寄件者:

Louis Tse

寄件日期:

2025年11月07日星期五 17:36

收件者:

tpbpd/PLAND

副本:

David Chi Chiu CHENG/PLAND; Gary Kwun Wing CHAN/PLAND; Bon Tang;

Matthew Ng; Christian Chim; Danny Ng; Grace Wong; Kevin Lam

主旨:

[FI] S.16 Application No. A/YL-SK/426 - FI to address departmental comments

附件:

FI4 for A_YL-SK_426 (20251107).pdf

類別:

Internet Email

Dear Sir,

Attached herewith the further information to address departmental comments of the subject application.

Should you require more information, please do not hesitate to contact me. Thank you for your kind attention.

Kind Regards,

Louis TSE | Town Planner R-riches Group (HK) Limited

R-riches Property Consultants Limited | R-riches Planning Limited | R-riches Construction Limited

Our Ref. : DD106 Lot 987 Your Ref. : TPB/A/YL-SK/426

The Secretary,
Town Planning Board,
15/F, North Point Government Offices,
333 Java Road,
North Point, Hong Kong

By Email

7 November 2025

Dear Sir,

4th Further Information

Proposed Temporary Open Storage of Construction Materials and Vehicles and Associated Filling of Land for a Period of 3 Years in "Agriculture" Zone,

<u>Various Lots in D.D.106, Shek Kong, Yuen Long, New Territories</u>

(S.16 Planning Application No. A/YL-SK/426)

We are writing to submit further information to address departmental comments of the subject application (Appendix I).

Should you require more information regarding the application, please contact

or the undersigned at your convenience.

Thank you for your kind attention.

Yours faithfully,

For and on behalf of

R-riches Planning Limited

Louis TSE Town Planner

Responses-to-Comments

Proposed Temporary Open Storage of Construction Materials and Vehicles and Associated Filling of Land for a Period of 3 Years in "Agriculture" Zone, <u>Various Lots in D.D.106, Shek Kong, Yuen Long, New Territories</u>

(Application No. A/YL-SK/426)

(i) A RtoC Table:

	Departmental Comments	Applicant's Responses
1. C	Comments of the Chief Engineer/Mainland Nor	rth, Drainage Services Department (CE/MN,
D	OSD)	
(Contact Person: Mr. Kenneth CAN; Tel:)
(a)	My previous comments (j), (l) and (m) are still	Please refer to the revised drainage
	valid.	proposal (Annex I).
	Previous comment: j) Please provide hydraulic calculations for the proposed discharging drainage facility demonstrating its capacity to cater for the surface runoff from the entire application site.	j) Noted. Hydraulic calculation is updated in Appendix A for your perusal.
	I) Connection details at discharge point (including cross section) with C.L., I.L and catchpit/channel bottom level should be shown in the drawing.	l) Noted. Connection details with section and levels at discharge point is updated in Figure 3 for your review.
	m) Colour photos to indicate the current conditions of the existing drainage facilities should be included in the submission. The photos taken locations and angles should be shown on the layout plan.	m) Noted. Colour Photos are shown in Appendix D for your perusal.
(b)	We have no record for the existing watercourse located at the eastern side of the application site. Please also provide photo showing the size and condition of this watercourse since the application site may block the overland flow from adjacent land.	Noted. Please find the photos of existing channel/watercourse at the eastern side in Appendix D for your review.
(c)	Please provide channels cover the area in the northwestern corner of the application site.	Noted. Please refer to updated Figure 3.

(d) The existing and proposed ground levels showed in the cross sections are not tally with the levels showed in the drainage schedule. The cross sections should be extended to show the ground levels of the adjacent areas.

Noted. The sections in Figure 5 are updated for your perusal.

Drainage Proposal

Nov 2025

Drainage Proposal

2

2

Table of Contents

1	Intro	duction	1
	1.1	Background	1
	1.2	Application Site	
2	Deve	lopment Proposal	2
	2.1	The Proposed Development	
3	Asses	ssment Criteria	
4	Propo	osed Drainage System	5
	4.1.	Proposed Channels	
5	Conc	lusion	5
L	ist of	Table	

List of Figure

Figure 1 – Site Location Plan

Figure 2 - Existing Drainage Plan

Figure 3- Proposed Drainage System

Table 1 - Key Development Parameters

Table 2- Design Return Periods under SDM

Figure 4 – Catchment Plan

Figure 5 - Sections

List of Appendix

Appendix A – Design Calculation

Appendix B - Development Layout Plan

Appendix C - Reference Drawings

Appendix D – Site Photos

Drainage Proposal

1 Introduction

1.1 Background

- 1.1.1 The applicant seeks planning permission from the Town Planning Board (the Board) to use Lots 987, 988, 989 (Part) and 990 S.C (Part) in D.D. 106, Shek Kong, Yuen Long, New Territories (the Site) for 'Proposed Temporary Open Storage of Construction Materials and Vehicles and Associated Filling of Land for a Period of 3 Years'
- 1.1.2 This report aims to support the development in drainage aspect.

1.2 Application Site

- 1.2.1 The application site is situated at the south of Shek Kong Airfield. It has an area of approx. 6,427 m². The site location is shown in **Figure 1**.
- 1.2.2 The existing site is already fully paved. The existing site levels are approx. + 13.5 mPD. No major site formation works for the application site is anticipated.
- The Application Site runoff is being discharged existing 3.5m watercourse at the south of the site 1.2.3 which would eventually discharge to Kam Tin River. Figure 2 indicates the existing drainage system of the area.

1

Drainage Proposal

2 Development Proposal

2.1 The Proposed Development

2.1.1 The total site area is approximately 6,427 m². The existing site is already fully paved before development. The catchment plan is shown in **Figure 4**.

Proposed Development Area (Approx.)	
Total Site Area (m²)	6,427
Paved Area after Development (m²)	6,427

Table 1 - Site Development Area

3 Assessment Criteria

3.1.1 The Recommended Design Return Period based on Flood Level from SDM (Table 10) is adopted for this report. The recommendation is summarized in **Table 2** below.

Description	Design Return Periods
Intensively Used Agricultural Land	2 – 5 Years
Village Drainage Including Internal Drainage System under a polder Scheme	10 Years
Main Rural Catchment Drainage Channels	50 Years
Urban Drainage Trunk System	200 Years
Urban Drainage Branch System	50 Years

Table 2- Design Return Periods under SDM

3.1.2 The proposed drainage system intended to collect runoff from internal site and external catchment. 1 in 50 years return period is adopted for drainage design.

Drainage Proposal

- 3.1.3 Stormwater drainage design will be carried out in accordance with the criteria set out in the Stormwater Drainage Manual published by DSD. The proposed design criteria to be adopted for design of this stormwater drainage system and factors which have been considered are summarised below.
 - 1. Intensity-Duration-Frequency Relationship The Recommended Intensity-Duration-Frequency relationship is used to estimate the intensity of rainfall. It can be expressed by the following algebraic equation.

$$i = \frac{a}{(t_d + b)^c}$$

The site is located within the HKO Zone. Therefore, for 50 years return period, the following values are adopted.

(Corrigendum No.1/2024)

The development is proposed for temporary use for a period of 3 years. 11.1% rainfall increase due to climate change is considered.

2. The peak runoff is calculated by the Rational Method i.e. $Q_p = 0.278CiA$

where Q_p = peak runoff in m³/s C = runoff coefficient (dimensionless) i = rainfall intensity in mm/hr A = catchment area in km²

- 3. The run-off coefficient (C) of surface runoff are taken as follows:
 - Paved Area: C = 0.95
 Unpaved Area: C = 0.35

Nov-25 3

4. Manning's Equation is used for calculation of velocity of flow inside the channels:

Manning's Equation:
$$v = \frac{R^{\frac{1}{6}}}{n} R^{\frac{1}{2}} S_f^{\frac{1}{2}}$$

Where,

V = velocity of the pipe flow (m/s)

S_f = hydraulic gradient

n = manning's coefficient

R = hydraulic radius (m)

5. Colebrook-White Equation is used for calculation of velocity of flow inside the pipes:

Colebrook-White Equation:
$$\underline{v} = -\sqrt{32gRS} \log \log \left(\frac{k_s}{14.8R} + \frac{1.255v}{R\sqrt{32gRS_f}}\right)$$

where,

V = velocity of the pipe flow (m/s)

S_f = hydraulic gradient k_f = roughness value (m)

v = kinematics viscosity of fluid

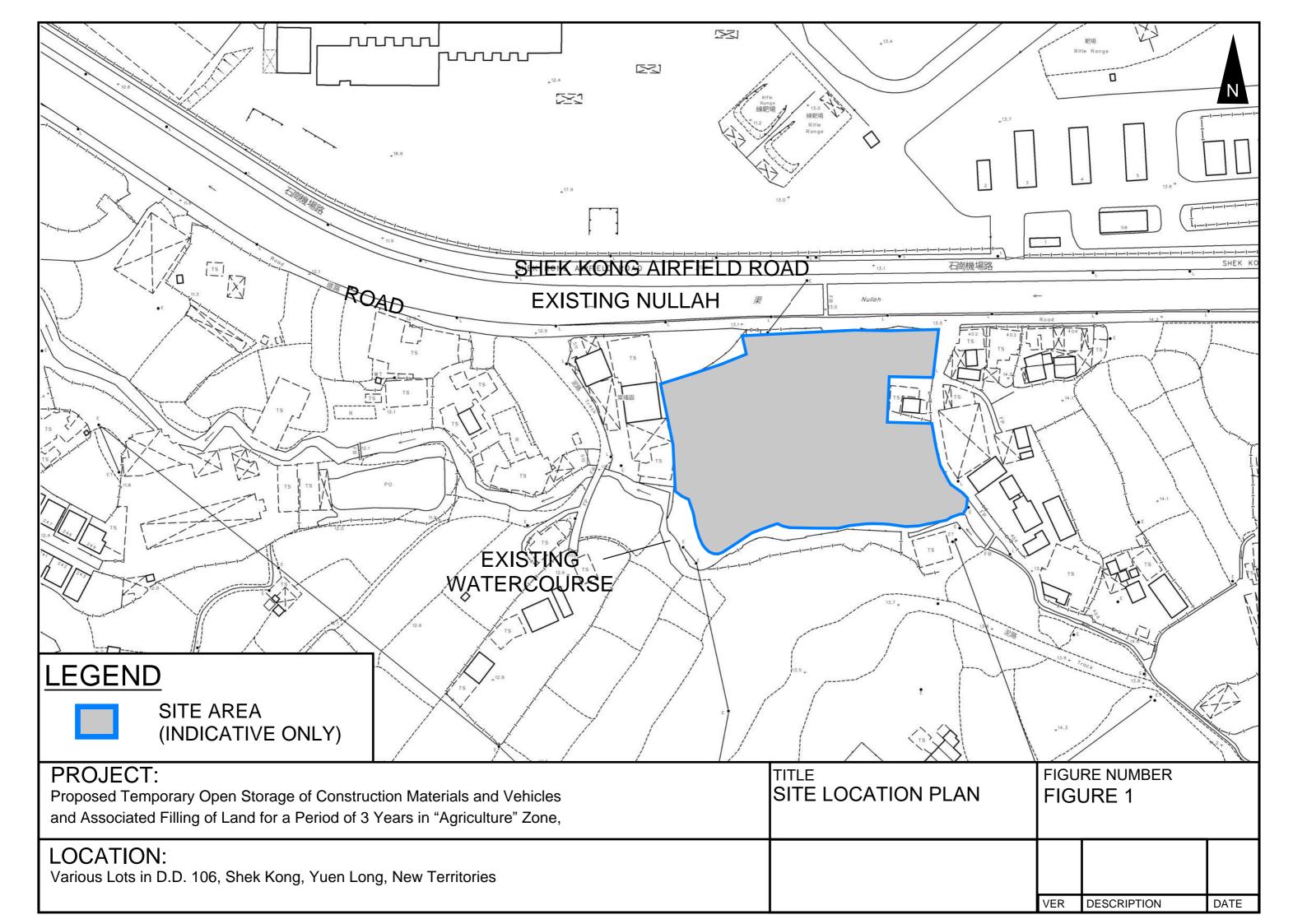
D = pipe diameter (m) R = hydraulic radius (m)

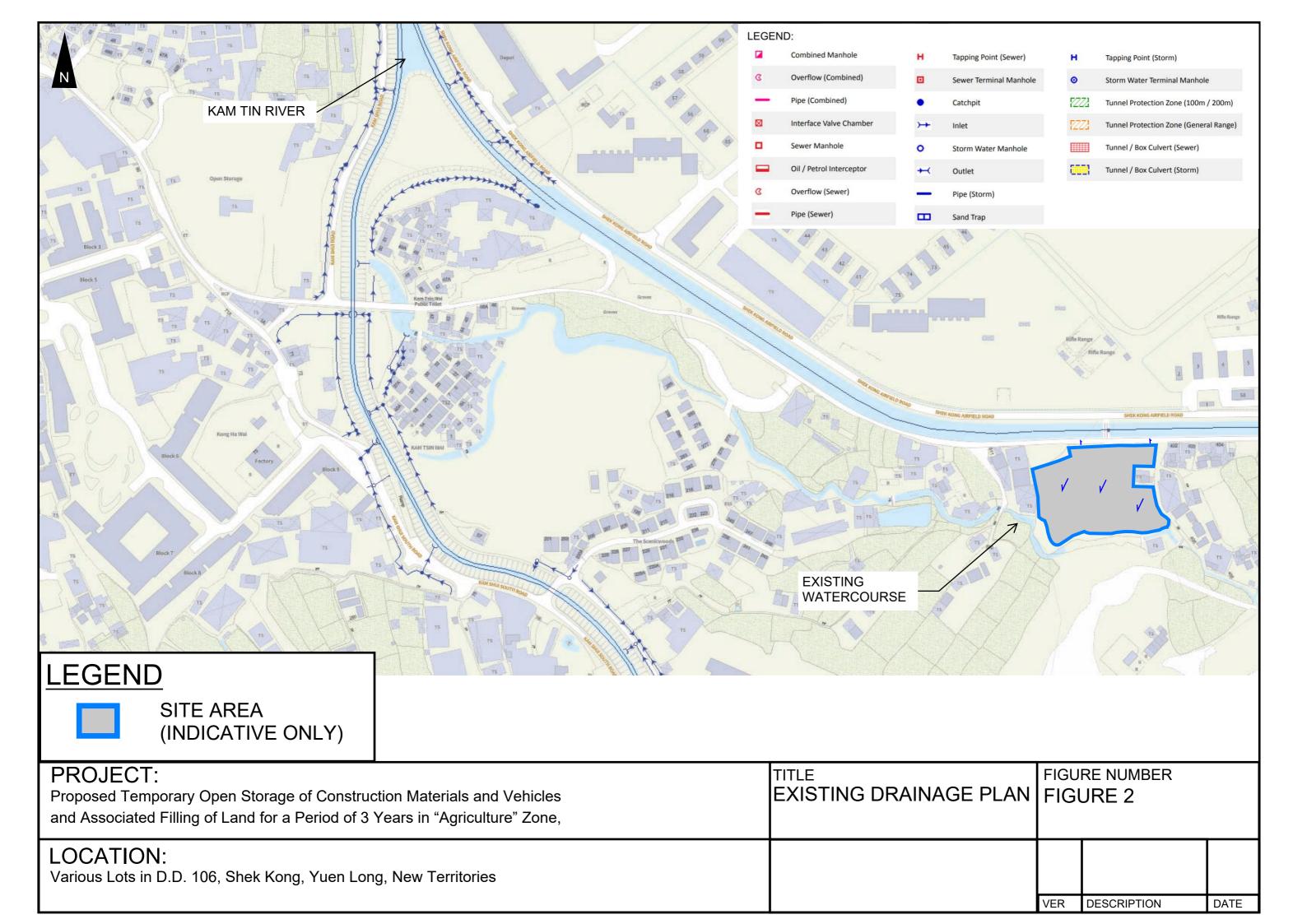
Nov-25 4

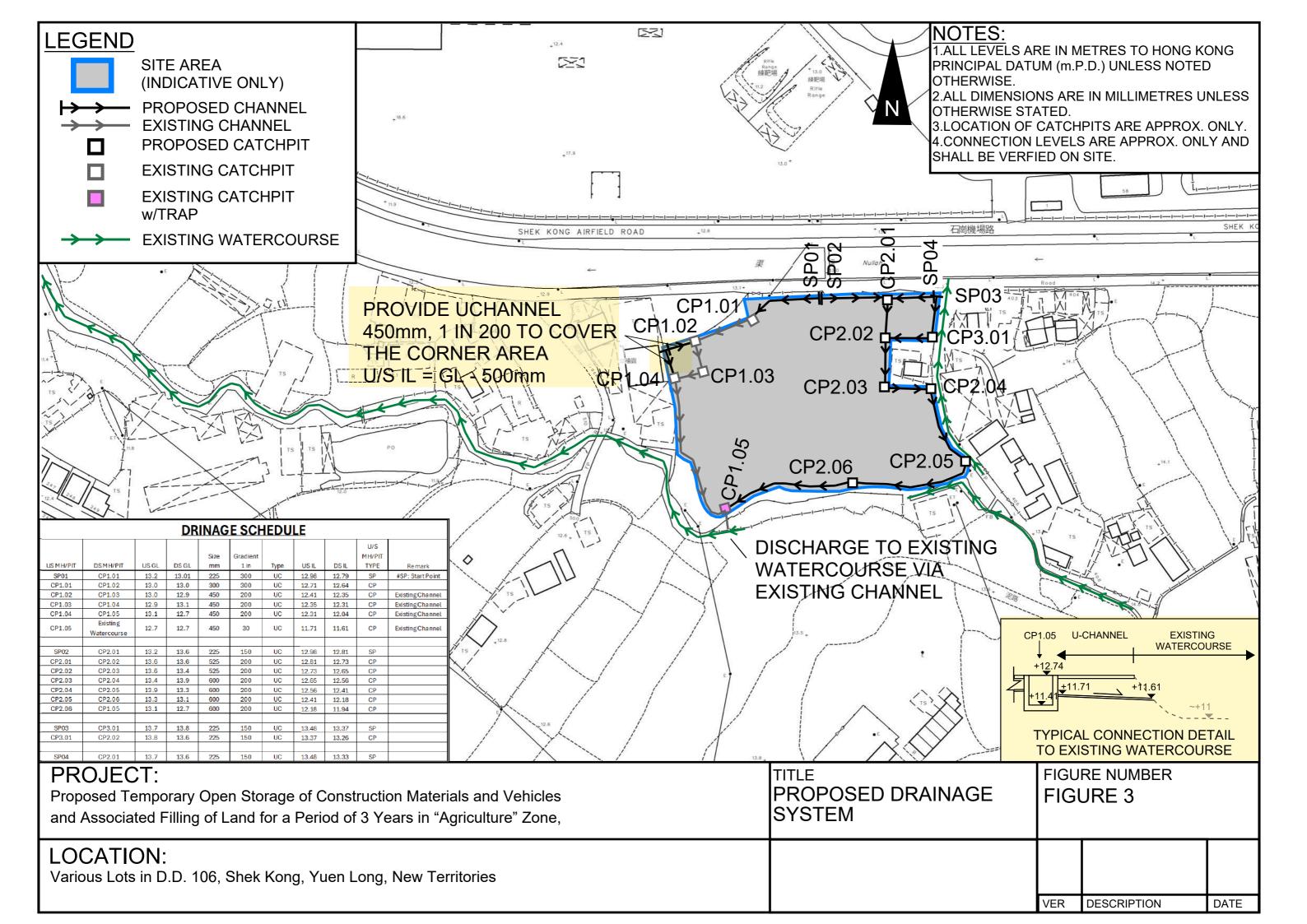
Drainage Proposal

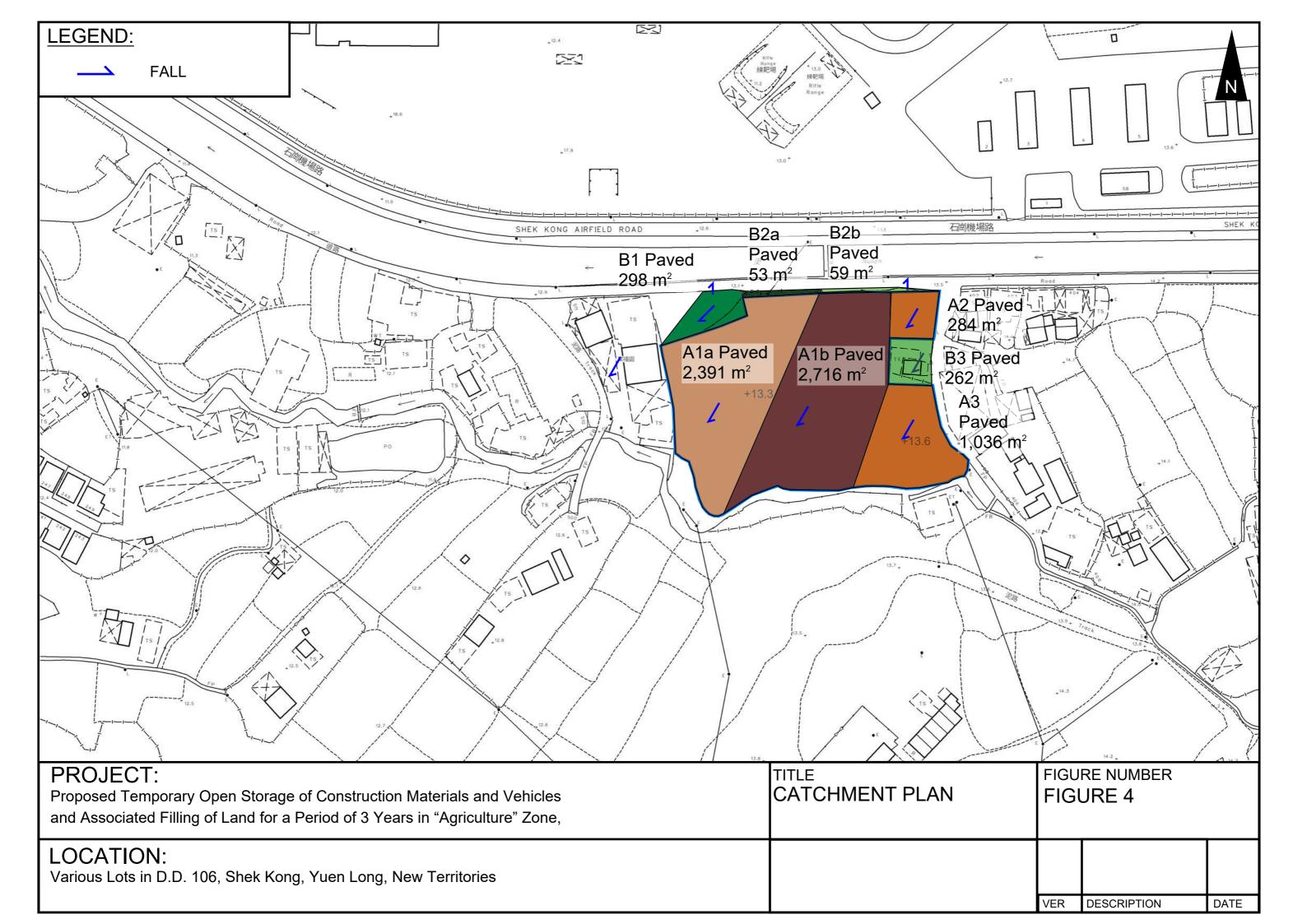
4 Proposed Drainage System

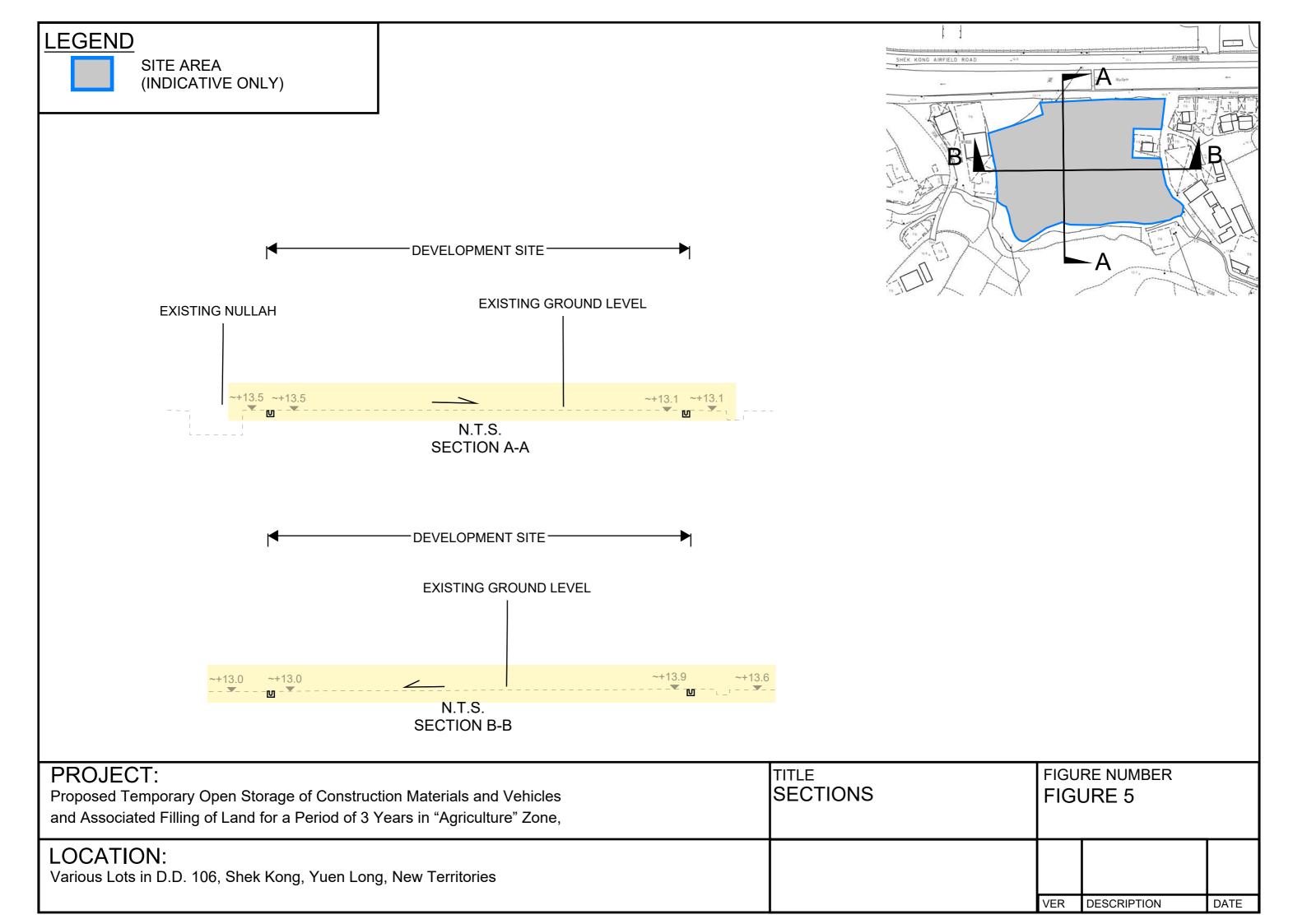
4.1. Proposed Channels


- 4.1.1 There are existing channels within site area constructed under previous planning applications no. A/YL-SK/350. According to checking in **Appendix A**, existing channels in western part of the site are proposed to be maintained. Detail shown in Appendix A.
- 4.1.2 Proposed Channels are designed for collection of runoffs for internal and external catchment. They are proposed to discharge to existing watercourse (which eventually discharge to Kam Tin River) via existing channel. The design checkings are shown in Appendix A. The capacity review of existing watercourse against flow from development area is only 7.4%. The existing site is already fully paved, no adverse drainage impact to existing drainage system is anticipated.
- 4.1.3 The design calculations of proposed UChannel are shown in **Appendix A**.
- 4.1.4 The alignment, size, gradient and details of the proposed drains are shown in Figure 3. The catchment plan is shown in Figure 4.
- 4.1.5 Reference Drawings are shown in **Appendix C** for reference.


5 Conclusion


- Drainage review has been conducted for the Proposed Development. The surface runoff will be 5.1.1 collected by the existing/proposed drains and discharged to existing drainage system.
- 5.1.2 As the existing site is already paved before development, with implementation of the above drainage system, no unacceptable drainage impact is anticipated.


End of Text -


FIGURES

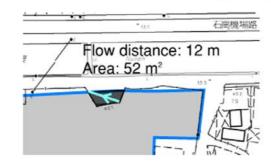
APPENDIX

Appendix A: Design Calculation

Zone								n	0.014			НКО а	505.5			
Н	О		Return Period	1 in	50	years		Ks	0.15		Storm Constant	НКО b	3.29			
								Viscosity	0.000001			НКО с	0.355			
Catchment Area Table (Area in m²)																
Catchment	A1a	A1b	A2	АЗ	B1	B2a	B2b	В3								
Total Area	2391	2716	284	1036	298	53	59	262								
Hard Paved Area	2391	2716	284	1036	298	53	59	262								
Unpaved Area	0	0	0	0	0	0	0	0								
Equival. Area	2271.45	2580.2	269.8	984.2	283.1	50.35	56.05	248.9								

Pavement Type	Hard Paved	Unpaved
Runoff Coefficient	0.95	0.35

Calculation	Table of	Drainage	Syctom


US MH/PIT	DS MH/PIT	US GL	DS GL	Size	Gradient	Type	USIL	DS IL	U/S MH/PIT	Length	V	Capacity	Catchments	Total Equivalent Area	ToC	Intensity	Total	Utilitizatio	Remark
				mm	1 in				TYPE	m	m/s##	m³/s		m²	min	mm/hr ##	Discharge	n	
																	m³/s		
SP01	CP1.01	13.20	13.01	225	300	UC	12.98	12.79	SP	28	0.75	0.03	B2a	50.35	1.20	330	0.005	13.5%	
CP1.01	CP1.02	13.01	12.96	300	300	UC	12.71	12.64	CP	21.8	0.91	0.07	B1,B2a	333.45	1.82	315	0.03	39.8%	
CP1.02	CP1.03	12.96	12.92	450	200	UC	12.41	12.35	CP	11.5	1.47	0.26	A1a,B1,B2a	2604.90	2.22	306	0.22	83.8%	Existing
CP1.03	CP1.04	12.92	13.07	450	200	UC	12.35	12.31	CP	9.5	1.47	0.26	A1a,B1,B2a	2604.90	2.35	304	0.22	83.1%	Existing
CP1.04	CP1.05	13.07	12.74	450	200	UC	12.31	12.04	CP	53.9	1.47	0.26	A1a,B1,B2a	2604.90	2.46	302	0.22	82.5%	Existing
CP1.05	Existing Watercourse	12.74	12.74	450	30	UC	11.71	11.61	CP	3	3.78	0.68	A1a,A1b,A2,A3,B1,B2a,B2b,B3	6744.05	3.25	288	0.54	79.1%	Existing
SP02	CP2.01	13.20	13.55	225	150	UC	12.98	12.81	SP	24.5	1.07	0.05	B2b	56.05	1.20	330	0.01	10.7%	
CP2.01	CP2.02	13.55	13.63	525	200	UC	12.81	12.73	CP	15.4	1.62	0.40	A1b,A2,B2b	2906.05	1.58	320	0.26	64.7%	
CP2.02	CP2.03	13.63	13.44	525	200	UC	12.73	12.65	CP	16.9	1.62	0.40	A1b,A2,B2b,B3	3154.95	1.74	316	0.28	69.5%	
CP2.03	CP2.04	13.44	13.85	600	200	UC	12.65	12.56	CP	17.6	1.78	0.57	A1b,A2,A3,B2b,B3	4139.15	1.91	313	0.36	63.1%	
CP2.04	CP2.05	13.85	13.28	600	200	UC	12.56	12.41	CP	31	1.78	0.57	A1b,A2,A3,B2b,B3	4139.15	2.08	309	0.36	62.4%	
CP2.05	CP2.06	13.28	13.13	600	200	UC	12.41	12.18	CP	45.5	1.78	0.57	A1b,A2,A3,B2b,B3	4139.15	2.37	304	0.35	61.2%	
CP2.06	CP1.05	13.13	12.74	600	200	UC	12.18	11.94	CP	47.6	1.78	0.57	A1b,A2,A3,B2b,B3	4139.15	2.80	296	0.34	59.7%	
SP03	CP3.01	13.70	13.80	225	150	UC	13.48	13.37	SP	15.5	1.07	0.05	A2,B2b	325.85	1.20	330	0.03	62.0%	
CP3.01	CP2.02	13.80	13.63	225	150	UC	13.37	13.26	CP	16.4	1.07	0.05	A2,B2b	325.85	1.44	323	0.03	60.8%	
SP04	CP2.01	13.70	13.55	225	150	UC	13.48	13.33	SP	16.6	1.07	0.05	B2b	56.05	1.20	330	0.01	10.7%	
ow from Developm	ent Area												A1a,A1b,A2,A3	6105.65	3.25	288	0.49		

#SP: Start Point ##: With 11.1% rainfall increase as per Table 28 of SDM Corrigendum No. 1/2022.

Capacity Checking of existing Watercourse for flow from Proposed Development Area Total Flow due to the application = 0.49 m³/s Utilization Rate = 7.40% Total flow due to the Application Site only occupy 7.4% of the existing Channel/ Watercourse. $Please \ kindly \ note the \ paved/unpaved \ ratio \ remain \ unchanged \ after \ development. \ NO \ additional \ run off \ generated \ from \ the \ proposed \ development$

Time of Concentration Checking

Catchment	Flow Distance	Highest Level	I amont I amal	Gradient (per 100m) = (H1-H2)/L x 100	to (min) = 0.14465L/ (H ^{0.2} A ^{0.1})	tc = to + tf
Α	L	H1	H2			
(m2)	(m)	(mPD)	(mPD)		(min)	(min)
52	12	13.3	13.2	0.833	1.2	1.2

<u>-APPENDIX B - PROPOSED SITE LAYOUT PLAN</u>

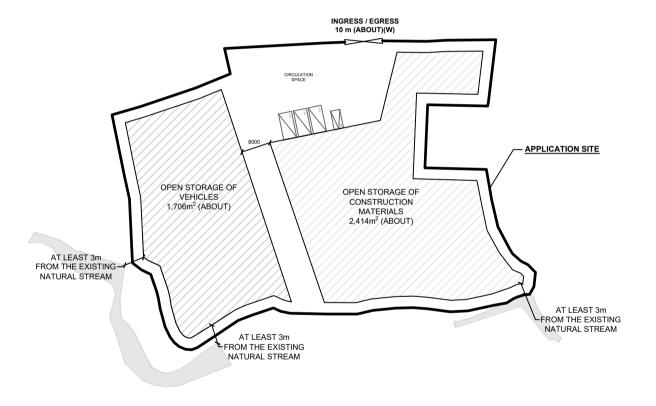
LEGEND

APPLICATION SITE

INGRESS / EGRESS

PARKING SPACE (PRIVATE CAR)

L/UL SPACE (LIGHT GOODS VEHICLE)


DEVELOPMENT PARAMETERS

APPLICATION SITE AREA : 6,427 m² (ABOUT) COVERED AREA NOT APPLICABLE UNCOVERED AREA : 6,427 m² (ABOUT)

: 4,120 m² OPEN STORAGE AREA (ABOUT) HEIGHT OF STACKING : NOT MORE THAN 3 m

NO STRUCTURE IS PROPOSED AT THE APPLICATION SITE.

PROPOSED TEMPORARY OPEN STORAGE OF CONSTRUCTION MATERIALS AND VEHICLES AND ASSOCIATED FILLING OF LAND FOR A PERIOD OF 3 YEARS

VARIOUS LOTS IN D.D. 106, SHEK KONG, YUEN LONG, NEW TERRITORIES

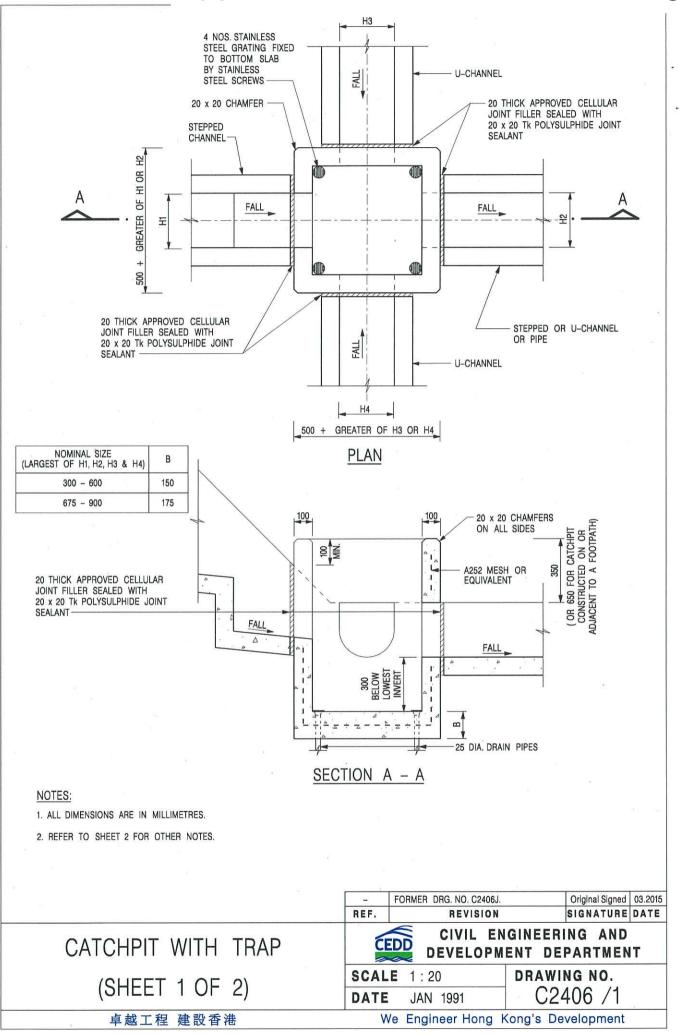
1:1000 @ A4

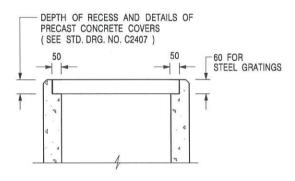
11.6.2025

PLAN 5

PARKING AND LOADING/UNLOADING PROVISION

NO. OF PRIVATE CAR PARKING SPACE


: 5 m (L) X 2.5 m (W) DIMENSION OF PARKING SPACE


NO. L/UL SPACE FOR LIGHT GOODS VEHICLE

DIMENSION OF L/UL SPACE

: 7 m (L) X 3.5 m (W)

Appendix C - Reference Drawings

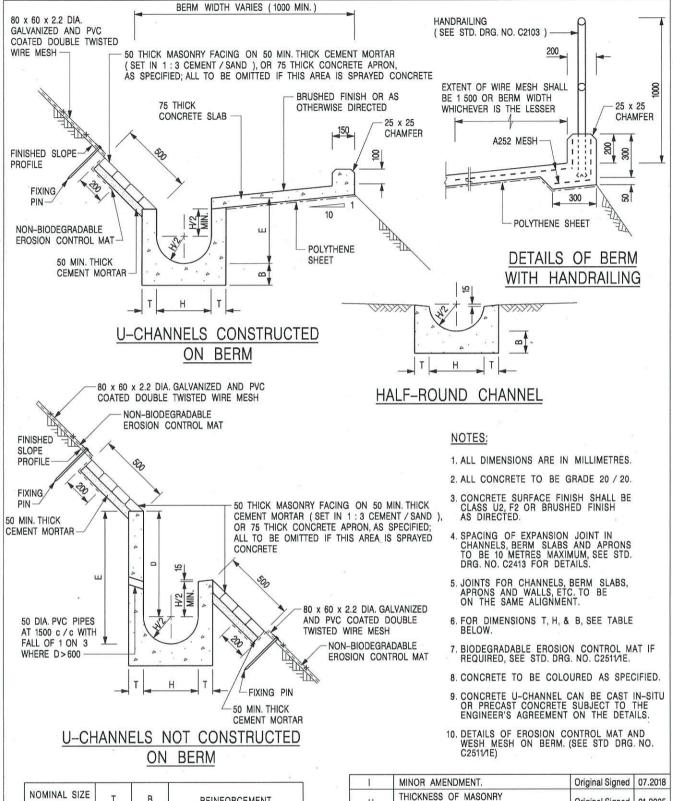
ALTERNATIVE TOP SECTION FOR PRECAST CONCRETE COVERS / GRATINGS

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE SHALL BE GRADE 20 /20.
- 3. CONCRETE SURFACE FINISH SHALL BE CLASS U2 OR F2 AS APPROPRIATE.
- 4. FOR DETAILS OF JOINT, REFER TO STD. DRG. NO. C2413.
- 5. CONCRETE TO BE COLOURED AS SPECIFIED.
- UNLESS REQUESTED BY THE MAINTENANCE PARTY AND AS DIRECTED BY THE ENGINEER, CATCHPIT WITH TRAP IS NORMALLY NOT PREFERRED DUE TO PONDING PROBLEM.
- 7. UPON THE REQUEST FROM MAINTENANCE PARTY, DRAIN PIPES AT CATCHPIT BASE CAN BE USED BUT THIS IS FOR CATCHPITS LOCATED AT SLOPE TOE ONLY AND AS DIRECTED BY THE ENGINEER.
- FOR CATCHPITS CONSTRUCTED ON OR ADJACENT TO A FOOTPATH, STEEL GRATINGS (SEE DETAIL 'A' ON STD. DRG. NO. C2405 /2) OR CONCRETE COVERS (SEE STD. DRG. NO. C2407) SHALL BE PROVIDED AS DIRECTED BY THE ENGINEER.
- 9. IF INSTRUCTED BY THE ENGINEER, HANDRAILING (SEE DETAIL 'J' ON STD. DRG. NO. C2405 /5; EXCEPT ON THE UPSLOPE SIDE) IN LIEU OF STEEL GRATINGS OR CONCRETE COVERS CAN BE ACCEPTED AS AN ALTERNATIVE SAFETY MEASURE FOR CATCHPITS NOT ON A FOOTPATH NOR ADJACENT TO IT. TOP OF THE HANDRAILING SHALL BE 1 000 mm MIN. MEASURED FROM THE ADJACENT GROUND LEVEL.
- 10. MINIMUM INTERNAL CATCHPIT WIDTH SHALL BE 1 000 mm FOR CATCHPITS WITH A HEIGHT EXCEEDING 1 000 mm MEASURED FROM THE INVERT LEVEL TO THE ADJACENT GROUND LEVEL. AND, STEP IRONS (SEE DSD STD. DRG. NO. DS1043) AT 300 c/c STAGGERED SHALL BE PROVIDED. THICKNESS OF CATCHPIT WALL FOR INSTALLATION OF STEP IRONS SHALL BE INCREASED TO 150 mm.
- FOR RETROFITTING AN EXISTING CATCHPIT WITH STEEL GRATING, SEE DETAIL 'G' ON STD. DRG. NO. C2405 /4.
- SUBJECT TO THE APPROVAL OF THE ENGINEER, OTHER MATERIALS CAN ALSO BE USED AS COVERS / GRATINGS.

REF.	REVISION	SIGNATURE	DATE
-	FORMER DRG. NO. C2406J.	Original Signed	03.2015
Α	MINOR AMENDMENT.	Original Signed	04.2016

CATCHPIT WITH TRAP (SHEET 2 OF 2)



CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

SCALE 1:20 **DATE** JAN 1991

drawing no. C2406 /2A

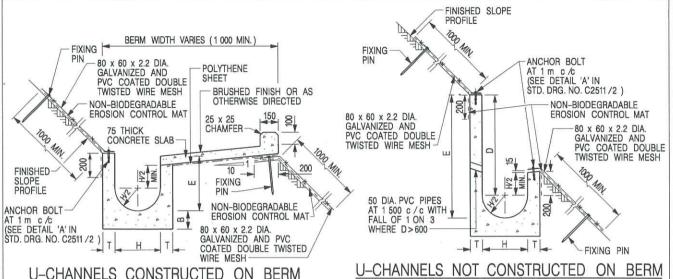
卓越工程 建設香港

NOMINAL SIZE H	T	В	REINFORCEMENT
300	80	100	A252 MESH PLACED CENTRALLY AND T=100
375 - 600	100	150	WHEN E>650
675 - 900	125	175	A252 MESH PLACED CENTRALLY

R	EF.	REVISION	SIGNATURE	DATE
	В	MINOR AMENDMENTS.	Original Signed	3.94
	С	150 x 100 UPSTAND ADDED AT BERM.	Original Signed	6.99
	D	MINOR AMENDMENT.	Original Signed	08.2001
	E	DRAWING TITLE AMENDED.	Original Signed	11.2001
	F	GENERAL REVISION.	Original Signed	12.2002
	G	MINOR AMENDMENT.	Original Signed	01.2004
	Н	THICKNESS OF MASONRY FACING AMENDED.	Original Signed	01.2005
	1	MINOR AMENDMENT.	Original Signed	07.2018

DETAILS OF HALF-ROUND AND U-CHANNELS (TYPE A -WITH MASONRY APRON)

卓越工程 建設香港


CEDD

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

SCALE 1:25

DATE JAN 1991

C2409l

U-CHANNELS CONSTRUCTED ON BERM WITH NON-BIODEGRADABLE EROSION CONTROL MAT U-CHANNELS NOT CONSTRUCTED ON BERM WITH NON-BIODEGRADABLE EROSION CONTROL MAT

BIODEGRADABLE

EROSION CONTROL MAT

07.2018

12.2017

01.2005

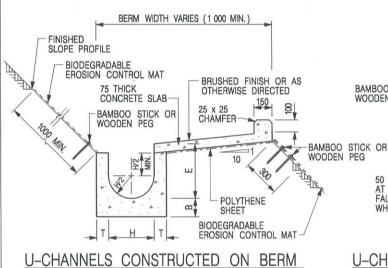
12.2002

08 2001

6.99

3.94

10.92


DATE

Original Signed

SIGNATURE

FINISHED SLOPE PROFILE

ш

WITH BIODEGRADABLE

EROSION CONTROL MAT

BAMBOO STICK OR WOODEN PEG

U-CHANNELS NOT CONSTRUCTED ON BERM

WITH BIODEGRADABLE

EROSION CONTROL MAT

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE TO BE GRADE 20 /20.
- 3. CONCRETE SURFACE FINISH SHALL BE CLASS U2, F2 OR BRUSHED FINISH AS DIRECTED.
- SPACING OF EXPANSION JOINT IN CHANNELS, BERM SLABS AND APRONS TO BE 10 METRES MAXIMUM, SEE STD. DRG. NO. C2413 FOR DETAILS.
- 5. JOINTS FOR CHANNELS, BERM SLABS, APRONS AND WALLS, ETC. TO BE ON THE SAME ALIGNMENT.
- 6. FOR DIMENSIONS T, H, & B, SEE TABLE BELOW.
- 7. FOR TYPICAL FIXING PIN DETAILS, SEE STD. DRG. NO. C2511/2.
- 8. MINIMUM SIZE OF 25 x 50 x 300mm SHALL BE PROVIDED FOR WOODEN PEG.
- MINIMUM SIZE OF 10mm DIAMETER WITH 200mm LONG SHALL BE PROVIDED FOR BAMBOO STICK.
- 10. THE FIXING DETAILS OF NON-BIODEGRADABLE AND BIODEGRADABLE EROSION CONTROL MATS ON EXISTING BERM SHALL REFER TO STD. DRG. NO. C2511/1.

NOMINAL SIZE H	Ţ	В	REINFORCEMENT
300	80	100	A252 MESH PLACED
375 - 600	100	150	CENTRALLY AND T=100 WHEN E>650
675 - 900	125	175	A252 MESH PLACED CENTRALLY

	DETAILS	OF I	HALF-	ROUN	ID A	ND
	U-CHAN	NELS	(TYP	ЕВ.	– WI	TH
I	FROSION	CON	ITROL	MAT	APF	(NO)

6
CEDD
CEDU
nac

Н

G

F

E

D

C

В

A

REF.

BAMBOO STICK OR WOODEN PEG

50 DIA. PVC PIPES AT 1 500 c/c WITH FALL OF 1 ON 3

WHERE D>600

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

SCALE DIAGRAMMATIC
DATE JAN 1991

MINOR AMENDMENT.

MINOR AMENDMENT

GENERAL REVISION.

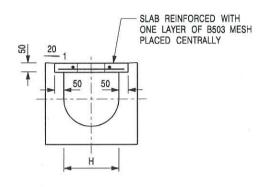
MINOR AMENDMENT.

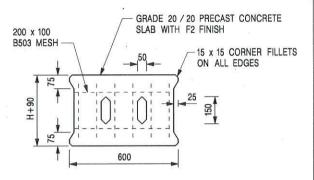
MINOR AMENDMENT.

MINOR AMENDMENT

FIXING DETAILS OF BIODEGRADABLE

150 x 100 UPSTAND ADDED AT BERM

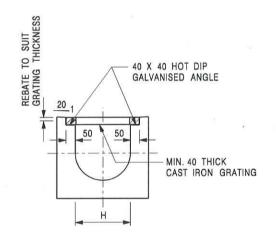

REVISION

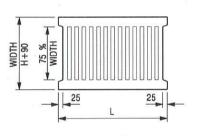

EROSION CONTROL MAT ADDED.

DIMENSION TABLE AMENDED

C2410

卓越工程 建設香港




<u>PLAN OF SLAB</u>

TYPICAL SECTION

U-CHANNELS WITH PRECAST CONCRETE SLABS

(UP TO H OF 525)

L = 600mm FOR $H \le 375$ mm L = 400mm FOR H > 375mm

TYPICAL SECTION

CAST IRON GRATING

(DIMENSIONS ARE FOR GUIDANCE ONLY, CONTRACTOR MAY SUBMIT EQUIVALENT TYPE)

U-CHANNEL WITH CAST IRON GRATING

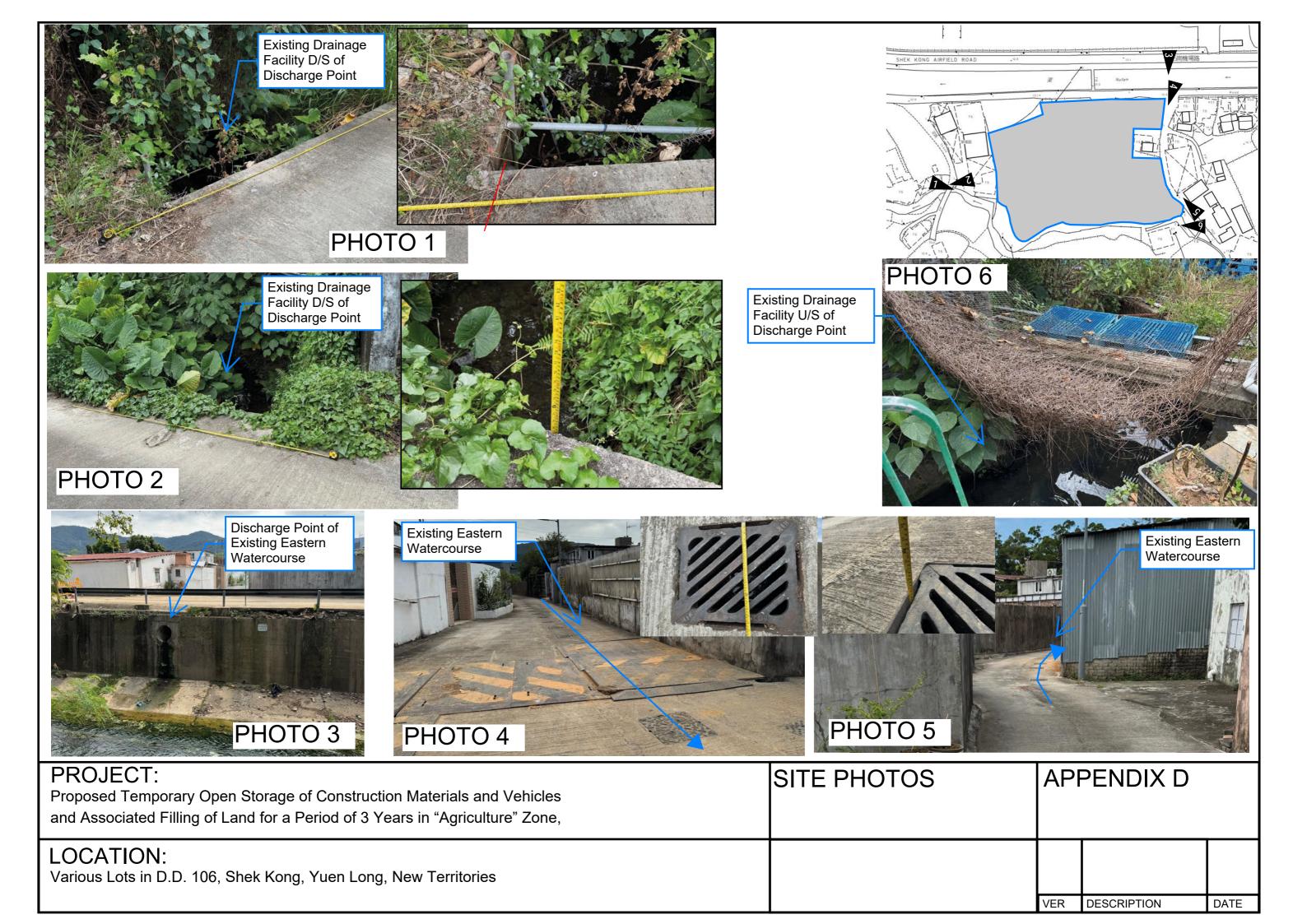
(UP TO H OF 525)

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. H=NOMINAL CHANNEL SIZE.
- ALL CAST IRON FOR GRATINGS SHALL BE GRADE EN-GJL-150 COMPLYING WITH BS EN 1561.
- 4. FOR COVERED CHANNELS TO BE HANDED OVER TO HIGHWAYS DEPARTMENT FOR MAINTENANCE, THE GRATING DETAILS SHALL FOLLOW THOSE AS SHOWN ON HyD STD. DRG. NO. H3156.

REF.		REVISION	SIGNATURE	DATE
	Α	CAST IRON GRATING AMENDED.	Original Signed	
	В	NAME OF DEPARTMENT AMENDED.	Original Signed	01.2005
	С	MINOR AMENDMENT. NOTE 3 ADDED.	Original Signed	
	D	NOTE 4 ADDED.	Original Signed	
	Ε	NOTES 3 & 4 AMENDED.	Original Signed	

COVER SLAB AND CAST IRON GRATING FOR CHANNELS



CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

 SCALE 1:20
 DRAWING NO.

 DATE JAN 1991
 C2412E

卓越工程 建設香港

