

From: Rich Gold <[REDACTED]>
Sent: Monday, January 26, 2026 5:49 PM
To: tpbpd/PLAND <tpbpd@pland.gov.hk>
Cc: Selena Yin Ni SIN/PLAND <[REDACTED]>
Subject: Planning Application No. A/YL-KTS/1090 - Submission of Further Information

Dear Sir/Madam,

Attached please find our further information for the captioned application. Thank you.

Regards,
Janice Tang

--
Goldrich Planners and Surveyors Ltd.
[REDACTED]

Notice to recipient: This e-mail is meant for only the intended recipient of the transmission, and may contain information of Goldrich Planners and Surveyors Ltd. that is confidential and/or privileged. If you received this e-mail in error, any review, use, dissemination, distribution, or copying of this e-mail is strictly prohibited. Please notify us immediately of the error by return e-mail and please delete this message from your system. Thank you in advance for your cooperation.

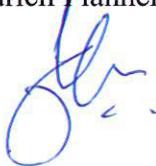
Your Ref.: A/YL-KTS/1090

Our Ref.: P25040/TL26039

26 January 2026

The Secretary
Town Planning Board
15/F., North Point Government Offices
333 Java Road, North Point, Hong Kong

By Post and E-mail
tpbpd@pland.gov.hk


Dear Sir,

Submission of Further Information (FI)

Proposed Temporary Private Vehicle Park (Private Cars Only) for a Period of 3 Years in “Village Type Development” Zone, Lot 343 (Part) in D.D. 113, Kam Tin, Yuen Long, New Territories (Application No. A/YL-KTS/1090)

We write to submit FI in response to departmental comment(s) conveyed by the Planning Department for the captioned application.

Yours faithfully,
For and on behalf of
Goldrich Planners & Surveyors Ltd.

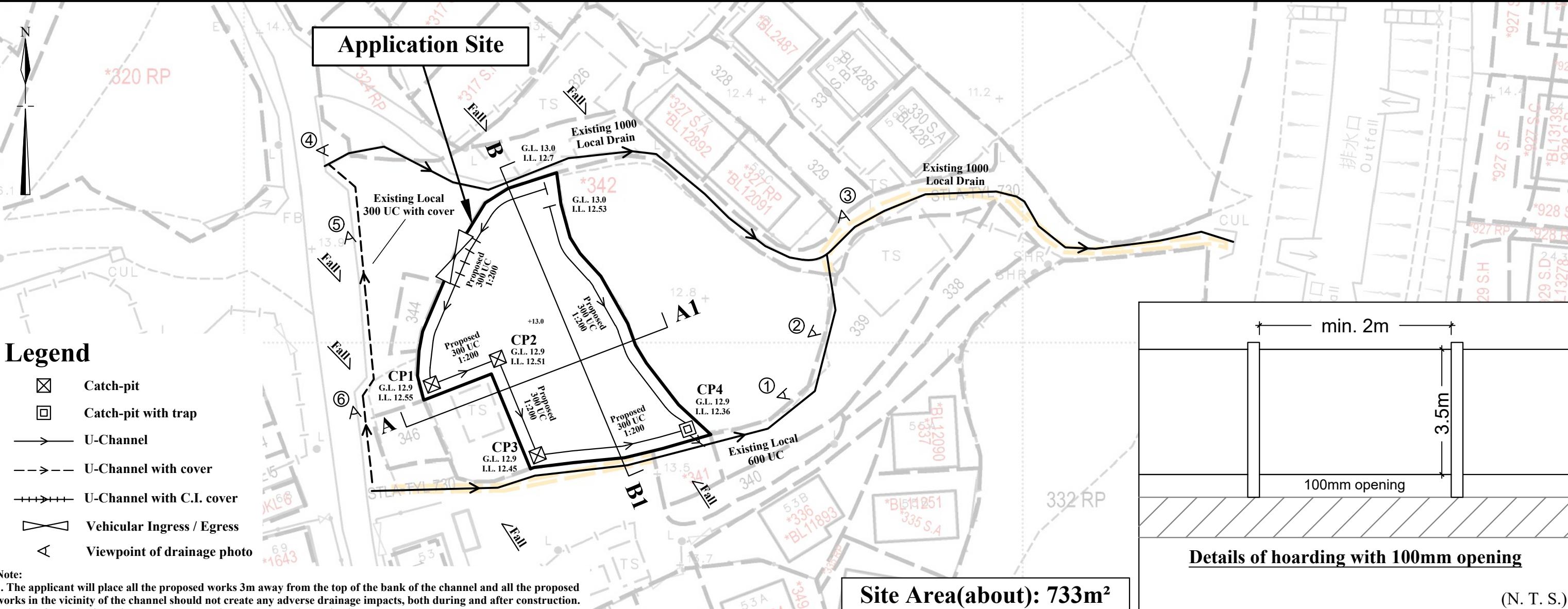
Francis LAU

Encl.

c.c.
DPO/FS&YLE, PlanD (Attn.: Ms. Selena SIN) *By E-mail only*

Further Information for Planning Application No. A/YL-KTS/1090
Response-to-Comments

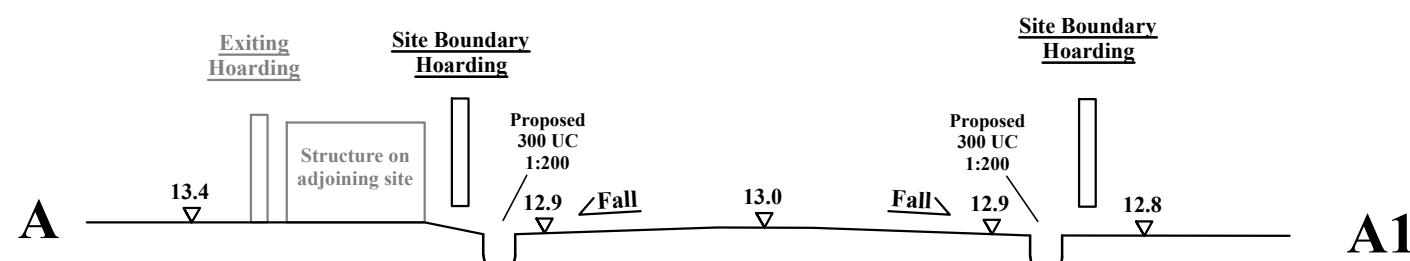
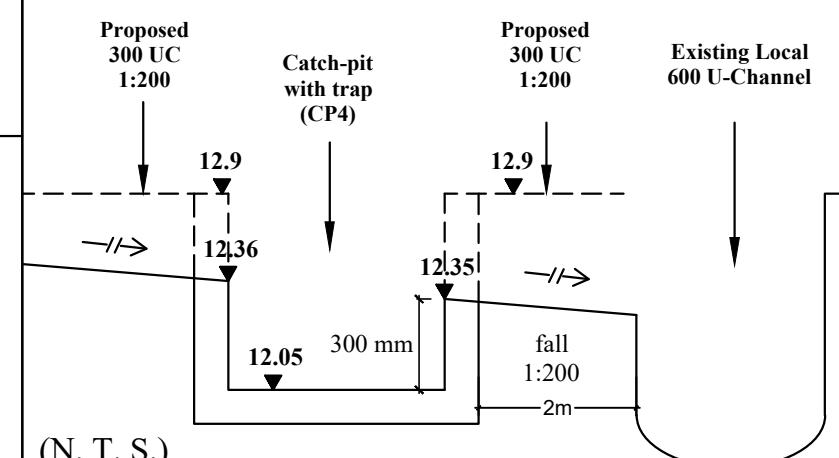
Comments from the Drainage Services Department

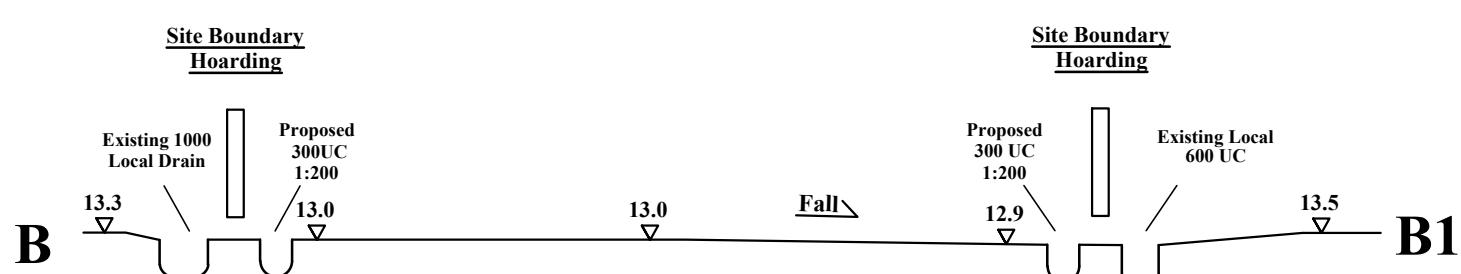

Contact person: Jeff Tse (Tel.: [REDACTED])

I.	Comments	Responses
1.	Referring to item 2 of the R-to-C provided, it is noted that all the proposed works will be placed 3m away from the top of the bank of the channel. Please clearly state the above on the drainage plan (Plan 5.1a) for record.	Noted. Please refer to Plan 5.1a.
2.	Please provide site photos to demonstrate its presence and internal condition of the existing 300mm u-channel located at the western side of the application site for review.	Please refer to Viewpoint Photographs.
3.	The details of the proposed 100mm gap at the toe of the hoarding should be shown on the drainage plan (Plan 5.1a instead of Plan 5.2a) for clarity.	Noted. Please refer to Plan 5.1a.
4.	Please advise if any site formation/levelling works to be carried out under this application. Cross sections showing the existing and proposed ground levels of the captioned site with respect to the adjacent areas should be given.	No site formation/levelling works to be carried out under this application. Please refer to Plan 5.1a.
5.	The existing 600mm u-channel, to which the applicant proposed to discharge the stormwater from the subject site was not maintained by this office. The applicant(s) shall resolve any conflict/disagreement arisen for discharging the runoff from the application site(s) to the proposed discharge point(s). In the case that it is a local village drains, DO/YL should be consulted. Moreover, the applicant(s) should ensure that this drainage system and the existing downstream drains/channelsstreams have adequate capacity to convey the additional runoff from the application site(s). Regular maintenance should be carried out by the applicant(s) to avoid blockage of the system.	Noted.
6.	The development should neither obstruct overland flow and nor adversely affect existing natural streams, village drains, ditches and the adjacent areas, etc.	Noted.

7.	The applicant should resolve any conflict/disagreement with relevant lot owner(s) and seek permission from DLO/YL for laying new drains/channels and/or modifying/upgrading existing ones in other private lots or on Government Land, where required, outside the application site(s).	Noted.
----	---	--------

- END -



Application Site


Details of hoarding with 100mm opening

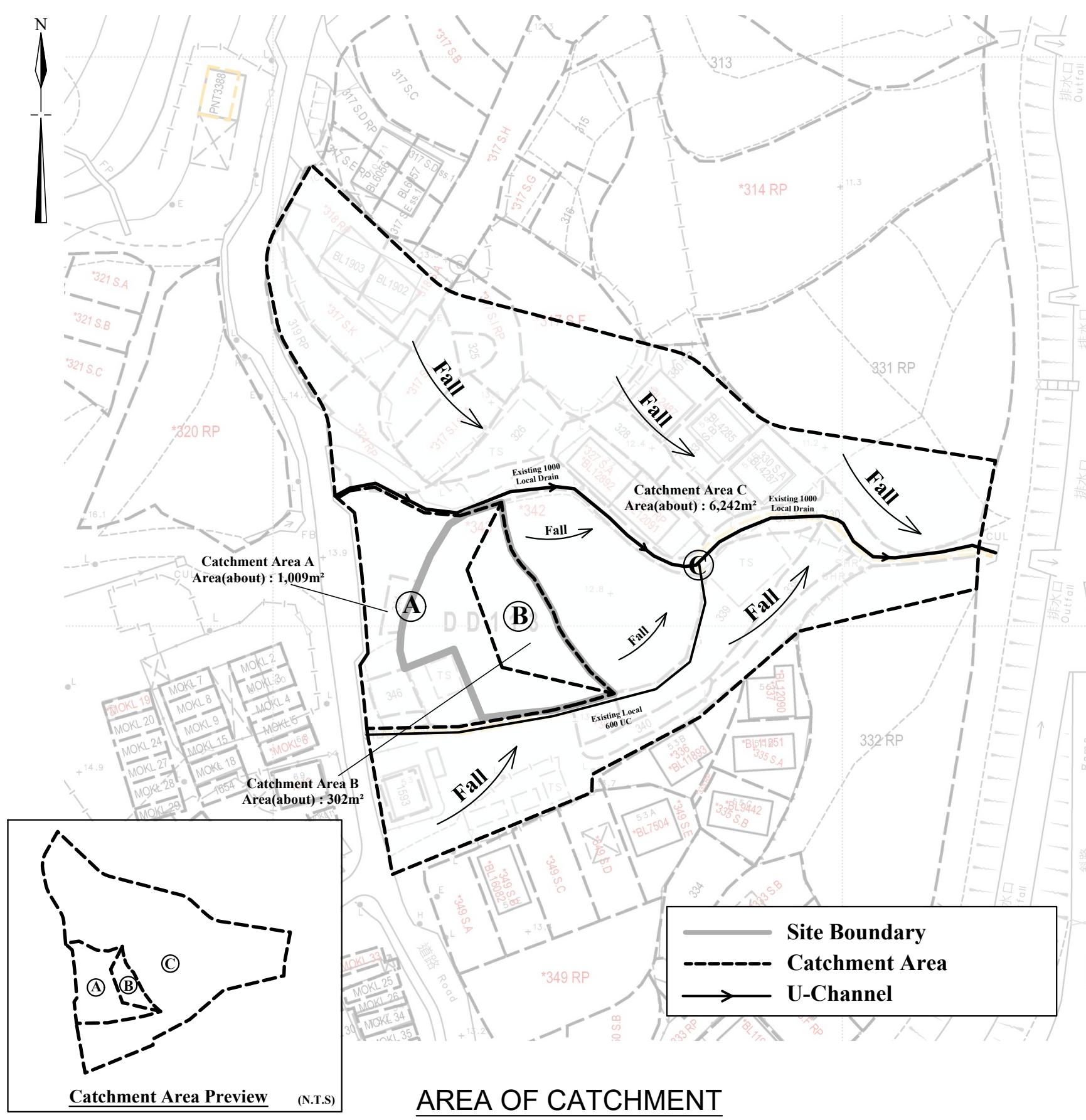
(N. T. S.)

Connection details of proposed outfall between CP4 and existing 600 covered U-channel

(N. T. S.)

(N. T. S.)

1:500 (A3)


Drainage Proposal

November 2025

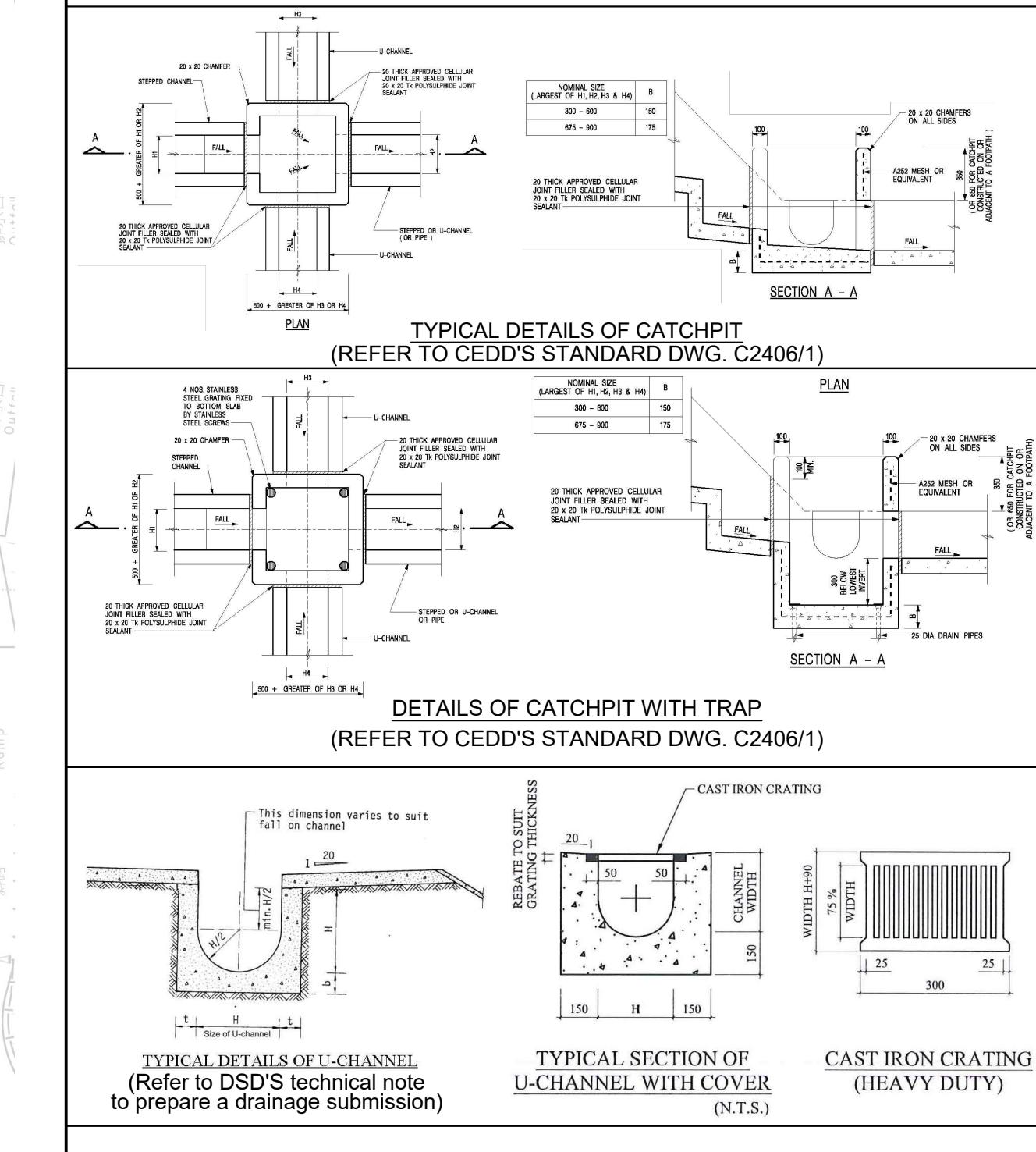
Lot 343(Part) in D.D. 113

Goldrich Planners & Surveyors Ltd.

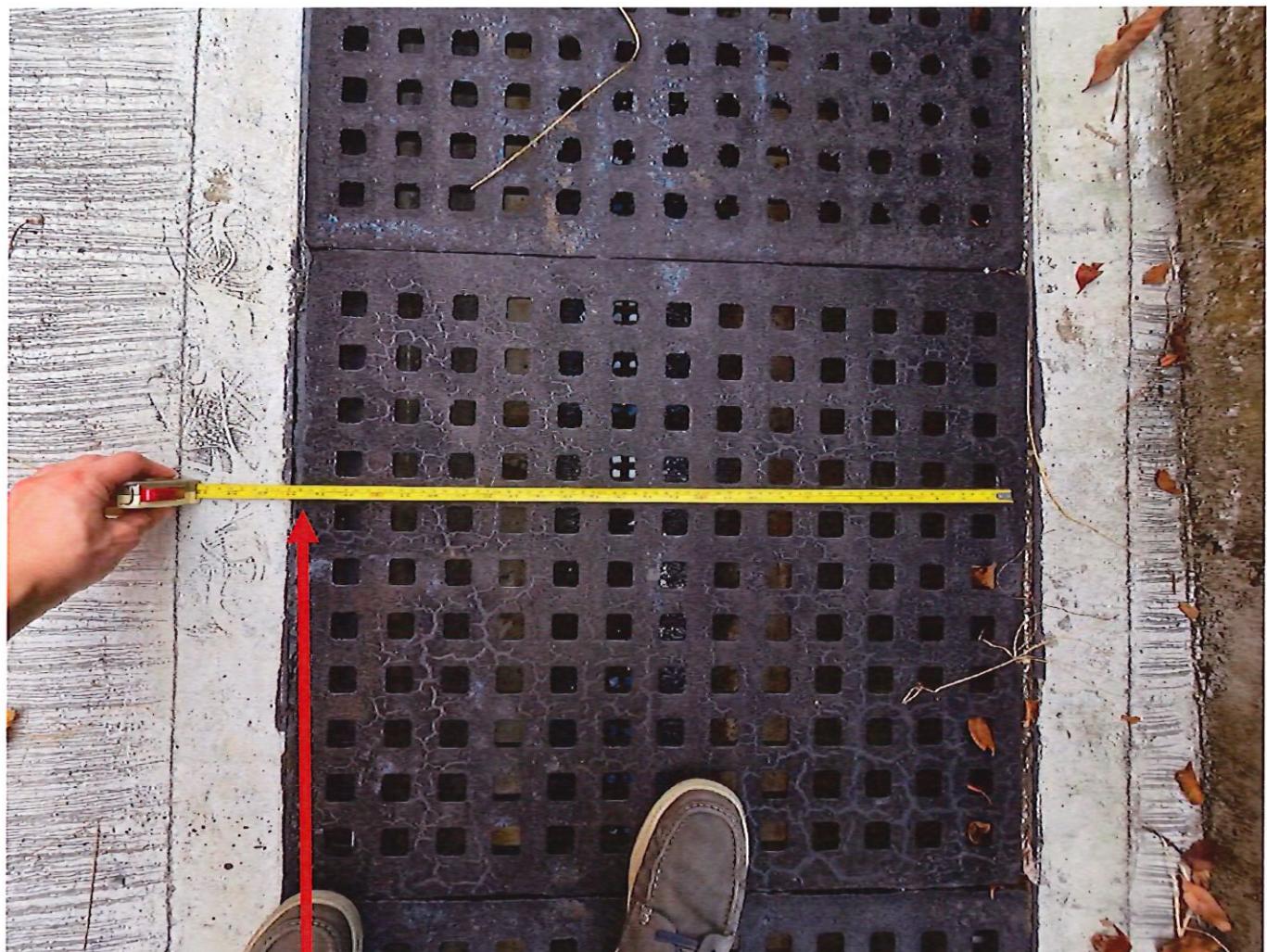
Plan 5.1a
(P 25040)

AREA OF CATCHMENT (N.T.S)

N.T.S

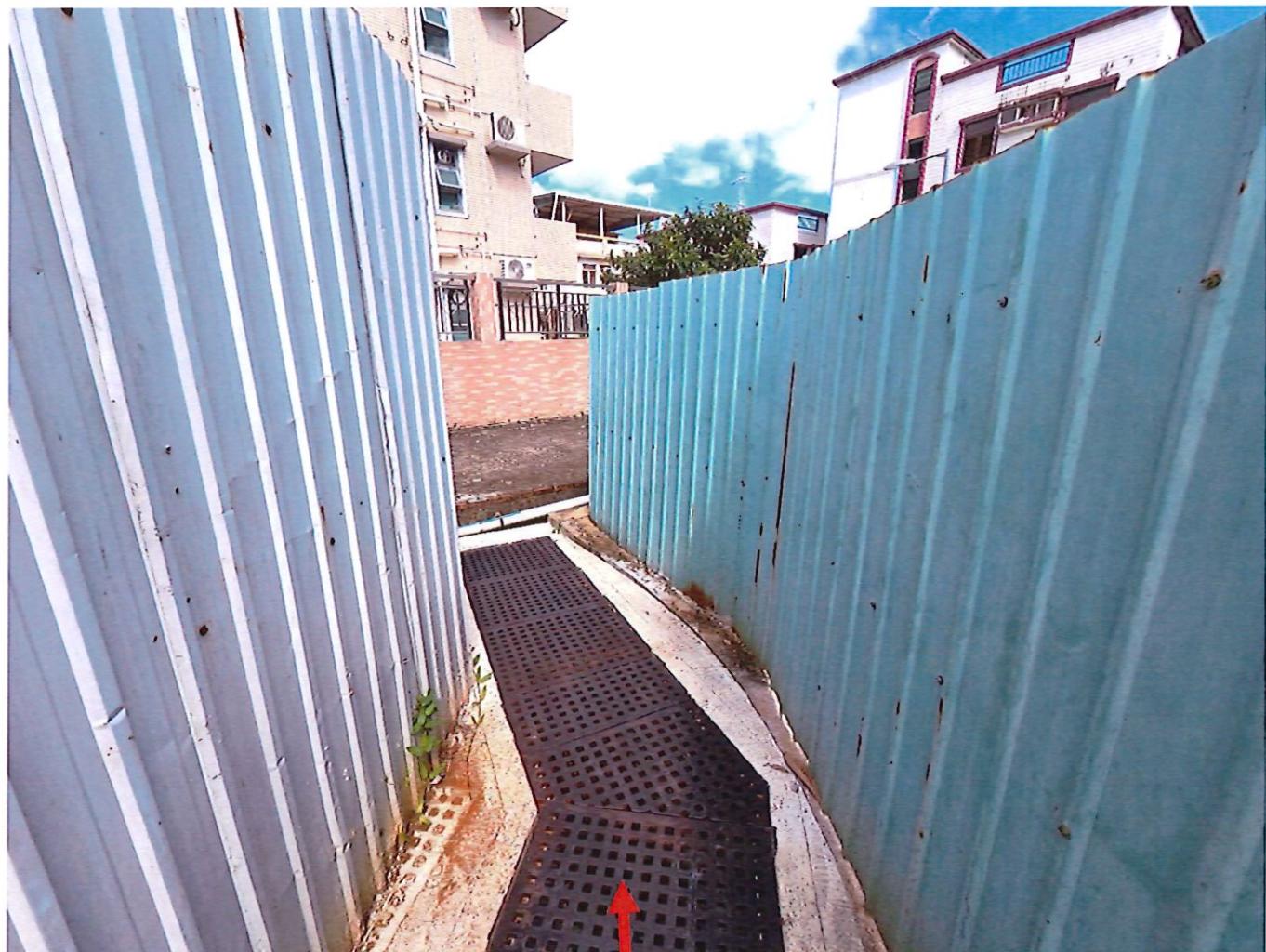

November 2025

Drainage Proposal


Lot 343(Part) in D.D. 113

Goldrich Planners & Surveyors Ltd.

Plan 5.2a (P 25040)



Viewpoint 1

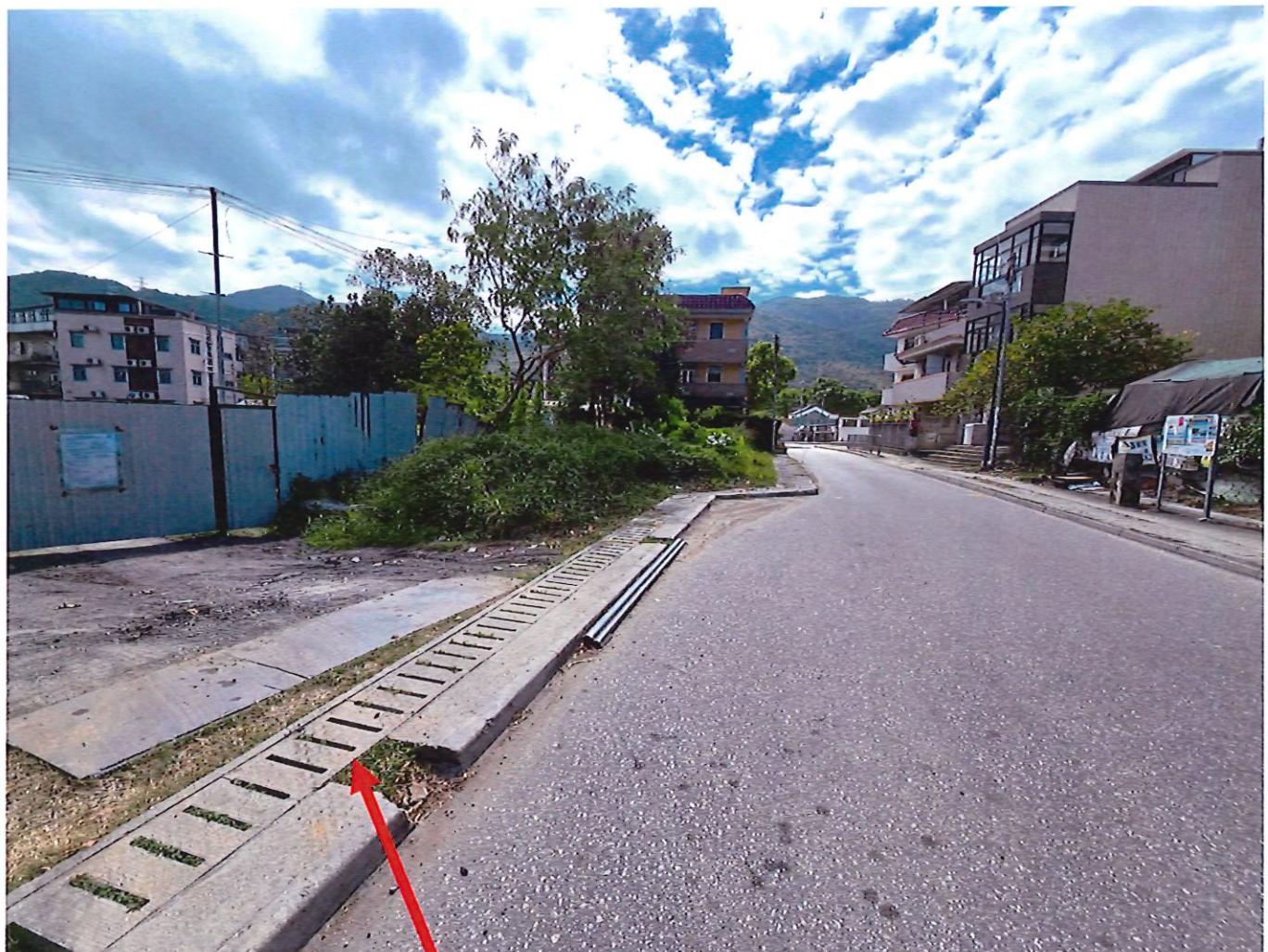
Existing Local 600 UC

Viewpoint 2

Existing Local 600 UC

Viewpoint 3

Existing Local 600 UC



Existing 1000 Local Drain

Viewpoint 4

Viewpoint 5

Existing Local 300 UC with cover

Viewpoint 6

Existing Local 300 UC with cover

1 For Catchment Area A

Area, A =	1009 m ²	Ref.
Average slope, H =	0.1 m per 100m	
Distance on the line of natural flow, L =	18 m	
Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$	$= 0.14465 (18) / (0.1^{0.2} \cdot 1009^{0.1})$	SDM 7.5.2 (d)
	= 2.1 min	

2 For Proposed UC in Catchment Area A

	From	To
Ground level (mPD)	13.00	12.90
Invert level (mPD)	12.70	12.36

Width of u-channel, w =	300 mm
Length of u-channel, L_c =	67.6 m
Depth of vertical part of u-channel, d =	390 mm
Gradient of u-channel, S_f =	$(12.7 - 12.36) / 67.6 = 0.005$
Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 390$
	= 0.152 m ²
Wetted Perimeter, p =	$\pi r + 2d = 3.14 \times 150 + 2 \times 390$
	= 1.251 m
Hydraulic radius, R =	a / p
	= 0.122 m

SDM 8.2.1

3 Use Manning Equation for estimating velocity of stormwater

Take n =	0.016	for concrete lined channels:-	SDM Table 13 SDM Table 12
Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.122)^{1/6} \times (0.122 \times 0.005)^{1/2} / 0.016$		
	= 1.09 m/s		
Time of flow, t_f =	1.0 min		

4 Use "Rational Method" for calculation of design flow

$$\begin{aligned} \text{Design intensity, } i &= a / (t_o + t_f + b)^c \\ &= 505.5 / (2.1 + 1 + 3.29)^{0.355} \text{ for return period T = 50 years} \\ &= 262 \end{aligned}$$

SDM 4.3.2
Corrigendum 1/2024
SDM Table 3a

Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A
Flat Grassland(heavy soil)	0.25	0.0	0.0
Concrete Paving	0.95	1009.0	958.6
		SUM =	958.6

SDM 7.5.2 (b)

$$\text{Upstream flow, } Q_u = 0 \text{ m}^3/\text{s}$$

$$\begin{aligned} \text{Design flow, } Q_d &= 1.16 \times 0.278i \sum C_i A_i + Q_u \text{ where } A_i \text{ is in km}^2 \\ &= 1.16 \times 0.278 \times 262 \times 958.55 / 1000000 + 0 \\ &= 0.081 \text{ m}^3/\text{s} \end{aligned}$$

SDM 7.5.2 (a)
Corrigendum 1/2022

$$\begin{aligned} \text{Allowable flow, } Q_a &= a \times v \\ &= 0.152 \times 1.09 \\ &= 0.166 \text{ m}^3/\text{s} \end{aligned}$$

$$> Q_d \text{ (O.K.)}$$

Reference was made to Stormwater Drainage Manual (SDM) by DSD

Scale: NA

Hydraulic Calculation

Goldrich Planners & Surveyors Ltd.

October 2025

Lot 343 (Part) in D.D. 113, Kam Tin, Yuen Long, New Territories

Page 1
(P25040)

1 For Catchment Area B

Area, A =	302 m ²	Ref.
Average slope, H =	0.1 m per 100m	
Distance on the line of natural flow, L =	10 m	
Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$	= $0.14465 (10) / (0.1^{0.2} \cdot 302^{0.1})$	SDM 7.5.2 (d)
	= 1.3 min	

2 For Proposed UC in Catchment Area B

	From	To
Ground level (mPD)	13.00	12.90
Invert level (mPD)	12.53	12.36

Width of u-channel, w =	300 mm
Length of u-channel, L_c =	33.4 m
Depth of vertical part of u-channel, d =	390 mm
Gradient of u-channel, S_f =	$(12.53 - 12.36) / 33.4 = 0.005$
Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 390$
	= 0.152 m ²
Wetted Perimeter, p =	$\pi r + 2d = 3.14 \times 150 + 2 \times 390$
	= 1.251 m
Hydraulic radius, R =	a / p
	= 0.122 m

SDM 8.2.1

3 Use Manning Equation for estimating velocity of stormwater

Take n =	0.016	for concrete lined channels:-	SDM Table 13 SDM Table 12
Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.122)^{1/6} \times (0.122 \times 0.005)^{1/2} / 0.016$		
	= 1.10 m/s		
Time of flow, t_f =	0.5 min		

4 Use "Rational Method" for calculation of design flow

$$\begin{aligned} \text{Design intensity, } i &= a / (t_o + t_f + b)^c \\ &= 505.5 / (1.3 + 0.5 + 3.29)^{0.355} \text{ for return period } T = 50 \text{ years} \\ &= 284 \end{aligned}$$

SDM 4.3.2
Corrigendum 1/2024
SDM Table 3a

Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A
Flat Glassland(heavy soil)	0.25	0.0	0.0
Concrete Paving	0.95	302.0	286.9
SUM = 286.9			

SDM 7.5.2 (b)

$$\text{Upstream flow, } Q_u = 0 \text{ m}^3/\text{s}$$

$$\begin{aligned} \text{Design flow, } Q_d &= 1.16 \times 0.278i \sum C_i A_i + Q_u \text{ where } A_i \text{ is in km}^2 \\ &= 1.16 \times 0.278 \times 284 \times 286.9 / 1000000 + 0 \\ &= 0.026 \text{ m}^3/\text{s} \end{aligned}$$

SDM 7.5.2 (a)
Corrigendum 1/2022

$$\begin{aligned} \text{Allowable flow, } Q_a &= a \times v \\ &= 0.152 \times 1.1 \\ &= 0.167 \text{ m}^3/\text{s} \end{aligned}$$

$$> Q_d \text{ (O.K.)}$$

Reference was made to Stormwater Drainage Manual (SDM) by DSD

Scale: NA

Hydraulic Calculation

Goldrich Planners & Surveyors Ltd.

October 2025

Lot 343 (Part) in D.D. 113, Kam Tin, Yuen Long, New Territories

Page 2
(P25040)

1 For Connection between CP4 and Existing Local 600 UC with C.I. Cover

Ref.

Area, A =	0 m ²	
Average slope, H =	0.1 m per 100m	
Distance on the line of natural flow, L =	0 m	
Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (0) / (0.1^{0.2} \cdot 0^{0.1})$	SDM 7.5.2 (d)
	= 0.0 min	

2 For Proposed UC in Connection between CP4 and Existing Local 600 UC with C.I. Cover

	From	To
Ground level (mPD)	12.90	12.90
Invert level (mPD)	12.36	12.35

Width of u-channel, w =	300 mm	
Length of u-channel, L_c =	2 m	
Depth of vertical part of u-channel, d =	400 mm	
Gradient of u-channel, S_f =	$(12.36 - 12.35) / 2 = 0.005$	
Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 400$	
	= 0.155 m ²	
Wetted Perimeter, p =	$\pi r + 2d = 3.14 \times 150 + 2 \times 400$	
	= 1.271 m	
Hydraulic radius, R =	a / p	SDM 8.2.1
	= 0.122 m	

3 Use Manning Equation for estimating velocity of stormwater

Take n =	0.016	for concrete lined channels:-	SDM Table 13
Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.122)^{1/6} \times (0.122 \times 0.005)^{1/2} / 0.016$		SDM Table 12
	= 1.09 m/s		
Time of flow, t_f =	0.0 min		

4 Use "Rational Method" for calculation of design flow

$$\begin{aligned} \text{Design intensity, } i &= a / (t_o + t_f + b)^c \\ &= 505.5 / (0 + 0 + 3.29)^{0.355} \quad \text{for return period } T = 50 \text{ years} \\ &= 330 \end{aligned}$$

SDM 4.3.2
Corrigendum 1/2024
SDM Table 3a

Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A
Flat Glassland(heavy soil)	0.25	0.0	0.0
Concrete Paving	0.95	0.0	0.0
SUM =			0.0

$$\text{Upstream flow, } Q_u = 0.107 \text{ m}^3/\text{s}$$

$$\begin{aligned} \text{Design flow, } Q_d &= 1.16 \times 0.278i \sum C_i A_i + Q_u \text{ where } A_i \text{ is in km}^2 \\ &= 1.16 \times 0.278 \times 330 \times 0 / 1000000 + 0.107 \\ &= 0.107 \text{ m}^3/\text{s} \end{aligned}$$

SDM 7.5.2 (a)
Corrigendum 1/2022

$$\begin{aligned} \text{Allowable flow, } Q_a &= a \times v \\ &= 0.155 \times 1.09 \\ &= 0.169 \text{ m}^3/\text{s} \end{aligned}$$

$$> Q_d \text{ (O.K.)}$$

Reference was made to Stormwater Drainage Manual (SDM) by DSD

Scale: NA

Hydraulic Calculation

Goldrich Planners & Surveyors Ltd.

October 2025

Lot 343 (Part) in D.D. 113, Kam Tin, Yuen Long, New Territories

Page 3
(P25040)

1 For Catchment Area C

Area, A =	6242 m ²	Ref.
Average slope, H =	0.1 m per 100m	
Distance on the line of natural flow, L =	60 m	
Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$	= $0.14465 (60) / (0.1^{0.2} \cdot 6242^{0.1})$	SDM 7.5.2 (d)
	= 5.7 min	

2 For Existing 1000 Local Drain in Catchment Area C

	From	To
Ground level (mPD)	12.00	11.50
Invert level (mPD)	11.00	10.71

Width of u-channel, w =	1000 mm	SDM 8.2.1
Length of u-channel, L_c =	58 m	
Depth of vertical part of u-channel, d =	290 mm	
Gradient of u-channel, S_f =	$(11-10.71)/58 = 0.005$	
Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 500^2 + 1000 \times 290$	
	= 0.683 m ²	
Wetted Perimeter, p =	$\pi r + 2 d = 3.14 \times 500 + 2 \times 290$	
	= 2.151 m	
Hydraulic radius, R =	a / p	
	= 0.317 m	

3 Use Manning Equation for estimating velocity of stormwater

Take n =	0.016	for concrete lined channels:-	SDM Table 13 SDM Table 12
Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.317)^{1/6} \times (0.317 \times 0.005)^{1/2} / 0.016$		
	= 2.06 m/s		
Time of flow, t_f =	0.5 min		

4 Use "Rational Method" for calculation of design flow

$$\begin{aligned} \text{Design intensity, } i &= a / (t_o + t_f + b)^c \\ &= 505.5 / (5.7 + 0.5 + 3.29)^{0.355} \text{ for return period T = 50 years} \\ &= 227 \end{aligned}$$

SDM 4.3.2
Corrigendum 1/2024
SDM Table 3a

Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	SDM 7.5.2 (b)
Flat Grassland(heavy soil)	0.25	0.0	0.0	
Concrete Paving	0.95	6242.0	5929.9	
			SUM = 5929.9	

$$\text{Upstream flow, } Q_u = 0.107 \text{ m}^3/\text{s}$$

$$\begin{aligned} \text{Design flow, } Q_d &= 1.16 \times 0.278i \sum C_i A_i + Q_u \text{ where } A_i \text{ is in km}^2 \\ &= 1.16 \times 0.278 \times 227 \times 5929.9 / 1000000 + 0.107 \\ &= 0.542 \text{ m}^3/\text{s} \end{aligned}$$

SDM 7.5.2 (a)
Corrigendum 1/2022

$$\begin{aligned} \text{Allowable flow, } Q_a &= a \times v \\ &= 0.683 \times 2.06 \\ &= 1.404 \text{ m}^3/\text{s} \end{aligned}$$

$$> Q_d \text{ (O.K.)}$$

Reference was made to Stormwater Drainage Manual (SDM) by DSD

Scale: NA

Hydraulic Calculation

Goldrich Planners & Surveyors Ltd.

October 2025

Lot 343 (Part) in D.D. 113, Kam Tin, Yuen Long, New Territories

Page 4
(P25040)