

From:

Sent:

2026-01-20 星期二 14:54:59

To:

Subject:

A/YL-PH/1073

Attachment:

DRAINAGE PROPOSAL DD111 1073 Rev A.pdf

致規劃署

附上渠務報告

回應有關部門及公眾問題

- 1.申請地點內停泊的車輛已領牌
- 2.該地點內不會停泊任何重型貨車
- 3.回應公眾問題有關問題

其一 2 側車位 不代表每個佔用了 100 平公尺地方，主要因中間為行車通道，另一方面場地亦需要足夠調頭。

其二 靠近 CA 區域但實際上根本不足以觸及 CA 區域，對附近不會做成影響。

其三 PH/976 土地面積根本不足以村內消化問題。

懷疑意見人不是該村人士 不太了解 本村的車位 因為缺少，而經常出現租金昂貴，有所爭執的問題。每當大時大節更會坐地起價。

故有更多土地泊車提供，村內亦有更多新屋情況下，停車場的提供係絕對帶來便利。希望貴處許可本次申請

BEST REGARDS
SUNNY

DRAINAGE PROPOSAL

(STORMWATER)

AT

Lots 2897 (Part), 2898 (Part) and 2899 (Part) in

D.D. 111, Pat Heung, Yuen Long,

New Territories

Date : Nov 2025

Revision : A

CONTENT

(A) Drainage Proposal

(a) Site Plan

(b) Proposed Drainage Plan

(c) Standard Details for catchpit and hoarding opening

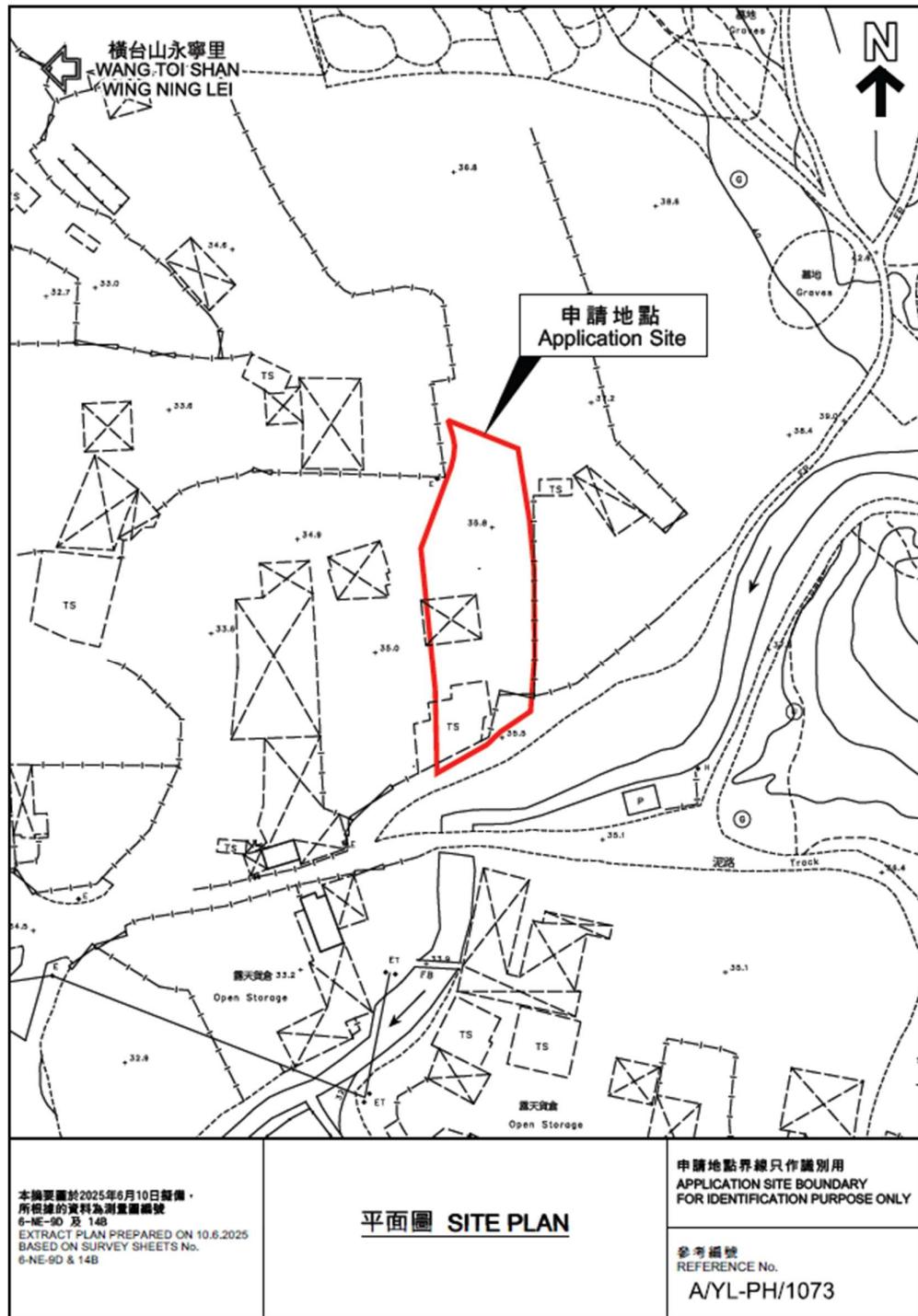
(d) Cross section of existing and proposed ground

levels

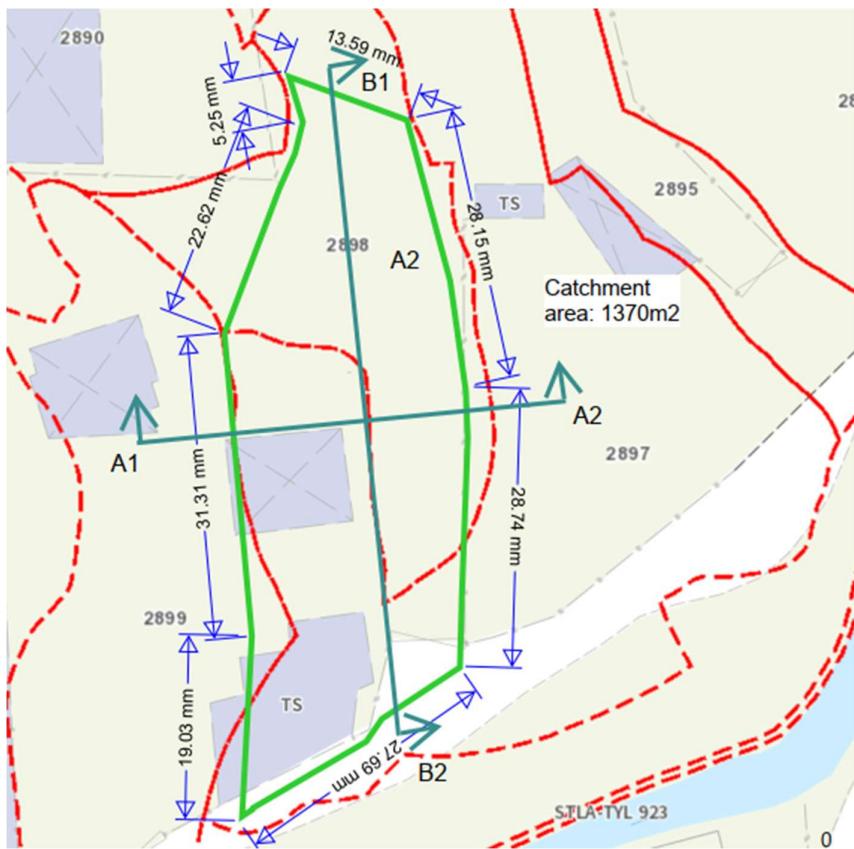
(e) Existing Site Photo

(B) Stormwater Drain Calculation

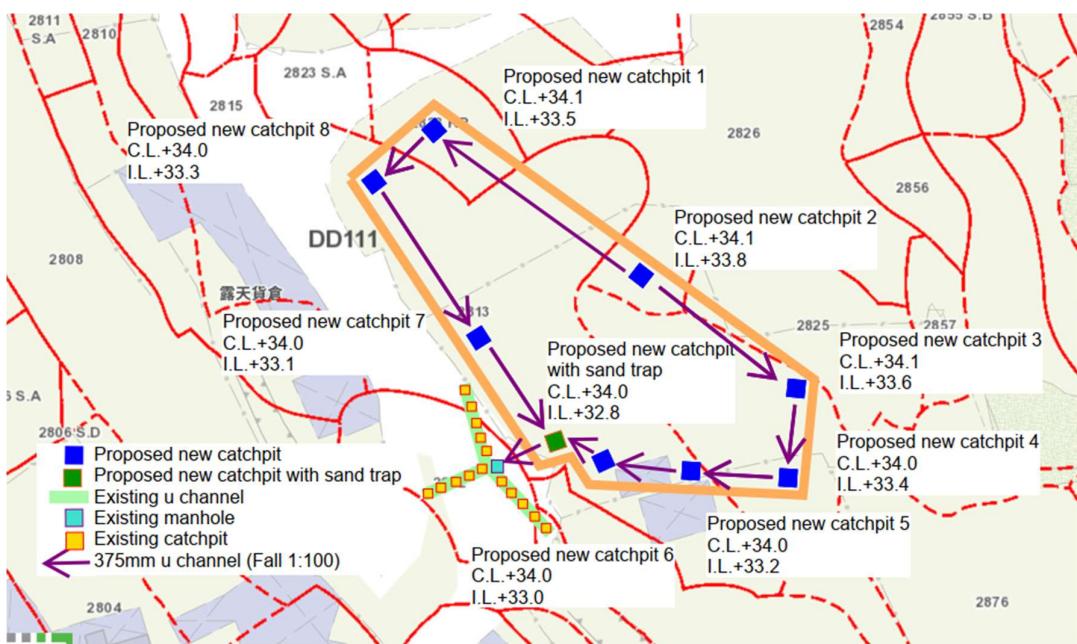
(f) Stormwater Discharge Calculation


(C) Reference

(g) Storm Water Drainage Manual

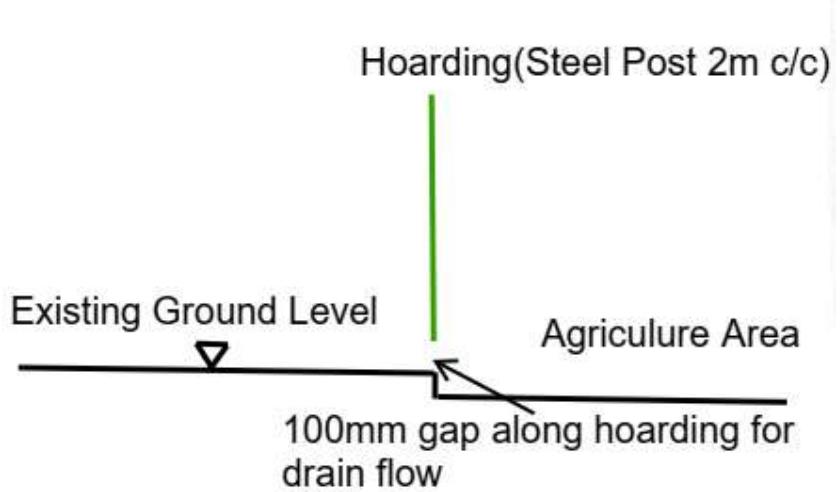

(h) Hydraulic Research Paper 8th Edition Table A16

(A) Drainage Proposal


(a) Site Plan - Lots 2897 (Part), 2898 (Part) and 2899 (Part) in D.D. 111, Pat Heung, Yuen Long, New Territories

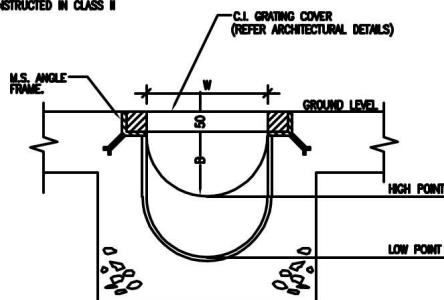
Layout Plan

(b) Proposed Drainage Plan



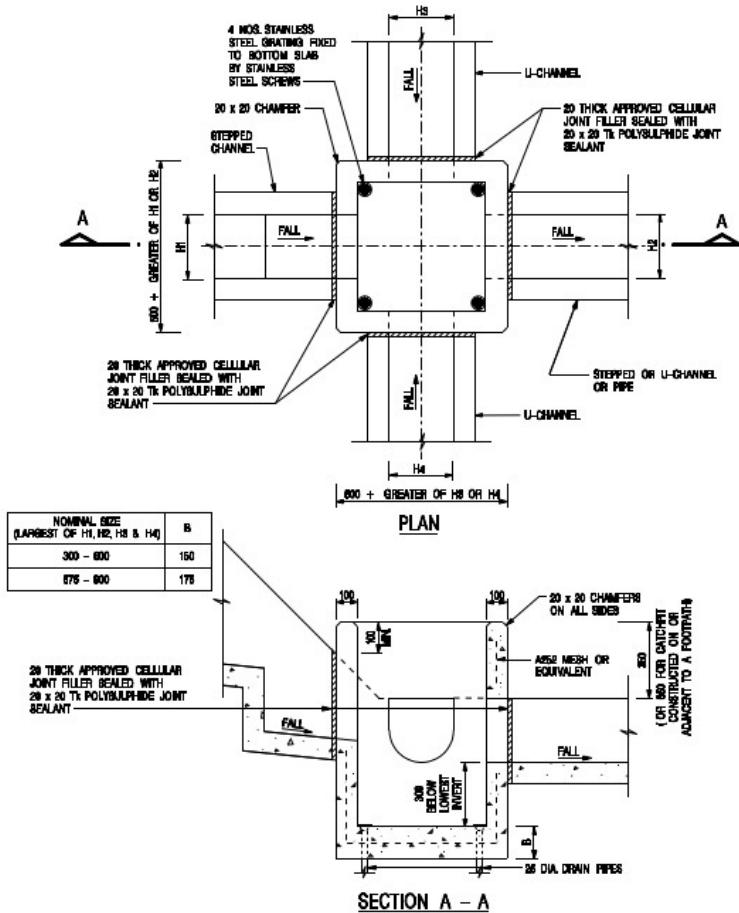
(c) Standard Details for catchpit and hoarding opening

Typical details for along hoarding



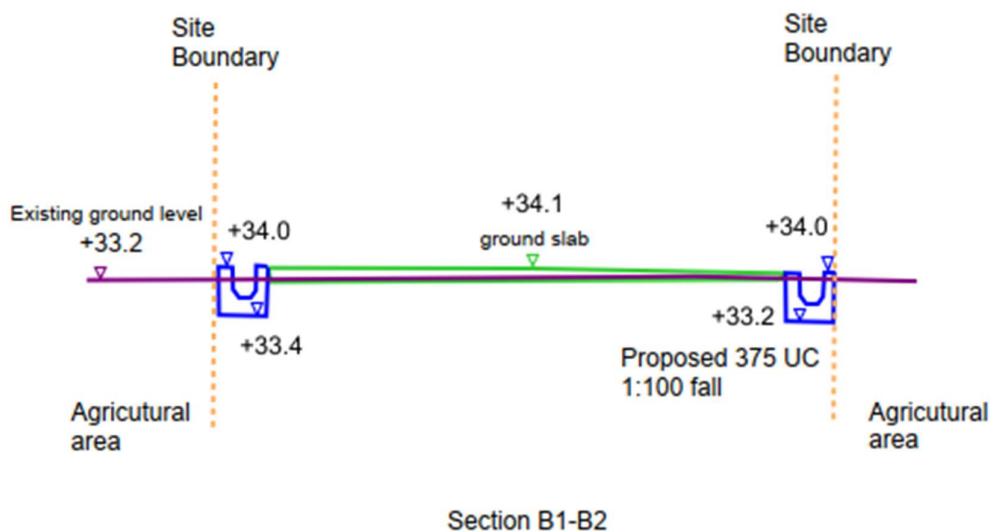
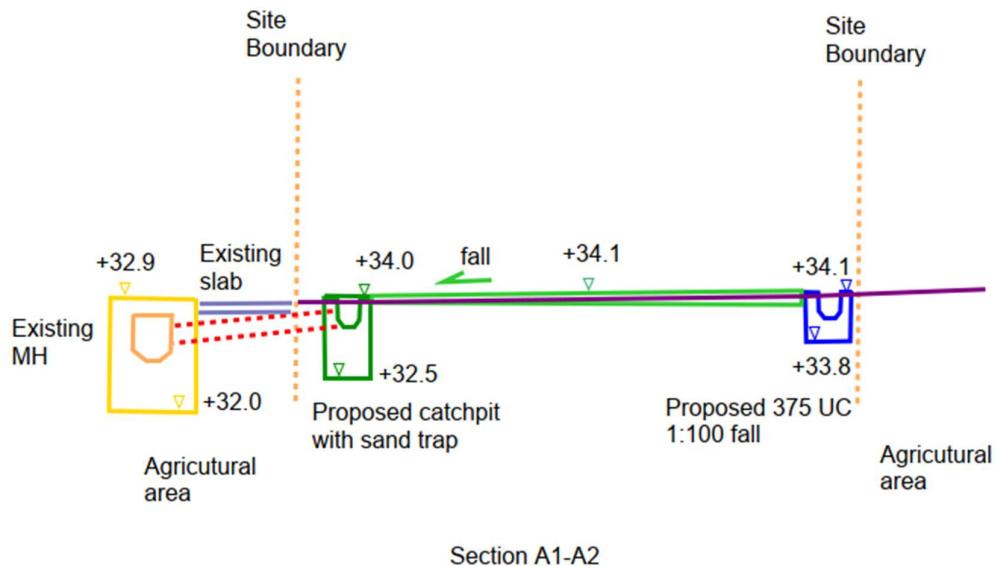
Standard Details for Proposed U channel

NOTES:


- 1 ALL SURFACE CHANNELS SHALL BE FINISHED SMOOTHED WITH 1X CEMENT AND SAND RENDERING
- 2 GRADIENT OF CHANNEL SHALL BE NOT LESS THAN 1 IN 100
- 3 DEPTH OF LOW POINT DESCEND ON THE LENGTH OF CHANNELS
- 4 ALL CHANNEL SHALL BE CONSTRUCTED IN CLASS II

W	S	B
200	100	100
225	100	100
250	100	100
300	100	100
375	100	100
400	100	100
450	100	100

DETAIL OF C.I. COVER CHANNEL (U-TYPE)



Standard Details for Catch Pit with Sand Trap

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES.
2. REFER TO SHEET 2 FOR OTHER NOTES.

(d) Cross section of existing and proposed ground levels

(e) Existing Site Photo

Location plan

1)

2)

3)

4)

5)


6)

7)

8)

(B) Stormwater Drain Calculation

(g) Stormwater Discharge Calculation

(i) Design Date

Return year : 1 in 50 years

Run off coefficient : $C = 1.0$

Approximate Catchment = $173\text{m}^2 + 1370\text{m}^2 = 1543\text{m}^2$

Duration : 5 min

The Rational Method

Estimation of Storm water run-off, $Q = 0.278 \times C \times i \times A$

Where Q = Peak run-off in m^3/s

C = Run-off coefficient

i = Rainfall intensity in mm/hr

A = Area of catchment in m^2

(ii) Rainfall Intensity

Referring to Stormwater Drainage Manual (SDM) :

The delineation of Rainfall zones = HKO Headquarters

(Refer to SDM, Figure 3)

The rainfall intensity = 218 mm/h (Refer to SDM, Table 2a)

Rainfall Increase due to Climate Change.

The rainfall increase = End of 21st Century = 16% (Refer to

SDM, Table 28)

Rainfall Increase due to Design Allowance.

The rainfall increase = End of 21st Century = 12.1% (Refer to SDM, Table 31)

Therefore, the rainfall increase = $218\text{mm/h} \times (16\% + 12.1\%)$

$$= 61.258\text{mm/h}$$

$$= 218\text{mm/h} + 61.258\text{mm/h}$$

$$= 279.258\text{mm/h}$$

(iii) Maximum run-off from the discharge point

For Domestic structure:

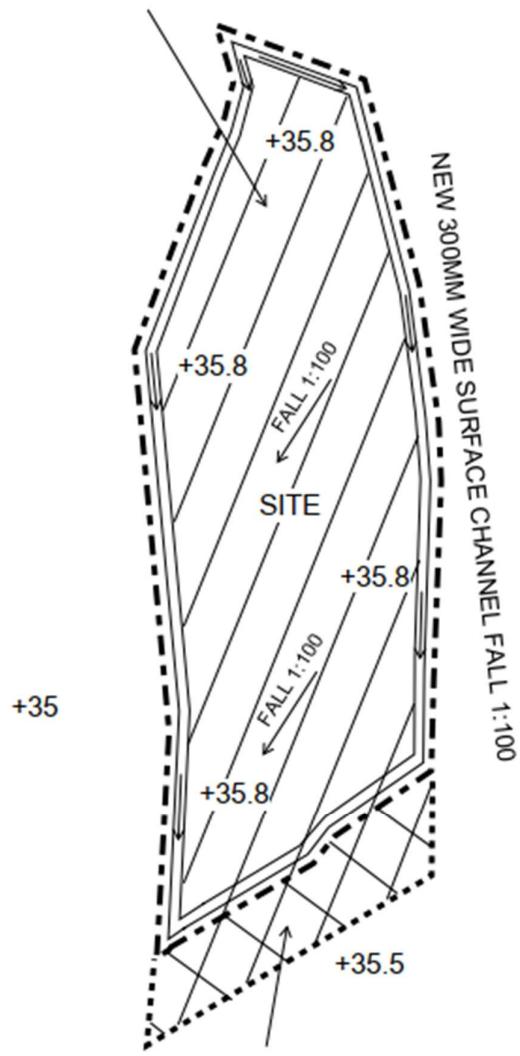
$$Q_p = 0.278 \times 1 \times 279.258 \times 1543 \times 10^{-6}$$

$$= 0.1197 \text{ m}^3/\text{s}$$

$$= 119.7 \text{ L/s.}$$

300 mm U channel with gradient 1 in 100 at velocity

at 2.097 m/s, can accommodate for 193.26 L/s (Please refer


Appendix b).

Drainage Capacity

193.26 L/s > 119.7 L/s (61.9% Capacity Occupied)

(with over 10% reduction in flow area)

SITE CATCHMENT AREA = 1370m²

OUTSIDE SITE CATCHMENT AREA = 173m²

TOTAL CATCHMENT AREA = 173m²+1370m²
= 1543m²

(C) Reference

a) Storm Water Drainage Manual

STORMWATER DRAINAGE MANUAL

Update in the fifth edition highlighted in blue

Planning, Design and Management

Fifth Edition, January 2018

DRAINAGE SERVICES DEPARTMENT

*Government of the Hong Kong
Special Administrative Region*

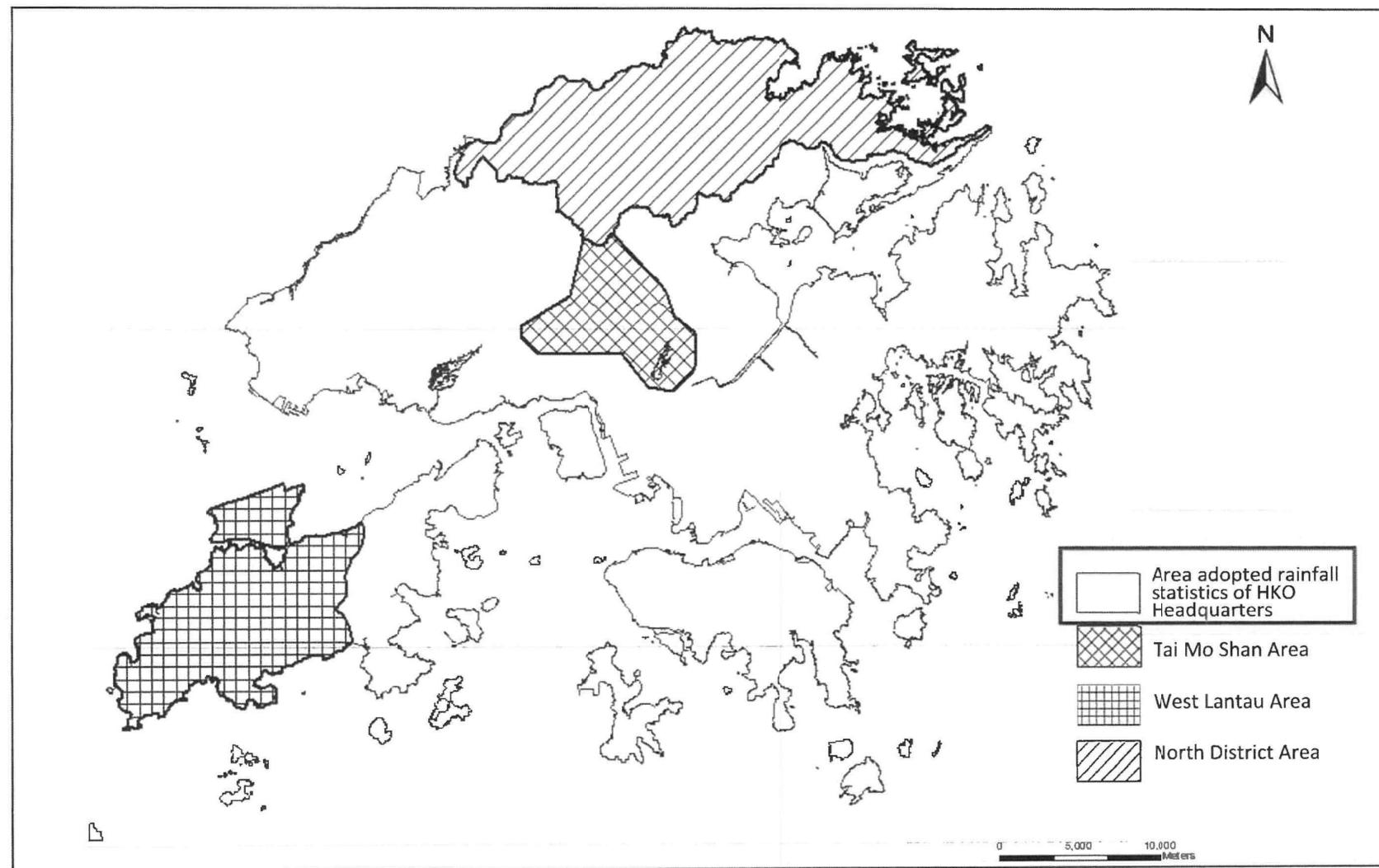


Figure 3 Delineation of Rainfall Zones

Table 2a – Intensity-Duration-Frequency (IDF) Relationship of HKO Headquarters
for durations not exceeding 240 minutes

Duration (min)	Parameters			Extreme Intensity x (mm/h) for various Return Periods T(year)								
	ξ (mm/h)	α	κ	2	5	10	20	50	100	200	500	1000
240**	26.00	9.30	-0.009	29.4	40.0	47.1	54.0	62.9	69.7	76.4	85.4	92.2
120++	43.79	14.56	0.081	49.1	64.4	73.7	82.2	92.5	99.7	107	115	121
60++	64.42	19.34	0.092	71.4	91.5	104	115	128	137	145	156	163
30++	84.48	20.28	0.141	91.7	112	124	134	145	153	160	168	174
15++	106.47	21.34	0.157	114	135	147	157	169	176	183	191	197
10	*122.53	*24.90	*0.198	131	155	168	179	190	198	204	212	216
5	*145.27	*28.54	*0.235	155	181	195	206	218	226	232	239	243
2	*175.33	*34.18	*0.285	187	217	232	244	256	263	269	275	279
1	*198.07	*39.17	*0.322	212	245	261	273	285	292	298	303	307
0.50	*220.81	*44.90	*0.360	236	273	290	303	315	322	327	332	335
0.25+++	244.85	52.05	0.404	263	303	322	335	347	354	359	363	366

Notes:

1. For interpolation/extrapolation, $x = \xi + \left(\frac{\alpha}{\kappa}\right) \left\{ 1 - \left[-\log \left(\frac{T-1}{T} \right) \right]^\kappa \right\}$
2. ++ based on continuous rainfall recorded at HKO Headquarters (1947 – 2014)
3. +++ based on Jardi rate-of-rainfall records at King's Park (1952 – 2014)
4. * interpolated data
5. ** based on hourly rainfall records at HKO Headquarters (1884 – 1939; 1947 – 2014)

(k) Table 28
 Rainfall
 Increase due
 to Climate
 Change

Replace the table with the following:

Table 28 – Rainfall Increase due to Climate Change

	Rainfall Increase
Mid 21 st Century	11.1%
End of 21 st Century	16.0%

Notes:

1. The rainfall increase is relative to the average of 1995-2014.
2. Mean projection values are adopted in the table.
3. Mid 21st century refers to years 2041 – 2060; end of 21st century refers to years 2081 – 2100.

(l) Table 29
 Mean Sea
 Level Rise due
 to Climate
 Change

Add the following table:

Table 29 – Mean Sea Level Rise due to Climate Change

	Mean Sea Level Rise
Mid 21 st Century	0.20 m
End of 21 st Century	0.47 m

Notes:

1. The mean sea level rise is relative to the average of 1995-2014.
2. Median projection values are adopted in the table.
3. Mid 21st century refers to period around 2050; end of 21st century refers to period around 2090.

(m) Table 30
 Storm Surge
 Increase due
 to Climate
 Change

Add the following table:

Table 30 –Storm Surge Increase due to Climate Change

Table 30a Storm Surge Increase in Mid 21st Century

Return Period (Years)	North Point/ Quarry Bay (m)	Tai Po Kau (m)	Tsim Bei Tsui (m)	Tai O (m)
2	0.04	0.05	0.05	0.03
5	0.05	0.07	0.06	0.05
10	0.06	0.08	0.08	0.05
20	0.07	0.10	0.09	0.06
50	0.08	0.13	0.11	0.08
100	0.09	0.15	0.12	0.09
200	0.10	0.17	0.13	0.10

Notes: Mid 21st century refers to period around 2050.

Table 30b Storm Surge Increase in End of 21st Century

Return Period (Years)	North Point/ Quarry Bay (m)	Tai Po Kau (m)	Tsim Bei Tsui (m)	Tai O (m)
2	0.06	0.09	0.09	0.06
5	0.09	0.14	0.12	0.09
10	0.10	0.17	0.15	0.10
20	0.12	0.20	0.17	0.12
50	0.14	0.25	0.20	0.14
100	0.16	0.29	0.23	0.16
200	0.18	0.34	0.26	0.18

Notes: End of 21st century refers to period around 2090.

(n) Table 31
Design
Allowance

Add the following table:

Table 31 Design Allowance in End of 21st Century

Rainfall Increase	Extreme Sea Level Rise (Sum of Mean Sea Level Rise and Storm Surge Increase)				
	Return Period (Years)	North Point/ Quarry Bay (m)	Tai Po Kau (m)	Tsim Bei Tsui (m)	Tai O (m)
12.1%	2	0.20	0.22	0.20	0.19
	5	0.21	0.24	0.22	0.20
	10	0.22	0.25	0.23	0.21
	20	0.22	0.27	0.23	0.22
	50	0.24	0.29	0.25	0.22
	100	0.24	0.31	0.26	0.23
	200	0.25	0.34	0.27	0.24

Note:

1. End of 21st century refers to period around 2090.
2. Design allowance was derived from the projection difference (median values) between very high greenhouse gas emissions scenario [SSP5-8.5] and intermediate greenhouse gas emissions scenario [SSP2-4.5]. For design allowance in mid 21st century, designers can make reference to the table as shown in Appendix 2.

(o) Appendices 1
and 2

Add Appendices 1 and 2 in the following pages:

(b) Δ values. Common Δ values are given in the following table:

<u>Material</u>	<u>Δ</u>
dense sand, gravel	1.65
concrete	1.2 to 1.4
asphalt concrete	1.3 to 1.4
granite	1.5 to 2.1

(c) K_β values. K_β adjusts for reduced shear stress on the bank and reduced stabilizing forces due to side slope. This factor is not applicable to the bed, for which a factor of 1 can be assumed.

$$K_\beta = \sqrt{1 - \frac{\sin^2 \beta}{\sin^2 \phi} \frac{1}{0.8}}$$

where β = side slope of river bank in degrees
 ϕ = angle of repose in degrees

(d) K_γ values. Lane suggested the following table for K_γ to account for river sinuosity:

<u>Degree of Sinuosity</u>	<u>K_γ</u>
straight canal	1.00
slightly sinuous river	0.90
moderately sinuous river	0.75
very sinuous river	0.60

The sizing of armouring stones for wave resistance in the estuarine reach of drainage channels can be carried out in accordance with guidelines in CED (1996).

9.3 VELOCITY DESIGN IN CHANNELS AND PIPES

Deposition of sediment in stormwater channels and pipes is inevitable and suitable allowance should be made in the design. For the permissible degradation between desilting cycles, the following guideline is proposed to take into account the effects to flow capacity due to materials deposited on the bed:

- (a) 5% reduction in flow area if the gradient is greater than 1 in 25.
- (b) 10% reduction in flow area in other cases

(C) Reference

**b) Hydraulic Research Paper 8th
Edition Table A16**

A16

(p.5 of 6)

$k_s = 0.150 \text{ mm}$
 $S = 0.01000 \text{ to } 0.03000$

Water (or sewage) at 15°C ;
 full bore conditions.

ie hydraulic gradient =
 1 in 100 to 1 in 33.3

velocities in ms^{-1}
 discharges in litres/sec

Gradient	(Equivalent) Pipe diameters in mm													
	150	200	225	250	275	300	350	375	400	450	500	525	600	630
0.01000	1.173	1.411	1.521	1.626	1.726	1.824	2.009	2.097	2.183	2.349	2.508	2.584	2.806	2.892
1/ 100	20.728	44.321	60.461	79.798	102.55	128.91	193.26	231.63	274.36	373.61	492.36	559.44	793.39	901.35
0.01050	1.203	1.447	1.559	1.667	1.770	1.870	2.060	2.150	2.238	2.408	2.571	2.649	2.877	2.964
1/ 95	21.259	45.450	61.999	81.825	105.15	132.18	198.15	237.48	281.29	383.03	504.76	573.53	813.34	924.01
0.01100	1.232	1.482	1.597	1.707	1.813	1.915	2.109	2.202	2.292	2.466	2.632	2.713	2.946	3.035
1/ 91	21.777	46.554	63.501	83.805	107.69	135.37	202.93	243.20	288.06	392.24	516.87	587.28	832.82	946.13
0.01150	1.261	1.516	1.634	1.747	1.855	1.959	2.158	2.253	2.345	2.523	2.693	2.775	3.013	3.105
1/ 87	22.284	47.633	64.970	85.741	110.17	138.49	207.59	248.79	294.67	401.23	528.71	600.73	851.87	967.75
0.01200	1.289	1.550	1.670	1.785	1.896	2.002	2.205	2.302	2.396	2.578	2.752	2.836	3.079	3.172
1/ 83	22.781	48.688	66.408	87.635	112.60	141.54	212.16	254.26	301.14	410.03	540.30	613.89	870.50	988.92
0.01250	1.317	1.583	1.706	1.823	1.936	2.045	2.252	2.351	2.447	2.632	2.810	2.895	3.143	3.239
1/ 80	23.267	49.722	67.816	89.491	114.98	144.53	216.63	259.61	307.48	418.65	551.65	626.78	888.76	1009.6
0.01300	1.344	1.615	1.740	1.860	1.975	2.086	2.297	2.398	2.496	2.685	2.866	2.954	3.207	3.304
1/ 77	23.743	50.736	69.196	91.309	117.32	147.46	221.02	264.86	313.70	427.11	562.77	639.41	906.65	1030.0
0.01350	1.370	1.647	1.774	1.896	2.014	2.127	2.342	2.445	2.545	2.738	2.922	3.011	3.269	3.368
1/ 74	24.211	51.731	70.550	93.094	119.61	150.33	225.32	270.02	319.79	435.40	573.68	651.80	924.20	1049.9
0.01400	1.396	1.678	1.808	1.932	2.052	2.167	2.386	2.491	2.592	2.789	2.976	3.067	3.330	3.431
1/ 71	24.670	52.707	71.880	94.846	121.86	153.16	229.54	275.07	325.78	443.53	584.40	663.97	941.43	1069.5
0.01450	1.422	1.708	1.841	1.967	2.089	2.206	2.429	2.536	2.639	2.839	3.030	3.122	3.389	3.492
1/ 69	25.121	53.667	73.186	96.567	124.07	155.93	233.69	280.04	331.66	451.53	594.92	675.92	958.36	1088.7
0.01500	1.447	1.738	1.873	2.002	2.125	2.245	2.471	2.580	2.685	2.888	3.083	3.177	3.448	3.553
1/ 67	25.564	54.609	74.470	98.258	126.24	158.65	237.77	284.92	337.44	459.39	605.27	687.67	974.99	1107.6
0.01600	1.496	1.797	1.936	2.069	2.197	2.320	2.554	2.666	2.775	2.985	3.185	3.283	3.563	3.671
1/ 63	26.429	56.450	76.975	101.56	130.47	163.97	245.73	294.45	348.71	474.72	625.45	710.59	1007.5	1144.4
0.01700	1.543	1.854	1.997	2.134	2.266	2.393	2.634	2.750	2.862	3.078	3.285	3.385	3.674	3.786
1/ 59	27.268	58.234	79.404	104.76	134.58	169.13	253.44	303.69	359.64	489.59	645.02	732.81	1038.9	1180.2
0.01800	1.589	1.909	2.056	2.197	2.333	2.464	2.712	2.831	2.946	3.169	3.382	3.485	3.783	3.897
1/ 56	28.082	59.966	81.762	107.87	138.57	174.14	260.93	312.66	370.26	504.02	664.02	754.39	1069.5	1214.9
0.01900	1.634	1.962	2.114	2.259	2.398	2.532	2.788	2.910	3.029	3.257	3.476	3.582	3.888	4.005
1/ 53	28.875	61.651	84.057	110.89	142.45	179.01	268.21	321.38	380.58	518.06	682.49	775.37	1099.2	1248.6
0.02000	1.678	2.015	2.170	2.319	2.462	2.600	2.862	2.987	3.109	3.343	3.568	3.676	3.990	4.111
1/ 50	29.647	63.293	86.291	113.83	146.22	183.75	275.31	329.88	390.64	531.74	700.49	795.81	1128.2	1281.5
0.02100	1.720	2.066	2.225	2.378	2.524	2.665	2.933	3.062	3.187	3.427	3.657	3.768	4.090	4.214
1/ 47.6	30.400	64.894	88.471	116.71	149.91	188.38	282.23	338.17	400.45	545.08	718.05	815.75	1156.4	1313.5
0.02200	1.762	2.115	2.279	2.435	2.584	2.729	3.004	3.135	3.263	3.509	3.744	3.858	4.187	4.314
1/ 45.5	31.135	66.458	90.600	119.51	153.51	192.89	288.99	346.26	410.03	558.10	735.19	835.22	1184.0	1344.9
0.02300	1.803	2.164	2.331	2.491	2.644	2.791	3.072	3.207	3.337	3.589	3.830	3.946	4.283	4.412
1/ 43.5	31.854	67.986	92.681	122.25	157.03	197.31	295.60	354.17	419.39	570.83	751.95	854.25	1210.9	1375.5
0.02400	1.842	2.212	2.382	2.545	2.702	2.853	3.140	3.277	3.410	3.668	3.913	4.032	4.376	4.508
1/ 41.7	32.557	69.482	94.718	124.94	160.47	201.63	302.07	361.91	428.56	583.29	768.35	872.88	1237.3	1405.4
0.02500	1.881	2.258	2.432	2.599	2.758	2.912	3.205	3.345	3.482	3.744	3.995	4.116	4.467	4.603
1/ 40.0	33.247	70.947	96.712	127.56	163.84	205.87	308.40	369.50	437.53	595.50	784.42	891.12	1263.1	1434.7
0.02600	1.920	2.304	2.482	2.651	2.814	2.971	3.270	3.413	3.552	3.819	4.075	4.199	4.557	4.695
1/ 38.5	33.922	72.384	98.668	130.14	167.15	210.02	314.61	376.93	446.33	607.46	800.16	909.00	1288.4	1463.5
0.02700	1.957	2.349	2.530	2.703	2.869	3.029	3.333	3.479	3.620	3.893	4.154	4.280	4.645	4.785
1/ 37.0	34.585	73.793	100.59	132.67	170.39	214.09	320.70	384.22	454.96	619.19	815.60	926.54	1313.3	1491.7
0.02800	1.994	2.393	2.577	2.753	2.922	3.085	3.395	3.544	3.688	3.966	4.231	4.360	4.731	4.874
1/ 35.7	35.235	75.176	102.47	135.15	173.57	218.08	326.67	391.38	463.43	630.71	830.77	943.75	1337.7	1519.4
0.02900	2.030	2.436	2.624	2.803	2.975	3.141	3.456	3.607	3.754	4.037	4.307	4.438	4.816	4.961
1/ 34.5	35.875	76.535	104.32	137.59	176.70	222.01	332.55	398.41	471.75	642.03	845.66	960.67	1361.6	1546.6
0.03000	2.066	2.479	2.669	2.852	3.027	3.195	3.516	3.670	3.819	4.107	4.381	4.515	4.899	5.047
1/ 33.3	36.503	77.871	106.14	139.98	179.77	225.87	338.32	405.32	479.93	653.15	860.30	977.29	1385.1	1573.3
	0.83	0.85	0.85	0.86	0.86	0.87	0.88	0.88	0.88	0.89	0.89	0.90	0.91	0.91

$V_{r(0.5)\text{medial}}$ for half-full circular pipes.

$k_s = 0.150 \text{ mm}$ $S = 0.01000 \text{ to } 0.03000$