申請理由

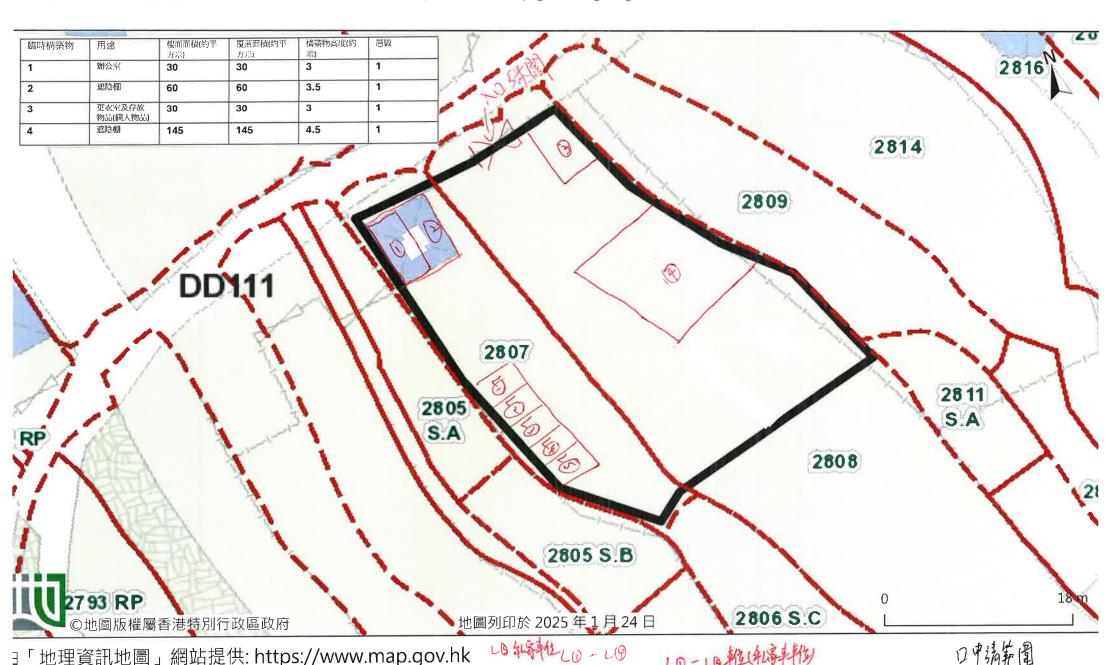
根據城市規劃條例第 16 條作出規劃許可申請

擬在新界元朗八鄉丈量約份第 111 約地段第 2807 號(部分)、第 2808 號(部分) 擬議臨時商店及服務行業(汽車陳列室)連附屬設施,以及相關的填土工程(為期 3 年)

- ▶ 申請地點的面積約為 1050 平方米·根據錦田分區計劃大綱草圖編號 S/YL-PH/11、申請地點現時被規劃作「鄉村式發展」地帶。
- ▶ 本擬議發展為臨時性質,因此不會影響申請地點長遠待規劃意向。根據租賃文件, 該用地可作商業及服務行業之用,在未首先獲得批准的情況下,該地段不允許用於 其他土地用途。因此,上述開發申請仍然符合租約。
- ➤ 擬議申請的汽車陳列室在「鄉村式發展」地帶,城市規劃委員會曾批准相類似,申請包括: A/YL-PH/1043 (2025 年 2 月 14 日獲批)。因此希望城市規劃委員會對本申請作出相同的對待。
- ▶ 申請地段將設有4個擬議建築物。
- ➤ 遮蔭棚計劃放置例如汽車等減慢因日曬雨淋而受到損耗的情況。辦公室用作員工休息及存放文件的地方,部分位置用作存放汽車零件/工具等,主要服務鄰近橫台山一帶村民。
- ▶ 申請地點主要用作汽車陳列展示及銷售用途·不會進行拆卸、保養、修理、噴漆或 其他工場活動。申請地點只為臨時性質·不會取代該區作鄉村式發展用途的規劃意 向。
- ▶ 申請地點會採用混凝土作平整物料,厚度不超過 0.03 米,申請期限結束後會將混凝土打碎並運走,已使用混凝土平整的範圍不會再進行平整工程,已填土商度為32.2mpd,希望填土合法化。
- 擬議用途的營業時間為星期一至星期五上午十點至下午五時(星期六/日及公眾假期休息)。

- ▶ 根據以上各點‧誠意懇求城市規劃委員會寬大批准新界元朗八鄉丈量約份第 111 約 地段第 2807 號(部分)、第 2808 號(部分)擬議臨時商店及服務行業(汽車陳列室)連附 屬辦公室及相關的填土工程(為期三年)。
- ▶ 申請場地不會進行涉及回收,修理,拆卸及其他工場活動。
- ▶ 場地足夠安排私家車/輕盈貨車進出場地。車輛機動空間直徑為10米。

⊔Urgent	⊔Return receipt	□Expand Group □Re	estricted	□Prevent Copy	
From: Sent:		2025-06-	06 星期3	5 11:28:47	
To: Subject:		ph/1071			


場地不會有重型貨車出入場地,展示車輛皆是 2 手車為主,不需用貨車運送車輛,會安排人手駕 駛車輛往來場地。

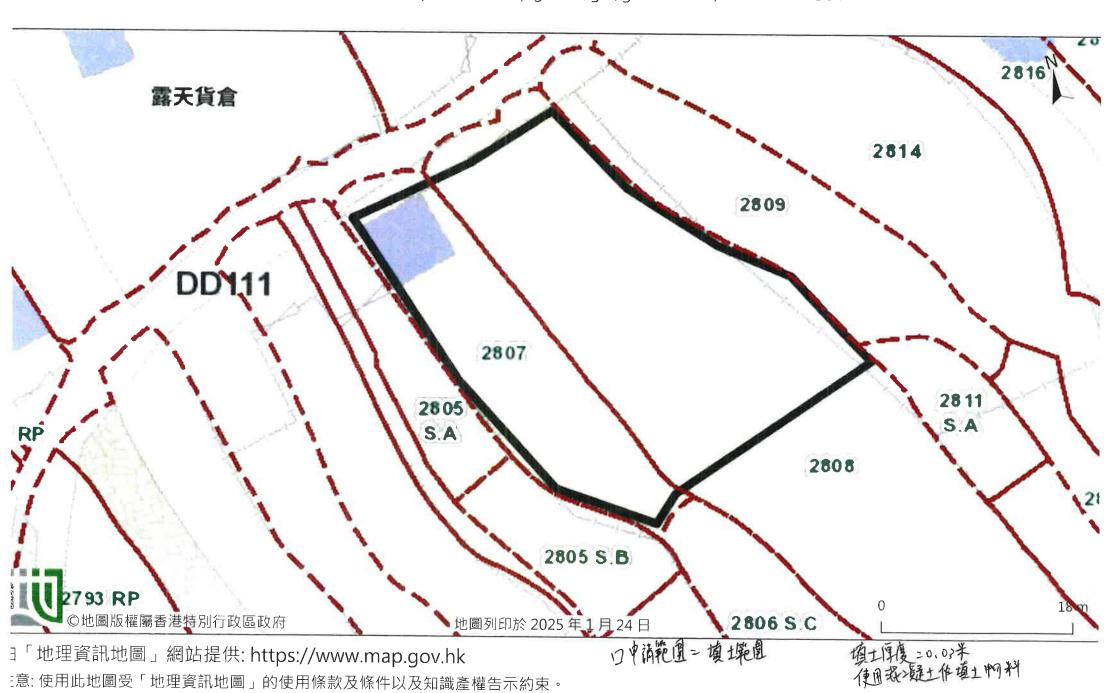
Best regards sunny

O. GEOINFO MAP 地理資訊地圖

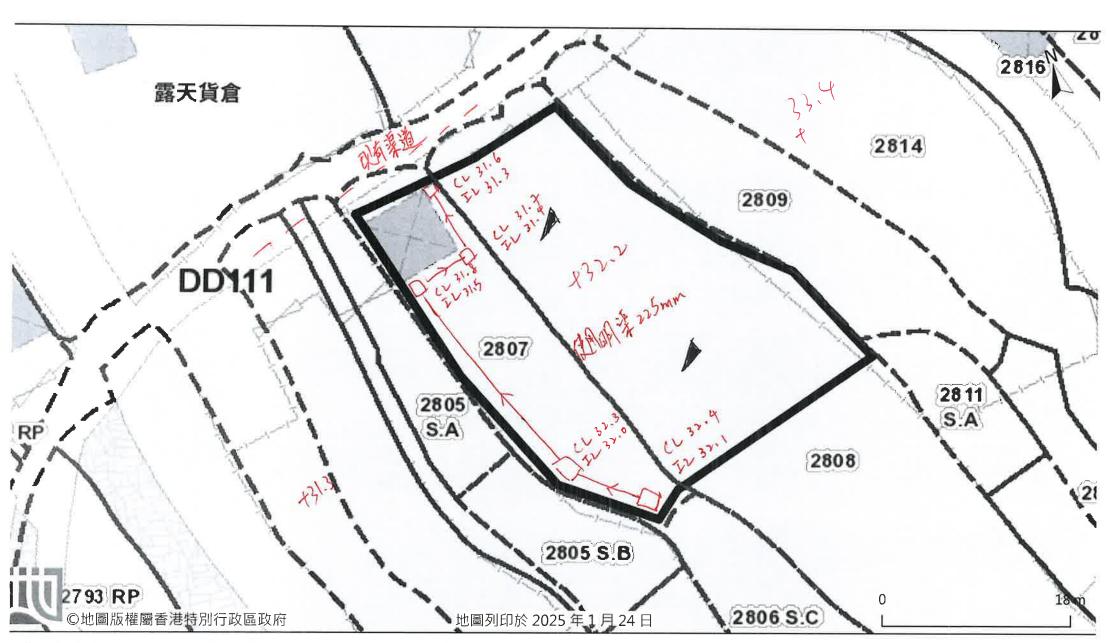
布局設計圖

前往地圖: https://www.map.gov.hk/gm/geo:22.4435,114.0974?z=564

ョ「地理資訊地圖」網站提供: https://www.map.gov.hk


三意:使用此地圖受「地理資訊地圖」的使用條款及條件以及知識產權告示約束。

口中清花園



填土乾星圖

前往地圖: https://www.map.gov.hk/gm/geo:22.4435,114.0974?z=564

前往地圖: https://www.map.gov.hk/gm/geo:22.4435,114.0974?z=564

- ョ「地理資訊地圖」網站提供: https://www.map.gov.hk
- E意: 使用此地圖受「地理資訊地圖」的使用條款及條件以及知識產權告示約束。

Stormwater Drain Calculation

- (a) Stormwater Discharge Calculation
- (i) Design Date

Return year: 1 in 10 years

Run off coefficient: C = 1.0

Area of catchment in m²=785m²

Duration: 10 min

The Rational Method

Estimation of Storm water run-off, Q=0.278 x C x i x A

Where Q = Peak run-off in m3/s

C = Run-off coefficient

i = Rainfall intensity in mm/hr

A = Area of catchment in m²

(ii) Rainfall Intensity

Referring to Stormwater Drainage Manual (SDM):

The delineation of Rainfall zones = HKO Headquarters

(Refer to SDM, Figure 3)

The rainfall intensity = 168 mm/h (Refer to SDM, Table 2a)

Rainfall Increase due to Climate Change.

The rainfall increase = End of 21st Century = 16% (Refer to

SDM, Table 28)

Rainfall Increase due to Design Allowance.

The rainfall increase = End of 21st Century = 12.1% (Refer to

SDM, Table 31)

Therefore, the rainfall increase = $168 \text{ mm/h} \times (16\% + 12.1\%)$

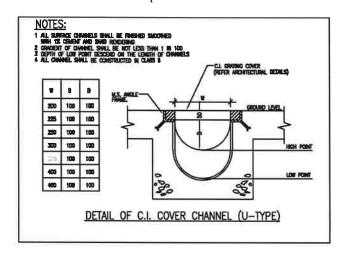
- =47.208mm/h
- = 168mm/h + 47.208mm/h
- = 215.208mm/h
- (iii) Maximum run-off from the discharge point

For Domestic structure:

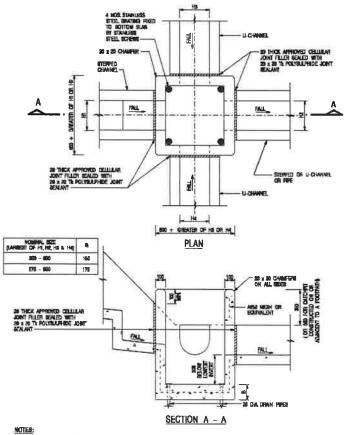
$$Qp = 0.278 \times 1 \times 215.208 \times 785 \times 10^{-6}$$

- $= 0.047 \, \text{m}3/\text{s}$
- = 47 L/s.

Dia 225mm pipe with gradient 1 in 100 at velocity


at 1.9 m/s, can accommodate for 85.9 L/s

Pipe Capacity


77.31 L/s > 47 L/s (60.79% Capacity Occupied)

(with over 10% reduction in flow area)

Standard Details for Proposed U channel

Standard Details for Catch Pit with Sand Trap

1. ALL DIMENSIONS ARE IN MILLIMETRES. 2. REFER TO SPEET 2 FOR OTHER MOTER.

STORMWATER DRAINAGE MANUAL

Update in the fifth edition highlighted in blue

Planning, Design and Management

Fifth Edition, January 2018

DRAINAGE SERVICES DEPARTMENT

Government of the Hong Kong Special Administrative Region

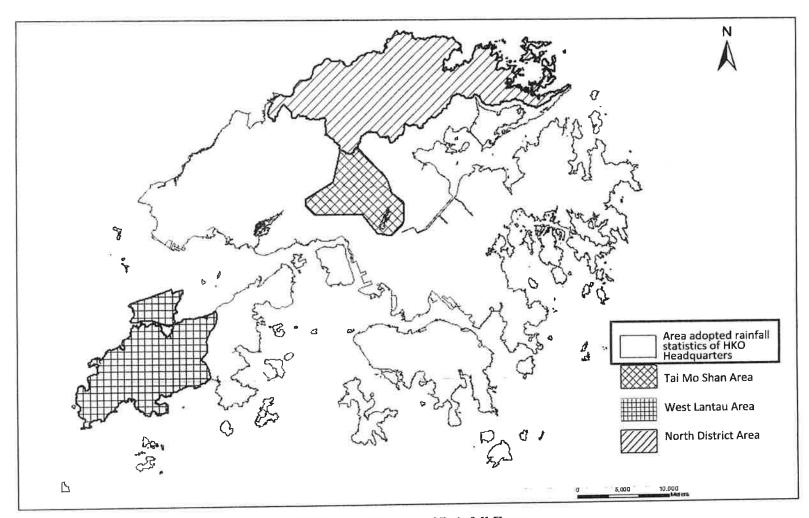


Figure 3 Delineation of Rainfall Zones

Table 2a – Intensity-Duration-Frequency (IDF) Relationship of HKO Headquarters for durations not exceeding 240 minutes

Parameters						Extreme I	ntensity x (1	nm/h) for v	arious Retu	rn Periods		
Duration (min)	ξ	_		T(year)								
	(mm/h)	α	I I	2	5	10	20	50	100	200	500	1000
240**	26.00	9.30	-0.009	29.4	40.0	47.1	54.0	62.9	69.7	76.4	85.4	92.2
120++	43.79	14.56	0.081	49.1	64.4	73.7	82.2	92.5	99.7	107	115	121
60++	64.42	19.34	0.092	71.4	91.5	104	115	128	137	145	156	163
30++	84.48	20.28	0.141	91.7	112	124	134	145	153	160	168	174
1 5++	106.47	21.34	0.157	114	135	147	157	169	176	183	191	197
10	•122.53	*24.90	*0.198	131	155	168	179	190	198	204	212	216
5	*145.27	*28.54	*0,235	155	181	195	206	218	226	232	239	243
2	•175.33	*34.18	*0.285	187	217	232	244	256	263	269	275	279
1	*198.07	*39 17	° 0 322	212	245	261	273	285	292	298	303	307
0.50	*220.81	*44.90	*0,360	236	273	290	303	315	322	327	332	335
0.25+++	244.85	52.05	0.404	263	303	322	335	347	354	359	363	366

Notes:

- 1. For interpolation/extrapolation, $x = \xi + \left(\frac{\alpha}{\kappa}\right) \left\{1 \left[-\log\left(\frac{T-1}{T}\right)\right]^{\kappa}\right\}$
- 2. ++ based on continuous rainfall recorded at HKO Headquarters (1947 2014)
- 3. +++ based on Jardi rate-of-rainfall records at King's Park (1952 2014)
- 4. * interpolated data
- 5. ** based on hourly rainfall records at HKO Headquarters (1884 1939; 1947 2014)

(k) Table 28 Rainfall Increase due to Climate Change

Replace the table with the following:

Table 28 - Rainfall Increase due to Climate Change

	Rainfall Increase
Mid 21st Century	11.1%
End of 21st Century	16.0%

Notes:

- 1. The rainfall increase is relative to the average of 1995-2014.
- 2. Mean projection values are adopted in the table.
- Mid 21st century refers to years 2041 2060; end of 21st century refers to years 2081 – 2100.

(1) Table 29 Mean Sea Level Rise due to Climate Change

Add the following table:

Table 29 - Mean Sea Level Rise due to Climate Change

	Mean Sea Level Rise
Mid 21st Century	0.20 m
End of 21st Century	0.47 m

Notes:

- 1. The mean sea level rise is relative to the average of 1995-2014.
- 2. Median projection values are adopted in the table.
- Mid 21st century refers to period around 2050; end of 21st century refers to period around 2090.

(m) Table 30 Storm Surge Increase due to Climate Change

Add the following table:

Table 30 -Storm Surge Increase due to Climate Change

Table 30a Storm Surge Increase in Mid 21st Century

Return Period (Years)	North Point/ Quarry Bay (m)	Tai Po Kau (m)	Tsim Bei Tsui (m)	Tai O (m)
2	0.04	0.05	0.05	0.03
5	0.05	0.07	0.06	0.05
10	0.06	0.08	0.08	0.05
20	0.07	0.10	0.09	0.06
50	0.08	0.13	0.11	0.08
100	0.09	0.15	0.12	0.09
200	0.10	0.17	0.13	0.10

Notes: Mid 21st century refers to period around 2050.

Table 30b Storm Surge Increase in End of 21st Century

Return Period (Years)	North Point/ Quarry Bay (m)	Tai Po Kau (m)	Tsim Bei Tsui (m)	Tai O (m)
2	0.06	0.09	0.09	0.06
5	0.09	0.14	0.12	0.09
10	0.10	0.17	0.15	0.10
20	0.12	0.20	0.17	0.12
50	0.14	0.25	0.20	0.14
100	0.16	0.29	0.23	0.16
200	0.18	0.34	0.26	0.18

Notes: End of 21st century refers to period around 2090.

(n) Table 31 Design Allowance

Add the following table:

Table 31 Design Allowance in End of 21st Century

	Extreme Sea Level Rise (Sum of Mean Sea Level Rise and Storm Surge Increase)						
Rainfall Increase	Return Period (Years)	North Point/ Quarry Bay (m)	Tai Po Kau (m)	Tsim Bei Tsui (m)	Tai O (m)		
	2	0.20	0.22	0.20	0.19		
	5	0.21	0.24	0.22	0.20		
	10	0.22	0.25	0.23	0.21		
12.1%	20	0.22	0.27	0.23	0.22		
	50	0.24	0.29	0.25	0.22		
	100	0.24	0.31	0.26	0.23		
	200	0.25	0.34	0.27	0.24		

Note:

- 1. End of 21st century refers to period around 2090.
- 2. Design allowance was derived from the projection difference (median values) between very high greenhouse gas emissions scenario [SSP5-8.5] and intermediate greenhouse gas emissions scenario [SSP2-4.5]. For design
- allowance in mid 21st century, designers can make reference to the table as shown in Appendix 2.

(o) Appendices 1 and 2

Add Appendices 1 and 2 in the following pages:

(b) \triangle values. Common \triangle values are given in the following table:

<u>Material</u>	Δ
dense sand, gravel	1.65
concrete	1.2 to 1.4
asphalt concrete	1.3 to 1.4
granite	1.5 to 2.1

(c) K_{β} values. K_{β} adjusts for reduced shear stress on the bank and reduced stabilizing forces due to side slope. This factor is not applicable to the bed, for which a factor of 1 can be assumed.

$$K_{\beta} = \sqrt{1 - \frac{\sin^2 \beta}{\sin^2 \phi}} \frac{1}{0.8}$$

where

 β = side slope of river bank in degrees

 ϕ = angle of repose in degrees

(d) $K\gamma$ values. Lane suggested the following table for $K\gamma$ to account for river sinuosity:

Degree of Sinuosity	<u>Κ</u> γ
straight canal	1.00
slightly sinuous river	0.90
moderately sinuous river	0.75
very sinuous river	0.60

The sizing of armouring stones for wave resistance in the estuarine reach of drainage channels can be carried out in accordance with guidelines in CED (1996).

9.3 VELOCITY DESIGN IN CHANNELS AND PIPES

Deposition of sediment in stormwater channels and pipes is inevitable and suitable allowance should be made in the design. For the permissible degradation between desilting cycles, the following guideline is proposed to take into account the effects to flow capacity due to materials deposited on the bed:

(a) 5% reduction in flow area if the gradient is greater than 1 in 25.

(b) 10% reduction in flow area in other cases

(B)Reference

c) Table determining the pipe size for a given flow at the specified gradient using the k value of 0.003.

Gradient	Nominal Diameter	DN90	DN100	DN150	DN225	DN300	DN375
H/L	Internal Diameter (m)	0.0858	0.1034	0.1545	0.2418	0.3041	0.3891
	k (mm)	0.003	0.003	0.003	0.003	0.003	0.003
10.00%	Velocity (m/s)	3.4	3.8	4.9	6.5	7.5	8.8
10.00%	Flow L/s	19.4	31.8	92.0	299.5	546.9	1043.8
5.00%	Velocity (m/s)	2.3	2.6	3.4	4.5	5.2	6.1
5.00%	Flow L/s	13.3	21.8	63.2	206.1	376.8	720.2
3.33%	Velocity (m/s)	1.8	2.1	2.7	3.6	4.2	4.9
3.3370	Flow L/s	10.6	17.4	50.6	165.5	302.8	579.1
2.50%	Velocity (m/s)	1.6	1.8	2.3	3.1	3.6	4.2
2.3076	Flow L/s	9.1	14.9	43.3	141.5	259.1	495.9
2.00%	Velocity (m/s)	1.4	1.6	2.0	2.7	3.2	3.7
2.0070	Flow L/s	8.0	13.2	38.3	125.3	229.6	439.6
1.67%	Velocity (m/s)	1.3	1.4	1.8	2.5	2.9	3.3
1.0776	Flow L/s	7.2	11.9	34.6	113.5	207.9	398.3
1.43%	Velocity (m/s)	1.1	1.3	1.7	2.3	2.6	3.1
1.4370	Flow L/s	6,6	10.9	31.8	104.3	191.2	366.4
1.25%	Velocity (m/s)	1.1	1.2	1.6	2.1	2.4	2.9
1.23/6	Flow L/s	6.2	10.1	29.6	97.0	177.8	340.8
1.11%	Velocity (m/s)	1.0	1.1	1.5	2.0	2.3	2.7
1.1170	Flow L/s	5.8	9.5	27.7	90.9	166.8	319.7
1.00%	Velocity (m/s)	0.9	1.1	1.4	1.9	2.2	2.5
2.0070	Flow L/s	5.4	9.0	26.2	85.9	157.5	301.9
0.83%	Velocity (m/s)	0.9	1.0	1.3	1.7	2.0	2.3
7.0570	Flow L/s	4.9	8.1	23.6	77.7	142.6	273.4

口性範圍

10

出入車輛流量

時間和進入車輛次數如下:

10:00 至	估計約1輛車出入申請地點,5車輛停泊。
17:00	
17:00 至	估計約 0 輛車出入申請地點,4 車輛停泊
10:00	

主要出入為10時-17時,營業時間。其餘時間預計出入都是為0架車進出,不會對周遭做成交通問題。主要道路出入口位置。

