Appendix XI - Drainage Impact Assessment

EnviroSolutions & Consulting Ltd

16/F & 17/F, 700 Nathan Road, Mong Kok, Kowloon Hong Kong Tel: No. +852 3960 7000 | Fax: +852 3960 7111 www.envirosc.com | www.simplyehs.com

Proposed Religious Institution (the Supreme Kwan Ti Temple) and Improvement to the Existing Access Road, Tai Tong, Yuen Long

Drainage Impact Assessment (Project Profile)

Prepared for:

Kwan Ti Culture Service Limited

17 July 2025

EnviroSolutions & Consulting Ltd

16/F & 17/F, 700 Nathan Road, Mong Kok, Kowloon Hong Kong Tel: No. +852 3960 7000 | Fax: +852 3960 7111 www.envirosc.com | www.simplyehs.com

Proposed Religious Institution (the Supreme Kwan Ti Temple) and Improvement to the Existing Access Road, Tai Tong, Yuen Long Drainage Impact Assessment (Project Profile)

Prepared for Kwan Ti Culture Service Limited

	and on behalf iroSolutions &					
	ki BHANJA up COO					
ESC	Project No.	EPA23.1060-J.01				
Deli	verable No.	D02				
Revi	sion No.	2.1				
File L	Location					
		oint.com/teams/hkproverables/dia rev2.1.do		documents/e	pa23.1060-j.()1 kwan ti -
Dave	Description		Prepared	Reviewed	Approved	- .
Rev.	Description		riepaieu	nevieweu	Approved	Date
0		t Assessment (Project	MJW	CL	AW	17/07/2024
	Drainage Impaci Profile)	t Assessment (Project t Assessment (Project				
0	Drainage Impact Profile) Drainage Impact Profile	. ,	MJW	CL	AW	17/07/2024
0 1 2.1 Distri	Drainage Impact Profile) Drainage Impact Profile Drainage Impact Profile Profile	t Assessment (Project	MJW MJW MJW	CL CL	AW AW AW	17/07/2024 31/10/2024 17/07/2025

CONTENTS

1	PROJE	CT BACKGROUND	1-1
	1.1	Introduction	1-1
	1.2	Site Description	1-1
	1.3	Objectives of this Report	
	1.4	Reference Materials	1-1
2	DESCR	RIPTION OF EXISTING ENVIRONMENT AND DRAINAGE CONDITIONS	2-1
	2.1	Site Location and Topography	2-1
	2.2	Existing Baseline Conditions	
	2.3	Proposed Discharge Point	2-1
3	DRAIN	IAGE ANALYSIS	3-1
	3.1	Assumptions and Methodology	3-1
	3.2	Assessment Assumptions	3-2
	Estima	ited Runoff	
	3.3	Capacity of Proposed Stormwater Pipe	3-4
4	CONCI	LUSION	4-1
		APPENDICES	
Appen	dix A	Runoff Calculations	
Appen	dix B	Calculation of Drainage Capacity	
		FIGURES	
Figure	1-1	Site Location and its Environs	1-3
Figure		Existing Site Condition and Proposed Discharge Point	
Figure		Identification of Catchments	
Figure		Indicative Location of Proposed Terminal Manhole and Stormwater Pipe	
		TABLES	
Table 3		Runoff Coefficients of Different Surface Characteristics	
Table 3	3-2	Surface Characteristics and Runoff Coefficients of the Site	
Table 3		Surface Characteristics and Runoff Coefficients of Surrounding Catchment	
Table 3	3-4	Estimated Peak Runoff of the Site	
Table 3	3-5	Estimated Cumulative Runoff of the Site and Catchment B	
Table 3	3-6	Summary of Indicative Stormwater Pine	3-5

1 PROJECT BACKGROUND

1.1 Introduction

- 1.1.1 It is planned to develop a temple for Kwan Ti ("the Proposed Development") at DD 117 Tai Tong Shan Road Lots Nos. 1622, 1624 and 1629, and the adjoining government land, Yuen Long, N.T., Hong Kong ("the Site"). The site area is approx. 16,697m².
- 1.1.2 The Site is zoned "Recreation" ("REC") and Green Belt ("GB") under the Approved Tai Tong Outline Zoning Plan ("OZP") No. S/YL-TT/20.Referring to the Schedule of Uses under Approved OZP Mo. S/YL-TT/20, "Religious Institution" Use is under Column 2 of both REC and GB zonings. Therefore, a planning application under Section 16 of the *Town Planning Ordinance* ("TPO") is required for the Proposed Development.
- 1.1.3 EnviroSolutions & Consulting Ltd ("ESC") has been appointed to prepare this Drainage Impact Assessment (Project Profile) ("DIA (PP)") to support the S16 planning application for the Proposed Development.

1.2 Site Description

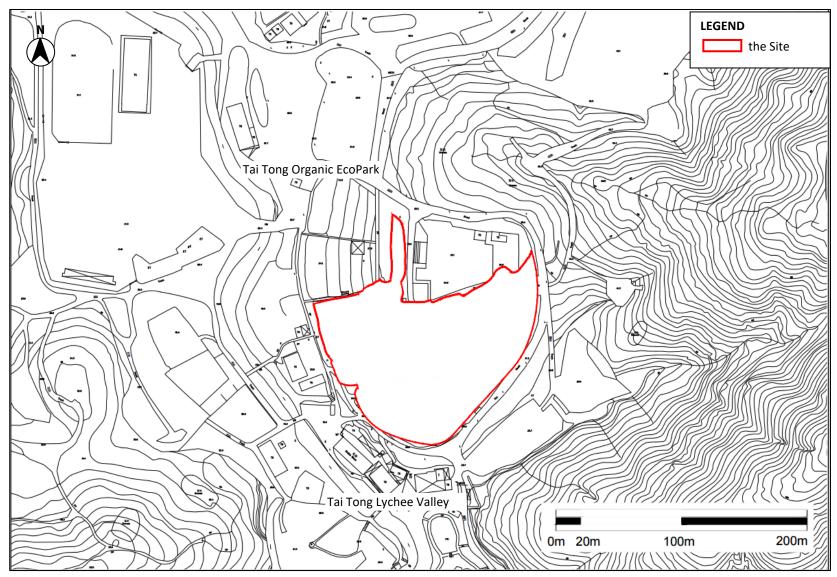
- 1.2.1 The site location and its environs are summarized below and shown in **Figure 1-1**:
 - To the North: Tai Tong Kwan Ti Square, Tai Tong Organic EcoPark
 - To the East: access road, slopes
 - To the South: Tai Tong Lychee Valley
 - To the West: natural stream, Tai Tong Riding Club
- 1.2.2 The development schedule of the Proposed Development is shown below:

Development Site Area	About 16,697m²				
Maximum Building Height	33.999m				
Greenery Coverage	<mark>30%</mark>				

1.3 Objectives of this Report

- 1.3.1 The objectives of this DIA (PP) Report are to:
 - Review the existing drainage conditions of the Site and surroundings.
 - Assess the potential drainage impacts arising from the Proposed Development.
 - Recommend the necessary mitigation measures to alleviate drainage impact, if any.

1.4 Reference Materials


- 1.4.1 In evaluating the drainage impact arising from the Proposed Development, the following materials have been referred to:
 - Stormwater Drainage Manual (with Eurocodes incorporated) Planning, Design and Management (Fifth Edition, January 2018)

- Stormwater Drainage Manual Corrigendum No. 1/2022
- Stormwater Drainage Manual Corrigendum No. 1/2024
- Stormwater Drainage Manual Corrigendum No. 2/2024
- DSD Advice Note No. 1 Application of the Drainage Impact Assessment Process to Private Sector Projects
- Technical Note to prepare a Drainage Submission

Figure 1-1 Site Location and its Environs

2 DESCRIPTION OF EXISTING ENVIRONMENT AND DRAINAGE CONDITIONS

2.1 Site Location and Topography

- 2.1.1 As illustrated in **Figure 1-1**, the Site is surrounded by various recreational areas including Kwan Ti Square, Tai Tong Organic EcoPark to the north, and Tai Tong Lychee Valley to the south.
- 2.1.2 The Site is situated at DD 117 Tai Tong Shan Road Lots Nos. 1622, 1624 and 1629 and the adjoining government land. According to the topographic survey, the site area is about 16,697 m² with elevation ranging from+23.8mPD to +39.1mPD.

2.2 Existing Baseline Conditions

2.2.1 According to the drainage record provided in Geoinfo Map, no public drainage system was observed in the vicinity of the Site. A site inspection was conducted on 5 January 2024 to review the existing site condition and identify the drainage connection of the surrounding catchments. The site survey photos showing the site condition and drainage connection are provided in Figure 2-1. It shows that majority of the Site is currently covered by vegetation, with 30% of the Site was paved with concrete. The detailed discussion about surrounding catchments is provided in the following sections.

2.3 Proposed Discharge Point

2.3.1 It is proposed to discharge the stormwater runoff from the Site to the existing stream to the west of the Site. The indicative discharge point is shown in **Figure 2-1**.

Figure 2-1 Existing Site Condition and Proposed Discharge Point

3 DRAINAGE ANALYSIS

3.1 Assumptions and Methodology

- 3.1.1 Peak instantaneous run off before and after the Proposed Development was calculated based on the Rational Method. The recommended physical parameters, including runoff coefficient (C) and storm constants for different return periods, are as per the *Stormwater Drainage Manual*.
- 3.1.2 The Rational Method has been adopted for hydraulic analysis and the peak runoff is given by the following expression:

$$Q_p = 0.278 \ C \ i \ A$$
 --- Equation 1

where $Q_p = peak runoff in m^3/s$

C = runoff coefficient

i = rainfall intensity in mm/hr A = catchment area in km²

3.1.3 Rainfall intensity is calculated using the following expression:

$$i = \frac{a}{(t_d + b)^c}$$
 --- Equation 2

where i = rainfall intensity in mm/hr

t_d = duration in minutes (t_d≤240)

a,b,c = storm constants given in table 3 of SDM

3.1.4 For a single catchment, duration (t_d) can be assumed equal to the time of concentration (t_c) which is calculated as follows:

$$t_c = t_0 + t_f$$
 --- Equation 3

where

 t_c = time of correction

 t_0 = inlet time (time taken for flow from the remotest point to reach the most upstream point of the urban drainage system)

 $t_f = flow time$

3.1.5 Generally, t_0 is much larger than t_f . As shown in Equation 2, t_d is the divisor. Therefore, larger t_d will result in smaller rainfall intensity (i) as well as smaller Q_p . For the worst-case scenario, t_f is assumed to be negligible and so:

$$t_c = t_0 = t_f$$
 --- Equation 4

where

A = catchment area (m²)

H = average slope (m per 100m), measured along the line of natural flow, from the

summit of the catchment to the point under consideration

L = distance (on plan) measured on the line of natural flow between the summit and the point under consideration (m)

3.1.6 The Colebrook-White Equation was adopted for calculation of drainage capacity of pipes. Full bore flow with no surcharge is assumed, and 10% sedimentation was incorporated in the calculation of drainage capacity in accordance with the *Stormwater Drainage Manual*.

$$V = -\sqrt{8gDsg} * \log(\frac{ks}{3.7D} + \frac{2.51v}{D\sqrt{2gDs}})$$
 --- Equation 5

where

V = mean velocity (m/s)

g = gravitational acceleration (m/s²) D = internal pipe diameter (m) ks = hydraulic pipeline roughness (m) v = kinematic viscosity of fluid (m²/s)

s = hydraulic gradient (energy loss per unit length due to friction)

3.1.7 On the other hand, the capacity of open channel has been calculated using the Manning's Equation:

$$V = \frac{R^{1/6}}{n} \times \sqrt{Rs}$$
 --- Equation 6

where

V = mean velocity (m/s)

R = hydraulic radius (m)

 $n = Meaning coefficient (s/m^{1/3})$

s = hydraulic gradient (energy loss per unit length due to friction)

3.2 Assessment Assumptions

Identification of Catchments

3.2.1 Based on the site visit and the topographic maps obtained from the Lands Department in January 2024, six (6) catchments named Catchments A to F were identified, as shown in **Figure 3-1**.

Internal Catchment (the Site)

- 3.2.2 The Site includes Catchment A. Majority of the site area is currently covered by vegetation, trees and bare soil, with some concrete-paved roads and temporary structure. Therefore, Catchment A are currently 70% soft landscape and 30% paved area.
- 3.2.3 After the Proposed Development, the Site will be occupied by several building blocks with some soft landscape. As advised by the project landscape architect, the greenery coverage of the Proposed Development will be not less than 30%. Therefore, the pavement condition of catchment A will be 30% soft landscape and 70% paved area after Proposed Development. It is assumed that the runoff will be finally discharged to the stream to the west of the Site The details will be further discussed in the following sections.
- 3.2.4 With reference to the *Stormwater Drainage Manual*, the runoff coefficients vary from different surface characteristics, as summarized in **Table 3-1** below.

Table 3-1 Runoff Coefficients of Different Surface Characteristics

SURFACE CHARACTERISTICS	RUNOFF COEFFICIENT
Concrete	0.80 - 0.95
Flat Grassland (heavy soil)	0.13 - 0.25
Steep Grassland (heavy soil)	0.25 - 0.35

3.2.5 As the Site is relatively flat, the runoff coefficients adopted were 0.95 and 0.25 for paved area and soft landscape, respectively. Thus, the average runoff coefficients for the Site before and after the Proposed Development were 0.46 and 0.74 respectively. The surface characteristics and runoff coefficients of Catchment A is summarised in **Table 3-2** below.

Table 3-2 Surface Characteristics and Runoff Coefficients of the Site

SCENARIO	AREA	SURFACE CHARACTERISTICS	RUNOFF COEFFICIENT
Before Development	A: <mark>16,697</mark> m²	30% paved + 70% unpaved	0.46
After Development	A. 10,097 III	70% paved + 30% unpaved	<mark>0.7</mark> 4

Surrounding Catchments

- 3.2.6 Catchment B Catchment B is a religious plaza with some paved access roads and grass fields. It is assumed that it is comprised of 70% soft landscape and 30% paved area. According to the site visit and topographic survey maps obtained from Lands Department, no drainage reception system was observed within Catchment B. Therefore, it is assumed that stormwater runoff from Catchment B would overflow to Catchment A as conservative approach. Runoff from Catchment B will be taken into account in the proposed drainage system of Catchment A.
- 3.2.7 **Catchment C** Catchment C is located southwest of the Site. According to the topographic map, the catchment is located at the downstream of the Site. The runoff from this Catchment will not have any drainage impact on the Site. Hence, the runoff from this catchment will not be further assessed.
- 3.2.8 **Catchment D** Catchment D is the slope located to the southeast of the Site. As the elevation of the middle of the road is greater than the slope toe to the east of the Site, the stormwater runoff from this catchment will be drained away at the slope toe and will not overflow into the Site. There is no obvious drainage connection between Catchment D and the Site. Hence, the runoff from this catchment will not have any drainage impact on the Site and will not be further assessed.
- 3.2.9 **Catchment E** Similar to Catchment D, Catchment E is the slope located to the northeast of the Site. Similarly, the stormwater runoff from this catchment will be drained away via the roadside drains at the slope toe and will not overflow into the Site. There is no obvious drainage connection between Catchment D and the Site. Hence, the runoff from this catchment will not have any drainage impact on the Site and will not be further assessed.
- 3.2.10 **Catchment F** Catchment F is located to the north of the Site. According to the topographic map, the catchment is located at the downstream of the Site. The runoff from this Catchment will not have any drainage impact on the Site and the access road. Hence, the runoff from this catchment will not be further assessed.

3.2.11 The runoff of Catchments A and B are estimated using the Rational Method. The surface characteristics and runoff coefficients of the surrounding catchments are summarised in **Table 3-3** below.

Table 3-3 Surface Characteristics and Runoff Coefficients of Surrounding Catchment

CATCHMENT	AREA	SURFACE CHARACTERISTICS	RUNOFF COEFFICIENT
В	5,552m ²	30% paved (flat) + 70% unpaved (flat)	0.46

Estimated Runoff

Peak Runoff from the Site

3.2.12 Based on the assumptions as described in **Section 3.2**, the runoff from the Site before and after development was estimated based on the return periods of 2, 10 and 50 years. The rainfall increase due to climate change effect of 16% for end of 21st Century has been also considered in the runoff estimation. As summarised in **Table 3-4**, there will be around 60% of increment in the estimated peak runoff after the proposed development under all assessed return periods. The detailed calculation is provided in **Appendix A**.

Table 3-4 Estimated Peak Runoff of the Site

RETURN	ES	ESTIMATED PEAK RUNOFF (m³/s)										
PERIOD	BEFORE DEVELOPMENT	AFTER DEVELOPMENT	INCREMENT									
2 Years	<mark>0.392</mark>	<mark>0.628</mark>	<mark>60%</mark>									
10 Years	<mark>0.500</mark>	<mark>0.802</mark>	<mark>60%</mark>									
50 Years	<mark>0.568</mark>	<mark>0.911</mark>	<mark>60%</mark>									

Cumulative Peak Runoff

3.2.13 As mentioned in **Paragraph 3.2.6**, it is assumed that the runoff from Catchment B may overflow to Catchment A in the worst-case scenario. Therefore, runoff from Catchment B will be regarded as the cumulative runoff. The estimated cumulative runoff is summarised in **Table 3-5.** below and detailed in **Appendix A**.

Table 3-5 Estimated Cumulative Runoff of the Site and Catchment B

RETURN	ESTIMATED PEAK RUNOFF (m³/s)									
PERIOD	CATCHMENT A	CATCHMENT B	CUMULATIVE							
2 Years	<mark>0.628</mark>	0.142	<mark>0.770</mark>							
10 Years	<mark>0.802</mark>	0.179	<mark>0.980</mark>							
50 Years	<mark>0.911</mark>	0.201	<mark>1.112</mark>							

3.3 Capacity of Proposed Stormwater Pipe

3.3.1 A series of perimeter surface drains with sand trap/catch pit will be proposed to collect the cumulative runoff of the Site, which will finally connect to proposed discharge point at the stream to the west of the Site via a \$\tilde{\gamma}\$900mm stormwater drainage pipe. The indicative location of terminal manhole provided with sand trap and proposed \$\tilde{\gamma}\$900mm stormwater drainage pipe is shown in **Figure 3-2**.

3.3.2 The calculation on the capacity of the proposed **Ø900mm** stormwater pipe are summarised in **Table 3-6** below and detailed in **Appendix B**.

Table 3-6 Summary of Indicative Stormwater Pipe

SIZE (mm)	RELATED CATCHMENT	RUNOFF (m³/s)	CAPACITY (m³/s)	% OF CAPACITY	SUFFICIENT CAPACITY?
<mark>Ø900mm</mark>	Catchment A and B	<mark>1.112</mark>	1.552	<mark>72%</mark>	Yes

3.3.3 The calculation shows that the proposed <code>Ø900mm</code> stormwater pipe will have sufficient capacity for the cumulative runoff. Therefore, no adverse drainage impact due to the Proposed Development is anticipated.

Figure 3-1 Identification of Catchments

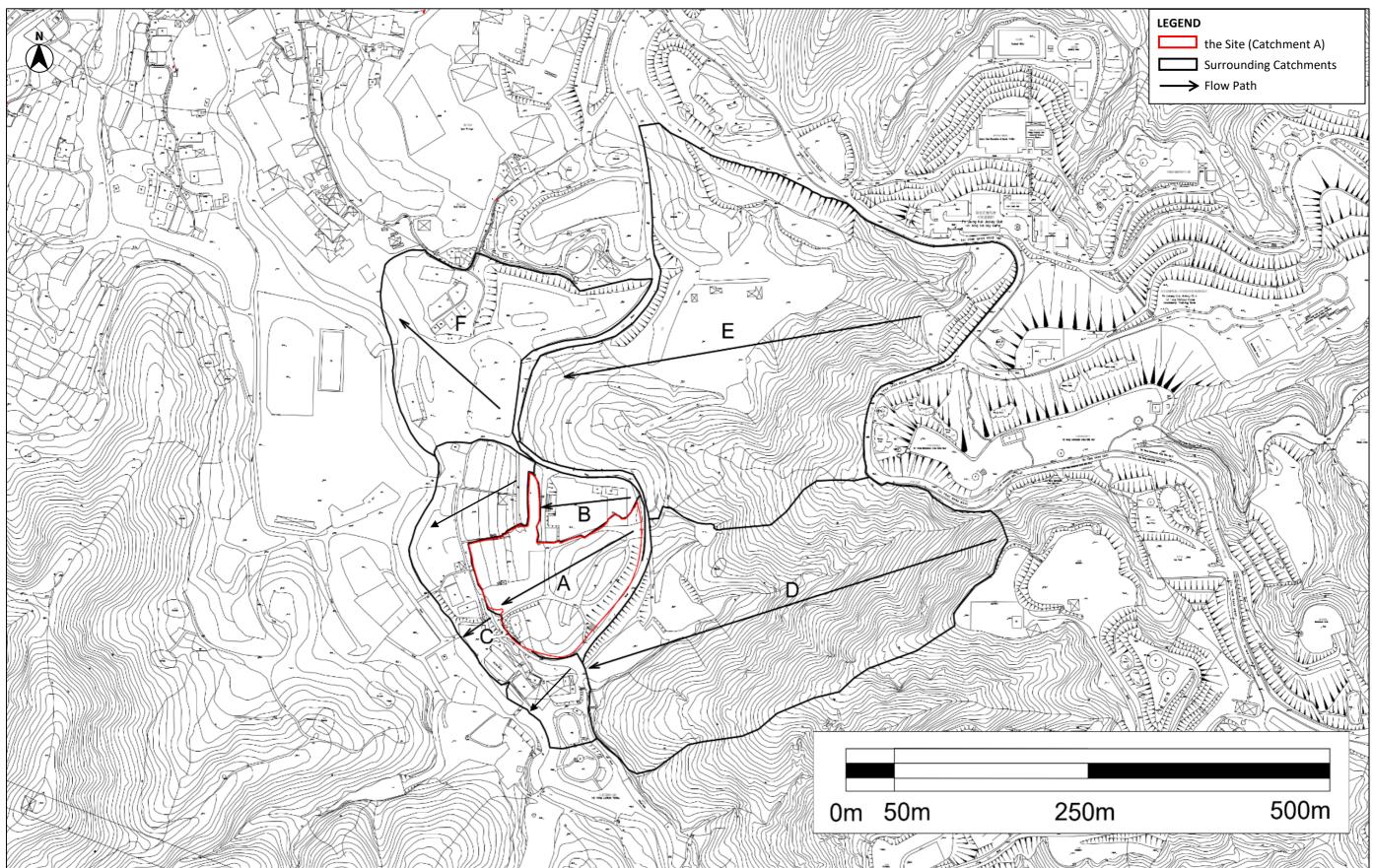
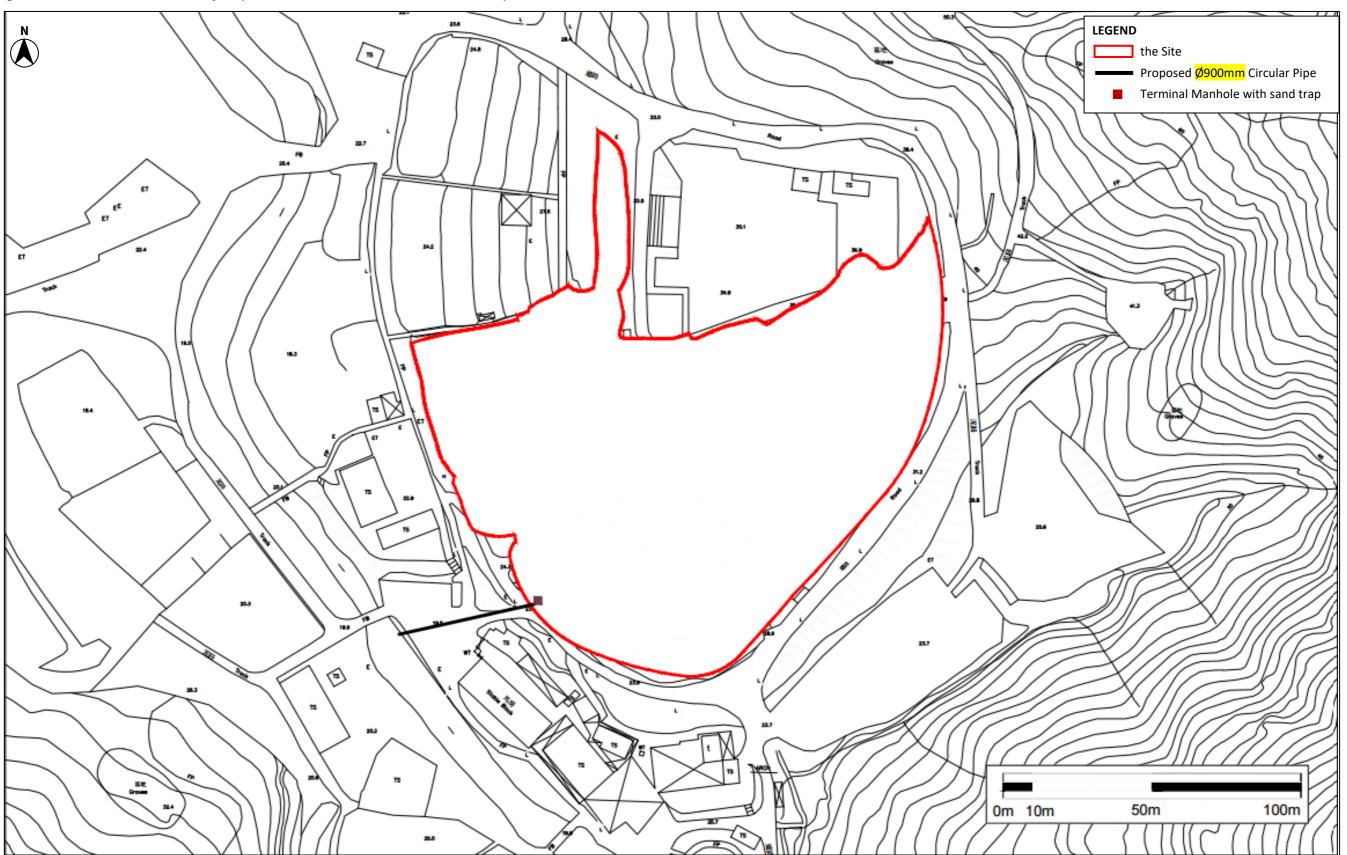



Figure 3-2 Indicative Location of Proposed Terminal Manhole and Stormwater Pipe

4 CONCLUSION

- 4.1.1 Potential drainage impacts that may arise from the Site after the Proposed Development have been assessed.
- 4.1.2 The peak runoff before and after development of the Site has been estimated using the Rational Method and based on the catchment surface characteristics for the existing environment and the Proposed Development. The estimated peak runoff generated from the Site is 1.112m³/s under a 50-year return period.
- 4.1.3 The indicative location of proposed terminal manhole and Ø900mm stormwater pipe shown on Figure 3-2 will properly divert the runoff arising from the Site including cumulative runoff from Catchment B, which may overflow into the Site. The runoff would finally be discharged to the existing stream to the west of the Site.
- 4.1.4 The capacity of proposed <u>Ø900mm</u> stormwater pipe has been checked. The calculation shows that it can handle the cumulative runoff from the Site and surrounding catchments. As such, no adverse drainage impact is anticipated.
- 4.1.5 This DIA(PP) Report indicates the initial findings regarding drainage impact and proposed stormwater drainage connection. A qualified engineer should be engaged by the Architect/Contractor of the Proposed Development to review and provide detailed designs for the internal Site drainage layout.
- 4.1.6 Adequate opening for any walls or hoarding to be erected along the Site boundary shall be provided to allow any overland flow passing through the Site walls/hoarding so that such runoff can be properly intercepted and diverted by the proposed drainage system within the Site. Such requirements shall be included in the design of the Site boundary fencing during the detailed design stage.

Appendix A Runoff Calculations

Calculation of Runoff for Return Period of 2 Years

Catchment ID	Catchment Area (A),	Average slope (H),	Flow path length	Inda 4 in a (4)in	Duration (t _d), min	Storm	Constants	[Note 2]	Runoff intensity (i),	Runoff coefficient (C)	C×A		Peak runoff with Climate
	km²	m/100m	(L), m	iniet time (t ₀), min	Duration (t _d), min	а	b	С	mm/hr	Runoii coefficient (C)	CXA	m³/s	Change (Q'p), m ³ /s [Note 3]
Before the Proposed Developr	nent											•	
Site Area (Catchment A)	0.0167	9.05	170.0	5.99	5.99	446.1	3.38	0.463	158.34	0.46	0.0077	0.338	0.392
Catchment B	0.0056	5.37	102.0	4.45	4.45	446.1	3.38	0.463	172.03	0.46	0.0026	0.122	0.142
											Total	0.460	0.534
After the Proposed Developm	ent												
Site Area (Catchment A)	0.0167	8.47	170.0	6.07	6.07	446.1	3.38	0.463	157.72	0.74	0.0124	0.542	0.628
Catchment B	0.0056	5.37	102.0	4.45	4.45	446.1	3.38	0.463	172.03	0.46	0.0026	0.122	0.142
	·								·		Total	0.664	0.770

Calculation of Runoff for Return Period of 10 Years

Catchment ID	Catchment Area (A),	Average slope (H),	Flow path length		Duration (t _d), min	Storm Constants [Note 2]		Runoff intensity (i)	Runoff coefficient (C)	CxA	Peak runoff (Q _p),	Peak runoff with Climate	
Catchment ID	km²	m/100m	(L), m	iniet time (t ₀), min	Duration (t _d), min	а	b	С	mm/hr	Runon coemicient (C)	CXA	m³/s	Change (Q' _p), m ³ /s [Note 3]
Before the Proposed Developr	ment												
Site Area (Catchment A)	0.0167	9.05	170.0	5.99	5.99	485	3.11	0.397	201.87	0.46	0.0077	0.431	0.500
Catchment B	0.0056	5.37	102.0	4.45	4.45	485	3.11	0.397	217.25	0.46	0.0026	0.154	0.179
											Total	0.585	0.679
After the Proposed Developm	ent												
Site Area (Catchment A)	0.0167	8.47	170.0	6.07	6.07	485	3.11	0.397	201.17	0.74	0.0124	0.691	0.802
Catchment B	0.0056	5.37	102.0	4.45	4.45	485	3.11	0.397	217.25	0.46	0.0026	0.154	0.179
											Total	0.845	0.980

Calculation of Runoff for Return Period of 50 Years

Catchment ID	Catchment Area (A),	Average slope (H),	Flow path length	Inlat time (t) min	Duration (t _d), min	Storm	Storm Constants [Note 2]		Runoff intensity (i)	Runoff coefficient (C)	C×A	Peak runoff (Q _p),	Peak runoff with Climate
	km² m/100	m/100m	(L), m	iniet time (t ₀), min	Duration (t _d), min	а	b	С	mm/hr	Kulloli coefficient (C)	CXA	m³/s	Change (Q'p), m ³ /s [Note 3]
Before the Proposed Development													
Site Area (Catchment A)	0.0167	9.05	170.0	5.99	5.99	505.5	3.29	0.355	229.25	0.46	0.0077	0.489	0.568
Catchment B	0.0056	5.37	102.0	4.45	4.45	505.5	3.29	0.355	244.46	0.46	0.0026	0.174	0.201
											Total	0.663	0.769
After the Proposed Developm	ent												
Site Area (Catchment A)	0.0167	8.47	170.0	6.07	6.07	505.5	3.29	0.355	228.55	0.74	0.0124	0.785	0.911
Catchment B	0.0056	5.37	102.0	4.45	4.45	505.5	3.29	0.355	244.46	0.46	0.0026	0.174	0.201
	•		•	•	•				•		Total	0.959	1.112

Note:

- 1. Runoff is calculated in accordance with DSD's "Stormwater Drainage Manual (with Eurocodes incorporated) Planning, Design and Management" (SDM), fifth edition, January 2018.
- 2. Storm Constants were adopted from Table 3a Storm Constants for Different Return Periods of HKO Headquarters of DSD's Corrigendum No. 1/2024.
- 3. Table 28 Rainfall Increase due to Climate Change of DSD's Corrigendum No. 1/2022 of 16% for end of-21st Century is adopted.

Appendix B Calculation of Drainage Capacity

Calculation of Drainage Capacity for Return Period of 50 Years

<u>Drainage Capacity of Proposed Stormwater Drainage Pipe</u>

Description	Shape	Catchment Description	d	r	Aw	Pw	R	s	ks	v	Qc	Qp'	Is Qc > Qp' ?	% of capacity
Proposed Stormwater Pipe Connecting to Proposed Discharge Point	Circular Pipe	Catchment A, Catchment B	0.900	0.450	0.636	2.827	0.225	0.005	0.06	2.711	1.552	1.112	Υ	72%

Where

d = pipe diameter, m k_s = hydraulic pipeline roughness, mm

r = pipe radius (m) = 0.5d V = Velocity of flow calculated based on Colebrook-White Equation, m/s

 A_w = wetted area (m²) = (r²/2) (b + sinq) Q_c = Flow Capacity including 10% for siltation, m³/s

P_w = wetted perimeter (m) = br $\rm Q_o$ = Estimated total peak flow from the Site during peak season, $\rm m^3/s$

R = Hydraulic radius (m) = A_w/P_w

1. Flow capacity of pipe segment is calculated based on Colebrook-White Equation.

- 2. The diameter and gradient of the proposed stormwater pipe is indicative only. Its details will be subject to change during the detailed design stage.
- 3. The ks value of 0.06 in good condition for precast concrete pipes with 'O' ring joints recommended in Table 14 of the SDM for design purpose is adopted. 4. 10% reduction in flow area has been adopted to consider sedimentation reduction in accordance with Section 9.3 of SDM

Accountability

We understand the importance of being accountable to each other and our clients.

Passion

We are completely passionate about providing practical solutions and outcomes that deliver for our clients.

Insight

We work in an environment that encourages and values insight as a critical quality which informs our decisions and our clients and supports practical solutions and project delivery.

Integrity

We behave with respect and honesty toward each other, our clients and our stakeholders.