Section 16 Planning Application for Proposed Temporary Open Storage of Construction Materials and Construction Equipment for a Period of 3 Years at Lot Nos. 1809 (Part), 1813, 1814, 1815 (Part), 1816, 1817 (Part), 1819, 1820, 1824, 1825, 1826, 1827, 1828, 1829, 1830, 1831 S.A, 1831 S.B, 1832, 1833, 1834, 1835, 1837, 1838, 1839 (Part), 1840, 1841, 1842 and 1843 in D.D. 129, Lau Fau Shan, Yuen Long, New Territories Ref.: ADCL/PLG-10289/R002

List of Appendices

Appendix I

Traffic Impact Assessment

Section 16 Planning Application for Proposed Temporary Open Storage of Construction Materials and Construction Equipment for a Period of 3 Years at Lot Nos. 1809 (Part), 1813, 1814, 1815 (Part), 1816, 1817 (Part), 1819, 1820, 1824, 1825, 1826, 1827, 1828, 1829, 1830, 1831 S.A, 1831 S.B, 1832, 1833, 1834, 1835, 1837, 1838, 1839 (Part), 1840, 1841, 1842 and 1843 in D.D. 129, Lau Fau Shan, Yuen Long, New Territories Ref.: ADCL/PLG-10289/R002

Appendix I

Traffic Impact Assessment

S.16 Planning Application for Proposed Temporary Open Storage of Construction Materials and Construction Equipment for a Period of 3 Years at Various Lots in D.D.129 Lau Fau Shan, Yuen Long, New Territories

TRAFFIC IMPACT ASSESSMENT

Reference: 80108-R02-01 Date: March 2025 Prepared by: 8FM Consultancy Limited

Content

1	INTRODUCTION			
	1.1	Background	1	
	1.2	Study Objectives	1	
	1.3	Report Structure	1	
2	PROP	OSED DEVELOPMENT	3	
	2.1	The Site Location	3	
	2.2	The Development Schedule	3	
	2.3	Vehicle Access Arrangement	3	
	2.4	Internal Transport Facilities	4	
3	EXIST	ING TRAFFIC SITUATION	5	
	3.1	Existing Road Network	5	
	3.2	Public Transport Facilities	5	
	3.3	Traffic Survey	5	
	3.4	Existing Traffic Condition	6	
	3.5	Delivery Route	9	
4	DEVEL	OPMENT TRAFFIC GENERATION	10	

DEVELUE		GENERATION	- 10

4.1 Estimated Development Flows 10

5	FUTURE TRAFFIC SITUATION	12

5.1Design Year125.2Traffic Forecast Methodology12

5.3	Regional Traffic Growth	12
5.4	Planned and Committed Development	13
5.5	2027 Traffic Flows	13
5.6	Future Traffic Impact Assessment	14
5.7	Proposed Improvement Measures	15

6	Summary and Conclusion	16

6.1	Summary	16
6.2	Conclusion	16

Appendix A – Junction Calculation Sheets

List of Table

- Table 2.1Key Development Parameters
- Table 2.2 Internal Transport Facilities
- Table 3.1 Franchised Bus and GMB Services Close to Project Site
- Table 3.2
 Existing Road Link Capacity Assessment
- Table 3.3
 Existing Junction Capacity Assessment
- Table 4.1 Traffic Rates for Industrial Building
- Table 4.2
 Estimated Traffic Generation & Attraction Arising from Storage Area
- Table 4.3
 Traffic Rates for Office Development
- Table 4.4
 Estimated Traffic Generation & Attraction Arising from Office
- Table 4.5 Estimated Development Flow
- Table 5.1
 AADT Extracted from Annual Traffic Census
- Table 5.2
 2019-Based TPDEM Data for Yuen Long District
- Table 5.3Future Year Link Capacity Assessment
- Table 5.4
 Future Year Junction Capacity Assessment

List of Figure

- Figure 1 Site Location
- Figure 2.1 Layout of Project Site
- Figure 2.2 Vehicle Access Arrangement
- Figure 2.3 Swept Path Analysis
- Figure 3.1 Public Transport Facilities
- Figure 3.2 Key Junctions and Road Links
- Figure 3.3 2024 Observed Traffic Flows during Peak Hours
- Figure 3.4 Existing Condition of Deep Bay Road (L1)
- Figure 3.5 Existing Condition of Unnamed Road 3 (L4)
- Figure 3.6 2024 Observed Link Flows during Peak Hours
- Figure 3.7 Proposed Routing
- Figure 3.8 Swept Path Analysis along Delivery Route
- Figure 5.1 2027 Reference Traffic Flows during Peak Hours
- Figure 5.2 2027 Design Traffic Flows during Peak Hours
- Figure 5.3 Provision of Passing Places at Deep Bay Road
- Figure 5.4 Proposed Layout of Passing Places

1 INTRODUCTION

1.1 Background

The Applicant intends to seek planning permission for the Section 16 Planning Application for Proposed Temporary Open Storage of Construction Materials and Construction Equipment for a Period of 3 Years at Lot Nos. 1809 (Part), 1813, 1814, 1815 (Part), 1816, 1817 (Part), 1819, 1820, 1824, 1825, 1826, 1827, 1828, 1829, 1830, 1831 S.A, 1831 S.B, 1832, 1833, 1834, 1835, 1837, 1838, 1839 (Part), 1840, 1841, 1842 and 1843 in D.D. 129, Lau Fau Shan, Yuen Long, New Territories ("Project Site").

The location of the Project Site is shown in **Figure 1**.

8FM Consultancy Limited was commissioned as the traffic consultant to carry out a Traffic Impact Assessment (TIA) Study in support of this planning application.

1.2 Study Objectives

The objectives of this TIA are listed as follows:

- To review the existing traffic conditions in the vicinity of the Project Site;
- To present and evaluate the internal transport facilities;
- To estimate the traffic forecasts of the adopted design year and assess the future traffic situation in the surrounding network;
- To evaluate the potential traffic impact of the proposed development; and
- To suggest traffic improvement proposals, if necessary.

1.3 Report Structure

The report is structured as follows:

Chapter 2 - Proposed Development

Describing the project site, vehicular access arrangement, development schedule and the proposed internal transport facilities;

• Chapter 3 - Existing Traffic Situation

Presenting the existing traffic context, the traffic survey, and the traffic assessment of the existing traffic conditions; Proposing control measures based on assessment results.

• Chapter 4 - Development Traffic Generation

Estimating the traffic flows arising from the proposed development;

• Chapter 5 – Future Traffic Situation

Describing the traffic forecast methodology and presenting the traffic assessment results under reference and design scenarios;

• Chapter 6 - Summary and Conclusion

Summarizing the findings and conclusion of this traffic impact assessment study.

2 PROPOSED DEVELOPMENT

2.1 The Site Location

The Project Site is located in the Lau Fau Shan and Mong Tseng area, and it can be accessible from Deep Bay Road via a local track. The location of the Project Site is shown in **Figure 1**.

2.2 The Development Schedule

The project site is proposed to be utilised as the open storage for construction materials and equipment on a temporary basis of 3 years. Based on the planning statement, the operation hour of the proposed use is from 8:00a.m. to 6:00p.m. from Mondays to Saturdays and there will be no operation on Sundays and public holidays.

The project site has a total area of about 15,500m², including open storage area, two one-storey storerooms ($36m^2 \times 2$) and a one-storey site office ($36m^2$). The layout of the project site is shown in **Figure 2.1**. Key development parameters of the proposed use are tabulated in **Table 2.1**.

Proposed Use	Temporary Open Storage of Construction Materials and Construction Equipment
Operation Hours	8:00am-6:00pm (Monday – Sunday, Except Public Holiday)
Total Site Area	15,500m ²
Open Storage Area	About 14,163m ²
Storeroom	72m ²
Site Office	36m ²

2.3 Vehicle Access Arrangement

At present, there is an existing local access road to the project site. Access to the project site will be provided through an 12m-wide ingress/egress point located at the southwestern boundary, which is connected to a local track leading to Deep Bay Road. The vehicle access arrangement is presented in **Figure 2.2** for reference.

Swept path analysis is also conducted for the access point and the access road. **Figure 2.3** indicates the sufficient turning spaces for the 7m LGV.

2.4 Internal Transport Facilities

The internal transport facilities to be provided in the project site are summarized in **Table 2.2**. As there are no specific parking and loading/unloading requirements for temporary open storage development in accordance to HKPSG, ancillary transport facilities are provided based on the Applicant's requirements to meet operational needs.

Table 2.2 Internal Transport Facilities

Type of Ancillary Transport Facilities	Size	Provision based on Applicant's Operational Needs	
Private Car Parking Spaces	5m(L) x 2.5m(W)	3	
L/UL Bays	7m(L) x 3.5m(W)	6	

3 EXISTING TRAFFIC SITUATION

3.1 Existing Road Network

As indicated in **Figure 1**, the project site is located at the east of Deep Bay Road, and it can be accessible from Deep Bay Road via a local unnamed road. The existing condition of the connecting carriageways are summarized as follows:

- Unnamed Road 2 is a single track access road connecting Deep Bay Road in the west to an unnamed road near Lam Hang Shan in the east. Acting as single carriageway with 1-lane-2 way operation, passing bays are generally identified along the carriageway.
- Deep Bay Road is served as a rural road connecting Lau Fau Shan in the northeast and Pak Nai in the southwest. Acting as single carriageway with 1-lane-2 way operation, passing bays are generally identified along the carriageway.
- Unnamed Road 3 is as a rural road connecting Deep Bay Road in the east and Tin Yuet Road in the west. Acting as single carriageway with 1-lane-2 way operation, passing bays are generally identified along the carriageway.
- Lau Fau Shan Road is served as a rural road which is mainly a single-two carriageway, connecting Deep Bay Road in the west and Tin Wah Road in the east.

3.2 Public Transport Facilities

The project site cannot be immediately accessible by taking the public transportation. The nearest franchised bus and GMB services are around 850m away from the site, operating along Lau Fau Shan Road. Details of these public transport services are presented in **Table 3.1** and **Figure 3.1**.

Route	Routing	Peak Frequency (minutes)
MTR K65	Lau Fau Shan ↔Yuen Long Station	9-16
MTR K65A	Lau Fau Shan ↔Tin Shui Wai Station	12-15
GMB 33	Yuen Long (Tai Fung St) ↔ Ha Pak Nai	20
GMB 34A	Ha Tsuen ↔ Lau Fau Shan	15-30
GMB 35	Hong Lee Court ↔ Cai Ha Village	6-7

Table 3.1 Franchised Bus and GMB Services Close to Project Site

3.3 Traffic Survey

In order to evaluate the existing traffic conditions in the vicinity, the classified traffic surveys were conducted on 10 September 2024 (Tuesday) from 7:30 to 10:30 in the morning and from 16:00 to 19:00 in the evening. The key junctions and road links of the study area are indicated **Figure 3.2**.

The traffic flows collected during the traffic surveys have been converted to passenger car unit (PCU) based on the PCU factors as indicated in Volume 2 of Transport Planning and Design Manual (TPDM).

The results of traffic survey identified that the AM and PM peak hours occur during 7:45am to 8:45am and 16:30pm to 17:30pm, respectively. The 2024 observed peak hours traffic flows in the study area are presented in **Figure 3.3**.

3.4 Existing Traffic Condition

Based on the observed traffic flows, the performance of the key junctions and traffic links in the vicinity of the project site during the AM and PM peak hours was assessed.

3.4.1 Determination of Link Capacity

The link capacity of single track access road is referenced from Chapter 3.11, Volume 2 of TPDM. It is noted that the provision of passing places and laybys should be 1 at intervals of approximately 60m (measured from the end of one to the start of next), where each passing place / layby is around 30m long (with tapers length included), i.e. 1 passing bay is equivalent to around 90m in length. Hence, for a 500m-long single track access road, there should be about 5 passing places / laybys, the expected capacity is 100 vehicles per hour ("veh/hr").

The link capacity of Deep Bay Road (L1) is assumed to have 2-way design flows of 100 veh/hr as outlined in Volume 2 of TPDM.

Whereas, the critical section of Deep Bay Road (L2) identified is to the immediate north of Lau Fau Shan Roundabout. **Figure 3.4** shows the existing condition for this section of Deep Bay Road within 500m from Lau Fau Shan Roundabout.

As shown in **Figure 3.4**, although the section of Deep Bay Road (L2) is mainly a single track access road, there are about 10 passing places or laybys, i.e. 2 times more than the design requirement in TPDM, which allows vehicles travelling in opposite direction to pass by. Therefore, it can be implied that the capacity of this section of Deep Bay Road(L2) is about 2 times more than the expected capacity, i.e. 2 x 100=200 veh/hr.

Similarly, as shown in **Figure 3.5**, there are about 9 passing places or laybys in Unnamed Rd 3(L4), it can be implied that the capacity is expected to be 180 veh/hr.

3.4.2 Validation of Link Capacity

A traffic survey with observation was also conducted on 10 September 2024 to determine the validation of the assumed capacity of Deep Bay Road and Unnamed Rd 3.

Figure 3.6 refers, the survey recorded the 2-way traffic flow at Deep Bay Road (L2) and Unnamed Rd 3 (L4) during AM(PM) peak hour was 154(115) veh/hr and 137(120) veh/hr respectively. Observation found that traffic flow during peak hour was generally smooth with stream of multiple vehicles passing through at the same time in one direction. Minor disruptions with traffic queues of about 4-5 vehicles were observed when vehicles stopped within passing places or laybys to allow vehicles in opposite direction to pass by. However, disruptions were short and traffic queue dispersed quickly.

General description on the operation characteristic for different ranges of ratio of flow to capacity area referenced from Table 2.4.2.1 of Chapter 2.4 Volume 2 of TPDM. For range 0.5-0.75, the general description is as follow:

- 1) Generally easy flow conditions.
- 2) Travel speeds begin to be restricted by traffic conditions.
- 3) Ability to manoeuvre within traffic stream is noticeably restricted.
- 4) Minor disruptions may cause local congestion with short traffic queues

The observed traffic flow conditions at Deep Bay Road(L2) and Unnamed Rd 3 (L4) are found to be similar to the description above, which suggests that the observed traffic flow of 154(115) veh/hr at Deep Bay Road and traffic flow of 137(120) veh/hr at Unnamed Rd 3 would have a ratio of flow to capacity within the range of 0.5-0.75. In light of this, the actual capacity of Deep Bay Road in the immediate north of Lau Fau Shan Roundabout is more than 200veh/hr, and the actual capacity of Unnamed Rd 3 is more than 180veh/hr. Hence, it can be concluded that the traffic analysis which adopted the link capacity of 200 veh/hr for the same section of Deep Bay Road(L2) and of 180veh/hr for Unnamed Rd 3 (L4) are considered conservative.

3.4.3 Existing Road Link Capacity Assessment

The results of existing road link capacity are shown in Table 3.2.

Link No.	Link Location	Peak	Design Capacity ⁽ⁱ⁾ (veh/hr)	Traffic Flow (veh/hr)	V/C Ratio ⁽ⁱⁱ⁾
14	Deep Bay Road	AM	100	59	0.59
L 1	(two-way)	PM	100	61	0.61
12	Deep Bay Road	AM	200	154	0.77
LZ	(two-way)	PM	200	115	0.58
	Lau Fau Shan Road	AM	800	287	0.36
1.2	(EB)	PM	800	293	0.37
LJ	Lau Fau Shan Road	AM	800	309	0.39
	(WB)	PM	800	222	0.28
1.4	Unnamed Rd 3	AM	180	137	0.78
L4	(two-way)	PM	180	120	0.67

Table 3.2 Existing Road Link Capacity Assessment

Notes:

(i) Design capacity can be referred to TPDM Vol2 chapter 2.4.1.1 and chapter 3.11.3.1.

(ii) V/C Ratio =Volume/ Design Capacity. A peak hour v/c ratio of 1.0 or less indicates a satisfactory level of traffic. A V/C ratio between 1.0 and 1.2 indicates a manageable degree of congestion. A V/C ratio above 1.2 indicates more serious congestion.

The results reveal that the key traffic links operate within capacity during peak hours.

3.4.4 Existing Junction Capacity Assessment

The results of junction performance are indicated in **Table 3.3** and detailed junction calculation sheets are given in **Appendix A**.

Jn No.	Junction Location	Type/ Capacity Index	AM Peak	PM Peak
Α	Tin Ying Rd / Tin Wah Rd	Signal / RC ⁽ⁱ⁾	26.6%	43.4%
В	Lau Fau Shan Rd / Tin Wah Rd / Ping Ha Rd	Priority / DFC ⁽ⁱⁱ⁾	1.18	1.25
С	Lau Fau Shan Roundabout	Roundabout / DFC	0.45	0.40
D	Deep Bay Rd / Unnamed Rd A	Priority / DFC	0.02	0.02
Е	Unnamed Rd A / Unnamed Rd B	Priority / DFC	0.05	0.11
F	Deep Bay Rd / Unnamed Rd 3	Priority / DFC	0.17	0.16

Table 3.3 Existing Junction Capacity Assessment

*Notes:

(i) DFC - Design Flow / Capacity Rati. The performance of a priority junction or roundabout is normally measured by its Design Flow / Capacity (DFC) ratio. A DFC ratio less than 1.0 indicates that the junction is operating within design capacity. A DFC ratio greater than 1.0 indicates that the junction is overloaded, resulting in traffic queues and longer delay time to the minor arm traffic.

(ii) RC =reserve capacity. The performance of a traffic signalised junction is indicated by its reserve capacity (RC). A positive RC (RC>0) indicates that the junction is operating with spare capacity. A negative RC (RC<0) indicates that the junction is overloaded; resulting in traffic queues and longer delay time.</p>

As shown in Table 3.3, it can be seen that the surveyed junctions perform satisfactorily during peak hours with adequate reserve capacities, except for Jn B, i.e. junction of Lau Fau Shan Rd/Tin Wah Rd/Ping Ha Rd, which is currently having inadequate junction capacity during the AM and PM peak hours.

3.5 Delivery Route

Based on the assessment results of the existing traffic condition in the vicinity of project site, control measure is suggested to avoid aggravating the existing condition of concerned traffic junction.

In light of this, the Applicant is committed to the designate a delivery route so as to ensure the efficient delivery. The project-related vehicles will travel to/from the project site via the designated Route 1 only (**Figure 3.7** refers), which will not pass through Junction B of Lau Fau Shan Rd/Tin Wah Rd/Ping Ha Rd, minimizing the traffic impact brought from project site.

Swept path analysis is conducted at the critical junctions along the delivery route and is shown in **Figure 3.8**, which demonstrate adequate maneuvering at the concerned sections when turning to Tin Ying Road.

4 DEVELOPMENT TRAFFIC GENERATION

4.1 Estimated Development Flows

With reference to the Planning Statement, the proposed development will only make use of light goods vehicle (LGV) and private cars to travel to/from the application site.

As the proposed development will be operated as the storage area and a build-up site office, the trip generation & attraction arising from the operational needs will be estimated respectively based on the different land use.

4.1.1 Storage Area

The trip generation & attraction of the storage area is estimated with reference to the the trip rates of industrial buildings under the TPDM Vol 1., which are tabulated in **Table 4.1**. Considering the actual operational needs and the reference made with approved applications of similar use within the same outline zoning plan (OZP) in recent years, the level of lower limit is adopted for trip assessment.

Land Use		Upper Limit/	A	M	РМ				
	Unit	Mean/ Lower Limit	Generation Rate	Attraction Rate	Generation Rate	Attraction Rate			
Industrial(p Building s		Upper Limit	0.1153	0.1727	0.1648	0.1260			
	(pcu/hr/100 sqm GFA)	(pcu/hr/100 sqm GFA)	(pcu/hr/100 sqm GFA)	(pcu/hr/100 sqm GFA)	Mean	0.0926	0.1386	0.1350	0.1049
		Lower Limit	0.0698	0.1044	0.1053	0.0808			

Table 4.1 Traffic Rates for Industrial Building

The calculated traffic generation & attraction arsing from the operation of storage area during the identified peak hours are esitmated in **Table 4.2**.

Table 4.2 Estimated Traffic Generation & Attraction Arising from Storage Area

Land Use		Unit	AM F	Peak	PM Peak		
	Area		Generation	Attraction	Generation	Attraction	
Storage Area	14,127m ²	pcu/hr	10	15	15	12	
		veh/hr*	7	10	10	8	

*Notes: Traffic generation/attraction for LGV is calculated with pcu factor 1.5 based on the PCU factors as indicated in Table 2.3.1.1 of TPDM Vol2.

4.1.2 <u>Site Office</u>

The trip generation & attraction of the build-up development is estimated with reference to the the trip rate tabulated in the TPDM Vol 1. **Table 4.3** shows the trip

rates for office development, and the level of upper limit is adopted for conservative assessment.

Table 4.3 Traffic Rates for Office Development

		Upper Limit/	AM		РМ	
Land Use	Unit	Mean/ Lower Limit	Generatio n Rate	Attraction Rate	Generation Rate	Attraction Rate
Office		Upper Limit	0.2361	0.3257	0.1928	0.1510
	(pcu/hr/100sq m GFA)	Mean	0.1703	0.2452	0.1573	0.1175
		Lower Limit	0.1045	0.1646	0.1217	0.084

The calculated traffic generation & attraction arsing from the operation of site office during the identified peak hours are esitmated in **Table 4.4**.

Table 4.4 Estimated Traffic Generation & Attraction Arising from Office

Land Use			AM F	Peak	PM Peak		
	Area	Unit	Generation	Attraction	Generation	Attraction	
Storage Area	36m ²	pcu/hr	1	1	1	1	
	3011-	veh/hr	1	1	1	1	

4.1.3 Estimated Development Flow

With the trip generation & attraction estimated for different land use, the development flow is summarized in **Table 4.5**.

Table 4.5 Estimated Development Flow

	AM	Peak	PM Peak		
Unit	Generation Attraction		Generation	Attraction	
pcu/hr	11	16	16	13	
Tota	l 27 p	cu/hr	29 pcu/hr		
veh/hr	8	8 11		9	
Tota	l 19 ve	eh/hr		20 veh/hr	

5 FUTURE TRAFFIC SITUATION

5.1 Design Year

The planning application for the Proposed Temporary Open Storage development involves a period of 3 years, it is assumed that the end year for the Project Site would be year 2027. Therefore, year 2027 is adopted as the design year of this study.

5.2 Traffic Forecast Methodology

To conduct the traffic forecast on the road networks in the vicinity of the project site, the existing traffic flows will be adjusted with the following factors considered:

- Historical traffic data from Annual Traffic Census (ATC) by Transport Department;
- The forecast population and employment from the 2019-based Territorial Population and Employment Data Matrices (TPEDM) planning data by Planning Department;
- Committed and planned developments adjacent the project site.

5.3 Regional Traffic Growth

5.3.1 <u>Annual Traffic Census (ATC)</u>

Reference has been made to the ATC reports from year 2018 to 2022. The historical traffic data of the surrounding road links are based on the Annual Average Daily Traffic (AADT) extracted from ATC issued by Transport Department. The relevant AADT data from year 2018 to 2022 are summarized in **Table 5.1**.

Station	Road	From	То	2018	2019	2020	2021	2022	Growth Rate p.a.
Ping Ha Rd &	Tin Ha Rd	Deep Bay	12,680	12,590	12,070	10,310	8,390	-0.81%	
3030	5858 Lau Fau Shah Rd		Rd		-0.7%	-4.1%	-14.6	-18.7%	-9.01%
0000 Daar	Doop Boy Pd	Deep Bay Rd Lau Fau Shan Rd	Nam Sha Po	2,920	2,320	2,380	2,570	2,760	-1.40%
0003	Deep bay Кu				-20.3%	2.3%	7.9%	7.7%	
5204	Tip Ving Dd	Tin Wah Pine	Ping Ha	32,180	31,060	29,780	30,970	30,030	1 710/
5284 I IN		Rd Rd			-3.5%	-4.1%	4.0%	-3.0%	-1./170
			Total	47,78 0	45,97 0	44,23 0	43,85 0	41,18 0	-3.65%

Table 5.1 AADT Extracted from Annual Traffic Census

Table 5.1 indicates that the overall average annual growth rate of the adjacent road network is -3.65%.

5.3.2 Projected Population Data

Reference has been made to the 2019-based Territorial Population and Employment Data Matrices (TPEDM) planning data provided by Planning Department. The population and employment data in Yuen Long District for year 2019, 2024 and 2031 are presented in **Table 5.2**.

Table 5.22019-Based TPDEM Data for Yuen Long District

ltem	TPDEM	Estimation/Pr	ojection	Annual Growth Rate			
	2019	2026	2031	2019 to 2026	2026 to 2031	2019 to 2031	
Population	175,150	172,350	159,850	-0.2%3	-1.49%	-0.76%	
Employment	68,100	70,700	70,250	0.54%	-0.13%	0.26%	
total	243,250	243,050	230,100	-0.01%	-1.09%	-0.46%	

Source: 2019-based TPEDM by Planning Department

Table 5.2 indicates that the highest annual growth rate for population and employment is 0.54%.

Based on the findings of the above two tables, a conservative growth rate of 0.54% per annum was adopted to estimate the background traffic growth from 2024 to 2027.

5.4 Planned and Committed Development

Based on the published information from Town Planning Board, no planned/committed developments in the site vicinity are identified in design year 2027 in the vicinity of project site.

5.5 2027 Traffic Flows

The growth factor will be applied to the 2024 observed peak hours traffic flows to estimate the 2027 reference flows.

The reference and design flows of the design year 2027 are calculated from the following formula:

2027 Reference Flows (Fig. 5.1)	= 2024 Observed Flows (Fig 3.3) x (1+0.54%) ³
2027 Design Flows (Fig. 5.2)	= 2027 Reference Flows (Fig. 5.1) + Net Change in Development Traffic Flows

Figure 5.1 shows the 2027 Reference Peak Hours Flows in the area. By adding the net development traffic, **Figure 5.2** shows the 2027 Design Peak Hours Traffic Flows.

5.6 Future Traffic Impact Assessment

With the delivery route designated by the Applicant, the development traffic will travel via the Route 1 as indicated in **Figure 3.7**.

The traffic impact assessments for design year 2027 were conducted for the key junctions and road links identified along Route 1 for both Reference and Design scenarios.

5.6.1 Future Year Link Capacity Assessment

Based on the Reference Flows and Design Flows, link capacity assessments for design year 2027 are carried out and the results are presented in **Table 5.3**.

Table 5.3 Future Year Link Capacity Assessment

			2027 Reference Scenario				2027 Design Scenario			
Link No.	Link Location	Design Capacity (veh/hr)	Traffic Flow (veh/hr)		Volume to Capacity Ratio (V/C)		Traffic Flow (veh/hr)		Volume to Capacity Ratio (V/C)	
			AM	РМ	AM	PM	AM	РМ	AM	РМ
L1	Deep Bay Road (two-way)	100	60	62	0.60	0.62	79	82	0.79	0.82
L4	Unnamed Rd 3 (two-way)	180	140	122	0.78	0.68	159	142	0.88	0.79

Notes: V/C Ratio =Volume/ Design Capacity

(i) A peak hour v/c ratio of 1.0 or less indicates a satisfactory level of traffic. A V/C ratio between 1.0 and 1.2 indicates a manageable degree of congestion. A V/C ratio above 1.2 indicates more serious congestion.

(ii) Refer to Figure 3.2 for link location.

Table 5.3 reveals that the key road links identified along the delivery Route 1 will operate within capacity during peak hours for both Reference and Design Scenarios.

5.6.2 Future Year Junction Capacity Assessment

Based on the Reference Flows and Design Flows, junction capacity assessments for design year 2027 are carried out and the results are presented in **Table 5.4**, with detailed calculation sheets given in **Appendix A**.

Table 5.4 Future Year Junction Capacity Assessment

Jun No	Junction	Type/	2027 Referer	nce Scenario	2027 Design Scenario		
cuir rto.	Location	Index	AM	РМ	AM	РМ	
D	Deep Bay Rd / Unnamed Rd 2	Priority / DFC	0.02	0.02	0.02	0.04	
Е	Unnamed Rd 1 / Unnamed Rd 2	Priority / DFC	0.05	0.11	0.05	0.11	
F	Deep Bay Rd / Unnamed Rd 3	Priority / DFC	0.17	0.16	0.21	0.19	

*Notes: RC =reserve capacity; DFC - Design Flow / Capacity Rational Compacity Rational Compacity Rational Compacity Rational Compact Research Res

- (i) The performance of a priority junction or roundabout is normally measured by its Design Flow / Capacity (DFC) ratio. A DFC ratio less than 1.0 indicates that the junction is operating within design capacity. A DFC ratio greater than 1.0 indicates that the junction is overloaded, resulting in traffic queues and longer delay time to the minor arm traffic.
- (ii) The performance of a traffic signalised junction is indicated by its reserve capacity (RC). A positive RC (RC>0) indicates that the junction is operating with spare capacity. A negative RC (RC<0) indicates that the junction is overloaded; resulting in traffic queues and longer delay time.
 (iii) Refer to Figure 3.2 for junction location.

Table 5.4 reveals that all the key junctions identified along the delivery Route 1 will operate satisfactorily with ample junction capacity in both 2027 reference and 2027 design scenarios during peak hours.

5.7 Proposed Improvement Measures

The traffic assessment indicates that the proposed development will not generate significant traffic impact, and the existing road network is sufficient to accommodate the anticipated demand. Nevertheless, to mitigate the potential traffic impact arising from the development, the following traffic improvement measures will be proposed:

5.7.1 <u>Provision of Passing Place</u>

Passing places will be provided along the delivery route to improve the link capacity, particularly, in the northern section of Deep Bay Road where the lane with is less than 7m. Therefore, three passing places will be provided at intervals of approximately 60m, as indicated in **Figure 5.3**. The proposed layouts of passing places are demonstrated in **Figure 5.4**.

5.7.2 Enhanced Traffic Signage

Install temporary signage along the route to guide traffic effectively. Examples include:

- Directional signs to the development and nearby parking areas.
- "No Stopping" or "No Parking" signs at critical points to prevent bottlenecks.

6 Summary and Conclusion

6.1 Summary

The Applicant intends to seek the Town Planning Board permission to utilise the Project Site as the open storage for construction materials and equipment on a temporary basis of 3 years.

In order to appraise the existing traffic conditions, classified turning movement count surveys have been carried out at the key junctions and road links in the vicinity of project site on 10 September 2024 from 7:30 to 10:30 in the morning and 16:00 to 19:00 in the evening. The morning and evening peak hours of the road network have been identified as 7:45am to 8:45am and 16:30pm to 17:30pm, respectively.

Year 2027 is used as the design year for the traffic impact assessment. Based on the historical data, an annual growth rate of 0.54% was adopted for this study. This growth factor has been applied to the observed traffic flows in 2024 to determine the anticipated traffic flows in design year 2027.

Based on the assessment results of existing traffic conditions in the vicinity of project site, control measures will be undertaken by Applicant to minimize the traffic impact. Specifically, a delivery Route 1 will be designated for the development operation, ensuring the delivery efficiency. The future traffic situation will be assessed based on the delivery route committed by the Applicant.

The assessment results reveal that the key junctions and road links identified along Route 1 will operate satisfactorily with sufficient capacity in both 2027 reference and 2027 design scenarios during peak hours.

Improvement works are also proposed to mitigate the potential traffic impact arising from the development, such as provision of passing places and enhanced traffic signage along the delivery route. With the traffic management undertaken by the Applicant, it is believed that the proposed development would not generate significant impact to the adjacent road network.

6.2 Conclusion

The findings of this study show that the development traffic will not cause adverse traffic impact onto the local road network. The proposed development is therefore supported from the traffic engineering point of view at this stage.

Figures

8FM CONSULTANCY LIMITED 80108-R02-01

Proposal - S.16 Planning Application For Proposed Temporary Open Storage of Construction Materials and Construction Equipment for a Period of 3 Years at Various Lots in D.D.129 Lau Fau Shan, Yuen Long, New Territories						
Drawing Title -	2024 Observed Flows D	uring AM & PM Peak Hours				
Dwg. No Figure 3.3	Rev	Legend:				
Scale	Date - Jan 2025	Traffic Flows at AM Peak Hr (PCU/HR) 100 Traffic Flows at PM Peak Hr (PCU/HR) (100) 8FM CONSULTANCY LIMITED				

		_
	Proposal - S.16 Planning Application For Proposed Temporary Open Storage of Construction Materials and Construction Equipment for a Period of 3 Years at Various Lots in D.D.129 Lau Fau Shan, Yuen Long, New Territories	-:\8FM\8FM PROJECT\P80108 LOT NOS. 1809 (PART),1
	Drawing Title - Existing Condition of Tin Yuet Road within 500m East of the Junction of Deep Bay Road, Unnamed Road 3	843 IN D.D. 129, LAU FAU SHAN\DATA\DRAW
	Dwg. No Figure 3.5	ING/FIG
	Rev	URE 3.50
17.2	Scale - 1:1700 @ A3	DWG
TS Groves の の の	Date - Jan 2025	
CO S S S S S S S S S S S S S S S S S S S	BFM CONSULTANCY LIMITED	

Proposal - S.16 Planning Ap Equipment for a	pplication For Proposed Tempor Period of 3 Years at Various L	ary Open Storage of Construction Materials and Construction .ots in D.D.129 Lau Fau Shan, Yuen Long, New Territories
Drawing Title -	2024 Observed Link Flow (Veh	/hr) During AM & PM Peak Hours
Dwg. No Figure 3.6	Rev	Legend:
Scale	Date - Jan 2025	Traffic Flows at AM Peak Hr (VEH/HR)100 Traffic Flows at PM Peak Hr (VEH/HR)(100) BFM CONSULTANCY LIMITED

Proposal - S.16 Plannin Equipment f	y Application For Proposed Tempor or a Period of 3 Years at Various I	ary Open Storage of Construction Materials and Construction _ots in D.D.129 Lau Fau Shan, Yuen Long, New Territories
Drawing Title -	2027 Reference Traffic	Flows during Peak Hours
Dwg. No Figure 5.1	Rev	Legend:
Scale	Date - Jan 2025	Traffic Flows at AM Peak Hr (PCU/HR) 100 Traffic Flows at PM Peak Hr (PCU/HR) (100) 8FM CONSULTANCY LIMITED

Proposal - S.16 Planning Ap Equipment for a	plication For Proposed Tempor Period of 3 Years at Various L	ary Open Storage of Construction Materials and Construction .ots in D.D.129 Lau Fau Shan, Yuen Long, New Territories
Drawing Title -	2027 Design Traffic Fl	ows during Peak Hours
Dwg. No Figure 5.2	Rev	Legend:
Scale	Date - Jan 2025	Traffic Flows at AM Peak Hr (PCU/HR)100 Traffic Flows at PM Peak Hr (PCU/HR)(100) 8FM CONSULTANCY LIMITED

Proposal - S.16 Planning Application For Proposed Temporary Open Storage of Construction Materials and Construction Equipment for a Period of 3 Years at Various Lots in D.D.129 Lau Fau Shan, Yuen Long, New Territories

Drawing Title	9 -	Provision	of Passing Places	at Deep Bay Road	
Dwg. No	Figure 5.3	Rev			
Scale -	1:2000@A4	Date -	Mar 2025		8FM CONSULTANCY LIMITED

Proposal - S.16 Planning Application For Proposed Temporary Open Storage of Construction Materials and Construction Equipment for a Period of 3 Years at Various Lots in D.D.129 Lau Fau Shan, Yuen Long, New Territories

Drawing Title -		Proposed Layout	of passing Place 1
Dwg. No Figure 5	.4-1 Rev		
Scale - 1:400@	A4 Date -	Mar 2025	8FM CONSULTANCY LIMITED

Proposal - S.16 Planning Application For Proposed Temporary Open Storage of Construction Materials and Construction Equipment for a Period of 3 Years at Various Lots in D.D.129 Lau Fau Shan, Yuen Long, New Territories

Drawing Title -		Proposed Layout	of passing Place 2
Dwg. No Figure 5.4-2	Rev		
Scale - 1:400@A4	Date -	Mar 2025	8FM CONSULTANCY LIMITED

Proposal - S.16 Planning Application For Proposed Temporary Open Storage of Construction Materials and Construction Equipment for a Period of 3 Years at Various Lots in D.D.129 Lau Fau Shan, Yuen Long, New Territories

Drawing Titl	e -		Proposed Layout	of passing Place 3
Dwg. No	Figure 5.4-3	Rev		
Scale -	1:400@A4	Date -	Mar 2025	BFM CONSULTANCY LIMITED

Junction Calculation Sheets

	8FN	l co	NSULTA	NCY	LIMIT	ED						TRAFFIC	SIGN	NAL CALC	ULA		J							INITIALS		DATE	
	Various	s Lots i	n DD129, La	au Fau	Shan													Project No	D.:	80108		Prepared	By:	FF		Sep-24	
	l in Wah	Road /	Tin Ying Road									2024 Observed	- AM Pe	ak								Checked	By:	MM		Sep-24	
								Tin Ying	Road					N	1		, ,	No. of sta Intergreer	ges per cy Period	/cle		N = I =	4 31	sec		36p-24	
			Tin W	ah Rodd	[9] 8 [8] 3 [7] 8 [6] 637	39 374 348 [5] 281	[4] 657	∱ ↓ Tin Ying	[10] 145 • Road] [11]) 486 ↓ 	[12] 43 33 390 890	- [1] [2] [3]		Tin Wah	Rodd			Cycle time Sum(y) Loss time Total Flow Co Cm Yult R.C.ult Cp Ymax R.C.(C)	r = (1.5*L+ = L/(1-Y) = (Yult-Y') = 0.9*L/((= 1-L/C = (0.9*Yr	5)/(1-Y))/Y*100%).9-Y) nax-Y)/Y*1	00%	C = Y = L = = = = = = = = = =	120 0.444 45 4877.6 130.4 81.0 0.563 26.6 88.9 0.625 26.6	sec pcu sec sec sec %			
	-		↓	•	↑	,					<u>_</u>]	↓					Pedestriar Phase	Width (m)	Stage	Green Tin SG	ne Required FG	Green Tin SG	ne Provide	ed (s) FG	Che	ck	
	8	Stage	1	8		Stage 2	7	Stage 3		8	Stage 4					İ											1
	Move- ment	Stage	Lane Width m.	Phase	No. of lane	Radius m.	0	N	Straight- Ahead Sat. Flow	Left pcu/h	Straight pcu/h	m Right pcu/h	Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Flare lan Length m.	Flare lane Effect	Revised Sat. Flow pcu/h	у	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queue Length (m/lane)	Average Delay (sec)	
	3 2 1	1,2,3,4 3 3	3.40 3.40 3.40		1 2 1	20 25		N	1955 4190 2095 0	890	390	33	890 390 33	1.00 0.00 1.00	1819 4190 1976			1819 4190 1976	0.489 0.093 0.016	0.016	27 9	83 16 3	19 19 12	3.126 0.594 0.168	890 55 5	2018 48 51	
⟨┐ ᡎᡎᡬ	6 5 4,5 4	1,2 2 2 2	4.80 3.40 3.40 3.40		1 1 1 1	25 35 30		Ν	2095 2095 2095 2095	637	281 0	329 327	637 281 329 327	1.00 0.00 1.00 1.00	1976 2095 2009 1995			1976 2095 2009 1995	0.322 0.134 0.164 0.164	0.134		54 23 28 28	42 23 23	0.911 0.711 0.868	84 39 53	56 50 68	
¢↑ ^	8,9 7,8 7	1 1 1	3.40 3.30 3.30		1 1 1	25 28 25		Ν	1955 2085 2085	89	334 40	417 431	423 457 431	0.21 0.91 1.00	1931 1988 1967			1931 1988 1967	0.219 0.230 0.219	0.219		37 39 37	45 45 37	0.584 0.613 0.711	44 48 50	32 32 40	
	12 11 10	3,4 4 4	3.30 3.30 3.30		1 2 1	25 40		Ν	1945 4170 2085	43	486	149	43 486 149	1.00 0.00 1.00	1835 4170 2010			1835 4170 2010	0.024 0.117 0.074	0.074	9	4 20 13	22 22 22 0	0.131 0.650 0.414	6 67 20	42 47 45	
																		D:\8FM Co	onsultancy	Limited\P	80108\Data\	Calculatio	n\[J_A_Ti	nWahRd_Tin	YingRd.xlsn	n]OBS AM	l

FM CONSULTANCY LIMITED	PRIORI	TY JUNCTION CALCULATION			INITIALS	DATE
c Impact Assessment for Proposed Temporary Open Storage of C	Construction Material and Equipment of 3 Years at Various Lc	ots in D.D.129, Lau Fau Shan		Prepared By:	FF	Jan-20
3 - Lau Fau Shan Rd / Tin Wah Rd / Ping Ha Rd	2024 Observ	ved - AM Peak	Project No.: 80	0108 Checked By:	MM	Jan-20
				Reviewed By:	FM	Jan-20
Lau Fau Shan Rd [4] 560 [3] 136 →→ (ARM A)	(ARM B) Tin Wah Rd [5] [6] 527 505 ↓ ↓ ↓ ■ ■ ■ ■ ■ ■ ■ 352 [1] ↓ 170 [2]	(ARM C) Ping Ha Rd	NOTES: (GEOMETRIC INPUT DAT. W = MAJOR ROAD W W cr = CENTRAL RESEI W b-a = LANE WIDTH AV. W b-c = LANE WIDTH AV. W b-c = LANE WIDTH AV. W c-b = LANE WIDTH AV. W c-b = LANE WIDTH AV. V c-b = VISIBILITY TO THOMARKAN AND AND AND AND AND AND AND AND AND A	A) IDTH RVE WIDTH AILABLE TO VEHICLE W AILABLE TO VEHICLE W AILABLE TO VEHICLE W IE LEFT FOR VEHICLES IE RIGHT FOR VEHICLE IE RIGHT FOR VEHICLE IE RIGHT FOR VEHICLE IC B-A FIC B-C FIC C-B	/AITING IN STF /AITING IN STF /AITING IN STF / WAITING IN S S WAITING IN S WAITING IN S WAITING IN	REAM b-a REAM b-c REAM c-b STREAM b-a STREAM b-a STREAM b-c STREAM c-b
GEOMETRIC DETAILS:	GEOMETRIC FACTORS :	THE CAPACITY OF MOVEMENT :	· · ·	COMPARISION (TO CAPACITY:	DF DESIGN FL	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A)	GEOMETRIC FACTORS :	THE CAPACITY OF MOVEMENT :	· · ·	COMPARISION (TO CAPACITY:	DF DESIGN FL	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 8.9 (metres)	GEOMETRIC FACTORS : D = 1.161	THE CAPACITY OF MOVEMENT : Q b-a = 445	(pcu/hr)	COMPARISION (TO CAPACITY: DFC b-a	DF DESIGN FL	.0W
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 8.9 (metres) W cr = 0 (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985	CAPACITY OF MOVEMENT : Q b-a = 445 Q b-c = 645	(pcu/hr) (pcu/hr)	COMPARISION (TO CAPACITY: DFC b-a DFC b-c	DF DESIGN FL = =	. OW 1.1843 0.7829
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 560$ (pcu/hr) $q a-c = 136$ (pcu/hr)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	Q b-a = 445 Q b-c = 645 Q c-b = 577 Q c-a = 701	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a	DF DESIGN FL = = = = =	. ow 1.1843 0.7829 0.6107 0.2426
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 8.9 (metres) W cr = 0 (metres) q a-b = 560 (pcu/hr) q a-c = 136 (pcu/hr)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	Q b-a = 445 Q b-c = 645 Q c-b = 577 Q c-a = 701	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	DF DESIGN FL = = = = =	. OW 1.1843 0.7829 0.6107 0.2426
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 8.9 (metres) W cr = 0 (metres) q a-b = 560 (pcu/hr) q a-c = 136 (pcu/hr) MAJOR ROAD (ARM C) W a b = 25 (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	Check Comparison Comparison </td <td>(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)</td> <td>COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a</td> <td>DF DESIGN FL = = = = =</td> <td>.OW 1.1843 0.7829 0.6107 0.2426</td>	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	DF DESIGN FL = = = = =	. OW 1.1843 0.7829 0.6107 0.2426
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 8.9 (metres) W cr = 0 (metres) q a-b = 560 (pcu/hr) q a-c = 136 (pcu/hr) MAJOR ROAD (ARM C) W c-b = 3.5 (metres) V (c b = -150 (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	Change 445 Q b-a = 445 Q b-c = 645 Q c-b = 577 Q c-a = 701 TOTAL FLOW = 2250	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	DF DESIGN FL = = = = =	. ow 1.1843 0.7829 0.6107 0.2426
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 560$ (pcu/hr) $q a-c = 136$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 3.5$ (metres) $Vr c-b = 150$ (metres) $Q ca = 170$ (ncu/hr)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 445 Q b-c = 645 Q c-b = 577 Q c-a = 701 TOTAL FLOW = 2250	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	DF DESIGN FL = = = =	. ow 1.1843 0.7829 0.6107 0.2426
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 560$ (pcu/hr) $q a-c = 136$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 3.5$ (metres) $Vr c-b = 150$ (metres) $q c-a = 170$ (pcu/hr) $q c-b = 352$ (pcu/hr)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 445 Q b-c = 645 Q c-b = 577 Q c-a = 701 TOTAL FLOW = 2250	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	DF DESIGN FL = = = = =	. OW 1.1843 0.7829 0.6107 0.2426
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 560$ (pcu/hr) $q a-c = 136$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 3.5$ (metres) $Vr c-b = 150$ (metres) $q c-a = 170$ (pcu/hr) $q c-b = 352$ (pcu/hr)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 445 Q b-c = 645 Q c-b = 577 Q c-a = 701 TOTAL FLOW = 2250	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a CRITICAL DFC	DF DESIGN FL = = = = =	. ow 1.1843 0.7829 0.6107 0.2426 1.18
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 560$ (pcu/hr) $q a-c = 136$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 3.5$ (metres) $Vr c-b = 150$ (metres) $q c-a = 170$ (pcu/hr) $q c-b = 352$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 42$ (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 445 Q b-c = 645 Q c-b = 577 Q c-a = 701 TOTAL FLOW = 2250	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a CRITICAL DFC	DF DESIGN FL = = = =	.ow 1.1843 0.7829 0.6107 0.2426 1.18
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 560$ (pcu/hr) $q a-c = 136$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 3.5$ (metres) $Vr c-b = 150$ (metres) $Q c-a = 170$ (pcu/hr) $q c-b = 352$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 4.2$ (metres) $W b-c = 42$ (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 445 Q b-c = 645 Q c-b = 577 Q c-a = 701 TOTAL FLOW = 2250	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	DF DESIGN FL = = = = =	.ow 1.1843 0.7829 0.6107 0.2426 1.18
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a b = 560$ (pcu/hr) $q a - c = 136$ (pcu/hr)MAJOR ROAD (ARM C) $W c - b = 3.5$ (metres) $Vr c - b = 150$ (metres) $q c - a = 170$ (pcu/hr) $q c - b = 352$ (pcu/hr)MINOR ROAD (ARM B) $W b - a = 4.2$ (metres) $W b - c = 4.2$ (metres) $W b - c = 4.2$ (metres) $W b - c = 4.2$ (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 445 Q b-c = 645 Q c-b = 577 Q c-a = 701 TOTAL FLOW = 2250	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	DF DESIGN FL = = = =	.ow 1.1843 0.7829 0.6107 0.2426 1.18
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 560$ (pcu/hr) $q a-c = 136$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 3.5$ (metres) $Vr c-b = 150$ (metres) $q c-a = 170$ (pcu/hr) $q c-b = 352$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 4.2$ (metres) $W b-a = 200$ (metres) $VI b-a = 200$ (metres) $VI b-a = 200$ (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 445 Q b-c = 645 Q c-b = 577 Q c-a = 701 TOTAL FLOW = 2250	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	COMPARISION of TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	DF DESIGN FL = = = =	.ow 1.1843 0.7829 0.6107 0.2426 1.18
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 560$ (pcu/hr) $q a-c = 136$ (pcu/hr) $q a-c = 136$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 3.5$ (metres) $Vr c-b = 150$ (metres) $q c-a = 170$ (pcu/hr) $q c-b = 352$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 4.2$ (metres) $W b-a = 200$ (metres) $Vr b-a = 200$ (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 445 Q b-c = 645 Q c-b = 577 Q c-a = 701 TOTAL FLOW = 2250	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	COMPARISION of TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	DF DESIGN FL = = = =	.ow 1.1843 0.7829 0.6107 0.2426 1.18
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 560$ (pcu/hr) $q a-c = 136$ (pcu/hr) $q a-c = 136$ (pcu/hr) W c-b = 3.5 (metres) $Vr c-b = 150$ (metres) $q c-a = 170$ (pcu/hr) $q c-b = 352$ (pcu/hr) MINOR ROAD (ARM B) W b-a = 4.2 (metres) $V b-a = 200$ (metres) $Vr b-a = 200$ (metres) $Vr b-a = 50$ (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 445 Q b-c = 645 Q c-b = 577 Q c-a = 701 TOTAL FLOW = 2250	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	COMPARISION of TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	DF DESIGN FL = = = =	.ow 1.1843 0.7829 0.6107 0.2426 1.18
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) (metres) $W = 8.9$ (metres) (metres) $q - b = 560$ (pcu/hr) (q - c = 136 (pcu/hr) $q - c = 136$ (pcu/hr) (metres) W c-b = 3.5 (metres) (metres) Vr c-b = 150 (metres) (q c-a = 1770 (pcu/hr)) q c-a = 170 (pcu/hr) (q c-b = 352 (pcu/hr)) MINOR ROAD (ARM B) W b-a = 4.2 (metres) W b-a = 4.2 (metres) Vi b-a = 200 (metres) Vi b-a = 200 (metres) Vi b-a = 50 (metres) Vi b-a = 200 (metres) Vi b-a = 50 (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 445 Q b-c = 645 Q c-b = 577 Q c-a = 701 TOTAL FLOW = 2250	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	COMPARISION of TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	DF DESIGN FL = = = =	.ow 1.1843 0.7829 0.6107 0.2426 1.18

8FN		ONSULTANCY LIMITED					ROUNDABOUT JUNCTION ANALYSIS				INITIALS	DATE
Traffic Impa	act Asse	essment for Proposed Temporary Open Storage of C	Constructio	n Material ar	nd Equipm	ent of 3 Y	ears at Various Lots in D.D.129, Lau Fau Shan			Prepared By:	FF	Jan-2025
Jn C - La	.au Fai	u Shan Rd / Deep Bay Rd / Shan Tung	g Str / La	au Fau Sl	han Mai	n Str	2024 Observed - AM Peak	Project No.:	80108	Checked By:	MM	Jan-2025
										Reviewed By:	FM	Jan-2025
						1						
Sha (an Tung (ARM A	g Str [5] 23	//////////////////////////////////////	300 ² [8] [6] [4] 241 ***********************************			(ARM B) eep Bay Rd (ARM C) Lau Fau Shan Rd (ARM D) Deep Bay Rd					
GEOMET	TRIC D	DETAILS: ARM	А	В	С	D						
v	=	Approach half width (m)	1.9	1.5	3.2	1.9						
E	=	Entry width (m)	1.9	4.1	4.2	3.7						
L	=	Effective length of flare (m)	1.0	2.3	1.5	1.8						
R	=	Entry radius (m)	14.0	46.0	7.4	7.5						
D	=	Inscribed circle diameter (m)	38.0	38.0	38.0	38.0						
А	=	Entry angle (degree)	42.0	52.0	20.0	51.0						
Q	=	Entry flow (pcu/h)	23	204	457	192						
Qc	=	Circulating flow across entry (pcu/h)	412	302	18	241						
OUTPUT	r Para	AMETERS:										
S	=	Sharpness of flare = 1.6(E-V)/L	0.00	1.81	1.07	1.60				TOTAL FLOW	=	1847 (pcu/hr)
K	=	1-0.00347(A-30)-0.978(1/R-0.05)	0.94	0.95	0.95	0.85				CRITICAL DFC	=	0.45
^2 M	_	v + ((E-V)/(1+25)) EXP((D-60)/10)	1.90	2.00	3.52	2.33						
F	_	203*X2	576	0.11 625	1066	706						
, Td	-	1+(0.5/(1+M))	1 45	1 4 5	1 45	1 45						
Fc	=	0 21*Td(1+0 2*X2)	0.42	0.43	0.52	0.45						
Qe	=	K(F-Fc*Qc)	377	471	1006	506						
DFC	=	Design flow/Capacity = Q/Qe	0.06	0.43	0.45	0.38						
D:\8FM Con:	nsultancy l	Limited\Project\P80108-TIA_Lau Fau Shan\Data\Calcula	tion\[80108-	Junctions - O	BS-AM.xls]	0						

	INSULTANCT LIN	IITED	PRIC	RITY JUN	CTION CALC	ULATION	N				INITIALS		DATE
Traffic Impact Asses	ssment for Proposed Temporary Open S	Storage of Construction Material a	nd Equipment of 3 Years at Vari	ous Lots in D.D.129, La	au Fau Shan				Prepar	ed By:	FF	,	Jan-2025
Jn D - Deep Ba	ay Rd / Unnamed Rd 2		2024 Ot	served - AM Pea	ak			Project No.:	80108 Checke	ed By:	MM	,	Jan-2025
1	*							. ,	Review	/ed Bv	FM		lan-2025
									T C VIC VI	icu Dy.	1 101		Jan-2020
Unnamed F (ARM D	[9] 2 Rd 2 [8] 2 → [7] 4 →	$(ARM A)$ Deep Bay Rd $\begin{bmatrix} 10 \\ 1 \\ 49 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 12 \\ 3 \\ \bullet	[1] [2] [3]	Unnamed Rd 2 (ARM B)		NOTES : (GEOME W = W cr = W b-a = W b-c = W c-b = VI b-a = Vr b-a = Vr b-a = Vr c-b = D = E = F = Y = Y =	ETRIC INPUT MAJOR ROA CENTRAL R LANE WIDTI LANE WIDTI LANE WIDTI VISIBILITY T VISIBILITY T VISIBILITY T VISIBILITY T STREAM-SF STREAM-SF (1-0.0345W)	T DATA) AD WIDTH RESERVE WIDTH H AVAILABLE TO V H AVAILABLE TO V H AVAILABLE TO V TO THE LEFT FOR V TO THE RIGHT FOR TO THE RIGHT FOR TO THE RIGHT FOR PECIFIC B-A PECIFIC B-A PECIFIC C-B	EHICLE WA EHICLE WA FHICLE WA FHICLES V VEHICLES VEHICLES	AITING IN STR AITING IN STR AITING IN STR WAITING IN S WAITING IN S WAITING IN S	EAM b-a EAM b-c EAM c-b TREAM t STREAM STREAM STREAM	D-a b-a b-c c-b
		[6] [5] [4] Deep Bay Rd'(AR	RM C)										
GEOM	IETRIC DETAILS:	[6] [5] [4] Deep Bay Rd'(AR	RM C)	GEOMET	RIC FACTORS :					СОМРА		SIGN FL	.ow
GEON	METRIC DETAILS:	[6] [5] [4] Deep Bay Rd'(AR	RM C)	GEOMET	RIC FACTORS :					COMPAI TO CAP	RISION OF DE	SIGN FL	ow
GEON	IETRIC DETAILS:	[6] [5] [4] Deep Bay Rd'(AR	RM C)	GEOMET X b	RIC FACTORS :	818	Xa	=	0.845	COMPAI TO CAP	RISION OF DE	SIGN FL	ow
GEON	HETRIC DETAILS: RAL = 3.90 (metres)	[6] [5] [4] Deep Bay Rd'(AR		GEOMET X b X c	RIC FACTORS : = 0. = 0.	B18 799	X a X d	=	0.845	COMPAI TO CAP	RISION OF DE ACIT Y: DFC b-a	SIGN FL	ow
GEON GENE W W cr	METRIC DETAILS: ERAL = 3.90 (metres) = 0 (metres)	[6] [5] [4] Deep Bay Rd'(AR	RM C)	GEOMET X b X c Z b	RIC FACTORS : = 0. = 0. = 0.	818 799 928	X a X d Z d	= = =	0.845 1.066 1.188	СОМРАІ то сар	RISION OF DE ACITY: DFC b-a DFC b-c	SIGN FL = =	.0W 0.0000 0.0154
GEON GENE W W cr	METRIC DETAILS: RAL = 3.90 (metres) = 0 (metres)	[6] [5] [4] Deep Bay Rd'(AR	0.865	GEOMET X b X c Z b M b	RIC FACTORS : = 0. = 0. = 0. = 0.	818 799 928 860	X a X d Z d M d	= = =	0.845 1.066 1.188 1.097	COMPAI TO CAP,	RISION OF DE AGUIT: DFC b-a DFC b-c DFC c-b	SIGN FL = = = =	0.0000 0.0154 0.0160
GEON GENE W W cr MAJC	IETRIC DETAILS: ERAL = 3.90 (metres) - 0 (metres) DR ROAD (ARM A)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F	0.865 ROAD (ARM C)	GEOMET X b X c Z b M b	RIC FACTORS : = 0. = 0. = 0. = 0.	818 799 928 860	X a X d Z d M d	= = = =	0.845 1.066 1.188 1.097	COMPAI TO CAP	RISION OF DE ACIT T: DFC b-a DFC b-c DFC c-b DFC b-d	SIGN FL = = = = =	0.0000 0.0154 0.0160 0.0029
GEON GENE W W cr MAJC VV a-t	METRIC DETAILS: ERAL = 3.90 (metres) = 0 (metres) DR ROAD (ARM A) d = 2.0 (metres)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F W c-b =	0.865 ROAD (ARM C) 2.9 (metres)	GEOMET X b X c Z b M b	RIC FACTORS : = 0. = 0. = 0. = 0.	818 799 928 860	Xa Xd Zd Md	= = =	0.845 1.066 1.188 1.097	COMPAI TU GAP	DFC b-a DFC b-c DFC b-c DFC c-b DFC b-d DFC b-d DFC b-d	SIGN FL = = = = = =	0.0000 0.0154 0.0160 0.0029 0.0021
GEON GENE W W Gr MAJC W a-C Vr a-C	METRIC DETAILS: = 3.90 (metres) = 0 (metres) DR ROAD (ARM A) a = 2.0 (metres) d = 120 (metres)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F W c-D = Vr c-b =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres)	GEOMET Х b Х c Z b М b РКОРОК	RIC FACTORS : = 0. = 0. = 0. = 0. TION OF MINOR STRA	818 799 928 860 IGHT AHEAD	Xa Xd Zd Md	= = =	0.845 1.066 1.188 1.097	COMPAI TU CAP	RISION OF DE ACTIT: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-d DFC d-c	SIGN FL = = = = = = = =	0.0000 0.0154 0.0160 0.0029 0.0029 0.0031 0.0068
GEON GENE W W or MAJC Vr a-c	METRIC DETAILS: = 3.90 (metres) $= 0 (metres)$ DR ROAD (ARM A) a = 2.0 (metres) $b = 120 (metres)$ $a = 3 (oru/br)$	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F W c-b = Vr c-b = 0 c-2 =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (metre)	GEOMET X b X c Z b M b PROPOR	RIC FACTORS : = 0. = 0. = 0. = 0. TION OF MINOR STRA	818 799 928 860 IGHT AHEAD	Xa Xd Zd Md I KAFFIC :	= = = = = = = = = = = = = = = = = = = =	0.845 1.066 1.188 1.097	COMPAI TO CAP	RISION OF DE AGUITT: DFC b-a DFC b-c DFC c-b DFC b-d DFC b-d DFC d-c DFC d-c	SIGN FL = = = = = = =	0.0000 0.0154 0.0160 0.0029 0.0031 0.0068 0.0017
GEON GENE W W cr MAJC VV a-t Vr a-t Vr a-t q a-b	METRIC DETAILS: ERAL = 3.90 (metres) = 0 (metres) DR ROAD (ARM A) d = 2.0 (metres) d = 120 (metres) b = 3 (pcu/hr)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F W c-b = Vr c-b = q c-a = q c-b =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr)	GEOMET X b X c Z b M b PROPOR	RIC FACTORS : = 0. = 0. = 0. = 0. HUN OF MINOK STRA	818 799 928 860 IGH I AHEAD I 0 1.5	Xa Xd Zd Md IKAFFIC: rd-c		0.845 1.066 1.188 1.097 0.007		DFC b-a DFC b-c DFC b-c DFC c-b DFC b-d DFC b-d DFC d-c DFC d-a DFC d-a	SIGN FL = = = = = = = =	0.0000 0.0154 0.0160 0.0029 0.0037 0.0068 0.0017
GEON GENE W W cr MAJC VV a-0 VV a-0 Q a-b q a-c	METRIC DETAILS: = 3.90 (metres) = 0 (metres) DR ROAD (ARM A) - d = 2.0 (metres) d = 120 (metres) o = 3 (pcu/hr) c = 49 (pcu/hr)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F W c-D = Vr c-b = q c-a = q c-b =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d	RIC FACTORS : = 0. = 0. = 0. = 0. TION OF MINOR STRA = =	818 799 928 860 IGHT AHEAD 0 1.5 (pcu/hr)	Xa Xd Zd Md IKAFFIC: rd-c qld-b	= = = = = = = = = = = = = = = = = = = =	0.845 1.066 1.188 1.097 0.7550628 (pcu/hr	COMPAI TU CAP	RISION OF DE ACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-d DFC d-c DFC d-a DFC a-d	= = = = = = = = = =	0.0000 0.0154 0.0160 0.0029 U.UU31 0.0068 0.0017 0.0016
GEON GENE W W dr MAJC Vr a-c Vr a-c q a-b q a-c q a-d	METRIC DETAILS: ERAL = 3.90 (metres) > = 0 (metres) DR ROAD (ARM A) d = 2.0 (metres) d = 120 (metres) b = 3 (pcu/hr) b = 49 (pcu/hr) t = 1 (pcu/hr)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F W c-D = Vr c-b = q c-b = q c-b = q c-d =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr) 1 (pcu/hr)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d	RIC FACTORS : = 0. = 0. = 0. = 0. TION OF MINOR STRA = = =	818 799 928 860 IGHT AHEAD 1 0 1.5 (pcu/hr) 1.5 (pcu/hr)	Xa Xd Zd Md IKAFFIC: rd-c qld-b qrd-b		0.845 1.066 1.188 1.097 0.7550628 (pcu/hr 0.7550628 (pcu/hr	COMPAI TO CAP	RISION OF DE ACITY: DFC b-a DFC b-c DFC b-d DFC b-d DFC b-d DFC d-c DFC d-c DFC d-a DFC a-d DFC a-d	= = = = = = = = = = =	0.0000 0.0154 0.0160 0.0029 0.0031 0.0068 0.0017 0.0016 0.0011
GEOM GENE W W cr MAJC VV a-c Q a-b Q a-c Q a-d	METRIC DETAILS: ERAL = 3.90 (metres) > = 0 (metres) DR ROAD (ARM A) d = 2.0 (metres) d = 120 (metres) o = 3 (pcu/hr) c = 49 (pcu/hr) i = 1 (pcu/hr)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F W c-b = Vr c-b = q c-a = q c-b = q c-d =	0.865 ROAD (ARM C) 2.U (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr) 1 (pcu/hr)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d	RIC FACTORS : = 0. = 0. = 0. = 0. HION OF MINOR STRA = = =	818 799 928 860 IGH I AHEAD I 0 1.5 (pcu/hr) 1.5 (pcu/hr)	Xa Xd Zd Md IKAFFIC: rd-c qld-b) qrd-b		0.845 1.066 1.188 1.097 0.007 0.7550628 (pcu/hr 0.7449372 (pcu/hr	COMPAI TO CAP,	RISION OF DE ACITY: DFC b-a DFC b-c DFC c-b DFC l-d DFC d-a DFC d-a DFC a-d DFC a-d DFC d-b	SIGN FL = = = = = = = = = = = = =	0.0000 0.0154 0.0160 0.0029 0.0031 0.0068 0.0017 0.0016 0.0011 0.0012
GEOM GENE W W cr MAJC W a-c Q a-b Q a-c Q a-d MINOI	METRIC DETAILS: ERAL = 3.90 (metres) r = 0 (metres) DR ROAD (ARM A) a = 2.0 (metres) d = 120 (metres) d = 120 (metres) r = 3 (pcu/hr) r = 49 (pcu/hr) r = 1 (pcu/hr) R RUAD (ARM B)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-d = MINOR ROAD (A	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr) 1 (pcu/hr) 1 (pcu/hr)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d CAPACIT	RIC FACTORS : = 0. = 0. = 0. = 0. IUDN OF MINOR STRATE = <td>818 799 928 860 IGHI AHEAD 0 1.5 (pcu/hr) 1.5 (pcu/hr)</td> <td>Xa Xd Zd Md IKAFFIC: rd-c qld-b qrd-b</td> <td></td> <td>0.845 1.066 1.188 1.097 0.7550628 (pcu/hr 0.7449372 (pcu/hr</td> <td>COMPAI TO CAP,</td> <td>RISION OF DE ACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC d-a DFC d-a DFC d-a DFC a-d DFC d-b DFC d-b</td> <td>SIGN FL = = = = = = = = = =</td> <td>0.0000 0.0154 0.0160 0.0029 0.0031 0.0068 0.0017 0.0016 0.0011 0.0012</td>	818 799 928 860 IGHI AHEAD 0 1.5 (pcu/hr) 1.5 (pcu/hr)	Xa Xd Zd Md IKAFFIC: rd-c qld-b qrd-b		0.845 1.066 1.188 1.097 0.7550628 (pcu/hr 0.7449372 (pcu/hr	COMPAI TO CAP,	RISION OF DE ACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC d-a DFC d-a DFC d-a DFC a-d DFC d-b DFC d-b	SIGN FL = = = = = = = = = =	0.0000 0.0154 0.0160 0.0029 0.0031 0.0068 0.0017 0.0016 0.0011 0.0012
GEON GENE W W vr MAJC Vr a-c Vr a-c q a-b q a-c q a-d MINOI W b-c	AETRIC DETAILS: ERAL = 3.90 (metres) > 0 (metres) DR ROAD (ARM A) d = 2.0 (metres) d = 120 (metres) b = 3 (pcu/hr) c = 49 (pcu/hr) I = 1 (pcu/hr) R ROAD (ARM B) a = a = 3.3 (metres)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F W c-D = Vr c-b = q c-b = q c-b = q c-b = q c-d = MINOR ROAD (A W d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr) 1 (pcu/hr) 1 (pcu/hr) KM D) 6.0 (metres)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d CAPACIT	FIC FACTORS : = 0. = 0. = 0. : 0. <td>818 799 928 860 IGHT AHEAD 0 1.5 (pcu/hr) 1.5 (pcu/hr)</td> <td>X a X d Z d M d I KAFFIC : r d-c ql d-b qr d-b</td> <td></td> <td>0.845 1.066 1.188 1.097 0.7550628 (pcu/hr 0.7549372 (pcu/hr</td> <td>COMPAI TO CAP:)</td> <td>RISION OF DE ACITY: DFC b-a DFC b-c DFC b-d DFC b-d DFC d-a DFC d-a DFC d-a DFC a-d DFC d-b</td> <td>SIGN FL = = = = = = = = = = =</td> <td>0.0000 0.0154 0.0160 0.0029 0.0031 0.0068 0.0017 0.0016 0.0011 0.0012</td>	818 799 928 860 IGHT AHEAD 0 1.5 (pcu/hr) 1.5 (pcu/hr)	X a X d Z d M d I KAFFIC : r d-c ql d-b qr d-b		0.845 1.066 1.188 1.097 0.7550628 (pcu/hr 0.7549372 (pcu/hr	COMPAI TO CAP:)	RISION OF DE ACITY: DFC b-a DFC b-c DFC b-d DFC b-d DFC d-a DFC d-a DFC d-a DFC a-d DFC d-b	SIGN FL = = = = = = = = = = =	0.0000 0.0154 0.0160 0.0029 0.0031 0.0068 0.0017 0.0016 0.0011 0.0012
GEON GENE W W cr MAJC Vr a-c q a-b q a-c q a-d MINOI W b-t	METRIC DETAILS: ERAL = 3.90 (metres) = 0 (metres) DR ROAD (ARM A) d = 2.0 (metres) d = 120 (metres) d = 120 (metres) c = 49 (pcu/hr) I = 1 (pcu/hr) R ROAD (ARM B) a = 3.3 (metres) c = 3.3 (metres)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F W c-b = Vr c-b = q c-b = q c-b = q c-b = q c-b = q c-b = q c-d = MINOK ROAD (A W d-c = W d-c =	0.865 ROAD (ARM C) 2.U (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr) 1 (pcu/hr) 1 (pcu/hr) KKM L) 6.0 (metres) 6.0 (metres)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACII	RIC FACTORS : = 0. = 0. = 0. HON OF MINOR STRA = = = Y OF MOVEMENT : =	818 799 928 860 IGH I AHEAD I 0 1.5 (pcu/hr) 1.5 (pcu/hr) 489 (pcu/hr)	X a X d Z d M d IKAFFIC: r d-c ql d-b) qr d-b		0.845 1.066 1.188 1.097 0.7550628 (pcu/hr 0.7449372 (pcu/hr	COMPAI TO CAP.	RISION OF DE ACITY: DFC b-a DFC b-c DFC c-b DFC l-d DFC d-a DFC d-a DFC a-d DFC a-d DFC d-b	SIGN FL = = = = = = = = = =	0.0000 0.0154 0.0160 0.0029 0.0031 0.0068 0.0017 0.0016 0.0011 0.0012
GEON GENE W W cr MAJC W a-(Vr a-C q a-b q a-c q a-d MINOI W b-4 W b-1	AETRIC DETAILS: SRAL = 3.90 (metres) > = 0 (metres) DR ROAD (ARM A) d = 2.0 (metres) d = 120 (metres) o = 3 (pcu/hr) c = 49 (pcu/hr) l = 1 (pcu/hr) R ROAD (ARM B) a = 3.3 (metres) c = 3.3 (metres) c = 3.3 (metres)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F W c-b = Vr c-b = q c-b = q c-b = q c-b = q c-d = MINOK ROAD (A W d-c = W d-c = Vr d-a = Vr d-a =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 9 (pcu/hr) 1 (pcu/hr) 1 (pcu/hr) 8KM D) 6.0 (metres) 6.0 (metres) 22 (metres)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d CAPACIT Q b-a	RIC FACTORS : = 0. = 0. = 0. = 0. HON OF MINOR STRA = = = Y OF MOVEMENT : =	818 799 928 860 IGH I AHEAD I 0 1.5 (pcu/hr) 1.5 (pcu/hr) 489 (pcu/hr)	Xa Xd Zd Md IKAFFIC: rd-c qld-b qrd-b		0.845 1.066 1.188 1.097 0.7550628 (pcu/hr 0.7449372 (pcu/hr 869 (pcu/br	COMPAI TO CAP,	RISION OF DE ACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-d DFC d-c DFC d-a DFC d-a DFC a-d DFC a-d DFC d-b	SIGN FL = = = = = = = = =	0.0000 0.0154 0.0160 0.0029 0.0031 0.0068 0.0017 0.0016 0.0011 0.0012
GEON GENE W W vr MAJC Vr a-c Vr a-c q a-d q a-d MINOI W b-c V b-c V b-c V b-c	AETRIC DETAILS: ERAL = 3.90 (metres) > 0 (metres) DR ROAD (ARM A) d = 2.0 (metres) d = 120 (metres) b = 3 (pcu/hr) c = 49 (pcu/hr) i = 1 (pcu/hr) R ROAD (ARM B) a = a = 3.3 (metres) c = 3.3 (metres) a = 28 (metres)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F W c-D = Vr c-b = q c-a = q c-b = q c-d = MINOR ROAD (A W d-c = W d-a = VI d-c = VI d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 1 (pcu/hr) 1 (pcu/hr) KM D) 6.0 (metres) 6.0 (metres) 22 (metres) 22 (metres)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACIT Q b-a Q b-c O b-c	RIC FACTORS : = 0. = 0. = 0. = 0. HON OF MINOR STRA = = = Y OF MOVEMENT : = =	818 799 928 860 IGH I AHEAD I 0 1.5 (pcu/hr) 1.5 (pcu/hr) 489 (pcu/hr) 677 (pcu/hr)	X a X d Z d M d IKAFFIC : r d-c ql d-b qr d-b		0.845 1.066 1.188 1.097 0.7550628 (pcu/hr 0.7449372 (pcu/hr 869 (pcu/hr		RISION OF DE ACITY: DFC b-a DFC b-c DFC c-b DFC b-d DFC d-a DFC d-a DFC a-d DFC d-b DFCr d-b	SIGN FL = = = = = = = = = =	0.0000 0.0154 0.0160 0.0029 0.0031 0.0068 0.0017 0.0016 0.0011 0.0012
GEON GENE W W cr MAJC Vr a-c q a-b q a-c q a-d MINOI W b-c W b-c Vr b-c Vr b-c	METRIC DETAILS: ERAL = 3.90 (metres) = 0 (metres) DR ROAD (ARM A) d = 2.0 (metres) d = 120 (metres) d = 120 (metres) a = 3 (pcu/hr) I = 1 (pcu/hr) R ROAD (ARM B) a = 3.3 (metres) c = 3.3 (metres) a = 28 (metres) a = 28 (metres)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F W c-b = Vr c-b = q c-b = q c-b = q c-b = q c-b = q c-d = MINUK RUAD (A W d-c = W d-c = Vr d-c = Vr d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 1 (pcu/hr) 1 (pcu/hr) KKM D) 6.0 (metres) 6.0 (metres) 22 (metres) 60 (metres)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d CAPACIT Q b-a Q b-c Q c-b	RIC FACTORS : = 0. = 0. = 0. = 0. HON OF MINOR STRA = = = Y OF MOVEMENT : = = =	818 799 928 860 IGH I AHEAD I 0 1.5 (pcu/hr) 1.5 (pcu/hr) 1.5 (pcu/hr) 877 (pcu/hr) 582 (pcu/hr)	X a X d Z d M d I KAFFIC : r d-c ql d-b qr d-b Q d-c Q d-a Q d-a Q a-d		0.845 1.066 1.188 1.097 0.7550628 (pcu/hr 0.7449372 (pcu/hr 869 (pcu/hr 615 (pcu/hr	COMPAI TO CAP.	RISION OF DE ACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC d-c DFC d-a DFC d-a DFC d-b DFC d-b DFC d-b	SIGN FL = = = = = = = = = = = =	0.0000 0.0154 0.0160 0.0029 0.0031 0.0068 0.0017 0.0016 0.0011 0.0012
GEON GENE W W Cr MAJC W a-0 Vr a-0 q a-b q a-c q a-d MINOI W b-1 W b-2 Vr b-2 Vr b-2 Vr b-2	AETRIC DETAILS: ERAL = 3.90 (metres) > = 0 (metres) DR ROAD (ARM A) d = 2.0 (metres) d = 120 (metres) o = 3 (pcu/hr) c = 49 (pcu/hr) i = 1 (pcu/hr) k EXCAL (ARM B) a = 3.3 (metres) c = 3.3 (metres) a = 28 (metres) a = 28 (metres) c = 80 (metres)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F W c-b = Vr c-b = q c-b = q c-b = q c-d = MINOK ROAD (A W d-c = W d-a = VI d-c = Vr d-c = Vr d-c = Vr d-c = Vr d-c = Vr d-c = Vr d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 1 (pcu/hr) 1 (pcu/hr) KKM D) 6.0 (metres) 6.0 (metres) 22 (metres) 60 (metres) 90 (metres) 90 (metres)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d Q b-a Q b-a Q b-c Q c-b Ql b-d	RIC FACTORS : = 0, = 0, = 0, = 0, IION OF MINOR STRA = = = Y OF MOVEMENT : = = = = =	818 799 928 860 IGHI AHEAD 1 0 1.5 (pcu/hr) 1.5 (pcu/hr) 489 (pcu/hr) 582 (pcu/hr) 582 (pcu/hr)	X a X d Z d M d I KAFFIC : r d-c ql d-b qr d-b) Q d-c Q d-a Q a-d Ql d-b		0.845 1.066 1.188 1.097 0.7550628 (pcu/hr 0.7449372 (pcu/hr 869 (pcu/hr 615 (pcu/hr 615 (pcu/hr	COMPAI 10 CAP	RISION OF DE ACIT T: DFC b-a DFC b-c DFC c-b DFC c-b DFC d-c DFC d-a DFC d-a DFC d-a DFC a-d DFC d-b DFC d-b	SIGN FL = = = = = = = = = =	0.0000 0.0154 0.0160 0.0029 0.0031 0.0068 0.0017 0.0016 0.0011 0.0012 0.002
GEON GENE W W vr MAJC Vr a-c Q a-d Q a-d Q a-d MINOI W b-a Vr b-a Vr b-a Vr b-a Vr b-a Vr b-a Vr b-a	METRIC DETAILS: ERAL = 3.90 (metres) = 0 (metres) DR ROAD (ARM A) d = 120 (metres) d = 120 (metres) b = 3 (pcu/hr) c = 49 (pcu/hr) l = 1 (pcu/hr) R ROAD (ARM B) a = a = 3.3 (metres) c = 3.3 (metres) a = 28 (metres) a = 28 (metres) c = 80 (metres) a = 0 (pcu/hr)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F W c-D = Vr c-b = q c-a = q c-b = q c-d = MINOR ROAD (A W d-c = W d-a = VI d-c = Vr d-a = Vr d-a = q d-c = Vr d-a = q d-c =	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 1 (pcu/hr) 1 (pcu/hr) KM D) 6.0 (metres) 60 (metres) 22 (metres) 60 (metres) 90 (metres) 4 (pcu/hr)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACIT Q b-a Q b-c Q c-b Ql b-d Ql b-d Q b-c Q c-b Ql b-d Qr b-d	RIC FACTORS : = 0. = 0	818 799 928 860 IGH I AHEAD 1.5 (pcu/hr) 1.5 (pcu/hr) 677 (pcu/hr) 515 (pcu/hr) 515 (pcu/hr)	X a X d Z d M d IKAFFIC : r d-c ql d-b qr d-b Q d-a Q a-d Q a-d Q d-b Q d-b Q d-b		0.845 1.066 1.188 1.097 0.7550628 (pcu/hr 0.7449372 (pcu/hr 615 (pcu/hr 615 (pcu/hr 659 (pcu/hr 641 (pcu/hr	COMPAI TO CAP.	RISION OF DE ACITY: DFC b-a DFC b-c DFC c-b DFC d-a DFC d-a DFC d-a DFC d-b DFCr d-b	SIGN FL = = = = = = = = = = =	0.0000 0.0154 0.0160 0.0029 0.0031 0.0068 0.0017 0.0016 0.0011 0.0012 0.002
GEON GENE W W cr MAJC VV a-c Vr a-c q a-b q a-c q a-d MINUI W b-c Vr b-c Vr b-c Vr b-c Vr b-c q b-a q b-a q b-a q b-a	METRIC DETAILS: ERAL = 3.90 (metres) > = 0 (metres) DR ROAD (ARM A) d = 2.0 (metres) d = 120 (metres) d = 120 (metres) b = 3 (pcu/hr) c = 49 (pcu/hr) I = 1 (pcu/hr) R ROAD (ARM B) a a = 3.3 (metres) c = 3.3 (metres) a = 28 (metres) a = 28 (metres) a = 0 (pcu/hr) c = 80 (metres) a = 0 (pcu/hr)	[6] [5] [4] Deep Bay Rd'(AR Y = MAJOF MAJOR F W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-d = MINOK ROAD (A W d-c = W d-c = Vr d-c = Vr d-c = q d-a = q d-a = Q d-a = Q d-a = Vr d-c = Q d-a	0.865 ROAD (ARM C) 2.0 (metres) 60 (metres) 39 (pcu/hr) 1 (pcu/hr) 1 (pcu/hr) KKM D) 6.0 (metres) 60 (metres) 22 (metres) 60 (metres) 90 (metres) 4 (pcu/hr) 2 (pcu/hr)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d CAPACIT Q b-a Q b-a Q b-c Q c-b Ql b-d Qr b-d	RIC FACTORS : = 0. = 0. = 0. HUN OF MINOR STRA = = = Y OF MOVEMENT : = = = = = =	818 799 928 860 IGHI AHEAD I 0 1.5 (pcu/hr) 1.5 (pcu/hr) 1.5 (pcu/hr) 577 (pcu/hr) 582 (pcu/hr) 515 (pcu/hr) 490 (pcu/hr)	X a X d Z d M d I KAFFIC : r d-c ql d-b qr d-b Q d-c Q d-a Q a-d Q a-d Q d-b Q d-b		0.845 1.066 1.188 1.097 0.7550628 (pcu/hr 0.7449372 (pcu/hr 869 (pcu/hr 615 (pcu/hr 659 (pcu/hr 641 (pcu/hr	COMPAI 10 CAP	RISION OF DE ACITY: DFC b-a DFC b-c DFC c-b DFC d-b DFC d-c DFC d-a DFC d-a DFC d-b DFC d-b DFC d-b	SIGN FL = = = = = = = = = = =	0.0000 0.0154 0.0160 0.0029 0.0031 0.0068 0.0017 0.0016 0.0011 0.0012 0.002

-M CONSULTANCY	LIMITED	PRIOR	ITY JUNCTION CALCULATION				INITIALS	DATI
Impact Assessment for Proposed Tempora	ry Open Storage of Construction Material and E	quipment of 3 Years at Various L	ots in D.D.129, Lau Fau Shan			Prepared By:	FF	Jan-20
- Unnamed Rd 1 / Unnamed Rd	2	2024 Obser	rved - AM Peak	Proje	ct No.: 80108	Checked By:	MM	Jan-20
						Reviewed By:	FM	Jan-20
Unnamed Rd 2 [4] 41 [3] 0 (ARM A)		← 49 [5 ↓ 11 [6	5] Unnamed Rd 2 6] (ARM C)	NOTES : (GEOMETRIC W = MAJC W cr = CENT W b-a = LANE W b-c = LANE W c-b = LANE VI b-a = VISIE VI b-a = VISIE VI b-a = VISIE VI c-b = VISIE D = STRE E = STRE F = STRE Y = (1-0.0	INPUT DATA) DR ROAD WIDTH IRAL RESERVE W E WIDTH AVAILABL WIDTH AVAILABL WIDTH AVAILABL WIDTH AVAILABL WIDTH TO THE RIGI WILTY TO THE RIGI WILTY TO THE RIGI MILTY TO THE RIGI AM-SPECIFIC B-A EAM-SPECIFIC B-C EAM-SPECIFIC C-B 0345W)	IDTH LE TO VEHICLE V LE TO VEHICLE V LE TO VEHICLE V T FOR VEHICLES HT FOR VEHICLE HT FOR VEHICLE HT FOR VEHICLE	VAITING IN STF VAITING IN STF VAITING IN STF S WAITING IN S S WAITING IN S WAITING IN S WAITING IN	REAM b-a REAM b-c REAM c-b TREAM b-a STREAM b-a STREAM b-c STREAM c-b
GEOMETRIC DETAILS:	GEOMETRIC	FACTORS :	THE CAPACITY OF MOVEMENT :			COMPARISION (TO CAPACITY:	OF DESIGN FLO	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A)	GEOMETRIC	FACTORS :	THE CAPACITY OF MOVEMENT :			COMPARISION (TO CAPACITY:	OF DESIGN FLO	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 (m	GEOMETRIC etres) D =	C FACTORS : 0.752	THE CAPACITY OF MOVEMENT : Q b-a = 452	(pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a	DF DESIGN FLO	DW 0.0372
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 (m W cr = 0 (m	GEOMETRIC etres) D = etres) E =	0.752 0.813	Check Check <th< td=""><td>(pcu/hr) (pcu/hr)</td><td></td><td>COMPARISION O TO CAPACITY: DFC b-a DFC b-c</td><td>DF DESIGN FLO = =</td><td>0.0372 0.0101</td></th<>	(pcu/hr) (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c	DF DESIGN FLO = =	0.0372 0.0101
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 5.2$ (m $W cr = 0$ (m $q a-b = 0$ (point)	GEOMETRIC etres) D = etres) E = cu/hr) F =	0.752 0.813 0.813	Q b-a = 452 Q b-c = 596 Q c-b = 596	(pcu/hr) (pcu/hr) (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b	DF DESIGN FLO = = = =	0.0372 0.0101 0.0178
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 5.2$ (m $W cr = 0$ (m $q a-b = 0$ (po $q a-c = 41$ (po	GEOMETRIC etres) D = etres) E = cu/hr) F = cu/hr) Y =	C FACTORS : 0.752 0.813 0.813 0.821	Check Check <th< td=""><td>(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)</td><td></td><td>COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac OFC b-ac</td><td>DF DESIGN FLO = = = = = =</td><td>0.0372 0.0101 0.0178 0.0472</td></th<>	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac OFC b-ac	DF DESIGN FLO = = = = = =	0.0372 0.0101 0.0178 0.0472
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 5.2$ (m $W cr = 0$ (m $q a-b = 0$ (point of $q a-c = 41$)	GEOMETRIC etres) D etres) E cu/hr) F cu/hr) Y	0.752 0.813 0.813 0.821	Q b-a = 452 Q b-c = 596 Q c-b = 596 Q b-ac = 483 Q c-a = 1768	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	DF DESIGN FLO = = = = =	0.0372 0.0101 0.0178 0.0472
$\begin{array}{rcl} \textbf{GEOMETRIC DETAILS:} \\ \mbox{MAJOR ROAD (ARM A)} \\ \mbox{W} &= 5.2 & (m) \\ \mbox{W or} &= 0 & (m) \\ \mbox{q a-b} &= 0 & (po) \\ \mbox{q a-c} &= 41 & (po) \\ \mbox{MAJOR ROAD (ARM C)} \end{array}$	GEOMETRIC etres) D etres) E cu/hr) F cu/hr) Y F for (Qb-ac)	C FACTORS : 0.752 0.813 0.813 0.821 0.263	Q b-a = 452 Q b-c = 596 Q c-b = 596 Q b-ac = 483 Q c-a = 1768 TOTAL FLOW = 59.1	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLG = = = = = =	0.0372 0.0101 0.0178 0.0472 0.0274
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 (m) W cr = 0 (m) q a-b = 0 (p) q a-c = 41 (p) MAJOR ROAD (ARM C) W c-b = 2.5 (m)	GEOMETRIC etres) D etres) E cu/hr) F cu/hr) Y F for (Qb-ac) = etres) E	0.752 0.813 0.813 0.821 0.263	Q b-a = 452 Q b-c = 596 Q c-b = 596 Q b-ac = 483 Q c-a = 1768 TOTAL FLOW = 59.1	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0372 0.0101 0.0178 0.0472 0.0274
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 (m W cr = 0 (m q a-b = 0 (pq q a-c = 41 (pq MAJOR ROAD (ARM C) W c-b = 2.5 (m Vr c-b = 22 (m	GEOMETRIC etres) D etres) E su/hr) F su/hr) Y su/hr) Y etres) E	0.752 0.813 0.813 0.821 0.263	Q b-a = 452 Q b-c = 596 Q c-b = 596 Q b-ac = 483 Q c-a = 1768 TOTAL FLOW = 59.1	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0372 0.0101 0.0178 0.0472 0.0274
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 (m W cr = 0 (m q a-b = 0 (pq q a-c = 41 (pq MAJOR ROAD (ARM C) W c-b = 2.5 (m Vr c-b = 22 (m q c-a = 49 (pq	GEOMETRIC etres) D etres) E su/hr) F bu/hr) Y F for (Qb-ac) = etres) etres) etres) etres)	0.752 0.813 0.813 0.821 0.263	Q b-a = 452 Q b-c = 596 Q c-b = 596 Q b-ac = 483 Q c-a = 1768 TOTAL FLOW = 59.1	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0372 0.0101 0.0178 0.0472 0.0274
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) $W = 5.2$ (m $W cr = 0$ (m $q a-b = 0$ (pq $q a-c = 41$ (pq MAJOR ROAD (ARM C) $W c-b = 2.5$ (m $Vr c-b = 22$ (m $q c-a = 49$ (pq $q c-b = 11$ (pq	GEOMETRIC etres) D etres) E cu/hr) F cu/hr) Y F for (Qb-ac) = etres) etres) cu/hr)	C FACTORS : 0.752 0.813 0.813 0.821 0.263	Q b-a = 452 Q b-c = 596 Q c-b = 596 Q b-ac = 483 Q c-a = 1768 TOTAL FLOW = 59.1	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = =	0.0372 0.0101 0.0178 0.0472 0.0274
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 (m) W or = 0 (m) q a-b = 0 (pq) q a-c = 41 (pq) MAJOR ROAD (ARM C) W c-b = W c-b = 2.5 (m) Vr c-b = 22 (m) q c-a = 49 (pq) q c-b = 11 (pq) MINOR ROAD (ARM B)	GEOMETRIC etres) D etres) E cu/hr) F cu/hr) Y etres) etres) cu/hr) Y cu/hr) Y cu/hr) S cu/hr) S cu/hr) S	C FACTORS : 0.752 0.813 0.813 0.821 0.263	Q b-a = 452 Q b-c = 596 Q c-b = 596 Q b-ac = 483 Q c-a = 1768 TOTAL FLOW = 59.1	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL4 = = = = =	0.0372 0.0101 0.0178 0.0472 0.0274 0.05
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 (m W cr = 0 (pq q a-b = 0 (pq q a-c = 41 (pq MAJOR ROAD (ARM C) W c-b = 2.5 (m Vr c-b = 2.2 (m q c-a = 49 (pq q c-b = 11 (pq MINOR ROAD (ARM B) W b-a = 2.5 (m	GEOMETRIC etres) D etres) E su/hr) F su/hr) Y etres) etres) etres) y etres) etres) etres) su/hr) petres) su/hr) su/hr) etres) su/hr) su/hr)	C FACTORS : 0.752 0.813 0.813 0.821 0.263	Q b-a = 452 Q b-c = 596 Q c-b = 596 Q b-ac = 483 Q c-a = 1768 TOTAL FLOW = 59.1	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL4 = = = = =	0.0372 0.0101 0.0178 0.0472 0.0274 0.05
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 (m W cr = 0 (pq q a-b = 0 (pq q a-c = 41 (pq MAJOR ROAD (ARM C) W c-b W c-b = 2.5 (m Vr c-b = 22 (m q c-a = 49 (pq q c-b = 11 (pq MINOR ROAD (ARM B) W b-a 2.5 (m W b-a = 2.5 (m	GEOMETRIC etres) D etres) E su/hr) F su/hr) Y etres) etres) etres) etres) etres) etres) etres) su/hr) etres) etres) etres) etres) etres) etres)	0.752 0.813 0.813 0.821 0.263	Q b-a = 452 Q b-c = 596 Q c-b = 596 Q b-ac = 483 Q c-a = 1768 TOTAL FLOW = 59.1	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL4 = = = = =	0.0372 0.0101 0.0178 0.0472 0.0274 0.05
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) $W = 5.2$ (m $W cr = 0$ (m $q a-b = 0$ (pa $q a-c = 41$ (pa MAJOR ROAD (ARM C) $W c-b = 2.5$ (m $Vr c-b = 22$ (m $q c-a = 49$ (pa $q c-b = 11$ (pa MINOR ROAD (ARM B) $W b-a = 2.5$ (m $W b-a = 2.5$ (m $V b-a = 22$ (m	GEOMETRIC etres) D etres) E cu/hr) F cu/hr) Y F for (Qb-ac) = etres) cu/hr) cu/hr) cu/hr) cu/hr) cu/hr) etres) etres) etres) etres) etres)	C FACTORS : 0.752 0.813 0.813 0.821 0.263	Q b-a = 452 Q b-c = 596 Q c-b = 596 Q b-ac = 483 Q c-a = 1768 TOTAL FLOW = 59.1	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = =	0.0372 0.0101 0.0178 0.0472 0.0274 0.025
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 (m W cr = 0 (m q a-b = 0 (pa q a-c = 41 (pa MAJOR ROAD (ARM C) W c-b = W c-b = 2.5 (m Vr c-b = 22 (m q c-a = 49 (pa q c-b = 11 (pa MINOR ROAD (ARM B) W b-a = 2.5 (m W b-a = 2.5 (m VI b-a = 2.2 (m	GEOMETRIC etres) D etres) E cu/hr) F cu/hr) Y F for (Qb-ac) etres)	C FACTORS : 0.752 0.813 0.813 0.821 0.263	Chea = 452 Qb-a = 452 Qb-c = 596 Qc-b = 596 Qb-ac = 483 Qc-a = 1768 TOTAL FLOW = 59.1	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)		COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = =	0.0372 0.0101 0.0178 0.0472 0.0274 0.025
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 (m) W cr = 0 (m) q a-b = 0 (m) q a-c = 41 (pa) MAJOR ROAD (ARM C) W W c-b = 2.5 (m) Vr c-b = 22 (m) q c-a = 49 (pa) q c-b = 11 (pa) MINOR ROAD (ARM B) W W b-a = 2.5 (m) VI b-a = 2.5 (m) VI b-a = 2.5 (m) VI b-a = 2.2 (m) VI b-a = 2.4 (m) Vr b-a = 2.4 (m) Vr b-a = 2.2 (m)	GEOMETRIC etres) D etres) E cu/hr) F cu/hr) Y refres) etres) etres) etres)	C FACTORS : 0.752 0.813 0.813 0.821 0.263	THE CAPACITY OF MOVEMENT : Q b-a = 452 Q b-c = 596 Q c-b = 596 Q b-ac = 483 Q c-a = 1768 TOTAL FLOW = 59.1	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)		COMPARISION of TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FLO = = = = =	0.0372 0.0101 0.0178 0.0472 0.0274 0.025
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 (m W cr = 0 (pq qa-b = 0 (pq q a-b = 0 (pq qa-c = 41 (pq) MAJOR ROAD (ARM C) W c-b = 2.5 (m) W c-b = 2.5 (m) q c-a = 49 (pq) q c-b = 11 (pq) MINOR ROAD (ARM B) W b-a = 2.5 (m) W b-a = 2.5 (m) V b-a = 2.5 (m) V b-a = 2.5 (m) W b-a = 2.5 (m) V b-a = 2.5 (m) V b-a = 2.5 (m) W b-a = 2.5 (m) V b-a = 2.5 (m) V b-a = 2.2 (m) Vr b-a = 2.4 (m) Vr b-a = 2.4 (m) Vr b-a = 17 (pa)	GEOMETRIC etres) D etres) E cu/hr) F cu/hr) Y etres) etres) etres) etres)	C FACTORS : 0.752 0.813 0.813 0.821 0.263	C b-a = 452 Q b-c = 596 Q c-b = 596 Q b-ac = 483 Q c-a = 1768 TOTAL FLOW = 59.1	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = =	0.0372 0.0101 0.0178 0.0472 0.0274 0.025

FM CONSULTANCY LIMIT	red PRIC	ORITY JUNCTION CALCULA	ATION		INITIALS	DATE
fic Impact Assessment for Proposed Temporary Open Stor	age of Construction Material and Equipment of 3 Years at Va	rious Lots in D.D.129, Lau Fau Shan		Prepared By:	FF	Jan-202
F - Deep Bay Rd / Unnamed Rd 3	2024 C	bserved - AM Peak	Projec	t No.: 80108 Checked By:	MM	Jan-202
				Reviewed By:	FM	Jan-202
	(ARM C) Deep Bay Rd [5] [6] 34 82 ↓ ↓ ↑ 72 [1] ↓ 22 [2] ↑ [4] 24 4 [4] [3]	(ARM B) Unnamed Rd 3	NOTES: (GEOMETRIC W = MAJO W cr = CENT W b-a = LANE W b-c = LANE W c-b = LANE V c-b = VISIB Vr b-a = VISIB Vr b-c = VISIB Vr c-b = VISIB D = STRE E = STRE F = STRE Y = (1-0.0)	INPUT DATA) R ROAD WIDTH RAL RESERVE WIDTH WIDTH AVAILABLE TO VEHICLE WIDTH AVAILABLE TO VEHICLE WIDTH AVAILABLE TO VEHICLE ILITY TO THE LEFT FOR VEHICL ILITY TO THE RIGHT FOR VEHIC ILITY TO THE RIGHT FOR VEHIC ILITY TO THE RIGHT FOR VEHIC AM-SPECIFIC B-A AM-SPECIFIC B-C AM-SPECIFIC C-B 345W)	WAITING IN ST WAITING IN ST WAITING IN ST ES WAITING IN LES WAITING IN LES WAITING IN	REAM b-a REAM b-c REAM c-b STREAM b-a STREAM b-a STREAM b-c STREAM c-b
	Deep Bay Rd					
GEOMETRIC DETAILS:	Deep Bay Rd (ARM A) GEOMETRIC FACTORS :	THE CAPACITY OF MOVE		COMPARISIO TO CAPACITY	N OF DESIGN FL	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS :	THE CAPACITY OF MOVE	MENT :	COMPARISIO TO CAPACITY	N OF DESIGN FL :	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres)	GEOMETRIC FACTORS : D = 0.752	THE CAPACITY OF MOVE	EMENT : 434 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a	N OF DESIGN FL : =	.0W 0.0509
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826	Change of the compactive of the compact of the com	EMENT : 434 (pcu/hr) 609 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a DFC b-c	N OF DESIGN FL : = =	. ow 0.0509 0.1186
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 4$ (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791	Q b-a = Q b-c = Q c-b =	EMENT : 434 (pcu/hr) 609 (pcu/hr) 583 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a DFC b-c DFC c-b	N OF DESIGN FL : = = =	. OW 0.0509 0.1186 0.1407
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 4$ (pcu/hr) $q a-c = 24$ (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834	Q b-a = Q b-c = Q c-b = Q b-ac =	EMENT : 434 (pcu/hr) 609 (pcu/hr) 583 (pcu/hr) 556 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	N OF DESIGN FL : = = = = =	. OW 0.0509 0.1186 0.1407 0.1695
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 4$ (pcu/hr) $q a-c = 24$ (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	EMENT : 434 (pcu/hr) 609 (pcu/hr) 583 (pcu/hr) 556 (pcu/hr) 1547 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	N OF DESIGN FL : = = = = =	. OW 0.0509 0.1186 0.1407 0.1695
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 4$ (pcu/hr) $q a-c = 24$ (pcu/hr)MAJOR ROAD (ARM C)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.766	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	EMENT : 434 (pcu/hr) 609 (pcu/hr) 583 (pcu/hr) 556 (pcu/hr) 1547 (pcu/hr) 82 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	N OF DESIGN FL : = = = = = =	0.0509 0.1186 0.1407 0.1695 0.0222
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 4$ (pcu/hr) $q a-c = 24$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.766	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	EMENT : 434 (pcu/hr) 609 (pcu/hr) 583 (pcu/hr) 556 (pcu/hr) 1547 (pcu/hr) 82 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	N OF DESIGN FL : = = = = = =	0.0509 0.1186 0.1407 0.1695 0.0222
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 4$ (pcu/hr) $q a-c = 24$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres)	$\begin{array}{c} \text{CP} \\ \text{Deep Bay Rd} \\ \text{(ARM A)} \end{array}$ $\begin{array}{c} \text{GEOMETRIC FACTORS :} \\ D &= & 0.752 \\ E &= & 0.826 \\ F &= & 0.791 \\ Y &= & 0.834 \\ F \text{ for (Qb-ac)} = & 0.766 \end{array}$	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	EMENT : 434 (pcu/hr) 609 (pcu/hr) 583 (pcu/hr) 556 (pcu/hr) 1547 (pcu/hr) 82 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	N OF DESIGN FL : = = = = = = =	0.0509 0.1186 0.1407 0.1695 0.0222
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 4$ (pcu/hr) $q a-c = 24$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 34$ (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.766	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	EMENT : 434 (pcu/hr) 609 (pcu/hr) 583 (pcu/hr) 556 (pcu/hr) 1547 (pcu/hr) 82 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	N OF DESIGN FL : = = = = = =	0.0509 0.1186 0.1407 0.1695 0.0222
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 4$ (pcu/hr) $q a-c = 24$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 34$ (pcu/hr) $q c-b = 82$ (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.766	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	EMENT : 434 (pcu/hr) 609 (pcu/hr) 583 (pcu/hr) 556 (pcu/hr) 1547 (pcu/hr) 82 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	N OF DESIGN FL : = = = = = =	0.0509 0.1186 0.1407 0.1695 0.0222
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 4$ (pcu/hr) $q a-c = 24$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 34$ (pcu/hr) $q c-b = 82$ (pcu/hr)MINOR ROAD (ARM B)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.766	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	EMENT : 434 (pcu/hr) 609 (pcu/hr) 583 (pcu/hr) 556 (pcu/hr) 1547 (pcu/hr) 82 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DF(N OF DESIGN FL : = = = = = = =	.0W 0.0509 0.1186 0.1407 0.1695 0.0222 0.17
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 4$ (pcu/hr) $q a-c = 24$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 34$ (pcu/hr) $q c-b = 82$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.766	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	EMENT : 434 (pcu/hr) 609 (pcu/hr) 583 (pcu/hr) 556 (pcu/hr) 1547 (pcu/hr) 82 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	N OF DESIGN FL : = = = = = = :	.0W 0.0509 0.1186 0.1407 0.1695 0.0222 0.17
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 4$ (pcu/hr) $q a-c = 24$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 34$ (pcu/hr) $q c-b = 82$ (pcu/hr) $q c-b = 82$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-c = 2.5$ (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.766	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	EMENT : 434 (pcu/hr) 609 (pcu/hr) 536 (pcu/hr) 1547 (pcu/hr) 82 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	N OF DESIGN FL = = = = = = = = =	.0W 0.0509 0.1186 0.1407 0.1695 0.0222 0.17
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 4$ (pcu/hr) $q a-c = 24$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 34$ (pcu/hr) $q c-a = 34$ (pcu/hr) $q c-b = 82$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-a = 2.5$ (metres) $V b-a = 2.2$ (metres) $V b-a = 2.2$ (metres)	$\begin{array}{c} \text{Deep Bay Rd} \\ \text{(ARM A)} \\ \hline $	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	EMENT : 434 (pcu/hr) 609 (pcu/hr) 583 (pcu/hr) 556 (pcu/hr) 1547 (pcu/hr) 82 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	N OF DESIGN FL : = = = = = : =	.0W 0.0509 0.1186 0.1407 0.1695 0.0222 0.0222 0.17
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 4$ (pcu/hr) $q a-c = 24$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 34$ (pcu/hr) $q c-b = 82$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-a = 2.5$ (metres) $VI b-a = 22$ (metres) $VI b-a = 24$ (metres) $VI b-a = 24$ (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.766	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	EMENT : 434 (pcu/hr) 609 (pcu/hr) 583 (pcu/hr) 556 (pcu/hr) 1547 (pcu/hr) 82 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DF(N OF DESIGN FL = = = = = = =	.0W 0.0509 0.1186 0.1407 0.1695 0.0222 0.0222
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 4$ (pcu/hr) $q a-c = 24$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 34$ (pcu/hr) $q c-b = 82$ (pcu/hr) $q c-b = 82$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-a = 2.5$ (metres) $V b-a = 22$ (metres) $Vr b-a = 24$ (metres) $Vr b-c = 38$ (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.766	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	EMENT : 434 (pcu/hr) 609 (pcu/hr) 583 (pcu/hr) 556 (pcu/hr) 1547 (pcu/hr) 82 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	N OF DESIGN FL = = = = = = : =	.0W 0.0509 0.1186 0.1407 0.1695 0.0222 0.0222
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres) W cr 0 (metres) (q a-b = 0 (metres) q a-b = 4 (pcu/hr) (q a-c = 24 (pcu/hr) MAJOR ROAD (ARM C) W c-b = 2.1 (metres) (metres) Vr c-b = 38 (metres) (pcu/hr) Q c-a = 34 (pcu/hr) MINOR ROAD (ARM B) W b-a = 2.5 (metres) W b-a = 2.5 (metres) W b-c = 2.5 (metres) VI b-a = 2.2 (metres) VI b-a = 2.4 (metres) Vr b-a = 2.4 (metres) Q b-a = 2.4 (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.766	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	EMENT : 434 (pcu/hr) 609 (pcu/hr) 583 (pcu/hr) 556 (pcu/hr) 1547 (pcu/hr) 82 (pcu/hr)	COMPARISIO TO CAPACITY DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	N OF DESIGN FL = = = = = = : =	.0W 0.0509 0.1186 0.1407 0.1695 0.0222 0.17

	8FN	l co	NSULTA	NCY		ΓED						TRAFFIC	SIGN	NAL CALC	ULA		1							INITIALS		DATE	
	Variou	s Lots i	n DD129, La	au Fau	Shan													Project No	D.:	80108		Prepared	By:	FF		Sep-24	
	In Wah	Road /	Tin Ying Road	1								2024 Observed	- PM Pe	ak								Checked	By:	MM		Sep-24	
								Tin Ying	Road					N	Ť			No. of sta Intergreer	ges per c Period	ycle		N = I =	а <u>Бу:</u> 4 31	Sec			
			Tin W	/ah Rodd	[9] [8] : [7] ; [6] 983	106 280 831 [5] 286	[4] 573	f Tin Ying	[10] 86 • • • Road] [11] 5 233 ↓	[12] 39 24 238 543	[1] [2] [3]		Tin Wah	Rodd			Cycle time Sum(y) Loss time Total Flow Co Cm Yult R.C.ult Cp Ymax R.C.(C)	= (1.5*L+ = L/(1-Y) = (Yult-Y = 0.9*L/(= 1-L/C = (0.9*Y)	-5)/(1-Y))/Y*100% 0.9-Y) nax-Y)/Y*:	100%	C = Y = L = = = = = = = = = =	120 0.392 45 4223 119.3 74.1 0.563 43.4 79.8 0.625 43.4	sec pcu sec sec sec % sec %			
			•	•	↑ ┌►	- -					<u> </u>	↓				ſ	Pedestriai Phase	Width (m)	Stage	Green Tir SG	ne Required FG	Green Tir SG	ne Provid	ed (s) FG	Che	:ck	
	8	Stage	1	8		Stage 2	7	Stage 3		8	Stage 4																
	Move- ment	Stage	Lane Width m.	Phase	No. of lane	Radius m.	0	N	Straight- Ahead Sat. Flow	Left pcu/h	Straight pcu/h	m Right pcu/h	Total Flow pcu/h	Proportion of Turning Vehicles	Sat. Flow pcu/h	Flare lan Length m.	Flare lane Effect	Revised Sat. Flow pcu/h	у	Greater y	L sec	g (required) sec	g (input) sec	Degree of Saturation X	Queue Length (m/lane)	Average Delay (sec)	
	3 2 1	1,2,3,4 3 3	3.40 3.40 3.40		1 2 1	20 25		Ν	1955 4190 2095 0	543	238	24	543 238 24	1.00 0.00 1.00	1819 4190 1976			1819 4190 1976	0.298 0.057 0.012	0.012	27 9	57 11 2	18 18 11	1.955 0.372 0.129	418 34 4	946 46 51	
↑ ↑ ↑ ↑	6 5 4,5 4	1,2 2 2 2	4.80 3.40 3.40 3.40		1 1 1 1	25 35 30		Ν	2095 2095 2095 2095	983	286 0	287 285	983 286 287 285	1.00 0.00 1.00 1.00	1976 2095 2009 1995			1976 2095 2009 1995	0.498 0.137 0.143 0.143	0.137		95 26 27 27	45 26 26	1.314 0.628 0.658	409 37 37	342 45 46	
¢↑ ∱≻ ^	8,9 7,8 7	1 1 1	3.40 3.30 3.30		1 1 1	25 28 25		N	1955 2085 2085	106	280 0	428 404	386 428 404	0.28 1.00 1.00	1923 1979 1967			1923 1979 1967	0.201 0.216 0.205	0.201		38 41 39	47 47 39	0.510 0.549 0.628	39 43 45	29 30 36	
	12 11 10	3,4 4 4	3.30 3.30 3.30		1 2 1	25 40		N	1945 4170 2085	39	233	86	39 233 86	1.00 0.00 1.00	1835 4170 2010			1835 4170 2010	0.021 0.056 0.043	0.043	9	4 11 8 0	17 17 17 0	0.149 0.391 0.299	6 33 12	46 47 47	
																		D:\8FM Co	onsultancy	/ Limited\P	280108\Data\	\Calculatio	on\[J_A_T	inWahRd_Tir	YingRd.xlsr	n]OBS PM]

M CONSULTANCY LIMITE	D PRIORI	TY JUNCTION CALCULATION			INITIALS	DATE
Impact Assessment for Proposed Temporary Open Storage of	of Construction Material and Equipment of 3 Years at Various Lo	ots in D.D.129, Lau Fau Shan		Prepared By:	FF	Jan-20
- Lau Fau Shan Rd / Tin Wah Rd / Ping Ha R	Rd 2024 Observ	ved - PM Peak	Project No.: 8010	08 Checked By:	MM	Jan-20
				Reviewed By:	FM	Jan-20
au Fau Shan Rd [4] 516 [3] 173 → (ARM A)	(ARM B) Tin Wah Rd [5] [6] 480 662 ↓ ↓ ↓ ↓ • • • • • • • • • • • • • • • • • • •	N • / N (ARM C)] Ping Ha Rd	DTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDT W cr = CENTRAL RESERVI W b-a = LANE WIDTH AVAIL W b-c = LANE WIDTH AVAIL W b-c = LANE WIDTH AVAIL W c-b = LANE WIDTH AVAIL W c-b = LANE WIDTH AVAIL V c-b = LANE WIDTH AVAIL Vr b-a = VISIBILITY TO THE I Vr b-c = VISIBILITY TO THE I Vr c-b = VISIBILITY TO THE I D = STREAM-SPECIFIC E = STREAM-SPECIFIC F = STREAM-SPECIFIC F = STREAM-SPECIFIC Y = (1-0.0345W)	TH E WIDTH ABLE TO VEHICLE V ABLE TO VEHICLE V ABLE TO VEHICLE V LEFT FOR VEHICLES RIGHT FOR VEHICLE RIGHT FOR VEHICLE B-A B-C C-B	VAITING IN STF VAITING IN STF VAITING IN STF 3 WAITING IN S 58 WAITING IN 58 WAITING IN 58 WAITING IN	REAM b-a REAM b-c REAM c-b STREAM b-a STREAM b-a STREAM b-c STREAM c-b
GEOMETRIC DETAILS:	GEOMETRIC FACTORS :	THE CAPACITY OF MOVEMENT :		COMPARISION TO CAPACITY:	OF DESIGN FL	.0W
GEOMETRIC DETAILS: MAJOR ROAD (ARM A)	GEOMETRIC FACTORS :	THE CAPACITY OF MOVEMENT :		COMPARISION TO CAPACITY:	OF DESIGN FL	.ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 8.9 (metres)	GEOMETRIC FACTORS : D = 1.161	THE CAPACITY OF MOVEMENT : Q b-a = 383 (p	cu/hr)	COMPARISION TO CAPACITY: DFC b-a	OF DESIGN FL	. ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 8.9 (metres) W cr = 0 (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985	Chara THE CAPACITY OF MOVEMENT : Q b-a = 383 (p Q b-c = 640 (p	cu/hr) cu/hr)	COMPARISION TO CAPACITY: DFC b-a DFC b-c	OF DESIGN FL = =	. ow 1.2533 1.0336
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 516$ (pcu/hr) $q a-c = 173$ (pcu/hr)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	Q b-a = 383 (p Q b-c = 640 (p Q c-b = 578 (p Q c-a = 246 (p	cu/hr) cu/hr) cu/hr) cu/hr)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a	OF DESIGN FL = = = = =	1.2533 1.0336 0.8633 0.5772
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 8.9 (metres) W cr = 0 (metres) q a-b = 516 (pcu/hr) q a-c = 173 (pcu/hr) MA IOB ROAD (ARM C)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 383 (p Q b-c = 640 (p Q c-b = 578 (p Q c-a = 246 (p	cu/hr) cu/hr) cu/hr) cu/hr)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a	DF DESIGN FL = = = = =	. ow 1.2533 1.0336 0.8633 0.5772
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 8.9 (metres) W cr = 0 (metres) q a-b = 516 (pcu/hr) q a-c = 173 (pcu/hr) MAJOR ROAD (ARM C)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 383 (p Q b-c = 640 (p Q c-b = 578 (p Q c-a = 246 (p TOTAL FLOW = 2471 (p)	cu/hr) cu/hr) cu/hr) cu/hr) cu/hr)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a	DF DESIGN FL = = = = =	. OW 1.2533 1.0336 0.8633 0.5772
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 8.9 (metres) W cr = 0 (metres) q a-b = 516 (pcu/hr) q a-c = 173 (pcu/hr) MAJOR ROAD (ARM C) W c-b = 3.5 (metres) V (c,b = 150 (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 383 (p Q b-c = 640 (p Q c-b = 578 (p Q c-a = 246 (p TOTAL FLOW = 2471 (p)	cu/hr) cu/hr) cu/hr) cu/hr) ocu/hr)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a	DF DESIGN FL = = = = =	. OW 1.2533 1.0336 0.8633 0.5772
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 516$ (pcu/hr) $q a-c = 173$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 3.5$ (metres) $Vr c-b = 150$ (metres) $Vr c-b = 150$ (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 383 (p Q b-c = 640 (p Q c-b = 578 (p Q c-a = 246 (p TOTAL FLOW = 2471 (cu/hr) cu/hr) cu/hr) cu/hr) ocu/hr)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a	OF DESIGN FL = = = = =	0W 1.2533 1.0336 0.8633 0.5772
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 516$ (pcu/hr) $q a-c = 173$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 3.5$ (metres) $Vr c-b = 150$ (metres) $Q c-a = 142$ (pcu/hr) $q c-b = 499$ (pcu/hr)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 383 (p Q b-c = 640 (p Q c-b = 578 (p Q c-a = 246 (p TOTAL FLOW = 2471 (p)	cu/hr) cu/hr) cu/hr) cu/hr) pcu/hr)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a	DF DESIGN FL = = = =	OW 1.2533 1.0336 0.8633 0.5772
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W =$ 8.9 (metres) $W cr =$ 0 (metres) $q a-b =$ 516 (pcu/hr) $q a-c =$ 173 (pcu/hr)MAJOR ROAD (ARM C) $W c-b =$ 3.5 (metres) $Vr c-b =$ 150 (metres) $q c-a =$ 142 (pcu/hr) $q c-b =$ 499 (pcu/hr)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 383 (p Q b-c = 640 (p Q c-b = 578 (p Q c-a = 246 (p TOTAL FLOW = 2471 (p)	cu/hr) cu/hr) cu/hr) cu/hr) ocu/hr)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a	DF DESIGN FL = = = = =	OW 1.2533 1.0336 0.8633 0.5772 1.25
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 516$ (pcu/hr) $q a-c = 173$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 3.5$ (metres) $Vr c-b = 150$ (metres) $Q c-a = 142$ (pcu/hr) $q c-b = 499$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 42$ (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 383 (p Q b-c = 640 (p Q c-b = 578 (p Q c-a = 246 (p TOTAL FLOW = 2471 (p)	cu/hr) cu/hr) cu/hr) cu/hr) pcu/hr)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a	DF DESIGN FL = = = = =	OW 1.2533 1.0336 0.8633 0.5772 1.25
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 516$ (pcu/hr) $q a-c = 173$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 3.5$ (metres) $Vr c-b = 150$ (metres) $q c-a = 142$ (pcu/hr) $q c-b = 499$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 4.2$ (metres) $W b-c = 4.2$ (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 383 (p Q b-c = 640 (p Q c-b = 578 (p Q c-a = 246 (p TOTAL FLOW = 2471 (p)	cu/hr) cu/hr) cu/hr) cu/hr)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a	OF DESIGN FL = = = = =	OW 1.2533 1.0336 0.8633 0.5772 1.25
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 516$ (pcu/hr) $q a-c = 173$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 3.5$ (metres) $Vr c-b = 150$ (metres) $Vr c-b = 150$ (metres) $q c-a = 142$ (pcu/hr) $q c-b = 499$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 4.2$ (metres) $W b-c = 4.2$ (metres) $W b-c = 4.2$ (metres) $W b-a = 200$ (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 383 (p Q b-c = 640 (p Q c-b = 578 (p Q c-a = 246 (p TOTAL FLOW = 2471 (cu/hr) cu/hr) cu/hr) cu/hr) ocu/hr)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a	OF DESIGN FL = = = = =	OW 1.2533 1.0336 0.8633 0.5772 1.25
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 516$ (pcu/hr) $q a-c = 173$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 3.5$ (metres) $Vr c-b = 150$ (metres) $Q c-a = 142$ (pcu/hr) $q c-b = 499$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 4.2$ (metres) $W b-a = 200$ (metres) $VI b-a = 200$ (metres) $VI b-a = 200$ (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 383 (p Q b-c = 640 (p Q c-b = 578 (p Q c-a = 246 (p TOTAL FLOW = 2471 (cu/hr) cu/hr) cu/hr) cu/hr) ocu/hr)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a	OF DESIGN FL = = = = =	OW 1.2533 1.0336 0.8633 0.5772 1.25
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 516$ (pcu/hr) $q a-c = 173$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 3.5$ (metres) $Vr c-b = 150$ (metres) $q c-a = 142$ (pcu/hr) $q c-b = 499$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 4.2$ (metres) $W b-a = 200$ (metres) $Vr b-a = 50$ (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 383 (p Q b-c = 640 (p Q c-b = 578 (p Q c-a = 246 (p TOTAL FLOW = 2471 (cu/hr) cu/hr) cu/hr) cu/hr) ocu/hr)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a	OF DESIGN FL = = = = =	OW 1.2533 1.0336 0.8633 0.5772 1.25
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a-b = 516$ (pcu/hr) $q a-c = 173$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 3.5$ (metres) $Vr c-b = 150$ (metres) $q c-a = 142$ (pcu/hr) $q c-b = 499$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 4.2$ (metres) $W b-a = 200$ (metres) $Vr b-a = 200$ (metres) $Vr b-a = 200$ (metres) $Vr b-a = 410$ (metres) $Vr b-a = 200$ (metres) $Vr b-a = 410$ (metres) $Vr b-a = 200$ (metres) $Vr b-a = 410$ (metres)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 383 (p Q b-c = 640 (p Q c-b = 578 (p Q c-a = 246 (p TOTAL FLOW = 2471 (p)	cu/hr) cu/hr) cu/hr) cu/hr) ocu/hr)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a	DF DESIGN FL = = = =	OW 1.2533 1.0336 0.8633 0.5772 1.25
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) $W = 8.9$ (metres) $W cr = 0$ (metres) $q a - b = 516$ (pcu/hr) $q a - c = 173$ (pcu/hr) $q a - c = 173$ (pcu/hr) MAJOR ROAD (ARM C) W c-b = 3.5 (metres) $Vr c-b = 150$ (metres) $q c-a = 142$ (pcu/hr) $q c-b = 499$ (pcu/hr) MINOR ROAD (ARM B) W b-a = 4.2 (metres) V b-a = 200 (metres) V b-a = 200 (metres) V r b-a = 200 (metres) V r b-a = 480 (pcu/hr)	GEOMETRIC FACTORS : D = 1.161 E = 0.985 F = 1.013 Y = 0.693	THE CAPACITY OF MOVEMENT : Q b-a = 383 (p Q b-c = 640 (p Q c-b = 578 (p Q c-a = 246 (p TOTAL FLOW = 2471 (p)	cu/hr) cu/hr) cu/hr) cu/hr) pcu/hr)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a	DF DESIGN FL = = = =	OW 1.2533 1.0336 0.8633 0.5772 1.25

8FN	l cc	DNSULTANCY LIMITED)				ROUNDABOUT JUNCTION ANALYSIS				INITIALS	DATE
Traffic Imp	pact Asses	ssment for Proposed Temporary Open Storage of 0	Construction	n Material ar	nd Equipme	ent of 3 Y	ears at Various Lots in D.D.129, Lau Fau Shan			Prepared By:	FF	Jan-2025
Jn C - L	Lau Fau	u Shan Roundabout					2024 Observed - PM Peak	Project No.:	80108	Checked By:	MM	Jan-2025
										Reviewed By:	FM	Jan-2025
Sh	han Tung (ARM A	g Str [5] 19 —• N)		308 ⁸ [8] [6] ↓ [4] 247 ↓ 200 [3]		34 / III	(ARM B) beep Bay Rd (ARM C) Lau Fau Shan Rd (ARM D) Deep Bay Rd					
GEOME ∨ E	ETRIC DI = =	ETAILS: ARM Approach half width (m) Entry width (m)	A 1.9 1.9	B 1.5 4.1	c 3.2 4.2	D 1.9 3.7						
L	=	Effective length of flare (m)	1.0	2.3	1.5	1.8						
к D	=	Entry radius (m) Inscribed circle diameter (m)	14.0 38.0	46.0 38.0	7.4 38.0	7.5 38.0						
A	=	Entry angle (degree)	42.0	52.0	20.0	51.0						
Q	=	Entry flow (pcu/h)	19	178	359	200						
Qc	=	Circulating flow across entry (pcu/h)	411	308	34	247						
OUTPU	T PARA	METERS:										
S	=	Sharpness of flare = $1.6(E-V)/L$	0.00	1.81	1.07	1.60				TOTAL FLOW	=	1757 (pcu/hr)
К X2	=	1-0.00347(A-30)-0.978(1/R-0.05) V + ((F-\/)/(1+2S))	0.94 1 90	0.95	0.95	0.85				CRITICAL DFC	=	0.40
M	=	EXP((D-60)/10)	0.11	2.00 0.11	0.11	2.55						
F	=	303*X2	576	625	1066	706						
Td	=	1+(0.5/(1+M))	1.45	1.45	1.45	1.45						
Fc	=	0.21*Td(1+0.2*X2)	0.42	0.43	0.52	0.45						
Qe	=	K(F-Fc*Qc)	378	469	998	504						
DFC	=	Design flow/Capacity = Q/Qe	0.05	0.38	0.36	0.40						

	ILTANCY LIMI	TED	PRI	ORITY JUN	CTION CALCUL	ATION	l			INITIALS		DATE
Traffic Impact Assessment for F	Proposed Temporary Open St	orage of Construction Materia	al and Equipment of 3 Years at V	arious Lots in D.D.129, La	au Fau Shan				Prepared	l By: FF		Jan-2025
Jn D - Deep Bay Rd / L	Unnamed Rd 2		2024	Observed - PM Pea	ak			Project No.:	80108 Checked	By: MM		Jan-2025
								,	Reviewer	d Bv: FM		Jan-2025
									I CONGWER	~ - <i>j</i> . I IVI		0011 2020
Unnamed Rd 2 (ARM D)	$\begin{bmatrix} 9 \\ 0 \\ 8 \end{bmatrix} 0 \xrightarrow{} \begin{bmatrix} 7 \\ 0 \\ \end{array}$	(ARM A) Deep Bay Ro [10] [11] 0 61 ↓ ↓	d [12] 0 1 1 1 1 1 1	[1] [2] [3]	Unnamed Rd 2 (ARM B)		NOTES : (GEOME W = W cr = W b-a = W b-c = W c-b = V c-b = Vr b-a = Vr b-a = Vr c-b = D = E = F =	TRIC INPUT MAJOR ROA CENTRAL RI LANE WIDTH LANE WIDTH VISIBILITY TH VISIBILITY TH VISIBILITY TH VISIBILITY TH STREAM-SP STREAM-SP	DATA) AD WIDTH ESERVE WIDTH + AVAILABLE TO VEH + AVAILABLE TO VEH + AVAILABLE TO VEH + AVAILABLE TO VEH O THE LEFT FOR VEH O THE RIGHT FOR VEH O THE RIGHT FOR VEH O THE RIGHT FOR VEH ECIFIC B-A ECIFIC B-C ECIFIC C-B	HICLE WAITING IN ST HICLE WAITING IN ST HICLE WAITING IN ST HICLES WAITING IN 'EHICLES WAITING IN 'EHICLES WAITING IN	REAM b-a REAM b-c REAM c-t STREAM STREAM STREAM STREAM STREAM	a 5 5-a 1 b-a 1 b-c 1 c-b
		3 29 11 [6] [5] [4] Deep Bay Rd'(/	ARM C)				Y =	(1-0.0345W)				
GEOMETRIC	DETAILS:	3 29 11 [6] [5] [4] Deep Bay Rd'(/	ARM C)	GEOMET	RIC FACTORS :		Y =	(1-0.0345W)		COMPARISION OF D	ESIGN FI	_ow
GEOMETRIC D	DETAILS:	3 29 11 [6] [5] [4] Deep Bay Rd'(/	ARM C)	GEOMET	RIC FACTORS :		Y =	(1-0.0345W)		COMPARISION OF D	ESIGN FI	LOW
GEOMETRIC D	DETAILS:	3 29 11 [6] [5] [4] Deep Bay Rd'(/	ARM C)	GEOMET	FRIC FACTORS :		Y =	(1-0.0345W) =	0.845	COMPARISION OF D	ESIGN FI	LOW
GEOMETRIC D	3.90 (metres)	3 29 11 [6] [5] [4] Deep Bay Rd'(/	ARM C)	GEOMET Xb Xc	TRIC FACTORS : = 0.818 = 0.799		Y =	(1-0.0345W) = = =	0.845 1.066	COMPARISION OF D TO CAPACITY: DFC b-a	ESIGN FI	_ .0W
GEOMETRIC C GENERAL W = W cr =	DETAILS: 3.90 (metres) 0 (metres)	3 29 11 [6] [5] [4] Deep Bay Rd'(/	ARM C)	GEOMET Xb Xc Zb	FRIC FACTORS : = 0.818 = 0.799 = 0.928		Y =	(1-0.0345W) = = =	0.845 1.066 1.188	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c	ESIGN FI = =	. OW 0.0020 0.0160
GEOMETRIC D GENERAL W = W cr =	DETAILS: 3.90 (metres) 0 (metres)	3 29 11 [6] [5] [4] Deep Bay Rd'(/ Y =	ARM C)	GEOMET Xb Xc Zb Mb	FRIC FACTORS : = 0.818 = 0.799 = 0.928 = 0.860		Y = Xa Xd Zd Md	= = = =	0.845 1.066 1.188 1.097	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC c-b	ESIGN FI = = = =	- OW 0.0020 0.0160 0.0195
GEOMETRIC E GENERAL W = W cr = MAJOR ROAD	DETAILS: 3.90 (metres) 0 (metres) D (ARM A)	3 29 11 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF	0.865 R ROAD (ARM C)	GEOMET X b X c Z b M b	FRIC FACTORS : = 0.818 = 0.799 = 0.928 = 0.860		Y = Xa Xd Zd Md	= = = = =	0.845 1.066 1.188 1.097	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-d	ESIGN FI = = = = =	0.0020 0.0160 0.0195 0.0000
GEOMETRIC C GENERAL W = W cr = MAJOR ROAD W a-d =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres)	3 29 11 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-D =	0.865 R ROAD (ARM C) 2.0 (metres)	GEOMET X b X c Z b M b	FRIC FACTORS : = 0.818 = 0.799 = 0.928 = 0.860 CTION OF MINOR STRAIGH		Y = Xa Xd Zd Md	= = = = =	0.845 1.066 1.188 1.097	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC b-d DFC b-d DFC b-d DFC b-d	ESIGN FI = = = = = =	0.0020 0.0160 0.0195 0.0000 0.0000
GEOMETRIC D GENERAL W = W cr = MAJOR ROAD W a-d = Vr a-d =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres)	3 29 11 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres)	GEOMET Xb Xc Zb Mb	RIC FACTORS : = 0.818 = 0.799 = 0.928 = 0.860 KTION OF MINOR STRAIGHT		Y = Xa Xd Zd Md	= = = =	0.845 1.066 1.188 1.097	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-C DFC c-b DFC b-d DFC b-d DFC b-d DFC b-d	ESIGN FI = = = = = =	0.0020 0.0160 0.0195 0.0000 0.0000
GEOMETRIC C GENERAL W = W cr = MAJOR ROAD W a-d = Vr a-d = q a-b =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 0 (pcu/hr)	3 29 11 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-a =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr)	GEOMET Хb Хc Zb Mb РКОРОК rb-a	FRIC FACTORS : = 0.818 = 0.799 = 0.928 = 0.860 CHON OF MINOR STRAIGH = 0.001567		Y = Xa Xd Zd Md RAFFIC: rd-c	= = = = =	0.845 1.066 1.188 1.097 0.000	COMPARISION OF D TO CAPACITY: DFC b-a DFC c-b DFC c-b DFC c-b DFC c-b DFC c-c DFC c-c DFC c-c DFC c-c DFC c-c DFC c-c	ESIGN FI = = = = = = =	0.0020 0.0160 0.0195 0.0000 0.0000 0.0000
GEOMETRIC C GENERAL W = W cr = MAJOR ROAD w a-d = Vr a-d = q a-b = q a-c =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 0 (pcu/hr) 61 (pcu/hr)	3 29 11 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-a = q c-b =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr)	GEOMET X b X c Z b M b PKOPOK r b-a ql b-d	FRIC FACTORS : = 0.818 = 0.799 = 0.828 = 0.860 CHON OF MINOR STRAIGHT = 0.001567 = 0	II AHEAU II (pcu/hr)	Y = Xa Xd Zd Md RAFFIU: rd-c qld-b	= = = = = =	0.845 1.066 1.188 1.097 0.000 0 (pcu/hr)	COMPARISION OF D I U CAPACIT T: DFC b-a DFC b-a DFC b-a DFC b-a DFC d-a DFC d-a DFC d-a DFC d-a	ESIGN FI = = = = = = = = =	0.0020 0.0160 0.0195 0.0000 0.0000 0.0000 0.0000
GEOMETRIC C GENERAL W = W cr = MAJOR ROAD W a-d = Vr a-d = q a-b = q a-c = q a-d =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 0 (pcu/hr) 61 (pcu/hr) 0 (pcu/hr)	3 29 11 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-a = q c-b = q c-d =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d	= 0.818 = 0.799 = 0.928 = 0.860 CHON OF MINOR STRAIGH = 0.001567 = 0 = 0 = 0 = 0	II AHEAU II (pcu/hr) (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b	= = = = = = =	0.845 1.066 1.188 1.097 0.000 0 (pcu/hr) 0 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-d DFC c-b DFC c-b DFC d-a DFC d-a DFC a-d DFC d-b DFC b-b DFC b-b	ESIGN FI = = = = = = = = = = =	.0020 0.0160 0.0195 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GEOMETRIC C GENERAL W = W cr = MAJOR ROAD W a-d = Vr a-d = q a-b = q a-c = q a-d = MINOK ROAD	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 0 (pcu/hr) 61 (pcu/hr) 0 (pcu/hr) (ARM B)	3 29 11 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-a = q c-b = q c-d = MINOR ROAD	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr) (ARM D)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACIT	TRIC FACTORS : = 0.818 = 0.799 = 0.928 = 0.860 CHON OF MINOR STRAIGH = 0.001567 = 0 = 0 = 0 = 0 = 0 = 0 = 0	II AHEAU II (pcu/hr) (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b	= = = = = = =	0.845 1.066 1.188 1.097 0.000 0 (pcu/hr) 0 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC c-b DFC c-b DFC d-a DFC d-a DFC d-a DFC d-b DFC d-b DFC d-b DFC d-b	ESIGN FI = = = = = = = = = = = = =	0.0020 0.0160 0.0195 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GEOMETRIC C GENERAL W = W cr = MAJOR ROAD w a-d = Vr a-d = q a-b = q a-c = q a-d = MINOR ROAD W b-a =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 0 (pcu/hr) 61 (pcu/hr) 0 (pcu/hr) 0 (pcu/hr) (ARM B) 3.3 (metres)	3 29 11 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-a = q c-b = q c-d = MINOR ROAD W d-c =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr) (ARM D) 6.0 (metres)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACIT	FRIC FACTORS : = 0.818 = 0.799 = 0.928 = 0.860 CHON OF MINOR STRAIGHT = 0.001567 = 0 = 0 = 0 = 0 = 0 = 0 = 0	II AHEAU II (pcu/hr) (pcu/hr)	Y = Xa Xd Zd Md RAFFIC : rd-c qld-b qrd-b	= = = = = = =	0.845 1.066 1.188 1.097 0.000 0 (pcu/hr) 0 (pcu/hr)	COMPARISION OF D I U CAPACIT T: DFC b-a DFC b-c DFC b-d DFC b-d DFC b-d DFC d-a DFC d-a DFC c-a DFC c-a DFC c-b DFC d-b DFC d-b	ESIGN FI = = = = = = = = = = = =	0.0020 0.0160 0.0195 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GEOMETRIC C GENERAL W = W cr = MAJOR ROAD W a-d = Vr a-d = q a-b = q a-b = q a-c = q a-d = MINOR ROAD W b-a = W b-c =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 0 (pcu/hr) 61 (pcu/hr) 0 (pcu/hr) (ARM B) 3.3 (metres) 3.3 (metres)	3 29 11 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Yr c-b = q c-b = q c-d = MINUR RUAD W d-c = W d-c =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr) (ARM D) 6.0 (metres) 60 (metres)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACIT	Image: Second state sta	II AMEAU II (pcu/hr) (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b	= = = = = = = =	0.845 1.066 1.188 1.097 0.000 0 (pcu/hr) 0 (pcu/hr) 638 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-d DFC d-a DFC d-a DFC d-a DFC d-d DFC d-b	ESIGN FI = = = = = = = = = =	0.0020 0.0160 0.0195 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GEOMETRIC D GENERAL W = W cr = MAJOR ROAD W a-d = Vr a-d = q a-d = q a-c = q a-d = MINOR ROAD W b-a = W b-c = Vh b-a =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 0 (pcu/hr) 61 (pcu/hr) 0 (pcu/hr) (ARM B) 3.3 (metres) 28 (metres)	3 29 11 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-a = q c-b = q c-d = MINOR ROAD W d-c = W d-a = VI d-c =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr) (ARM D) 6.0 (metres) 6.0 (metres) 27 (metres)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACIT Q b-a	FRIC FACTORS : = 0.818 = 0.799 = 0.928 = 0.860 CHON OF MINOR STRAIGH = 0.001567 = 0 = 0 TY OF MOVEMENT : = 488 - 672	II AHEAU II (pcu/hr) (pcu/hr) (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b	= = = = = = = =	0.845 1.066 1.188 1.097 0.000 0 (pcu/hr) 0 (pcu/hr) 638 (pcu/hr) 874 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC c-b DFC c-b DFC c-b DFC d-a DFC d-a DFC d-a DFC d-b DFC d-b DFC d-b	ESIGN FI = = = = = = = = = = =	0.0020 0.0160 0.0195 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GEOMETRIC C GENERAL W = W cr = MAJOR ROAD w a-d = Vr a-d = q a-b = q a-b = q a-c = q a-d = MINOR ROAD W b-a = W b-c = VI b-a =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 0 (pcu/hr) 61 (pcu/hr) 0 (pcu/hr) (ARM B) 3.3 (metres) 28 (metres) 28 (metres)	3 29 11 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-a = q c-b = q c-d = MINOR ROAD W d-c = W d-a = VI d-c = VI d-c = VI d-c =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr) (ARM D) 6.0 (metres) 6.0 (metres) 22 (metres) 60 (metres) 20 (metres) 60 (metres)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACIT Q b-a Q b-c Q b-c	FRIC FACTORS : = 0.818 = 0.799 = 0.928 = 0.860 CHON OF MINOR STRAIGHT = 0.001567 = 0 = 0 Y OF MOVEMENT : = 488 = 673 = 673	II AHEAU II (pcu/hr) (pcu/hr) (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-a	= = = = = = = = =	0.845 1.066 1.188 1.097 0.000 0 (pcu/hr) 0 (pcu/hr) 638 (pcu/hr) 874 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-a DFC b-d DFC b-d DFC b-d DFC c-a DFC d-a DFC d-a DFC d-b DFC d-b DFC d-b	ESIGN FI = = = = = = = = = = =	0.0020 0.0160 0.0195 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GEOMETRIC C GENERAL W = W cr = MAJOR ROAD W a-d = q a-d = q a-b = q a-c = q a-d = MINOR ROAD W b-a = W b-c = VI b-a = Vr b-a =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 0 (pcu/hr) 61 (pcu/hr) 61 (pcu/hr) 0 (pcu/hr) (ARM B) 3.3 (metres) 28 (metres) 28 (metres) 28 (metres)	3 29 11 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-b = q c-d = MINOR ROAD W d-c = W d-a = VI d-c = Vr d-c = Vr d-c =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr) (ARM D) 6.0 (metres) 6.0 (metres) 22 (metres) 60 (metres) 22 (metres) 60 (metres)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d Qr b-d Qr b-a Q b-c Q c-b	Image: Second system 0.818 = 0.799 = 0.928 = 0.928 = 0.860 CHON OF MINOR STRAIGHT = 0.001567 = 0 O 0 Y OF MOVEMENT : = 488 = 673 = 580	II AHEAU II (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-a Qa-d	= = = = = = = = = = = =	0.845 1.066 1.188 1.097 0.000 0 (pcu/hr) 0 (pcu/hr) 638 (pcu/hr) 874 (pcu/hr) 617 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-C DFC c-b DFC r b-d DFC r b-d DFC d-a DFC d-a DFC d-a DFC d-b DFC r d-b DFCr d-b	ESIGN FI = = = = = = = = = = = = =	0.0020 0.0160 0.0195 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GEOMETRIC C GENERAL W = W cr = MAJOR ROAD W a-d = Vr a-d = q a-b = q a-c = q a-d = MINOR ROAD W b-a = W b-c = VI b-a = Vr b-a = Vr b-c = Vr b-c =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 0 (pcu/hr) 61 (pcu/hr) 0 (pcu/hr) (ARM B) 3.3 (metres) 3.3 (metres) 28 (metres) 28 (metres) 80 (metres)	3 29 11 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-a = q c-b = q c-d = MINOR ROAD W d-c = W d-a = VI d-c = Vr d-c = Vr d-c = Vr d-a =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr) (ARM D) 6.0 (metres) 60 (metres) 60 (metres) 90 (metres)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACII Q b-a Q b-c Q c-b Q b-c Q c-b Q b-c	TRIC FACTORS : = 0.818 = 0.799 = 0.928 = 0.860 CHON OF MINOR STRAIGHT = 0.001567 = 0.001567 = 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 488 = 673 = 580 = 580 = 513	II AHEAU II (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qid-b qrd-b Qd-c Qd-a Qa-d Qid-b	= = = = = = = = = = = = = = =	0.845 1.066 1.188 1.097 0.000 0 (pcu/hr) 0 (pcu/hr) 638 (pcu/hr) 677 (pcu/hr) 617 (pcu/hr) 660 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC c-b DFC c-b DFC d-a DFC d-a DFC d-a DFC d-b DFC d-b DFC d-b DFC d-b DFC d-b	ESIGN FI = = = = = = = = = = = = = = =	.000 0.0160 0.0195 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GEOMETRIC C GENERAL W = W cr = MAJOR ROAD W a-d = Vr a-d = q a-b = q a-c = q a-c = q a-d = MINOR ROAD W b-a = W b-c = VI b-a = Vr b-a =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 0 (pcu/hr) 61 (pcu/hr) 0 (pcu/hr) (ARM B) 3.3 (metres) 28 (metres) 28 (metres) 28 (metres) 1 (pcu/hr)	3 29 11 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-a = q c-b = q c-a = q c-b = Q c-b = Vr d-c = Vr d-c = Vr d-a = Vr d-a = Q d-c =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr) (ARM D) 6.0 (metres) 6.0 (metres) 22 (metres) 60 (metres) 90 (metres) 0 (pcu/hr)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACIT Q b-a Q b-c Q c-b Ql b-d Qr b-d	FRIC FACTORS : = 0.818 = 0.799 = 0.928 = 0.860 CHON OF MINOR STRAIGHT = 0.001567 = 0.001567 = 0 Y OF MOVEMENT : = 488 = 673 = 580 = 513 = 488	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	Y = Xa Xd Zd Md KAFFIU: rd-c qld-b qrd-b qrd-b Qd-a Qa-d Qld-b Qld-b Qrd-b	= = = = = = = = = = = = = = = = = =	0.845 1.066 1.188 1.097 0.000 0 (pcu/hr) 0 (pcu/hr) 638 (pcu/hr) 617 (pcu/hr) 660 (pcu/hr) 662 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC b-d DFC b-d DFC d-a DFC d-a DFC d-a DFC d-b DFC d-b DFC d-b DFC d-b DFC d-b	ESIGN FI = = = = = = = = = = = = = = =	0.0020 0.0160 0.0195 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GEOMETRIC C GENERAL W = W cr = MAJOR ROAD W a-d = q a-d = q a-d = q a-d = MINOR ROAD W b-a = W b-c = VI b-a = Vr b-a = Vr b-a = q b-c =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 0 (pcu/hr) 61 (pcu/hr) 0 (pcu/hr) (ARM B) 3.3 (metres) 3.3 (metres) 28 (metres) 28 (metres) 1 (pcu/hr) 11 (pcu/hr)	3 29 11 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Q c-b = Q c-b = Q c-b = Q c-b = Q c-b = Q c-d = MINOR ROAD W d-c = W d-c = Vr d-c = Q d-c = Q d-a =	ARM C) 0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 29 (pcu/hr) 11 (pcu/hr) 3 (pcu/hr) (ARM D) 6.0 (metres) 6.0 (metres) 22 (metres) 60 (metres) 90 (metres) 0 (pcu/hr) 0 (pcu/hr)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACII Q b-a Q b-c Q c-b Ql b-d Qr b-d	Image: Second system 0.818 = 0.799 = 0.928 = 0.860 CHON OF MINOR STRAIGHT = 0.001567 = 0 = 0.001567 = 0 Y OF MOVEMENT : = = 488 = 673 = 580 = 513 = 488	(pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr)	Y = Xa Xd Zd Md KAFFIC: rd-c qld-b qrd-b Qd-a Qa-d Qld-b Qrd-b	= = = = = = = = = = = = = = = = = = =	0.845 1.066 1.188 1.097 0.000 0 (pcu/hr) 0 (pcu/hr) 638 (pcu/hr) 637 (pcu/hr) 617 (pcu/hr) 660 (pcu/hr) 642 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-C DFC c-b DFC c-b DFC c-d DFC d-a DFC d-a DFC d-b DFC d-b DFC d-b	ESIGN FI = = = = = = = = = = = =	-OW 0.0020 0.0160 0.0195 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

	NCY LIMITE	D	PRIORI	TY JUNCTION CALCULA	TION			INITIALS	DAT
Impact Assessment for Proposed	Temporary Open Storage	of Construction Material and Equ	ipment of 3 Years at Various Lo	ots in D.D.129, Lau Fau Shan			Prepared By:	FF	Jan-2
- Unnamed Rd 1 / Unnan	ned Rd 2		2024 Observ	ved - PM Peak		Project No.: 80108	B Checked By:	MM	Jan-2
							Reviewed By:	FM	Jan-2
Unnamed Rd 2 [4] [3] (ARM A)		45 4 [2] [1] (ARM B)	← 50 [5] ↓ 22 [6]	Unnamed Rd 2 (ARM C)	NOTES : (GEC W = W cr = W b-a = W b-c = W c-b = V t b-a = V r b-a = V r b-c = V r c-b = D = E = F = Y =	DMETRIC INPUT DATA) MAJOR ROAD WIDTI CENTRAL RESERVE LANE WIDTH AVAILA LANE WIDTH AVAILA VISIBILITY TO THE L VISIBILITY TO THE R VISIBILITY TO THE R STREAM-SPECIFIC E STREAM-SPECIFIC E STREAM-SPECIFIC E (1-0.0345W)	H ABLE TO VEHICLE W ABLE TO VEHICLE W ABLE TO VEHICLE W EFT FOR VEHICLES RIGHT FOR VEHICLE RIGHT FOR VEHICLE AGHT FOR VEHICLE 3-A 3-C C-B	'AITING IN STF 'AITING IN STF 'AITING IN STF WAITING IN S S WAITING IN S WAITING IN S WAITING IN	REAM b-a REAM b-c REAM c-b STREAM b-a STREAM b-a STREAM b-c STREAM c-b
		Uninamed Ru T				(*******)			
GEOMETRIC DETAILS	:	GEOMETRIC F	FACTORS :	THE CAPACITY OF MOVEN	MENT :		COMPARISION C TO CAPACITY:	OF DESIGN FL	ow
GEOMETRIC DETAILS	: (motros)	GEOMETRIC F	FACTORS :		MENT :		COMPARISION C TO CAPACITY:	DF DESIGN FL	OW
GEOMETRIC DETAILS	(metres)	GEOMETRIC F	FACTORS : 0.752 0.813	Q b-a =	MENT : 450 (pcu/hr) 597 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c	DF DESIGN FL	. OW 0.0996 0.0059
GEOMETRIC DETAILS MAJOR ROAD (ARM / W = 5.2 W cr = 0 g a-b = 0	(metres) (metres) (pcu/hr)	GEOMETRIC F E = F =	FACTORS : 0.752 0.813 0.813	Q b-a = Q b-c = Q c-b =	MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b	DF DESIGN FL = = =	. OW 0.0996 0.0059 0.0363
GEOMETRIC DETAILS MAJOR ROAD (ARM / W = 5.2 W cr = 0 q a-b = 0 q a-c = 35	: (metres) (metres) (pcu/hr) (pcu/hr)	GEOMETRIC F D = E = F = Y =	FACTORS : 0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac =	MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	= = = = =	0.0996 0.0059 0.0363 0.1054
GEOMETRIC DETAILS MAJOR ROAD (ARM / W = 5.2 W cr = 0 q a-b = 0 q a-c = 35	: (metres) (metres) (pcu/hr) (pcu/hr)	GEOMETRIC F D = E = F = Y =	ACTORS : 0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-ac (Share Lane)	DF DESIGN FL = = = =	. OW 0.0996 0.0059 0.0363 0.1054
$\begin{array}{rcl} \textbf{GEOMETRIC DETAILS}\\ \textbf{MAJOR ROAD (ARM A W = 5.2 W cr = 0 \\ Q a-b = 0 \\ q a-b = 0 \\ q a-c = 35 \end{array}$: (metres) (metres) (pcu/hr) (pcu/hr)	GEOMETRIC F D = E = F = Y = E for (Ob-ac) =	ACTORS : 0.752 0.813 0.813 0.821 0.072	Q b-a = Q b-c = Q c-b = Q c-a = TOTAL FLOW =	MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr) 71.8 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL = = = = =	. OW 0.0996 0.0059 0.0363 0.1054 0.0289
GEOMETRIC DETAILSMAJOR ROAD (ARM / $W = 5.2$ W cr = 0q a-b = 0q a-b = 0q a-c = 35MAJOR ROAD (ARM C $W c-b = 2.5$: (metres) (pcu/hr) (pcu/hr)) (metres)	GEOMETRIC F D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.072	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT: 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 1735 (pcu/hr) 71.8 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL = = = = = =	. OW 0.0996 0.0059 0.0363 0.1054 0.0289
$\begin{array}{c} \textbf{GEOMETRIC DETAILS}\\ \textbf{MAJOR ROAD (ARM /}\\ W &= 5.2\\ W cr &= 0\\ q a-b &= 0\\ q a-b &= 0\\ q a-c &= 35\\ \end{array}$ $\begin{array}{c} MAJOR ROAD (ARM COM / COM$: (metres) (pcu/hr) (pcu/hr)) (metres) (metres)	GEOMETRIC F D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.072	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT: 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 1735 (pcu/hr) 71.8 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL = = = = = =	. OW 0.0996 0.0059 0.0363 0.1054 0.0289
$\begin{array}{rcl} \textbf{GEOMETRIC DETAILS}\\ \textbf{MAJOR ROAD (ARM /}\\ W &= 5.2\\ W cr &= 0\\ q a-b &= 0\\ q a-b &= 0\\ q a-c &= 35\\ \end{array}$ $\begin{array}{rcl} \textbf{MAJOR ROAD (ARM CC)}\\ W c-b &= 2.5\\ Vr c-b &= 22\\ q c-a &= 50\\ \end{array}$	(metres) (metres) (pcu/hr) (pcu/hr)) (metres) (metres) (pcu/hr)	GEOMETRIC F D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.072	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr) 71.8 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a (Share Lane) DFC c-a	DF DESIGN FL = = = = =	. OW 0.0996 0.0059 0.0363 0.1054 0.0289
GEOMETRIC DETAILS MAJOR ROAD (ARM / W = 5.2 W cr = 0 q a-b = 0 q a-c = 35 MAJOR ROAD (ARM C W c-b = 2.5 Vr c-b = 22 q c-a = 50 q c-b = 22	(metres) (metres) (pcu/hr) (pcu/hr)) (metres) (metres) (pcu/hr) (pcu/hr)	GEOMETRIC F D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.072	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 1735 (pcu/hr) 71.8 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a (Share Lane) DFC c-a	DF DESIGN FL = = = = =	. OW 0.0996 0.0059 0.0363 0.1054 0.0289
GEOMETRIC DETAILS MAJOR ROAD (ARM / W = 5.2 W cr = 0 q a-b = 0 q a-c = 35 MAJOR ROAD (ARM C W c-b 2.5 Vr c-b = 2.5 Vr c-b 2.2 q c-a = 50 q c-b 2.2 MINOR ROAD (ARM B MINOR ROAD (ARM B MINOR ROAD (ARM B) MINOR ROAD (ARM B)	(metres) (metres) (pcu/hr) (pcu/hr)) (metres) (pcu/hr) (pcu/hr)	GEOMETRIC F D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.072	Q b-a = Q b-c = Q c-b = Q c-a = Q c-a = TOTAL FLOW =	MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr) 71.8 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = = =	.0W 0.0996 0.0059 0.0363 0.1054 0.0289 0.11
$\begin{array}{rcl} \textbf{GEOMETRIC DETAILS}\\ \textbf{MAJOR ROAD (ARM /}\\ W &=& 5.2\\ W \ cr &=& 0\\ q \ a-b &=& 0\\ q \ a-c &=& 35\\ \end{array}$ $\begin{array}{rcl} \textbf{MAJOR ROAD (ARM C)}\\ W \ c-b &=& 2.5\\ Vr \ c-b &=& 22\\ q \ c-a &=& 50\\ q \ c-b &=& 22\\ \end{array}$ $\begin{array}{rcl} \textbf{MINOR ROAD (ARM B)}\\ W \ b-a &=& 2.5\\ \end{array}$	(metres) (metres) (pcu/hr) (pcu/hr)) (metres) (pcu/hr) (pcu/hr) (pcu/hr)	GEOMETRIC F D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.072	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr) 71.8 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = = =	.0W 0.0996 0.0059 0.0363 0.1054 0.0289 0.111
GEOMETRIC DETAILS MAJOR ROAD (ARM / $W = 5.2$ $W cr = 0$ $qa-b = 0$ $qa-c = 35$ MAJOR ROAD (ARM C $W c-b = 2.5$ $Vr c-b = 22$ $q c-a = 50$ $q c-b = 22$ MINOR ROAD (ARM B $W b-a = 2.5$ $W b-a = 2.5$ $W b-c = 2.5$	(metres) (metres) (pcu/hr) (pcu/hr)) (metres) (pcu/hr) (pcu/hr) (pcu/hr) (pcu/hr) (metres) (metres)	GEOMETRIC F D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.072	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 1735 (pcu/hr) 71.8 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = =	.0W 0.0996 0.0059 0.0363 0.1054 0.0289 0.0289
GEOMETRIC DETAILS MAJOR ROAD (ARM A W = 5.2 W cr = 0 q a-b = 0 q a-c = 35 MAJOR ROAD (ARM C W c-b = 2.5 Vr c-b = 22 q c-a = 50 q c-b = 22 MINOR ROAD (ARM B W b-a = 2.5 W b-c = 2.5 V b-a = 22	(metres) (metres) (pcu/hr) (pcu/hr) (pcu/hr)) (metres) (pcu/hr) (pcu/hr) (pcu/hr) (metres) (metres) (metres) (metres)	GEOMETRIC F D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.072	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr) 71.8 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = =	.ow 0.0996 0.0059 0.0363 0.1054 0.0289 0.11
GEOMETRIC DETAILS MAJOR ROAD (ARM A $W = 5.2$ $W cr = 0$ $q a-b = 0$ $q a-b = 0$ $q a-c = 35$ MAJOR ROAD (ARM C $W c-b = 2.5$ $Vr c-b = 22$ $q c-b = 22$ $q c-b = 22$ MINOR ROAD (ARM B $W b-a = 2.5$ $W b-a = 2.5$ $V b-a = 22$ $V b-a = 22$: (metres) (pcu/hr) (pcu/hr) (metres) (metres) (pcu/hr) (metres) (metres) (metres) (metres) (metres) (metres) (metres)	GEOMETRIC F D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.072	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1735 (pcu/hr) 71.8 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = =	.ow 0.0996 0.0059 0.0363 0.1054 0.0289 0.11
GEOMETRIC DETAILS MAJOR ROAD (ARM A W = 5.2 W cr = 0 q a-b = 0 q a-c = 35 MAJOR ROAD (ARM C W c-b = 25 Vr c-b = 22 q c-a 50 q c-b = 22 q c-b = 22 q c-a = 50 q c-b = 22 MINOR ROAD (ARM B W b-a = 2.5 W b-c = 2.5 W b-c = 2.5 V b-c = 2.4 Vr b-a = 2.4 Vr b-c = 2.4 Vr b-c = 2.4 Vr b-c = 2.5	(metres) (metres) (pcu/hr) (pcu/hr) (pcu/hr) (metres) (metres) (metres) (metres) (metres) (metres) (metres) (metres) (metres)	GEOMETRIC F D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.072	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 1735 (pcu/hr) 71.8 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = =	.0W 0.0996 0.0059 0.0363 0.1054 0.0289 0.11
GEOMETRIC DETAILS MAJOR ROAD (ARM A W = 5.2 W cr = 0 q a-b = 0 q a-c = 35 MAJOR ROAD (ARM C W c-b = 2.5 Vr c-b = 2.2 q c-a = 50 q c-b = 22 MINOR ROAD (ARM B W b-a = 2.5 W b-c = 2.5 W b-a = 2.5 W b-c = 2.5 VI b-a = 2.2 VI b-a = 2.2 VI b-a = 2.2 VI b-a = 2.4 VI b-a = 2.4 VI b-a = 2.4	: (metres) (pcu/hr) (pcu/hr) (metres) (metres) (pcu/hr) (metres) (me	GEOMETRIC F D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.072	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 450 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 1735 (pcu/hr) 71.8 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = =	.0W 0.0996 0.0059 0.0363 0.1054 0.0289 0.11

FM CONSULTANCY LIMIT	red PRIC	ORITY JUNCTION CALCUL	ATION			INITIALS	DATE
fic Impact Assessment for Proposed Temporary Open Stor	age of Construction Material and Equipment of 3 Years at Va	rious Lots in D.D.129, Lau Fau Shan			Prepared By:	FF	Jan-202
F - Deep Bay Rd / Unnamed Rd 3	2024 C	bserved - PM Peak	Proj	ject No.: 80108	Checked By:	MM	Jan-202
					Reviewed By:	FM	Jan-202
	(ARM C) Deep Bay Rd [5] [6] 29 50 ↓ ↓ ↑ 78 [1] ↓ 13 [2] ↑ 13 8 [4] [2]	(ARM B) Unnamed Rd 3	NOTES: (GEOMETRIC W = MAJ W cr = CEN W b-a = LAN W b-c = LAN W c-b = LAN V c-b = LAN V t b-a = VISI Vr b-a = VISI Vr b-c = VISI D = STR E = STR F = STR Y = (1-0)	IC INPUT DATA) JOR ROAD WIDTH NTRAL RESERVE WI NE WIDTH AVAILABLI NE WIDTH AVAILABLI IBILITY TO THE LEFT IBILITY TO THE RIGH IBILITY TO THE RIGH REAM-SPECIFIC B-A REAM-SPECIFIC B-C REAM-SPECIFIC C-B 0.0245W)	DTH E TO VEHICLE W E TO VEHICLE W T FOR VEHICLE W T FOR VEHICLES IT FOR VEHICLE IT FOR VEHICLE	AITING IN STF AITING IN STF WAITING IN ST WAITING IN S S WAITING IN S WAITING IN S WAITING IN	REAM b-a REAM b-c REAM c-b TREAM b-a STREAM b-a STREAM b-c STREAM c-b
	Deep Bay Rd (ARM A)			J.0343W)			
GEOMETRIC DETAILS:	(ARM A)	THE CAPACITY OF MOV	/EMENT :		COMPARISION (TO CAPACITY:	OF DESIGN FLO	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A)	(ARM A)	THE CAPACITY OF MOV	/EMENT :		COMPARISION (TO CAPACITY:	OF DESIGN FLO	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres)	GEOMETRIC FACTORS : D = 0.752	THE CAPACITY OF MOV Q b-a =	/EMENT : 447 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a	DF DESIGN FLO	ow 0.0293
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres)	(F) [0] Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826	THE CAPACITY OF MOV Q b-a = Q b-c =	/EMENT : 447 (pcu/hr) 611 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c	DF DESIGN FLO = =	0.0293 0.1282
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 8$ (pcu/hr)	(F) [0] Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791	CAPACITY OF MOV Q b-a = Q b-c = Q c-b =	/EMENT : 447 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b	DF DESIGN FLO = = = =	0.0293 0.1282 0.0861
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 8$ (pcu/hr) $q a-c = 13$ (pcu/hr)	[4] [5] Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834	Q b-a = Q b-c = Q c-b = Q b-ac =	/EMENT : 447 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 580 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	DF DESIGN FLO = = = = = =	0.0293 0.1282 0.0861 0.1575
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 8$ (pcu/hr) $q a-c = 13$ (pcu/hr)	[4] [5] Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	/EMENT : 447 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 580 (pcu/hr) 1645 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	DF DESIGN FLO = = = = =	0.0293 0.1282 0.0861 0.1575
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 8$ (pcu/hr) $q a-c = 13$ (pcu/hr)MAJOR ROAD (ARM C)	[4] [3] Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.857	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = D c-a = TOTAL FLOW =	/EMENT : 447 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 580 (pcu/hr) 1645 (pcu/hr) 50.3 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = =	0.0293 0.1282 0.0861 0.1575 0.0174
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 8$ (pcu/hr) $q a-c = 13$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres)	[4] [5] Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.857	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 447 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 580 (pcu/hr) 1645 (pcu/hr) 50.3 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0293 0.1282 0.0861 0.1575 0.0174
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 8$ (pcu/hr) $q a-c = 13$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $Vr c-b = 38$ (metres) $Vr c-b = 38$ (metres)	[+] [-] Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.857	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 447 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 580 (pcu/hr) 1645 (pcu/hr) 50.3 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0293 0.1282 0.0861 0.1575 0.0174
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 8$ (pcu/hr) $q a-c = 13$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $Q c-a = 29$ (pcu/hr) $q c-b = 50.2$ (metres)	[+] [-] Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.857	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 447 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 580 (pcu/hr) 1645 (pcu/hr) 50.3 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0293 0.1282 0.0861 0.1575 0.0174
$\begin{array}{rcl} \textbf{GEOMETRIC DETAILS:} \\ \hline \mbox{MajOR ROAD (ARM A)} \\ \hline \mbox{W} = & 4.8 & (metres) \\ \hline \mbox{W} cr = & 0 & (metres) \\ \hline \mbox{q} a-b = & 8 & (pcu/hr) \\ \hline \mbox{q} a-c = & 13 & (pcu/hr) \\ \hline \mbox{MajOR ROAD (ARM C)} \\ \hline \mbox{W} c-b = & 2.1 & (metres) \\ \hline \mbox{V} r c-b = & 38 & (metres) \\ \hline \mbox{Q} c-a = & 29 & (pcu/hr) \\ \hline \mbox{q} c-b = & 50.3 & (pcu/hr) \\ \hline MajOR ROAD (Armonic Armonic Armoni$	[+] [-] Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.857	THE CAPACITY OF MOV Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 447 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 580 (pcu/hr) 1645 (pcu/hr) 50.3 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL(= = = = = =	0.0293 0.1282 0.0861 0.1575 0.0174
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 8$ (pcu/hr) $q a-c = 13$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 29$ (pcu/hr) $q c-b = 50.3$ (pcu/hr)MINOR ROAD (ARM B)	[4] [0] Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.857	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 447 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 580 (pcu/hr) 1645 (pcu/hr) 50.3 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = = =	0.0293 0.1282 0.0861 0.1575 0.0174 0.16
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 8$ (pcu/hr) $q a-c = 13$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 29$ (pcu/hr) $q c-b = 50.3$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres)	[4] [5] Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.857	Q b-a = Q b-c = Q c-b = Q b-ac = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 447 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 580 (pcu/hr) 1645 (pcu/hr) 50.3 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a (Share Lane) DFC c-a	DF DESIGN FL(= = = = = =	0.0293 0.1282 0.0861 0.1575 0.0174 0.16
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 8$ (pcu/hr) $q a-c = 13$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 29$ (pcu/hr) $q c-b = 50.3$ (pcu/hr) $q c-b = 2.5$ (metres) $W b-a = 2.5$ (metres) $W b-c = 2.5$ (metres)	[4] [5] Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.857	THE CAPACITY OF MOV Q b-a = Q b-c = Q c-b = Q c-a = TOTAL FLOW =	/EMENT : 447 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 580 (pcu/hr) 1645 (pcu/hr) 50.3 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = = =	0.0293 0.1282 0.0861 0.1575 0.0174 0.16
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 8$ (pcu/hr) $q a-c = 13$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 29$ (pcu/hr) $q c-b = 50.3$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-c = 2.5$ (metres) $V b-a = 22$ (metres)	[4] [5] Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.857	THE CAPACITY OF MOV Q b-a = Q b-c = Q c-b = Q c-a = TOTAL FLOW =	/EMENT : 447 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 580 (pcu/hr) 1645 (pcu/hr) 50.3 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FLO = = = = = =	0.0293 0.1282 0.0861 0.1575 0.0174 0.16
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 8$ (pcu/hr) $q a-c = 13$ (pcu/hr) $q a-c = 13$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 29$ (pcu/hr) $q c-a = 29$ (pcu/hr) $q c-b = 50.3$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-a = 2.5$ (metres) $VI b-a = 22$ (metres) $VI b-a = 24$ (metres)	[4] [0] Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.857	THE CAPACITY OF MOV Q b-a = Q b-c = Q c-b = Q c-a = TOTAL FLOW =	/EMENT : 447 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 580 (pcu/hr) 1645 (pcu/hr) 50.3 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = =	0.0293 0.1282 0.0861 0.1575 0.0174 0.16
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 8$ (pcu/hr) $q a-c = 13$ (pcu/hr) $q a-c = 13$ (pcu/hr) W c-b = 2.1 (metres) $Vr c-b = 38$ (metres) $q c-a = 29$ (pcu/hr) $q c-b = 50.3$ (pcu/hr) MINOR ROAD (ARM B) W b-a = 2.5 (metres) W b-a = 22 (metres) VI b-a = 24 (metres) Vr b-a = 24 (metres) Vr b-c = 38 (metres)	[+] [-] Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.857	Ub-a = Qb-c = Qc-b = Qb-ac = Qc-a = TOTAL FLOW =	/EMENT : 447 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 580 (pcu/hr) 1645 (pcu/hr) 50.3 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = =	0.0293 0.1282 0.0861 0.1575 0.0174 0.16
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 8$ (pcu/hr) $q a-c = 13$ (pcu/hr) $q a-c = 13$ (pcu/hr) MAJOR ROAD (ARM C) W c-b = 2.1 (metres) $Vr c-b = 38$ (metres) $q c-a = 29$ (pcu/hr) $q c-b = 50.3$ (pcu/hr) MINOR ROAD (ARM B) W b-a = 2.5 (metres) W b-a = 22 (metres) VI b-a = 22 (metres) VI b-a = 24 (metres) Vr b-c = 38 (metres) Vr b-a = 13 (pcu/hr)	[+] [-] Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.857	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 447 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 580 (pcu/hr) 1645 (pcu/hr) 50.3 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FLO = = = = =	0.0293 0.1282 0.0861 0.1575 0.0174 0.16

	ULTANCY LIM	IITED	PRIC	ORITY JUN	CTION CAL	CULATIO	N			INITIALS		DATE
Traffic Impact Assessment for	for Proposed Temporary Open S	Storage of Construction Materia	al and Equipment of 3 Years at Va	rious Lots in D.D.129, La	au Fau Shan				Prepared	By: FF		Jan-2025
Jn D - Deep Bay Rd /	/ Unnamed Rd 2		2027 R	eference - AM Pe	ak			Project No.: 8	0108 Checked	By: MM		Jan-2025
• •								,	Reviewed	BV: FM		Jan-2025
					4							
Unnamed Rd 2 (ARM D)	[9] 2 [8] 2 [7] 5	(ARM A) Deep Bay Ro [10] [11] 2 50 	d [12] 4 • 0 • 4 • 11	[1] [2] [3]	Unnamed Rd 2 (ARM B)		NOTES : (GEOME W = W cr = W b-a = W b-c = V c-b = Vr b-a = Vr b-a = Vr c-b = D = E = F =	TRIC INPUT DA' MAJOR ROAD V CENTRAL RESE LANE WIDTH AV LANE WIDTH AV LANE WIDTH AV VISIBILITY TO T VISIBILITY TO T VISIBILITY TO T VISIBILITY TO T STREAM-SPECI STREAM-SPECI STREAM-SPECI	TA) VIDTH RVE WIDTH /AILABLE TO VEH /AILABLE TO VEH /AILABLE TO VEH HE LEFT FOR VEH HE RIGHT FOR VI HE RIGHT FOR VI FIC B-A FIC B-C FIC C-B	HICLE WAITING IN ST HICLE WAITING IN ST HICLE WAITING IN ST HICLES WAITING IN S EHICLES WAITING IN EHICLES WAITING IN	REAM b-a REAM b-c REAM c-b STREAM I STREAM STREAM STREAM STREAM)
		2 40 10 [6] [5] [4] Deep Bay Rd'(/	ARM C)				Y =	(1-0.0345W)				
GEOMETRIC	C DETAILS:	2 40 10 [6] [5] [4] Deep Bay Rd'(/	ARM C)	GEOMET	RIC FACTORS :		Y =	(1-0.0345W)		COMPARISION OF D	ESIGN FL	.ow
GEOMETRIC	C DETAILS:	2 40 10 [6] [5] [4] Deep Bay Rd'(/	ARM C)	GEOMET	RIC FACTORS :	0.919	Y =	(1-0.0345W)	0.945	COMPARISION OF D	ESIGN FL	.ow
GEOMETRIC GENERAL	C DETAILS:	2 40 10 [6] [5] [4] Deep Bay Rd'(/	ARM C)	GEOMET X b	RIC FACTORS :	0.818	Y =	(1-0.0345W) = =	0.845	COMPARISION OF D	ESIGN FL	. OW
GEOMETRIC GENERAL W = W or =	C DETAILS:	2 40 10 [6] [5] [4] Deep Bay Rd'(<i>i</i>	ARM C)	GEOMET X b X c 7 b	RIC FACTORS :	0.818 0.799 0.928	Y =	(1-0.0345W) = = =	0.845 1.066 1 188	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-a	ESIGN FL = =	. ow
GEOMETRIC GENERAL W = W cr =	C DETAILS: 3.90 (metres) 0 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(/	ARM C)	GEOMET X b X c Z b M b	RIC FACTORS : = = = =	0.818 0.799 0.928 0.860	Y =	(1-0.0345W) = = = = =	0.845 1.066 1.188 1.097	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-C DFC c-b	ESIGN FL = = =	. OW 0.0000 0.0163 0.0172
GEOMETRIC GENERAL W = W cr = MAJOR ROA	C DETAILS: 3.90 (metres) 0 (metres) AD (ARM A)	2 40 10 [6] [5] [4] Deep Bay Rd'(/	0.865	GEOMET X b X c Z b M b	RIC FACTORS : = = = = =	0.818 0.799 0.928 0.860	Y = Xa Xd Zd Md	(1-0.0345W) = = = = =	0.845 1.066 1.188 1.097	COMPARISION OF D TO GAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b	ESIGN FL = = = = =	. OW 0.0000 0.0163 0.0172 0.0039
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d =	C DETAILS: 3.90 (metres) 0 (metres) AD (ARM A) 2.0 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b =	0.865 R ROAD (ARM C)	GEOMET Xb Xc Zb Mb	RIC FACTORS : = = = = =	0.818 0.799 0.928 0.860	Y = Xa Xd Zd Md	(1-0.0345W) = = = =	0.845 1.066 1.188 1.097	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-d DFC b-d DFC b-d	ESIGN FL = = = = = =	. OW 0.0000 0.0163 0.0172 0.0039 0.0141
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d =	C DETAILS: 3.90 (metres) 0 (metres) AD (ARM A) 2.0 (metres) 120 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(<i>i</i> Y = MAJOF MAJOF W c-D = Vr c-b =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres)	GEOMET X b X c Z b M b	RIC FACTORS : = = = = =	0.818 0.799 0.928 0.860 RAIGHI AHEAD	Y = Xa Xd Zd Md	(1-0.0345W) = = = = =	0.845 1.066 1.188 1.097	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-b DFC c-b DFC c-b DFC c-b	ESIGN FL = = = = = =	0.0000 0.0163 0.0172 0.0039 0.00479
GEOMETRIC GENERAL W = W cr = MAJOR ROA w a-d = Vr a-d = Vr a-d =	C DETAILS: 3.90 (metres) 0 (metres) AD (ARM A) 2.0 (metres) 120 (metres) 4 (neu/tr)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W C-D = Vr C-D = Vr C-D = Vr C-D =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres)	GEOMET Xb Xc Zb Mb PROPOR	RIC FACTORS : = = = = = :THON OF MINOR ST	0.818 0.799 0.928 0.860 KAIGHT AHEAD	Y = Xa Xd Zd Md IRAFFIC:	(1-0.0345W) = = = = =	0.845 1.066 1.188 1.097	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC b-c DFC b-d DFC b-d DFC d-a	ESIGN FL = = = = = =	0.0000 0.0163 0.0172 0.0039 0.0079 0.0079
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-b =	C DETAILS: 3.90 (metres) 0 (metres) AD (ARM A) 2.0 (metres) 120 (metres) 4 (pcu/hr) 50 (ccu/hr)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-b = g c-b =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr)	GEOMET Xb Xc Zb Mb PKOPOK rb-a	RIC FACTORS : = = = = = = :TION OF MINOR ST = -	0.818 0.799 0.928 0.860 KAIGH I AHEAD 0	Y = Xa Xd Zd Md IKAFFIG: rd-c	(1-0.0345W) = = = = = =	0.845 1.066 1.188 1.097 0.008	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-b DFC c-c DFC c-a DFC c-a DFC c-a	ESIGN FL = = = = = = = =	0.0000 0.0163 0.0172 0.0039 0.0023 0.0023
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vra-d = q a-b = q a-c = q a-c =	C DETAILS: 3.90 (metres) 0 (metres) AD (ARM A) 2.0 (metres) 120 (metres) 4 (pcu/hr) 50 (pcu/hr)	2 40 10 [6] [5] [4] Deep Bay Rd'(<i>i</i> V = MAJOF MAJOF W c-b = Vr c-b = q c-a = q c-b = q c-b =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d	RIC FACTORS : = = = = = = = = = = = = = = =	0.818 0.799 0.928 0.860 RAIGH I AHEAD 0 2 (pcu/hr	Y = Xa Xd Zd Md IKAFFIC: rd-c) qld-b	(1-0.0345W) = = = = = = = = 	0.845 1.066 1.188 1.097 0.008 007874 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-b DFC c-c DFC d-a DFC c-a DFC a-d	ESIGN FL = = = = = = = = =	. OW 0.0000 0.0163 0.0172 0.0039 0.004 0.0079 0.0023 0.0023 0.0033
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-c = q a-d =	C DETAILS: 3.90 (metres) 0 (metres) AD (ARM A) 2.0 (metres) 120 (metres) 4 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-b = q c-b = q c-d =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d	RIC FACTORS : = = = = = = = = = = = = = = = = = = =	0.818 0.799 0.928 0.860 KAIGH I AHEAD 0 2 (pcu/hr 2 (pcu/hr	Y = Xa Xd Zd Md IRAFFIC: rd-c) qld-b) qrd-b	(1-0.0345W) = = = = = = = 1. = 0.	0.845 1.066 1.188 1.097 0.008 007874 (pcu/hr) 992126 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-d DFC d-c DFC d-a DFC a-d DFC a-d	ESIGN FL = = = = = = = = = =	0.0000 0.0163 0.0172 0.0039 0.0041 0.0079 0.0023 0.0033 0.0033
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-c = q a-d =	C DETAILS: 3.90 (metres) 0 (metres) AD (ARM A) 2.0 (metres) 120 (metres) 120 (metres) 4 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-D = Vr c-b = q c-b = q c-b = q c-d = MIN(NE P2020)	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr)	GEOMET X b X c Z b M b PROPOR r b-a qi b-d qr b-d	RIC FACTORS : = = = = = :TIUN OF MINUR ST = = = =	0.818 0.799 0.928 0.860 KAIGH I AHEAD 0 2 (pcu/hr 2 (pcu/hr	Y = Xa Xd Zd Md IRAFFIC : rd-c) ql d-b) qr d-b	(1-0.0345W) = = = = = = = = = = = = = = 1. = = 0.	0.845 1.066 1.188 1.097 0.008 007874 (pcu/hr) 992126 (pcu/hr)	COMPARISION OF D TO GAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC d-c DFC d-a DFC d-a DFC d-a DFC d-b DFC d-b	ESIGN FL = = = = = = = = = = = = =	0.0000 0.0163 0.0172 0.0039 0.0023 0.0033 0.0015 0.0016
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-c = q a-d = MINOR ROA	C DETAILS: 3.90 (metres) 0 (metres) AD (ARM A) 2.0 (metres) 120 (metres) 4 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) ND (ARM B)	2 40 10 [6] [5] [4] Deep Bay Rd'(<i>i</i> Y = MAJOF MAJOF W c-D = Vr c-D = Q c-a = q c-b = q c-b = q c-d = MINOR ROAD	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) (ARM D)	GEOMET Х b Х c Z b М b РКОРОК r b-a ql b-d qr b-d qr b-d Сарасит	RIC FACTORS : = = = = = = = = = = = = =	0.818 0.799 0.928 0.860 KAIGH I AHEAD 0 2 (pcu/hr 2 (pcu/hr	Y = Xa Xd Zd Md IKAFFIC: rd-c qld-b) qrd-b	(1-0.0345W) = = = = = = = 1. = 0.	0.845 1.066 1.188 1.097 0.008 007874 (pcu/hr) 992126 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-b DFC c-b DFC c-b DFC c-a DFC d-a DFC a-d DFC d-b	ESIGN FL = = = = = = = = = = = = = =	0.0000 0.0163 0.0172 0.0039 0.0041 0.0079 0.0023 0.0033 0.0015 0.0016
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-b = q a-c = q a-d = MINUK ROA W b-a =	C DETAILS: 3.90 (metres) 0 (metres) AD (ARM A) 2.0 (metres) 120 (metres) 4 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) ND (ARM B) 3.3 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(<i>i</i> Y = MAJOF MAJOF W c-b = Vr c-b = q c-a = q c-b = q c-d = MINOR ROAD W d-c =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) (ARM D) 6.0 (metres)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d Qr b-d	RIC FACTORS : = = = = = = = = = = = = =	0.818 0.799 0.928 0.860 RAIGH I AHEAD 0 2 (pcu/hr 2 (pcu/hr	Y = Xa Xd Zd Md IKAFFIC: rd-c) qld-b) qrd-b	(1-0.0345W) = = = = = = = = = = = 1. = = 0.	0.845 1.066 1.188 1.097 0.008 007874 (pcu/hr) 992126 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-d DFC d-a DFC d-a DFC a-d DFC d-b DFC d-b DFC d-b	ESIGN FL = = = = = = = = = = = =	0.0000 0.0163 0.0172 0.0039 0.0041 0.0079 0.0023 0.0033 0.0015 0.0016
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-c = q a-d = MINOR ROA W b-a = W b-c =	C DETAILS: 3.90 (metres) 0 (metres) AD (ARM A) 2.0 (metres) 120 (metres) 120 (metres) 4 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) AD (ARM B) 3.3 (metres) 3.3 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-D = Vr c-D = Vr c-b = q c-b = q c-b = q c-b = q c-b = q c-d = MINOR ROAD W d-c = W d-a =	ARM C) 0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) 6.0 (metres) 6.0 (metres)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACIT Q b-a	RIC FACTORS : = = = = = = = = = = = = =	0.818 0.799 0.928 0.860 KAIGH I AHEAD 0 2 (pcu/hr 2 (pcu/hr 48/ (pcu/hr	Y = Xa Xd Zd Md IKAFFIC : rd-c ql d-b) ql d-b	(1-0.0345W) = = = = = = = = = = = = = = = 1. = = 0.	0.845 1.066 1.188 1.097 0.008 007874 (pcu/hr) 992126 (pcu/hr) 635 (pcu/hr)	COMPARISION OF D TO GAPACITY: DFC b-a DFC b-c DFC c-b DFC c-d DFC d-a DFC d-a DFC d-a DFC c-a DFC c-b DFC c-b C c-b DFC c-b DFC b-c DFC c-b DFC c-b DF	ESIGN FL = = = = = = = = = = =	0.0000 0.0163 0.0172 0.0039 0.0U41 0.0079 0.0023 0.0033 0.0015 0.0016
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-c = q a-d = MINOR ROA W b-a = W b-c = VI b-a =	C DETAILS: 3.90 (metres) 0 (metres) AD (ARM A) 2.0 (metres) 120 (metres) 4 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) AU (ARM B) 3.3 (metres) 28 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(<i>i</i> V = MAJOF MAJOF W c-D = Vr c-b = q c-b = q c-b = q c-b = q c-d = MINOR ROAD W d-c = W d-a = VI d-c =	ARM C) 0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) (ARM D) 6.0 (metres) 6.0 (metres) 22 (metres)	GEOMET X b X c Z b M b PKOPOK r b-a ql b-d qr b-d CAPACIT Q b-a Q b-c	RIC FACTORS : = = = = = = = Y OF MOVEMENT : = = = =	0.818 0.799 0.928 0.860 KAIGH I AHEAD 0 2 (pcu/hr 2 (pcu/hr 48/ (pcu/hr	Y = Xa Xd Zd Md IKAFFIC:) rd-c) qld-b) qrd-b) Qd-c	(1-0.0345W) = = = = = = = 1. = 0. =	0.845 1.066 1.188 1.097 0.008 007874 (pcu/hr) 992126 (pcu/hr) 635 (pcu/hr) 868 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-d DFC d-a DFC d-a DFC d-a DFC d-b	ESIGN FL = = = = = = = = = = =	0.0000 0.0163 0.0172 0.0039 0.0023 0.0023 0.0033 0.0015 0.0016
GEOMETRIC GENERAL W = W cr = Vr a-d = q a-b = q a-b = q a-c = q a-d = MINOR ROA W b-a = W b-c = VI b-a = Vr b-a =	C DETAILS: 3.90 (metres) 0 (metres) AD (ARM A) 2.0 (metres) 120 (metres) 4 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) 3.3 (metres) 3.3 (metres) 28 (metres) 28 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(<i>i</i> Deep Bay Rd'(<i>i</i> Y = MAJOF MAJOF W c-b = Vr c-b = q c-a = q c-b = q c-d = MINOR ROAD W d-c = W d-a = VI d-c = Vr d-c =	ARM C) 0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) 6.0 (metres) 6.0 (metres) 60 (metres) 60 (metres)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d Qr b-d Q b-a Q b-a Q b-a Q b-a Q b-a	RIC FACTORS : = = = = = = = = = = = Y OF MOVEMENT : = = = = =	0.818 0.799 0.928 0.860 KAIGH I AHEAD 0 2 (pcu/hr 2 (pcu/hr 676 (pcu/hr 581 (pcu/hr	Y = Xa Xd Zd Md IKAFFIC:) qld-b) qld-b) qld-b) qld-b) Qd-c) Qd-a	(1-0.0345W) = = = = = = 1. = 0. = = = = =	0.845 1.066 1.188 1.097 0.008 007874 (pcu/hr) 992126 (pcu/hr) 635 (pcu/hr) 868 (pcu/hr) 614 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-b DFC c-c DFC d-a DFC d-a DFC a-d DFC d-b DFC d-b	ESIGN FL = = = = = = = = = = = = = = = = = =	.ow 0.0000 0.0163 0.0172 0.0039 0.0041 0.0079 0.0023 0.0033 0.0015 0.0016
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-c = q a-d = MINOR ROAI W b-a = W b-c = VI b-a = Vr b-c = Vr b-c =	C DETAILS: 3.90 (metres) 0 (metres) AD (ARM A) 2.0 (metres) 120 (metres) 4 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) AD (ARM B) 3.3 (metres) 3.3 (metres) 28 (metres) 80 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-b = q c-a = q c-b = q c-d = MINOR ROAD W d-c = W d-a = Vl d-c = V	ARM C) 0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) 6.0 (metres) 6.0 (metres) 60 (metres) 90 (metres)	GEOMET X b X c Z b M b PROPOR r b-a qr b-d qr b-d qr b-d CAPACIT Q b-a Q b-c Q c-b Q b-c Q c-b Q b-b	RIC FACTORS : = = = = = = Y OF MOVEMENT : = = = = = = = = = = = = =	0.818 0.799 0.928 0.860 KAIGH I AHEAD 0 2 (pcu/hr 2 (pcu/hr 676 (pcu/hr 581 (pcu/hr 514 (pcu/hr	Y = Xa Xd Zd Md IKAFFIC: rd-c) qld-b) qld-b) qrd-b	(1-0.0345W) = = = = = = = 1 = 0. = = = = = = = =	0.845 1.066 1.188 1.097 0.008 007874 (pcu/hr) 992126 (pcu/hr) 635 (pcu/hr) 614 (pcu/hr) 657 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC b-d DFC b-d DFC d-a DFC d-a DFC d-a DFC d-b DFC d-b DFC d-b DFC d-b	ESIGN FL = = = = = = = = = = = = =	.000 0.0163 0.0172 0.0039 0.0023 0.0033 0.0015 0.0016 0.002
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-c = q a-d = MINOR ROA W b-a = Vr b-a = Vr b-a = Vr b-a = Vr b-a =	C DETAILS: 3.90 (metres) 0 (metres) AD (ARM A) 2.0 (metres) 120 (metres) 4 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) 3.3 (metres) 3.3 (metres) 28 (metres) 28 (metres) 0 (pcu/hr)	2 40 10 [6] [5] [4] Deep Bay Rd'(<i>i</i> Deep Bay Rd'(<i>i</i> V = MAJOF MAJOF W c-D = Vr c-b = q c-b = q c-b = q c-b = q c-b = q c-d = MINOR ROAD W d-c = Vr d-a = Vr d-a = Vr d-a = q d-c =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) 6.0 (metres) 6.0 (metres) 22 (metres) 60 (metres) 5 (pcu/hr)	GEOMET X b X c Z b M b PKOPOK r b-a ql b-d qr b-d CAPACIT Q b-a Q b-c Q c-b Q l b-d Q b-d Q b-d	RIC FACTORS : = = = = = = Y OF MOVEMENT : = = = = = = = = = = = = =	0.818 0.799 0.928 0.860 KAIGH I AHEAD 0 2 (pcu/hr 2 (pcu/hr 676 (pcu/hr 581 (pcu/hr 581 (pcu/hr 581 (pcu/hr 489 (pcu/hr	Y = Xa Xd Zd Md IKAFFIC: rd-c) qld-b) qrd-b) qrd-b) Qd-c) Qd-a) Qd-a) Qd-b) Qrd-b	(1-0.0345W) = = = = = = = 1. = 0. = = = = = = = = = = =	0.845 1.066 1.188 1.097 0.008 007874 (pcu/hr) 992126 (pcu/hr) 635 (pcu/hr) 614 (pcu/hr) 637 (pcu/hr) 639 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC fb-d DFC fb-d DFC d-a DFC d-a DFC d-a DFC d-b DFC d-b	ESIGN FL = = = = = = = = = = = = = = =	.ow 0.0000 0.0163 0.0172 0.0039 0.0023 0.0015 0.0016 0.0016
GEOMETRIC GENERAL W = W cr = W a-d = Vr a-d = q a-b = q a-b = q a-c = q a-d = MINOR ROAL W b-a = Vr b-a = Vr b-a = Vr b-a = Vr b-a = Vr b-a = q b-a = q b-a = q b-a =	C DETAILS: 3.90 (metres) 0 (metres) AD (ARM A) 2.0 (metres) 120 (metres) 4 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) 3.3 (metres) 3.3 (metres) 3.3 (metres) 28 (metres) 80 (metres) 0 (pcu/hr)	2 40 10 [6] [5] [4] Deep Bay Rd'(<i>i</i> Deep Bay Rd'(<i>i</i> V c-D = Vr c-D = Vr c-D = q c-a = q c-b = q c-d = MINOR ROAD W d-c = Vr d-a = Vr d-a = Vr d-a = Q d-a = q d-c = Vr d-a = Q d-c = Q d-a = Q d-a = Vr d-c	ARM C) 0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) 6.0 (metres) 6.0 (metres) 60 (metres) 90 (metres) 5 (pcu/hr) 2 (pcu/hr)	GEOMET X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d qr b-d Q b-a Q b-a Q b-a Q b-a Q b-a Q b-a Q b-d Q b-d Q b-d Q b-d Q b-d	RIC FACTORS : = = = = = = = Y OF MOVEMENT : = = = = = = = = = = = = =	0.818 0.799 0.928 0.860 KAIGH I AHEAD 0 2 (pcu/hr 2 (pcu/hr 581 (pcu/hr 581 (pcu/hr 514 (pcu/hr	Y = Xa Xd Zd Md IKAFFIC:) qld-b) qrd-b) Qd-c) Qd-a) Qd-a) Qld-b) Qld-b	(1-0.0345W) = = = = = = = 1. = 0. = = = = = = = = = =	0.845 1.066 1.188 1.097 0.008 007874 (pcu/hr) 992126 (pcu/hr) 868 (pcu/hr) 614 (pcu/hr) 639 (pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC b-d DFC b-d DFC d-c DFC d-a DFC a-d DFC a-d DFC a-b DFC d-b	ESIGN FL = = = = = = = = = = = = = = = =	.ow 0.0000 0.0163 0.0172 0.0039 0.0023 0.0033 0.0015 0.0016 0.02

-M CONSL	JLTANCY LIMIT	ED	PRIORITY JUNCTION CALCUL	ATION		INITIALS	DAT
c Impact Assessment for	r Proposed Temporary Open Storac	e of Construction Material and Equipment of	3 Years at Various Lots in D.D.129, Lau Fau Shan		Prepared By:	FF	Jan-20
- Unnamed Rd 1	/ Unnamed Rd 2		2027 Reference - AM Peak	Project No.: 80108	B Checked By:	MM	Jan-20
					Reviewed By:	FM	Jan-20
Unnamed Rd 2 (ARM A)	$\begin{bmatrix} 4 \end{bmatrix} \begin{array}{c} 42 \\ \hline 3 \end{bmatrix} 0 \\ \hline \end{array}$	↓ 18 7 [2] [1] (ARM B) Unnamed Rd 1	— 50 [5] — 11 [6] Unnamed Rd 2 (ARM C)	NOTES : (GEOMETRIC INPUT DATA)W=MAJOR ROAD WIDTW cr=CENTRAL RESERVEW b-a=LANE WIDTH AVAILAW b-c=LANE WIDTH AVAILAW c-b=LANE WIDTH AVAILAW c-b=LANE WIDTH AVAILAV b-a=VISIBILITY TO THE LVr b-a=VISIBILITY TO THE RVr b-c=VISIBILITY TO THE RVr c-b=VISIBILITY TO THE RD=STREAM-SPECIFIC EE=STREAM-SPECIFIC EF=STREAM-SPECIFIC CY=(1-0.0345W)	H ABLE TO VEHICLE W ABLE TO VEHICLE W ABLE TO VEHICLE W EFT FOR VEHICLES RIGHT FOR VEHICLES RIGHT FOR VEHICLES AGHT FOR VEHICLES 3-A 3-C C-B	AITING IN STF AITING IN STF AITING IN STF WAITING IN S S WAITING IN S WAITING IN S WAITING IN	REAM b-a REAM b-c REAM c-b TREAM b-a STREAM b-a STREAM b-c STREAM c-b
GEOMETRIC	DETAILS:	GEOMETRIC FACTOR	S: THE CAPACITY OF MO	VEMENT :	COMPARISION C TO CAPACITY:	OF DESIGN FL	ow
MAJOR ROA	JD (ARM A)						
W =	5.2 (metres)	D = 0.75	j2 Q b-a =	452 (pcu/hr)	DFC b-a	=	0.0398
VV cr =	0 (metres)	$E = 0.8^{\circ}$	13 Q D-C =	596 (pcu/hr)	DFC b-c	=	0.0117
d a-b =	0 (pcu/hr)	E = 087	(3 () C-D =				/ \ / \ / \ / \ / \
9-0-	12 (nou/br)	V - 0.97		596 (pcu/hr)	DFC c-b	=	0.0185
q a-c =	42 (pcu/hr)	Y = 0.82	21 Q b-ac =	596 (pcu/hr) 485 (pcu/hr) 1767 (pcu/hr)	DFC c-b DFC b-ac (Share Lane)	=	0.0516
q a-c =	42 (pcu/hr)	Y = 0.8;	21 Qb-ac = Qc-a =	596 (pcu/hr) 485 (pcu/hr) 1767 (pcu/hr)	DFC c-b DFC b-ac (Share Lane)	=	0.0185
q a-c =	42 (pcu/hr)	Y = 0.8; F for (Qb-ac) = 0.2	21 Q b-ac = Q c-a = 28 TOTAL FLOW =	596 (pcu/hr) 485 (pcu/hr) 1767 (pcu/hr) 61 (pcu/hr)	DFC c-b DFC b-ac (Share Lane) DFC c-a	= =	0.0185 0.0516 0.0283
q a-c = MAJOR ROAE W c-b =	42 (pcu/hr) D (ARM C) 2.5 (metres)	Y = 0.8 F for (Qb-ac) = 0.2	21 Q b-ac = Q c-a = 28 TOTAL FLOW =	596 (pcu/hr) 485 (pcu/hr) 1767 (pcu/hr) 61 (pcu/hr)	DFC c-b DFC b-ac (Share Lane) DFC c-a	= =	0.0516
q a-c = MAJOR ROAL W c-b = Vr c-b = g c-a =	42 (pcu/hr) D (ARM C) 2.5 (metres) 22 (metres) 50 (nct/hr)	Y = 0.8 F for (Qb-ac) = 0.2	21 Q b-ac = Q c-a = 28 TOTAL FLOW =	596 (pcu/hr) 485 (pcu/hr) 1767 (pcu/hr) 61 (pcu/hr)	DFC c-b DFC b-ac (Share Lane) DFC c-a	= =	0.0185 0.0516 0.0283
q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b =	42 (pcu/hr) D (ARM C) 2.5 (metres) 22 (metres) 50 (pcu/hr) 11 (pcu/hr)	Y = 0.8. F for (Qb-ac) = 0.2	21 Q b-ac = Q c-a = 28 TOTAL FLOW =	596 (pcu/hr) 485 (pcu/hr) 1767 (pcu/hr) 61 (pcu/hr)	DFC c-b DFC b-ac (Share Lane) DFC c-a	=	0.0185
q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b =	42 (pcu/hr) D (ARM C) 2.5 (metres) 22 (metres) 50 (pcu/hr) 11 (pcu/hr)	Y = 0.8. F for (Qb-ac) = 0.1	21 Q b-ac = Q c-a = 28 TOTAL FLOW =	596 (pcu/hr) 485 (pcu/hr) 1767 (pcu/hr) 61 (pcu/hr)	DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC		0.0185 0.0516 0.0283 0.05
q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL	42 (pcu/hr) D (ARM C) 2.5 (metres) 22 (metres) 50 (pcu/hr) 11 (pcu/hr)) (ARM B) 2.5 (metres)	Y = 0.8. F for (Qb-ac) = 0.2	21 Q b-ac = Q c-a = 28 TOTAL FLOW =	596 (pcu/hr) 485 (pcu/hr) 1767 (pcu/hr) 61 (pcu/hr)	DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	-	0.0185 0.0516 0.0283 0.05
q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a =	42 (pcu/hr) D (ARM C) 2.5 (metres) 22 (metres) 50 (pcu/hr) 11 (pcu/hr) D (ARM B) 2.5 (metres) 25 (metres)	Y = 0.8 F for (Qb-ac) = 0.:	21 Q b-ac = Q c-a = 28 TOTAL FLOW =	596 (pcu/hr) 485 (pcu/hr) 1767 (pcu/hr) 61 (pcu/hr)	DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	=	0.0185 0.0516 0.0283 0.05
q a - c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c = Vr b-c =	42 (pcu/hr) D (ARM C) 2.5 (metres) 22 (metres) 50 (pcu/hr) 11 (pcu/hr) D (ARM B) 2.5 (metres) 2.5 (metres) 2.5 (metres)	Y = 0.8 F for (Qb-ac) = 0.:	21 Q b-ac = Q c-a = 28 TOTAL FLOW =	596 (pcu/hr) 485 (pcu/hr) 1767 (pcu/hr) 61 (pcu/hr)	DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	=	0.0185 0.0516 0.0283 0.05
q a-c = MAJOR ROAE W c-b = Vr c-b = q c-a = q c-b = MINOR ROAE W b-a = W b-c = Vl b-a = Vl b-a =	42 (pcu/hr) D (ARM C) 2.5 (metres) 22 (metres) 50 (pcu/hr) 11 (pcu/hr) D (ARM B) 2.5 (metres) 2.5 (metres) 22 (metres) 24 (metres)	Y = 0.8 F for (Qb-ac) = 0.2	21 Q b-ac = Q c-a = 28 TOTAL FLOW =	596 (pcu/hr) 485 (pcu/hr) 1767 (pcu/hr) 61 (pcu/hr)	DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	= = =	0.0185 0.0516 0.0283 0.05
q a-c = MAJOR ROAE W c-b = Vr c-b = q c-a = q c-b = MINOR ROAE W b-a = W b-c = Vl b-a = Vr b-a = Vr b-a =	42 (pcu/hr) D (ARM C) 2.5 (metres) 22 (metres) 50 (pcu/hr) 11 (pcu/hr) D (ARM B) 2.5 (metres) 2.5 (metres) 22 (metres) 24 (metres)	Y = 0.8 F for (Qb-ac) = 0.2	21 Qb-ac = Qc-a = 28 TOTAL FLOW =	596 (pcu/hr) 485 (pcu/hr) 1767 (pcu/hr) 61 (pcu/hr)	DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	-	0.0185 0.0516 0.0283 0.05
q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c = Vl b-a = Vr b-a = Vr b-a = Vr b-a =	42 (pcu/hr) D (ARM C) 2.5 (metres) 22 (metres) 50 (pcu/hr) 11 (pcu/hr) D (ARM B) 2.5 (metres) 2.5 (metres) 22 (metres) 24 (metres) 22 (metres) 24 (metres) 25 (metres) 26 (metres) 27 (metres) 28 (metres) 29 (metres) 29 (metres) 20 (metres) 20 (metres) 20 (metres) 21 (metres) 22 (metres) 23 (metres) 24 (metres) 24 (metres) 25 (metres) 26 (metres) 27 (metres) 28 (metres) 29 (metres) 20 (me	Y = 0.8 F for (Qb-ac) = 0.2	21 Qb-ac = Qc-a = 28 TOTAL FLOW =	596 (pcu/hr) 485 (pcu/hr) 1767 (pcu/hr) 61 (pcu/hr)	DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	-	0.0185 0.0516 0.0283 0.05
q a-c = MAJOR ROAL W c-b = Vr c-b = q c-a = q c-b = MINOR ROAL W b-a = W b-c = Vl b-a = Vr b-a = Vr b-c = q b-a =	42 (pcu/hr) D (ARM C) 2.5 (metres) 22 (metres) 50 (pcu/hr) 11 (pcu/hr) D (ARM B) 2.5 (metres) 2.5 (metres) 22 (metres) 24 (metres) 22 (metres) 18 (pcu/hr) 7 (netres)	Y = 0.8 F for (Qb-ac) = 0.:	21 Qb-ac = Qc-a = 28 TOTAL FLOW =	596 (pcu/hr) 485 (pcu/hr) 1767 (pcu/hr) 61 (pcu/hr)	DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	-	0.0185 0.0516 0.0283 0.05

FM CONSULTANCY LIMIT	red PRIC	ORITY JUNCTION CALCUL	ATION			INITIALS	DATE
fic Impact Assessment for Proposed Temporary Open Stor	age of Construction Material and Equipment of 3 Years at Va	rious Lots in D.D.129, Lau Fau Shan		F	Prepared By:	FF	Jan-202
F - Deep Bay Rd / Unnamed Rd 3	2027 F	Reference - AM Peak	Proje	ect No.: 80108 0	Checked By:	MM	Jan-202
				F	Reviewed By:	FM	Jan-202
	(ARM C) Deep Bay Rd [5] [6] 35 84 ↓ ↓ ↑ 74 [1] ↓ 74 [1] ↓ 23 [2] ↑ 5 [4] [3]	(ARM B) Unnamed Rd 3	NOTES : (GEOMETRIC W = MAJ W cr = CEN W b-a = LAN W b-c = LAN W c-b = LAN W c-b = LAN V t b-a = VISII V r b-a = VISII V r b-c = VISII V r c-b = VISII D = STR E = STR F = STR Y = (1-0)	C INPUT DATA) OR ROAD WIDTH ITRAL RESERVE WIE E WIDTH AVAILABLE E WIDTH AVAILABLE BILITY TO THE LEFT BILITY TO THE RIGH BILITY TO THE RIGH BILITY TO THE RIGH EAM-SPECIFIC B-A EAM-SPECIFIC B-C EAM-SPECIFIC C-B 0345W)	DTH TO VEHICLE W TO VEHICLE W FOR VEHICLE W FOR VEHICLES T FOR VEHICLE T FOR VEHICLE T FOR VEHICLE	AITING IN STF AITING IN STF WAITING IN ST WAITING IN S S WAITING IN S WAITING IN S WAITING IN	REAM b-a REAM b-c REAM c-b STREAM b-a STREAM b-a STREAM b-c STREAM c-b
	Deep Bay Rd (ARM A)						
GEOMETRIC DETAILS:	GEOMETRIC FACTORS :	THE CAPACITY OF MOVI	/EMENT :		COMPARISION (OF DESIGN FL	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A)	GEOMETRIC FACTORS :	THE CAPACITY OF MOVI	/ement :	(COMPARISION (TO CAPACITY:	OF DESIGN FLO	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres)	GEOMETRIC FACTORS : D = 0.752	THE CAPACITY OF MOVI Q b-a =	/EMENT : 433 (pcu/hr)	(1 [COMPARISION (FO CAPACITY: DFC b-a	DF DESIGN FL	ow 0.0531
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826	THE CAPACITY OF MOVI Q b-a = Q b-c =	/EMENT : 433 (pcu/hr) 609 (pcu/hr)	(1 [COMPARISION (FO CAPACITY: DFC b-a DFC b-c	DF DESIGN FL = =	0.0531 0.1215
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 5$ (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791	Q b-a = Q b-c = Q c-b =	/EMENT : 433 (pcu/hr) 609 (pcu/hr) 582 (pcu/hr)	(1 [[[COMPARISION (FO CAPACITY: DFC b-a DFC b-c DFC c-b	DF DESIGN FL = = = =	0.0531 0.1215 0.1443
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 5$ (pcu/hr) $q a-c = 25$ (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834	C D-a = Q D-a = Q D-C = Q C-D = Q D-aC =	/EMENT : 433 (pcu/hr) 609 (pcu/hr) 582 (pcu/hr) 555 (pcu/hr)	(1 [[[[[[COMPARISION (FO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-b DFC c-ac	DF DESIGN FLO = = = = =	0.0531 0.1215 0.1443 0.1746
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 5$ (pcu/hr) $q a-c = 25$ (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	/EMENT : 433 (pcu/hr) 609 (pcu/hr) 582 (pcu/hr) 555 (pcu/hr) 1540 (pcu/hr)	(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COMPARISION (FO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac Share Lane)	DF DESIGN FLO = = = = =	0.0531 0.1215 0.1443 0.1746
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 5$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C)	$\begin{array}{c} \text{[F]} & \text{[F]} \\ \text{Deep Bay Rd} \\ \text{(ARM A)} \end{array}$ $\begin{array}{c} \text{GEOMETRIC FACTORS :} \\ D &= 0.752 \\ E &= 0.826 \\ F &= 0.791 \\ Y &= 0.834 \end{array}$ $F \text{ for (Qb-ac)} = 0.763 \end{array}$	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = D c-a = TOTAL FLOW =	/EMENT : 433 (pcu/hr) 609 (pcu/hr) 582 (pcu/hr) 555 (pcu/hr) 1540 (pcu/hr) 84 (pcu/hr)	(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COMPARISION (FO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0531 0.1215 0.1443 0.1746 0.0227
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 5$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres)	Leij Leij Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.763	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 433 (pcu/hr) 609 (pcu/hr) 582 (pcu/hr) 555 (pcu/hr) 1540 (pcu/hr) 84 (pcu/hr)	(COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0531 0.1215 0.1443 0.1746 0.0227
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 5$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $Vr c-b = 38$ (metres)	$\begin{array}{c c} [F] & [O] \\ Deep Bay Rd \\ (ARM A) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ $	Q b-a = Q b-c = Q c-b = Q b-ac = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 433 (pcu/hr) 609 (pcu/hr) 582 (pcu/hr) 555 (pcu/hr) 1540 (pcu/hr) 84 (pcu/hr)	(7 [[[[[[[[[[[[[[[[[[COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0531 0.1215 0.1443 0.1746 0.0227
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 5$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 35$ (pcu/hr) $q c-b = 2.1$ (metres)	$\begin{array}{c c} [F] & [G] \\ Deep Bay Rd \\ (ARM A) \\ GEOMETRIC FACTORS : D &= 0.752 \\ E &= 0.826 \\ F &= 0.791 \\ Y &= 0.834 \\ F for (Qb-ac) = 0.763 \\ $	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 433 (pcu/hr) 609 (pcu/hr) 582 (pcu/hr) 555 (pcu/hr) 1540 (pcu/hr) 84 (pcu/hr)	(7 [[[[[[[[[[[[[[[[[[COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0531 0.1215 0.1443 0.1746 0.0227
$\begin{array}{rcl} \textbf{GEOMETRIC DETAILS:} \\ \mbox{MAJOR ROAD (ARM A)} \\ W &= & 4.8 & (metres) \\ W cr &= & 0 & (metres) \\ q a-b &= & 5 & (pcu/hr) \\ q a-c &= & 25 & (pcu/hr) \\ \mbox{MAJOR ROAD (ARM C)} \\ \mbox{W c-b} &= & 2.1 & (metres) \\ Vr c-b &= & 38 & (metres) \\ q c-a &= & 35 & (pcu/hr) \\ q c-b &= & 84 & (pcu/hr) \\ \end{array}$	Leng Leng Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.763	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 433 (pcu/hr) 609 (pcu/hr) 582 (pcu/hr) 555 (pcu/hr) 1540 (pcu/hr) 84 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac Share Lane) DFC c-a	DF DESIGN FL(= = = = =	0.0531 0.1215 0.1443 0.1746 0.0227
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 5$ (pcu/hr) $q a-c = 25$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 35$ (pcu/hr) $q c-b = 84$ (pcu/hr)MINOR ROAD (ARM B)	Leij Leij Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.763	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 433 (pcu/hr) 609 (pcu/hr) 582 (pcu/hr) 555 (pcu/hr) 1540 (pcu/hr) 84 (pcu/hr)	(] [[[[[[[[[[[[[[[[[[COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = = =	0.0531 0.1215 0.1443 0.1746 0.0227 0.17
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 5$ (pcu/hr) $q a-c = 25$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 35$ (pcu/hr) $q c-b = 84$ (pcu/hr) $q c-b = 84$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres)	Lerg Lerg Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.763	Q b-a = Q b-c = Q c-b = Q b-ac = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 433 (pcu/hr) 609 (pcu/hr) 582 (pcu/hr) 555 (pcu/hr) 1540 (pcu/hr) 84 (pcu/hr)	(] [[[[[[[[[[[[[[[[[[COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0531 0.1215 0.1443 0.1746 0.0227 0.17
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 5$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 35$ (pcu/hr) $q c-b = 84$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-a = 2.5$ (metres) $W b-c = 2.5$ (metres)	Leng Leng Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.763	THE CAPACITY OF MOVI Q b-a = Q b-c = Q c-b = Q c-a = TOTAL FLOW =	/EMENT : 433 (pcu/hr) 609 (pcu/hr) 582 (pcu/hr) 555 (pcu/hr) 1540 (pcu/hr) 84 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a Share Lane) DFC c-a	DF DESIGN FL(= = = = = =	0.0531 0.1215 0.1443 0.1746 0.0227 0.17
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 5$ (pcu/hr) $q a-c = 25$ (pcu/hr) $q a-c = 25$ (pcu/hr)W c-b = 2.1 (metres) $Vr c-b = 38$ (metres) $Q c-a = 35$ (pcu/hr) $q c-a = 35$ (pcu/hr) $q c-b = 84$ (pcu/hr)MINOR ROAD (ARM B)W b-a = 2.5 (metres)W b-a = 2.5 (metres)VI b-a = 22 (metres)	Leng Leng Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.763	THE CAPACITY OF MOVI Q b-a = Q b-c = Q c-b = Q c-a = TOTAL FLOW =	/EMENT : 433 (pcu/hr) 609 (pcu/hr) 582 (pcu/hr) 555 (pcu/hr) 1540 (pcu/hr) 84 (pcu/hr)		COMPARISION (FO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = =	0.0531 0.1215 0.1443 0.1746 0.0227 0.17
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 5$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 35$ (pcu/hr) $q c-b = 84$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-a = 2.5$ (metres) $VI b-a = 22$ (metres) $VI b-a = 22$ (metres) $VI b-a = 24$ (metres)	Length	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 433 (pcu/hr) 609 (pcu/hr) 582 (pcu/hr) 555 (pcu/hr) 1540 (pcu/hr) 84 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac Share Lane) DFC c-a	DF DESIGN FL(= = = = =	0.0531 0.1215 0.1443 0.1746 0.0227 0.17
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 5$ (pcu/hr) $q a-c = 25$ (pcu/hr) MAJOR ROAD (ARM C) W c-b = 2.1 (metres) $Vr c-b = 38$ (metres) $q c-a = 35$ (pcu/hr) $q c-b = 84$ (pcu/hr) MINOR ROAD (ARM B) W b-a = 2.5 (metres) W b-a = 22 (metres) VI b-a = 22 (metres) VI b-a = 24 (metres) Vr b-a = 24 (metres) Vr b-c = 38 (metres)	Leng Leng Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.763	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 433 (pcu/hr) 609 (pcu/hr) 582 (pcu/hr) 555 (pcu/hr) 1540 (pcu/hr) 84 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac Share Lane) DFC c-a	DF DESIGN FL(= = = = =	0.0531 0.1215 0.1443 0.1746 0.0227 0.17
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W W = 4.8 (metres) W cr = 0 (metres) q a-b = 5 (pcu/hr) q a-c = 25 (pcu/hr) MAJOR ROAD (ARM C) W W c-b = 2.1 (metres) Vr c-b = 38 (metres) q c-a = 35 (pcu/hr) q c-b = 84 (pcu/hr) MINOR ROAD (ARM B) W W b-a = 2.5 (metres) VI b-a = 2.5 (metres) VI b-a = 2.4 (metres) Vr b-a = 24 (metres) Vr b-c = 38 (metres) q b-a = 23 (pcu/hr)	Leij Leij Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.763	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 433 (pcu/hr) 609 (pcu/hr) 582 (pcu/hr) 555 (pcu/hr) 1540 (pcu/hr) 84 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac Share Lane) DFC c-a	DF DESIGN FLO = = = = =	0.0531 0.1215 0.1443 0.1746 0.0227 0.17

Traffic Impact Assessment for Proposed Temporary Open Storage of Construction Material and Equipment of 3 Years at V Jn D - Deep Bay Rd / Unnamed Rd 2 2027	ious Lote in D.D. 120. Lou Sou Shan				<i></i>
Jn D - Deep Bay Rd / Unnamed Rd 2 2027	IOUS LOIS III D.D. 129, Lau Fau Olidii	Prepared By:	r: FF	Jar	n-2025
	eference - PM Peak Project No.: 80	108 Checked By:	: MM	Jar	n-2025
		Reviewed By	v [.] FM	Jar	n-2025
		rteriened by	y. 1.W	Uai	12020
$(ARM A)$ $Deep Bay Rd$ $[10] [11] [12]$ $0 62 0$ \downarrow $[8] 0 - \downarrow$ $[8] 0 - \downarrow$ $[8] 0 - \downarrow$ $[7] 0 - \downarrow$ $(ARM D)$ \downarrow $[6] [5] [4]$ $Deep Bay Rd'(ARM C)$	NOTES : (GEOMETRIC INPUT DATA W = MAJOR ROAD WI W cr = CENTRAL RESER W b-a = LANE WIDTH AVA W b-c = LANE WIDTH AVA W b-c = LANE WIDTH AVA W c-b = LANE WIDTH AVA W c-b = LANE WIDTH AVA W c-b = VISIBILITY TO THI Vr b-a = VISIBILITY TO THI Vr b-c = VISIBILITY TO THI Vr c-b = VISIBILITY TO THI D = STREAM-SPECIFI E = STREAM-SPECIFI F = STREAM-SPECIFI Y = (1-0.0345W)) DTH VE WIDTH ILABLE TO VEHICI ILABLE TO VEHICI ILABLE TO VEHICI E LEFT FOR VEHIC E RIGHT FOR VEHI E RIGHT FOR VEHI E RIGHT FOR VEHI C B-A C B-C C C-B	LE WAITING IN STR LE WAITING IN STR LE WAITING IN STR CLES WAITING IN S ICLES WAITING IN S ICLES WAITING IN S	EAM b-a EAM c-c EAM c-b IREAM b-a STREAM b- STREAM b- STREAM c-	-a -c -b
GEOMETRIC DETAILS:	GEOMETRIC FACTORS :	CC	OMPARISION OF DE	SIGN FLO	w
GENERAL W = 3.90 (metres) W cr = 0 (metres) Y = 0.865 MAJOR ROAD (ARM A) MAJOF MAJOR ROAD (ARM C)	X b = 0.818 X a = X c = 0.799 X d = Z b = 0.928 Z d = M b = 0.860 M d =	0.845 1.066 1.188 1.097	DFC b-a DFC b-c DFC c-b DFC c-b DFC lb-d	= = =	0.0041 0.0163 0.0207 0.0000
w a-d = 2.0 (metres) w c-b = 2.0 (metres)	PROPORTION OF MINOR STRAIGHT AHEAD TRAFFIC :		DFCr b-d	=	0.0000
Vr a-d =120 (metres)Vr c-b =60 (metres) $q a-b =$ 0 (pcu/hr) $q c-a =$ 30 (pcu/hr) $q a-c =$ 62 (pcu/hr) $q c-b =$ 12 (pcu/hr) $q a-d =$ 0 (pcu/hr) $q c-d =$ 3 (pcu/hr)	r b-a = 0.00314 r d-c = ql b-d = 0 (pcu/hr) ql d-b = qr b-d = 0 (pcu/hr) qr d-b =	0.000 0 (pcu/hr) 0 (pcu/hr)	DFC d-c DFC d-a DFC a-d DFCI d-b DFCr d-b	= = = =	0.0000 0.0000 0.0000 0.0000 0.0000
MINOR ROAD (ARM B) MINOR ROAD (ARM D)	CAPACITY OF MOVEMENT :				
w b-a = 3.3 (metres) W d-c = 6.0 (metres) W b-c = 3.3 (metres) W d-a = 6.0 (metres) V b-a = 28 (metres) V l d-c = 22 (metres) Vr b-a = 28 (metres) Vr d-c = 60 (metres) Vr b-a = 28 (metres) Vr d-c = 60 (metres) vr b-c = 80 (metres) Vr d-a = 90 (metres) q b-a = 2 (pcu/hr) q d-a = 0 (pcu/hr) q b-c = 11 (pcu/hr) q d-a = 0 (pcu/hr)		637 (pcu/hr) 873 (pcu/hr) 616 (pcu/hr) 659 (pcu/hr) 641 (pcu/hr)	CRITICAL DFC	=	0.02
q b-d = U (pcu/hr) $q d-b = U (pcu/hr)$	IOTAL FLOW = 120 (PCU/HR)				

F M CONSULTANCY L	IMITED	PRIORITY	JUNCTION CALCULA	TION			INITIALS	DAT
c Impact Assessment for Proposed Temporary O	pen Storage of Construction Material and Equ	ipment of 3 Years at Various Lots in	D.D.129, Lau Fau Shan			Prepared By:	FF	Jan-20
- Unnamed Rd 1 / Unnamed Rd 2		2027 Reference	- PM Peak		Project No.: 80108	Checked By:	MM	Jan-20
						Reviewed By:	FM	Jan-20
Unnamed Rd 2 [4] 36 _ [3] 0 _ (ARM A)	46 4 [2] [1] (ARM B)	← 51 [5] ↓ 23 [6]	Unnamed Rd 2 (ARM C)	NOTES : (GEC W = W cr = W b-a = W b-c = W c-b = VI b-a = Vr b-a = Vr b-a = Vr c-b = D = E = F = Y =	DMETRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE V LANE WIDTH AVAILAB LANE WIDTH AVAILAB LANE WIDTH AVAILAB VISIBILITY TO THE LEF VISIBILITY TO THE RIC VISIBILITY TO THE RIC VISIBILITY TO THE RIC STREAM-SPECIFIC B-/ STREAM-SPECIFIC B-/ STREAM-SPECIFIC C-I (1-0 0345W)	VIDTH BLE TO VEHICLE W BLE TO VEHICLE W BLE TO VEHICLE W FT FOR VEHICLES BHT FOR VEHICLE BHT FOR VEHICLE BHT FOR VEHICLE A C B	AITING IN STE AITING IN STE AITING IN STE WAITING IN S S WAITING IN S WAITING IN S WAITING IN	REAM b-a REAM b-c REAM c-b STREAM b-a STREAM b-a STREAM b-c STREAM c-b
	of manieu ru				(101001011)			
GEOMETRIC DETAILS:	GEOMETRIC F	ACTORS :	THE CAPACITY OF MOVEN	MENT :	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	COMPARISION C TO CAPACITY:	OF DESIGN FL	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A)	GEOMETRIC F	ACTORS :	THE CAPACITY OF MOVEN	MENT :	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	COMPARISION (TO CAPACITY:	DF DESIGN FL	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 (metre	GEOMETRIC F	ACTORS :	Q b-a =	MENT : 449 (pcu/hr)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	COMPARISION (TO CAPACITY: DFC b-a	DF DESIGN FL	0.1024
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 (metre W cr = 0 (metre a a b = 0 (recul	GEOMETRIC F s) D = s) E = c) E =	ACTORS : 0.752 0.813 0.813	Q b-a = Q b-c = O c b =	MENT : 449 (pcu/hr) 597 (pcu/hr) 597 (ccu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b	DF DESIGN FLO	0.1024 0.0067 0.0385
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 5.2$ (metre $W cr = 0$ (metre $q a-b = 0$ (pcu/r $q a-c = 36$ (pcu/r	GEOMETRIC F s) D = s) E = r) F = r) Y =	CACTORS : 0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = D b-ac =	MENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b-ac	DF DESIGN FLO = = = =	0.1024 0.0067 0.0385 0.1092
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 (metre W cr = 0 (metre q a-b = 0 (pcu/r q a-c = 36 (pcu/r	S) D = s) E = r) F = r) Y =	CACTORS : 0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q b-c = Q b-ac = Q b-ac =	MENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	DF DESIGN FLO = = = = =	0.1024 0.0067 0.0385 0.1092
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 5.2$ (metre $W cr = 0$ (metre $q a-b = 0$ (pcu/r $q a-c = 36$ (pcu/rMA IOR ROAD (ARM C)	S) D = s) E = r) F = r) F = r) F =	CACTORS : 0.752 0.813 0.813 0.821	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = D c-a = D c-a = D c-a = D c-a =	MENT: 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr) 74 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = =	0.1024 0.0067 0.0385 0.1092
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 (metre W cr = 0 (metre q a-b = 0 (pcu/r q a-c = 36 (pcu/r MAJOR ROAD (ARM C) W c-b = 2.5 (metre	s) D = s) E = r) F = r) F = r) F = s) F =	CACTORS : 0.752 0.813 0.813 0.821 0.08	Q b-a = Q b-a = Q b-c = Q c-b = Q c-a = Q c-a = TOTAL FLOW =	MENT: 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr) 74 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.1024 0.0067 0.0385 0.1092 0.0295
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 5.2$ (metre $W cr = 0$ (metre $q a-b = 0$ (pcu/r $q a-c = 36$ (pcu/rMAJOR ROAD (ARM C) $W c-b = 2.5$ (metre $V c-b = 22$ (metre	s) D = s) E = r) F = r) F = r) F = s) F for (Qb-ac) = s)	FACTORS : 0.752 0.813 0.813 0.821 0.08	Q b-a = Q b-c = Q c-b = Q c-a = Q c-a = TOTAL FLOW =	MENT: 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr) 74 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.1024 0.0067 0.0385 0.1092 0.0295
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 5.2$ (metre $W cr = 0$ (metre $q a-b = 0$ (pcu/r $q a-c = 36$ (pcu/rMAJOR ROAD (ARM C) $W c-b = 2.5$ (metre $Vr c-b = 22$ (metre $Q ca = 51$ (pcu/r	S) D = s) E = r) F = r) F = s) F = s) F for (Qb-ac) = s) s) r) Hord Total T	FACTORS : 0.752 0.813 0.813 0.821 0.08	Q b-a = Q b-c = Q c-b = Q c-a = Q c-a = TOTAL FLOW =	MENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr) 74 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.1024 0.0067 0.0385 0.1092 0.0295
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 5.2$ (metre $W cr = 0$ (metre $q a-b = 0$ (pcu/r $q a-c = 36$ (pcu/rMAJOR ROAD (ARM C) $W c-b = 2.5$ (metre $Vr c-b = 22$ (metre $q c-a = 51$ (pcu/r $q c-b = 23$ (pcu/r	S) D = s) E = r) F = r) F = r) F = s) F = r) F = s) s; = s) r) r	FACTORS : 0.752 0.813 0.813 0.821 0.08	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr) 74 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL = = = = =	0.1024 0.0067 0.0385 0.1092 0.0295
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 5.2$ (metre $W cr = 0$ (metre $q a-b = 0$ (pcu/r $q a-c = 36$ (pcu/rMAJOR ROAD (ARM C) $W c-b = 2.5$ (metre $Vr c-b = 22$ (metre $q c-a = 51$ (pcu/r $q c-b = 23$ (pcu/rMINOR ROAD (ARM B)	GEOMETRIC F s) D s) E r) F r) Y F for (Qb-ac) = s) r)	FACTORS : 0.752 0.813 0.813 0.821 0.08	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr) 74 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = = =	0.1024 0.0067 0.0385 0.1092 0.0295 0.11
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 5.2$ (metre $W cr = 0$ (metre $q a-b = 0$ (pcu/r $q a-c = 36$ (pcu/rMAJOR ROAD (ARM C) $W c-b = 2.5$ (metre $Vr c-b = 22$ (metre $q c-a = 51$ (pcu/r $q c-b = 23$ (pcu/r $q c-b = 23$ (pcu/rMINOR ROAD (ARM B) $W b-a = 2.5$ (metre	s) D = s) E = r) F = r) F = r) F = s) F for (Qb-ac) = = s) r) r) =	FACTORS : 0.752 0.813 0.813 0.821 0.08	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr) 74 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = = =	0.1024 0.0067 0.0385 0.1092 0.0295 0.11
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 5.2$ (metre $W cr = 0$ (metre $q a-b = 0$ (pcu/r $q a-c = 36$ (pcu/rMAJOR ROAD (ARM C) $W c-b = 2.5$ (metre $Vr c-b = 22$ (metre $q c-a = 51$ (pcu/r $q c-b = 23$ (pcu/r $q c-b = 23$ (pcu/rMINOR ROAD (ARM B) $W b-a = 2.5$ (metre $W b-c = 2.5$ (metre	S) D = s) E = r) F = r) F = r) F = s) s) = s) s) = s) s) = s) s) =	CACTORS : 0.752 0.813 0.813 0.821 0.08	Q b-a = Q b-c = Q c-b = Q c-a = Q c-a = TOTAL FLOW =	MENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr) 74 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = = =	0.1024 0.0067 0.0385 0.1092 0.0295 0.11
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 5.2$ (metree $W cr = 0$ (metree $q a-b = 0$ (pcu/r $q a-c = 36$ (pcu/rMAJOR ROAD (ARM C) $W c-b = 2.5$ (metree $Vr c-b = 22$ (metree $q c-a = 51$ (pcu/r $q c-b = 23$ (pcu/r $q c-b = 23$ (pcu/rMINOR ROAD (ARM B) $W b-a = 2.5$ (metree $W b-c = 2.5$ (metree $W b-a = 2.5$ (metree	s) D = s) E = r) F = r) F = r) F = s) s = s) s) = s) s) = s) s) = s) s) =	CACTORS : 0.752 0.813 0.813 0.821 0.08	Q b-a = Q b-c = Q c-b = Q c-a = Q c-a = TOTAL FLOW =	MENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr) 74 (pcu/hr)	((COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = =	0.1024 0.0067 0.0385 0.1092 0.0295 0.11
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 5.2$ (metre $W cr = 0$ (metre $q a-b = 0$ (pcu/r $q a-c = 36$ (pcu/rMAJOR ROAD (ARM C) $W c-b = 2.5$ (metre $Vr c-b = 22$ (metre $Vr c-b = 23$ (pcu/r $q c-a = 51$ (pcu/r $q c-b = 23$ (pcu/rMINOR ROAD (ARM B) $W b-a = 2.5$ (metre $W b-a = 2.5$ (metre $VI b-a = 22$ (metre $VI b-a = 22$ (metre $VI b-a = 22$ (metre $VI b-a = 24$ (metre $VI b-a = 24$ (metre	GEOMETRIC F s) D = s) E = r) F = r) Y = S) s) s) s) s) s) s) s) s) s) s) s) s) s) s) s)	CACTORS : 0.752 0.813 0.813 0.821 0.08	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr) 74 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = =	0.1024 0.0067 0.0385 0.1092 0.0295 0.11
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 5.2$ (metre $W cr = 0$ (metre $q a-b = 0$ (pcu/r $q a-c = 36$ (pcu/rMAJOR ROAD (ARM C) $W c-b = 2.5$ (metre $Vr c-b = 22$ (metre $Q c-a = 51$ (pcu/r $q c-b = 23$ (pcu/rMINOR ROAD (ARM B) $W b-a = 2.5$ (metre $W b-a = 2.5$ (metre $VI b-a = 2.5$ (metre $VI b-a = 2.2$ (metre $VI b-a = 2.2$ (metre $VI b-a = 2.4$ (metre $VI b-a = 2.4$ (metre $VI b-c = 2.2$ (metre	GEOMETRIC F s) D = s) E = r) F = r) Y = s) s) s) s) s) s) s) s) s) s) s) s) s) s) s) s)	FACTORS : 0.752 0.813 0.813 0.821 0.08	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr) 74 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = =	0.1024 0.0067 0.0385 0.1092 0.0295 0.11
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 5.2$ (metre $W cr = 0$ (metre $q a-b = 0$ (pcu/r $q a-c = 36$ (pcu/rMAJOR ROAD (ARM C) $W c-b = 2.5$ (metre $Vr c-b = 22$ (metre $q c-a = 51$ (pcu/r $q c-b = 23$ (pcu/rMINOR ROAD (ARM B) $W b-a = 2.5$ (metre $W b-c = 2.5$ (metre $VI b-a = 22$ (metre $VI b-a = 22$ (metre $VI b-a = 24$ (metre $VI b-a = 24$ (metre $VI b-c = 22$ (metre $VI b-a = 46$ (pcu/r	GEOMETRIC F s) D = s) E = r) F = r) Y = F for (Qb-ac) = s) s) s) s) s) s) s) s) s) s)	FACTORS : 0.752 0.813 0.813 0.821 0.08	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 449 (pcu/hr) 597 (pcu/hr) 597 (pcu/hr) 458 (pcu/hr) 1731 (pcu/hr) 74 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = =	0.1024 0.0067 0.0385 0.1092 0.0295 0.11

FM CONSULTANCY LIMIT	red Pri	ORITY JUNCTION CALCUL	ATION			INITIALS	DATE
ffic Impact Assessment for Proposed Temporary Open Stora	age of Construction Material and Equipment of 3 Years at Va	arious Lots in D.D.129, Lau Fau Shan			Prepared By:	FF	Jan-2025
F - Deep Bay Rd / Unnamed Rd 3	2027	Reference - PM Peak	Proj	ject No.: 80108	Checked By:	MM	Jan-2025
					Reviewed By:	FM	Jan-2025
	(ARM C) Deep Bay Rd [5] [6] 30 52 ↓ ↓ ↓ 14 [2] 14 9 [4] [3]	(ARM B) Unnamed Rd 3	NOTES: (GEOMETRI W = MA. W cr = CEN W b-a = LAN W b-c = LAN W c-b = LAN V c-b = LAN V c-b = VIS Vr b-a = VIS Vr b-a = VIS Vr b-c = VIS D = STF E = STF F = STF Y = (1-0)	C INPUT DATA) JOR ROAD WIDTH NTRAL RESERVE WI NE WIDTH AVAILABL NE WIDTH AVAILABL NE WIDTH AVAILABL IBILITY TO THE LEFT IBILITY TO THE RIGH IBILITY TO THE RIGH REAM-SPECIFIC B-A REAM-SPECIFIC B-C REAM-SPECIFIC C-B 0.0345W)	IDTH E TO VEHICLE W E TO VEHICLE W T FOR VEHICLES HT FOR VEHICLE HT FOR VEHICLE HT FOR VEHICLE	AITING IN STF AITING IN STF AITING IN STF WAITING IN S S WAITING IN S WAITING IN S WAITING IN	REAM b-a REAM b-c REAM c-b TREAM b-a STREAM b-a STREAM b-c STREAM c-b
	Deep Bay Rd (ARM A)						
GEOMETRIC DETAILS:	Deep Bay Rd (ARM A) GEOMETRIC FACTORS :	THE CAPACITY OF MOV	/ement :		COMPARISION O	OF DESIGN FLO	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS :	THE CAPACITY OF MOV	/EMENT :		COMPARISION O TO CAPACITY:	OF DESIGN FL	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752	THE CAPACITY OF MOV Q b-a =	/EMENT : 446 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a	DF DESIGN FLO	DW 0.0314
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826	C b-a = Q b-a = Q b-c =	/EMENT : 446 (pcu/hr) 611 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c	DF DESIGN FLO = =	0.0314 0.1309
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres) q a-b = 9 (pcu/hr) q a-b = 9 (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.924	Q b-a = Q b-c = Q c-b = Q c-b =	/EMENT : 446 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b	DF DESIGN FLO = = =	0.0314 0.1309 0.0890
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 9$ (pcu/hr) $q a-c = 14$ (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834	Q b-a = Q b-c = Q c-b = Q b-ac =	/EMENT : 446 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 579 (pcu/hr) 16(4 (cpu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lang)	DF DESIGN FLO = = = = =	0.0314 0.1309 0.0890 0.1623
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 9$ (pcu/hr) $q a-c = 14$ (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	/EMENT : 446 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 579 (pcu/hr) 1640 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	DF DESIGN FLO = = = = = =	0.0314 0.1309 0.0890 0.1623
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres) q a-b = 9 (pcu/hr) q a-c = 14 (pcu/hr) MAJOR ROAD (ARM C)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.851	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 446 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 579 (pcu/hr) 1640 (pcu/hr) 52 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a (Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0314 0.1309 0.0890 0.1623 0.0183
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres) q a-b = 9 (pcu/hr) q a-c = 14 (pcu/hr) MAJOR ROAD (ARM C) W c-b = 2.1 (metres) V(a-b = 2.2 (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.851	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 446 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 579 (pcu/hr) 1640 (pcu/hr) 52 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0314 0.1309 0.0890 0.1623 0.0183
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 9$ (pcu/hr) $q a-c = 14$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 30$ (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.851	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 446 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 579 (pcu/hr) 1640 (pcu/hr) 52 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0314 0.1309 0.0890 0.1623 0.0183
$\begin{array}{rcl} \textbf{GEOMETRIC DETAILS:} \\ \mbox{MAJOR ROAD (ARM A)} \\ W &= & 4.8 & (metres) \\ W cr &= & 0 & (metres) \\ q a-b &= & 9 & (pcu/hr) \\ q a-c &= & 14 & (pcu/hr) \\ \mbox{MAJOR ROAD (ARM C)} \\ \mbox{W c-b} &= & 2.1 & (metres) \\ Vr c-b &= & 38 & (metres) \\ q c-a &= & 30 & (pcu/hr) \\ q c-b &= & 52 & (pcu/hr) \\ \end{array}$	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.851	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	YEMENT : 446 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 579 (pcu/hr) 1640 (pcu/hr) 52 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL(= = = = =	0.0314 0.1309 0.0890 0.1623 0.0183
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 9$ (pcu/hr) $q a-c = 14$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 30$ (pcu/hr) $q c-b = 52$ (pcu/hr)MINOR ROAD (ARM B)	Deep Bay Rd (ARM A)	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	YEMENT : 446 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 579 (pcu/hr) 1640 (pcu/hr) 52 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = =	0.0314 0.1309 0.0890 0.1623 0.0183 0.0183
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 9$ (pcu/hr) $q a-c = 14$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 30$ (pcu/hr) $q c-b = 52$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres)	Deep Bay Rd (ARM A)	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	YEMENT : 446 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 579 (pcu/hr) 1640 (pcu/hr) 52 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = =	0.0314 0.1309 0.0890 0.1623 0.0183 0.0183
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 9$ (pcu/hr) $q a-c = 14$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 30$ (pcu/hr) $q c-b = 52$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-c = 2.5$ (metres)	Deep Bay Rd (ARM A)	THE CAPACITY OF MOV Q b-a = Q b-c = Q c-b = Q c-a = Q c-a = TOTAL FLOW =	/EMENT : 446 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 579 (pcu/hr) 1640 (pcu/hr) 52 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = =	0.0314 0.1309 0.0890 0.1623 0.0183 0.0183
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 9$ (pcu/hr) $q a-c = 14$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 30$ (pcu/hr) $q c-b = 52$ (pcu/hr) $q c-b = 52$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-a = 2.5$ (metres) $V b-a = 22$ (metres)	Deep Bay Rd (ARM A)	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 446 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 579 (pcu/hr) 1640 (pcu/hr) 52 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FLO = = = = =	0.0314 0.1309 0.0890 0.1623 0.0183 0.0183
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 9$ (pcu/hr) $q a-c = 14$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 30$ (pcu/hr) $q c-b = 52$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-a = 2.5$ (metres) $VI b-a = 22$ (metres) $VI b-a = 24$ (metres)	Deep Bay Rd (ARM A)	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 446 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 579 (pcu/hr) 1640 (pcu/hr) 52 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL4 = = = = =	0.0314 0.1309 0.0890 0.1623 0.0183 0.0183
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 9$ (pcu/hr) $q a-c = 14$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 30$ (pcu/hr) $q c-b = 52$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-a = 2.5$ (metres) $VI b-a = 22$ (metres) $VI b-a = 22$ (metres) $VI b-a = 24$ (metres) $Vr b-a = 24$ (metres) $Vr b-c = 38$ (metres)	Deep Bay Rd (ARM A)	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 446 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 579 (pcu/hr) 1640 (pcu/hr) 52 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL4 = = = = =	0.0314 0.1309 0.0890 0.1623 0.0183 0.0183
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres) q a-b = 9 (pcu/hr) q a-c = 14 (pcu/hr) MAJOR ROAD (ARM C) W W c-b = 2.1 (metres) Vr c-b = 38 (metres) q c-a = 30 (pcu/hr) q c-b = 52 (pcu/hr) MINOR ROAD (ARM B) W b-a = 2.5 (metres) W b-a = 2.5 (metres) VI b-a = 22 (metres) VI b-a = 24 (metres) Vr b-c = 38 (metres) Q b-a = 14 (pcu/hr)	Deep Bay Rd (ARM A)	THE CAPACITY OF MOV Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	/EMENT : 446 (pcu/hr) 611 (pcu/hr) 584 (pcu/hr) 579 (pcu/hr) 1640 (pcu/hr) 52 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FLO = = = = =	0.0314 0.1309 0.0890 0.1623 0.0183 0.0183

	JLTANCY LIM	IITED	PRIC	ORITY JUN	CTION CA	ALCULAT	ION					INITIALS		DATE
affic Impact Assessment for	r Proposed Temporary Open S	Storage of Construction Materia	al and Equipment of 3 Years at Var	ious Lots in D.D.129, La	u Fau Shan					Ρ	Prepared I	By: FF		Jan-2025
n D - Deep Bay Rd /	Unnamed Rd 2		2027 D	esign - AM Peak					Project N	o.: 80108 C	Checked E	By: MM		Jan-2025
										R	Reviewed	By: FM		Jan-2025
Unnamed Rd 2 (ARM D)	$\begin{bmatrix} 9 \\ 2 \\ 8 \\ 2 \\ 7 \end{bmatrix} \begin{bmatrix} 7 \\ 5 \\ - \end{bmatrix}$	(ARM A) Deep Bay Ro [10] [11] 2 50 ↓ ↓	d [12] 20 	[1] [2] [3]	Unnamed Rd 2 (ARM B)			OTES : (GEOME W = W cr = W b-a = W b-c = W c-b = VI b-a = Vr b-a = Vr b-c = Vr c-b = D = E = F =	TRIC INF MAJOR F CENTRA LANE WI LANE WI VISIBILIT VISIBILIT VISIBILIT VISIBILIT STREAM STREAM	PUT DATA) ROAD WIDTH IL RESERVE WID IDTH AVAILABLE IDTH AVAILABLE IDTH AVAILABLE IT TO THE RIGHT IT TO THE RIGHT I-SPECIFIC B-A I-SPECIFIC B-C I-SPECIFIC C-B	DTH TO VEH TO VEH TO VEH FOR VEH T FOR VE T FOR VE T FOR VE T FOR VE	ICLE WAITING IN STI ICLE WAITING IN STI ICLE WAITING IN STI HICLES WAITING IN S HICLES WAITING IN HICLES WAITING IN HICLES WAITING IN	REAM b-a REAM b-c REAM c-t TREAM STREAM STREAM STREAM	a 5 5 5-a 1 b-a 1 b-c 1 c-b
		2 40 10 [6] [5] [4] Deep Bay Rd'(/	ARM C)					Y =	(1-0.0345	5W)				
GEOMETRIC	DETAILS:	2 40 10 [6] [5] [4] Deep Bay Rd'(/	ARM C)	GEOMET	RIC FACTORS :			Y =	(1-0.0345	5W)			ESIGN FL	_ow
GEOMETRIC	DETAILS:	2 40 10 [6] [5] [4] Deep Bay Rd'(/	ARM C)	GEOMETI	RIC FACTORS :	0.818		Y =		0.845		COMPARISION OF D	ESIGN FI	-ow
GEOMETRIC GENERAL W =	DETAILS:	2 40 10 [6] [5] [4] Deep Bay Rd'(/	ARM C)	GEOMETI X b X c	RIC FACTORS :	0.818		Y = Xa Xd	=	0.845 1.066		COMPARISION OF DI	ESIGN FI	- OW
GEOMETRIC GENERAL W = W cr =	DETAILS: 3.90 (metres) 0 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(<i>i</i>	ARM C)	GEOMETI Xb Xc Zb	RIC FACTORS : = = =	0.818 0.799 0.928		Y = Xa Xd Zd	= = =	0.845 1.066 1.188		COMPARISION OF DI TO CAPACITY: DFC b-a DFC b-a	ESIGN FI = =	- OW
GEOMETRIC GENERAL W = W cr =	DETAILS: 3.90 (metres) 0 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(/	ARM C) 0.865	GEOMETI X b X c Z b M b	RIC FACTORS : = = = =	0.818 0.799 0.928 0.860		Y = Xa Xd Zd Md	= = = = =	0.845 1.066 1.188 1.097		COMPARISION OF DI I U CAPACITY: DFC b-a DFC b-c DFC c-b	ESIGN FI = = =	- OW 0.022(0.016: 0.017;
GEOMETRIC GENERAL W = W cr = MAJOR ROA	DETAILS: 3.90 (metres) 0 (metres) D (ARM A)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF	ARM C) 0.865 R ROAD (ARM C)	GEOMETI X b X c Z b M b	RIC FACTORS : = = = = =	0.818 0.799 0.928 0.860		Y = Xa Xd Zd Md	= = = = =	0.845 1.066 1.188 1.097		COMPARISION OF D I U CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-d	ESIGN FI = = = =	0.022 0.016 0.017 0.004
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-D =	0.865 R ROAD (ARM C) 2.0 (metres)	GEOMETI X b X c Z b M b	RIC FACTORS : = = = = = 1100 OF MINOR	0.818 0.799 0.928 0.860	EAD IK	Y = Xa Xd Zd Md	= = = =	0.845 1.066 1.188 1.097		COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-d DFC b-d DFC b-d	ESIGN FI = = = = = =	0.022 0.016 0.017 0.004 0.004
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(<i>i</i> Y = MAJOF MAJOF W C-D = Vr c-b =	ARM C) 0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres)	GEOMETI X b X c Z b M b PROPOR	RIC FACTORS : = = = = =	0.818 0.799 0.928 0.860	EAU I KA	Y = Xa Xd Zd Md	= = = =	0.845 1.066 1.188 1.097		COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-d DFC d-c DFC d-c	ESIGN FI = = = = = =	0.022 0.016 0.017 0.004 0.007
GEOMETRIC W = W cr = MAJOR ROA W a-d = Vr a-d = g a-b =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 20 (pcu/hr)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = y c-b = g c-a =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr)	GEOMETI Xb Xc Zb Mb PROPOR rb-a	RIC FACTORS : = = = = HION OF MINOR =	0.818 0.799 0.928 0.860 3 S I KAIGH I AHI 0.017378	EAD IR/	Y = Xa Xd Zd Md AFFIC: rd-c	= = = = =	0.845 1.066 1.188 1.097 0.008		COMPARISION OF DI IU CAPACITY: DFC b-a DFC b-C DFC c-b DFC lb-d DFC d-a DFC d-a	ESIGN FI = = = = = = =	0.022 0.016 0.017 0.004 0.007 0.002
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-c =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 20 (pcu/hr) 50 (pcu/hr)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = Q c-b = g c-b =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr)	GEOMETI X b X c Z b M b PROPOR r b-a ol b-d	RIC FACTORS : = = = = = HIUN OF MINUR = =	0.818 0.799 0.928 0.860 2 STRAIGHT AHD 0.017378 2.034755 (m	EAD I KA	Y = Xa Xd Zd Md AFFIC: rd-c old-b	= = = = = =	0.845 1.066 1.188 1.097 0.008 1.0078989 fr	pcu/hr)	DFC b-a DFC b-c DFC b-c DFC b-c DFC b-d DFC b-d DFC b-d DFC d-c DFC d-c DFC d-a DFC a-d	======================================	0.022 0.016 0.017 0.004 0.007 0.002 0.003
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-c = q a-d =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 20 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-b = q c-b = q c-b = q c-b =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr)	GEOMETI X b X c Z b M b PROPOR r b-a ql b-d qr b-d	RIC FACTORS : = = = = = = = HION OF MINOR = = =	0.818 0.799 0.928 0.860 2.51KAIGH1 AHI 0.017378 2.034755 (pr 1.965245 (pr	EAD IKA	Y = Xa Xd Zd Md AFFIC: rd-c qld-b qrd-b	= = = = = = =	0.845 1.066 1.188 1.097 0.008 1.0078989 (f 0.9921011 (f	pcu/hr)	DFC b-a DFC b-c DFC b-c DFC b-c DFC b-d DFC b-d DFC b-d DFC b-d DFC d-c DFC d-c DFC d-a DFC d-d DFC d-c	ESIGN FI = = = = = = = = = = = =	0.022 0.016 0.017 0.004 0.007 0.002 0.003 0.001
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-c = q a-d =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 20 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-b = q c-b = q c-d =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr)	GEOMETI X b X c Z b M b PROPOR r b-a ql b-d qr b-d	RIC FACTORS : = = = = = = HION OF MINOR = = =	0.818 0.799 0.928 0.860 3 51 KAIGH I AHI 0.017378 2.034755 (pr 1.965245 (pr	EAD IKA	Y = Xa Xd Zd Md AFFIC: rd-c qld-b qrd-b	= = = = = = =	0.845 1.066 1.188 1.097 0.008 1.0078989 (p 0.9921011 (p	pcu/hr) pcu/hr)	COMPARISION OF D I U CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-d UF-Cr b-d DFC d-a DFC d-a DFC d-a DFC d-b DFC d-b	ESIGN FI = = = = = = = = = = =	0.022 0.016 0.017 0.004 0.007 0.002 0.003 0.001 0.001
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-b = q a-c = q a-d = MINOR ROAL	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 20 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-a = q c-b = q c-d = MINOR ROAD	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) (ARM D)	GEOMETI X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACIT	RIC FACTORS : = = = = = = HION OF MINOR = = = = Y OF MOVEMEN	0.818 0.799 0.928 0.860 3 51 KAIGH I AHI 0.017378 2.034755 (pr 1.965245 (pr II.965245 (pr	EAD IKA	Y = Xa Xd Zd Md AFFIC: rd-c qld-b qrd-b	= = = = = = =	0.845 1.066 1.188 1.097 0.008 1.0078989 (p 0.9921011 (p	pcu/hr) pcu/hr)	COMPARISION OF D IO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-d DFC b-d DFC d-c DFC d-a DFC d-a DFC d-a DFC d-b	ESIGN FI = = = = = = = = = =	0.022 0.016 0.017 0.004 0.007 0.002 0.003 0.001
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-c = q a-d = MINOR ROAL W b-a =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 20 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) 0 (ARM B) 3.3 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(r Y = MAJOF MAJOF W c-b = Vr c-b = q c-a = q c-b = q c-b = q c-d = MINOR ROAD W d-c =	0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) (ARM D) 6.0 (metres)	GEOMETI X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACIT	RIC FACTORS : = = = HION OF MINOR = = = = Y OF MOVEMEN	0.818 0.799 0.928 0.860 3 S I KAIGH I AHI 0.017378 2.034755 (pr 1.965245 (pr I.965245 (pr	EAD IRA	Y = Xa Xd Zd Md AFFIC: rd-c qld-b qrd-b	= = = = = = =	0.845 1.066 1.188 1.097 0.008 1.0078989 (p 0.9921011 (p	pcu/hr) pcu/hr)	COMPARISION OF DI I U CAPACITY: DFC b-a DFC b-C DFC c-b DFC b-d DFC d-a DFC d-a DFC a-d DFC d-b DFC d-b	= = = = = = = = = = = = = = = = = = =	0.022 0.016 0.011 0.004 0.002 0.002 0.002 0.002 0.002
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-c = q a-d = MINOR ROAL W b-a = W b-c =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 20 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) 0 (ARM B) 3.3 (metres) 3.3 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(<i>i</i>) Y = MAJOF MAJOF W c-D = Vr c-b = q c-b = q c-b = q c-b = q c-b = q c-d = MINOR ROAD W d-c = W d-a =	ARM C) 0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) (ARM D) 6.0 (metres) 6.0 (metres)	GEOMETI X b X c Z b M b PROPOR r b-a ql b-d qr b-d Qr b-d Qr b-d	RIC FACTORS : = = = HUN OF MINOR = = = Y OF MOVEMEN =	0.818 0.799 0.928 0.860 3 STRAIGH I AHI 0.017378 2.034755 (pr 1.965245 (pr IT : 486 (pr	EAD I KA	Y = Xa Xd Zd Md AFFIC: rd-c qld-b qrd-b Qd-c	= = = = = = =	0.845 1.066 1.188 1.097 0.008 1.0078989 (p 0.9921011 (p	pcu/hr) pcu/hr) pcu/hr)	COMPARISION OF DI IU CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-d UFCr b-d DFC d-a DFC d-a DFC a-d DFC a-b DFCr d-b	ESIGN FI = = = = = = = = = = =	0.022 0.016 0.017 0.000 0.000 0.000 0.000 0.000
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-c = q a-d = MINOR ROAL W b-a = W b-c = VI b-a =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 20 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) 0 (ARM B) 3.3 (metres) 3.3 (metres) 28 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-b = q c-b = q c-b = q c-d = MINOK ROAD W d-c = Vr d-c =	ARM C) 0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) 6.0 (metres) 6.0 (metres) 22 (metres)	GEOMETI X b X c Z b M b PROPOR r b-a ql b-d qr b-d CAPACIT Q b-a Q b-c	RIC FACTORS : = = = = = HION OF MINOR = = = = = Y OF MOVEMEN = =	0.818 0.799 0.928 0.860 2.034755 (pr 1.965245 (pr 11.965245 (pr)11.965245 (pr 11.965245 (pr)11.965245 (pr)11.96525	EAU I KA ocu/hr) ocu/hr) ocu/hr)	Y = Xa Xd Zd Md AFFIC: rd-c qld-b qrd-b Qd-c Qd-a	= = = = = = = =	0.845 1.066 1.188 1.097 0.008 1.0078989 (p 0.9921011 (p 633 (p 868 (p	pcu/hr) pcu/hr) pcu/hr) pcu/hr)	DFC b-a DFC b-c DFC b-c DFC b-c DFC b-d DFC b-d DFC b-d DFC d-c DFC d-c DFC d-d DFC d-c DFC d-b	ESIGN FI = = = = = = = = = = = =	0.022 0.011 0.01 0.000 0.000 0.000 0.000 0.000
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-c = q a-d = MINOR ROAL W b-a = Vr b-a = Vr b-a =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 20 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) 3.3 (metres) 3.3 (metres) 28 (metres) 28 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(<i>i</i> V = MAJOF MAJOF W c-b = Vr c-b = q c-b = q c-b = q c-d = MINOR ROAD W d-c = W d-a = VI d-c = Vr d-c = Vr d-c =	ARM C) 0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) 6.0 (metres) 6.0 (metres) 22 (metres) 60 (metres)	GEOMETI X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d Q b-a Q b-a Q b-a Q b-c Q c-b	RIC FACTORS : = = = HON OF MINOR = = = Y OF MOVEMEN = = = =	0.818 0.799 0.928 0.860 3 51 KAIGH I AHI 0.017378 2.034755 (pr 1.965245 (pr 1.965245 (pr 1.965245 (pr 1.965245 (pr 1.965245 (pr 1.965245 (pr 1.965245 (pr 1.965245 (pr 1.965245 (pr 1.96577 (pr	EAD IRA ocu/hr) ocu/hr) ocu/hr) ocu/hr) ocu/hr)	Y = Xa Xd Zd Md AFFIC: rd-c qld-b qrd-b Qd-c Qd-a Qa-d	= = = = = = = = = = =	0.845 1.066 1.188 1.097 0.008 1.0078989 (p 0.9921011 (p 868 (p 868 (p 614 (t)	pcu/hr) pcu/hr) pcu/hr) pcu/hr)	COMPARISION OF DI I U CAPACITY: DFC b-a DFC b-C DFC c-b DFC b-d DFC d-a DFC d-a DFC d-a DFC d-b DFC d-b	= = = = = = = = = = = = = = = = = =	0.022 0.016 0.011 0.004 0.002 0.002 0.002 0.002 0.002
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-c = q a-d = MINOR ROAL W b-a = W b-c = VI b-a = Vr b-a = Vr b-a = Vr b-a = Vr b-a =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 20 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) 0 (ARM B) 3.3 (metres) 28 (metres) 80 (metres)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ Y = MAJOF MAJOF W c-b = Vr c-b = q c-b = q c-b = q c-b = q c-b = q c-b = Vr c-b = Vr d-a = Vr d-c = Vr d-c = Vr d-c = Vr d-c = Vr d-c =	ARM C) 0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) (ARM D) 6.0 (metres) 6.0 (metres) 22 (metres) 60 (metres) 90 (metres)	GEOMETI X b X c Z b M b PROPOR r b-a qi b-d qr b-d Q b-a Q b-a Q b-c Q c-b Q l b-d	RIC FACTORS : = = = 110N OF MINOR = = = Y OF MOVEMEN = = = = = =	0.818 0.799 0.928 0.860 2.51 KAIGH I AHI 0.017378 2.034755 (pr 1.965245 (pr 1.965245 (pr IT : 4866 (pr 671 (pr 577 (pr) 577 (pr) 577 (pr)	EAD I KA	Y = Xa Xd Zd Md AFFIC: rd-c qld-b qrd-b Qd-c Qd-a Qa-d Qld-b	= = = = = = = = = = = = = = =	0.845 1.066 1.188 1.097 0.008 1.0078989 (p 0.9921011 (p 8633 (p 868 (p 614 (p 614 (p 654 (p	pcu/hr) pcu/hr) pcu/hr) pcu/hr) pcu/hr)	COMPARISION OF D TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-d UFC f d-a DFC d-a DFC d-a DFC d-b DFC d-b DFC d-b DFC d-b	ESIGN FI = = = = = = = = = = = = = = = =	.00W 0.022 0.016 0.017 0.002 0.003 0.003 0.009 0.009 0.009
GEOMETRIC GENERAL W = W cr = MAJOR ROA W a-d = Vr a-d = q a-b = q a-c = q a-d = MINOR ROAL W b-a = W b-c = VI b-a = Vr b-a = Vr b-c = q b-a =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 20 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) D (ARM B) 3.3 (metres) 28 (metres) 28 (metres) 80 (metres) 11 (pcu/hr)	2 40 10 [6] [5] [4] Deep Bay Rd'(/ V = MAJOF MAJOF W c-b = Vr c-b = q c-b = q c-b = q c-b = q c-d = MINOR ROAD W d-c = Vr d-c = Vr d-c = Vr d-a = Q d-c =	ARM C) 0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 10 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) 6.0 (metres) 6.0 (metres) 22 (metres) 60 (metres) 90 (metres) 5 (pcu/hr)	GEOMETI X b X c Z b M b PROPOR r b-a qr b-d qr b-d CAPACIT Q b-a Q b-c Q c-b Ql b-d Qr b-d	RIC FACTORS : = = = HUN OF MINUR = = = Y OF MOVEMEN = = = = = = = = = = = = =	0.818 0.799 0.928 0.860 2 STRAIGHT AHD 0.017378 2.034755 (pr 1.965245 (pr 1.965245 (pr 1.965245 (pr 1.965245 (pr 1.965245 (pr 1.965245 (pr 1.9757 (pr 512 (pr 512 (pr 4.87 (pr)	EAU IKA pcu/hr) pcu/hr) pcu/hr) pcu/hr) pcu/hr) pcu/hr)	Y = Xa Xd Zd Md AFFIC: rd-c qld-b qrd-b Qd-c Qd-a Qa-d Qld-b Qld-b Qrd-b	= = = = = = = = = = = = =	0.845 1.066 1.188 1.097 0.008 1.0078989 (f 0.9921011 (f 633 (f 868 (f 614 (f 654 (f 636 (f 636 (f 636 (f	pcu/hr) pcu/hr) pcu/hr) pcu/hr) pcu/hr) pcu/hr)	COMPARISION OF DI IO CAPACITY: DFC b-a DFC b-c DFC b-d DFC b-d DFC d-a DFC d-a DFC a-d DFC d-b DFC d-b DFC d-b DFC d-b DFC d-b DFC d-b	ESIGN FI = = = = = = = = = = = = = =	0.022 0.016 0.017 0.004 0.007 0.002 0.003 0.001 0.001
GEOMETRIC GENERAL W = W cr = W cr = MAJOR ROA W a-d = q a-b = q a-b = q a-c = q a-d = MINOR ROAL W b-a = W b-c = Vr b-a = Vr b-a = Q b-a = q b-c =	DETAILS: 3.90 (metres) 0 (metres) D (ARM A) 2.0 (metres) 120 (metres) 20 (pcu/hr) 50 (pcu/hr) 2 (pcu/hr) 3.3 (metres) 3.3 (metres) 28 (metres) 80 (metres) 11 (pcu/hr)	2 40 10 [6] [5] [4] Deep Bay Rd'(/	ARM C) 0.865 R ROAD (ARM C) 2.0 (metres) 60 (metres) 40 (pcu/hr) 2 (pcu/hr) 2 (pcu/hr) (ARM D) 6.0 (metres) 6.0 (metres) 22 (metres) 60 (metres) 90 (metres) 5 (pcu/hr) 2 (pcu/hr)	GEOMETI X b X c Z b M b PROPOR r b-a ql b-d qr b-d qr b-d CAPACIT Q b-a Q b-a Q b-a Q b-c Q c-b Ql b-d Qr b-d	RIC FACTORS : = = HION OF MINOR = = = Y OF MOVEMEN = = = = = = = = = =	0.818 0.799 0.928 0.860 3 S I KAIGH I AHI 0.017378 2.034755 (pr 1.965245 (pr 1.965245 (pr 1.965245 (pr 1.965245 (pr 577 (pr 577 (pr 512 (pr 487 (pr	EAD IRA ocu/hr) ocu/hr) ocu/hr) ocu/hr) ocu/hr) ocu/hr)	Y = Xa Xd Zd Md AFFIC: rd-c qld-b qrd-b Qd-c Qd-a Qa-d Qld-b Qld-b Qrd-b	= = = = = = = = = = = = = = = = = = =	0.845 1.066 1.188 1.097 0.008 1.0078989 (f 0.9921011 (f 868 (f 614 (f 654 (f 636 (f	pcu/hr) pcu/hr) pcu/hr) pcu/hr) pcu/hr) pcu/hr) pcu/hr)	COMPARISION OF DI TO CAPACITY: DFC b-a DFC b-C DFC c-b DFC b-d DFC d-a DFC d-a DFC d-a DFC d-b DFC d-b DFC d-b	ESIGN FI = = = = = = = = = = = = =	0.022 0.016 0.017 0.004 0.007 0.002 0.003 0.001 0.001

	TANCY LIMITE	ED	PRIOF	RITY JUNCTION CALCULATIC	N			INITIALS	DATE
Impact Assessment for Pro	oposed Temporary Open Storag	e of Construction Material and Equ	ipment of 3 Years at Variou	s Lots in D.D.129, Lau Fau Shan			Prepared By:	FF	Jan-20
- Unnamed Rd 1 / U	Jnnamed Rd 2		2027 Des	ign - AM Peak		Project No.: 8010	8 Checked By:	MM	Jan-20
							Reviewed By:	FM	Jan-20
Unnamed Rd 2 (ARM A)	[4] 58 [3] 0	18 7 [2] [1] (ARM B) Unnamed Rd 1	← 61 ↓ 11	[5] Unnamed Rd 2 [6] (ARM C)	NOTES : (GEC W = W cr = W b-a = W b-c = W c-b = V c-b = V r b-a = V r b-a = V r b-c = V r c-b = D = E = F = Y =	DMETRIC INPUT DATA) MAJOR ROAD WIDT CENTRAL RESERVI LANE WIDTH AVAIL LANE WIDTH AVAIL VISIBILITY TO THE I VISIBILITY TO THE I VISIBILITY TO THE I STREAM-SPECIFIC STREAM-SPECIFIC STREAM-SPECIFIC (1-0.0345W)	TH E WIDTH ABLE TO VEHICLE W ABLE TO VEHICLE W ABLE TO VEHICLE W LEFT FOR VEHICLES RIGHT FOR VEHICLE RIGHT FOR VEHICLE B-A B-C C-B	VAITING IN STF VAITING IN STF VAITING IN STF S WAITING IN S S WAITING IN S WAITING IN	REAM b-a REAM b-c REAM c-b STREAM b-a STREAM b-a STREAM b-c STREAM c-b
	TAILS:	GEOMETRIC	FACTORS :	THE CAPACITY OF MOVEMENT	:		COMPARISION (TO CAPACITY:	OF DESIGN FL	ow
GEOMETRIC DE	ETAILS: ARM A)	GEOMETRIC	FACTORS :	THE CAPACITY OF MOVEMENT	:		COMPARISION (TO CAPACITY:	DF DESIGN FL	.ow
GEOMETRIC DE MAJOR ROAD (# W =	ETAILS: ARM A) 5.2 (metres)	GEOMETRIC I D =	•ACTORS :	Q b-a = 4	: 46 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a	DF DESIGN FL	. ow
GEOMETRIC DE MAJOR ROAD (# W = W cr =	TAILS: ARM A) 5.2 (metres) 0 (metres)	GEOMETRIC I D = E =	• 0.752 0.813	Qb-a = 4 Qb-c = 5	: 46 (pcu/hr) 92 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c b	DF DESIGN FL = =	. ow 0.0404 0.0118 0.0196
GEOMETRIC DE MAJOR ROAD (# W = W cr = q a-b = g a-c =	TAILS: ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 58 (ncu/hr)	GEOMETRIC I D = E = F = Y =	FACTORS : 0.752 0.813 0.813 0.821	Q b-a = 4 Q b-c = 5 Q c-b = 5 Q b-ac = 4	: 46 (pcu/hr) 92 (pcu/hr) 92 (pcu/hr) 79 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b	DF DESIGN FL = = = =	. OW 0.0404 0.0118 0.0186 0.0522
GEOMETRIC DE MAJOR ROAD (/ W = W cr = q a-b = q a-c =	TAILS: ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 58 (pcu/hr)	GEOMETRIC I D = E = F = Y =	FACTORS : 0.752 0.813 0.813 0.821	Q b-a = 4 Q b-c = 5 Q c-b = 5 Q b-ac = 4	: 46 (pcu/hr) 92 (pcu/hr) 92 (pcu/hr) 79 (pcu/hr) 67 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	DF DESIGN FL = = = = =	0.0404 0.0118 0.0186 0.0522
GEOMETRIC DE MAJOR ROAD (/ W = W cr = q a-b = q a-c =	TAILS: ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 58 (pcu/hr) ARM C)	$\begin{array}{rcl} \mathbf{GEOMETRIC} & \mathbf{F} \\ & \mathbf{D} & = \\ & \mathbf{E} & = \\ & \mathbf{F} & = \\ & \mathbf{Y} & = \\ & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ & \mathbf{F} & \mathbf$	FACTORS : 0.752 0.813 0.813 0.821 0.28	Q b-a = 4 Q b-c = 5 Q c-b = 5 Q c-a = 17 TOTAL FLOW - - -	: 46 (pcu/hr) 92 (pcu/hr) 92 (pcu/hr) 79 (pcu/hr) 67 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL = = = = =	. ow 0.0404 0.0118 0.0186 0.0522
GEOMETRIC DE MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A	TAILS: ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 58 (pcu/hr) ARM C) 2.5 (metree)	GEOMETRIC F D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.28	Q b-a = 4 Q b-c = 5 Q c-b = 5 Q b-ac = 4 Q c-a = 17 TOTAL FLOW = 7	: 46 (pcu/hr) 92 (pcu/hr) 92 (pcu/hr) 79 (pcu/hr) 67 (pcu/hr) 2 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL = = = = = =	0.0404 0.0118 0.0186 0.0522 0.0345
GEOMETRIC DE MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b =	TAILS: ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 58 (pcu/hr) ARM C) 2.5 (metres) 22 (metres)	GEOMETRIC F D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.28	Q b-a = 4 Q b-c = 5 Q c-b = 5 Q b-ac = 4 Q c-a = 17 TOTAL FLOW = 7	: 46 (pcu/hr) 92 (pcu/hr) 92 (pcu/hr) 79 (pcu/hr) 67 (pcu/hr) 22 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL = = = = = =	0.0404 0.0118 0.0186 0.0522 0.0345
GEOMETRIC DE MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a =	ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 58 (pcu/hr) ARM C) 2.5 (metres) 22 (metres) 61 61 (pcu/hr)	GEOMETRIC I D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.28	Q b-a = 4 Q b-c = 5 Q c-b = 5 Q b-ac = 4 Q c-a = 17 TOTAL FLOW = 7	: 46 (pcu/hr) 92 (pcu/hr) 92 (pcu/hr) 79 (pcu/hr) 67 (pcu/hr) 2 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL = = = = = =	0.0404 0.0118 0.0186 0.0522 0.0345
GEOMETRIC DE MAJOR ROAD (# W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b =	ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 58 (pcu/hr) ARM C) 2.5 (metres) 22 (metres) 61 (pcu/hr) 11 (pcu/hr)	GEOMETRIC I D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.28	Q b-a = 4 Q b-c = 5 Q c-b = 5 Q b-ac = 4 Q c-a = 17 TOTAL FLOW = 7	: 46 (pcu/hr) 92 (pcu/hr) 92 (pcu/hr) 79 (pcu/hr) 67 (pcu/hr) 22 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL = = = = =	. OW 0.0404 0.0118 0.0186 0.0522 0.0345
GEOMETRIC DE MAJOR ROAD (# W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A	STAILS: ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 58 (pcu/hr) 58 (pcu/hr) ARM C) 2.5 (metres) 22 (metres) 61 (pcu/hr) 11 (pcu/hr) NRM B)	GEOMETRIC I D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.28	Q b-a = 4 Q b-c = 5 Q c-b = 5 Q b-ac = 4 Q c-a = 17 TOTAL FLOW = 7	: 46 (pcu/hr) 92 (pcu/hr) 92 (pcu/hr) 79 (pcu/hr) 67 (pcu/hr) 22 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = =	.0W 0.0404 0.0118 0.0186 0.0522 0.0345 0.035
GEOMETRIC DE MAJOR ROAD (# W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a =	STAILS: ARM A) 5.2 (metres) 0 (pcu/hr) 58 (pcu/hr) 58 (pcu/hr) ARM C) 2.5 (metres) 22 (metres) 61 (pcu/hr) 11 (pcu/hr) NRM B) 2.5 (metres)	GEOMETRIC I D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.28	Q b-a = 4 Q b-c = 5 Q c-b = 5 Q b-ac = 4 Q c-a = 17 TOTAL FLOW = 7	: 46 (pcu/hr) 92 (pcu/hr) 92 (pcu/hr) 79 (pcu/hr) 67 (pcu/hr) 22 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = =	.0W 0.0404 0.0118 0.0186 0.0522 0.0345 0.035
GEOMETRIC DE MAJOR ROAD (# W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c =	STAILS: ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 58 (pcu/hr) 58 (pcu/hr) 25 (metres) 22 (metres) 61 (pcu/hr) 11 (pcu/hr) NRM B) 2.5 2.5 (metres) 2.5 (metres)	GEOMETRIC F D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.28	Q b-a = 4 Q b-c = 5 Q c-b = 5 Q b-ac = 4 Q c-a = 17 TOTAL FLOW = 7	: 46 (pcu/hr) 92 (pcu/hr) 92 (pcu/hr) 79 (pcu/hr) 67 (pcu/hr) 22 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = =	.0W 0.0404 0.0118 0.0186 0.0522 0.0345 0.035
GEOMETRIC DE MAJOR ROAD (# W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c = VI b-a =	STAILS: ARM A) 5.2 (metres) 0 (pcu/hr) 58 (pcu/hr) ARM C) 2.5 (metres) 22 (metres) 61 (pcu/hr) 11 (pcu/hr) NRM B) 2.5 (metres)	GEOMETRIC F D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.28	Q b-a = 4 Q b-c = 5 Q c-b = 5 Q b-ac = 4 Q c-a = 17 TOTAL FLOW = 7	: 46 (pcu/hr) 92 (pcu/hr) 92 (pcu/hr) 79 (pcu/hr) 67 (pcu/hr) 22 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = =	.0W 0.0404 0.0118 0.0186 0.0522 0.0345 0.035
GEOMETRIC DE MAJOR ROAD (# W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c = VI b-a = Vr b-a =	TAILS: ARM A) 5.2 (metres) 0 (pcu/hr) 58 (pcu/hr) ARM C) 2.5 (metres) 22 (metres) 61 (pcu/hr) 11 (pcu/hr) NRM B) 2.5 (metres) 2.4 (metres)	GEOMETRIC I D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.28	Q b-a = 4 Q b-c = 5 Q c-b = 5 Q b-ac = 4 Q c-a = 17 TOTAL FLOW = 7	: 46 (pcu/hr) 92 (pcu/hr) 92 (pcu/hr) 79 (pcu/hr) 67 (pcu/hr) 22 (pcu/hr)		COMPARISION (TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = =	.0W 0.0404 0.0118 0.0186 0.0522 0.0345 0.035
GEOMETRIC DE MAJOR ROAD (# W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c = Vr b-a = Vr b-a = Vr b-a = Vr b-c =	ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 58 (pcu/hr) ARM C) 2.5 2.5 (metres) 61 (pcu/hr) 11 (pcu/hr) 11 (pcu/hr) 2.5 (metres) 2.5 (metres) 2.5 (metres) 2.5 (metres) 2.5 (metres) 2.4 (metres) 22 (metres) 22 (metres)	GEOMETRIC I D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.28	Q b-a = 4 Q b-c = 5 Q c-b = 5 Q b-ac = 4 Q c-a = 17 TOTAL FLOW = 7	: 46 (pcu/hr) 92 (pcu/hr) 92 (pcu/hr) 79 (pcu/hr) 67 (pcu/hr) 2 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = =	.0W 0.0404 0.0118 0.0186 0.0522 0.0345 0.0345
GEOMETRIC DE MAJOR ROAD (/ W = W cr = q a-b = q a-c = MAJOR ROAD (A W c-b = Vr c-b = q c-a = q c-b = MINOR ROAD (A W b-a = W b-c = Vr b-a = Vr b-a = Vr b-c = q b-a =	STAILS: ARM A) 5.2 (metres) 0 (metres) 0 (pcu/hr) 58 (pcu/hr) ARM C) 2.5 2.5 (metres) 61 (pcu/hr) 11 (pcu/hr) 11 (pcu/hr) XRM B) 2.5 2.5 (metres) 2.4 (metres) 2.5 (metres) 2.6 (metres) 2.7 (metres) 2.8 (metres) 2.9 (metres) 2.6 (metres) 2.7 (metres) 2.8 (metres) 2.9 (me	GEOMETRIC I D = E = F = Y = F for (Qb-ac) =	FACTORS : 0.752 0.813 0.813 0.821 0.28	Q b-a = 4 Q b-c = 5 Q c-b = 5 Q b-ac = 4 Q c-a = 17 TOTAL FLOW = 7	: 46 (pcu/hr) 92 (pcu/hr) 92 (pcu/hr) 79 (pcu/hr) 67 (pcu/hr) 2 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = =	.0W 0.0404 0.0118 0.0186 0.0522 0.0345 0.035

SFM CONSULTANCY LIMIT	red PRIC	RITY JUNCTION CALCULAT	ION			INITIALS	DATE
affic Impact Assessment for Proposed Temporary Open Stora	age of Construction Material and Equipment of 3 Years at Vari	ous Lots in D.D.129, Lau Fau Shan			Prepared By:	FF	Jan-202
n F - Deep Bay Rd / Unnamed Rd 3	2027 De	esign - AM Peak		Project No.: 80108	Checked By:	MM	Jan-202
					Reviewed By:	FM	Jan-202
	(ARM C) Deep Bay Rd [5] [6] 35 84 ↓ ↓ 74 [1] ↓ 74 [1] ↓ 39 [2] 16 25 16 [4] [3]	(ARM B) Unnamed Rd 3	NOTES : (GEOME W = W cr = W b-a = W b-c = W c-b = VI b-a = Vr b-a = Vr b-c = Vr c-b = D = E = F = Y =	TRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE W LANE WIDTH AVAILABL LANE WIDTH AVAILABL LANE WIDTH AVAILABL VISIBILITY TO THE LEF VISIBILITY TO THE RIGI VISIBILITY TO THE RIGI STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C STREAM-SPECIFIC C-B (1-0.0345W)	IDTH E TO VEHICLE W E TO VEHICLE W T FOR VEHICLE W T FOR VEHICLES HT FOR VEHICLE HT FOR VEHICLE HT FOR VEHICLE	YAITING IN STR YAITING IN STR YAITING IN STR WAITING IN S S WAITING IN S WAITING IN S WAITING IN	REAM b-a REAM b-c REAM c-b TREAM b-a STREAM b-a STREAM b-c STREAM c-b
	Deep Bay Rd (ARM A)						
GEOMETRIC DETAILS:	Deep Bay Rd (ARM A) GEOMETRIC FACTORS :	THE CAPACITY OF MOVEME	NT :	· · ·	COMPARISION O	DF DESIGN FLO	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS :	THE CAPACITY OF MOVEME	NT :	· · ·	COMPARISION O TO CAPACITY:	OF DESIGN FLO	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752	THE CAPACITY OF MOVEME	NT : 432 (pcu/hr)	· · ·	COMPARISION O TO CAPACITY: DFC b-a	DF DESIGN FLO	0.0903
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826	Q b-a = Q b-c =	NT : 432 (pcu/hr) 608 (pcu/hr)	· · ·	COMPARISION O TO CAPACITY: DFC b-a DFC b-c	DF DESIGN FLG = =	0.0903 0.1217
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres) q a-b = 16 (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791	Q b-a = Q b-c = Q c-b =	NT : 432 (pcu/hr) 608 (pcu/hr) 580 (pcu/hr)	· · ·	COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC b-c DFC c-b	DF DESIGN FLO = = = =	0.0903 0.1217 0.1448
$\begin{array}{rcl} \textbf{GEOMETRIC DETAILS:}\\ \mbox{MAJOR ROAD (ARM A)}\\ W &=& 4.8 & (metres)\\ W cr &=& 0 & (metres)\\ q a-b &=& 16 & (pcu/hr)\\ q a-c &=& 25 & (pcu/hr) \end{array}$	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834	Q b-a = Q b-c = Q c-b = Q b-ac =	NT : 432 (pcu/hr) 608 (pcu/hr) 580 (pcu/hr) 533 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac	DF DESIGN FLO = = = = =	0.0903 0.1217 0.1448 0.2120
$\begin{array}{rcl} \textbf{GEOMETRIC DETAILS:}\\ \mbox{MAJOR ROAD (ARM A)}\\ W &=& 4.8 & (metres)\\ W cr &=& 0 & (metres)\\ q a-b &=& 16 & (pcu/hr)\\ q a-c &=& 25 & (pcu/hr) \end{array}$	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834	Q b-a = Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	NT : 432 (pcu/hr) 608 (pcu/hr) 580 (pcu/hr) 533 (pcu/hr) 1539 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	DF DESIGN FLO = = = = =	0.0903 0.1217 0.1448 0.2120
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 16$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.655	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	NT : 432 (pcu/hr) 608 (pcu/hr) 580 (pcu/hr) 533 (pcu/hr) 1539 (pcu/hr) 84 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0903 0.1217 0.1448 0.2120 0.0227
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 16$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres)	Deep Bay Rd (ARM A)	Q b-a = Q b-c = Q c-b = Q c-a = TOTAL FLOW =	NT : 432 (pcu/hr) 608 (pcu/hr) 580 (pcu/hr) 533 (pcu/hr) 1539 (pcu/hr) 84 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0903 0.1217 0.1448 0.2120 0.0227
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres) q a-b = 16 (pcu/hr) q a-c = 25 (pcu/hr) MAJOR ROAD (ARM C) W W c-b = 2.1 (metres) Vr c-b = 38 (metres)	Deep Bay Rd (ARM A)	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	NT : 432 (pcu/hr) 608 (pcu/hr) 580 (pcu/hr) 533 (pcu/hr) 1539 (pcu/hr) 84 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0903 0.1217 0.1448 0.2120 0.0227
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 16$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 35$ (pcu/hr)	Deep Bay Rd (ARM A)	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	NT : 432 (pcu/hr) 608 (pcu/hr) 580 (pcu/hr) 533 (pcu/hr) 1539 (pcu/hr) 84 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0903 0.1217 0.1448 0.2120 0.0227
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 16$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 35$ (pcu/hr) $q c-b = 84$ (pcu/hr)	Deep Bay Rd (ARM A)	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	NT : 432 (pcu/hr) 608 (pcu/hr) 580 (pcu/hr) 533 (pcu/hr) 1539 (pcu/hr) 84 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL(= = = = =	0.0903 0.1217 0.1448 0.2120 0.0227
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 16$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 35$ (pcu/hr) $q c-b = 84$ (pcu/hr) $q c-b = 84$ (pcu/hr)	Deep Bay Rd (ARM A)	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	NT : 432 (pcu/hr) 608 (pcu/hr) 580 (pcu/hr) 533 (pcu/hr) 1539 (pcu/hr) 84 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = =	0.0903 0.1217 0.1448 0.2120 0.0227 0.21
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 16$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 35$ (pcu/hr) $q c-b = 84$ (pcu/hr) $q c-b = 84$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres)	Deep Bay Rd (ARM A)	Q b-a = Q b-c = Q c-b = Q c-a = Q c-a = TOTAL FLOW =	NT : 432 (pcu/hr) 608 (pcu/hr) 580 (pcu/hr) 533 (pcu/hr) 1539 (pcu/hr) 84 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL(= = = = = =	0.0903 0.1217 0.1448 0.2120 0.0227 0.21
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 16$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 35$ (pcu/hr) $q c-b = 84$ (pcu/hr) $q c-b = 84$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-c = 2.5$ (metres)	Deep Bay Rd (ARM A)	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	NT : 432 (pcu/hr) 608 (pcu/hr) 580 (pcu/hr) 533 (pcu/hr) 1539 (pcu/hr) 84 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FLG = = = = = =	0.0903 0.1217 0.1448 0.2120 0.0227 0.221
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W =$ 4.8 (metres) $W cr =$ 0 (metres) $q a-b =$ 16 (pcu/hr) $q a-c =$ 25 (pcu/hr)MAJOR ROAD (ARM C) $W c-b =$ 2.1 (metres) $Vr c-b =$ 38 (metres) $q c-a =$ 35 (pcu/hr) $q c-b =$ 84 (pcu/hr) $q c-b =$ 84 (pcu/hr)MINOR ROAD (ARM B) $W b-a =$ 2.5 (metres) $W b-a =$ 2.5 (metres) $W b-a =$ 2.2 (metres) $V lb-a =$ 2.2 (metres)	Deep Bay Rd (ARM A)	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	NT : 432 (pcu/hr) 608 (pcu/hr) 580 (pcu/hr) 533 (pcu/hr) 1539 (pcu/hr) 84 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FLO = = = = =	0.0903 0.1217 0.1448 0.2120 0.0227 0.221
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 16$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 35$ (pcu/hr) $q c-b = 84$ (pcu/hr) $q c-b = 84$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-a = 2.5$ (metres) $VI b-a = 22$ (metres) $VI b-a = 24$ (metres)	Deep Bay Rd (ARM A)	C b-a = Q b-a = Q b-c = Q c-b = Q c-a = TOTAL FLOW =	NT : 432 (pcu/hr) 608 (pcu/hr) 580 (pcu/hr) 533 (pcu/hr) 1539 (pcu/hr) 84 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FLO = = = = =	0.0903 0.1217 0.1448 0.2120 0.0227 0.221
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 16$ (pcu/hr) $q a-c = 25$ (pcu/hr) MAJOR ROAD (ARM C) W c-b = 2.1 (metres) $Vr c-b = 38$ (metres) $q c-a = 35$ (pcu/hr) $q c-b = 84$ (pcu/hr) $q c-b = 2.5$ (metres) W b-a = 2.5 (metres) W b-a = 22 (metres) VI b-a = 22 (metres) VI b-a = 24 (metres) VI b-a = 24 (metres)	Deep Bay Rd (ARM A)	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	NT : 432 (pcu/hr) 608 (pcu/hr) 580 (pcu/hr) 533 (pcu/hr) 1539 (pcu/hr) 84 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FLO = = = = = =	0.0903 0.1217 0.1448 0.2120 0.0227 0.221
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 16$ (pcu/hr) $q a-c = 25$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 35$ (pcu/hr) $q c-b = 84$ (pcu/hr) $q c-b = 84$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $V b-c = 2.5$ (metres) $V b-a = 22$ (metres) $V b-a = 24$ (metres) $Vr b-a = 24$ (metres) $Vr b-a = 38$ (metres) $Vr b-a = 38$ (metres) $Q b-a = 39$ (pcu/hr)	Deep Bay Rd (ARM A)	C b-a = Q b-a = Q b-c = Q c-b = Q c-a = TOTAL FLOW =	NT : 432 (pcu/hr) 608 (pcu/hr) 580 (pcu/hr) 533 (pcu/hr) 1539 (pcu/hr) 84 (pcu/hr)		COMPARISION O TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FLO = = = = =	0.0903 0.1217 0.1448 0.2120 0.0227 0.221

8FM CONSULTANCY LIMITED	PRIORITY JUNCTION CALCUL	ATION		INITIALS		DATE
Traffic Impact Assessment for Proposed Temporary Open Storage of Construction Material and Equipment of 3 Ye	ars at Various Lots in D.D.129, Lau Fau Shan		Prepared By:	FF		Jan-2025
Jn D - Deep Bay Rd / Unnamed Rd 2	2027 Design - PM Peak	Project No.: 8010	B Checked By:	MM		Jan-2025
			Reviewed Bv:	FM		Jan-2025
	2		,	1 1		
(ARM A) Deep Bay Rd [10] [11] [12] 0 62 13 4 4 [8] 0 (ARM D) (ARM D) (ARM D) (ARM D) (ARM D) (ARM D) (ARM C)	Unnamed Rd 2 18 [1] 0 [2] (ARM B) 11 [3]	NOTES : (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDT W cr = CENTRAL RESERVE W b-a = LANE WIDTH AVAIL W b-c = LANE WIDTH AVAIL W c-b = LANE WIDTH AVAIL W c-b = LANE WIDTH AVAIL V t b-a = VISIBILITY TO THE F Vr b-a = VISIBILITY TO THE F Vr c-b = VISIBILITY TO THE F D = STREAM-SPECIFIC E = STREAM-SPECIFIC F = STREAM-SPECIFIC Y = (1-0.0345W)	H EWIDTH ABLE TO VEHICLE WA ABLE TO VEHICLE WA EFT FOR VEHICLES V RIGHT FOR VEHICLES RIGHT FOR VEHICLES B-A B-C C-B	AITING IN STF AITING IN STF AITING IN STF WAITING IN S WAITING IN WAITING IN WAITING IN	REAM b-a REAM b-c REAM c-b TREAM t STREAM STREAM STREAM	b-a b-a b-c c-b
GEOMETRIC DETAILS:	GEOMETRIC FACTORS :			RISION OF DE	SIGN FL	.ow
CENEDAL	Vh - 0.010	X a - 01	10 CAP			
UCINERAL	AD = 0.818 Xc = 0.700		166		_	0.0270
W = 0.865 W cr = 0 (metres) V = 0.865	7b = 0.799	∧u – 1.1 7d = 1	188	DFC b-a	_	0.0370
	Mb = 0.860	Md = 10)97	DFC c-h	=	0.0208
MAJOR ROAD (ARM A) MAJOF MAJOR ROAD (ARM C)				DFCI b-d	=	0.0000
VV a-d = 2.0 (metres) VV c-b = 2.0 (metres)	PROPORTION OF MINUR STRAIGHT	AHEAD I RAFFIC :		DFCr b-d	=	0.0000
Vr a-d = 120 (metres) Vr c-b = 60 (metres)				DFC d-c	=	0.0000
q a-b = 13 (pcu/hr) q c-a = 30 (pcu/hr)	r b-a = 0.028391	rd-c = 0.0	000	DFC d-a	=	0.0000
q a-c = 62 (pcu/hr) q c-b = 12 (pcu	/hr) ql b-d = 0	(pcu/hr) ql d-b =	0 (pcu/hr)	DFC a-d	=	0.0000
q a-d = 0 (pcu/hr) q c-d = 3 (pcu	/hr) qr b-d = 0	(pcu/hr) qr d-b =	0 (pcu/hr)	DFCI d-b	=	0.0000
				DFCr d-b	=	0.0000
MINOR ROAD (ARM B) MINOR ROAD (ARM D)	CAPACITY OF MOVEMENT :					
W b-a = 3.3 (metres) W d-c = 6.0 (metres)						
W b-c = 3.3 (metres) W d-a = 6.0 (metres)	Q b-a = 486	(pcu/hr) Q d-c =	534 (pcu/hr)			
VI b-a = 28 (metres) VI d-c = 22 (metres)	Q b-c = 667	(pcu/hr) Q d-a =	373 (pcu/hr)			
Vr b-a = 28 (metres) Vr d-c = 60 (metres)	Q c-b = 577	(pcu/hr) Q a-d =	616 (pcu/hr) CRITI	CAL DFC	=	0.04
Vr b-c = 80 (metres) Vr d-a = 90 (metres)	Ql b-d = 511	(pcu/hr) Ql d-b =	356 (pcu/hr)			
q b-a = 18 (pcu/hr) q d-c = 0 (pcu/hr)	Qr b-d = 486	(pcu/hr) Qr d-b =	338 (pcu/hr)			
q b-c = 11 (pcu/hr) q d-a = 0 (pcu/hr)						
q b-d = 0 (pcu/hr) q d-b = 0 (pcu/hr)	IOIAL FLOW =	= 149 (PCU/HR)				ļ
D:/8FM Consultancy Limited/Project/P80108-TIA_Lau Fau Shan/Data\Calculation\(80108-Junctions - DES-PM(DEF with trip rate))	e).xis]D					

M CONSULTANC	Y LIMITED			PRIORITY JU	UNCTION CALCU	LATION			INITIALS	DAT
Impact Assessment for Proposed Temp	porary Open Storage of (Construction Material and E	quipment of 3 Ye	ears at Various Lots in D.D.1	129, Lau Fau Shan			Prepared By:	FF	Jan-20
- Unnamed Rd 1 / Unnamed	Rd 2			2027 Design - PM P	eak		Project No.: 80108	8 Checked By:	MM	Jan-20
								Reviewed By:	FM	Jan-20
Unnamed Rd 2 [4] 4 [3] (ARM A)	49 0	46 4 [2] [1] (ARM B)	•	- 67 [5] - 23 [6]	Unnamed Rd 2 (ARM C)	NOTES : (GE0 W = W cr = W b-a = W b-c = W c-b = VI b-a = Vr b-a = Vr b-a = Vr c-b = D = E = F = Y =	DMETRIC INPUT DATA) MAJOR ROAD WIDTI CENTRAL RESERVE LANE WIDTH AVAILA LANE WIDTH AVAILA VISIBILITY TO THE L VISIBILITY TO THE R VISIBILITY TO THE R STREAM-SPECIFIC E STREAM-SPECIFIC E STREAM-SPECIFIC E (1-0.0345W)	H E WIDTH ABLE TO VEHICLE V ABLE TO VEHICLE V ABLE TO VEHICLE V LEFT FOR VEHICLE RIGHT FOR VEHICLE RIGHT FOR VEHICLE B-A B-C C-B	VAITING IN ST VAITING IN ST VAITING IN ST S WAITING IN S S WAITING IN S WAITING IN S WAITING IN	REAM b-a REAM b-c REAM c-b STREAM b-a I STREAM b-a I STREAM b-c I STREAM c-b
		Unnamed Rd 1					(1-0.00+000)			
GEOMETRIC DETAILS: MAJOR ROAD (ARM A)		Unnamed Rd 1	C FACTORS :		THE CAPACITY OF MC	DVEMENT :	(1-0.004047)	COMPARISION TO CAPACITY:	OF DESIGN FL	.ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2	(metres)	Unnamed Rd 1 GEOMETRIC D =	C FACTORS : 0.752		THE CAPACITY OF MC	DVEMENT : 444 (pcu/hr)	(1-0.004014)	COMPARISION TO CAPACITY: DFC b-a	OF DESIGN FL =	. ow 0.1036
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 W cr = 0	(metres) (metres)	Unnamed Rd 1 GEOMETRIC D = E =	0.752 0.813		Q b-a = Q b-c =	DVEMENT : 444 (pcu/hr) 594 (pcu/hr)	(1-0.004014)	COMPARISION TO CAPACITY: DFC b-a DFC b-c	OF DESIGN FL = =	. ow 0.1036 0.0067
$\begin{array}{rcl} \textbf{GEOMETRIC DETAILS:} \\ \text{MAJOR ROAD (ARM A)} \\ \text{W} &=& 5.2 \\ \text{W cr} &=& 0 \\ \text{q a-b} &=& 0 \end{array}$	(metres) (metres) (pcu/hr)	Unnamed Rd 1 GEOMETRIC D = E = F =	0.752 0.813 0.813		Q b-a = Q b-c = Q b-c = Q c-b =	DVEMENT : 444 (pcu/hr) 594 (pcu/hr) 594 (pcu/hr)	(1-0.004014)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b	OF DESIGN FL = = = =	. OW 0.1036 0.0067 0.0387
$\begin{array}{rcl} \textbf{GEOMETRIC DETAILS:} \\ \text{MAJOR ROAD (ARM A)} \\ W &=& 5.2 \\ W \text{ cr} &=& 0 \\ q \text{ a-b} &=& 0 \\ q \text{ a-c} &=& 49 \end{array}$	(metres) (metres) (pcu/hr) (pcu/hr)	Unnamed Rd 1 GEOMETRIC D = E = F = Y =	0.752 0.813 0.813 0.821		Q b-a = Q b-c = Q c-b = Q b-ac =	DVEMENT : 444 (pcu/hr) 594 (pcu/hr) 594 (pcu/hr) 453 (pcu/hr)	(1-0.004014)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac	OF DESIGN FL = = = = =	.0W 0.1036 0.0067 0.0387 0.1103
$\begin{array}{rcl} \textbf{GEOMETRIC DETAILS:} \\ \text{MAJOR ROAD (ARM A)} \\ W &=& 5.2 \\ W \text{ cr} &=& 0 \\ q \text{ a-b} &=& 0 \\ q \text{ a-c} &=& 49 \end{array}$	(metres) (metres) (pcu/hr) (pcu/hr)	Unnamed Rd 1 GEOMETRIC D = E = F = Y =	0.752 0.813 0.813 0.821		Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a =	DVEMENT : 444 (pcu/hr) 594 (pcu/hr) 594 (pcu/hr) 453 (pcu/hr) 1730 (pcu/hr)	(1-0.004014)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane)	OF DESIGN FL = = = = =	.0W 0.1036 0.0067 0.0387 0.1103
$\begin{array}{rcl} \textbf{GEOMETRIC DETAILS:} \\ \mbox{MAJOR ROAD (ARM A)} \\ W &=& 5.2 \\ W \ cr &=& 0 \\ q \ a-b &=& 0 \\ q \ a-c &=& 49 \\ \mbox{MAJOR ROAD (ARM C)} \end{array}$	(metres) (metres) (pcu/hr) (pcu/hr)	Unnamed Rd 1 GEOMETRIC D = E = F = Y = F for (Qb-ac) =	0.752 0.813 0.813 0.821 0.08		Q b-a = Q b-c = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	DVEMENT : 444 (pcu/hr) 594 (pcu/hr) 594 (pcu/hr) 453 (pcu/hr) 1730 (pcu/hr) 90 (pcu/hr)	(1-0.004014)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL = = = = =	0.1036 0.0067 0.0387 0.1103 0.0387
$\begin{array}{rcl} \textbf{GEOMETRIC DETAILS:} \\ \text{MAJOR ROAD (ARM A)} \\ W &= 5.2 \\ W \text{ cr} &= 0 \\ q \text{ a-b} &= 0 \\ q \text{ a-b} &= 0 \\ q \text{ a-c} &= 49 \\ \end{array}$ $\begin{array}{rcl} \text{MAJOR ROAD (ARM C)} \\ W \text{ c-b} &= 2.5 \\ W \text{ c-b} &= 2.5 \\ \end{array}$	(metres) (metres) (pcu/hr) (pcu/hr) (metres)	Unnamed Rd 1 GEOMETRIC D = E = F = Y = F for (Qb-ac) =	0.752 0.813 0.813 0.821 0.08		Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	DVEMENT : 444 (pcu/hr) 594 (pcu/hr) 594 (pcu/hr) 453 (pcu/hr) 1730 (pcu/hr) 90 (pcu/hr)	(1-0.004014)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL = = = = = =	0.1036 0.0067 0.0387 0.1103 0.0387
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 W cr = 0 q a-b = 0 q a-c = 49 MAJOR ROAD (ARM C) W c-b = 2.5 Vr c-b = 22 q c a = 67	(metres) (metres) (pcu/hr) (pcu/hr) (metres) (metres) (metres)	Unnamed Rd 1 GEOMETRIC D = E = F = Y = F for (Qb-ac) =	0.752 0.813 0.813 0.821 0.08		Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	DVEMENT : 444 (pcu/hr) 594 (pcu/hr) 594 (pcu/hr) 453 (pcu/hr) 1730 (pcu/hr) 90 (pcu/hr)	(1-0.004014)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL = = = = = =	0.1036 0.0067 0.0387 0.1103 0.0387
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 W cr = 0 q a-b = 0 q a-c = 49 MAJOR ROAD (ARM C) W c-b = 2.5 Vr c-b = 22 q c-a = 67 q c-b = 23	(metres) (metres) (pcu/hr) (pcu/hr) (metres) (metres) (pcu/hr) (pcu/hr)	Unnamed Rd 1 GEOMETRIC D = E = F = Y = F for (Qb-ac) =	0.752 0.813 0.813 0.821 0.08		Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	DVEMENT : 444 (pcu/hr) 594 (pcu/hr) 594 (pcu/hr) 453 (pcu/hr) 1730 (pcu/hr) 90 (pcu/hr)	(1-0.004014)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL = = = = =	.0W 0.1036 0.0067 0.0387 0.1103 0.0387
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 W cr = 0 q a-b = 0 q a-c = 49 MAJOR ROAD (ARM C) W c-b = 2.5 Vr c-b = 22 q c-a = 67 q c-b = 23	(metres) (metres) (pcu/hr) (pcu/hr) (metres) (pcu/hr) (pcu/hr)	Unnamed Rd 1 GEOMETRIC D = E = F = Y = F for (Qb-ac) =	0.752 0.813 0.813 0.821 0.08		Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	DVEMENT : 444 (pcu/hr) 594 (pcu/hr) 594 (pcu/hr) 453 (pcu/hr) 1730 (pcu/hr) 90 (pcu/hr)	(1-0.004014)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a	DF DESIGN FL = = = = =	.
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 W cr = 0 q a-b = 0 q a-c = 49 MAJOR ROAD (ARM C) W c-b = 2.5 Vr c-b = 22 q c-a = 67 q c-b = 23 MINOR ROAD (ARM B)	(metres) (metres) (pcu/hr) (pcu/hr) (metres) (metres) (pcu/hr) (pcu/hr)	Unnamed Rd 1 GEOMETRIC D = E = F = Y = F for (Qb-ac) =	0.752 0.813 0.813 0.821 0.08		Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	DVEMENT : 444 (pcu/hr) 594 (pcu/hr) 594 (pcu/hr) 453 (pcu/hr) 1730 (pcu/hr) 90 (pcu/hr)	(1-0.004014)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = = =	.ow 0.1036 0.0067 0.0387 0.1103 0.0387 0.111
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 W cr = 0 q a-b = 0 q a-b = 0 q a-c = 49 MAJOR ROAD (ARM C) W c-b = 2.5 Vr c-b = 22 q c-a = 67 q c-b = 23 MINOR ROAD (ARM B) W b-a = 2.5	(metres) (metres) (pcu/hr) (pcu/hr) (metres) (pcu/hr) (pcu/hr) (pcu/hr) (metres)	Unnamed Rd 1 GEOMETRIC D = E = F = Y = F for (Qb-ac) =	0.752 0.813 0.813 0.821 0.08		Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	DVEMENT : 444 (pcu/hr) 594 (pcu/hr) 594 (pcu/hr) 453 (pcu/hr) 1730 (pcu/hr) 90 (pcu/hr)	(150.004011)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = = =	.0W 0.1036 0.0067 0.0387 0.1103 0.0387 0.111
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) $W = 5.2$ $W cr = 0$ $q a-b = 0$ $q a-b = 0$ $q a-c = 49$ MAJOR ROAD (ARM C) $W c-b = 2.5$ $Vr c-b = 22$ $q c-a = 67$ $q c-b = 23$ MINOR ROAD (ARM B) $W b-a = 2.5$ $W c -b = 2.5$	(metres) (pcu/hr) (pcu/hr) (metres) (metres) (pcu/hr) (pcu/hr) (metres) (metres) (metres)	Unnamed Rd 1 GEOMETRIC D = E = F = Y = F for (Qb-ac) =	0.752 0.813 0.813 0.821 0.08		Q b-a = Q b-c = Q c-b = Q c-a = Q c-a = TOTAL FLOW =	DVEMENT : 444 (pcu/hr) 594 (pcu/hr) 453 (pcu/hr) 1730 (pcu/hr) 90 (pcu/hr)	(150.004011)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a DFC c-a	OF DESIGN FL = = = = = =	.0W 0.1036 0.0067 0.0387 0.1103 0.0387 0.0387
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) $W = 5.2$ $W cr = 0$ $q a-b = 0$ $q a-b = 0$ $q a-c = 49$ MAJOR ROAD (ARM C) $W c-b = 2.5$ $Vr c-b = 22$ $q c-a = 67$ $q c-b = 23$ MINOR ROAD (ARM B) $W b-a = 2.5$ $W c - 2.5$ $Vr c-b = 2.5$ $Vr c-b = 2.5$ $Vr b-a = 2.5$	(metres) (metres) (pcu/hr) (pcu/hr) (metres) (metres) (pcu/hr) (pcu/hr) (metres) (metres) (metres) (metres)	Unnamed Rd 1 GEOMETRIC D = E = F = Y = F for (Qb-ac) =	0.752 0.813 0.813 0.821 0.08		Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	DVEMENT : 444 (pcu/hr) 594 (pcu/hr) 594 (pcu/hr) 453 (pcu/hr) 1730 (pcu/hr) 90 (pcu/hr)	(150.004011)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a (Share Lane) DFC c-a	OF DESIGN FL = = = = =	.0W 0.1036 0.0067 0.0387 0.1103 0.0387 0.111
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) $W = 5.2$ $W cr = 0$ $q a-b = 0$ $q a-b = 0$ $q a-c = 49$ MAJOR ROAD (ARM C) $W c-b = 2.5$ $Vr c-b = 22$ $q c-a = 67$ $q c-b = 23$ MINOR ROAD (ARM B) $W b-a = 2.5$ $W c-b = 2.5$ $Vr b-a = 22$ $Vr b-a = 22$ $Vr b-a = 22$ $Vr b-a = 24$	(metres) (metres) (pcu/hr) (pcu/hr) (metres) (pcu/hr) (pcu/hr) (metres) (metres) (metres) (metres) (metres)	Unnamed Rd 1 GEOMETRIC D = E = F = Y = F for (Qb-ac) =	0.752 0.813 0.813 0.821 0.08		Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	DVEMENT : 444 (pcu/hr) 594 (pcu/hr) 594 (pcu/hr) 453 (pcu/hr) 1730 (pcu/hr) 90 (pcu/hr)	(1-0.004047)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a (Share Lane) DFC c-a CRITICAL DFC	OF DESIGN FL = = = = =	.0W 0.1036 0.0067 0.0387 0.1103 0.0387 0.111
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) $W = 5.2$ $W cr = 0$ $q a-b = 0$ $q a-b = 0$ $q a-c = 49$ MAJOR ROAD (ARM C) $W c-b = 2.5$ $Vr c-b = 22$ $q c-a = 67$ $q c-b = 23$ MINOR ROAD (ARM B) $W b-a = 2.5$ $W b-a = 2.5$ $W b-a = 2.5$ $Vr b-a = 22$ $Vr b-a = 22$ $Vr b-a = 24$ $Vr b-c = 22$ $Vr b-a = 22$	(metres) (metres) (pcu/hr) (pcu/hr) (metres) (pcu/hr) (pcu/hr) (metres) (metres) (metres) (metres) (metres) (metres)	Unnamed Rd 1 GEOMETRIC D = E = F = Y = F for (Qb-ac) =	0.752 0.813 0.813 0.821 0.08		Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	DVEMENT : 444 (pcu/hr) 594 (pcu/hr) 594 (pcu/hr) 453 (pcu/hr) 1730 (pcu/hr) 90 (pcu/hr)	(1-0.004047)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC b-ac (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = =	.ow 0.1036 0.0067 0.0387 0.1103 0.0387 0.111
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 5.2 W cr = 0 q a-b = 0 q a-c = 49 MAJOR ROAD (ARM C) W c-b = 2.5 Vr c-b = 22 q c-a = 67 q c-b = 23 MINOR ROAD (ARM B) W b-a = 2.5 W b-c = 2.5 W b-c = 2.5 V b-a = 22 Vr b-a = 24 Vr b-c = 22 q b-a = 46	(metres) (metres) (pcu/hr) (pcu/hr) (metres) (pcu/hr) (metres) (metres) (metres) (metres) (metres) (metres) (metres) (metres) (metres) (metres) (metres)	Unnamed Rd 1 GEOMETRIC D = E = F = Y = F for (Qb-ac) =	0.752 0.813 0.813 0.821 0.08		Q b-a = Q b-c = Q c-b = Q c-a = Q c-a = TOTAL FLOW =	DVEMENT : 444 (pcu/hr) 594 (pcu/hr) 594 (pcu/hr) 453 (pcu/hr) 1730 (pcu/hr) 90 (pcu/hr)	(1-0.004047)	COMPARISION TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a (Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FL = = = = =	.ow 0.1036 0.0067 0.0387 0.1103 0.0387 0.111

FM CONSULTANCY LIMIT	ED PRIC	ORITY JUNCTION CALCULA	TION			INITIALS	DATE
fic Impact Assessment for Proposed Temporary Open Stora	age of Construction Material and Equipment of 3 Years at Va	rious Lots in D.D.129, Lau Fau Shan		F	Prepared By:	FF	Jan-2025
F - Deep Bay Rd / Unnamed Rd 3	2027 D	esign - PM Peak	Pro	oject No.: 80108 0	Checked By:	MM	Jan-2025
				F	Reviewed By:	FM	Jan-2025
	(ARM C) Deep Bay Rd [5] [6] 30 52 ↓ ↓ 80 [1] ↓ 27 [2] ↑ 14 25 [4] [3]	(ARM B) Unnamed Rd 3	NOTES : (GEOMETR W = MA W cr = CE W b-a = LAI W c-b = LAI W c-b = LAI V c-b = VIS Vr b-a = VIS Vr b-a = VIS Vr c-b = VIS D = STI E = STI F = STI Y = (1-1)	AJOR ROAD WIDTH AJOR ROAD WIDTH ENTRAL RESERVE WID NE WIDTH AVAILABLE NE WIDTH AVAILABLE SIBILITY TO THE LEFT SIBILITY TO THE RIGH SIBILITY TO THE RIGH SIBILITY TO THE RIGH REAM-SPECIFIC B-A REAM-SPECIFIC B-C REAM-SPECIFIC C-B 0.0345W)	DTH TO VEHICLE W TO VEHICLE W FOR VEHICLES T FOR VEHICLES T FOR VEHICLE T FOR VEHICLE	AITING IN STR AITING IN STR AITING IN STR WAITING IN S S WAITING IN S WAITING IN S WAITING IN	REAM b-a REAM b-c REAM c-b TREAM b-a STREAM b-a STREAM b-c STREAM c-b
	Deep Bay Rd (ARM A)						
GEOMETRIC DETAILS:	Deep Bay Rd (ARM A) GEOMETRIC FACTORS :	THE CAPACITY OF MOVEN	MENT :	(COMPARISION C	F DESIGN FLO	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS :	THE CAPACITY OF MOVEN	MENT :	(COMPARISION C	F DESIGN FLO	ow
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752	THE CAPACITY OF MOVEN Q b-a =	MENT : 445 (pcu/hr)	(COMPARISION C TO CAPACITY: DFC b-a	DF DESIGN FLO	DW 0.0607
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826	Q b-a = Q b-c =	445 (pcu/hr) 609 (pcu/hr)	(COMPARISION C TO CAPACITY: DFC b-a DFC b-c	DF DESIGN FLO = =	0.0607 0.1314
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres) q a-b = 25 (pcu/hr) q a-b = 25 (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 V = 0.791	Q b-a = Q b-c = Q c-b = Q b-c =	445 (pcu/hr) 609 (pcu/hr) 580 (pcu/hr)	(COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b	DF DESIGN FLO = = =	0.0607 0.1314 0.0897
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 25$ (pcu/hr) $q a-c = 14$ (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834	Q b-a = Q b-c = Q c-b = Q b-ac =	MENT : 445 (pcu/hr) 609 (pcu/hr) 580 (pcu/hr) 557 (pcu/hr) 1620 (pcu/hr)) 	COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-ac Share L cap	DF DESIGN FLO = = = = =	0.0607 0.1314 0.0897 0.1920
$\begin{array}{rcl} \textbf{GEOMETRIC DETAILS:} \\ \mbox{MAJOR ROAD (ARM A)} \\ W &= & 4.8 & (metres) \\ W cr &= & 0 & (metres) \\ q a-b &= & 25 & (pcu/hr) \\ q a-c &= & 14 & (pcu/hr) \\ \end{array}$	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834	Q b-a = Q b-c = Q c-b = Q c-a = Q c-a =	MENT : 445 (pcu/hr) 609 (pcu/hr) 580 (pcu/hr) 557 (pcu/hr) 1639 (pcu/hr)) 	COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-ac Share Lane)	DF DESIGN FLO = = = = =	0.0607 0.1314 0.0897 0.1920
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres) q a-b = 25 (pcu/hr) q a-c = 14 (pcu/hr) MAJOR ROAD (ARM C)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.748	Q b-a = Q b-c = Q c-b = Q c-a = Q c-a = TOTAL FLOW =	MENT : 445 (pcu/hr) 609 (pcu/hr) 580 (pcu/hr) 557 (pcu/hr) 1639 (pcu/hr) 52 (pcu/hr)) 	COMPARISION C TO CAPACITY: DFC b-a DFC c-b DFC c-b DFC c-ac Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0607 0.1314 0.0897 0.1920 0.0183
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) W = 4.8 (metres) W cr = 0 (metres) q a-b = 25 (pcu/hr) q a-c = 14 (pcu/hr) MAJOR ROAD (ARM C) W c-b = 2.1 (metres) Vr c-b = 2.3 (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.748	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 445 (pcu/hr) 609 (pcu/hr) 580 (pcu/hr) 557 (pcu/hr) 1639 (pcu/hr) 52 (pcu/hr)) 	COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0607 0.1314 0.0897 0.1920 0.0183
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 25$ (pcu/hr) $q a-c = 14$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $Q c = 30$ (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.748	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 445 (pcu/hr) 609 (pcu/hr) 580 (pcu/hr) 557 (pcu/hr) 1639 (pcu/hr) 52 (pcu/hr)) 	COMPARISION C TO CAPACITY: DFC b-a DFC c-b DFC c-b DFC b-ac Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0607 0.1314 0.0897 0.1920 0.0183
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 25$ (pcu/hr) $q a-c = 14$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 30$ (pcu/hr) $q c-b = 52$ (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.748	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 445 (pcu/hr) 609 (pcu/hr) 580 (pcu/hr) 557 (pcu/hr) 1639 (pcu/hr) 52 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC b-ac Share Lane) DFC c-a	DF DESIGN FLO	0.0607 0.1314 0.0897 0.1920 0.0183
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 25$ (pcu/hr) $q a-c = 14$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 30$ (pcu/hr) $q c-b = 52$ (pcu/hr) $q c-b = 52$ (pcu/hr) $MINOR ROAD (ARM B)$	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.748	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 445 (pcu/hr) 609 (pcu/hr) 580 (pcu/hr) 557 (pcu/hr) 1639 (pcu/hr) 52 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a DFC c-a CRITICAL DFC	DF DESIGN FLO = = = = =	0.0607 0.1314 0.0897 0.1920 0.0183 0.19
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 25$ (pcu/hr) $q a-c = 14$ (pcu/hr) $q a-c = 14$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 30$ (pcu/hr) $q c-b = 52$ (pcu/hr) $q c-b = 52$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.748	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 445 (pcu/hr) 609 (pcu/hr) 580 (pcu/hr) 557 (pcu/hr) 1639 (pcu/hr) 52 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b DFC c-a DFC c-a	DF DESIGN FL(= = = = =	0.0607 0.1314 0.0897 0.1920 0.0183 0.19
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 25$ (pcu/hr) $q a-c = 14$ (pcu/hr) $q a-c = 14$ (pcu/hr)W c-b = 2.1 (metres) $Vr c-b = 38$ (metres) $Q c-a = 30$ (pcu/hr) $q c-b = 52$ (pcu/hr) $q c-b = 52$ (pcu/hr) $W b-a = 2.5$ (metres)W b-a = 2.5 (metres)W b-c = 2.5 (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.748	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 445 (pcu/hr) 609 (pcu/hr) 580 (pcu/hr) 557 (pcu/hr) 1639 (pcu/hr) 52 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-a Share Lane) DFC c-a	DF DESIGN FL(= = = = =	0.0607 0.1314 0.0897 0.1920 0.0183 0.19
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 25$ (pcu/hr) $q a-c = 14$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 30$ (pcu/hr) $q c-b = 52$ (pcu/hr) $q c-b = 52$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-c = 2.5$ (metres) $V b-a = 22$ (metres) $V b-a = 22$ (metres)	Deep Bay Rd (ARM A)	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 445 (pcu/hr) 609 (pcu/hr) 580 (pcu/hr) 557 (pcu/hr) 1639 (pcu/hr) 52 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC b-c DFC c-b DFC c-b Share Lane) DFC c-a	DF DESIGN FLC = = = = =	0.0607 0.1314 0.0897 0.1920 0.0183 0.19
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 25$ (pcu/hr) $q a-c = 14$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 30$ (pcu/hr) $q c-b = 52$ (pcu/hr) $q c-a = 30$ (pcu/hr) $q c-b = 52$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-a = 2.5$ (metres) $V b-a = 22$ (metres) $V b-a = 24$ (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.748	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = O c-a = TOTAL FLOW =	MENT : 445 (pcu/hr) 609 (pcu/hr) 580 (pcu/hr) 557 (pcu/hr) 1639 (pcu/hr) 52 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC c-b DFC c-b DFC c-a Share Lane) DFC c-a CRITICAL DFC	DF DESIGN FLC = = = = =	0.0607 0.1314 0.0897 0.1920 0.0183 0.19
GEOMETRIC DETAILS:MAJOR ROAD (ARM A) $W = 4.8$ (metres) $W cr = 0$ (metres) $q a-b = 25$ (pcu/hr) $q a-c = 14$ (pcu/hr)MAJOR ROAD (ARM C) $W c-b = 2.1$ (metres) $Vr c-b = 38$ (metres) $q c-a = 30$ (pcu/hr) $q c-b = 52$ (pcu/hr) $q c-b = 52$ (pcu/hr)MINOR ROAD (ARM B) $W b-a = 2.5$ (metres) $W b-a = 2.5$ (metres) $VI b-a = 22$ (metres) $VI b-a = 24$ (metres) $VI b-a = 24$ (metres) $Vr b-c = 38$ (metres)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.748	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 445 (pcu/hr) 609 (pcu/hr) 580 (pcu/hr) 557 (pcu/hr) 1639 (pcu/hr) 52 (pcu/hr)) 	COMPARISION C TO CAPACITY: DFC b-a DFC c-b DFC c-b DFC c-a Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0607 0.1314 0.0897 0.1920 0.0183 0.19
GEOMETRIC DETAILS: MAJOR ROAD (ARM A) $W =$ 4.8 (metres) $W cr =$ 0 (metres) $q a-b =$ 25 (pcu/hr) $q a-c =$ 14 (pcu/hr) MAJOR ROAD (ARM C) W W c-b = 2.1 (metres) Vr c-b = 38 (metres) q c-a = 30 (pcu/hr) q c-b = 52 (pcu/hr) MINOR ROAD (ARM B) W b-a = 2.5 (metres) W b-a = 2.5 (metres) VI b-a = 22 (metres) VI b-a = 24 (metres) Vr b-a = 24 (metres) Vr b-c = 38 (metres) q b-a = 27 (pcu/hr)	Deep Bay Rd (ARM A) GEOMETRIC FACTORS : D = 0.752 E = 0.826 F = 0.791 Y = 0.834 F for (Qb-ac) = 0.748	Q b-a = Q b-c = Q c-b = Q b-ac = Q c-a = TOTAL FLOW =	MENT : 445 (pcu/hr) 609 (pcu/hr) 580 (pcu/hr) 557 (pcu/hr) 1639 (pcu/hr) 52 (pcu/hr)		COMPARISION C TO CAPACITY: DFC b-a DFC c-b DFC c-b DFC c-a Share Lane) DFC c-a	DF DESIGN FLO = = = = = =	0.0607 0.1314 0.0897 0.1920 0.0183 0.19