Appendix 1

Traffic Impact Assessment

Traffic Impact Assessment

For
Amendment of Plan to

Rezone from "Residential (Group D)" ("R(D)"), "Residential (Group E)" (" $R(E) ")$ and an area shown as 'Road' to "Residential (Group C)3) ("R(C)3")
on the Approved Ho Chung Outline Zoning Plan No. S/SK-HC/11
at Various Lots in Demarcation District 210 and Demarcation District 244 and Adjoining Government Land

Ho Chung, Sai Kung, New Territories, Hong Kong

Prepared by: Prudential Surveyors (Hong Kong) Limited

Date:
August 2023

TABLE OF CONTENT

1. Introduction 4
1.2 Study Objectives 4
2. Proposed Development 5
3. Existing Traffic Situation 5
3.1 Existing Road Network 5
3.2 Public Transport 5
3.3 Future Road Network. 6
3.4 Traffic Count Surveys 6
3.5 Existing Capacity Assessment 7
4. Future Traffic Situation 8
4.1 2028 Design Year Road Network 8
4.2 Traffic Generation 8
4.3 Regional Traffic Growth 9
4.4 Reference and Design Flows 10
4.5 Capacity Assessment Construction Stage and After Project Completion 10
5. Transport Provision 14
5.1 Parking and Loading/Unloading Provision 14
5.2 Hong Kong Planning Standards and Guidelines (HKPSG) 14
5.3 Ingress/Egress Points and Internal Manoeuvring 15
6. Conclusions. 15

List of Figures

Figure 1.1 Study Area and Area of Influence
Figure 3.1 Location of Public Transport
Figure 3.2 Location of the Stage 2 of the Hiram's Highway Improvement Project
Figure 3.3 Key Junctions
Figure $3.4 \quad 2020$ Observed Peak Hours Traffic Flows
Figure 4.12028 Net Peak Hours Development Traffic Flows
Figure 4.2 2028 Reference Peak Hours Traffic Flows
Figure 4.32028 Design Peak Hours Traffic Flows
Figure $4.4 \quad 2025$ Reference Peak Hours Traffic Flows
Figure $4.5 \quad 2025$ Design Peak Hours Traffic Flows
Figure 4.6 2025 Net Peak Hours Construction Traffic Flows
Figure 5.1 Internal Traffic Layout

List of Tables

Table 2.1 Proposed GFA of Houses
Table 3.1 Service Provision of Public Transport
Table 3.2 Existing Junction Performance
Table 3.3 Existing Link Performance
Table 4.1 AM/PM Peak Generation and Attraction
Table $4.2 \quad$ Traffic Data from Annual Traffic Census Reports
Table $4.3 \quad$ Projected Population by TPEDM, 2019-2031
Table $4.4 \quad 2025$ Construction Stage Junction Capacity
Table $4.5 \quad 2025$ Construction Stage Link Capacity
Table $4.6 \quad 2028$ Junction Capacity Assessments
Table $4.7 \quad 2028$ Link Capacity
Table 5.1 Provision of Internal Transport
Table 5.2 HKPSG Requirement and Provision

List of Appendix

Appendix A Junction Analysis

1. Introduction

1.1.1 This Traffic Impact Assessment (TIA) is prepared as part of the Section 12A Application for the amendment of plan to rezone to "Residential (Group C) 3 " ("R(C)3") on the Approved Ho Chung Outline Zoning Plan No. S/SK-HC/11 (the Approved OZP) at various lots in Demarcation District 210 (D.D.210) and Demarcation District 244 (D.D.244) and adjoining government land, at Ho Chung, Sai Kung, New Territories (the Site) with a Site area about 3,190 sq.m. [Figure 1.1]
1.1.2 The TIA is required as part of the Section 12A planning application for the Proposed Development for rezone the Subject Site from "Residential (Group D)" ("R(D)"), "Residential (Group E)" ("R(E)") and an area shown as 'Road' to "Residential (Group C) 3 " ("R(C) 3 ") zoned with a maximum site coverage of 25% and a maximum building height of 12 m with 3 storeys over one storey of carport PR of 0.75 on the Approved OZP.
1.1.3 The owner of the Site has the intention to construct six individual houses with six ancillary car parking spaces of 2.5 m X 5 m , six accessible visitor parking space of 3.5 mX 5 m and one light goods vehicles (LGV) loading/unloading bay $3.5 \mathrm{~m} \mathrm{X} \mathrm{7m}$ in Parcel A \& B of the Site, and two individual houses with two ancillary car parking spaces of 2.5 m X 5 m , two accessible visitor parking space of 3.5 m X 5 m in Parcel C of the Site.
1.1.4 This traffic impact assessment (TIA) study is to support the proposed development. This report describes the traffic impact assessment undertaken.

1.2 Study Objectives

1.2.1 The objectives of this study can be summarised as follows:

- undertake traffic impact assessment to assess the traffic impact to be induced by the proposed development on the nearby road network in the vicinity of the Subject Site;
- design and conduct traffic surveys during peak hours in the vicinity of the Subject Site to supplement available information and traffic data;
- estimate the extra volumes of traffic that will be generated by the proposed development during the peak period (arrivals and departures);
- estimate the likely changes of circulation patterns and traffic flow in the future road network adjacent to the Subject Site;
- review the capacity of the critical links of the road networks adjacent to the Subject Site;
- provide traffic advice on the internal vehicular movements; and
- advise on the provision of internal parking and loading and unloading spaces based on relevant standards and requirements for residential development.

2. Proposed Development

2.1.1 The proposed development is to erect six individual houses in Parcel A \& B of the Site and two individual houses in Parcel C of the Site. The proposed gross floor area (GFA) of the houses are summarised in Table 2.1.

Propose House	Gross Floor Area (GFA) (sqm) (about)
House 1	283
House 2	283
House 3	283
House 4	283
House 5	283
House 6	283
House 7	346
House 8	346
Total	2,390
Average Size	299

Table 2.1 Proposed GFA of Houses
2.1.2 The proposed development would adopt a household size of 4 per house. In this connection, a total population of 32 would be used.

3. Existing Traffic Situation

3.1 Existing Road Network

3.1.1 The Site is located at Ho Chung North Road (former Luk Mei Tsuen Road), which is a Feeder Road with single-two carriageway connecting to Hiram's Highway to the east.
3.1.2 The connecting section of Hiram's Highway was a Rural Road improved in 2020 year, from single-two carriageway to dual-two carriageway.
3.1.3 The critical road links and junctions in this study are, from north to south:

- J1 - Hiram's Highway / Marina Cove North Access
- J2 - Hiram's Highway / Marina Cove South Access
- L1 - Hiram's Highway between Ho Chung North Road (former Luk Mei Tsuen Road) and Ho Chung Road
- J3 - Hiram's Highway / Ho Chung Road
- L2 - Hiram's Highway between Ho Chung Road and Nam Pin Wai Road
- J4 - Hiram's Highway / New Hiram's Highway / Nam Pin Wai Road (Roundabout)
3.1.4 The Area of Influence (AoI) and Study Area are shown in Figure 1.1.

3.2 Public Transport

3.2.1 Public transport services include franchised bus, green minibus (GMB) and public light bus (PLB) in the vicinity are depicted in Figure 3.1 and summarised in Table 3.1.

Rezone from "Residential (Group D)" (" $R(D)$ "), ""Residential (Group E)" (" $R(E)$ ") and an area shown as 'Road' to
"Residential (Group C)3" (" $R(C) 3$ ") on the Approved Ho Chung Outline Zoning Plan No. S/SK-HC/11
Various Lots in Demarcation District 210 and Demarcation District 244 and Adjoining Government Land Ho Chung, Sai Kung, New Territories, Hong Kong

Franchised Bus		
Route	Destination	Frequency (min)
92	Sai Kung - Diamond Hill Station	$12-20$
$92 R$	Sai Kung - Star Ferry	20 (Sunday and Holidays only)
$96 R$	Wong Shek Pier - Diamond Hill Station	$18-25$ (Sunday and Holidays only)
$292 P$	Sai Kung - Kwun Tong	$7: 30$ (Only one departure Monday to Friday)
792 M	Sai Kung - Tseung Kwan O Station	$15-20$
Green Minibus (GMB) Services		
1	Sai Kung - Kowloon Bay	$8-20$
1 A	Sai Kung - San Po Kong	4
$1 S$	Sai Kung - San Po Kong	$10-15$
2	Sai Kung - Ho Chung	$15-30$
12	Sai Kung - Po Lam	$10-15$
101 M	Sai Kung - Hang Hau Station	$3-5$
Public Light Bus (PLB) Services		
--	Sai Kung - Kwun Tong	$5-12$
--	Sai Kung -Mong Kok	Depart when fully loaded
--	Sai Kung - Causeway Bay	$10-15$

Table 3.1 Service Provision of Public Transport

3.3 Future Road Network

3.3.1 To support the continued development and population growth in Sai Kung Area, Hiram's Highway Improvement is divided into two stages. Stage 1 between Clear Water Bay Road and Marina Cove has been completed in 2021. The works include improvement works that would relieve the traffic congestion on the road section near Marina Cove, enhance the safety of the road section and improve the local access to Ho Chung and Luk Mei Tsuen.
3.3.2 Stage 2 is to improve the section of Hiram's Highway, Po Tung Road and Tai Mong Tsai Road from Marina Cove to the south of Sha Ha. The proposed improvement works will relieve traffic congestion and enhance the safety of the road section at Sai Kung area. The project is currently under review and the commencement date is under review. The location of the improvements for Stage 2 are presented in Figure 3.2.

3.4 Traffic Count Surveys

3.4.1 In order to appraise the actual traffic demand for the proposed development, classified turning movement count surveys are carried out during peak hours, 07:00 to 10:00 and 17:00 to 20:00 on both Wednesday, 26 August 2020 and Sunday, 30 August 2020 at the key junctions of the study area as presented in Figure 3.3.
3.4.2 The traffic count survey data were recorded in a 15 minutes interval, and to be converted into pcu per hour. The highest hourly traffic volume is adopted as the peak hour traffic flow.
3.4.3 The morning and afternoon peak hours during weekday of the road network have been identified as 08:00 to 09:00 and 17:30 to 18:30 respectively. Meanwhile the peak hour of the weekend was observed to be 17:15 to 18:15. The observed traffic flows in the study area presented in Figure 3.4.

3.5 Existing Capacity Assessment

Junction Capacity

3.5.1 Based on the observed traffic flows, the performance of the key junctions in the vicinity of the subject site during the morning and evening peak hours were assessed. The results area summarised and presented in Table 3.2 and the detailed calculation sheets are attached in Appendix A.
3.5.2 The Design Flow / Capacity (DFC) ratio is measured in evaluating the performance of a roundabout or priority junction. With reference to Ch4, Vol2, TPDM, a DFC ratio of 0.85 can be considered reasonable.
3.5.3 The performance of a traffic signalised junction is indicated by its reserved capacity (RC). A positive RC indicates that the junction is operating with spare capacity. A negative RC indicates that the junction is overloaded; resulting in traffic queues and longer delay.

Jun No.	Junction Location	Type/ Capacity Index	AM Peak Hour	PM Peak Hour	Weekend Peak Hour
J1	Luk Cheung Road /Hiram's Highway / Marina Cove North Access	Priority / DFC	0.12	0.07	0.07
J2	Luk Mei Tsuen Road /Hiram's Highway/ Marina Cove South Access	Signal / RC	147%	113%	135%
J3	Ho Chung Road /Hiram's Highway	Signal / RC	83%	109%	88%
J4	Nam Pin Wai Road / New Hiram's Highway / Hiram's Highway	Roundabout / DFC	0.71	0.64	0.69

Notes: RC=reserved capacity; DFC=Design Flow/ Capacity Ratio
Table 3.2 Existing Junction Performance
3.5.4 It can be observed in Table 3.2 that all of the key junctions perform satisfactorily during peak hours with adequate reserved capacities.
Link Capacity
3.5.5 Considering the routing of development traffic and construction traffic, link capacity of Sai Kung bound of L1 and L2, and Kowloon bound of L2 are assessed.
3.5.6 The result of road link capacity assessment is summarised in Table 3.3. With reference to para 10.6.4.5, Vol6, TPDM, the desirable limit of volume to capacity (V/C) ratio is less than 0.85 for links.

Link No.	Section of Hiram's Highway	Link Capacity (veh/hr)	Reference Flow (Saily Kung Bound)		Between Ho Chung Road and Luk Mei Tsuen Road	2600
	Weekend	Reference V/C Ratio Peak	Weekend			
L2 (Sai Kung Bound)	Between Ho Chung Road and Nam Pin Wai Road	2600	1336	1243	0.51	0.47
L2 (Kowloon Bound)	Between Ho Chung Road and Nam Pin Wai Road	2600	1303	1143	0.50	0.44

Notes: Based on TPDM Volume 2 Chapter 2.4 - Design Flow Characteristics, it is assumed 2600 veh/hour for dual two-lane carriageway for one direction of flow.

Table 3.3 Existing Link Performance
3.5.7 It can be seen from Table 3.3 that all of the key links are within design capacities.

4. Future Traffic Situation

4.1 2028 Design Year Road Network

4.1.1 The anticipated year of completion for the proposed development is 2025. The design year is either 3 years after the completion year or 5 years after the application year, which ever longer. Therefore, Year 2028 is adopted as the design year of this study.

4.2 Traffic Generation

4.2.1 The proposed development is intended for eight single-family houses with an average size of 299 sq.m. It is proposed that there will only be 16 parking spaces.
4.2.2 The estimated average traffic generation and traffic attraction rate at peak hours are based on the trip rate based on the Transport Planning and Design Manual published by the Transport Department and are summarised in Table 4.1.

Description	AM Peak		PM Peak	
	Generation	Attraction	Generation	Attraction
Trip Rate (pcu/unit/hr)	0.3252	0.2609	0.2835	0.4074

Rezone from "Residential (Group D)" ("R(D)"), ""Residential (Group E)" (" $R(E)$ ") and an area shown as 'Road' to
"Residential (Group C)3" ("R(C)3") on the Approved Ho Chung Outline Zoning Plan No. S/SK-HC/11
Various Lots in Demarcation District 210 and Demarcation District 244 and Adjoining Government Land Ho Chung, Sai Kung, New Territories, Hong Kong

Note 1: As the Site is used as a single-family house, the commutes would take place once in the morning and once in the afternoon to/from work/school.
Note 2: The pcu of a private car is taken as 1.
Note 3: Morning peak is defined as 8:00 a.m. to 9:00 a.m. whereas afternoon peak is defined as 6:00 p.m. to 7:00 p.m.

Table $4.1 \mathrm{AM} / \mathrm{PM}$ Peak Generation and Attraction
4.2.3 As shown in Table 4.1, the proposed development would generate 3(2) pcus and attract $2(3)$ pcus in the morning (evening) peak hours, which is considered negligible.
4.2.4 The development traffic was re-distributed and assigned onto the existing road network. Figure 4.1 show that resulting assignment of the proposed development traffic.

4.3 Regional Traffic Growth

4.3.1 For the estimation of traffic flows in the design year of 2028, it is proposed to adjust the existing traffic flows to take into account of the natural traffic growth which is related to the increase in car usage.

Annual Traffic Census (ATC)

4.3.2 Reference has been made with uses of 2016 to 2021 (Latest) Annual Traffic Census Reports. The traffic data recorded at counting stations adjacent to the site are shown in Table 4.2.

Station No./Road Name	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 1}$	Growth per Annum
6055/ Hiram's Highway	25,610	24,050	24,450	24,280	23,360	24,460	$\mathbf{- 0 . 9 1 \%}$
5017/ Clear Water Bay Road	29,370	26,910	28,450	28,980	28,900	29,100	$\mathbf{- 0 . 1 8 \%}$
5466 / Clear Water Bay Road	18,770	18,650	18,950	20,240	19,110	20,020	$\mathbf{1 . 3 0 \%}$
6056/ Sai Sha Road	10,780	10,990	11,880	11,800	11,350	11,880	$\mathbf{1 . 9 6 \%}$
Total Growth per Annum			$\mathbf{0 . 2 2 \%}$				

Source: Annual Traffic Census, Transport Department
Table 4.2: Traffic Data from Annual Traffic Census Reports
4.3.3 It is noted from Table 4.2 that $+0.22 \%$ annual growth is observed from the traffic flow record over the past five years.
Territory Population and Employment Data Matrices (TPEDM)
4.3.4 According to the latest 2019-based TPEDM from year 2019 to year 2031 in Southeast New Territories (Other Area) published on the PlanD website. The population growth from the base year 2019 to 2031 is -1.18% as shown in Table 4.3.

Rezone from "Residential (Group D)" ("R(D)"), ""Residential (Group E)" (" $R(E)$ ") and an area shown as 'Road' to
"Residential (Group C)3" ("R(C)3") on the Approved Ho Chung Outline Zoning Plan No. S/SK-HC/11
Various Lots in Demarcation District 210 and Demarcation District 244 and Adjoining Government Land Ho Chung, Sai Kung, New Territories, Hong Kong

Planning Data District	Year 2019	Year 2026	Year 2031	Growth Rate p.a. (\%)
Southeast New Territories (Other Area)	68,900	65,800	59,750	-1.18%

Table 4.3 Projected Population by TPEDM, 2019-2031
4.3.5 After comparing the historical data and the future planning data, for conservative purpose, an annual growth rate of $+1.00 \%$ was adopted.

4.4 Reference and Design Flows

4.4.1 The anticipated year of completion and estimated year of population intake of the proposed development is 2025. The design year for assessment is 3 years after the completion year, i.e. Year 2028, is adopted as the design year of this study.
4.4.2 The growth factor derived in Section 4.3 will be applied to the traffic flows of 2020 observed peak hours, to estimate the 2028 reference flows.
4.4.3 The reference and design flows for design year 2028 are calculated from the following formulae:

2028 Reference Flows $=2020$ Observed Flows $x(1+1.00 \%)^{\wedge} 8$
2028 Design Flows $=2028$ Reference Flows + Proposed Development Traffic
4.4.4 Based on the observed traffic flows and pattern of existing and future road network, the 2028 peak hour Reference Flows at the critical junctions are presented in Figure 4.2. Meanwhile, the design Flows are presented in Figure 4.3.

4.5 Capacity Assessment Construction Stage and After Project Completion

Construction Stage Junction Capacity

4.5.1 Based on similar projects, it is assumed that the development would generate 3(3) and attract 3(3) no. of construction vehicles (i.e. generate 6(6) and attract 6(6) pcus), in the morning (afternoon) peak hours throughout the week. The project is anticipated to be completed 2025. The reference peak hours traffic flows and design peak hours traffic flows are shown in Figures 4.4 and 4.5 respectively. The results are summarised and presented in Table 4.4 and shown in Figure 4.6.

$\begin{aligned} & \text { Jun } \\ & \text { No. } \end{aligned}$	Junction Location	Type/ Capacity Index	2025					
			Reference			Design		
			AM	PM	Week end	AM	PM	Week end
J1	Luk Cheung Road /Hiram's Highway / Marina Cove North	Priority / DFC	No Construction Traffic					

Traffic Impact Assessment for Amendment of Plan
Rezone from "Residential (Group D)" ("R(D)"), ""Residential (Group E)" (" $R(E)$ ") and an area shown as 'Road' to
"Residential (Group C)3" ("R(C)3") on the Approved Ho Chung Outline Zoning Plan No. S/SK-HC/11
Various Lots in Demarcation District 210 and Demarcation District 244 and Adjoining Government Land Ho Chung, Sai Kung, New Territories, Hong Kong

	Access							
	Luk Mei Tsuen Road /Hiram's Highway/ Marina Cove South Access	Signal / RC	Construction Traffic Free Flow from Hiram's Highway Northbound Left Turning to Luk Mei Tsuen Road					
	Ho Chung Road Hiram's Highway	Signal /RC	74%	99%	79%	73%	97%	79%
	Nam Pin Wai Road / New Hiram's Highway / Hiram's Highway	Roundabout DFC /	0.75	0.68	0.73	0.76	0.68	0.73

Notes: RC=reserved capacity; DFC=Design Flow/ Capacity Ratio
Table 4.4 2025 Construction Stage Junction Capacity
4.5.2 According to Table 4.4, the capacity of all the keys junctions would be performing satisfactorily during the peak periods for both the Reference and Design Scenarios.

Construction Stage Link Capability

4.5.3 The link capacity assessment results with reference to the net development are summarised in Table 4.5.

Link No.	Section of Hiram's Highwa y	Link Capacit y (veh/hr)	Reference Flow		Reference V/C Ratio		Design Flow		$\begin{gathered} \hline \text { Design V/C } \\ \text { Ratio } \end{gathered}$	
			Daily Peak	Week end						
L1 (Sai Kung Bound)	Between Ho Chung Road and Luk Mei Tsuen Road	2600	1404	1306	0.54	0.50	1410	1312	0.54	0.50
L2 (Sai Kung Bound)	Between Ho Chung Road and Nam Pin	2600	1059	1249	0.41	0.48	1065	1255	0.41	0.48

Traffic Impact Assessment for Amendment of Plan
Rezone from "Residential (Group D)" ("R(D)"), ""Residential (Group E)" (" $R(E)$ ") and an area shown as 'Road' to
"Residential (Group C)3" (" $R(C) 3$ ") on the Approved Ho Chung Outline Zoning Plan No. S/SK-HC/11
Various Lots in Demarcation District 210 and Demarcation District 244 and Adjoining Government Land
Ho Chung, Sai Kung, New Territories, Hong Kong

	Wai Road								
	Between Ho L2 (Kowloo n Bound)								
Road and Nam Pin Wai Road	2600	1369	1201	0.53	0.46	1375	1207	0.53	0.46

Notes: Based on TPDM Volume 2 Chapter 2.4 - Design Flow Characteristics, it is assumed 2600 veh/hour for dual two-lane carriageway for one direction of flow.

Table 4.5 2025 Construction Stage Link Capacity
4.5.4 It can be seen from Table 4.5 that all of the key links perform satisfactorily during the peak hours with adequate reserve capacities.

Future Junction Capacity

4.5.5 After completion of the widening of Hiram's Highway, the new signalised junction at Ho Chung Road will be assessed. Capacity assessments were carried out for the major junctions in the local network for both the Reference and Design scenarios. The results are summarised and presented in Table 4.6 with detailed calculations sheets attached in Appendix A.

$\begin{aligned} & \text { Jun } \\ & \text { No. } \end{aligned}$	Junction Location	Type/ Capacity Index	2028					
			Reference			Design		
			AM	PM	Week end	AM	PM	Week end
J1	Luk Cheung Road /Hiram's Highway / Marina Cove North Access	Priority / DFC	No Construction Traffic					
J2	Luk Mei Tsuen Road /Hiram's Highway/ Marina Cove South Access	Signal / RC	Construction Traffic Free Flow from Hiram's Highway Northbound Left Turning to Luk Mei Tsuen Road					
J3	Ho Chung Road /Hiram's Highway	Signal / RC	69\%	93\%	74\%	68\%	92\%	74\%
J4	Nam Pin Wai Road/	Roundabout / DFC	0.78	0.70	0.75	0.78	0.70	0.75

Traffic Impact Assessment for Amendment of Plan
Rezone from "Residential (Group D)" ("R(D)"), ""Residential (Group E)" (" $R(E)$ ") and an area shown as 'Road' to
"Residential (Group C)3" ("R(C)3") on the Approved Ho Chung Outline Zoning Plan No. S/SK-HC/11
Various Lots in Demarcation District 210 and Demarcation District 244 and Adjoining Government Land
Ho Chung, Sai Kung, New Territories, Hong Kong

	New Hiram's Highway/ Hiram's Highway							

Notes: RC=reserved capacity; DFC=Design Flow/ Capacity Ratio
Table 4.62028 Junction Capacity Assessments
4.5.6 According to Table 4.6, the capacity of all the key junctions would be preforming satisfactory during the peak periods for bother the Reference and Design Scenarios.

Future Link Capacity

4.5.7 The road link capacity assessment results with reference to the development traffic are summarised in Table 4.7.

Link No.	Section of Hiram's Highwa y	Link Capacit y (veh/hr)	Reference Flow		Reference V/C Ratio		Design Flow		Design V/C Ratio	
			Daily Peak	Week end	Daily Peak	Week end	Daily Peak	Week end	Daily Peak	Week end
L1 (Sai Kung Bound)	Between Ho Chung Road and Luk Mei Tsuen Road	2600	1447	1346	0.56	0.52	1453	1352	0.56	0.52
L2 (Sai Kung Bound)	Between Ho Chung Road and Nam Pin Wai Road	2600	1092	1286	0.42	0.49	1098	1292	0.42	0.50
L2 (Kowloo n Bound)	Between Ho Chung Road and Nam Pin Wai Road	2600	1411	1238	0.54	0.48	1417	1244	0.54	0.48

Notes: Based on TPDM Volume 2 Chapter 2.4 - Design Flow Characteristics, it is assumed 2600 veh/hour for dual two-lane carriageway for one direction of flow.

Table 4.72028 Link Capacity
4.5.8 Table 4.7 demonstrates that all of the key links perform satisfactorily during peak hours with adequate reserve capacities after completion of the improvement works.

5. Transport Provision

5.1 Parking and Loading/Unloading Provision

5.1.1 With reference to the proposed plan, 12 car parking spaces (6 ancillary carparking spaces and 6 accessible/visitor parking space) and one LGV loading/unloading bay for the residential development are proposed to serve the needs occupants in Parcel A \& B and 4 car parking spaces (2 ancillary carparking spaces and 2 accessible/visitor parking space) are proposed to serve the needs occupants in Parcel C. This is summarised in Table 5.1.

Type of Parking Space/Bay	Provision
Parcel A \& B for 6 Houses	
Private Car (2.5m X 5m)	6
Accessible Visitor (3. 5X 5m)	6
Loading/Unloading Bay (3.5 X 7m)	1
Parcel C for 2 Houses	
Private Car (2.5m X 5m)	
Accessible Visitor (3.5X 5m)	2

Table 5.1 Provision of Internal Transport

5.2 Hong Kong Planning Standards and Guidelines (HKPSG)

5.2.1 The car parking requirements and loading/unloading provisions for the proposed development in accordance with the HKPSG are listed in Table 5.2.

Development	Facility	HKPSG Standard	Required	Provision
Residential (8 units with avg. size of 299 sqm)	Car Parking	Global Parking Standard (GPS) = 1 Car space per 4-7 flats R1 $=7.0$ for avg. flat size over 160 sqm R2 = 1 (outside a 500 m radius of rail station) R3 = 1.3 of domestic plot ratio 0.00-1.00	11-19	16

\(\left.$$
\begin{array}{|l|l|l|l|}\hline & \begin{array}{l}\text { Loading/Unloading } \\
\text { Bay }\end{array}
$$ \& \begin{array}{l}Minimum of 1

Loading/Unloading

Bay for goods

vehicles within the

site for every 800

flats or part thereof,

subject to a

minimum of 1 bay

for each housing

block or as

determined by the

Authority.\end{array} \& 1\end{array}\right\} 1\)| |
| :--- |

Table 5.2 HKPSG Requirement and Provision

5.3 Ingress/Egress Points and Internal Manoeuvring

5.3.1 The proposed ingress and egress point to all Parcels of the Site will be from Ho Chung North Road. In all Parcels of the Site, adequate maneuvering space is proposed for the maneuvering within the Site for the vehicles such that no vehicle queuing outside the Site would occur as a result of the proposed developments. In addition, there will be no reverse onto/from Ho Chung North Road to the Site. [Figure 5.1]

6. Conclusions

6.1.1 The traffic generation from the proposed development (including the construction period) is minimal in nature and will have will have minimal traffic impact to the surrounding network.
6.1.2 The proposed development would provide a total of 16 carparking spaces and 1 loading/unloading bay which fulfills the requirements of HKPSG.
6.1.3 The proposed development will provide adequate maneuvering space within all Parcels of the Site. Therefore, no queuing or reversing motion will occur at the street level.
6.1.4 As a result, it is concluded that the proposed development would not generate any significant adverse impact to the traffic of the surrounding vicinity of the Site.

Figures

Appendix A
Junction Analysis

ARM			A	B	C	D			
INPUT PARAMETERS:									
	$=$	Approach half width (m)	7.5	6.0	7.6	3.5			
	$=$	Entry width (m)	8.5	7.0	7.6	6.0			
	$=$	Effective length of flare (m)	13.5	6.0	0.0	6.0			
	$=$	Entry radius (m)	20.0	20.0	22.5	17.0			
	$=$	Inscribed circle diameter (m)	78.0	78.0	78.0	78.0			
	$=$	Entry angle (degree)	50.0	40.0	40.0	30.0			
Q	$=$	Entry flow (pcu/h)	1207	138	1521	47			
Qc	$=$	Circulating flow across entry (pcu/h)	116	1253	194	1477			
OUTPUT PARAMETERS:									
	$=$	Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$	0.12	0.27	0.00	0.67			
K	$=$	1-0.00347(A-30)-0.978(1/R-0.05)	0.93	0.97	0.97	0.99			
X2	=	$\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})$)	8.31	6.65	7.60	4.57			
	=	$\operatorname{EXP}((\mathrm{D}-60) / 10)$	6	6	6	6			
F	$=$	303*X2	2517	2016	2303	1385			
Td	$=$	1+(0.5/(1+M))	1.07	1.07	1.07	1.07			
Fc	$=$	$0.21 * \mathrm{Td}\left(1+0.2^{*} \mathrm{X} 2\right)$	0.60	0.52	0.57	0.43			
Qe	$=$	$\mathrm{K}\left(\mathrm{F}-\mathrm{Fc}^{*} \mathrm{Qc}\right)$	2278	1312	2129	743	Total In Sum =	2913	PCU
DFC	$=$	Design flow/Capacity = Q/Qe	0.53	0.11	0.71	0.06	DFC of Critical Approach =	0.71	

ARM			A	B	C	D			
INPUT PARAMETERS:									
	$=$	Approach half width (m)	7.5	6.0	7.6	3.5			
	$=$	Entry width (m)	8.5	7.0	7.6	6.0			
	$=$	Effective length of flare (m)	13.5	6.0	0.0	6.0			
	$=$	Entry radius (m)	20.0	20.0	22.5	17.0			
	$=$	Inscribed circle diameter (m)	78.0	78.0	78.0	78.0			
	$=$	Entry angle (degree)	50.0	40.0	40.0	30.0			
Q	$=$	Entry flow (pcu/h)	1453	74	1306	52			
Qc	$=$	Circulating flow across entry (pcu/h)	148	1513	157	1157			
OUTPUT PARAMETERS:									
	$=$	Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$	0.12	0.27	0.00	0.67			
K	$=$	1-0.00347(A-30)-0.978(1/R-0.05)	0.93	0.97	0.97	0.99			
X2	=	$\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})$)	8.31	6.65	7.60	4.57			
	=	$\operatorname{EXP}((\mathrm{D}-60) / 10)$	6	6	6	6			
F	$=$	303*X2	2517	2016	2303	1385			
Td	$=$	1+(0.5/(1+M))	1.07	1.07	1.07	1.07			
Fc	$=$	$0.21 * \mathrm{Td}\left(1+0.2^{*} \mathrm{X} 2\right)$	0.60	0.52	0.57	0.43			
Qe	$=$	$\mathrm{K}\left(\mathrm{F}-\mathrm{Fc}^{*} \mathrm{Qc}\right)$	2260	1180	2149	879	Total In Sum =	2885	PCU
DFC	$=$	Design flow/Capacity = Q/Qe	0.64	0.06	0.61	0.06	DFC of Critical Approach =	0.64	

ARM			A	B	C	D			
INPUT PARAMETERS:									
	$=$	Approach half width (m)	7.5	6.0	7.6	3.5			
	$=$	Entry width (m)	8.5	7.0	7.6	6.0			
	$=$	Effective length of flare (m)	13.5	6.0	0.0	6.0			
	$=$	Entry radius (m)	20.0	20.0	22.5	17.0			
	$=$	Inscribed circle diameter (m)	78.0	78.0	78.0	78.0			
	$=$	Entry angle (degree)	50.0	40.0	40.0	30.0			
Q	$=$	Entry flow (pcu/h)	1289	55	1516	61			
Qc	$=$	Circulating flow across entry (pcu/h)	125	1336	84	1325			
OUTPUT PARAMETERS:									
	$=$	Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$	0.12	0.27	0.00	0.67			
K	$=$	1-0.00347(A-30)-0.978(1/R-0.05)	0.93	0.97	0.97	0.99			
X2	=	$\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})$)	8.31	6.65	7.60	4.57			
	=	$\operatorname{EXP}((\mathrm{D}-60) / 10)$	6	6	6	6			
F	$=$	303*X2	2517	2016	2303	1385			
Td	$=$	1+(0.5/(1+M))	1.07	1.07	1.07	1.07			
Fc	$=$	$0.21 * \mathrm{Td}\left(1+0.2^{*} \mathrm{X} 2\right)$	0.60	0.52	0.57	0.43			
Qe	$=$	$\mathrm{K}\left(\mathrm{F}-\mathrm{Fc}^{*} \mathrm{Qc}\right)$	2273	1270	2189	808	Total In Sum =	2921	PCU
DFC	$=$	Design flow/Capacity = Q/Qe	0.57	0.04	0.69	0.08	DFC of Critical Approach =	0.69	

ARM			A	B	C	D			
INPUT PARAMETERS:									
	$=$	Approach half width (m)	7.5	6.0	7.6	3.5			
	$=$	Entry width (m)	8.5	7.0	7.6	6.0			
	$=$	Effective length of flare (m)	13.5	6.0	0.0	6.0			
	$=$	Entry radius (m)	20.0	20.0	22.5	17.0			
	$=$	Inscribed circle diameter (m)	78.0	78.0	78.0	78.0			
	$=$	Entry angle (degree)	50.0	40.0	40.0	30.0			
Q	$=$	Entry flow (pcu/h)	1268	145	1599	49			
Qc	$=$	Circulating flow across entry (pcu/h)	122	1317	203	1553			
OUTPUT PARAMETERS:									
	$=$	Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$	0.12	0.27	0.00	0.67			
K	$=$	1-0.00347(A-30)-0.978(1/R-0.05)	0.93	0.97	0.97	0.99			
X2	=	$\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})$)	8.31	6.65	7.60	4.57			
	=	$\operatorname{EXP}((\mathrm{D}-60) / 10)$	6	6	6	6			
F	$=$	303*X2	2517	2016	2303	1385			
Td	$=$	1+(0.5/(1+M))	1.07	1.07	1.07	1.07			
Fc	$=$	$0.21 * \mathrm{Td}\left(1+0.2^{*} \mathrm{X} 2\right)$	0.60	0.52	0.57	0.43			
Qe	$=$	$\mathrm{K}\left(\mathrm{F}-\mathrm{Fc}^{*} \mathrm{Qc}\right)$	2275	1279	2124	710	Total In Sum =	3061	PCU
DFC	$=$	Design flow/Capacity = Q/Qe	0.56	0.11	0.75	0.07	DFC of Critical Approach =	0.75	

ARM			A	B	C	D			
INPUT PARAMETERS:									
	$=$	Approach half width (m)	7.5	6.0	7.6	3.5			
	$=$	Entry width (m)	8.5	7.0	7.6	6.0			
	$=$	Effective length of flare (m)	13.5	6.0	0.0	6.0			
	$=$	Entry radius (m)	20.0	20.0	22.5	17.0			
	$=$	Inscribed circle diameter (m)	78.0	78.0	78.0	78.0			
	$=$	Entry angle (degree)	50.0	40.0	40.0	30.0			
Q	$=$	Entry flow (pcu/h)	1526	77	1373	54			
Qc	$=$	Circulating flow across entry (pcu/h)	155	1589	164	1216			
OUTPUT PARAMETERS:									
	$=$	Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$	0.12	0.27	0.00	0.67			
K	$=$	1-0.00347(A-30)-0.978(1/R-0.05)	0.93	0.97	0.97	0.99			
X2	=	$\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})$)	8.31	6.65	7.60	4.57			
	=	$\operatorname{EXP}((\mathrm{D}-60) / 10)$	6	6	6	6			
F	$=$	303*X2	2517	2016	2303	1385			
Td	$=$	1+(0.5/(1+M))	1.07	1.07	1.07	1.07			
Fc	$=$	$0.21 * \mathrm{Td}\left(1+0.2^{*} \mathrm{X} 2\right)$	0.60	0.52	0.57	0.43			
Qe	$=$	$\mathrm{K}\left(\mathrm{F}-\mathrm{Fc}^{*} \mathrm{Qc}\right)$	2256	1142	2145	854	Total In Sum =	3030	PCU
DFC	$=$	Design flow/Capacity = Q/Qe	0.68	0.07	0.64	0.06	DFC of Critical Approach =	0.68	

ARM			A	B	C	D			
INPUT PARAMETERS:									
	$=$	Approach half width (m)	7.5	6.0	7.6	3.5			
	$=$	Entry width (m)	8.5	7.0	7.6	6.0			
	$=$	Effective length of flare (m)	13.5	6.0	0.0	6.0			
	$=$	Entry radius (m)	20.0	20.0	22.5	17.0			
	$=$	Inscribed circle diameter (m)	78.0	78.0	78.0	78.0			
	$=$	Entry angle (degree)	50.0	40.0	40.0	30.0			
Q	$=$	Entry flow (pcu/h)	1355	57	1593	63			
Qc	$=$	Circulating flow across entry (pcu/h)	130	1403	87	1392			
OUTPUT PARAMETERS:									
	$=$	Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$	0.12	0.27	0.00	0.67			
K	$=$	1-0.00347(A-30)-0.978(1/R-0.05)	0.93	0.97	0.97	0.99			
X2	=	$\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})$)	8.31	6.65	7.60	4.57			
	=	$\operatorname{EXP}((\mathrm{D}-60) / 10)$	6	6	6	6			
F	$=$	303*X2	2517	2016	2303	1385			
Td	$=$	1+(0.5/(1+M))	1.07	1.07	1.07	1.07			
Fc	$=$	$0.21 * \mathrm{Td}\left(1+0.2^{*} \mathrm{X} 2\right)$	0.60	0.52	0.57	0.43			
Qe	$=$	$\mathrm{K}\left(\mathrm{F}-\mathrm{Fc}^{*} \mathrm{Qc}\right)$	2270	1236	2188	779	Total In Sum =	3068	PCU
DFC	$=$	Design flow/Capacity = Q/Qe	0.60	0.05	0.73	0.08	DFC of Critical Approach =	0.73	

ARM			A	B	C	D			
INPUT PARAMETERS:									
	$=$	Approach half width (m)	7.5	6.0	7.6	3.5			
	$=$	Entry width (m)	8.5	7.0	7.6	6.0			
	$=$	Effective length of flare (m)	13.5	6.0	0.0	6.0			
	$=$	Entry radius (m)	20.0	20.0	22.5	17.0			
	$=$	Inscribed circle diameter (m)	78.0	78.0	78.0	78.0			
	$=$	Entry angle (degree)	50.0	40.0	40.0	30.0			
Q	$=$	Entry flow (pcu/h)	1274	145	1605	49			
Qc	$=$	Circulating flow across entry (pcu/h)	122	1323	203	1559			
OUTPUT PARAMETERS:									
	$=$	Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$	0.12	0.27	0.00	0.67			
K	$=$	1-0.00347(A-30)-0.978(1/R-0.05)	0.93	0.97	0.97	0.99			
X2	=	$\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})$)	8.31	6.65	7.60	4.57			
	=	$\operatorname{EXP}((\mathrm{D}-60) / 10)$	6	6	6	6			
F	$=$	303*X2	2517	2016	2303	1385			
Td	$=$	1+(0.5/(1+M))	1.07	1.07	1.07	1.07			
Fc	$=$	$0.21 * \mathrm{Td}\left(1+0.2^{*} \mathrm{X} 2\right)$	0.60	0.52	0.57	0.43			
Qe	$=$	$\mathrm{K}\left(\mathrm{F}-\mathrm{Fc}^{*} \mathrm{Qc}\right)$	2275	1276	2124	708	Total In Sum =	3073	PCU
DFC	$=$	Design flow/Capacity = Q/Qe	0.56	0.11	0.76	0.07	DFC of Critical Approach =	0.76	

ARM			A	B	C	D			
INPUT PARAMETERS:									
	$=$	Approach half width (m)	7.5	6.0	7.6	3.5			
	$=$	Entry width (m)	8.5	7.0	7.6	6.0			
	$=$	Effective length of flare (m)	13.5	6.0	0.0	6.0			
	$=$	Entry radius (m)	20.0	20.0	22.5	17.0			
	$=$	Inscribed circle diameter (m)	78.0	78.0	78.0	78.0			
	$=$	Entry angle (degree)	50.0	40.0	40.0	30.0			
Q	$=$	Entry flow (pcu/h)	1532	77	1379	54			
Qc	$=$	Circulating flow across entry (pcu/h)	155	1595	164	1222			
OUTPUT PARAMETERS:									
	$=$	Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$	0.12	0.27	0.00	0.67			
K	$=$	1-0.00347(A-30)-0.978(1/R-0.05)	0.93	0.97	0.97	0.99			
X2	=	$\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})$)	8.31	6.65	7.60	4.57			
	=	$\operatorname{EXP}((\mathrm{D}-60) / 10)$	6	6	6	6			
F	$=$	303*X2	2517	2016	2303	1385			
Td	$=$	1+(0.5/(1+M))	1.07	1.07	1.07	1.07			
Fc	$=$	$0.21 * \mathrm{Td}\left(1+0.2^{*} \mathrm{X} 2\right)$	0.60	0.52	0.57	0.43			
Qe	$=$	$\mathrm{K}\left(\mathrm{F}-\mathrm{Fc}^{*} \mathrm{Qc}\right)$	2256	1139	2145	852	Total In Sum =	3042	PCU
DFC	$=$	Design flow/Capacity = Q/Qe	0.68	0.07	0.64	0.06	DFC of Critical Approach =	0.68	

ARM			A	B	C	D			
INPUT PARAMETERS:									
	$=$	Approach half width (m)	7.5	6.0	7.6	3.5			
	$=$	Entry width (m)	8.5	7.0	7.6	6.0			
	$=$	Effective length of flare (m)	13.5	6.0	0.0	6.0			
	$=$	Entry radius (m)	20.0	20.0	22.5	17.0			
	$=$	Inscribed circle diameter (m)	78.0	78.0	78.0	78.0			
	$=$	Entry angle (degree)	50.0	40.0	40.0	30.0			
Q	$=$	Entry flow (pcu/h)	1361	57	1599	63			
Qc	$=$	Circulating flow across entry (pcu/h)	130	1409	87	1398			
OUTPUT PARAMETERS:									
	$=$	Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$	0.12	0.27	0.00	0.67			
K	$=$	1-0.00347(A-30)-0.978(1/R-0.05)	0.93	0.97	0.97	0.99			
X2	=	$\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})$)	8.31	6.65	7.60	4.57			
	=	$\operatorname{EXP}((\mathrm{D}-60) / 10)$	6	6	6	6			
F	$=$	303*X2	2517	2016	2303	1385			
Td	$=$	1+(0.5/(1+M))	1.07	1.07	1.07	1.07			
Fc	$=$	$0.21 * \mathrm{Td}\left(1+0.2^{*} \mathrm{X} 2\right)$	0.60	0.52	0.57	0.43			
Qe	$=$	$\mathrm{K}\left(\mathrm{F}-\mathrm{Fc}^{*} \mathrm{Qc}\right)$	2270	1233	2188	777	Total In Sum =	3080	PCU
DFC	$=$	Design flow/Capacity = Q/Qe	0.60	0.05	0.73	0.08	DFC of Critical Approach =	0.73	

ARM			A	B	C	D			
INPUT PARAMETERS:									
	$=$	Approach half width (m)	7.5	6.0	7.6	3.5			
	$=$	Entry width (m)	8.5	7.0	7.6	6.0			
	$=$	Effective length of flare (m)	13.5	6.0	0.0	6.0			
	$=$	Entry radius (m)	20.0	20.0	22.5	17.0			
	$=$	Inscribed circle diameter (m)	78.0	78.0	78.0	78.0			
	$=$	Entry angle (degree)	50.0	40.0	40.0	30.0			
Q	$=$	Entry flow (pcu/h)	1306	148	1648	50			
Qc	$=$	Circulating flow across entry (pcu/h)	125	1356	208	1599			
OUTPUT PARAMETERS:									
	$=$	Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$	0.12	0.27	0.00	0.67			
K	$=$	1-0.00347(A-30)-0.978(1/R-0.05)	0.93	0.97	0.97	0.99			
X2	=	$\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})$)	8.31	6.65	7.60	4.57			
	=	$\operatorname{EXP}((\mathrm{D}-60) / 10)$	6	6	6	6			
F	$=$	303*X2	2517	2016	2303	1385			
Td	$=$	1+(0.5/(1+M))	1.07	1.07	1.07	1.07			
Fc	$=$	$0.21 * \mathrm{Td}\left(1+0.2^{*} \mathrm{X} 2\right)$	0.60	0.52	0.57	0.43			
Qe	$=$	$\mathrm{K}\left(\mathrm{F}-\mathrm{Fc}^{*} \mathrm{Qc}\right)$	2273	1260	2121	691	Total In Sum =	3152	PCU
DFC	$=$	Design flow/Capacity = Q/Qe	0.57	0.12	0.78	0.07	DFC of Critical Approach =	0.78	

ARM			A	B	C	D			
INPUT PARAMETERS:									
	$=$	Approach half width (m)	7.5	6.0	7.6	3.5			
	$=$	Entry width (m)	8.5	7.0	7.6	6.0			
	$=$	Effective length of flare (m)	13.5	6.0	0.0	6.0			
	$=$	Entry radius (m)	20.0	20.0	22.5	17.0			
	$=$	Inscribed circle diameter (m)	78.0	78.0	78.0	78.0			
	$=$	Entry angle (degree)	50.0	40.0	40.0	30.0			
Q	$=$	Entry flow (pcu/h)	1572	79	1414	55			
Qc	$=$	Circulating flow across entry (pcu/h)	159	1637	168	1252			
OUTPUT PARAMETERS:									
	$=$	Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$	0.12	0.27	0.00	0.67			
K	$=$	1-0.00347(A-30)-0.978(1/R-0.05)	0.93	0.97	0.97	0.99			
X2	=	$\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})$)	8.31	6.65	7.60	4.57			
	=	$\operatorname{EXP}((\mathrm{D}-60) / 10)$	6	6	6	6			
F	$=$	303*X2	2517	2016	2303	1385			
Td	$=$	1+(0.5/(1+M))	1.07	1.07	1.07	1.07			
Fc	$=$	$0.21 * \mathrm{Td}\left(1+0.2^{*} \mathrm{X} 2\right)$	0.60	0.52	0.57	0.43			
Qe	$=$	$\mathrm{K}\left(\mathrm{F}-\mathrm{Fc}^{*} \mathrm{Qc}\right)$	2254	1117	2143	839	Total In Sum =	3120	PCU
DFC	$=$	Design flow/Capacity = Q/Qe	0.70	0.07	0.66	0.07	DFC of Critical Approach =	0.70	

ARM			A	B	C	D			
INPUT PARAMETERS:									
	$=$	Approach half width (m)	7.5	6.0	7.6	3.5			
	$=$	Entry width (m)	8.5	7.0	7.6	6.0			
	$=$	Effective length of flare (m)	13.5	6.0	0.0	6.0			
	$=$	Entry radius (m)	20.0	20.0	22.5	17.0			
	$=$	Inscribed circle diameter (m)	78.0	78.0	78.0	78.0			
	$=$	Entry angle (degree)	50.0	40.0	40.0	30.0			
Q	$=$	Entry flow (pcu/h)	1395	58	1641	65			
Qc	$=$	Circulating flow across entry (pcu/h)	134	1446	89	1433			
OUTPUT PARAMETERS:									
	$=$	Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$	0.12	0.27	0.00	0.67			
K	$=$	1-0.00347(A-30)-0.978(1/R-0.05)	0.93	0.97	0.97	0.99			
X2	=	$\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})$)	8.31	6.65	7.60	4.57			
	=	$\operatorname{EXP}((\mathrm{D}-60) / 10)$	6	6	6	6			
F	$=$	303*X2	2517	2016	2303	1385			
Td	$=$	1+(0.5/(1+M))	1.07	1.07	1.07	1.07			
Fc	$=$	$0.21 * \mathrm{Td}\left(1+0.2^{*} \mathrm{X} 2\right)$	0.60	0.52	0.57	0.43			
Qe	$=$	$\mathrm{K}\left(\mathrm{F}-\mathrm{Fc}^{*} \mathrm{Qc}\right)$	2268	1214	2186	762	Total In Sum =	3159	PCU
DFC	$=$	Design flow/Capacity = Q/Qe	0.62	0.05	0.75	0.09	DFC of Critical Approach =	0.75	

ARM			A	B	C	D			
INPUT PARAMETERS:									
	$=$	Approach half width (m)	7.5	6.0	7.6	3.5			
	$=$	Entry width (m)	8.5	7.0	7.6	6.0			
	$=$	Effective length of flare (m)	13.5	6.0	0.0	6.0			
	$=$	Entry radius (m)	20.0	20.0	22.5	17.0			
	$=$	Inscribed circle diameter (m)	78.0	78.0	78.0	78.0			
	$=$	Entry angle (degree)	50.0	40.0	40.0	30.0			
Q	$=$	Entry flow (pcu/h)	1308	148	1651	50			
Qc	$=$	Circulating flow across entry (pcu/h)	125	1358	208	1602			
OUTPUT PARAMETERS:									
	$=$	Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$	0.12	0.27	0.00	0.67			
K	$=$	1-0.00347(A-30)-0.978(1/R-0.05)	0.93	0.97	0.97	0.99			
X2	$=$	$\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})$)	8.31	6.65	7.60	4.57			
	$=$	$\operatorname{EXP}((\mathrm{D}-60) / 10)$	6	6	6	6			
F	$=$	303*X2	2517	2016	2303	1385			
Td	$=$	1+(0.5/(1+M))	1.07	1.07	1.07	1.07			
Fc	=	$0.21 * \mathrm{Td}\left(1+0.2^{*} \mathrm{X} 2\right)$	0.60	0.52	0.57	0.43			
Qe	$=$	$\mathrm{K}\left(\mathrm{F}-\mathrm{Fc}^{*} \mathrm{Qc}\right)$	2273	1259	2121	689	Total In Sum =	3157	PCU
DFC	$=$	Design flow/Capacity = Q/Qe	0.58	0.12	0.78	0.07	DFC of Critical Approach =	0.78	

ARM			A	B	C	D			
INPUT PARAMETERS:									
	$=$	Approach half width (m)	7.5	6.0	7.6	3.5			
	$=$	Entry width (m)	8.5	7.0	7.6	6.0			
	$=$	Effective length of flare (m)	13.5	6.0	0.0	6.0			
	$=$	Entry radius (m)	20.0	20.0	22.5	17.0			
	$=$	Inscribed circle diameter (m)	78.0	78.0	78.0	78.0			
	$=$	Entry angle (degree)	50.0	40.0	40.0	30.0			
Q	$=$	Entry flow (pcu/h)	1575	79	1416	55			
Qc	$=$	Circulating flow across entry (pcu/h)	159	1640	168	1254			
OUTPUT PARAMETERS:									
	$=$	Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$	0.12	0.27	0.00	0.67			
K	$=$	1-0.00347(A-30)-0.978(1/R-0.05)	0.93	0.97	0.97	0.99			
X2	=	$\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})$)	8.31	6.65	7.60	4.57			
	=	$\operatorname{EXP}((\mathrm{D}-60) / 10)$	6	6	6	6			
F	$=$	303*X2	2517	2016	2303	1385			
Td	$=$	1+(0.5/(1+M))	1.07	1.07	1.07	1.07			
Fc	$=$	$0.21 * \mathrm{Td}\left(1+0.2^{*} \mathrm{X} 2\right)$	0.60	0.52	0.57	0.43			
Qe	$=$	$\mathrm{K}\left(\mathrm{F}-\mathrm{Fc}^{*} \mathrm{Qc}\right)$	2254	1116	2143	838	Total In Sum =	3125	PCU
DFC	$=$	Design flow/Capacity = Q/Qe	0.70	0.07	0.66	0.07	DFC of Critical Approach =	0.70	

ARM			A	B	C	D			
INPUT PARAMETERS:									
	$=$	Approach half width (m)	7.5	6.0	7.6	3.5			
	$=$	Entry width (m)	8.5	7.0	7.6	6.0			
	$=$	Effective length of flare (m)	13.5	6.0	0.0	6.0			
	$=$	Entry radius (m)	20.0	20.0	22.5	17.0			
	$=$	Inscribed circle diameter (m)	78.0	78.0	78.0	78.0			
	$=$	Entry angle (degree)	50.0	40.0	40.0	30.0			
Q	$=$	Entry flow (pcu/h)	1397	58	1643	65			
Qc	$=$	Circulating flow across entry (pcu/h)	134	1448	89	1435			
OUTPUT PARAMETERS:									
	$=$	Sharpness of flare $=1.6(\mathrm{E}-\mathrm{V}) / \mathrm{L}$	0.12	0.27	0.00	0.67			
K	$=$	1-0.00347(A-30)-0.978(1/R-0.05)	0.93	0.97	0.97	0.99			
X2	=	$\mathrm{V}+((\mathrm{E}-\mathrm{V}) /(1+2 \mathrm{~S})$)	8.31	6.65	7.60	4.57			
	=	$\operatorname{EXP}((\mathrm{D}-60) / 10)$	6	6	6	6			
F	$=$	303*X2	2517	2016	2303	1385			
Td	$=$	1+(0.5/(1+M))	1.07	1.07	1.07	1.07			
Fc	$=$	$0.21 * \mathrm{Td}\left(1+0.2^{*} \mathrm{X} 2\right)$	0.60	0.52	0.57	0.43			
Qe	$=$	$\mathrm{K}\left(\mathrm{F}-\mathrm{Fc}^{*} \mathrm{Qc}\right)$	2268	1213	2186	761	Total In Sum =	3163	PCU
DFC	$=$	Design flow/Capacity = Q/Qe	0.62	0.05	0.75	0.09	DFC of Critical Approach =	0.75	

