

C241003W-01-D

PREPARED FOR

R LEE Architects (HK) Ltd

PREPARED BY

Eddy Ng BSc(Hons), MHKIOA, MIOA, MMOIA, MIET, MAES, MASHRAE, MHKIEIA, REnv, BEAM Pro

APPROVED BY

Banting

Wong Kam San MSc, CEng, MIOA, MHKIOA, AFCHKRI, MHKIEIA, MHKIQEP

12 May 2025

Contents

	Pages
1.	Background
2.	Objective
3.	Site Information
4.	Sewage Impact Assessment5
<mark>4.1.</mark>	Design Parameter and Assumptions5
<mark>4.2.</mark>	Unit Flow Factors
<mark>4.3.</mark>	Peaking Factors
<mark>4.4</mark> .	Estimated Sewage Flow from the Proposed Development7
<mark>4.5.</mark>	Total Combined Sewage Flow9
<mark>4.6.</mark>	Potential Impact to Sewerage Facilities10
5.	Conclusion:

Appendix A Hydraulic Calculations

1. Background

The applicant, R Lee Architect, intends to develop one 10-storey building block situated at Tung Tsz, Tai Po, New Territories for the Proposed Residential Care Home for the Elderly (RCHE) Development.

The purpose of this report is to conduct a Sewerage Impact Assessment (SIA) to assess the potential sewerage impact arising from the proposed development.

2. Objective

These SIA objectives are to assess the potential sewerage impact arising from the proposed development and recommend mitigation measures, if necessary, to alleviate the impacts.

3. Site Information

 The Premise:
 D.D.23, Lot 232RP, 232 S.A. RP, 232 S.A.ss. 1 to 14, 232 S.B. RP, 232 S.B. ss 1 to 2, 232 S.C. to 232 S.E., 233 RP, 233 S.A to 233 S.M., 237 S.R. 238, 239 RP, 239 SG.

Development Proposed Residential Care Home for the Elderly (RCHE) Development Schedule: Site Area: 1,494.67m²

	·
Class of Site:	А
Proposed Plot Ratio for Non- domestic:	5.57 < 9.5
Proposed Site Coverage above for Non-domestic (Above 15m):	61.09% < 80%
Proposed Building Height:	34.50mPD
Absolute Height:	31.0m
Proposed No. of storey:	10 storeys

Proposed Gross Floor Area		
LG/F (ENTRANCE &	<mark>606.13 m²</mark>	
CARPARK)		
<mark>UG/F (RCHE)</mark>	<mark>613.16 m²</mark>	
1/F-5/F (RCHE)	<mark>916.89 m² x 5 storeys</mark>	47 no. of beds x 5 storeys
	<mark>=4584.45 m²</mark>	(including Isolation Room)
<mark>6/F (RCHE)</mark>	<mark>886.14 m²</mark>	18 no. of beds
7/F (RCHE)	<mark>759.44 m²</mark>	11 no. of beds
<mark>8/F (MANAGEMENT</mark>	<mark>764.44 m²</mark>	12 no. of beds for Staff
OFFICE)		Quarter
R/F (SKY GARDEN)	110.07 m^2	
TOTAL	8323.83 m ²	276 no. of beds

4. Sewage Impact Assessment

4.1. Design Parameter and Assumptions

The sewage flow estimation, assessment and evaluation of impacts are based on the following established principals and guidelines of Hong Kong:

- EPD Guidelines for Estimating Sewage Flows for Sewage Infrastructure Planning No.: EPD/TP 1/05 (GESF)
- Hong Kong Planning Standards and Guidelines (HKPSG)
- Drainage Services Department Sewerage Manual, Third Edition, May 2013

The estimate of sewage demands for the proposed development is based on the latest development parameter provided by the Architect.

4.2. Unit Flow Factors

To derive the unit flow factor for visitors, it is assumed that visitors will stay maximum 8 hrs per day within the development site. The sewage flow will be from two sources, one from flushing and the other from use of wash basin. The unit flow factors from flushing use, has assumed flushing water consumption of $0.1m^3$ /person/day for 16 hours of typical domestic residents, employees and students usage. The unit flow factor from the wash basin use has assumed a consumption of $0.03m^3$ /person/day on 8 hours daily basis. This results in UFF of $0.08m^3$ /person/day.

According to the GESF, the unit flow factor (UFF) of the proposed RCHE development and the existing development is shown in **Table 1** below.

Table 1 – Un	it Flow Factor (UFF)	of the Proposed	RCHE Developmen	t and the Existing
Development				

Туре	UFF, Planning for Future (m ³ /person/day)
Domestic	
Modern Village	0.27
Institutional and special class	<mark>0.19</mark>
Commercial	
J11 Community, Social &	0.28
Personal Services	
Visitor	<mark>0.08</mark>

4.3. Peaking Factors

The peaking factors to cater for seasonal/diurnal flow variations, and infiltration and inflow due to storm events are made reference to EPD's GESF and shown in **Table 2**.

Population Range	Peaking Factor (including stormwater allowance) for facility with existing upstream sewerage	Peaking Factor (excluding stormwater allowance) for facility with new upstream sewerage
(a) For sewers		
<1,000	8	6
1,000 - 5,000	6	5
5,000 - 10,000	5	4
10,000 - 50,000	4	3
>50,000	$Max\left(\frac{7.3}{N^{0.15}} \ , \ 2.4\right)$	$Max\!\!\left(\!\frac{6}{N^{^{0.175}}}\text{ , }1.6\right)$
(b) Sewage Treatment Wor	ks, Preliminary Treatment Work	s and Pumping Stations
<10,000	4	3
10,000 - 25,000	3.5	2.5
25,000 - 50,000	3	2
>50,000	$Max\left(\frac{3.9}{N^{0.065}}, 2.4\right)$	$Max\!\!\left(\!\frac{2.6}{N^{0.065}} \text{ , } 1.6\right)$

Table 2 – Peaking Factors for Various Population Ranges

Notes of Table T-5:

(1) N is the contributing population in thousands.

In this analysis, peaking factors (excluding stormwater allowance) is adopted since the proposed development area is well developed and there are essentially no misconnections and defects for infiltration.

4.4. Estimated Sewage Flow from the Proposed Development

With reference to the GESF, sewage flow estimation for the proposed development is provided in **Table 3**.

No. of Residents/Employees

a) No. of Residents = 276 beds (Adopted from latest engineering information)

b) No. of Employees = 120 Nos. (About 2 times as recommended by Code of Practice for Resident Care Home)

c) No. of Visitors = 79 Nos. per day (Assuming number of visits for each resident is twice a week: 276 x 2/7 = 79)

Site	<mark>Use</mark>	<mark>Global Unit</mark> Flow Factor (m ³ /person/day)	<mark>No. of</mark> <mark>Residents/Employees</mark>	<mark>ADWF</mark> (m³/day)
	RCHE (Institutional and special class)	<mark>0.19</mark>	276 residents	<mark>52.44</mark>
<mark>Tung Tsz,</mark> Tai Po	RCHE (J11, Community, Social & Personal Services)	<mark>0.28</mark>	120 staff	<mark>33.6</mark>
	Visitor	<mark>0.08</mark>	79 per day	<mark>6.32</mark>
	Total		<mark>475</mark>	<mark>92.36</mark>

Table 3 – Estimation Sewage Generated by the Proposed Development

Sewer Pipe Design:

For sewer pipe, one quarter (1/4) full bore is used to allow space for a core of air in centre of the stack and the air keeps fluctuations to a minimum.

Minimum velocity of 0.7m/s (smaller than 300mm diameter) is used for maintaining selfcleansing purpose.

To facilitate inspection and cleaning, pipe should not be less than 200mm diameter.

Peak Flow = (ADWF) (P) = $(92.36)(6) = 554.16 \text{ m}^3/\text{day or } 0.00641 \text{ m}^3/\text{s}$

1/4 full bore, velocity of 0.7m/s and 225mm pipe is used.

The capacity of the pipe: $Q = V \ge A = (0.7)(\pi)[(0.225)^2/4] \ge 0.25 = 0.00696m^3/s > 0.00641m^3/s$, **OK**

Chezy"s formula: $V = C\sqrt{m \times i}$

where V = velocity of flow = 0.7 m/sm = hydraulic mean depth (HMD) \rightarrow HMD = 0.225 / 6.67 = 0.0337C = Chezy coefficient = $(0.0337)^{1/6}/(0.015(\text{concrete pipe})) = 37.89$ $0.7 = 37.89 \text{ x} (0.0337 \text{ x i})^{0.5}$ $(0.7/37.89)^2 = 0.0337 \text{ x i}$ Thus i = 0.0101 or 1.01% (i = inclination)

4.5. Total Combined Sewage Flow

The foul water from the developing site will be discharged into the nearby existing Foul Manhole No. FMH1034356 (as shown below). The downstream invert level of the proposed DN225 sewer will be around 3.07mPD. The foul water will be transferred to the nearby TKRSPS No. 7 with an ADWF of about 7,800 m³/day. The Project proponent shall be responsible for the construction and maintenance of the proposed sewerage drainage system.

Section 1-1

NOVOX Limited www.novox.com.hk

OVOX

The tentative occupation year of the proposed development is 2030. However, projection of the tertiary planning units in 2030 is not available. Given that the projected population at Tai Po area in year 2027 is the highest among 2021 to 2031 according to the Common Spatial Data Infrastructure (CSDI), year 2027 is adopted for estimating the sewage impact of the proposed project. Sewage flow from the existing development with projection to year 2027 is estimated based on the Projections of Population Distribution 2023-2031 available on CSDI. Additional flow contributed by the proposed RCHE development has been incorporated into the existing sewerage system to investigate the cumulative impact. Detailed calculations of the estimated sewage flow contribution to TKRSPSNo.7 are given in **Appendix A**.

Sewage demands arising from existing demands and the proposed development have been estimated and are summarized in **Table 4** below. Detailed breakdown of population and sewage flow are presented in **Appendix A**.

Table 4 – Contribution of LAisting and Framed Scwage Flow to TKRSF5 No. 7 in 2027						
	TPU Zone (Subunit)	Location	Projections of Population Distribution Year 2027	AD Increment (m ³ /day)	WF Cumulative (m ³ /day)	
	<mark>728 (35)</mark>	<mark>Tung Tsz</mark> Village	<mark>895</mark>	<mark>241.54</mark>		
	<mark>728 (8)</mark>	Treasure Spot Garden II	<mark>521</mark>	<mark>140.68</mark>		
	728 (38)	<mark>San Tau Kok</mark>	<mark>1132</mark>	<mark>305.68</mark>		
	728 (37)	<mark>Po Sam Pai</mark>	<mark>1506</mark>	<mark>406.54</mark>		
	<mark>728 (25)</mark>	<mark>Ting Kok</mark> Village	<mark>2831</mark>	<mark>764.45</mark>		
Existing	728 (27)	Soka Gakkai Recreational Centre	<mark>638</mark>	178.61	4340.28	
Catchment	728 (28)	<mark>Lo Tsz Tin</mark>	<mark>1517</mark>	<mark>409.64</mark>		
Catchineit	<mark>728 (30)</mark>	Lung Mei, Wong Chuk Tsuen & Tai Mei Tuk	<mark>2849</mark>	<mark>769.11</mark>		
	<mark>728(7)</mark>	Treasure Spot Garden	<mark>1318</mark>	<mark>355.85</mark>		
	<mark>728(13)</mark>	<mark>Shuen Wan</mark> Chan Uk	<mark>1950</mark>	<mark>526.53</mark>		
	722(37)	Tung Tsz Shan Road Garden	<mark>895</mark>	<mark>241.54</mark>		
Planned Sewerage Catchment	<mark>728 (8)</mark>	Proposed RCHE	<mark>475</mark>	<mark>92.36</mark>	92.36	
	Total 4432.64					

Table 4 – Contribution of Existing and Planned Sewage Flow to TKRSPS No. 7 in 2027

4.6. Potential Impact to Sewerage Facilities

Detailed hydraulic assessment on the existing sewerage pipeline systems are presented in Appendix A.

The total ADWF from the proposed development is estimated to be 92.36 m³/day at year 2027. The combined sewage flow contribution to TKRSPS No. 7 is estimated to be 4432.64 m³/day at year 2027. Given that the ADWF of TKRSPS No. 7 is 7800 m³/day according to the Project Profile PP-560/2017 available from EPD website, the capacity of TKRSPS No. 7 is adequate to meet the demands within its service area at year 2030. According to the hydraulic calculations on the cumulative impact to the downstream sewerage system in **Appendix A**, the existing sewerage system is adequate to handle the additional sewage flow generated from the proposed development. As such, the increased sewage flow from the proposed development will have no adverse impact to the existing sewerage system.

5. Conclusion:

The total estimated ADWF from the proposed development is 92.36 m³/day. The combined sewage flow from all existing and proposed development to the TKRSPS No. 7 is estimated to be 4432.64 m³/day at year 2027. The design capacity of the TKRSPS No. 7 is 7800 m³/day which is adequate to meet demands within its service area and able to cater for the additional sewage flow from the proposed development. The estimated cumulative flows from the existing and proposed development are well below the sewerage system design capacity.

As such, the increase sewage flow from the proposed development will have no adverse impact on Tolo Harbour Water Control Zone.

Appendix A Hydraulic Calculations

		Population [1]						
TPU Zone	2021	2022	2023	2024	2025	2026	2027	
711, 712, 721 & 728	18300	17700	18200	19600	19400	18900	18700	

Population Estimation of Specific Location in the TPU Zone					
TPU Zone (Subunit) [2]	No.	Location	OZP Zone	Approx. Site Area (m2)	Population
728 (35)	1	Tung Tsz Village	V	46700	895
728 (8)	2	Treasure Spot Garden II	V	27200	521
728 (38)	3	San Tau Kok	V	59100	1132
728 (37)	4	Po Sam Pai	V	78600	1506
728 (25)	5	Ting Kok Village	V	147800	2831
728 (27)	6	Soka Gakkai Recreational Centre	G/IC	33300	638
728 (28)	7	Lo Tsz Tin	V	79200	1517
728 (30)	8	Lung Mei, Wong Chuk Tsuen & Tai Mei Tuk	V	148700	2849
728(7)	9	Treasure Spot Garden	V	68800	1318
728(13)	10	Shuen Wan Chan Uk	V	101800	1950
728(14)	11	The Beverly Hills	n.a.	106500	2040
728(16)	12	Sam Mun Tsai Village	R(D)	50600	969
711 (3)	13	Wu Kau Tang	V	27880	534
			Total	976180	18700

Notes:

[1] Population data are extracted from CSDI Projections of Population Distribution 2023-2031_TPU

[2] TPU Zone No. is extracted from CSDI TPUSU_2021_Layer

Sewerage system of The Beverly Hills, Sam Mun Tsai Village and Wu kau Tang is not connected to TKRSPS No.7

Appendix A2 - Unit Flow Factor of Different Types of Flow	w
---	---

Туре	Planning For Future (m3/person/day) [1]
Dome	estic
Modern Village [1]	0.27
Institutional and special class [1]	0.19
Comm	ercial
J11 Community, Social & Personal Services [1]	0.28
Visitor [2]	0.08

Notes:

[1] Unit Flow Factors are extracted from EPD Guidelines for Estimating Sewage Flows for Sewage Infrastructure Planning Report No.: EPD/TP 1/05 [2] Unit Flow Factors are calculated based on assumption. Please refer to Section 4.2 for detailed assumption.

Appendix A3 - Existing and Planned Sewage Flow Contributing to TKRSPS No. 7 in 2027

						Projections of Population	AD	WF]	
_	TPU Zone (Subunit) [1]	No.	Location	OZP Zone	Type of Flow	Distribution Year 2027 [2][3][4]	Increment (m3/day)	Cumulative (m3/day)		
	728 (35)	1	Tung Tsz Village	v	Modern Village	895	241.54			
	728 (8)	2	Treasure Spot Garden II	v	Modern Village	521	140.68			
	728 (38)	3	San Tau Kok	v	Modern Village	1132	305.68	1		
	728 (37)	Po Sam Pai	v	Modern Village	1506	406.54				
t	728 (25)	5	Ting Kok Village	v	Modern Village	2831	764.45			
: Catchmen	728 (27)	6	Soka Gakkai Recreational Centre	G/IC	J11 Community, Social & Personal Services	638	178.61			
age	728 (28)	7	Lo Tsz Tin	V	Modern Village	1517	409.64	1210.28		
xisting Sewera	728 (30) 8		Lung Mei, Wong Chuk Tsuen & Tai V Mei Tuk		Modern Village	2849	769.11	4340.20		
ш	728(7)	728(7) 9 Treasure Spot Garden		v	Modern Village	1318	355.85			
	728(13) 10		Shuen Wan Chan Uk	v	Modern Village	1950	526.53			
	722(37)	-	Tung Tsz Shan Road Garden	v	Modern Village	895	241.65			
chment					Institutional and special class	276	52.44			
Planned Sewerage Catc	728 (8)	-	Proposed RCHE	G/IC	J11 Community, Social & Personal Services	120	33.6	92.36		
					Visitor	79	6.32		ADWF of TKRSPS No. 7 (m3/day) [5]	Adequ Capaci
	•	Total				16447	443	2.64	7800	Yes

Notes:

[1] TPU Zone No. Refer to CSDI TPUSU_2021_Layer.

[2] [3] [4] Population data are estimated from CSDI Projections of Population Distribution 2023-2031_TPU.

Consider that the scale and characteristic of Tung Tsz Shan Road Garden is similar to Tung Tsz Village, population figure of Tung Tsz Village is adopted for estimating the population of Tung Tsz Shan Road Garden as conservative approach.

No of visitors of the proposed RCHE is estimated by assuming each resident will be visited twice a week.

[5] ADWF of TKRSPS No. 7 is captured from Project Profile PP-560/2017 available from EPD website.

Sewerage system of Treasure Spot Garden and Shuen Wan Chan Uk is not affected by the proposed development as no interchange in between before entering TKRSPS. No.7

Appendix A4 - Capacity Performance of Existing and Proposed Sewers in 2027

$$\mathbf{V} = -2\sqrt{2gdS}\log\left(\frac{k}{3.7d} + \frac{2.51\nu}{d\sqrt{2gdS}}\right)$$

Where k is equivalent roughness with value equals 1.5mm for existing sewers v is kinematic viscosity of fluid =1.14x10^-6 m2/s and g is the gravity=9.81 m/s2, V is velocity, d is the diameter of the sewer and S is the gradient of the sewer

Table A4-1 Impact Assessment of the Proposed Sewers to the Existing Sewers along Access Road near Treasure Spot Garden II

Manh	ole [1]			Contributing	Booking	ing Peak Flow r [3] (m3/d)	Peak Flow - (L/s)	Pipe Parameter [1]					Velocity	Canacity	Peak	Adequate
Upstream Manhole No.	Downstream Manhole No.	(m3/d)	(m3/d)	Population	Factor [3]			Diameter (mm)	Length (m)	Upstream Invert Level (mPD)	Downstream Invert Level (mPD)	Gradient (S), m/m	(m/s) [2]	(L/s)	Flow/Capacity (%)	Capacity
FMH1034356	FMH1034301	233.04	233.04	996	6	1398.26	16.18	225.00	175.09	1.50	0.10	0.0079	1.02	40.63	40%	YES

Notes:

[1] Manhole No. and pipe information are extracted from geoinfo map

[2] Velocity is calculated by Colebrook-White Equation given in Appendix A4

[3] Peaking Factor can refer to Table T-5 of EPD Guidelines for Estimating Sewage Flows for Sewage Infrastructure Planning Report No.: EPD/TP 1/05

[3] Although the assessed sewerage system only serves less than a half buildings of Treasure Spot Garden II, the total ADWF and population is adopted for conservative approach.

Table A4-2 Cumulative Impact Assessment of the Proposed Sewers to the Existing Sewers along Tung Tsz Road (Before Rising Main)

Manh	nole [1]									Pipe Paramet	er [1]				Book	
Upstream Manhole No.	Downstream Manhole No.	ADWF (m3/d)	Accumulated ADWF (m3/d)	Contributing Population	Peaking Factor [3]	Peak Flow (m3/d)	Peak Flow (L/s)	Diameter (mm)	Length (m)	Upstream Invert Level (mPD)	Downstream Invert Level (mPD)	Gradient (S), m/m	Velocity (m/s) [2]	Capacity (L/s)	Flow/Capacity (%)	Adequate Capacity
FMH1034301	FMH1034312	305.68	1021.91	2786	5	5109.56	59.14	375.00	281.67	0.09	-1.42	0.0054	1.17	129.42	46%	YES

Notes:

[1] Manhole No. and pipe information are extracted from geoinfo map

[2] Velocity is calculated by Colebrook-White Equation given in Appendix A4

[3] Peaking Factor can refer to Table T-5 of EPD Guidelines for Estimating Sewage Flows for Sewage Infrastructure Planning Report No.: EPD/TP 1/05

Table A4-3 Cumulative Impact Assessment of the Proposed Sewers to the Existing Sewers along Tung Tsz Road (Rising Main)

Manhole [1]										Pipe Paramet	er [1]				Peak	Í
Upstream Manhole No.	Downstream Manhole No.	ADWF (m3/d)	Accumulated ADWF (m3/d)	Contributing Population	Peaking Factor [3]	Peak Flow (m3/d)	Peak Flow (L/s)	Diameter (mm)	Length (m)	Upstream Invert Level (mPD)	Downstream Invert Level (mPD)	Gradient (S), m/m	Velocity (m/s) [2]	Capacity (L/s)	Flow/Capacity (%)	Adequate Capacity
Tung Tsz Road Sewage Pumping Station	FMH1034368	0.00	1021.91	2786	5	5109.56	59.14	200.00	137.30	1.31	2.68	-0.0100	2.00	62.83	94%	YES

Notes:

[1] Manhole No. and pipe information are extracted from geoinfo map

[2] With reference to Sewerage Manual - Pumping Stations and Rising Mains published by DSD, the desirable range of velocity of rising mains would be 1 to 2 m/s with a maximum velocity of 3 m/s.

[3] Peaking Factor can refer to Table T-5 of EPD Guidelines for Estimating Sewage Flows for Sewage Infrastructure Planning Report No.: EPD/TP 1/05

40

7. RISING MAINS DESIGN

7.1 HYDRAULIC DESIGN

7.1.1 Steady State Hydraulics

The hydraulic design of rising mains involves the sizing of the mains and its number to meet the pump operational and the velocity requirements. As for the pump operational requirements, please refer to the system head capacity curve in Chapter 3.

The selection of a suitable size for the rising mains should be based on economic analysis of capital cost and recurrent cost of the pumping system including the power cost. Trial and error approach should be adopted in order to arrive at optimal solution while maintaining the velocity within acceptable limits. The maximum velocity should not exceed 3 m/s which are usually governed by the concerns for the power cost. The desirable range of velocity should be 1 m/s to 2 m/s with due consideration given to the various combinations of number of duty pumps in operation.

Table A4-4 Cumulative Impact Assessment of the Proposed Sewers to the Existing Sewers along Tung Tsz Road (After Rising Main)

Manh	ole [1]	Pipe Parameter [1]										Book				
Upstream Manhole No.	Downstream Manhole No.	ADWF (m3/d)	Accumulated ADWF (m3/d)	Contributing Population	Peaking Factor [3]	Peak Flow (m3/d)	Peak Flow (L/s)	Diameter (mm)	Length (m)	Upstream Invert Level (mPD)	Downstream Invert Level (mPD)	Gradient (S), m/m	Velocity (m/s) [2]	Capacity (L/s)	Flow/Capacity (%)	Adequate Capacity
FMH1034368	FMH1023880	0.00	1021.91	2786	5	5109.56	59.14	300.00	40.03	2.51	1.73	0.0194	1.93	136.68	43%	YES

Notes:

Manhole No. and pipe information are extracted from geoinfo map
 Velocity is calculated by Colebrook-White Equation given in Appendix A4

[3] Peaking Factor can refer to Table T-5 of EPD Guidelines for Estimating Sewage Flows for Sewage Infrastructure Planning Report No.: EPD/TP 1/05

Table A4-5 Cumulative Impact Assessment of the Proposed Sewers to the Existing Sewers along Ting Kok Road

Manh	ole [1]							Pipe Parameter [1]							Book	
Upstream Manhole No.	Downstream Manhole No.	ADWF (m3/d)	Accumulated ADWF (m3/d)	Contributing Population	Peaking Factor [3]	Peak Flow (m3/d)	Peak Flow (L/s)	Diameter (mm)	Length (m)	Upstream Invert Level (mPD)	Downstream Invert Level (mPD)	Gradient (S), m/m	Velocity (m/s) [2]	Capacity (L/s)	Flow/Capacity (%)	Adequate Capacity
FMH1023880	TKRSPS No.7	2528.34	3550.26	13179	3	10650.77	123.27	600.00	141.87	1.73	1.29	0.0031	1.21	340.85	36%	YES

Notes:

Manhole No. and pipe information are extracted from geoinfo map
 Velocity is calculated by Colebrook-White Equation given in Appendix A4

[3] Peaking Factor can refer to Table T-5 of EPD Guidelines for Estimating Sewage Flows for Sewage Infrastructure Planning Report No.: EPD/TP 1/05

