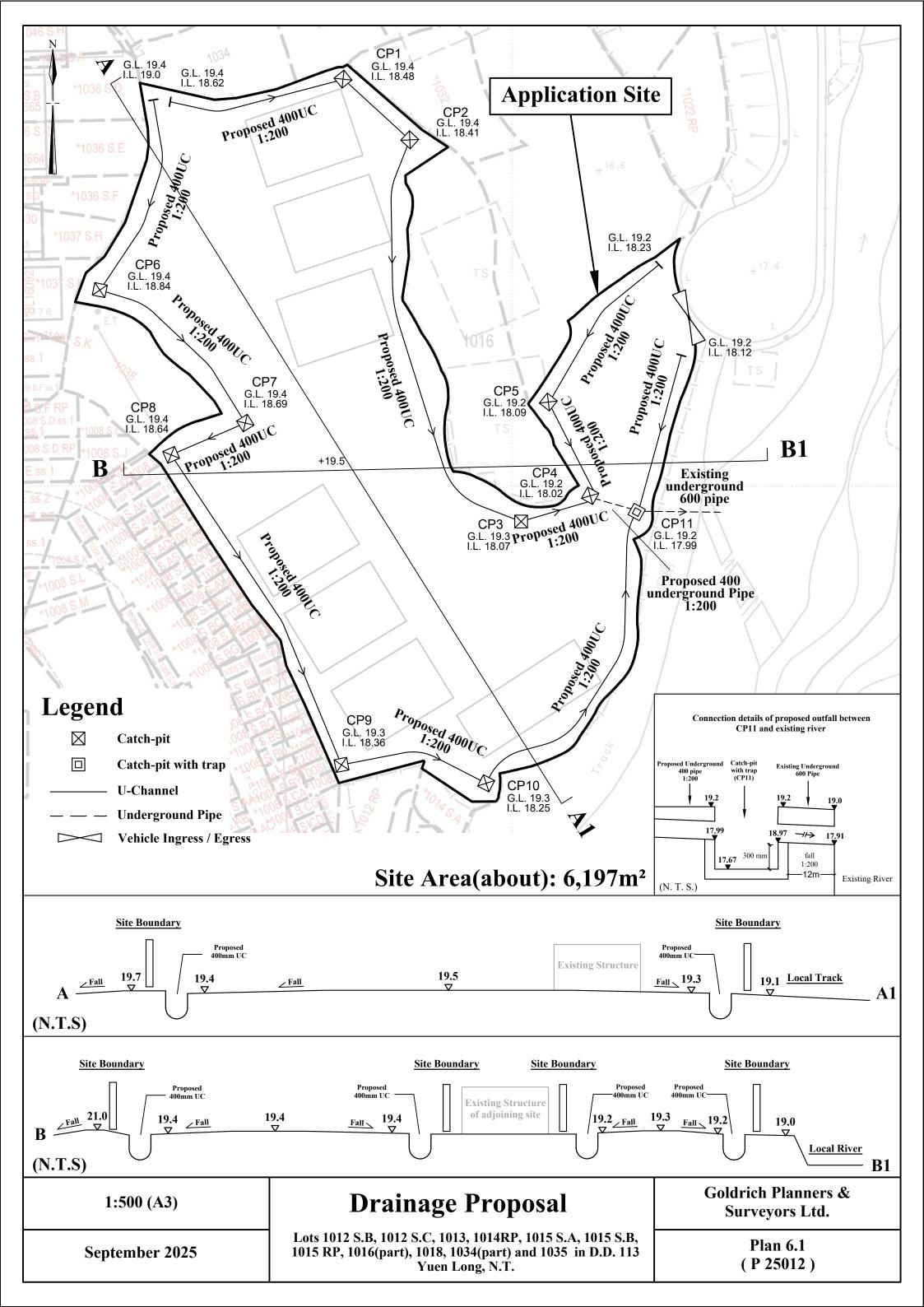
STRUCTURE (ENCLOSED) APPLICATION SITE STRUCTURE (

LEGEND


	DWG. TITLE	E LAYOUT P	
STRUCTURE (CANOPY)	PARKING SPACE	LOADING / UNLOADING SPACE	
()	NΛ		

T PLAN	VER.	100
LAYOUT PLAN	DWG NO.	Plan 1

NGRESS / EGRESS


Your Ref.: A/YL-KTS/1084 Our Ref.: P25012

Aerial photo dated 27.2.2023

Aerial photo dated 23.10.2024

1 For Catchment Area A					Ref.
Are	a A	= 2194 m ²			
Average slop	э, Н	0.1 m p	per 100m		
Distance on the line of natural flow	v, L	22 m			
Time of concentraction	n, t _o	= 0.14465L / (H ^{0.2} A ^{0.1}) = 2.3 mir		2194^0.1)	SDM 7.5.2 (d)
2 For Proposed UC in Catchm	ent Ar	ea A			
	Fron				
Ground level (mPD) Invert level (mPD)	19.4 18.6				
Width of u-channe			n .		
Length of u-channe					
Depth of vertical part of u-channe		980 mm (18.62-18.02)/119.4 =			
Gradient of d-channe	i, Of .	(10.02-10.02)/119.4 =	0.003		
			0.5 x 3.14 x 200^2 + 400 x 98	0	
Wetted Perimete	r, p =	$\pi r + 2d = 1$	3.14 x 200 + 2 x 980		
Hydralic radius	-	2.000 111			SDM 8.2.1
nyuralic radius	s, rx -	•			SDIVI 6.2. I
					-
3 Use Manning Equation for es	timatii	ig velocity of stormwat	er		
	en =		concrete lined channels:-	-	SDM Table 13
Allowable velocity	, v =		(0.176)^1/6 x (0.176 x 0.005)^	1/2 / 0.016	SDM Table 12
Time of 0 and		1.39 m/s			
Time of flow	', t _f =	1.4 min			
4 Use "Rational Method" for ca	culati	on of design flow			
Design intensity	, i =	$a / (t_0 + t_f + b)^c$			SDM 4.3.2
,			0.355 for return period T = 50	years	Corrigendum 1/2024
	=	253			SDM Table 3a
Type of surface		Runoff Coefficient C	Catchment Area A (m ²)	CVA	SDM 7.5.2 (b)
Flat Glassland(heavy soil)		0.25	0.0	<u>C x A</u> 0.0	3DIVI 7.5.2 (D)
Concrete Paving		0.95	2194.0	2084.3	
			SUM =	2084.3	
Upstream flow	0 -	0 m ³ /s			
Opstream now	, Q _u =	0 111 /8	•		
Design flow	. Q _d =	1.16 x 0.278i Σ C _i A _i + Q _u	where A is in km ²		SDM 7.5.2 (a)
		1.16 x 0.278 x 253 x 208			Corrigendum 1/2022
	=	0.170 m ³ /s	3		
	_				
Allowable flow					
	=	0.455 x 1.39 0.632 m ³ /s	·		
	_	0.032 111 /8			- 1
	>	Q _d (O.K.)			I
Potoronos was made to Otenson	or D'	ogo Manual (ODM) II. Do	2D		1
Reference was made to Stormwat	ei Diai	iage ivianuai (SDM) by DS	סט		
0.1.317		Unduantia (Coloulation	Goldrich Pla	nners &
Scale: NA		Hydraulic C	aiculation	Surveyors	17.000
			RP, 1015 S.A, 1015 S.B, 1015 RP,		
September 2025	1016 (5 in D.D.113, Kam Tin, Yuen Long,	Page	APPENDED.
		New Terr	HOHES	(P2501	2)

1 For Catchment Area B		Ref.
Area	$A = 457 \text{ m}^2$	
Average slope Distance on the line of natural flow	H = 0.1 m per 100m L = 12 m	
Time of concentraction	$t_o = 0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (12) / (0.1^0.2*457^0.1)$	SDM 7.5.2 (d)
2 For Proposed UC in Catchme	= 1.5 min	
Ground level (mPD) Invert level (mPD)	From To 19.20 19.20 18.23 18.02	
Width of u-channel	w = 400 mm	
Length of u-channel		
Depth of vertical part of u-channel		
	$S_f = (18.23-18.02)/42.5 = 0.005$	
Cross-Section Area		
Walland Barbardan	= 0.455 m ²	
	$p = \pi r + 2 d = 3.14 \times 200 + 2 \times 980$ = 2.588 m	
Hydralic radius	= 2.588 m R = a/p = 0.176 m	SDM 8.2.1
3 Use Manning Equation for est	mating velocity of stormwater	
Take	n = 0.016 for concrete lined channels:-	SDM Table 13
Allowable velocity	$V = R^{1/6}x (RS_f)^{1/2}/n = (0.176)^{1/6} x (0.176 x 0.005)^{1/2} / 0.016$	SDM Table 12
Time of flow	$=$ 1.38 m/s $t_f =$ 0.5 min	
4 Use "Rational Method" for cal		
Design intensity	i = $a / (t_o + t_f + b)^c$ = 505.5 / (1.5+0.5+3.29)^0.355 for return period T = 50 years = 280	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a
Type of surface	Runoff Coefficient C Catchment Area A (m²) C x A	SDM 7.5.2 (b)
Flat Glassland(heavy soil)	0.25 0.0 0.0	ODIVI 7.0.2 (b)
Concrete Paving	0.95 457.0 434.2 SUM = 434.2	
Upstream flow,	$Q_{u} = 0 \text{ m}^{3}/\text{s}$	
Design flow,	$Q_d = 0.278i \Sigma C_i A_i + Q_u$ where A_i is in km ² = 1.16 x 0.278 x 280 x 434.15 / 1000000 + 0 = 0.039 m ³ /s	SDM 7.5.2 (a) Corrigendum 1/2022
		8
Allowable flow,		
	$= 0.455 \times 1.38$ $= 0.627 \text{ m}^3/\text{s}$	
	0.021 111/0	
	> Q _d (O.K.)	
Reference was made to Stormwate	Drainage Manual (SDM) by DSD	
	Hardwaylia Calandation Goldrid	n Planners &
Scale: NA	II vui aulie Calculation	eyors Ltd.
	Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B, 1015 RP,	
September 2025	(,	age 2 25012)
	(1.	20012)

1 For Connection between CF	4 and CP11	Ref.		
Area Average slope	A = 0 m ² H = 0.1 m per 100m			
Distance on the line of natural flow				
Time of concentraction	$t_o = 0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (0) / (0.1^0.2^00.1)$ = 0.0 min	SDM 7.5.2 (d)		
2 For Proposed Pipe after CP4	·			
Size(Diameter) Length of Pipe Design the pipe to 9/10 ful Area of ventilated portion	= 6 m bore capactity, then			
$\frac{1}{2} r^2 \theta - \frac{1}{2} r^2 \sin(\theta)$	$= 0.1 \pi r^2$			
$\theta - \sin(\theta)$	= 0.2π = 1.63 rad = 93.4° (By trial and error)			
	- 1.55 Tad = 55.4 (By that and chor)			
Area	$A = 0.9 \pi r^2$			
	$= 0.9 \times 3.14 \times 400^{2}$ $= 452160 \text{mm}^{2}$	SDM 8.2.1		
	$= 0.452 \text{ m}^2$			
Wetted Perimeter	$P = 2 \pi r - r \theta = 1861 \text{ mm}$			
Hydralic radius	R = A/P			
	242.9 mm			
3 Use Manning Equation for e	stimating velocity of stormwater			
	S = 1: 200			
	410	SDM Table 13 SDM Table 12		
	= 1.72 m/s	ODIVI TABLE 12		
Time of flow,	t _f = 0.06 min			
4 Use "Rational Method" for ca	alculation of design flow			
Design intensity,		SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a		
Type of surface		SDM 7.5.2 (b)		
Flat Glassland(heavy soil) Concrete Paving	0.25 0.95 0.0 0.0			
Macadam Roadways	0.425 0.0 0.0			
Wooded Areas	0.105			
Upstream flow,	Q _{II} = 0.209 m ³ /s			
Design flow,	*	SDM 7.5.2 (a) Corrigendum 1/2022		
	= 0.209 m ³ /s			
Allowable flow,	$Q_a = a \times v$			
	= 0.45 x 1.72			
	= 0.778 m ³ /s			
> Q _d (O.K.)				
Reference was made to Stormwate	r Drainage Manual (SDM) by DSD			
Scale: NA	Hydraulic Calculation Goldrich Plant Surveyors I	and the second s		
September 2025	Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B, 1015 RP, 1016 (Part), 1018, 1034 (Part) and 1035 in D.D.113, Kam Tin, Yuen Long, New Territories Page 3 (P25012)			

1 For Catchment Area C					Ref.
Area	a, A	= 3325 = 0.1	m^2		
Average slope Distance on the line of natural flow	е, Н	= 0.1			
Distance on the line of natural flov	/, L	= 25	m		
Time of concentraction	ı, t _o	= 0.14465L / (H ^{0.2} A ^{0.1})	= 0.14465 (25) / (0.1^0.2*	3325^0.1)	SDM 7.5.2 (d)
			min		
2 For Proposed UC in Catchme	ent Ar	ea C			
Ground level (mPD)	Fror 19.4				
Invert level (mPD)	19.0				
Width of u-channe	Iw	= 400	mm		
Length of u-channe	i I.	= 203			
Depth of vertical part of u-channe	l, d	= 1010			
Gradient of u-channe	l, S _f	= (19-17.99)/203	= 0.005		
		_			
Cross-Section Area	i, a		= 0.5 x 3.14 x 200^2 + 400 x 10	10	
		0.467			
Wetted Perimeter	100 m	$= \pi r + 2 d$ = 2.648	= 3.14 x 200 + 2 x 1010		
Hydralic radius			101		SDM 8.2.1
1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		= 0.176	m		
2 Use Manning Equation for as	timati	na volocity of storm	water		
3 Use Manning Equation for es	umau	ng velocity of storm	water		
100000000000000000000000000000000000000	en :		for concrete lined channels:-		SDM Table 13
Allowable velocity	, v :		= (0.176)^1/6 x (0.176 x 0.005)^	1/2 / 0.016	SDM Table 12
Time of floor		1.39			
Time of flow	', τ _f :	= 2.4	min		
4 Use "Rational Method" for ca	culati	on of design flow			
Design intensity	, i :	= $a / (t_0 + t_f + b)^c$			SDM 4.3.2
,			9)^0.355 for return period T = 50	years	Corrigendum 1/2024
	•	= 239			SDM Table 3a
Tune of ourfoce		Dunaff Coefficient C	Catabaant Area A (m²)	CVA	CDM 7 E 2 (b)
<u>Type of surface</u> Flat Glassland(heavy soil)		Runoff Coefficient C 0.25	Catchment Area A (m ²) 0.0	<u>C x A</u> 0.0	SDM 7.5.2 (b)
Concrete Paving		0.95	3325.0	3158.8	
-			SUM =	3158.8	
Unates and Garage	0	. ^	m³/s		
Upstream flow	, Q _u :	- 0	111 /3		
Design flow	. Q _d =	= 0.278i Σ C ₂ A ₂ + Q ₁	where A _i is in km ²		SDM 7.5.2 (a)
			3158.75 / 1000000 + 0		Corrigendum 1/2022
81	=	0.243	m³/s		
	_				
Allowable flow					
	=	= 0.467 x 1.39 = 0.647	m³/s		l
	=	0.047	III 70		I
	>	Q _d (O.K.)			
	_	M. Lones	DOD		
Reference was made to Stormwat	er Dra	inage Manual (SDM) b	y มรม	I	
	T	TT 1 1		Goldrich Pla	nners &
Scale: NA		Hydrauli	c Calculation	Surveyor	ACTIVITIES OF THE PROPERTY OF
	Lots	1012 S.B, 1012 S.C, 1013.	1014 RP, 1015 S.A, 1015 S.B, 1015 RP,		
September 2025		(Part), 1018, 1034 (Part) and	1 1035 in D.D.113, Kam Tin, Yuen Long,	Page	
		New	Territories	(P250	12)

1 For Catchment Area D		Ref.
Area, A	$A = 221 \text{ m}^2$	19
Average slope, H Distance on the line of natural flow, L	H = 0.1 m per 100m 10 m	
Time of concentraction, t _o	$_{0} = 0.14465L/(H^{0.2}A^{0.1}) = 0.14465(10)/(0.1^{0.2}221^{0.1})$	SDM 7.5.2 (d)
	= 1.3 min	
2 For Proposed UC in Catchment	Area D	
	From To	
	9.20 19.20 8.12 17.99	
Width of u-channel, w		
Length of u-channel, Lo	c = 25.2 III	
Gradient of u-channel. So	$S_f = (18.12-17.99)/25.2 = 0.005$	
Cross-Section Area, a	= $0.5 \pi r^2 + w d$ = $0.5 \times 3.14 \times 200^2 + 400 \times 1010$	
Wetted Perimeter n	= 0.467 m ² = π r + 2 d = 3.14 x 200 + 2 x 1010	
vveited Fernineter, p	= 2.648 m	
Hydralic radius, R		SDM 8.2.1
	= 0.176 m	
3 Use Manning Equation for estimate	nating velocity of stormwater	
Take n		SDM Table 13
Allowable velocity, v	$= R^{1/6}x (RS_f)^{1/2}/n = (0.176)^{1/6} \times (0.176 \times 0.005)^{1/2} / 0.016$	SDM Table 12
Time of flow, t _f	= 1.41 m/s = 0.3 min	
4 Use "Rational Method" for calcul		
Design intensity, i		SDM 4.3.2
	= 505.5 / (1.3+0.3+3.29)^0.355 for return period T = 50 years = 287	Corrigendum 1/2024 SDM Table 3a
Type of surface	Runoff Coefficient C Catchment Area A (m²) C x A	SDM 7.5.2 (b)
Flat Glassland(heavy soil) Concrete Paving	0.25 0.0 0.0 0.95 221.0 210.0	
Concrete 1 aving	SUM = 210.0	8
Unatroom flore	$_{\rm m} = 0 {\rm m}^3/{\rm s}$	
Upstream flow, Qլ	u - U III 78	
Design flow, Q _c	$_{\rm d} = 0.278i \Sigma C_{\rm i}A_{\rm i} + Q_{\rm u}$ where $A_{\rm i}$ is in km ²	SDM 7.5.2 (a)
	= 1.16 x 0.278 x 287 x 209.95 / 1000000 + 0	Corrigendum 1/2022
	= 0.019 m ³ /s	
Allowable flow, Q _a	a = axv	
	= 0.467 x 1.41	
	= 0.659 m ³ /s	
	> Q _d (O.K.)	
		I
Reference was made to Stormwater D	Drainage Manual (SDM) by DSD	
Coala: NA	Hydraulic Calculation Goldrich Pla	anners &
Scale: NA	Surveyor	s Ltd.
	Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B, 1015 RP, 016 (Part), 1018, 1034 (Part) and 1035 in D.D.113, Kam Tin, Yuen Long.	5
September 2025	016 (Part), 1018, 1034 (Part) and 1035 in D.D.113, Kam Tin, Yuen Long, New Territories (P250)	
	(1200	,

1 For Connection between CP11 to existing river		Ref.
Area Average slope Distance on the line of natural flow	, A = 0 m ² , H = 0.1 m per 100m , L = 0 m	
Time of concentraction	$t_{o} = 0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (0) / (0.1^{0.2}0^{0.1})$ = 0.0 min	SDM 7.5.2 (d)
2 For Pipe after Cp11		
Length of Pipe Design the pipe to 9/10 ful Area of ventilated portior ½ r² θ - ½ r²sin(θ)	bore capactity, then $= 0.1 \text{ of pipe area}$ $= 0.1 \pi r^2$ $= 0.2 \pi$	
Area	A = $0.9 \pi r^2$ = $0.9 \times 3.14 \times 600^2$ = 1017360 mm^2 = 1.017 m^2	SDM 8.2.1
Wetted Perimeter Hydralic radius	$P = 2 \pi r - r \theta = 2792 \text{ mm}$ R = A/P 364.4 mm	
3 Use Manning Equation for estimating velocity of stormwater		
Take	4/6 4/2	SDM Table 13 SDM Table 12
·	t _f = 0.089 min	
4 Use "Rational Method" for calculation of design flow Design intensity, $i = a / (t_o + t_f + b)^c$ SDM 4.3.2		
Design intensity,	= 505.5 / (0.0+0.09+3.29)^0.355 for return period T = 50 years	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a
Type of surface Flat Glassland(heavy soil) Concrete Paving Macadam Roadways Wooded Areas Upstream flow,	0.25 0.95 0.425 0.105 0.0 0.0 0.0 0.0 0.0 SUM = 0.0	SDM 7.5.2 (b)
Design flow,		SDM 7.5.2 (a) Corrigendum 1/2022
Allowable flow,	$Q_a = a \times v$ = 1.02 x 2.25 = 2.294 m ³ /s	
> Q _d (O.K.)		
Reference was made to Stormwater Drainage Manual (SDM) by DSD		
Scale: NA	Hydraulic Calculation Goldrich Plant Surveyors I	
September 2025	Lots 1012 S.B, 1012 S.C, 1013, 1014 RP, 1015 S.A, 1015 S.B, 1015 RP, 1016 (Part), 1018, 1034 (Part) and 1035 in D.D.113, Kam Tin, Yuen Long, New Territories Page 6 (P25012))