Proposed Development at Various Lots in D.D. 83 and Adjoining Government Land Lung Yeuk Tau, Fanling, N.T.
 Revised Traffic Impact Assessment Final Report

$21^{\text {st }}$ June, 2023

Prepared by: CKM Asia Limited
Prepared for: Carlton Woodcraft Manufacturing Limited c/o Aikon Development Consultancy Limited

Proposed Development at Various Lots in D.D. 83
 and Adjoining Government Land
 Lung Yeuk Tau, Fanling, N.T.

CONTENTS

1. INTRODUCTION
Background
Structure of Report
2. EXISTING SITUATION

The Subject Site
The Road Network
Pedestrian and Cycling Facilities
Existing Traffic Flows
Performance of the Surveyed Junctions
Performance of the Surveyed Road Links
Historic Traffic Growth
Existing Pedestrian Flows
Performance of the Pedestrian Facilities
Population Projection
Existing Public Transport Services
Occupancy Survey of Existing Public Transport Services

3. THE PROPOSED DEVELOPMENT	10
Proposed Development	
Proposed Internal Transport Facilities	
Internal Transport Layout	
Proposed Vehicular Access	

4. TRAFFIC IMPACT

Design Year
Traffic Generation of the Proposed Development
Traffic Forecasting
Other Known Planned / Committed Major Developments in the Vicinity Future Road Network
2034 Traffic Flows
2034 Junction Capacity Analysis
2034 Road Link Capacity Analysis
Mode of Transport and Pedestrian Generation of the Proposed Development
Review on Public Transport Services
Pedestrian Forecasting
2034 Pedestrian Facilities Operational Performance
5. SUMMARY 22

Appendix A - Junction Analysis

Proposed Development at Various Lots in D.D. 83 and Adjoining Government Land Lung Yeuk Tau, Fanling, N.T.

TABLES

NUMBER

2.1 Existing Junction Performance
2.2 Existing P/Df of Surveyed Road Links
2.3 Historic Traffic information from the ATC
2.4 Existing Operational Performances of Surveyed Footpaths
2.5 Existing Operational Performances of Signalised Crossing
2.6 Projected Population and Employment for Northeast New Territories
2.7 Road-Based Public Transport Services Operating within 500m of the Subject Site
2.8 Results of Peak Hour Occupancy Survey for Local Services to/from MTR Fanling / Sheung Shui Stations
2.9 Results of Peak Hour Occupancy Survey for Regional Services to/from Urban Area
2.10 Operational Performance of MTR East Rail Line
3.1 Parameters of the Proposed Development
3.2 Comparison of Internal Transport Facilities for Residential Use
3.3 Comparison of Internal Transport Facilities for Retail Use
3.4 Overall Provision of Internal Transport Facilities
4.1 Trip Rates adopted from TPDM
4.2 Traffic Generation for the Proposed Development
4.3 List of Other Known Planned / Committed Major Developments
4.4 Planned Traffic Improvement Works within the AOI
4.5 2034 Junction Performance

Proposed Development at Various Lots in D.D. 83 and Adjoining Government Land Lung Yeuk Tau, Fanling, N.T.

TABLES

NUMBER

4.6 2034 P/Df of Road Links
4.7 Estimated Passenger Demand on Public Transport and Pedestrian Generation Associated with the Proposed Development
4.8 Analyses on Local Road-Based Public Transport Services to/from MTR Stations
4.9 Analyses on Regional Road-Based Public Transport Services to/from Urban Area
4.10 Year 2034 Operational Performances of Footpath
4.11 Year 2034 Operational Performances of Signalised Crossing

Proposed Development at Various Lots in D.D. 83
 and Adjoining Government Land
 Lung Yeuk Tau, Fanling, N.T.

FIGURES

NUMBER

1.1 Location of the Subject Site
2.1 Location of the Surveyed Junctions and Road Links
2.2 Existing Layout - Junction of Sha Tau Kok Road / Lau Shui Heung Road (J01)
2.3 Existing Layout - Junction of Sha Tau Kok Road / Lung Ma Road (J02)
2.4 Existing Layout - Junction of Sha Tau Kok Road / Ma Sik Road (J03)
2.5 Existing Layout - Junction of Sha Tau Kok Road / Jockey Club Road (J04)
2.6 Existing Layout - Junction of So Kwun Po Road / Jockey Club Road / Ma Sik Road (J05)
2.7 Existing Layout - Roundabout of So Kwun Po Road Interchange (J06)
2.8 Existing Layout - Junction of Jockey Club Road / Lok Yip Road / San Wan Road (J07)
2.9 Existing Layout - Junction of Fanling Station Road / San Wan Road (J08)
2.10 Existing Layout - Roundabout of Sha Tau Kok Road / San Wan Road (J09)
2.11 Existing Peak Hour Traffic Flows
2.12 Location of the Surveyed Pedestrian Facilities
2.13 Public Transport Services operating within 500m radius of the Subject Site
3.1 Proposed Internal Transport Layout - Ground Floor
3.2 Proposed Internal Transport Layout - Basement Floors
3.3 Proposed Vehicular Access at Sha Tau Kok Road - Lung Yeuk Tau
4.1 Locations of Other Known Planned / Committed Major Developments and the Future Road Network in the vicinity of the Subject Site
4.2 2034 Traffic Flows Without the Proposed Development
4.3 2034 Traffic Flows With the Proposed Development

1.0 INTRODUCTION

Background

1.1 The Subject Site is located at Various Lots, i.e. Lot Nos. 755, 756, 782 S.A, 789 S.A, 789 RP, 790 S.A ss.1, 790 S.A RP, 791 S.A ss.1, 791 S.A ss.2, 791 S.A ss.3, 791 S.A RP, 791 RP, 792 S.A RP, 792 RP, 793, 794 S.A, 794 RP, 800 S.A RP, 801 S.A, 803 RP, 835 S.B ss. 1 S.A, 835 S.B ss. 1 RP, 836 S.A, 836 RP, 837,838 S.A, 838 RP, $839,840,841$ S.A, 841 S.B, 841 RP, 842 S.A, 842 S.B, 842 RP, 843, 844 S.A, 844 RP and 854, in D.D. 83 and Adjoining Government Land, in Lung Yeuk Tau, Fanling, New Territories. Figure 1.1 shows the location of the Subject Site.
1.2 At present, the Subject Site is occupied by several open storages, which are accessed from either Sha Tau Kok Road - Lung Yeuk Tau or Hai Wing Road / Dao Yang Road.
1.3 The Owner intends to develop the Subject Site into a development with 5 residential blocks comprising of 3,305 flats with average flat size of $44 \mathrm{~m}^{2}$ GFA, and $5,570 \mathrm{~m}^{2}$ retail GFA (hereinafter "the Proposed Development").
1.4 Against this background, CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned to conduct a Traffic Impact Assessment ("TIA") for the Proposed Development for the Section 12A Rezoning Application from "Residential (Group C)" zone and "Agriculture" zone to "Residential (Group A) 2". This revised TIA report has incorporated the comments provided by Transport Department in May 2023 on the earlier submitted TIA report.

Structure of Report

1.5 The report is structured as follows:

Chapter 1 - Gives the background of the project;
Chapter 2 - Describes the existing situation;
Chapter 3 - Provides details on the Proposed Development, and presents the internal transport facilities provided;
Chapter 4 - Describes the traffic impact analysis; and
Chapter 5 - Gives the overall conclusion.

2.0 EXISTING SITUATION

The Subject Site

2.1 The Subject Site is located in Ma Liu Shui San Tsuen, Lung Yeuk Tau in Fanling, New Territories. Its site area is approximately $22,500 \mathrm{~m}^{2}$, and is now being occupied by several open storage areas. Access to the Subject Site is from either Sha Tau Kok Road - Lung Yeuk Tau, or Dao Yang Road / Hai Wing Road.

The Road Network

2.2 Sha Tau Kok Road - Lung Yeuk Tau is a Rural Road which runs between San Wan Road, Fanling in the west and Ping Che Road in the east. East of Ping Che Road, Sha Tau Kok Road continues towards Sha Tau Kok and the Sha Tau Kok Boundary Control Point. The Sha Tau Kok Interchange with Heung Yuen Wai Highway is located 3 km to the east. In the vicinity of the Subject Site between Lau Shui Heung Road and Jockey Club Road, Sha Tau Kok Road - Lung Yeuk Tau is of dual-2 carriageway standard.
2.3 Jockey Club Road is a Primary Distributor running between Man Kam To Road to the north and Pak Wo Road to the south, where it connects with the Wo Hop Shek Interchange of Fanling Highway. It is of a dual-2 carriageway standard.
2.4 So Kwun Po Road is a Primary Distributor running between Pak Wo Road and Jockey Club Road. It connects with Fanling Highway via the So Kwun Po Interchange. So Kwun Po Road is generally of a dual-2/3 carriageway standard. To the east of Jockey Club Road, it continues as Ma Sik Road towards Luen Wo Hui and intersects with Sha Tau Kok Road - Lung Yeuk Tau.

Pedestrian and Cycling Facilities

2.5 Footpaths and at-grade signalized pedestrian crossings are provided along Sha Tau Kok Road - Lung Yeuk Tau in the vicinity of the Subject Site. A footbridge is also provided at the Sha Tau Kok Road / Lung Ma Road Roundabout.
2.6 Cycle track is provided west of Lung Ma Road along the south side of Sha Tau Kok Road - Lung Yeuk Tau, i.e. westbound side towards Fanling.

Existing Traffic Flows

2.7 To quantify the existing traffic flows in the vicinity, updated manual classified counts were conducted on weekdays, i.e. Thursday, $11^{\text {th }}$ May 2023 and Friday, $12^{\text {th }}$ May 2023, during the AM peak period between 0700 and 0900 hours, and during the PM peak periods between 1700 and 1900 hours at the following junctions:

J01 - Junction of Sha Tau Kok Road / Lau Shui Heung Road
J02- Junction of Sha Tau Kok Road / Lung Ma Road
J03 - Junction of Sha Tau Kok Road / Ma Sik Road
J04 - Junction of Sha Tau Kok Road / Jockey Club Road
J05 - Junction of So Kwun Po Road / Jockey Club Road / Ma Sik Road
J06-Roundabout of So Kwun Po Interchange
J07- Junction of Jockey Club Road / Lok Yip Road / San Wan Road
J08- Junction of Fanling Station Road / San Wan Road
J09 - Roundabout of Sha Tau Kok Road / San Wan Road
2.8 Figure 2.1 shows the Area of Influence ("AOI") and the locations of the surveyed junctions; whereas Figures 2.2 - 2.10 show their existing layouts.
2.9 The traffic counts are classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. The AM and PM peak hours identified from the surveys are found to be between 0800 and 0900 and 1800 1900 hours respectively, and the traffic flows in are shown in Figure 2.11.
2.10 The results from the above surveys are adopted in this revised TIA report.

Performance of the Surveyed Junctions

2.11 The existing performance of the surveyed junctions is calculated based on the observed traffic flows, and the analyses were undertaken using the methods outlined in Volume 2 of Transport Planning and Design Manual ("TPDM"). Table 2.1 summarises the analysis results and the detailed calculations are found in Appendix A.

TABLE 2.1 EXISTING JUNCTION PERFORMANCE

Ref.	Junctions	Type of Junction	Parameter	AM Peak Hour	PM Peak Hour
J01	Sha Tau Kok Road / Lau Shui Heung Road	Roundabout	RFC	0.406	0.446
J02	Sha Tau Kok Road / Lung Ma Road	Roundabout	RFC	0.500	0.572
J03	Sha Tau Kok Road / Ma Sik Road	Signal	RC	74%	62%
J04	Sha Tau Kok Road / Jockey Club Road	Roundabout	RFC	0.528	0.474
J05	So Kwun Po Road / Jockey Club Road / Ma Sik Road	Signal	RC	34%	51%
J06	So Kwun Po Interchange	Roundabout	RFC	0.849	0.849
J07	Jockey Club Road / Lok Yip Road / San Wan Road	Signal	RFC	57%	61%
J08	Fanling Station Road / San Wan Road	Signal	RFC	54%	54%
J09	Sha Tau Kok Road / San Wan Road	Roundabout	RFC	0.476	0.514

Note: RFC - Ratio of Flow to Capacity \quad RC - Reserve Capacity
2.12 The above results indicate the surveyed junctions operate with capacities.

Performance of the Surveyed Road Links

2.13 The existing performance, in terms of Peak Hourly Flows / Design Flow Ratio ("P/Df") of the surveyed road links shown in Figure 2.1, is calculated based on the observed traffic flows, and the analysis results are summarized in Table 2.2.

TABLE 2.2 EXISTING P/Df OF SURVEYED ROAD LINKS

Ref.	Road Link	Section		Type (Note 1)	Config.		Peak Hour Flows / Design Flow Ratio (P/Df)	
		From	To					
							AM Peak Hour	PM Peak Hour
L01	Sha Tau Kok Road	Lung Ma Road	Lau Shui Heung Road	RR	Dual-2	3,400	0.280	0.307
L02	Sha Tau Kok Road	Lau Shui Heung Road	Lung Ma Road	RR	Dual-2	3,400	0.311	0.354
L03	Sha Tau Kok Road	Ma Sik Road	Lung Ma Road	RR	Dual-2	3,400	0.411	0.396
Note 1):	RR - Rura Config.	Road onfiguration	- District Distribut		PD	Primary D	istributor	

TABLE 2.2 EXISTING P/Df OF SURVEYED ROAD LINKS (CONT’D)

Ref.	Road Link	Section		Type (Note 1)	Config.	Design Flow (pcu/hr)	Peak Hour Flows / Design Flow Ratio (P/Df)	
		From	To					
							AM Peak Hour	PM Peak Hour
L04	Sha Tau Kok Road	Lung Ma Road	Ma Sik Road	RR	Dual-2	3,400	0.575	0.598
L05	Sha Tau Kok Road	Jockey Club Road	Ma Sik Road	RR	Dual-2	3,400	0.413	0.430
L06	Sha Tau Kok Road	Ma Sik Road	Jockey Club Road	RR	Dual-2	3,400	0.363	0.320
L07	Ma Sik Road	Jockey Club Road	Sha Tau Kok Road	DD	Dual-2	3,050	0.364	0.350
L08	Ma Sik Road	Sha Tau Kok Road	Jockey Club Road	DD	Dual-2	3,050	0.340	0.285
L09	Jockey Club Road	Ma Sik Road / So Kwun Po Road	Sha Tau Kok Road	PD	Dual-2	3,400	0.155	0.136
L10	Jockey Club Road	Sha Tau Kok Road	Ma Sik Road / So Kwun Po Road	PD	Dual-2	3,400	0.168	0.140
L11	So Kwun Po Road	Jockey Club Road	So Kwun Po Interchange	PD	Dual-2	3,400	0.368	0.296
L12	So Kwun Po Road	So Kwun Po Interchange	Jockey Club Road	PD	Dual-2	3,400	0.439	0.448
L13	Jockey Club Road	Sha Tau Kok Road	Lok Yip Street / San Wan Road	PD	Dual-2	3,400	0.114	0.135
L14	Jockey Club Road	Lok Yip Street / San Wan Road	Sha Tau Kok Road	PD	Dual-2	3,400	0.217	0.206
L15	$\begin{aligned} & \text { San Wan } \\ & \text { Road } \end{aligned}$	Fanling Station Road	Lok Yip Street / San Wan Road	DD	Dual-2	3,050	0.158	0.130
L16	$\begin{aligned} & \hline \text { San Wan } \\ & \text { Road } \\ & \hline \end{aligned}$	Lok Yip Street / San Wan Road	Fanling Station Road	DD	Dual-2	3,050	0.189	0.203
RR - Rural RoadConfig. Configuration DD - District Distributor \quad PD - Primary Distributo								

2.14 The above results indicate the surveyed road links operate with capacities.

Historic Traffic Growth

2.15 The annual average daily traffic ("AADT") of roads located in the vicinity of the Subject Site was obtained from the Annual Traffic Census ("ATC") published by Transport Department, and Table 2.3 summarises the AADT between 2015 and 2021, i.e. the latest 7 years.

TABLE 2.3 HISTORIC TRAFFIC INFORMATION FROM THE ATC

Station	5453	5824	5622	5623	5660	5860	Overall
Road	Sha Tau Kok Road						
From	Jockey Club Road	Jockey Club Road	Lok Yip Road	Luen Shing Street	On Kui Street	Ping Che Road	
To	San Wan Road	Lok Yip Road	Luen Shing St	On Kui Street	Ping Che Road	Shun Lung Street	
Year	Average Annual Daily Traffic ("AADT")						
2015	18,750	29,240*	17,300*	17,780	30,380	6,320*	113,450
2016	19,530*	29,270	21,540	20,840	33,580	6,550	124,760
2017	19,230*	27,180	21,390*	20,700*	33,050*	6,460	121,550
2018	19,700*	28,050*	22,070*	21,350*	33,870*	6,620	125,040
2019	20,320	29,170*	22,950*	22,200	33,630*	6,570*	128,270
2020	17,680	27,760*	18,260	17,080	23,740	6,300*	104,520
2021	18,380*	30,230	19,410	18,530	22,980	5,970	109,530
Average Annual Growth (2015-2019)	2.0\%	-0.1\%	7.3\%	5.7\%	2.6\%	3.1\%	3.1 \%

Note: * - Estimated by Growth Factor
2.16 It should be noted that AADT for 2020 and 2021 are presented for reference only, which have been excluded due to the impact of the COVID-19 pandemic.
2.17 Table 2.3 shows that the overall traffic growth in the vicinity of the Subject Site is 3.1% per annum between 2015 and 2019.

Existing Pedestrian Flows

2.18 Pedestrian counts were conducted at footpaths and the signalised crossing on Sha Tau Kok Road - Lung Yeuk Tau between the Subject Site and the nearby bus stops, namely San Wai Barracks, during the AM peak period between 0700 and 0900 hours, and during the PM peak periods between 1700 and 1900 hours on Friday, $12^{\text {th }}$ May 2023. Figure 2.12 shows the surveyed locations.
2.19 The AM and PM peak hours identified from the surveys are found to be between 0745 and 0845, and 1800-1900 hours respectively.

Performance of the Pedestrian Facilities

2.20 Based on the surveyed pedestrian flows, the peak hour operational performance of the surveyed footpaths in terms on Levels of Service ("LOS"), and the surveyed signalised crossing in terms on volume-to-capacity (" v / c ") ratios are calculated, and summarised in Tables 2.4 and 2.5 respectively.

TABLE 2.4 EXISTING OPERATIONAL PERFORMANCES OF SURVEYED FOOTPATHS

Section		Measured Width (m)	Effective Width (m)	2-Way Flow (ped/hr)		2-Way Flow Rate (ped/m/min) [LOS]		
		AM Peak Hour		PM Peak Hour	AM Peak Hour	PM Peak Hour		
FP01	Sha Tau Kok Road Southern Footpath		4.5 m	4.0m	10	30	0.1 [A]	0.2 [A]
FP02	Sha Tau Kok Road Southern Footpath	4.5 m	4.0m	17	27	0.1 [A]	0.2 [A]	
FP03	Sha Tau Kok Road Northern Footpath	1.5m	1.0m	21	36	0.4 [A]	0.6 [A]	

FP01 - Sha Tau Kok Road - Southern footpath between San Wai Barrack Bus Stop and Signalised Crossing
FP02 - Sha Tau Kok Road - Southern footpath between Subject Site and Signalised Crossing
FP03 - Sha Tau Kok Road - Northern footpath between San Wai Barrack Bus Stop and Signalised Crossing
TABLE 2.5 EXISTING OPERATIONAL PERFORMANCES OF SIGNALISED CROSSING

Pedestrian Crossing	Width (m)	Type / Capacity (ped/hour)	2-way Pedestrian Flow (ped/hour) and v/c Ratio]	
		AM Peak Hour	PM Peak Hour	
XING01	Sha Tau Kok Road	5 m	Signalised / 3,800 ${ }^{\text {(Note 1) }}$	$11[0.003]$

XING01 - Signalised Crossing at Sha Tau Kok Road - Lung Yeuk Tau near San Wai Barrack
Note 1: Calculated based on TPDM Vol. 4 Chapter 3 with an assumption of a 65 -second cycle including 26 seconds pedestrian green + flashing green time.
2.21 Tables 2.4 and 2.5 show the surveyed pedestrian facilities operate with capacity.

Population Projection

2.22 Reference is made to the "2019-based Territorial Population and Employment Data Matrix" for Northeast New Territories published by the Planning Department, and the detail is presented in Table 2.6.

TABLE 2.6 PROJECTED POPULATION AND EMPLOYMENT FOR NORTHEAST NEW TERRITORIES

Item	Year			Average Annual Growth	
	2019	2026	2031	$2019-2026$	$2026-2031$
Population	$1,316,700$	$1,431,950$	$1,547,650$	$+1.2 \%$	$+1.6 \%$
Employment	421,000	411,500	438,000	-0.3%	$+1.3 \%$
Total	$1,737,700$	$1,843,450$	$\mathbf{1 , 9 8 5}, 650$	$+0.9 \%$	$+1.5 \%$

2.23 Table 2.6 shows that the total population and employment in the Northeast New Territories is projected to increase by 0.9% per annum from 2019 to 2026, and 1.5% per annum from 2026 to 2031.

Existing Public Transport Services

2.24 At present, multiple franchised bus and green minibus ("GMB") routes are available within 500m-radius from the Subject Site, and the details are presented in Table 2.7 and Figure 2.13.

TABLE 2.7 ROAD-BASED PUBLIC TRANSPORT SERVICES OPERATING WITHIN 500M OF THE SUBJECT SITE

Route	Routing	Frequency (minutes)
KMB 78A	Queen's Hill \leftrightarrow Fanling Station (Circular)	6-30
KMB 78B	Queen's Hill \rightarrow Sheung Shui (Choi Yuen)	4 trips per day ${ }^{(1)(4)}$
KMB 78K	Sheung Shui / Sheung Shui (Tai Ping) \leftrightarrow Sha Tau Kok	10-30
	Sha Tau Kok \rightarrow Wah Ming	$5-12^{(1)(4)}$
KMB 79K	Sheung Shui \uparrow Ta Kwu Ling (Tsung Yuen Ha)	15-30
KMB 277A	Sha Tau Kok \rightarrow Lam Tin Station	$60^{(1)}$
	Lam Tin Station \rightarrow Sha Tau Kok	$60^{(2)}$
KMB 278A	Queen's Hill \leftrightarrow Tsuen Wan (Nina Tower)	15-40
KMB N78	Sheung Shui \rightarrow Sha Tau Kok	4 trips per day ${ }^{(3)}$
	Sha Tau Kok \rightarrow Sheung Shui	4 trips per day ${ }^{(3)}$
CTB 56A	Queen's Hill Estate \rightarrow Tuen Mun (Ching Tin and Wo Tin)	1 trip per AM, and 1 trip per PM ${ }^{(4)}$
	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Queen's Hill Estate	2 trips per AM, and 1 trip per PM ${ }^{(4)}$
CTB 78X	Queen's Hill Estate \uparrow Kai Tak	30-60
CTB 79X	Queen's Hill Estate \leftrightarrow Cheung Sha Wan (Hoi Tat)	20-45
CTB 679	Queen's Hill Estate \rightarrow Central (Hong Kong Station)	2 trips per AM ${ }^{(1)(4)}$
	Central (Hong Kong Station) \rightarrow Queen's Hill Estate	1 trip per PM ${ }^{(2)(4)}$
СТВ 979	Queen's Hill Estate \rightarrow Central (Hong Kong Station)	1 trip per $\mathrm{AM}^{(1)}$
	Central (Hong Kong Station) \rightarrow Queen's Hill Estate	1 trip per $\mathrm{PM}^{(2)}$
GMB 52B	Fanling Station \leftrightarrow Hok Tau	8-25
GMB 52K	Fanling Station \uparrow Ping Che	4-10
GMB 55K	Sheung Shui Station \leftrightarrow Sha Tau Kok	4-10
GMB 56B	Fanling Station \leftrightarrow Tan Chuk Hang	15-30
GMB 56K	Fanling Station \leftrightarrow Luk Keng	10-30
GMB 503	Queen's Hill \leftrightarrow North District Hospital	10-20
GMB 503K	Queen's Hill \leftrightarrow Sheung Shui Station	8-15
RMB	Sheung Shui (Fu Hing Street) \leftrightarrow Ping Che / Ping Yeung	-

Note

[^0]
Occupancy Survey of Existing Public Transport Services

Franchised Bus and Green Minibus

2.25 An occupancy survey of public transport services was conducted at the bus stops, namely the San Wai Barracks, at Sha Tau Kok Road - Lung Yeuk Tau on Friday, $12^{\text {th }}$ May 2023 during the AM and PM peak periods between 0700 and 0900 hours, and 1700 and 1900 hours respectively. The San Wai Barracks bus stops are located some 200m west of the Subject Site. The AM and PM peak hours identified from the surveys are found to be between 0700 and 0800, and 1800-1900 hours respectively.
2.26 Table 2.8 summaries the results for local services to and from the MTR Fanling / Sheung Shui Stations, and Table 2.9 summaries the results for regional services to and from the urban area.

TABLE 2.8 RESULTS OF PEAK HOUR OCCUPANCY SURVEY FOR LOCAL SERVICES TO/FROM MTR FANLING / SHEUNG SHUI STATIONS

Peak Hour	Number of Trips Observed	Average Headway Observed (min)	Number of Passenger Observed (passenger/hour)	Total Hourly Capacity (passenger/hour) (Note 1)	Observed Occupancy	Surplus Capacity (passenger /hour)
To MTR Fanling / Sheung Shui Station (KMB 78K and 79K, and GMB 52B, 52K, 55K, 56B and 56K)						
AM	KMB: 18	3.3	1,915	2,712	71\%	797
	GMB: 48	1.5				
PM	$\begin{gathered} \text { KMB: } 4 \\ \text { GMB: } 40 \end{gathered}$	15	895	1,160	77\%	265
		1.5				
From MTR Fanling / Sheung Shui Station (KMB 78 K and 79 K , and GMB 52B, $52 \mathrm{~K}, 55 \mathrm{~K}, 56 \mathrm{~B}$ and 56 K)						
AM	$\begin{aligned} & \text { KMB: } 4 \\ & \text { GMB: } 51 \end{aligned}$	15	964	1,369	70\%	405
		1.0				
PM	$\begin{gathered} \text { KMB: } 6 \\ \text { GMB: } 37 \end{gathered}$	10	1,080	1,303	83\%	223
		1.5				

Note 1: According to the Annual Transport Digest 2022 published by Transport Department, the average capacity of a double-decker bus is 124 passengers. To be conservative, an 80% load capacity is assumed, hence, a capacity of 100 passengers per vehicle is adopted. For GMB, a seating capacity of 19 passengers per vehicle is adopted.

TABLE 2.9 RESULTS OF PEAK HOUR OCCUPANCY SURVEY FOR REGIONAL SERVICES TO/FROM URABN AREA

Peak Hour	Number of Trips Observed	Average Headway Observed (min)	Number of Passenger Observed (passenger/hour)	Total Hourly Capacity ${ }^{(1)}$ (passenger/hour)	Observed Occupancy	Surplus Capacity (passenger /hour)
To Urban Area (KMB 277A, CTB 78X, 79X, 679 and 979)						
AM	8	7.5	279	800	35\%	521
PM	1	60	10	100	10\%	90
From Urban Area (KMB 277A, CTB 78X, 79X, 679 and 979)						
AM	No inbound service to Fanling during the AM peak hour.					
PM	6	10	335	600	56\%	265

According to the Annual Transport Digest 2022 published by Transport Department, the average capacity of a double-decker bus is 124 passengers. To be conservative, an 80% load capacity is assumed, hence, a capacity of 100 passengers per vehicle is adopted.
2.27 Table 2.8 shows the local services to and from the MTR Fanling / Sheung Shui Station is frequent, and are around 70% to 80% utilized. Table 2.9 shows the regional services to and from the urban area is no more than 60%, and the service frequency is considerably lower.

MTR East Rail Line

2.28 Based on the information obtained from the Legislative Council, the operational performance for MTR East Rail Line in 2022 is summarized in Table 2.10.

TABLE 2.10 OPERATIONAL PERFORMANCE OF MTR EAST RAIL LINE

Item	Parameters
Maximum carrying capacity when train frequency is maximized [a]	82,500 passengers / hour
Existing carrying capacity [b]	62,500 passengers / hour ${ }^{\text {(Note 1) }}$ (Note 2)
Current Patronage [c]	37,700 passengers / hour
Current Loading [c]/[b] \{Critical Link\}	60% \{Tai Wai to Kowloon Tong\}
Loading in comparison with the maximum carrying capacity [c]/[a]	46% \{Tai Wai to Kowloon Tong \}

Source: Reply Serial No. TLB168 for Question Serial No. 1237, Controlling Officer's Reply, Examination of Estimates of Expenditure 2023-24. Finance Committee. Legislative Council. 14 April 2023. https://www.legco.gov.hk/yr2023/english/fc/fc/w_q/tlb-e.pdf
Note 1: According to the Reply Serial No. TLB168, existing service frequency has not yet increased to the maximum level and capacity as permitted by the signaling system.
Note 2: According to the Reply Serial No. TLB168, in view of the impact of COVID-2019, patronage shown is based on those months in 2022 when the pandemic situation was relatively eased.
2.29 Table 2.10 shows that the MTR East Rail Line operates at 60% of its current capacity, or 46% of its maximum carrying capacity during the peak hour.

3.0 THE PROPOSED DEVELOPMENT

Proposed Development

3.1 Table 3.1 summarises the parameters of the Proposed Development.

TABLE 3.1 PARAMETERS OF THE PROPOSED DEVELOPMENT

Use	Development Parameters			
	Domestic Plot Ratio:	6.5	Flat Mix:	
	Number of blocks:	5		
	Total number of flats:	3,305	$40 \mathrm{~m}^{2}<40 \mathrm{~m}^{2}$	2,991 units
	Average Flat Size:	$44 \mathrm{~m}^{2} \mathrm{GFA}$		314 units
	Estimated Population:	9,915		
Retail	$5,570 \mathrm{~m}^{2}$ GFA			

Proposed Internal Transport Facilities

Provision of Internal Transport Facilities for the Residential Flats

3.2 The internal transport facilities for the residential flats are provided based on the recommendation of the Hong Kong Planning Standards and Guidelines ("HKPSG"). Table 3.2 compares the HKPSG recommendation and the proposed provision.

TABLE 3.2 COMPARISON OF INTERNAL TRANSPORT FACILITIES FOR RESIDENTIAL USE

	HKPSG Recommendation	Proposed Provision
Private Car Parking Spaces		
(i)	Residential: Parking Requirement $=G P S \times R 1 \times R 2 \times R 3$ ```Global Parking Standard (GPS): \\ Min: 1 space per 7 flats \\ Max: 1 space per 4 flats \\ Demand Adjustment Ratio (R1): \\ - Flat Size \(<40 m^{2}=0.5\) \\ - 40 < Flat Size \(\leq 70 \mathrm{~m}^{2}\) \(=1.2\)``` Accessibility Adjustment Ratio (R2): - Outside a 500m-radius of rail station $=1.0$ Development Intensity Adjustment Ratio (R3) - $5.0<$ Domestic Plot Ratio $\leq 8.0=0.9$ For Flat Size $<40 \mathrm{~m}^{2} \quad(2,991$ flats $)$ Min: $\quad(2,991 / 7 \times \overline{0.5 \times 1.0 \times 0.9)=192.3}$, say 193 nos. Max: $\quad(2,991 / 4 \times 0.5 \times 1.0 \times 0.9)=336.5$, say 337 nos. For $40<$ Flat Size $\leq 70 \mathrm{~m}^{2}$: \quad (314 flats) Min: $\quad(314 / 7 \times 1.2 \times 1.0 \times 0.9)=48.4$, say 49 nos. Max: $\quad(314 / 4 \times 1.2 \times 1.0 \times 0.9)=84.8$, say 85 nos. Overall Min: $193+49 \quad=242$ nos. Max: $337+85$	422 nos. (=HKPSG Max., OK)

TABLE 3.2 COMPARISON OF PROVISION ON INTERNAL TRANSPORT FACILITIES FOR RESIDENTIAL USE (CONT'D)

	HKPSG Recommendation	Proposed Provision
Private Car Parking Spaces		
(ii)	Visitor Car Parking Spaces - 1-5 no. per residential block with more than 75 units, or as determined by the Authority - At least 1 no. visitor car parking space shall be accessible peaking space. For 5 blocks with 3,305 flats: Min: $1 \times 5=5$ nos. Max: $\quad 5 \times 5=\mathbf{2 5}$ nos.	$\begin{aligned} & 25 \text { nos. } \\ & (=\text { HKPSG Max., OK) } \end{aligned}$
(iii)	(i) + (ii) Min: $242+5=\quad 247$ nos., (including 243 nos. regular, and 4 nos. accessible) Max: $422+25=\quad 447$ nos., (including 442 nos. regular, and 5 nos. accessible)	447 nos., including: - 442 nos. regular, and - 5 nos. accessible (= HKPSG Max., OK)
Motorcycle Parking Spaces		
(iv)	At the rate of 1 motorcycle parking space per 100-150 flats Min: 3,305 / $150=22.03$, say 23 nos. Max: 3,305 / $100=33.05$, say 34 nos.	$\begin{aligned} & 34 \text { nos. } \\ & (=\text { HKPSG Max., OK) } \end{aligned}$
Goods Vehicle Loading / Unloading ("LUL") Bay		
(v)	1 bay per residential block For 5 residential blocks: $5 \times 1=5$ nos.	$\begin{aligned} & 5 \text { nos. HGV } \\ & (=\text { HKPSG, OK) } \end{aligned}$
Bicycle Parking Spaces		
(vi)	At the rate of 1 cycle parking space for every 30 flats smaller than $70 \mathrm{~m}^{2}$ GFA for outside 2 km radius of a rail station. $3,305 / 30=110.2, \text { says } 111 \text { nos }$	$\begin{aligned} & 111 \text { nos. } \\ & (=\mathrm{HKPSG}, \mathrm{OK}) \end{aligned}$

Provision of Internal Transport Facilities for Retail

3.4 The internal transport facilities for the retail use are provided based on the recommendation of the HKPSG, and Table 3.3 compares the HKPSG recommendation and the proposed provision.

TABLE 3.3 COMPARISON OF INTERNAL TRANSPORT FACILITIES FOR RETAIL USE

HKPSG Recommendation			Proposed Provision
Private Car Parking Spaces			
(vii)	 For $5,570 m^{2}$ GFA Min.: $5,570 / 300$ Max.: $5,570 / 150$	$\begin{aligned} & =18.6 \text {, say } 19 \text { nos. } \\ & =37.1 \text {, say } 38 \text { nos. } \end{aligned}$	38 nos., including: - 37 nos. regular, and - 1 no. accessible (=HKPSG Max., OK)
Motorcycle Parking Spaces			
(viii)	At 5% to 10% of car Min.: $19 \times 5 \%$ Max.: $38 \times 10 \%$	king spaces provided $=1.0$, say 1 nos. $=3.8$, say 4 nos.	$\begin{aligned} & \hline 4 \text { nos. } \\ & \text { (=HKPSG Max., OK) } \end{aligned}$

TABLE 3.3 COMPARISON OF INTERNAL TRANSPORT FACILITIES FOR RETAIL USE (CONT'D)

	HKPSG Recommendation	Proposed Provision
Goods Vehicle Loading / Unloading ("U/UL") Bay		
(ix)	1 L/UL bay per $800-1,200 \mathrm{~m}^{2}$ GFA 65% LGV and 35% HGV	7 nos., including: - 3 nos. HGV, and - 4 nos. LGV (= HKPSG Max., OK)

Overall Provision of Internal Transport

3.5 Table 3.4 summarises the overall provision of internal transport, which meets the high-end recommendation of the HKPSG.

TABLE 3.4 OVERALL PROVISION OF INTERNAL TRANSPORT FACILITIES

Type	Proposed Provision		
	Residential	Retail	Total
$\begin{array}{\|l\|} \hline \text { Car Parking Spaces } \\ @ 5.0 \mathrm{~m}(\mathrm{~L}) \times 2.5 \mathrm{~m}(\mathrm{~W}) \times 2.4 \mathrm{~m}(\mathrm{H}) \\ \hline \end{array}$	442	37	479
Accessible Car Parking Spaces @ $5.0 \mathrm{~m}(\mathrm{~L}) \times 3.5 \mathrm{~m}(\mathrm{~W}) \times 2.4 \mathrm{~m}(\mathrm{H})$	5	1	6
Motorcycle Parking Spaces @ $2.4 \mathrm{~m}(\mathrm{~L}) \times 1.0 \mathrm{~m}(\mathrm{~W}) \times 2.4 \mathrm{~m}(\mathrm{H})$	34	4	38
LGV Loading / Unloading Bays $@ 7.0 \mathrm{~m}(\mathrm{~L}) \times 3.5 \mathrm{~m}(\mathrm{~W}) \times 3.6 \mathrm{~m}(\mathrm{H})$	-	4	4
HGV Loading / Unloading Bays @ $11.0 \mathrm{~m}(\mathrm{~L}) \times 3.5 \mathrm{~m}(\mathrm{~W}) \times 4.7 \mathrm{~m}(\mathrm{H})$	5	3	8
Bicycle Parking Spaces @ $1.65 \mathrm{~m}(\mathrm{~L}) \times 0.8 \mathrm{~m}(\mathrm{~W})$ or with parking racks	111	-	111

Internal Transport Layout

3.6 The proposed internal transport layouts are shown in Figures 3.1 and 3.2.

Proposed Vehicular Access

3.7 The proposed vehicular access is located on Sha Tau Kok Road westbound, and is detailed in Figure 3.3. Visibility at the proposed vehicular access meets the requirements as stipulated in the TPDM.

4.0 TRAFFIC IMPACT

Design Year

4.1 The Proposed Development is to be completed in 2031. Hence, the design year adopted is 2034, i.e. 3 years after completion.

Traffic Generation of the Proposed Development

4.2 To estimate the traffic generation associated with the Proposed Development, the TPDM trip rates are adopted, and are summarized in Table 4.1.

TABLE 4.1 TRIP RATES ADOPTED FROM THE TPDM

Item				
	AM Peak Hour		PM Peak Hour	
	Generation	Attraction	Generation	Attraction
Private Housing: High-Density / R(A) $60 \mathrm{~m}^{2} \mathrm{GFA}(\mathrm{pcu} / \mathrm{hour} / f l a t)$	0.0718	0.0425	0.0286	0.037
Retail (pcu/100m ${ }^{2}$ GFA/hour)	0.2296	0.2434	0.3100	0.3563

4.3 Trip rates for "Private Housing" provided in the TPDM is only available for unit with average flat size $60 \mathrm{~m}^{2}$ or larger; whereas the average flat size for the Proposed Development is only $44 \mathrm{~m}^{2}$, which is 27% smaller. Hence, it is opined the use of mean rates for larger flat size provides a more conservative, i.e. higher, estimation on traffic generation. Table 4.2 presents the traffic generation for the Proposed Development.

TABLE 4.2 TRAFFIC GENERATION FOR THE PROPOSED DEVELOPMENT

Item		AM Peak Hour (pcu/hour)		PM Peak Hour (pcu/hour)	
		Generation	Attraction	Generation	Attraction
Residential (3,305 flats)		238	141	95	123
Retail ($5,570 \mathrm{~m}^{2} \mathrm{GFA}$)		13	14	18	20
TOTAL		251	155	113	143
		406 (2-Way)		256 (2-Way)	

4.4 Table 4.2 shows that the Proposed Development is expected to generate some 406 and 256 pcu (2-way) during the AM and PM peak hours respectively.

Traffic Forecasting

4.5 Year 2034 traffic flows used for the capacity analysis are derived based on the following:
(i) the 2023 existing traffic flow,
(ii) with reference to the 2026 traffic flows from the NTE1 Base District Traffic Model ("BDTM") which is produced by Transport Department,
(iii) the estimated traffic growths from 2026 to 2034,
(iv) the expected traffic generation associated with other known planned / committed major developments,
(v) the planned traffic improvement works to be carried by other projects, and
(vi) the expected traffic generation associated to the Proposed Development
4.6 The traffic growth from 2026 to 2034 are calculated using the following equations, with X_{1} being the annual population growth of 1.1% per annum obtained from the "2019-based Territorial Population and Employment Data Matrix" published by Planning Department rates for 2026-2034.

$$
2026 \text { to } 2034 \text { traffic growth factor }=\left(1+X_{1}\right)^{8}
$$

4.7 The total growths were then applied to the trips ends of the 2026 NTE1 BDTM model to develop the 2034 traffic model for producing the 2034 traffic flows.

Other Known Planned / Committed Major Developments in the Vicinity

4.8 Traffic generations associated with the other known planned / committed major developments located in the vicinity summarised in Table 4.3 were considered and included in the 2034 traffic forecast. The locations of these other developments are shown in Figure 4.1.

TABLE 4.3 LIST OF OTHER KNOWN PLANNED / COMMITTED MAJOR DEVELOPMENTS

Ref.	Developments	Development Parameters (Approx.)
A.	Fanling North New Development Area (including Proposed Minor Relaxation of Plot Ratio and Building Height approved under TPB No. A/KTN/54, A/FLN/28, \& A/FLN/30) ${ }^{(1)}$	Public Housing: 15,939 flats Private Housing: 8,990 flats G/IC: $32,837 \mathrm{~m}^{2}$ GFA Other non-domestic use (e.g. retail, kindergarten etc.): $129,657 \mathrm{~m}^{2}$ GFA Multiple Primary and Secondary Schools
B.	Private Residential Development at Sheung Shui Town Lot 262,8 Ma Sik Road, Fanling, (namely "One Innovale") ${ }^{(2)}$	Private Housing: 1,576 flats
C.	Proposed Public Housing Development at Queen's Hill Extension ${ }^{(3)}$	Public Housing: $\quad 4,000$ flats G/IC
D.	New Territories East Cultural Centre in Area 11, Sha Tau Kok Road - Lung Yeuk Tau, Fanling ${ }^{(4)}$	$67,000 \mathrm{~m}^{2}$ CFA with 2,500 seats Public Vehicle Park
E.	Public Housing Development at San Wan Road ${ }^{(5)}$	Public Housing: 450 flats G/IC, Kindergarten, Primary School, and Secondary School
F.	Mixed Housing Development Project at Pak Wo Road (TPB No. A/FSS/254) ${ }^{(6)}{ }^{(9)}$	Public Housing: 510 flats Subsidized Sale Flat: 696 flats Elderly Housing: 261 flats RCHE: 210 beds Retail: $6,500 \mathrm{~m}^{2}$ GFA Public Vehicle Park
G.	Public Housing Development at Fanling Area $17^{(7)}$	Public Housing: $\quad 8,300$ flats G/IC, Social Welfare Facilities, Kindergarten, Community Hall, Retail, Market
H.	Subsidized Sale Flats at Jockey Club Road (6)(8)	Subsidized Sale Flat: 644 flats Retail: $3,000 \mathrm{~m}^{2}$ CFA Public Vehicle Park with
I.	Public Housing Development at Sheung Shui Areas 4 and 30 Site $1 \& 2$ (including Proposed Minor Relaxation of Plot Ratio and Building Height approved under TPB No. A/FSS/280) ${ }^{(8)(9)}$	Public Housing: 3,644 flats Retail: $1,100 \mathrm{~m}^{2}$ CFA G/IC Public Vehicle Park
J.	Public Housing Development at Po Shek Wu Road ${ }^{(8)}$	Public Housing: 1,800 flats Retail: $3,000 \mathrm{~m}^{2}$ CFA Kindergarten

TABLE 4.3 LIST OF OTHER KNOWN PLANNED／COMMITTED MAJOR DEVELOPMENTS（CONT＇D）

Ref．	Developments	Development Parameters（Approx．）	
K．	Proposed House and Social Welfare Facility（Residential Care Home for the Elderly）at Ma Sik Road，Fanling（TPB No． A／FSS／276）${ }^{(9)}$	RCHE： 60 beds ${ }^{(9)}$ Private Housing：	50 houses
L．	Proposed Social Welfare Facility （Residential Care Home for the Elderly） and Flat at Tin Ping Road，Sheung Shui （TPB No．A／FSS／279）${ }^{(9)}$	RCHE： 143 beds Private Housing：	28 flats
M．	Proposed Minor Relaxation of Domestic PR Restriction for Permitted Residential Development with Commercial Uses at 1 Luen Fat Street，Fanling（TPB No． A／FSS／282）${ }^{(9)}$	Private Housing： Commercial：	$\begin{aligned} & 119 \text { flats } \\ & 161 \mathrm{~m}^{2} \text { GFA } \end{aligned}$
N．	Proposed Shop and Services（Showroom） and Office（Wholesale Conversion of an Existing Industrial Building）at 5 Lok Yip Road，Fanling（TPB No．A／FSS／283）${ }^{(9)}$	Retail：4，075 m ${ }^{2}$	
O．	Proposed Shop and Services，Eating Place and Other Uses at 33 On Lok Mun Street， Fanling（TPB No．A／FSS／284）${ }^{(9)}$	Retail：2，392 m²	
P．	Public Housing Development at Ching Hiu Road ${ }^{(10)}$	Private Housing： G／IC，\＆Social We	620 flats Facilities

Source：
（1）Rural and New Town Planning Committee（＂RNTPC＂）Paper No．A／FLN／30
（2）One Innovale．＜http：／／www．oneinnovale．com．hk＞
（3）North Committees Meetings Discussion Paper 9／2022．＂Proposed Public Housing Development at Queen＇s Hill Extension＂．Dated 15 May 2022．North District Council．
（4）LC Paper No．CB（2）614／2022（01）．Legislative Council．
（5）Planning Brief．Hong Kong Housing Authority． ＜https：／／www．pland．gov．hk／pland＿en／access／pec／planning＿brief／San\％20Wan\％20Road\％20PB．pdf＞
（6）HKHS Annual Report 2022．Hong \bar{K} ong Housing Society．
（7）Paper 2／2023．＂粉嶺第 17 區公營房屋發展計劃＂．Dated 16 January 2023．North District Council．
（8）North Committees Meetings Discussion Paper 5／2019．＂Public Housing Development Programmes at Sites 1 and 2 in Sheung Shui Areas 4 and 30，a Site to the North of Po Shek Wu Road and a Site on Jockey Club Road，Fanling，and Proposed Amendments to the Approved Fanling／Sheung Shui Outline Zoning Plan No．S／FSS／22．＂Dated 21 January 2019．North District Council．
（9）Statutory Planning Portal 2．Town Planning Board．
（10）Paper 4／2023．＂上水清曉路公營房屋發展之工地平整及基礎設施工程．＂Dated 16 January 2023．North District Council．

Future Road Network

4．9 Various traffic improvement works have been planned for implementation within the AOI，and the details are summarized in Table 4．4．

TABLE 4．4 PLANNED TRAFFIC IMPROVEMENT WORKS WITHIN THE AOI

Planned Traffic Improvements	Completion Year
Fanling Bypass Eastern Section ${ }^{(1)}$	By 2025
Lung Yeuk Tau Interchange of the Fanling Bypass Eastern Section ${ }^{(1)}$	By 2025
Fanling Bypass Western Section ${ }^{(2)}$	By 2031
Improvement of So Kwun Po Interchange ${ }^{(3)}$	By 2030
Local improvements at various Road，and Jockey Club Road ${ }^{(4)(5)}$	

（1）Project Number 7747CL．＂Advance Site Formation and Engineering Infrastructure Works at Kwu Tung North and Fanling North New Development Areas．＂Civil Engineering and Development Department． ＜https：／／www．cedd．gov．hk／eng／our－projects／major－projects／index－id－36．html＞
（2）Project Number 7835CL．＂Remaining Phase of Site Formation and Engineering Infrastructure Works at Kwu Tung North and Fanling North New Development Area－Detailed Design and Site Investigation＂ Civil Engineering and Development Department．＜https：／／www．cedd．gov．hk／eng／our－projects／major－ projects／index－id－87．html＞
（3）PP－616／2021 Improvement to So Kwun Po Interchange．Environmental Protection Department． ＜https：／／www．epd．gov．hk／eia／register／profile／latest／esb338／esb338．pdf＞
（4）A／FLN／30．＂Proposed Minor Relaxation of PR and BH Restrictions for Permitted Public and Private Housing Developments；and Proposed Social Welfare Facilities，Shop and Services and Eating Place within Public Housing Developments．＂Town Planning Board．
（5）Paper 2／2023．＂粉嶺第 17 區公營房屋發展計劃＂．Dated 16 January 2023．North District Council．
4．10 The above listed traffic improvements will be implemented by 2031，i．e．prior to the completion of the Proposed Development and an overview of the road network adopted in the 2034 traffic model is also shown in Figure 4．1．

2034 Traffic Flows

4．11 Year 2034 traffic flows with the Proposed Development are derived as follows：

$$
\begin{aligned}
2034 \text { Traffic Flows with the }= & 2034 \text { Traffic Flows without the Proposed } \\
\text { Proposed Development } & \begin{aligned}
& \text { Development }+ \text { Traffic Generated by the } \\
& \text { Proposed Development }
\end{aligned}
\end{aligned}
$$

4．12 Figures 4.2 and 4.3 show the 2034 AM and PM peak hour traffic flows without and with the Proposed Development respectively．

2034 Junction Capacity Analysis

4．13 Year 2034 junction capacity analysis for the case without and with the Proposed Development are summarised in Table 4.5 and detailed calculations are found in the Appendix A．

TABLE $4.5 \quad 2034$ JUNCTION PERFORMANCE

Ref．	Junction	Type of Junction	Parameter	Without the Proposed Development		With the Proposed Development	
				AM Peak Hour	$\begin{array}{\|c\|} \hline \text { PM Peak } \\ \text { Hour } \end{array}$	AM Peak Hour	PM Peak Hour
J01	Sha Tau Kok Road／Lau Shui Heung Road	Roundabout	RFC	0.453	0.514	0.519	0.578
J02	Sha Tau Kok Road／Lung Ma Road	Roundabout	RFC	0.606	0.649	0.734	0.705
J03	Sha Tau Kok Road／Ma Sik Road $^{\text {（Note 1）}}$	Priority	RFC	0.638	0.632	0.652	0.638
J04	Sha Tau Kok Road／Jockey Club Road（Note 1）	Roundabout	RFC	0.686	0.623	0.713	0.624
J05	So Kwun Po Road／Jockey Club Road／Ma Sik Road ${ }^{\text {（Note 1）}}$	Signal	RC	21\％	46\％	20\％	44\％
J06	So Kwun Po Interchange ${ }^{\text {（Note 1）}}$	Roundabout	RFC	0.796	0.784	0.826	0.794
J07	Jockey Club Road／Lok Yip Road ／San Wan Road	Signal	RFC	18\％	25\％	18\％	25\％
J08	Fanling Station Road／San Wan Road	Signal	RFC	18\％	18\％	18\％	18\％
J09	Sha Tau Kok Road／San Wan Road	Roundabout	RFC	0.580	0.599	0.593	0.603
J10	Lung Yeuk Tau Interchange ${ }^{\text {（Note 1）}}$	Roundabout	RFC	0.663	0.671	0.702	0.743
J11	Proposed Vehicular Access／Sha Tau Kok Road	Priority	RFC	n／a	n／a	0.372	0.176

With planned traffic improvement works to be implemented by Others．
RFC－Ratio of Flow to Capacity RC－Reserve Capacity
4.14 Table 4.5 shows that the junctions analyzed have capacity to accommodate the expected traffic growth to 2034, and the traffic generated by the Proposed Development.

2034 Road Link Capacity Analysis

4.15 Year 2034 road link capacity analysis for the cases without and with the Proposed Development are summarised in Table 4.6.

TABLE 4.6 2034 P/Df OF ROAD LINKS

Ref.	Road Link	Section		Type (Note 1)	Design Flow (pcu/hr)	Peak Hourly Flows / Design Flow Ratio (P/Df)			
		From	To						
						Without the Proposed Development		With the Proposed Development	
						AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour
L01	Sha Tau Kok Road	Lung Ma Road	Lau Shui Heung Road	RR	3,400	0.315	0.354	0.361	0.398
L02	Sha Tau Kok Road	Lau Shui Heung Road	Lung Ma Road	RR	3,400	0.352	0.381	0.426	0.414
L03	Sha Tau Kok Road	Ma Sik Road	Lung Ma Road	RR	3,400	0.505	0.472	0.547	0.512
L04	Sha Tau Kok Road	Lung Ma Road	Ma Sik Road	RR	3,400	0.724	0.658	0.795	0.687
L05	Sha Tau Kok Road	Jockey Club Road	Ma Sik Road	RR	3,400	0.421	0.438	0.421	0.438
L06	Sha Tau Kok Road	Ma Sik Road	Jockey Club Road	RR	3,400	0.457	0.398	0.477	0.406
L07	Ma Sik Road	Jockey Club Road	Sha Tau Kok Road	DD	3,050	0.482	0.479	0.493	0.494
L08	Ma Sik Road	Sha Tau Kok Road	Jockey Club Road	DD	3,050	0.479	0.354	0.479	0.354
L09	Jockey Club Road	Ma Sik Road / So Kwun Po Road	Sha Tau Kok Road	PD	3,400	0.198	0.167	0.198	0.167
L10	Jockey Club Road	Sha Tau Kok Road	Ma Sik Road / So Kwun Po Road	PD	3,400	0.227	0.192	0.228	0.193
L11	So Kwun Po	Jockey Club Road	So Kwun Po Interchange	PD	3,400	0.523	0.380	0.523	0.380
L12	So Kwun Po Road	So Kwun Po Interchange	Jockey Club Road	PD	3,400	0.569	0.588	0.577	0.599
L13	Jockey Club Road	Sha Tau Kok Road	Lok Yip Street / San Wan Road	PD	3,400	0.172	0.191	0.172	0.191
L14	Jockey Club Road	Lok Yip Street / San Wan Road	Sha Tau Kok Road	PD	3,400	0.265	0.222	0.265	0.222
L15	San Wan Road	Fanling Station Road	Lok Yip Street / San Wan Road	DD	3,050	0.184	0.159	0.184	0.159
L16	San Wan Road	Lok Yip Street / San Wan Road	Fanling Station Road	DD	3,050	0.229	0.238	0.229	0.238

4.16 Table 4.6 shows that, the road links analyzed have capacity to accommodate the expected traffic growth to 2034 and the traffic generated by the Proposed Development will have no adverse negative impact to the surrounding road network.

Mode of Transport and Pedestrian Generation of the Proposed Development

4.17 Reference is made to the "Travel Characteristics Survey 2011 - Final Report" published by the Transport Department and the "Population By-census 2016" published by the Census and Statistics Department. The passenger demand on public transport services and pedestrian generation associated with the Proposed Development are estimated and presented in Table 4.7.

TABLE 4.7 ESTIMATED PASSENGER DEMAND ON PUBLIC TRANSPORT AND PEDESTRIAN GENERATION ASSOCIATED WITH THE PROPOSED DEVELOPMENT

Item		Parameters			
Number of Peak Hour Mechanised Trips					
Estimated Population [a]		9,915			
Mechanised Trips Rate per Person [b] ${ }^{(1)}$		1.83			
Daily Trips generated by the Proposed Development [c] = [a] $\times[b]$		$9,915 \times 1.83=18,145$			
Percentage of Daily Trip during Peak Hours ${ }^{(2)}$ [d]		12\%			
Peak Hour Trips (2-way) [e] = [c]x[d]		$18,145 \times 12 \%=2,178$			
		AM Peak Hour		PM Peak Hour	
		Generation	Attraction	Generation	Attraction
Peak Hour Trip Distribution ${ }^{(3)}$ [f] (Based on in-house survey data)		80\%	20\%	50\%	50\%
Peak Hour Trip Generation / Attraction	$[\mathrm{g}]=[\mathrm{e}] \times[\mathrm{f}]$	1,525	653	1,089	1,089
Passenger Demand on Main Mode of Transport					
Main Mode of Transport	Percentage	AM Peak Hour		PM Peak Hour	
		Generation	Attraction	Generation	Attraction
Private Car \& Taxi	15\% ${ }^{(4)}$	262	66	164	164
Rail-based Public Transport [h] (MTR and Local Road-Based Services)	$42 \%{ }^{(4)}$	733	183	458	458
Road-based Public Transport [i] (Regional Road-Based Services) [i]	$43 \%{ }^{(4)}$	750	188	469	469
Peak Hour Pedestrian Generation [h] + [i]					
Pedestrian Generation		1,483	371	927	927

(1) Table 3.3, "Travel Characteristics Survey 2011 - Final Report", Transport Department
(2) Paragraph 3.3.7, "Travel Characteristics Survey 2011 - Final Report", Transport Department
(3) Based on CKM in-house database with surveys carried at various residential developments.
(4) Combined Percentage on Main Mode of Transport to Place of Work for North - Luen Wo Hui, North - Sha Ta, and North - Queen's Hill. "Population By-census 2016", Census and Statistics Department.
4.18 Table 4.7 shows the Proposed Development is estimated to generate 1,854 pedestrian trips (2-way) during the AM and PM peak hour respectively.

Review on Public Transport Services

Local Road-Based Public Transport Services to/from MTR Stations

4.19 Based on the estimated mode of transport presented in Table 4.7, the analyses on local road-based public transport services, i.e. franchised buses and GMB, between the Proposed Development and the MTR Fanling / Sheung Shui Stations, are presented in Table 4.8.

TABLE 4.8 ANALYSES ON LOCAL ROAD-BASED PUBLIC TRANSPORT SERVICES TO/FROM MTR STATIONS

Item	Number of Passengers			
	AM Peak Hour		PM Peak Hour	
	To MTR Stations	From MTR Stations	To MTR Stations	From MTR Stations
Existing Surplus Capacity [a] (From Table 2.8)	797	405	265	223
Passenger Demand associated with the Proposed Development [b] (From Table 4.6)	733	183	458	458
Surplus or Deficit [c] = [a]-[b]	+64	+ 222	-193	-235
Additional Services by Double Decker Buses required	Not Required	Not Required	2 nos.	3 nos.

Note 1: To be conservative, a capacity of 100 passengers per vehicle is adopted.
4.20 Table 4.8 shows that the existing local road-based public transport services from MTR Fanling / Sheung Shui Stations have capacity to serve the additional passenger demand associated with the Proposed Development during the AM peak hour. Whereas, additional 2 to 3 services shall be required during the PM peak hour.
4.21 Table 2.6 shows that KMB 78 K and 79 K operate with a total of 4 services only during the PM peak hour, i.e. 2 services/route/hour with an average headway of 30 minutes. Hence, it is suggested to add, say, 2 to 3 additional services between the 2 existing KMB routes, shortening the headway from 30 minutes to 15 to 20 minutes for the 2 existing routes.

Rail-Based Public Transport Services (MTR East Rail)
4.22 Table 4.7 shows that the additional demand on rail-based public transport services, i.e. MTR East Rail, associated with the Proposed Development is no more than 733 passengers during the peak hour. Whereas, as shown in Table 2.10, the MTR East Rail has a maximum carrying capacity of 82,500 passenger/hour/direction. Hence, the additional passenger demand is only 0.9% of the maximum carrying capacity [Calculation: $733 \div 82,500=0.9 \%$], which is negligible and will not result in adverse impact on the MTR East Rail.

Regional Road-Based Public Transport Services to/from Urban Area

4.23 Table 4.9 summarises the analyses on regional road-based public transport services, i.e. franchised buses, directly between the Proposed Development and the urban area.

TABLE 4.9 ANALYSES ON REGIONAL ROAD-BASED PUBLIC TRANSPORT SERVICES TO/FROM URBAN AREA

Item	Number of Passengers				
	AM Peak Hour			PM Peak Hour	
	To Urban Area	From Urban Area	To Urban Area	From Urban Area	
Existing Surplus Capacity [a] (From Table 2.8)	521	n / a	90	265	
Passenger Demand associated with the Proposed Development [b] (From Table 4.6)	750	188	469	469	
Surplus or Deficit [c] = [a]-[b]					
Additional Services by Double Decker Buses required	$\mathbf{3}$ nos.	$\mathbf{2}$ nos.	$\mathbf{4}$ nos.	3 nos.	

Note 1: To be conservative, a capacity of 100 passengers per vehicle is adopted.
4.24 Table 4.9 shows that additional 2 to 4 regional road-based public transport services to/from the urban area during the AM and PM peak hour shall be required to serve the additional passenger demand associated with the Proposed Development.
4.25 Table 2.9 show that the existing services to and from the urban area is limited during the AM and PM peak hour. Hence, it is suggested to add 3 to 4 additional services in either direction amongst the 5 existing KMB and CTB routes.

Pedestrian Forecasting

4.26 Year 2034 AM and PM peak hour pedestrian flows are estimated based on the existing pedestrian flow, and the estimated pedestrian growth from 2023 to 2024. With reference to Table 2.6, a growth rate of 1.1% per annum is adopted to derive the 2034 pedestrian flows as follow:

$$
\begin{aligned}
2034 \text { Pedestrian Flows without }= & \begin{array}{l}
\text { Existing Pedestrian Flows + Estimated } \\
\text { the Proposed Development [a] }
\end{array} \\
& \text { Pedestrian Growth to } 2034
\end{aligned}
$$

$$
\begin{aligned}
2034 \text { Pedestrian Flows without }= & {[a]+\text { Pedestrian Generation associated with } } \\
\text { the Proposed Development } & \text { the Proposed Development [Table 4.6] }
\end{aligned}
$$

2034 Pedestrian Facilities Operational Performance

4.27 Operational performance of the selected pedestrian facilities are calculated, and summarized in Tables 4.10 and 4.11.

TABLE 4.10 YEAR 2034 OPERATIONAL PERFORMANCES OF FOOTPATH

Section		Measured Width (m)	Effective Width (m)	2-Way Flow (ped/hr) / Flow Rate (ped/m/min) [LOS]				
		2034 Without Proposed Development		2034 With Proposed Development				
		AM Peak Hour		PM Peak Hour	AM Peak Hour	PM Peak Hour		
FP01	Sha Tau Kok Road Southern Footpath		4.5m	4.0m	12	35	933	962
					0.1 [A]	0.2 [A]	3.9 [A]	4.1 [A]
FP02	Sha Tau Kok Road Southern Footpath	4.5 m	4.0m	20	32	1,874	1,886	
				0.1 [A]	0.2 [B]	7.9 [A]	7.9 [A]	
FP03	Sha Tau Kok Road Northern Footpath	1.5m	1.0m	25	42	958	969	
				0.5 [B]	0.7 [B]	16.0 [B]	16.2 [B]	

FP01 - Sha Tau Kok Road - Southern footpath between San Wai Barrack Bus Stop and Signalised Crossing
FP02 - Sha Tau Kok Road - Southern footpath between Subject Site and Signalised Crossing
FP03 - Sha Tau Kok Road - Northern footpath between San Wai Barrack Bus Stop
TABLE 4.11 YEAR 2034 OPERATIONAL PERFORMANCES OF SURVEYED SIGNALISED CROSSING

Pedestrian Crossing		Width (m)	Type / Capacity (ped/hour)	2-way Pedestrian Flow (ped/hour) [v/c Ratio]				
		2034 Without Proposed Development		2034 With Proposed Development				
		AM Peak Hour		PM Peak Hour	AM Peak Hour	PM Peak Hour		
XING01	Sha Tau Kok Road		5 m	Signalised / 3,800 ${ }^{\text {(Note 1) }}$	$\begin{gathered} 13 \\ {[0.003]} \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ {[0.006]} \\ \hline \end{gathered}$	$\begin{gathered} 946 \\ {[0.249]} \\ \hline \end{gathered}$	$\begin{gathered} 943 \\ {[0.248]} \end{gathered}$

XING01 - Sha Tau Kok Road - Signalised Crossing
Note 1: Calculated based on TPDM Vol. 4 Chapter 3 with an assumption of a 65 -second cycle including 26 seconds pedestrian green + flashing green time.
4.28 The above results indicate that pedestrian facilities assessed will operate with capacities during the AM and PM peak hour.

5.0 SUMMARY

5.1 The Proposed Development in various lots in D.D. 83, Lung Yeuk Tau in Fanling has 5 residential blocks including 3,305 flats with average flat size of $44 \mathrm{~m}^{2}$ GFA, and $5,570 \mathrm{~m}^{2}$ retail GFA.
5.2 The proposed internal transport facilities meet the high-end recommendation of the HKPSG, and include the following:
i) 479 car parking spaces @ $5.0 \mathrm{~m}(\mathrm{~L}) \times 2.5 \mathrm{~m}(\mathrm{~W}) \times \operatorname{Min} .2 .4 \mathrm{~m}(\mathrm{H})$,
ii) 6 accessible car parking spaces @ $5.0 \mathrm{~m}(\mathrm{~L}) \times 3.5 \mathrm{~m}(\mathrm{~W}) \times \mathrm{Min} .2 .4(\mathrm{H})$,
iii) 38 motorcycle parking spaces @ $2.4 \mathrm{~m}(\mathrm{~L}) \times 1.0 \mathrm{~m}(\mathrm{~W}) \times \operatorname{Min} .2 .4 \mathrm{~m}(\mathrm{H})$,
iv) 4 LGV loading / unloading bays @ $7.0 \mathrm{~m}(\mathrm{~L}) \times 3.5 \mathrm{~m}(\mathrm{~W}) \times \mathrm{Min} .3 .6 \mathrm{~m}(\mathrm{H})$,
v) 8 HGV loading / unloading bays @ $11.0 \mathrm{~m}(\mathrm{~L}) \times 3.5 \mathrm{~m}(\mathrm{~W}) \times \operatorname{Min} .4 .7 \mathrm{~m}(\mathrm{H})$,
vi) 111 bicycle parking spaces @ $1.65 \mathrm{~m}(\mathrm{~L}) \times 0.8 \mathrm{~m}(\mathrm{~W})$ or with parking rack.
5.3 Updated manual classified counts were conducted in May 2023 at selected junctions located in the AOI to establish the existing traffic flows during the AM and PM peak hours. The design year 2034 traffic flows were derived with reference to the BDTM, and have also taken into account the traffic generation and planned traffic improvement works associated with other known planned / committed major developments located in the vicinity.
5.4 Traffic generation for the Proposed Development is calculated based on the trip rates adopted from the TPDM, and conservatively, it is expected to generate some 406 and 256 pcu (2-way) during the AM and PM peak hours respectively.
5.5 The traffic analysis found that the surveyed junctions and road links analyzed currently operate with capacity. With the planned traffic improvement works to be implemented by others, the analyzed junction will have sufficient capacity to accommodate the expected traffic growth to 2034 and the traffic generated by the Proposed Development. Hence, traffic generated by the Proposed Development will result in no adverse impact to the surrounding road network.
5.6 Passenger demand on public transport services associated with the Proposed Development was estimated for local and regional road-based public transport services. During the AM peak hour, the local services are expected to have surplus capacity to accommodate the additional passenger demand, and additional 2 to 3 services by double decker buses are suggested to enhance the regional services. During the PM peak hour, additional 2 to 4 services by double decker buses are suggested for both local and regional services. Whereas, the MTR East Rail shall have capacity to accommodate the additional passenger demand associated with the Proposed Development.
5.7 Analyses for nearby pedestrian facilities on Sha Tau Kok Road - Lung Yeuk Tau were also reviewed, and these facilities shall have capacity to accommodate the additional pedestrian flows associated with the Proposed Development during the $A M$ and PM peak hour.
5.8 In view of the above, it is concluded that the Proposed Development is acceptable from traffic engineering viewpoint.

Roundabout Analysis

Junction:	Sha Tau Kok Road / Lau Shui Heung Road						Job Number: J7204 J1-P 1 J1-P. 1
Scenario:	Existi						
Design Year:	2023	Designed By:	NCL	Checked By:	WCH	Date:	23 June 2023

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A		18	836						853	193
From B	34		61						95	918
From C	760	111	82						954	34
From D										
From E										
From F										
From G										
From H										
Total	794	128	979						1902	

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	6	7	942						955
From B	40		89						128
From C	807	100	135						1083
From D									
From E									
From F									
From G									
From H									
Total	853	108	1166						

Legend
Legend

Arm	Road (in clockwise order)
A	Sha Tau Kok Road - East
B	Lau Shui Heung Road
C	Sha Tau Kok Road - West
D	
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / r)-0.05]$
F	$=303 x_{2}$
f_{c}	$=0.210 t_{D}\left(1+0.2 x_{2}\right)$
t_{D}	$=1+0.5 /(1+M)$
M	$=\exp [(D-60) / 10]$
x_{2}	$=v+(e-v) /(1+2 S)$
S	$=1.6(e-v) / L$

Geometric Parameters
Geometric Parameters

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	7.3	7.3	55.0	100.0	55	15	0.0
From B	6.0	3.5	100.0	50.0	55	25	0.1
From C	7.3	7.3	80.0	50.0	55	15	0.0
From D							
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{2}	M	t_{D}	K	F	Q_{E} f_{c} AM		Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	7.300	0.607	1.311	1.083	2212	0.677	2254	2223	853	955	0.379	0.430
From B	5.655	0.607	1.311	1.056	1714	0.587	1241	1139	95	128	0.077	0.113
From C	7.300	0.607	1.311	1.089	2212	0.677	2383	2374	954	1042	0.400	0.439
From D												
From E												
From F												
From G From H												

Roundabout Analysis

Junction:	Sha Tau Kok Road / Lau Shui Heung Road			Job Number: J7204	
Scenario:	Without Proposed Development		J1-P. 2		
Design Year:	$\underline{2034}$	Designed By: \quad NCL	Checked By: \quad WCH	Date:	23 June 2023

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	1	21	896						917
From B	9		99						108
From C	831	117	125						1022
From D									
From E									
From F									
From G									
From H									
Total	841	137	1120						

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	6	9	1002						1018	314
From B	40		122						162	1188
From C	888	136	179						1202	47
From D										
From E										
From F										
From G										
From H										
Total	935	145	1303						2383	

Legend
Legend

Arm	Road (in clockwise order)
A	Sha Tau Kok Road - East
B	Lau Shui Heung Road
C	Sha Tau Kok Road - West
D	
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$
F	$=303 \mathrm{x}_{2}$
f_{c}	$=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(\mathrm{D}-60) / 10]$
x_{2}	$=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$
S	$=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$

Geometric Parameters
Geometric Parameters

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	7.3	7.3	55.0	100.0	55	15	0.0
From B	6.0	3.5	100.0	50.0	55	25	0.1
From C	7.3	7.3	80.0	50.0	55	15	0.0
From D							
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{3}	M	t_{D}	K	F	Q_{E} f_{c} AM		Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	7.300	0.607	1.311	1.083	2212	0.677	2219	2165	917	1018	0.413	0.470
From B	5.655	0.607	1.311	1.056	1714	0.587	1177	1074	108	162	0.092	0.151
From C	7.300	0.607	1.311	1.089	2212	0.677	2401	2374	1072	1202	0.447	0.507
From D												
From E												
From F												
From G From H												

Roundabout Analysis

Junction:	Sha Tau Kok Road / Lau Shui Heung Road						$\begin{gathered} \text { Job Number: } \frac{\mathrm{J} 7204}{\text { J1 - P. }} 3 \\ \hline \end{gathered}$
Scenario:	With	velopment					
Design Year:	2034	Designed By:	NCL	Checked By:	WCH	Date:	23 June 2023

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	1	21	908						929	384
From B	9		99						108	1177
From C	843	117	268						1227	10
From D										
From E										
From F										
From G										
From H										
Total	853	137	1275						2265	

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	6	9	1009						1025	450
From B	40		122						162	1331
From C	902	136	315						1352	47
From D										
From E										
From F										
From G										
From H										
Total	949	145	1446						2540	

Legend
Legend

Arm	Road (in clockwise order)
A	Sha Tau Kok Road - East
B	Lau Shui Heung Road
C	Sha Tau Kok Road - West
D	
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

| Q_{E} | Entry Capacity |
| :--- | :--- | :--- |
| q_{c} | Circulating Flow across the Entry |
| K | $=1-0.00347(\varnothing-30)-0.978[(1 / r)-0.05]$ |
| F | $=303 x_{2}$ |
| f_{c} | $=0.210 t_{D}\left(1+0.2 x_{2}\right)$ |
| t_{D} | $=1+0.5 /(1+\mathrm{M})$ |
| M | $=\exp [(D-60) / 10]$ |
| x_{2} | $=v+(e-v) /(1+2 S)$ |
| S | $=1.6(e-v) / L$ |

Geometric Parameters
Geometric Parameters

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	7.3	7.3	55.0	100.0	55	15	0.0
From B	6.0	3.5	100.0	50.0	55	25	0.1
From C	7.3	7.3	80.0	50.0	55	15	0.0
From D							
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{4}	M	t_{D}	K	F	$\begin{array}{ll} & \\ f_{c} & \\ Q_{E} \\ & \\ \text { AM }\end{array}$		Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	7.300	0.607	1.311	1.083	2212	0.677	2114	2065	929	1025	0.440	0.496
From B	5.655	0.607	1.311	1.056	1714	0.587	1081	985	108	162	0.100	0.165
From C	7.300	0.607	1.311	1.089	2212	0.677	2401	2374	1227	1352	0.511	0.570
From D												
From E												
From F												
From G From H												

Roundabout Analysis

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G
From A		66	990			To H	Total
From B	65					1056	452
From C	945	414	39			65	1028
From D							
From E							
From F							
From G							
From H							
Total	1009	480	1028				

Free flow bypass from B to $C=464$
PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G
From A		87	1118	To H	Total	q_{c}	
From B	98					1204	461
From C	886	374	87		98	1205	
From D							
From E							
From F							
From G							
From H							
Total	984	461	1205				

Free flow bypass from B to $C=\quad 413$

Legend

Arm	Road (in clockwise order)
A	Sha Tau Kok Road - East
B	Lung Ma Road
C	Sha Tau Kok Road - West
D	San Wai Barracks
E	
F	
G	
H	

Geometric Parameters

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	7.5	7.5	40.0	100.0	55	15	0.1
From B	4.0	3.7	70.0	15.0	55	10	0.0
From C	9.5	9.5	35.0	100.0	55	10	0.1
From D	5.5	4.5	20.0	10.0	55	10	0.2
From E							
From F							
From G							
From H							

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $\mathbf{Q}_{\mathrm{E}}=\mathrm{K}\left(\mathbf{F}-\mathbf{f}_{\mathrm{c}} \mathbf{q}_{\mathrm{c}}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$
F	$=303 \mathrm{x}_{2}$
f_{c}	$=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(\mathrm{D}-60) / 10]$
x_{2}	$=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$
S	$=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{2}	M	$t_{\text {b }}$	K	F	f_{c}	$\begin{aligned} & \hline Q_{E} \\ & A M \end{aligned}$	Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	7.500	0.607	1.311	1.077	2273	0.688	2111	2104	1056	1204	0.500	0.572
From B	3.976	0.607	1.311	1.104	1205	0.494	769	673	65	98	0.084	0.146
From C	9.500	0.607	1.311	1.090	2879	0.799	3082	3053	1397	1348	0.453	0.441
From D	5.258	0.607	1.311	1.069	1593	0.565	821	830	0	0	0.000	0.000
From E												
From F												
From G From H												

Roundabout Analysis

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G
From A	1	192	1004			To H	Total
From B	83					1197	638
From C	1079	638				83	1005
From D							
From E							
From F							
From G							
From H							
Total	1162	830	1004				

Free flow bypass from B to $C=729$

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G
From A	1	134	1162		To H	Total	q_{c}
From B	135					1296	605
From C	998	602	3		135	1166	
From D					1603	135	
From E							
From F							
From G							
From H							
Total	1133	736	1165				

Free flow bypass from B to $C=\quad 535$

Legend

Legend

Arm	Road (in clockwise order)
A	Sha Tau Kok Road - East
B	Lung Ma Road
C	Sha Tau Kok Road - West
D	San Wai Barracks
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$
F	$=303 \mathrm{x}_{2}$
f_{c}	$=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(\mathrm{D}-60) / 10]$
x_{2}	$=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$
S	$=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{3}	M	$t_{\text {D }}$	K	F	$\begin{array}{cc} & \\ f_{c} & Q_{E} \\ & A M\end{array}$		Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	7.500	0.607	1.311	1.077	2273	0.688	1974	1998	1197	1296	0.606	0.649
From B	3.976	0.607	1.311	1.104	1205	0.494	782	694	83	135	0.106	0.194
From C	9.500	0.607	1.311	1.090	2879	0.799	3066	3021	1717	1603	0.560	0.531
From D	5.258	0.607	1.311	1.069	1593	0.565	616	653	0	0	0.000	0.000
From E												
From F												
From G From H												

Roundabout Analysis

Junction:	Sha Tau Kok Road / Lung Ma Road						$\begin{gathered} \text { Job Number: J7204 } \\ \text { J2 - P. } 3 \end{gathered}$
Scenario:	With P	elopment					
Design Year:	2034	Designed By:	NCL	Checked By:	WCH	Date:	23 June 2023

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	13	192	1243						1448	638
From B	83								83	1256
From C	1222	638							1860	95
From D										1955
From E										
From F										
From G										
From H										
Total	1317	830	1243						3390	

Free flow bypass from B to $C=729$

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G
From A	15	134	1261		To H	Total	q_{c}
From B	135					1409	605
From C	1134	602	3		135	1279	
From D					1739	149	
From E							
From F							
From G							
From H							
Total	1283	736	1264				

Free flow bypass from B to $C=\quad 535$

Legend

Legend

Arm	Road (in clockwise order)
A	Sha Tau Kok Road - East
B	Lung Ma Road
C	Sha Tau Kok Road - West
D	San Wai Barracks
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$
F	$=303 \mathrm{x}_{2}$
f_{c}	$=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(\mathrm{D}-60) / 10]$
x_{2}	$=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$
S	$=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{4}	M	t_{D}	K	F	$\begin{array}{ll} & \\ f_{c} & Q_{E} \\ & \\ \text { AM }\end{array}$		Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	7.500	0.607	1.311	1.077	2273	0.688	1974	1998	1448	1409	0.734	0.705
From B	3.976	0.607	1.311	1.104	1205	0.494	645	632	83	135	0.128	0.213
From C	9.500	0.607	1.311	1.090	2879	0.799	3056	3009	1860	1739	0.609	0.578
From D	5.258	0.607	1.311	1.069	1593	0.565	523	563	0	0	0.000	0.000
From E												
From F												
From G From H												

Signal Junction Analysis

Roundabout Analysis

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	14	127	814	262					1217	404
From B	384	26	68	258					736	1233
From C	743	121	40	131					1034	1011
From D	264	113	37	67					481	1328
From E										
From F										
From G								3468		
From H										
Total	1404	388	959	717						

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A		138	680	256					1074	472
From B	498	46	78	79					702	1085
From C	700	145	34	67					945	919
From D	263	131	76	39					510	1423
From E										
From F										
From G										
From H										
Total	1462	461	868	441					3231	

Legend

Legend

Arm	Road (in clockwise order)
A	Sha Tau Kok Road - East
B	Jockey Club Road - South
C	Sha Tau Kok Road - West
D	Jockey Club Road - North
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / r)-0.05]$
F	$=303 x_{2}$
f_{c}	$=0.210 t_{D}\left(1+0.2 x_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(D-60) / 10]$
x_{2}	$=v+(e-v) /(1+2 S)$
S	$=1.6(e-v) / L$

Geometric Parameters
Geometric Parameters

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	8.0	7.5	35.0	4.0	65	10	0.2
From B	7.5	7.0	25.0	1.0	65	10	0.8
From C	10.0	7.0	40.0	15.0	65	40	0.3
From D	8.5	8.0	60.0	2.0	65	20	0.4
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{2}	M	$t_{\text {b }}$	K	F	$\begin{array}{ll} & \\ f_{c} & Q_{E} \\ \text { AM }\end{array}$		Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	7.857	1.649	1.189	1.090	2381	0.642	2313	2266	1217	1074	0.526	0.474
From B	7.192	1.649	1.189	1.079	2179	0.609	1542	1639	736	702	0.477	0.428
From C	8.829	1.649	1.189	0.990	2675	0.690	1957	2020	1034	945	0.528	0.468
From D	8.278	1.649	1.189	1.067	2508	0.663	1737	1670	481	510	0.277	0.305
From E												
From F												
From G From H												

Roundabout Analysis

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	21	148	940	366					1475	638
From B	313	34	90	465					901	1527
From C	822	136	49	144					1150	1275
From D	278	269	74	77					698	1373
From E										
From F										
From G								4224		
From H										
Total	1433	586	1153	1052						

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	34	141	712	383					1270
From B	368	55	75	258					756
From C	806	209	58	87					1325
From D	282	245	85	52					664
From E							1151		
From F									
From G									
From H									
Total	1490	650	930	781					

Legend

Legend

Arm	Road (in clockwise order)
A	Sha Tau Kok Road - East
B	Jockey Club Road - South
C	Sha Tau Kok Road - West
D	Jockey Club Road - North
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / r)-0.05]$
F	$=303 x_{2}$
f_{c}	$=0.210 t_{D}\left(1+0.2 x_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(D-60) / 10]$
x_{2}	$=v+(e-v) /(1+2 S)$
S	$=1.6(e-v) / L$

Geometric Parameters

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	7.3	7.3	35.0	100.0	65	10	0.0
From B	7.3	7.3	25.0	100.0	65	10	0.0
From C	10.0	7.0	40.0	15.0	65	40	0.3
From D	7.3	7.3	60.0	100.0	65	20	0.0
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{3}	M	$t_{\text {D }}$	K	F	Q_{E} f_{c} $A M$		Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	7.300	1.649	1.189	1.090	2212	0.614	1985	1939	1475	1270	0.743	0.655
From B	7.300	1.649	1.189	1.079	2212	0.614	1375	1509	901	756	0.655	0.501
From C	8.829	1.649	1.189	0.990	2675	0.690	1776	1861	1150	1160	0.647	0.623
From D	7.300	1.649	1.189	1.067	2212	0.614	1461	1357	698	664	0.478	0.489
From E												
From F												
From G From H												

Roundabout Analysis

Junction:	Jockey Club Road / Sha Tau Kok Road						$\begin{gathered} \text { Job Number: } \frac{\mathrm{J} 7204}{\text { J4 - P. } 3} \end{gathered}$
Scenario:	With P	elopment					
Design Year:	2034	Designed By:	NCL	Checked By:	WCH	Date:	23 June 2023

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	21	148	993	370					1532	638
From B	313	34	90	465					901	1584
From C	822	136	49	144					1150	1279
From D	278	269	74	77					698	1373
From E										
From F										
From G								4281		
From H										
Total	1433	586	1206	1056						

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	34	141	731	386					1292
From B	368	55	75	258					756
From C	806	209	58	87					1347
From D	282	245	85	52					664
From E									
From F									
From G									
From H									
Total	1490	650	949	784					

Legend

Legend

Arm	Road (in clockwise order)
A	Sha Tau Kok Road - East
B	Jockey Club Road - South
C	Sha Tau Kok Road - West
D	Jockey Club Road - North
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / r)-0.05]$
F	$=303 x_{2}$
f_{c}	$=0.210 t_{D}\left(1+0.2 x_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(D-60) / 10]$
x_{2}	$=v+(e-v) /(1+2 S)$
S	$=1.6(e-v) / L$

Geometric Parameters

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	7.3	7.3	35.0	100.0	65	10	0.0
From B	7.3	7.3	25.0	100.0	65	10	0.0
From C	10.0	7.0	40.0	15.0	65	40	0.3
From D	7.3	7.3	60.0	100.0	65	20	0.0
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{4}	M	$t_{\text {D }}$	K	F	Q_{E} f_{c} $A M$		Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	7.300	1.649	1.189	1.090	2212	0.614	1985	1939	1532	1292	0.772	0.666
From B	7.300	1.649	1.189	1.079	2212	0.614	1337	1494	901	756	0.674	0.506
From C	8.829	1.649	1.189	0.990	2675	0.690	1774	1859	1150	1160	0.648	0.624
From D	7.300	1.649	1.189	1.067	2212	0.614	1461	1357	698	664	0.478	0.489
From E												
From F												
From G From H												

Signal Junction Analysis

Junction: Jockey	oad / Ma	Sik Ro	/ So	Kwun Po	Road									Job N	mber:	J7204
Scenario: Existing															J5-P.	
Design Year: 2023	Designe	By:		NCL			Checke	d By:		WCH			Date:		June 20	23
									AM Peak					PMPe		
Approach		Phase	Stage	Width (m)	Radius (m)	$\begin{gathered} \text { \% Up-piill } \\ \text { Gradient } \end{gathered}$	Turning \%	$\begin{array}{\|c} \hline \text { Sat. Flow } \\ \text { (pouhr) } \end{array}$	$\begin{gathered} \text { Flow } \\ \text { (pouhr) } \end{gathered}$	y value	Criticaly	Turning \%	Sat. Flow (pouhr)	$\begin{gathered} \text { Fow } \\ \text { (powhr) } \end{gathered}$	y value	Critical y
Jockey Club Road EB	LT	A1	2	3.30	12.5		100	1737	90	0.052		100	1737	87	0.050	
Jockey Club Road EB	LT+SA	A2	2	3.30	15.0		59	1969	103	0.052		87	1919	97	0.051	0.051
Jockey Club Road EB	SA	A3	2	3.30				2085	108	0.052			2085	104	0.050	
Jockey Club Road EB	RT	A4	2	3.30	27.5		100	1977	116	0.059	0.059	100	1977	92	0.046	
Jockey Club Road EB	RT	A5	2	3.30	25.0		100	1967	115	0.059		100	1967	91	0.046	
So Kwun Po Road NB	LT	B1	1,2	4.60	45.0		100	2008	347	0.173		100	2008	417	0.208	
So Kwun Po Road NB	SA	B2	1	3.30				2085	419	0.201	0.201		2085	408	0.195	0.195
So Kwun Po Road NB	SA+RT	B3	1	3.30	27.5		0	2085	419	0.201		0	2085	407	0.195	
So Kwun Po Road NB	RT	B4	1	3.30	25.0		100	1967	310	0.157		100	1967	291	0.148	
Jockey Club Road WB	LT	C1	3	3.30	25.0		100	1967	146	0.074		100	1967	128	0.065	0.065
Jockey Club Road WB	LT+SA	C2	3	3.30	27.5		64	2015	150	0.074	0.074	56	2023	131	0.065	
Jockey Club Road WB	SA	C3	3	3.30				2085	155	0.074			2085	136	0.065	
Jockey Club Road WB	RT	C4	3	3.60	25.0		100	1995	121	0.060		100	1995	82	0.041	
Ma Sik Road SB	LT	D1	4	3.70	12.5		100	1772	68	0.039		100	1772	56	0.031	
Ma Sik Road SB	SA	D2	4	3.80	15.0			2135	388	0.182	0.182		2135	311	0.146	
Ma Sik Road SB	SA	D3	4	3.80				2135	389	0.182			2135	311	0.146	
Ma Sik Road SB	RT	D4	4	3.50	25.0		100	1986	191	0.096		100	1986	193	0.097	0.097
pedestrian phase		$\mathrm{E}_{(\mathrm{p})}$	1		min cr	rossing	time $=$	5	sec	GM +	10	$\sec \mathrm{F}$	GM =	15	sec	
		$\mathrm{F}_{(\mathrm{p})}$	2,3,4		min cr	rossing	time $=$	7	sec G	GM +	9	\sec F	GM =	16	sec	
		$\mathrm{G}_{(\mathrm{p})}$	1		min cr	ossing	time $=$	13	sec	GM +	14	\sec F	GM =	27	sec	
		$\mathrm{H}_{(\mathrm{p})}$	3,4		min cr	ossing	time $=$	7	sec G	GM +	7	sec F	GM =	14	sec	
10			PM Traffic Flow (pcu/hr)					N^{N}	$\mathrm{S}=1940+100(\mathrm{~W}-3.25)$ $\mathrm{S}=2080+100(\mathrm{~W}-3.25)$ $\mathrm{S}_{\mathrm{M}}=\mathrm{S}+(1+1.5 f / r)$ $\mathrm{S}_{\mathrm{M}}=(\mathrm{S}-230) \div(1+1.5 / r)$					Note:		
				AM Peak Hour		PM Peak Hour										
			$1+2+3+4$	$1,2+3+4$	$1+2+3+4$	$1,2+3+4$										
			0.516	0.429	0.457	0.418										
			L(s)	27	21	27	21									
			C (s)	116	116	116	116									
			practicaly	0.691	0.737	0.691	0.737									
			R.C. $(\%)$ 34% 72% 51% 76%													
AM $\quad G=$		G =		$\text { UG }=8$		G =				$\mathrm{G}=$		UG $=8$		G =		IG =
G=		G =		UG $=8$		$\mathrm{G}=$		IVG $=7$		G =		$V G=8$		G =		$1 / \mathrm{G}=$
PM G =		G =		IVG $=8$		G =		$1 / G=7$		G =		IVG $=8$		G =		$1 / 6=$
G =		G =		IVG $=8$		G =		I/G $=7$		G =		VG $=8$		G =		IG $=$

Signal Junction Analysis

Signal Junction Analysis

Roundabout Analysis

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	59		359	1144					1561	550
From B	427								427	1812
From C	396	299							695	1630
From D			251							
From E										
From F										
From G										
From H										
Total	882	299	609	1144						

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	3		567	981					1550	575
From B	572								572	1863
From C	476	261								
From D			313							
From E										
From F										
From G										
From H										
Total	1051	261	880	981						

Legend

Legend

Arm	Road (in clockwise order)
A	So Kwun Po Road - North
B	Fanling Highway - East
C	So Kwun Po Road - South
D	Fanling Highway - West
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / r)-0.05]$
F	$=303 x_{2}$
f_{c}	$=0.210 t_{D}\left(1+0.2 x_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(D-60) / 10]$
x_{2}	$=v+(e-v) /(1+2 S)$
S	$=1.6(e-v) / L$

Geometric Parameters

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	9.5	6.0	20.0	50.0	65	55	0.1
From B	7.0	3.5	90.0	50.0	65	25	0.1
From C	9.0	6.9	30.0	50.0	65	35	0.1
From D	7.5	3.5	55.0	50.0	65	30	0.1
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{2}	M	t_{D}	K	F	Q_{E} f_{c} $A M$		Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	8.859	1.649	1.189	0.913	2684	0.692	2104	2088	1561	1550	0.742	0.742
From B	6.359	1.649	1.189	1.055	1927	0.567	949	918	427	572	0.450	0.623
From C	8.751	1.649	1.189	0.999	2652	0.687	1531	1582	695	738	0.454	0.466
From D	6.685	1.649	1.189	1.031	2025	0.583	1378	1299	251	313	0.182	0.241
From E												
From F												
From G From H												

Roundabout Analysis

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	24		128	1275					1427	631
From B	491								491	1740
From C	172	318							490	1790
From D			313							
From E										
From F										
From G										
From H										
Total	687	318	441	1275						

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	27		273	1102					1401	638
From B	654								654	1771
From C	207	268							475	1782
From D			370							
From E										
From F										
From G										
From H										
Total	887	268	643	1102						

Legend

Legend

Arm	Road (in clockwise order)
A	So Kwun Po Road - North
B	Fanling Highway - East
C	So Kwun Po Road - South
D	Fanling Highway - West
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / r)-0.05]$
F	$=303 x_{2}$
f_{c}	$=0.210 t_{D}\left(1+0.2 x_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(D-60) / 10]$
x_{2}	$=v+(e-v) /(1+2 S)$
S	$=1.6(e-v) / L$

Geometric Parameters

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	9.5	6.0	20.0	50.0	65	55	0.1
From B	7.0	3.5	90.0	50.0	65	25	0.1
From C	9.0	6.9	30.0	50.0	65	35	0.1
From D	7.5	3.5	55.0	50.0	65	30	0.1
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{3}	M	$t_{\text {D }}$	K	F	Q_{E} f_{c} $A M$		Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	8.859	1.649	1.189	0.913	2684	0.692	2053	2048	1427	1401	0.695	0.684
From B	6.359	1.649	1.189	1.055	1927	0.567	992	973	491	654	0.495	0.671
From C	8.751	1.649	1.189	0.999	2652	0.687	1421	1426	490	475	0.345	0.333
From D	6.685	1.649	1.189	1.031	2025	0.583	1484	1394	313	370	0.211	0.265
From E												
From F												
From G From H												

Roundabout Analysis

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	24		128	1328					1480	631
From B	491								491	1793
From C	172	318							490	1843
From D			313							
From E										
From F										
From G										
From H										
Total	687	318	441	1328						

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	27		273	1121					1420
From B	654							638	
From C	207	268							
From D			370						
From E									
From F									
From G									
From H									
Total	887	268	643	1121					

Legend

Legend

Arm	Road (in clockwise order)
A	So Kwun Po Road - North
B	Fanling Highway - East
C	So Kwun Po Road - South
D	Fanling Highway - West
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

| Q_{E} | Entry Capacity |
| :--- | :--- | :--- |
| q_{c} | Circulating Flow across the Entry |
| K | $=1-0.00347(\varnothing-30)-0.978[(1 / r)-0.05]$ |
| F | $=303 x_{2}$ |
| f_{c} | $=0.210 t_{D}\left(1+0.2 x_{2}\right)$ |
| t_{D} | $=1+0.5 /(1+M)$ |
| M | $=\exp [(D-60) / 10]$ |
| x_{2} | $=v+(e-v) /(1+2 S)$ |
| S | $=1.6(e-v) / L$ |

Geometric Parameters

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	9.5	6.0	20.0	50.0	65	55	0.1
From B	7.0	3.5	90.0	50.0	65	25	0.1
From C	9.0	6.9	30.0	50.0	65	35	0.1
From D	7.5	3.5	55.0	50.0	65	30	0.1
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{4}	M	$t_{\text {D }}$	K	F	Q_{E} f_{c} $A M$		Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	8.859	1.649	1.189	0.913	2684	0.692	2053	2048	1480	1420	0.721	0.693
From B	6.359	1.649	1.189	1.055	1927	0.567	960	962	491	654	0.511	0.679
From C	8.751	1.649	1.189	0.999	2652	0.687	1385	1413	490	475	0.354	0.336
From D	6.685	1.649	1.189	1.031	2025	0.583	1484	1394	313	370	0.211	0.265
From E												
From F												
From G From H												

Signal Junction Analysis

Roundabout Analysis

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A		456	163						618	870
From B	343		615						959	454
From C	211	147							358	343
From D	89	432	291						812	701
From E										
From F										
From G										
From H										
Total	643	1034	1070						2747	

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A		269	143						412	931
From B	231		637						868	397
From C	190	152							341	231
From D	141	525	254						920	572
From E										
From F										
From G										
From H										
Total	561	945	1035						2541	

Legend

Arm	Road (in clockwise order)
A	San Wan Road - West
B	Sha Tau Kok Road - North
C	San Wan Road - East
D	Fanling Station Road - South
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / r)-0.05]$
F	$=303 x_{2}$
f_{c}	$=0.210 t_{D}\left(1+0.2 x_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(D-60) / 10]$
x_{2}	$=v+(e-v) /(1+2 S)$
S	$=1.6(e-v) / L$

Geometric Parameters

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	9.0	7.5	45.0	50.0	55	30	0.0
From B	9.5	6.0	50.0	50.0	55	25	0.1
From C	9.5	7.5	100.0	50.0	55	30	0.1
From D	8.5	5.0	20.0	15.0	55	60	0.4
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{2}	M	$t_{\text {D }}$	K	F	Q_{E} f_{c} $A M$		Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	8.869	0.607	1.311	1.027	2687	0.764	2078	2030	618	412	0.298	0.203
From B	8.859	0.607	1.311	1.047	2684	0.763	2447	2492	959	868	0.392	0.348
From C	9.273	0.607	1.311	1.039	2810	0.786	2639	2731	358	341	0.135	0.125
From D	7.004	0.607	1.311	0.896	2122	0.661	1486	1563	812	920	0.546	0.589
From E												
From F												
From G From H												

Roundabout Analysis

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	5	552	207						765	924
From B	486	0	667						1153	539
From C	304	139	6						450	491
From D	122	458	320						901	941
From E										
From F										
From G							3268			
From H										
Total	917	1150	1201							

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	6	438	277						721	1007
From B	315		616						930	568
From C	248	168	6						422	320
From D	173	555	278						1006	743
From E										
From F										
From G										
From H										
Total	742	1160	1178						3080	

Legend

Arm	Road (in clockwise order)
A	San Wan Road - West
B	Sha Tau Kok Road - North
C	San Wan Road - East
D	Fanling Station Road - South
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / r)-0.05]$
F	$=303 x_{2}$
f_{c}	$=0.210 t_{D}\left(1+0.2 x_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(D-60) / 10]$
x_{2}	$=v+(e-v) /(1+2 S)$
S	$=1.6(e-v) / L$

Geometric Parameters

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	9.0	7.5	45.0	50.0	55	30	0.0
From B	9.5	6.0	50.0	50.0	55	25	0.1
From C	9.5	7.5	100.0	50.0	55	30	0.1
From D	8.5	5.0	20.0	15.0	55	60	0.4
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{3}	M	$t_{\text {D }}$	K	F	Q_{E} f_{c} $A M$		Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	8.869	0.607	1.311	1.027	2687	0.764	2035	1970	765	721	0.376	0.366
From B	8.859	0.607	1.311	1.047	2684	0.763	2379	2356	1153	930	0.485	0.395
From C	9.273	0.607	1.311	1.039	2810	0.786	2518	2658	450	422	0.179	0.159
From D	7.004	0.607	1.311	0.896	2122	0.661	1344	1461	901	1006	0.670	0.689
From E												
From F												
From G From H												

Roundabout Analysis

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	5	552	207						765	924
From B	539	0	667						1206	539
From C	304	139	6						450	544
From D	122	458	320					901	994	
From E										
From F										
From G							3321			
From H										
Total	970	1150	1201							

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	6	438	277						721	1007
From B	334		616						949	568
From C	248	168	6						422	339
From D	173	555	278						1006	762
From E										
From F										
From G										
From H										
Total	761	1160	1178						3099	

Legend

Arm	Road (in clockwise order)
A	San Wan Road - West
B	Sha Tau Kok Road - North
C	San Wan Road - East
D	Fanling Station Road - South
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

| Q_{E} | Entry Capacity |
| :--- | :--- | :--- |
| q_{c} | Circulating Flow across the Entry |
| K | $=1-0.00347(\varnothing-30)-0.978[(1 / r)-0.05]$ |
| F | $=303 x_{2}$ |
| f_{c} | $=0.210 t_{D}\left(1+0.2 x_{2}\right)$ |
| t_{D} | $=1+0.5 /(1+M)$ |
| M | $=\exp [(D-60) / 10]$ |
| x_{2} | $=v+(e-v) /(1+2 S)$ |
| S | $=1.6(e-v) / L$ |

Geometric Parameters

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	9.0	7.5	45.0	50.0	55	30	0.0
From B	9.5	6.0	50.0	50.0	55	25	0.1
From C	9.5	7.5	100.0	50.0	55	30	0.1
From D	8.5	5.0	20.0	15.0	55	60	0.4
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{4}	M	$t_{\text {D }}$	K	F	Q_{E} f_{c} $A M$		Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	8.869	0.607	1.311	1.027	2687	0.764	2035	1970	765	721	0.376	0.366
From B	8.859	0.607	1.311	1.047	2684	0.763	2379	2356	1206	949	0.507	0.403
From C	9.273	0.607	1.311	1.039	2810	0.786	2475	2642	450	422	0.182	0.160
From D	7.004	0.607	1.311	0.896	2122	0.661	1313	1450	901	1006	0.686	0.694
From E												
From F												
From G From H												

Roundabout Analysis

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A			937	139					1076	841
From B	659			55					714	1270
From C	807	647	93	4					1551	857
From D	180		97	4					281	2206
From E										
From F										
From G								3622		
From H										
Total	1646	647	1127	201						

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A			789	120					910
From B	850			60					910
From C	622	622	68	2					1019
From D	197		38	3					
From E									
From F									
From G									
From H									
Total	1669	622	896	186					

Legend

Legend

Arm	Road (in clockwise order)
A	Sha Tau Kok Road - North
B	Fanling Bypass - East
C	Sha Tau Kok Road - South
D	Fanling Bypass - West
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / r)-0.05]$
F	$=303 x_{2}$
f_{c}	$=0.210 t_{D}\left(1+0.2 x_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(D-60) / 10]$
x_{2}	$=v+(e-v) /(1+2 S)$
S	$=1.6(e-v) / L$

Geometric Parameters

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	9.0	7.0	25.0	50.0	75	40	0.1
From B	6.0	5.5	45.0	50.0	75	25	0.0
From C	9.5	9.0	35.0	50.0	75	30	0.0
From D	8.5	4.5	40.0	50.0	75	45	0.1
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{3}	M	$t_{\text {b }}$	K	F	$\begin{array}{ll} & \\ f_{c} & Q_{E} \\ & A M\end{array}$		Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	8.773	4.482	1.091	0.975	2658	0.631	2075	2142	1076	910	0.519	0.425
From B	5.984	4.482	1.091	1.045	1813	0.503	1226	1358	714	910	0.582	0.670
From C	9.484	4.482	1.091	1.021	2874	0.664	2354	2234	1551	1313	0.659	0.588
From D	7.685	4.482	1.091	0.972	2328	0.581	1017	1043	281	239	0.276	0.229
From E												
From F												
From G From H												

Roundabout Analysis

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A			1003	139					1142	841
From B	759			55					814	1336
From C	850	647	93	4					1594	957
From D	180		97	4					281	2349
From E										
From F										
From G								3831		
From H										
Total	1789	647	1193	201						

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A			817	120					938	731
From B	937			60					997	1047
From C	671	622	68	2					1362	1120
From D	197		38	3						
From E										
From F										
From G										
From H										
Total	1805	622	924	186						

Legend

Legend

Arm	Road (in clockwise order)
A	Sha Tau Kok Road - North
B	Fanling Bypass - East
C	Sha Tau Kok Road - South
D	Fanling Bypass - West
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / r)-0.05]$
F	$=303 x_{2}$
f_{c}	$=0.210 t_{D}\left(1+0.2 x_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(D-60) / 10]$
x_{2}	$=v+(e-v) /(1+2 S)$
S	$=1.6(e-v) / L$

Geometric Parameters

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	9.0	7.0	25.0	50.0	75	40	0.1
From B	6.0	5.5	45.0	50.0	75	25	0.0
From C	9.5	9.0	35.0	50.0	75	30	0.0
From D	8.5	4.5	40.0	50.0	75	45	0.1
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

Arm	x_{4}	M	$t_{\text {b }}$	K	F	$\begin{array}{ll} & \\ f_{c} & Q_{E} \\ & A M\end{array}$		Entry Flow			RFC	
								PM	AM	PM	AM	PM
From A	8.773	4.482	1.091	0.975	2658	0.631	2075	2142	1142	938	0.551	0.438
From B	5.984	4.482	1.091	1.045	1813	0.503	1192	1344	814	997	0.683	0.742
From C	9.484	4.482	1.091	1.021	2874	0.664	2286	2175	1594	1362	0.697	0.626
From D	7.685	4.482	1.091	0.972	2328	0.581	936	966	281	239	0.300	0.247
From E												
From F												
From G From H												

[^0]: KMB - Kowloon Motor Bus
 CTB - Citybus
 ${ }^{(2)}$ PM Peak hour service only $\quad{ }^{(3)}$ Overnight service only
 ${ }^{(4)}$ No service on Saturdays, Sundays and public holidays
 ${ }^{(2)}$ PM Peak hour service only $\quad{ }^{(3)}$ Overnight service only

