Gold Rich Planners & Surveyors Ltd.

金潤規劃測量師行有限公司

Your Ref.: A/YL-KTS/1101

Our Ref.: P22068A/TL25387

14 November 2025

The Secretary

By E-mail

Town Planning Board

tpbpd@pland.gov.hk

15/F., North Point Government Offices

333 Java Road, North Point, Hong Kong

Dear Sir,

Submission of Further Information (FI)

Temporary Shop and Services (Retail Shop for Hardware Groceries and Construction Materials) with Ancillary Facilities for a Period of 5 Years in "Residential (Group D)" Zone, Lots 670 (Part), 671 (Part), 673 (Part), 674, 675, 676, 677 (Part), 679 (Part) and 680(Part) in D.D. 106 and Adjoining Government Land,

Yuen Long, New Territories
(Application No. A/YL-KTS/1101)

We write to submit FI in response to departmental comment(s) conveyed by the Planning Department for the captioned application.

Yours faithfully,

For and on behalf of

Goldrich Planners & Surveyors Ltd.

Francis Lau

Encl.

c.c.

DPO/FSYLE, PlanD (Attn.: Ms. Anna TONG)

Your Ref.: A/YL-KTS/1101 Our Ref.: P22068A

Further Information for Planning Application No. A/YL-KTS/1101 Response-to-Comments

Comments from Environmental Protection Department

Contact person: Mr. Kelvin WONG (Tel.: 2835 1117)

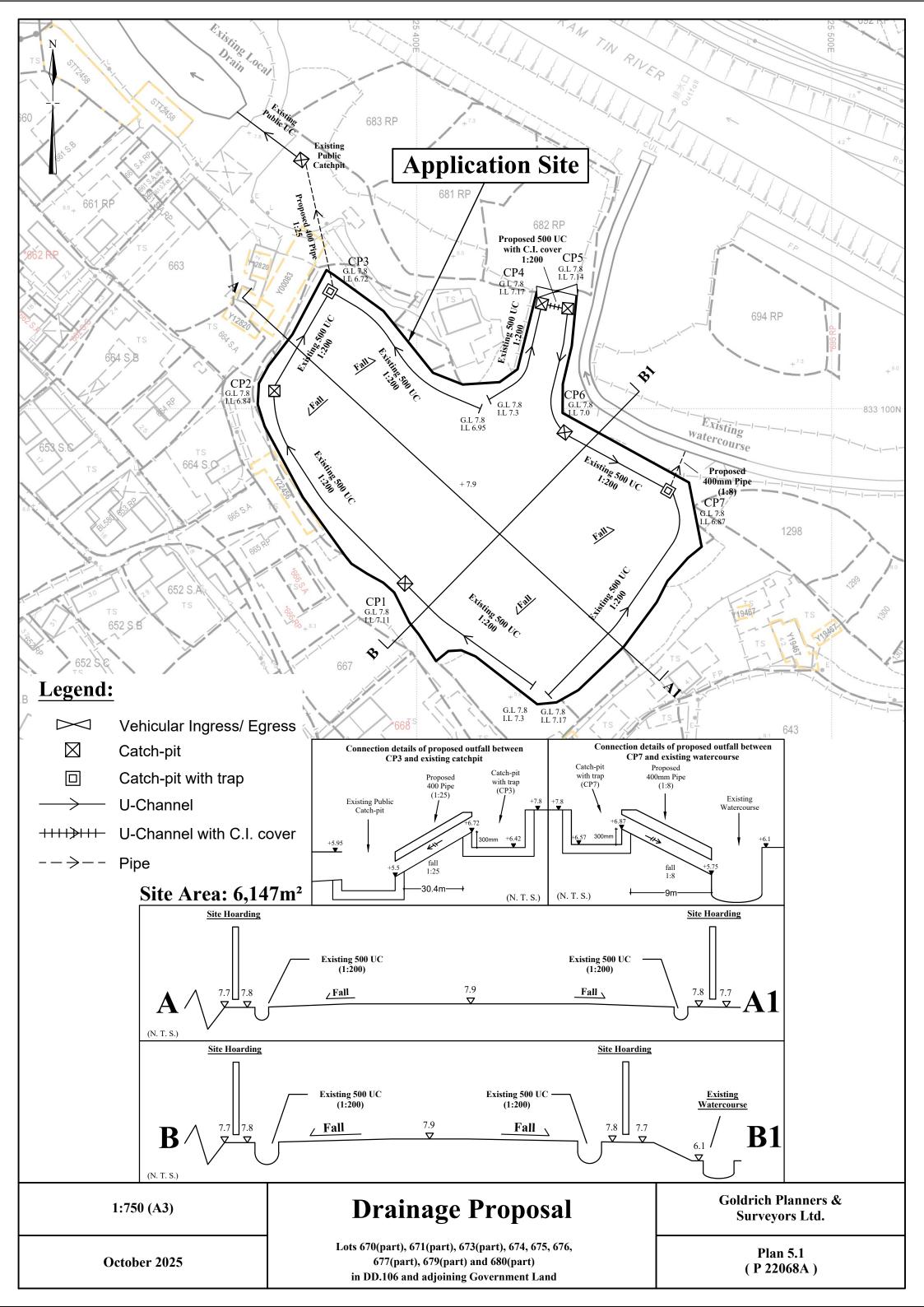
I.	Comments	Responses
1.	Please advise whether the proposed use	No materials of dusty nature will be involved at the
	would involve materials of dusty nature (e.g.,	site.
	cement, earth, pulverized fuel ash,	
	aggregates, silt, stonefines, sand, debris,	
	sawdust and wooden chips).	*

Comments from Drainage Services Department

Contact person: Mr. Kenneth CHAN (Tel.: 2300 1259)

II.	Comments	Responses
1.	We are unable to provide comment on	Please refer to the drainage proposal (Plans 5.1 and
	drainage aspect of the application at this	5.2) and hydraulic calculations for details.
	stage. Comment on drainage aspect will be	
	provided when the drainage proposal as	
	mentioned in paragraph 23 of the planning	
	statement is received.	

1 For Catchment Area A					Ref.
Area Average slope Distance on the line of natural flow	a, A = e, H = /, L =	972 0.1 21	m per 100m		
Time of concentraction	n, t _o = =) = 0.14465 (21) / (0.1^0.2) min	*972^0.1)	SDM 7.5.2 (d)
2 For Existing UC in Catchmen	t Area	A			
Ground level (mPD) Invert level (mPD)	7.80 6.95	To 7.80 6.72	-		
Width of u-channe Length of u-channe		500 45.6	mm m		
Depth of vertical part of u-channe		830			
Gradient of u-channe		(6.95-6.72)/45.6	= 0.005		
Cross-Section Area	, a = =		= 0.5 x 3.14 x 250^2 + 500 x 83 m ²	0	
Wetted Perimeter	, p =	π r + 2 d	$= 3.14 \times 250 + 2 \times 830$		
Hydralic radius	, R = =	2.445 a/p 0.210			SDM 8.2.1
3 Use Manning Equation for es	timatin	g velocity of storm	water		
	en =		for concrete lined channels:-		SDM Table 13
Allowable velocity	, v =	$R^{1/6}x (RS_f)^{1/2}/n$	$= (0.21)^1/6 \times (0.21 \times 0.005)^1/2$	2 / 0.016	SDM Table 12
Time of flow	= , t _f =	1.57 0.5		,	
4 Use "Rational Method" for cal	culatio	n of design flow			
Design intensity			9)^0.355 for return period T = 50	years	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a
Type of surface Flat Glassland(heavy soil) Concrete Paving		Runoff Coefficient C 0.25 0.95	0.0 972.0	C x A 0.0 923.4	SDM 7.5.2 (b)
			SUM =	923.4	- 1
Upstream flow	Q _u =	0	m ³ /s		
Design flow			+ Q _u where A _i is in km ² 923.4 / 1000000 + 0 m ³ /s		SDM 7.5.2 (a) Corrigendum 1/2022
Allowable flow,		a x v 0.513 x 1.57 0.804 ।	m³/s		
		0 (0 K)			
> Q _d (O.K.) Reference was made to Stormwater Drainage Manual (SDM) by DSD					
Scale: NA		Hydrauli	c Calculation	Goldrich Pla Surveyor	
November 2025		nd 680 (Part) in D.D. 106	art), 674, 675, 676, 677 (Part), 679 (Part) and Adjoining Government Land, r, New Territories	Page (P2206)	1


1 For Catchment Area B				a	Ref.
Area Average slope Distance on the line of natural flow	, A = , H = , L =	= 1211 = 0.1 = 25	m ² m per 100m m		
Time of concentraction	, t _o =		= 0.14465 (25) / (0.1^0.2* min	1211^0.1)	SDM 7.5.2 (d)
2 For Existing UC in Catchmen	t Area	В			
Ground level (mPD) Invert level (mPD)	7.80 7.30	7.80			
Width of u-channel	5				
Length of u-channel Depth of vertical part of u-channel					
Gradient of u-channel	-		= 0.005		
		$0.5 \pi r^2 + w d$	= 0.5 x 3.14 x 250^2 + 500 x 68	0	
Wetted Perimeter	, p =	$\pi r + 2 d$	$= 3.14 \times 250 + 2 \times 680$		
Hydralic radius					SDM 8.2.1
3 Use Manning Equation for est					
					0014711.40
		$R^{1/6}x (RS_f)^{1/2}/n$	for concrete lined channels:- = (0.204)^1/6 x (0.204 x 0.005)^	1/2 / 0.016	SDM Table 13 SDM Table 12
Time of flow	, t _f =				
4 Use "Rational Method" for cal	culatio	on of design flow			
Design intensity			9)^0.355 for return period T = 50	years	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a
Type of surface		Runoff Coefficient C	Catchment Area A (m ²)	CXA	SDM 7.5.2 (b)
Flat Glassland(heavy soil) Concrete Paving		0.25 0.95	0.0 1211.0	0.0 1150.5 1150.5	
Upstream flow,	Q _u =	0	m ³ /s		
Design flow,	=		+ Q _u where A _i is in km ² 1150.45 / 1000000 + 0		SDM 7.5.2 (a) Corrigendum 1/2022
Allowable flow,		axv	m 7s		
	=	0.438 x 1.53 0.670	m³/s		
> Q _d (O.K.)					
Reference was made to Stormwater Drainage Manual (SDM) by DSD					
Scale: NA		Hydrauli	c Calculation	Goldrich Pla Surveyor	The second secon
November 2025	Lots 67	and 680 (Part) in D.D. 106	art), 674, 675, 676, 677 (Part), 679 (Part) and Adjoining Government Land, g, New Territories	Page (P2206	A17 6002

1 For Connection between C	P7 to Existing Watercourse	Ref.			
Aroa	A - 0 m ²				
Average slope	, A = 0 m ² , H = 0.1 m per 100m , L = 0 m				
Distance on the line of natural flow	, L = 0 m				
Time of concentraction	$t_o = 0.14465L/(H^{0.2}A^{0.1}) = 0.14465(0)/(0.1^{0.2}0^{0.1})$	SDM 7.5.2 (d)			
	= 0.0 min				
2 For Pipe after CP7					
Size/Diameter	w = 400 mm				
Length of Pipe	e = 9 m				
Design the pipe to 9/10 fu	bore capacity, then	-			
Area of ventilated portion $\frac{1}{2} r^2 \theta - \frac{1}{2} r^2 \sin(\theta)$					
	$= 0.1 \pi$ $= 0.2 \pi$				
6					
Ĭ	(2)				
Area	$A = 0.9 \pi r^2$	0011001			
	$= 0.9 \times 3.14 \times 400^{\circ}2$ $= 0.452 \text{m}^{2}$	SDM 8.2.1			
	- 0.452 111				
Wetted Perimete	$P = 2 \pi r - r \theta = 1861 \text{ mm}$				
Hydralic radius					
	242.9 mm				
3 Use Manning Equation for 6	stimating velocity of stormwater				
Fal	S = 1: 8				
Take		SDM Table 13			
Allowable velocity		SDM Table 12			
	= 8.25 m/s				
I ime of flow,	t _f = 0.02 min				
4 Use "Rational Method" for o	alculation of design flow				
Desired to the state of the sta		0014 4 0 0			
Design intensity,	$i = a / (t_o + t_f + b)^c$ = 505.5 / (0.0+0.02+3.29)^0.355 for return period T = 50 years	SDM 4.3.2 Corrigendum 1/2024			
		SDM Table 3a			
Type of surface		SDM 7.5.2 (b)			
Flat Glassland(heavy soil) Concrete Paving	0.25 0.95				
Macadam Roadways	0.425				
Wooded Areas	0.105 0.0 0.0				
	SUM = 0.0				
Upstream flow,	Q _u = 0.173 m ³ /s				
Opsitean now,	- 0.110 m/s				
Design flow,	$Q_d = 0.278i \Sigma C_i A_i + Q_u$ where A_i is in km ²	SDM 7.5.2 (a)			
	= 1.16 x 0.278 x 331 x 0 / 1000000 + 0.173	orrigendum 1/2022			
	= 0.173 m ³ /s				
Allemaki- firm	0 - 200				
Allowable flow,	$Q_a = a \times V$ = 0.3974 x 1.35				
	= 3.729 m ³ /s	I			
> Q _d (O.K.)					
Reference was made to Stormwater Drainage Manual (SDM) by DSD					
Releasince was made to otomiwater brainage manual (obin) by bob					
	Hydroulic Calculation Goldrich Plans	ners &			
Scale: NA	Hydraulic Calculation Goldrich Plant Surveyors I	Martin R. School and Co.			
	Lots 670 (Part), 671 (Part), 673 (Part), 674, 675, 676, 677 (Part), 679 (Part) and 680				
November 2025	(Part) in D.D. 106 and Adjoining Government Land, Page 3				
11010111001 2020	Yuen Long, New Territories (P22068A	A)			

1 For Catchment Area C					Ref.
Area	. A	= 2332	m^2		
Average slope	, H		m per 100m		
Distance on the line of natural flow	, L	= 29	m		
Time of concentraction	, t _o			2332^0.1)	SDM 7.5.2 (d)
		= 3.1	min		
2 For Existing UC in Catchmen	t Area	a C			
	Fror		-		
Ground level (mPD) Invert level (mPD)	7.80				
invertiever (iiii b)	7.00	0.72	-		
Width of u-channe	, W	= 500	mm		
Length of u-channe Depth of vertical part of u-channe Gradient of u-channe	, L _c	= 118.2	m		
Depth of vertical part of u-channel	, d	= 830	mm		
Gradient of u-channel	, S _f	= (7.3-6.72)/118.2	= 0.005		
Cross-Section Area	, а	= $0.5 \pi r^2 + w d$	= 0.5 x 3.14 x 250^2 + 500 x 830		
Walled Designation	-	= 0.513	m ² = 3.14 x 250 + 2 x 830 m		
vvetted Perimeter	, p	$= \pi \Gamma + 20$	= 3.14 x 250 + 2 x 830		
Hydralic radius	R	= 2.445 = a/p	III		SDM 8.2.1
		0.210	m		
O Han Manufaction Famorian for and	·				
3 Use Manning Equation for es	ımatı	ng velocity of storm	water		
Take	n :	= 0.016	for concrete lined channels:-		SDM Table 13
Allowable velocity	, v :	$= R^{1/6}x (RS_f)^{1/2}/n$	$= (0.21)^{1/6} \times (0.21 \times 0.005)^{1/2}$	/ 0.016	SDM Table 12
	:	= 1.55	m/s		
Time of flow	, t _f	= 1.3	min		
4 Use "Rational Method" for cal	4 Use "Rational Method" for calculation of design flow				
Design intensity			9)^0.355 for return period T = 50 y	/ears	SDM 4.3.2 Corrigendum 1/2024
	:	246			SDM Table 3a
Type of surface		Runoff Coefficient C	Catchment Area A (m ²)	CxA	SDM 7.5.2 (b)
Flat Glassland(heavy soil)		0.25	0.0	0.0	02(4)
Concrete Paving		0.95	2332.0	2215.4	
			SUM =	2215.4	
Unates and flam	0	. ^	m³/s		
Upstream flow	Q _u :	- 0	11170		
Design flow	0. =	1 16 x 0 278i Σ C.Δ.	+ Q _u where A _i is in km ²		SDM 7.5.2 (a)
Design now			2215.4 / 1000000 + 0		Corrigendum 1/2022
	=				
		,2,7,7,2			
Allowable flow,	Q _a =	axv			
	=	0.513 x 1.55			-
= 0.793 m ³ /s					
> Q _d (O.K.)					
Reference was made to Stormwater Drainage Manual (SDM) by DSD					
Hydraulia Calculation Goldrich Planners &			nners &		
Scale: NA		Hydrauli	c Calculation	Surveyor	
	Lote 6	70 (Part) 671 (Part) 672 (B	art) 674 675 676 677 (Part) 670 (Part)	Surveyor	s Liu.
November 2025 Lots 670 (Part), 671 (Part), 673 (Part), 674, 675, 676, 677 (Part), 679 (Part) and 680 (Part) in D.D. 106 and Adjoining Government Land, Yuen Long, New Territories (P22068)					
		g, New Territories	(P2206	8A)	

1 For Catchment Area D		Ref.		
Area, Average slope, Distance on the line of natural flow,	$A = 1640 \text{ m}^2$ H = 0.1 m per 100 m L = 50 m			
Time of concentraction,	$t_o = 0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (50) / (0.1^0.2*1640^0.1)$ = 5.5 min	SDM 7.5.2 (d)		
2 For Existing UC in Catchment	Area D			
Ground level (mPD) Invert level (mPD)	From To 7.80 7.80 7.17 6.87			
Width of u-channel,				
Length of u-channel, Depth of vertical part of u-channel,				
Gradient of u-channel,				
Cross-Section Area,	2			
Wetted Perimeter,				
Hydralic radius,		SDM 8.2.1		
3 Use Manning Equation for esti	nating velocity of stormwater			
Take		SDM Table 13		
Allowable velocity, Time of flow,	$V = R^{1/6}x (RS_t)^{1/2}/n = (0.204)^{1/6} x (0.204 x 0.005)^{1/2} / 0.016$ = 1.53 m/s $V_t = 0.7$ min	SDM Table 12		
4 Use "Rational Method" for calculation of design flow				
Design intensity,	$i = a / (t_o + t_f + b)^c$ = 505.5 / (5.5+0.7+3.29)^0.355 for return period T = 50 years = 228	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a		
Type of surface Flat Glassland(heavy soil) Concrete Paving	Runoff Coefficient C Catchment Area A (m^2) C x A 0.25 0.0 0.0 0.95 1640.0 1558.0 SUM = 1558.0	SDM 7.5.2 (b)		
Upstream flow,	$Q_u = 0 \text{ m}^3/\text{s}$			
Design flow,	$Q_d = 1.16 \times 0.278i \Sigma C_i A_i + Q_u \text{ where } A_i \text{ is in km}^2$ = 1.16 x 0.278 x 228 x 1558 / 1000000 + 0 = 0.115 m ³ /s	SDM 7.5.2 (a) Corrigendum 1/2022		
Allowable flow,	$Q_a = a \times v$ = 0.438 × 1.53 = 0.672 m ³ /s			
> Q _d (O.K.)				
Reference was made to Stormwater Drainage Manual (SDM) by DSD				
Scale: NA	Hydraulic Calculation Goldrich P Surveyor			
November 2025	ots 670 (Part), 671 (Part), 673 (Part), 674, 675, 676, 677 (Part), 679 (Part) and 680 (Part) in D.D. 106 and Adjoining Government Land, Yuen Long, New Territories (P220)			

1 For Connection between C	P3 to Existing Public Catchpit	Ref.		
Area, A = 0 m ² Average slope, H = 0.1 m per 100m Distance on the line of natural flow, L = 0 m				
Area Average slope	, A = 0 m ² . H = 0.1 m per 100m			
Distance on the line of natural flow	, L = 0 m			
	$t_{o} = 0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (0) / (0.1^{0.2*0^{0.1}})$ = 0.0 min	SDM 7.5.2 (d)		
2 For Pipe after CP3				
	\ \ \ \ = \ \ 400 mm			
Size(Diameter Length of Pipe Design the pipe to 9/10 fu Area of ventilated portion ½ r² θ - ½ r²sin(θ	$r = 30.4 \text{ m}$ I bore capactity, then $r = 0.1 \text{ of pipe area}$ $r = 0.1 \pi r^2$			
100	$= 0.2 \pi$			
θ	= 1.63 rad = 93.4° (By trial and error)			
Area	$A = 0.9 \pi r^2$ = 0.9 x 3.14 x 400^2	SDM 8.2.1		
	$= 0.9 \times 3.14 \times 400^{\circ} 2$ $= 0.452 \text{m}^2$	SDIVI 6.2. I		
	- 0.402 III			
	$P = 2 \pi r - r \theta = 1861 \text{ mm}$			
Hydralic radius	R = A/P 242.9 mm			
3 Use Manning Equation for 6	estimating velocity of stormwater			
	S = 1: 25 n = 0.016 for concrete lined channels:-	SDM Table 13		
	$v = R^{1/6}x (RS_t)^{1/2}/n = (242.9)^{1/6} * (242.9/25)^{1/2} / 0.016$	SDM Table 12		
	= 4.67 m/s			
Time of flow	$t_r = 0.11 \text{ min}$			
4 Use "Rational Method" for o	alculation of design flow			
Design intensity	$i = a/(t_0 + t_1 + b)^c$	SDM 4.3.2		
Design intensity	= 505.5 / (0.0+0.11+3.29)^0.355 for return period T = 50 years = 327	Corrigendum 1/2024 SDM Table 3a		
Type of surface	Runoff Coefficient C Catchment Area A (m²) C x A	SDM 7.5.2 (b)		
Flat Glassland(heavy soil)	0.25 0.0 0.0			
Concrete Paving Macadam Roadways	0.95 0.425 0.0 0.0 0.0			
Wooded Areas	0.105 0.0 0.0			
	SUM = 0.0			
Upstream flow,	$Q_u = 0.291 \text{ m}^3/\text{s}$			
Design flow,	$Q_d = 0.278i \Sigma C_i A_i + Q_u$ where A_i is in km ²	SDM 7.5.2 (a)		
		Corrigendum 1/2022		
	= 0.291 m ³ /s			
Allowable flow,	$Q_a = a \times v$	I		
	= 0.3974 x 1.35			
	= 2.109 m ³ /s			
	> Q _d (O.K.)			
Reference was made to Stormwater Drainage Manual (SDM) by DSD				
	Caldwish Dia	nners &		
Scale: NA	Hydraulic Calculation Goldrich Pla Surveyors	SASSIC BEST CONTROL SASSIC CONTROL CON		
	Lots 670 (Part), 671 (Part), 673 (Part), 674, 675, 676, 677 (Part), 679 (Part) and 680			
November 2025	(Part) in D.D. 106 and Adjoining Government Land, Page			
	Yuen Long, New Territories (P22068	SA)		

