S12A Amendment of Plan Application – Various Lo Yuen Long, N.T.	ots in D.D. 110 and Adjoining Government Land, Shek Kong,
	Appendix 6
	Traffic Impact Assessment

Rezoning from "Residential (Group C)2" and "Open Space" zones to "Residential (Group C)4" zone for a Proposed Residential Development at Lot Nos. 519 RP (part) and 520 RP in D.D. 110 and the Adjoining Government land, Shek Kong, Yuen Long, N.T.

Traffic Impact Assessment

Revised Final Report

November 2025

CTA Consultants Limited
志達顧問有限公司

LIST OF CONTENTS

1.	INTRODUCTION	1
1.1	Background	1
1.2	Study Objectives	1
2.	THE PROPOSED DEVELOPMENT	2
2.1	Site Location	
2.2	Development Proposal	
2.3	Provision of Internal Transport Facilities	
2.4	Upgrade of Kam Tin Road	
2.5	Development Access	
3.	EXISTING TRAFFIC CONDITION	6
3.1	Existing Road Network	
3.2	Critical Junctions	
3.3	Public Transport Services in the Vicinity	
4.	FUTURE TRAFFIC CONDITION & TRAFFIC IMPACT ASSESSMENT	10
4.1	Design Year	10
4.2	Traffic Forecast	10
4.3	Reference Traffic Flow in Year 2034	12
4.4	Traffic Trips of the Proposed Development	14
4.5	Traffic Forecast for Design Year 2034	14
5.	TRAFFIC IMPACT ASSESSMENT	
5.1	Operational Assessment	16
5.2	Sensitivity Test on Remaining Sites of Land Use Review for Kam Tin and Pat He	
<i>-</i> 2	7.6° 1' 7.6	
5.3	Mitigation Measure	23
6.	PUBLIC TRANSPORT DEMAND	
6.1	Survey on Existing Public Transport Service	
6.2	Assessment on Public Transport Demand	
6.3	Bus Stop Bay Assessment	
6.4	Railway Assessment	
6.5	Conclusion	
7.	PEDESTRIAN ASSESSMENT	34
7.1	Existing Pedestrian Condition.	
7.2	Pedestrian Traffic Forecast	
7.3	Conclusion	39
8.	SUMMARY AND CONCLUSION	
8.1	Summary	
82	Conclusion	11

Appendix I – Kam Tin South Housing Development – Layout Plan Appendix II – Junction Calculation Sheets

Traffic Impact Assessment **Revised Final Report** (November 2025)

We commit We deliver

1. INTRODUCTION

1.1 **Background**

- The Development Site is located at DD110, Shek Kong, Kam Tin Road, Yuen Long 1.1.1 New Territories. The site location is shown in **Figure 1.1**.
- The Applicant intends to rezone the Development Site from "Residential (Group C)2" and "Open Space" to "Residential (Group C)4" to enable the proposed residential development.
- 1.1.3 In support of the aforesaid application, a traffic impact assessment is required to review and appraise any possible traffic impact induced by the proposed development on the adjacent road network.
- 1.1.4 CTA Consultants Limited (CTA) was therefore commissioned as the traffic consultant to prepare the Traffic Impact Assessment (TIA) and provide technical justifications in supporting the application from traffic engineering point of view.

1.2 **Study Objectives**

- 1.2.1 Main objectives of this study are listed below:
 - To assess the existing and proposed traffic arrangement & provision of internal transport facilities at the subject site;
 - To assess the existing traffic condition in the vicinity of the proposed development;
 - To estimate traffic trips related to the proposed development;
 - To carry out forecasts about traffic demand of the adjacent road network in design year;
 - To appraise any possible traffic impact induced by the proposed development on the adjacent road network;
 - To recommend traffic improvement measures to alleviate any foreseeable traffic problem to the surrounding road network, if any.

Revised Final Report (November 2025)

We commit We deliver

2. THE PROPOSED DEVELOPMENT

2.1 Site Location

2.1.1 The Development Site is located in D.D. 110, Kam Tin, Yuen Long, New Territories. The site location is shown in **Figure 1.1**.

2.2 Development Proposal

2.2.1 Parameters of the proposed development are listed in **Table 2.1**.

 Table 2.1
 Parameters of the Proposed Development

Turumeters of the 110p	•	t Parameters	
Proposed Use	Residential Use		
Development Site Area	8,580 m ²		
Domestic GFA	8,580 m ²		
No. of Tower	6		
NI	≤ 40 m ²	120	
No. of Units	$40 \text{ m}^2 < \text{FS} \le 70 \text{ m}^2$	120	

- 2.2.2 It is anticipated that the proposed development will be completed in year 2031.
- 2.2.3 The Master layout plan of the proposed development is shown in **Figures 2.1** and **2.2**. The Ground floor plan is shown in **Figures 2.6** and **2.7**.

2.3 Provision of Internal Transport Facilities

2.3.1 According to the requirements stipulated in the latest Hong Kong Planning Standards and Guidelines (HKPSG), the internal transport facilities provision for the proposed development is summarized in **Table 2.2**.

Revised Final Report (November 2025)

誠 We commit We deliver

Table 2.2 Internal Transport Facilities Provision required under the HKPSG

Propos	sed Developi	ment	Parking Requirement					Loading/Unloading Requirement													
1 Toposcu Development			Private Car Parking Space				Motorcycle Parking Space	Bicycle Parking	Loading / Unloading Bay for Goods Vehicles												
			R	esident																	
	Flat Size	No. of	GPS: 1	space per	4-7 flats	GPS x R1 X															
	(GFA) (m^2)	Flat	R1	R2	R3	R2 X R3															
	FS ≤ 40	120	0.5	1	1.3	12 to 20															
	40 <fs 70<="" td="" ≤=""><td>120</td><td>1.2</td><td>1</td><td>1.3</td><td>27 to 47</td><td rowspan="6">1 space per for 15 fl</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></fs>	120	1.2	1	1.3	27 to 47	1 space per for 15 fl						1								
	70 < FS ≤ 100	0	2.4	1	1.3	0			Provision of minimum 1 L/UL bay for goods vehicles within the site for every 800 flats or part thereof, subject to a minimum of 1 bay for each housing block or as determined by the Authority												
Private	100 < FS ≤ 130	0	4.1	1	1.3	0		1 space for 15 flats with flat size ≤ 70m ²													
Housing	130 < FS ≤ 160	0	5.5	1	1.3	0															
	FS > 160	0	7.0	1	1.3	0															
	Subtotal	240		1	39 to 67																
			•	isitor																	
	No. of Block	Average No. of Unit per Block	> 75 units per block: 5 visitor spaces per block, ≤ 75 units per block: Determined by TD																		
	6	40			12(2)																
	Total			5	1 to 79 ⁽¹⁾		2 to 3	16	6 HGV												

Notes: (1) Including 2 accessible car parking spaces for total 51-150 number of parking spaces

(2) Average about 40 units per block. As discussed with TD in previous planning application no. Y/YL-KTN/4, 2 visitor spaces per block is adopted.

2.3.2 The details of proposed internal transport facilities of the proposed development complying with the HKPSG requirements are summarized in **Table 2.3**.

Proposed Internal Transport Facilities of Proposed Development Table 2.3

Tyl	Proposed Nur	Proposed Number of Spaces				
Private Housing						
Private Cars	Resident	67	79(1)			
Filvate Cars	Visitor 12 ⁽²⁾		19*/			
Motoro		3				
Bicycle 1	1	16				
L/UL fo		6				

(1) Including 2 accessible car parking spaces for total 51-150 number of parking spaces.

(2) Average about 40 units per block. As discussed with TD in previous planning application no. Y/YL-KTN/4, 2 visitor spaces per block is adopted.

Traffic Impact Assessment **Revised Final Report** (November 2025)

We commit We deliver

2.4 **Upgrade of Kam Tin Road**

- 2.4.1 Kam Tin Road will be upgraded by Highway Department under PWP item No. 6820TH "Upgrading of Remaining Sections of Kam Tin Road and Lam Kam Road". The works include:
 - (i) upgrading of a section of Kam Tin Road of approximately 1.9 kilometres long between Tung Wui Road and Fan Kam Road to a 10.3 metres wide single two lane carriageway
 - (ii) upgrading of a section of Kam Tin Road of approximately 2.1 kilometres long between Fan Kam Road and Lam Kam Road and a section of Lam Kam Road of approximately 1.3 kilometres long between Kam Tin Road and Kadoorie Farm and Botanic Garden to a 7.3 metres wide single two-lane carriageway;
- 2.4.2 The design of the proposed development and the assessment in this TIA considered this upgrading works.

2.5 **Development Access**

Without Kam Tin Road Widening

2.5.1 As shown in **Figure 2.1** (**SP3**), since existing Kam Tin Road is narrow, long vehicles would have difficulty turning left from the proposed development and will encroach into the opposite lane. To minimize the impact to the public road, it is proposed all egress vehicles longer than 7m are only allowed to turn right to westbound. Traffic signs will be erected as shown in Figures 2.3 and 2.3 (SP) to restrict the turning movement.

With Kam Tin Road Widening

2.5.2 As shown in Figure 2.2 (SP3), long vehicles would still have difficulty turning left from the proposed development and will encroach into the opposite lane even after Kam Tin Road widening. Therefore, all egress vehicles longer than **7m** are still only allowed to turn right to westbound. Traffic signs will be erected as shown in Figures **2.4** and **2.4** (**SP**) to restrict the turning movement.

Revised Final Report (November 2025)

We commit We deliver

2.5.3 The existing beam barrier and railings at proposed vehicular access will be removed as shown in **Figures 2.5**. Detailed modifications will be reviewed at the detail design stage.

Revised Final Report (November 2025)

We commit We deliver

3. EXISTING TRAFFIC CONDITION

3.1 Existing Road Network

3.1.1 The proposed development locates at Kam Tin Road. Kam Tin Road is a two-lane two-way road and connects to Kam Tin By-pass and Fan Kam Road.

3.2 Critical Junctions

3.2.1 Seven junctions are identified to be critical for the Traffic Impact Assessment due to the proposed development. Relevant details are listed in **Table 3.1** and shown in **Figure 3.1**. Existing junction layouts are tabulated in **Figures 3.2** to **3.8** respectively.

Table 3.1 Identified Critical Junctions

Ref.	Junction	Туре	Figure No.
A	Kam Tin Bypass / Kam Tin Road / Tung Wui Road	Roundabout	3.2
В	Kam Tin Bypass / Kong Tai Road	Signalized	3.3
С	Kam Tin Road / Kam Tai Road	Priority	3.4
D	Kam Tin Road / Fan Kam Road	Roundabout	3.5
Е	Kam Tin Road	Signalized	3.6
F	Kam Tin Road / Tsing Long Highway slip road	Signalized	3.7
G	Kam Tin Road / Kam Tin Bypass	Roundabout	3.8

3.2.2 As mentioned in Section 2.4, Kam Tin Road will be upgraded under HyD PWP item No. 6820TH. Therefore, junctions along Kam Tin Road (Junctions C, D and E) will also be improved. As there is no detail future layout of these junctions can be obtained from public domain, the conceptual future layouts of these junctions are drawn which are based on the existing layouts and gazette layout plans. Also, Junction improvement to Junctions F and G are constructing by CEDD under Contract No. YL/2017/01 (Original Target Completion Date: Mid 2022). The future layouts are shown in Figures 3.10 to 3.14 respectively.

Revised Final Report (November 2025)

We commit We deliver

- 3.2.3 In order to study the existing traffic condition of the above critical junctions, traffic survey in the form of manual-classified count was carried out during the Weekday AM and PM peak periods on 26 February 2025 from 07:30AM to 09:30AM and 17:00PM to 19:00PM respectively. The survey provides most up-to-date details of the traffic condition within the study area under normal operation. Based on the observed traffic flows, it reveals that Weekday AM and PM peak hour occurred from 07:30AM to 08:30AM, 17:00PM to 18:00PM respectively.
- 3.2.4 Observed traffic data indicates that both morning peak hour, evening peak hour and the surveyed traffic flows are shown in **Figure 3.9**.
- 3.2.5 The operational performances of the critical junctions are listed in **Table 3.2** below.

Table 3.2 Operational Performances of Critical Junctions in 2025

Table 5.2 Operational Fertormances of Critical Junctions in 2025								
D.f	T	Method	Year 2025 RC/DFC (1)					
Ref.	Junction	of Control	AM Peak	PM Peak				
A	Kam Tin Bypass / Kam Tin Road / Tung Wui Road	Roundabout	0.36	0.34				
В	Kam Tin Bypass / Kong Tai Road	Signalized	59%	90%				
С	Kam Tin Road / Kam Tai Road	Priority	0.71	0.62				
D	Kam Tin Road / Fan Kam Road	Roundabout	0.61	0.65				
Е	Kam Tin Road	Signalized	60%	70%				
F ⁽²⁾	Kam Tin Road / Tsing Long Highway slip road	Signalized	23%	23%				
G	Kam Tin Road / Kam Tin Bypass	Roundabout	0.57	0.52				

Notes: (1) $RC = Reserve\ Capacity\ for\ Signal\ Junction;$

DFC = Design Ratio of Flow to Capacity for Priority Junction/Roundabout

- (2) Effect of TTA was considered
- 3.2.6 As Tai Lam Tunnel has been taken over by the government and toll was adjusted, traffic flow of Tai Lam Tunnel is factored up by reference from the ratio of traffic flow in Monthly Traffic and Transport Digest, before and after Tai Lam Tunnel.

Rezoning from "Residential (Group C)2" and "Open Space" zones to "Residential (Group C)4" zone for a Proposed Residential Development at Lot Nos. 519 RP (part) and 520 RP in D.D. 110 and the Adjoining Government land, Shek Kong, Yuen Long, N.T.

> Traffic Impact Assessment **Revised Final Report** (November 2025)

> > We commit We deliver

Table 3.3 Ratio of Tai Lam Tunnel before and after being Taken over by the Government and Adjustment of Toll

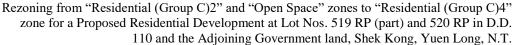

		Avera	age Daily Vel	hicles
Tai Lam Tunnel	Month	SB	NB	Total
Before being taken over by the government and adjustment of toll	Feb	20872	18679	39552
After being taken over by the government and adjustment of toll	Aug	28391	27499	55891
Factor		1.36	1.47	1.41

Table 3.4 V/C Ratio of Critical Road Link in Year 2025

		Сар.		Observed Scenario				
Index	Direction	tion		Flow (pc	u/hr) (V)	V	V/C	
		(veh/hr) (C) ⁽¹⁾	(pcu/hr) (C) ⁽¹⁾	AM Peak	PM Peak	AM Peak	PM Peak	
T 1	EB	2,800	3,415	2160	1935	0.63	0.57	
L1	WB	2,800	3,415	2075	1930	0.61	0.56	
L2	EB	2,800	3,415	675	620	0.20	0.18	
L2	WB	2,800	3,415	685	700	0.20	0.21	
1.2	EB	850	1,035	320	265	0.31	0.25	
L3	WB	850	1,035	260	295	0.25	0.28	
1.4	EB	850	1,035	870	830	0.84	0.80	
L4	WB	850	1,035	915	860	0.88	0.83	
1.5	EB	850	1,035	920	820	0.89	0.79	
L5	WB	850	1,035	950	970	0.92	<u>0.94</u>	
Tai Lam	NB	4,700	5,735	1550	3060	0.27	0.53	
Tunnel ⁽³⁾	SB	4,700	5,735	4320	1625	0.75	0.28	

<u>Note</u>:

- (1) Index please refer to Figure 3.1
- (2) Pcu factor 1.22 obtained from survey is adopted
- (3) As Tai Lam Tunnel has been taken over by the government and toll was adjusted, traffic flow of Tai Lam Tunnel is factored up by southbound 1.36, northbound 1.47. The factor were reference from the ratio of traffic flow in Monthly Traffic and Transport Digest, before and after Tai Lam Tunnel

Traffic Impact Assessment **Revised Final Report** (November 2025)

We commit We deliver

3.2.7 The assessment results in **Table 3.2** and **3.4** indicate that all critical junctions and road links are at present operating with ample capacities during the peak hours except Link L4 and L5 above 0.85 but still lower than 1.0, which means there are still have spare capacity.

3.3 **Public Transport Services in the Vicinity**

3.3.1 Numerous road-based public transport services, for instance, franchised buses and GMB are also provided in vicinity of the proposed development. Details of the current services of franchised buses and GMB routes within the catchment area of 500 meters are listed in **Table 3.5** and shown in **Figure 3.15**.

Table 3.5 Public Transport Services in the Vicinity of the Proposed **Development**

Service	Route	Origin - Destination	Frequency (mins)
	54	Yuen Long (West) - Sheung Tsuen (Circular)	20 - 30
		Yuen Long (Fung Cheung Road) – Sheung Shui	15 - 30
F 1. 1	77K	Sheung Shui – Yuen Long (Fung Cheung Road)	12 - 30
Franchised Bus	//K	Sheung Shui – Yuen Long (West)	06:55(1)
Dus		Sheung Shui – Kam Sheung Road Station	07:25(1)
	251B	Pat Heung Road - Sheung Tsuen (Circular)	20 - 30
	251M	Sheung Tsuen - Tsuen Wan Station	07:00, 08:00, 09:00(1)
	608	Wang Toi Shan (Pat Heung) – Yuen Long (Fung Cheung Road) (Circular)	10-13
GMB	008	Wang Toi Shan (Pat Heung) – Kam Sheung Road Station (Circular)	10-13
	608S CONCORDIA Tsat Sing Kong Public Light Bus Terminus – Kam Sheung Road Station Public Transit Interchange (Circular)		15 – 30
	18	Yuen Long - Sheung Shui	Non-regular
RMB	Tai Po – Yuen Long	Tai Po – Yuen Long	Non-regular

Note:

(1) Peak Hour Services only

Revised Final Report (November 2025)

We commit We deliver

4. FUTURE TRAFFIC CONDITION & TRAFFIC IMPACT ASSESSMENT

4.1 Design Year

4.1.1 It is anticipated that the proposed development would be completed in 2031 tentatively with full intended operation. In order to assess the possible traffic impacts to the local road network due to the proposed development, year 2034 (i.e. 3 years after completion) has been adopted as the design year for this study.

4.2 Traffic Forecast

4.2.1 To estimate the reference traffic flow in year 2034 (without the proposed development) in the local road network, an appropriate growth factor has to be identified for the area in the first instance. The following approaches have been adopted to derive the growth factor for the Area of Influence.

Historical Trend

4.2.2 TD has traffic count stations in the vicinity of the proposed development. The past 6 years traffic counts reported in the Annual Traffic Census (ATC) are shown in **Table 4.1**.

Table 4.1 Average Annual Daily Traffic (A.A.D.T.) Data in the Vicinity of the Proposed Development from ATC

ATC	Road Name	Annual Average Daily Traffic (AADT)						Average Annual
Stn.	1000 1 (0.20)	2018	2019	2020	2021	2022	2023	Growth Rate
5014	Route Twisk (From Chuen Lung to Cheung Pei Shan RA)	6,170	6,420	6,910	6,990	6,660	6,960	2.44%
5029	Tsing Long Highway - Tai Lam Tunnel (From Au Tau INT to Tuen Mun Rd)	61,100	57,450	45,880	44,500	38,840	39,970	-8.14%
5463	Lam Kam Rd (From Kam Sheung Rd to Kadoorie Farm and Botanic Garden)	18,610	19,580	19,660	20,420	20,220	20,900	2.35%
6207	Kam Tin Rd (Kam Sheung Rd western junction to Fan Kam Rd)	20,390	21,300	21,640	20,490	20,520	21,510	1.08%
6212	Fan Kam Rd (From Kam Tin Rd to Fanling Highway)	11,570	11,660	12,250	12,450	12,400	13,890	3.72%
6208 Kam Sheung Rd (From Kam Tin Rd to Kam Tin Rd)		8,120	8,080	9,400	8,960	9,600	10,460	5.20%
	Total	125,960	124,490	115,740	113,810	108,240	113,690	-2.03%

Revised Final Report (November 2025)

We commit We deliver

4.2.3 The Average Annual Daily Traffic (AADT) flows in **Table 4.1** shows the average traffic growth on surrounding roads which decreased at the rate of -2.03% per annum.

Planning Data

4.2.4 Reference has also been made to the latest 2021-Based Territorial Population Employment Data Matrices (TPEDM) planning data published by the Planning Department for projection of population and employment within the study district. The average annual growth rates in terms of population and employment from 2021 to 2031 are tabulated in **Table 4.2**.

Table 4.2 2021-Based Planning Data from 2021 to 2031

Yuen Long Districts								
Doto	Average Annual							
Data	2021	Growth Rate						
Population	668,100	685,000	760,600	1.31%				
Employment	152,850	238,500	258,200	5.38%				
Total	820,950	923,500	1,018,800	2.18%				

Adopted Growth Rate

- 4.2.5 A.A.D.T. of ATC indicates that the traffic flow of the local road network has an average annual growth rate of -2.03% from year 2018 to year 2023.
- 4.2.6 Whilst, the planning data indicates that the population and employment of the study area are expected to grow with an average annual growth rate of +2.18%.
- 4.2.7 As a conservative approach, annual growth rate <u>+2.18%</u> p.a. has been adopted for projecting traffic forecasts from year 2025 to year 2034. It is deemed sufficient to allow for any unexpected future growth as a result of some changes in land use or development in the study area.

Revised Final Report (November 2025)

We commit We deliver

4.3 Reference Traffic Flow in Year 2034

4.3.1 The year 2034 reference traffic flow is estimated by applying the adopted growth rate to the year 2025 observed traffic flow.

Adjacent New Developments

4.3.2 Additional traffic generation and attraction of major committed/planned developments in the vicinity have been estimated and superimposed onto the road network to derive the year 2034 reference traffic flow. The committed/planned developments in the vicinity are summarized **Tables 4.3** and **4.4** and illustrated in **Figure 4.1** and **Appendix I**.

Table 4.3 Development Schedule of Proposed Residential Development at Vicinity

Ref.	Development Site / Planning Application No.	Use	Development Parameters
A	A/YL-KTN/604	Residential	Not more than 3,891 flats
В	A/YL-KTN/663 (Park Yoho Phase 2)	Residential	Not more than 1,154 flats
C	A/YL-KTN/761	Residential	12 houses
D	A/YL-KTN/791	Residential	243 flats 87 houses
Е	A/YL-KTN/964	Residential	615 flats
F	Y/YL-SK/1	Residential	850 flats

Note: According to their TIA reports / Planning Statement

Table 4.4 Development Schedules of Developments of Kam Tin South

Development	Proposed Scheme							
Parameters	KSRS	PHMC	Site 1	Site 4a	Site 6			
Residential Type	Private	Private	PRH/SSF	PRH/SSF	PRH/SSF			
No. of Flats	2,692	6,060	4,100	3,800	1,700			
Average Flat Size	69m ²	70m ²	46m ²	46m ²	50m ²			
Commercial / Retail GFA	40,000m ²	3,000m ²	4,000m ²	2,900m ²	-			
Kindergarten	1	-	1	1	1			
School	-	2	-	-	-			

Revised Final Report (November 2025)

We commit We deliver

Note: According to the TIA report of Sites 1, 4a and 6 in support of Proposed Amendments to the Approved Kam Tin South Outline Zoning Plan No. S/YL-KTS/13 (RNTPC Paper No. 8/17) and the approved Planning Briefs of Site 1, 4a and 6

4.3.3 The adopted estimated trips of the proposed developments in vicinity are listed in below **Table 4.5**.

 Table 4.5
 Estimated Traffic Generations of Planned Vicinity Development

Listinated Train	•	Peak	PM Peak		
Developments	Gen.	Att.	Gen.	Att.	
		Pcu	ı/hr		
A/YL-KTN/604	335	223	149	185	
A/YL-KTN/663	83	50	34	43	
A/YL-KTN/761	4	2	2	3	
A/YL-KTN/791	56	25	17	38	
A/YL-KTN/964	63	44	26	29	
Y/YL-SK/1	87	60	35	39	
KSRS	331	236	220	271	
PHMC (via Kam Ho Road Access)	176	117	72	96	
PHMC (via Pat Heung Road Access)	383	256	155	208	
Site 1	318	266	184	250	
Site 4a	239	165	116	156	
Site 6	113	102	51	69	

Note: According to their TIA reports

4.3.4 The 2034 reference traffic flows are presented in **Figure 4.2**.

2034 Reference
Flows (without proposed development)

= 2025
Observed Flows of i.e. +2.18 % p.a. for 9 years

Adopted Growth
Factor
i.e. +2.18 % p.a. for Developments

We commit We deliver

Revised Final Report (November 2025)

4.4 Traffic Trips of the Proposed Development

4.4.1 In order to estimate the traffic generation and attraction of the proposed development, reference has been made to the trip generation rates as stipulated in Volume 1 Chapter 3 Appendix D Table 1 of the latest T.P.D.M. published by Transport Department. The adopted trip rates are summarized in below **Table 4.6**.

Table 4.6 Adopted TPDM Trip Rates for the Development

Avg. Flat Size	Adopted					
	Avg. Flat Size of TPDM	AM	Peak	PM Peak		
		Gen	Att	Gen	Att	
$FS \le 40m^2$	60 m^2	0.1021	0.0709	0.0415	0.0464	
$40 \text{m}^2 < \text{FS} \le 70 \text{ m}^2$	70 m ²	0.1117	0.0729	0.0454	0.0551	

4.4.2 Based on the adopted trip rate listed in the above **Table 4.6** and the development parameters in **Table 2.1**, the trip generated and attracted by the proposed development are estimated and summarized in the following **Table 4.7**.

Table 4.7 Estimated Traffic Generations and Attractions of Proposed Development

Duonagad	A Flat Ci	Nos. of		ak Hour	PM Peak Hour		
Proposed Development	Average Flat Size (m ²)	Flat /	Gen.	Att.	Gen.	Att.	
Development	(III)	GFA	pcu/hr				
Resident	$FS \leq 40m^2$	120	12	9	5	6	
	$40m^2 < FS \le 70 \text{ m}^2$	120	13	9	5	7	
Total			25	18	10	13	

4.5 Traffic Forecast for Design Year 2034

4.5.1 The net traffic trips of the proposed development is then superimposed onto the year 2034 reference traffic flow (without the proposed development) as shown in **Figure**4.2 to derive the year 2034 design traffic flow (with the proposed development).

Year 2034 Design
Flow (with the
Proposed
Development)

Year 2034 Reference
Flow
(without the Proposed
Development)

Traffic Trips of the
Proposed
Development

用心

Traffic Impact Assessment **Revised Final Report** (November 2025)

以誠

We commit We deliver

4.5.2 The traffic flow during AM and PM peak periods in the design year 2034 (with the proposed development) are shown in **Figure 4.3**. The development trips are shown in **Figure 4.4**.

Traffic Impact Assessment

誠

Rezoning from "Residential (Group C)2" and "Open Space" zones to "Residential (Group C)4" zone for a Proposed Residential Development at Lot Nos. 519 RP (part) and 520 RP in D.D. 110 and the Adjoining Government land, Shek Kong, Yuen Long, N.T.

Revised Final Report (November 2025)

We commit We deliver

5. TRAFFIC IMPACT ASSESSMENT

5.1 **Operational Assessment**

Reference Case in Year 2034

5.1.1 To assess traffic impacts due to the proposed development, operational assessment of the critical junctions identified in Chapter 3 are carried out for both reference (without the proposed development) and design (with the proposed development) scenarios in year 2034. The results are summarized in **Table 5.1**.

Table 5.1 Operational Performance of Critical Junctions for Reference Case in **Year 2034**

				Year 2034	RC/DFC (1)	
Ref.	Junction		thod of ntrol	Reference Scenario (Without the Proposed Development)		
				AM Peak	PM Peak	
A	Kam Tin Bypass / Kam Tin Road / Tung Wui Road	Roun	dabout	0.49	0.46	
В	Kam Tin Bypass / Kong Tai Road	Sign	Signalized		55%	
С	Kam Tin Road / Kam Tai Road	Duionity	w/o PWP	<u>1.08</u>	<u>0.97</u>	
	Kani Tili Koad / Kani Tai Koad	Priority	w PWP ⁽²⁾	0.25	0.30	
D	Vom Tin Dood / Fon Vom Dood	Roundabout	w/o PWP	0.90	<u>0.90</u>	
D	Kam Tin Road / Fan Kam Road	w PWP ⁽²⁾		0.74	0.67	
Г	V T' . D 1	C' 1' 1	w/o PWP	20%	28%	
Е	Kam Tin Road	Signalized	w PWP ⁽²⁾	28%	36%	
F ⁽³⁾	Kam Tin Road / Tsing Long Highway slip road	Signalized		30%	24%	
G ⁽³⁾	Kam Tin Road / Kam Tin Bypass	Roundabout		0.75	0.60	

(1) $RC = Reserve \ Capacity for \ Signal \ Junction;$

DFC = Design Ratio of Flow to Capacity for Priority Junction/Roundabout

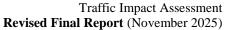
⁽²⁾Based on future PWP 6820's layouts shown in Figures 3.10 to 3.12

⁽³⁾Based on future CEDD's layouts shown in Figures 3.13 to 3.14

Revised Final Report (November 2025)

We commit We deliver

Table 5.2 V/C Ratio of Critical Road Link for Reference Case in Year 2034


Index	Direction	ıp.	Design Scenario (With the Proposed Development, With Remaining Sites under LUR)				
		(veh/hr)	(pcu/hr)	Flow (pc	u/hr) (V)	V	C C
		$(C)^{(1)}$	$(C)^{(1)}$	AM Peak	PM Peak	AM Peak	PM Peak
L1 ⁽²⁾	EB	4,200	5,125	3030	2545	0.59	0.50
LIV	WB	2,800	3,415	2895	2560	0.85	0.75
L2	EB	2,800	3,415	825	765	0.24	0.22
LZ	WB	2,800	3,415	840	860	0.25	0.25
L3	EB	850	1,035	525	390	0.51	0.38
L3	WB	850	1,035	415	445	0.40	0.43
L4 (w/o	EB	850	1,035	1200	1090	<u>1.16</u>	<u>1.05</u>
PWP)	WB	850	1,035	1220	1145	<u>1.18</u>	<u>1.11</u>
L4	EB	1,100	1,340	1200	1090	<u>0.90</u>	0.81
(w PWP)	WB	1,100	1,340	1220	1145	<u>0.91</u>	0.85
L5	EB	850	1,035	1250	1070	<u>1.21</u>	<u>1.03</u>
(w/o PWP)	WB	850	1,035	1245	1265	<u>1.20</u>	<u>1.22</u>
L5	EB	1,100	1,340	1250	1070	0.93	0.80
(w PWP)	WB	1,100	1,340	1245	1265	<u>0.93</u>	<u>0.94</u>
Tai Lam	NB	4,700	5,735	2390	4195	0.42	0.73
Tunnel	SB	4,700	5,735	5945	2335	<u>1.04</u>	0.41

Note: (1) Index please refer to Figure 3.1

Design Case in Year 2034

5.1.2 The operational assessment of the critical junctions for the Design Scenario (with the proposed development) in year 2034 was carried out and the results are summarized in **Table 5.3**.

⁽²⁾ Capacity based on future widening schemes under government projects

We commit We deliver

Table 5.3 Operational Performance of Critical Junctions for Design Case in **Year 2034**

	1 cai 2054			Voor 2024	RC/DFC (1)
Ref.	Junction Metho Of Contr		of	Design S (With the Develo	Scenario Proposed pment)
				AM Peak	PM Peak
A	Kam Tin Bypass / Kam Tin Road / Tung Wui Road	Roun	dabout	0.50	0.46
В	Kam Tin Bypass / Kong Tai Road	Sign	Signalized		55%
С	V T'. D 1 / V T.' D 1	Duionitre	w/o PWP	<u>1.09</u>	<u>0.98</u>
	Kam Tin Road / Kam Tai Road	Priority	w PWP ⁽²⁾	0.25	0.30
D	Kam Tin Road / Fan Kam Road	Roundabout	w/o PWP	<u>0.90</u>	<u>0.90</u>
D	Kam Tiii Road / Fan Kam Road	w PWP ⁽²⁾		0.75	0.67
Е	Van Tin Danii	C:1:1	w/o PWP	18%	28%
E	Kam Tin Road	Signalized w PWP ⁽²⁾		26%	35%
F ⁽³⁾	Kam Tin Road / Tsing Long Highway slip road	Signalized		30%	24%
G ⁽³⁾	Kam Tin Road / Kam Tin Bypass	Roun	dabout	0.75	0.60

Notes: (1) RC = Reserve Capacity for Signal Junction;

DFC = Design Ratio of Flow to Capacity for Priority Junction/Roundabout

(2)Based on future PWP 6820's layouts shown in Figures 3.10 to 3.12

(3)Based on future CEDD's layouts shown in Figures 3.13 to 3.14

Table 5.4 V/C Ratio of Critical Road Link for Design Case in Year 2034

Index	Direction	Ca	ıp.	Design Scenario (With the Proposed Development, With Remaining Sites under LUR)			
		(veh/hr)	(pcu/hr)	Flow (pc	u/hr) (V)	V	/C
		$(C)^{(1)}$	$(C)^{(1)}$	AM Peak	PM Peak	AM Peak	PM Peak
L1 ⁽²⁾	EB	4,200	5,125	3035	2550	0.59	0.50
LIV	WB	2,800	3,415	2905	2565	0.85	0.75
L2	EB	2,800	3,415	830	770	0.24	0.23
L2	WB	2,800	3,415	850	865	0.25	0.25
L3	EB	850	1,035	525	390	0.51	0.38
L3	WB	850	1,035	415	445	0.40	0.43
L4 (w/o	EB	850	1,035	1215	1100	<u>1.17</u>	<u>1.06</u>
PWP)	WB	850	1,035	1240	1150	<u>1.19</u>	<u>1.11</u>
L4	EB	1,100	1,340	1215	1100	<u>0.90</u>	0.82
(w PWP)	WB	1,100	1,340	1240	1150	<u>0.92</u>	<u>0.86</u>
L5 (w/o	EB	850	1,035	1260	1070	<u>1.22</u>	<u>1.03</u>
PWP)	WB	850	1,035	1255	1265	<u>1.21</u>	1.22
L5	EB	1,100	1,340	1260	1070	0.94	0.80
(w PWP)	WB	1,100	1,340	1255	1265	0.94	0.94
Tai Lam	NB	4,700	5,735	2395	4200	0.42	0.73
Tunnel	SB	4,700	5,735	5955	2340	<u>1.04</u>	0.41

Note: (1) Index please refer to Figure 3.1

(2) Capacity based on future widening schemes under government projects

We commit We deliver

Revised Final Report (November 2025)

- 5.1.3 The assessment result in **Tables 5.1 to 5.4** reveals that all Junctions and V/C will operate with ample capacities in both reference and design scenarios with planned PWP's works in year 2034, except Link L4, L5 above 0.85 but still lower than 1.0, which means there are still have spare capacity.
- 5.1.4 It is revealed that these junction/links will already be overloaded even without our development trips. The additional traffic generated by our proposed development is minimal, resulting in only a marginal increase in the DFC or V/C ratio by just 0.01 or no change at all. As such, the proposed development would have an insignificant traffic impact on the road networks, and it could commence even if the planned PWP widening works were to be deferred.
- 5.1.5 It is noted that the traffic generated by the proposed development is very small and would induce insignificant impact on the surrounding road network. Therefore, the application is supported from the traffic points of view.

5.2 Sensitivity Test on Remaining Sites of Land Use Review for Kam Tin and Pat Heung (LUR)

- There are 9 remaining sites under LUR. They are still in the review stage and therefore have no target year of completion. It is believed that developments at these sites should only be completed after our design year.
- 5.2.2 This sensitivity test is carried out to see the effect if all the remaining sites are being considered.

Table 5.5 **Development Parameters of Remaining Sites under LUR**

Site No.	Use	Planned/ Target PR ⁽¹⁾	Expected Completion	No. of Units (about) ⁽¹⁾
2	Private Housing	2.1	N/A	452
3	Private Housing	2.1	N/A	1,106
4b	Public Housing	3.0	N/A	5,700
4c	Private Housing	2.1	N/A	626
5a	Public Housing	3.0	N/A	3,300
5b	Private Housing	0.8	N/A	289
7	Private Housing	1.5	N/A	3,018
8	Private Housing	1.5	N/A	882
9	Private Housing	0.8	N/A	1,676

Note: (1) TPB Paper No. 9590 refers.

Revised Final Report (November 2025)

We commit We deliver

Table 5.6 Estimated Traffic Generations of Remaining Sites under LUR

Table 3.0 Estimated Traine Generations of Remaining Sites under LOR							
	AM	Peak	PM Peak				
Development Site No.	Gen.	Att.	Gen.	Att.			
		Pcu	ı/hr				
2	41	24	17	22			
3	99	57	40	54			
4b	355	243	170	229			
4c	56	33	23	31			
5a	206	141	99	133			
5b	26	15	11	14			
7	268	156	108	145			
8	79	46	32	43			
9	149	87	60	81			

Note: Assume average 50m² for Public Housing and average 70m² for Private Housing

5.2.3 The traffic generation of the remaining sites under LUR are superimposed to the network and the results are shown below.

Table 5.7 Operational Performance for Reference Case in Year 2034 (With **Remaining Sites under LUR)**

Ref.	Junction	Method of Control		Reference (Without th Development, V	RC/DFC (1) e Scenario he Proposed With Remaining her LUR) PM Peak
A	Kam Tin Bypass / Kam Tin Road / Tung Wui Road	Round	labout	0.50	0.47
В	Kam Tin Bypass / Kong Tai Road	Signalized		31%	55%
C	Kam Tin Road / Kam Tai Road	Priority	w/o PWP	<u>1.68</u>	<u>1.01</u>
	Kaiii Tiii Koau / Kaiii Tai Koau		w PWP ⁽²⁾	0.26	0.30
D	Kam Tin Road / Fan Kam Road	D 11	w/o PWP	0.93	<u>0.93</u>
D	Kani Tili Koau / Fali Kani Koau	Roundabout	w PWP ⁽²⁾	0.76	0.69
Е	Kam Tin Road	Cionalizad	w/o PWP	17%	25%
E	Kalli I ili Koau	Signalized -	w PWP ⁽²⁾	25%	32%
F ⁽³⁾	Kam Tin Road / Tsing Long Highway slip road	Signalized		16%	18%
G ⁽³⁾	Kam Tin Road / Kam Tin Bypass	Round	labout	0.85	0.67

Notes: (1) $RC = Reserve\ Capacity\ for\ Signal\ Junction;$

DFC = Design Ratio of Flow to Capacity for Priority Junction/Roundabout

(2)Based on future PWP 6820's layouts shown in Figures 3.10 to 3.12

(3)Based on future CEDD's layouts shown in Figures 3.13 to 3.14

Rezoning from "Residential (Group C)2" and "Open Space" zones to "Residential (Group C)4" zone for a Proposed Residential Development at Lot Nos. 519 RP (part) and 520 RP in D.D. 110 and the Adjoining Government land, Shek Kong, Yuen Long, N.T.

Traffic Impact Assessment **Revised Final Report** (November 2025)

We commit We deliver

Table 5.8 V/C Ratio of Critical Road Link for Reference Case in Year 2034 (With Remaining Sites under LUR)

(With Kemaning Sites under LUK)								
Index	Direction	Cap.		Design Scenario (With the Proposed Development, With Remaining Sites under LUR)				
		(veh/hr)	(pcu/hr)	Flow (pc	u/hr) (V)	V	/C	
		$(C)^{(1)}$	$(C)^{(1)}$	AM Peak	PM Peak	AM Peak	PM Peak	
L1 ⁽²⁾	EB	4,200	5,125	3295	2795	0.64	0.55	
LI\-'	WB	2,800	3,415	3325	2745	<u>0.97</u>	0.80	
L2	EB	2,800	3,415	825	765	0.24	0.22	
L2	WB	2,800	3,415	840	860	0.25	0.25	
L3	EB	850	1,035	525	390	0.51	0.38	
L3	WB	850	1,035	415	445	0.40	0.43	
L4	EB	850	1,035	1250	1115	<u>1.21</u>	<u>1.08</u>	
(w/o PWP)	WB	850	1,035	1250	1175	<u>1.21</u>	<u>1.14</u>	
L4	EB	1,100	1,340	1250	1115	<u>0.93</u>	0.83	
(w PWP)	WB	1,100	1,340	1250	1175	<u>0.93</u>	<u>0.88</u>	
L5	EB	850	1,035	1300	1095	<u>1.25</u>	<u>1.06</u>	
(w/o PWP)	WB	850	1,035	1275	1295	<u>1.23</u>	<u>1.25</u>	
L5	EB	1,100	1,340	1300	1095	<u>0.97</u>	0.82	
(w PWP)	WB	1,100	1,340	1275	1295	<u>0.95</u>	<u>0.96</u>	
Tai Lam	NB	4,700	5,735	2950	4720	0.51	0.82	
Tunnel	SB	4,700	5,735	6840	2725	<u>1.19</u>	0.48	

Note: (1) Index please refer to Figure 3.1

Table 5.9 Operational Performance for Design Case in Year 2034 (With Remaining Sites under LUR)

Ref.	Junction			Design S (With the Propos	RC/DFC (1) Scenario sed Development, Sites under LUR) PM Peak
A	Kam Tin Bypass / Kam Tin Road / Tung Wui Road	Round	labout	0.51	0.47
В	Kam Tin Bypass / Kong Tai Road	Signa	Signalized		55%
С	Kam Tin Road / Kam Tai Road	Priority	w/o PWP	<u>2.32</u>	<u>1.02</u>
C	Kam Tai Koad / Kam Tai Koad	Thornty	$w PWP^{(2)}$	0.26	0.30
D	Kam Tin Road / Fan Kam Road	Roundabout	w/o PWP	<u>0.94</u>	<u>0.93</u>
D	Kam Tin Koau / Pan Kam Koau	Roundabout	$w PWP^{(2)}$	0.77	0.69
Е	Vom Tin Dood	Ciamalizad	w/o PWP	15%	24%
E	Kam Tin Road	Signalized	w PWP ⁽²⁾	23%	32%
F ⁽³⁾	Kam Tin Road / Tsing Long Highway slip road	Signalized		16%	18%
G ⁽³⁾	Kam Tin Road / Kam Tin Bypass	Round	labout	0.85	0.67

⁽²⁾ Capacity based on future widening schemes under government projects

Revised Final Report (November 2025)

We commit We deliver

Notes: (1) RC = Reserve Capacity for Signal Junction; DFC = Design Ratio of Flow to Capacity for Priority Junction/Roundabout (2)Based on future PWP 6820's layouts shown in Figures 3.10 to 3.12 (3)Based on future CEDD's layouts shown in Figures 3.13 to 3.14

Table 5.10 V/C Ratio of Critical Road Link for Design Case in Year 2034 (With Remaining Sites under LUR)

Indov		Ca	ap.	Design Scenario (With the Proposed Development,				
Index	Direction	(veh/hr)	With Remaining Sites under I (veh/hr) (pcu/hr) Flow (pcu/hr) (V)		With Remaining Flow (pcu/hr) (V)		(C) /C	
		$(C)^{(1)}$	$(\mathbf{C})^{(1)}$	AM Peak	1. / /		PM Peak	
L1 ⁽²⁾	EB	4,200	5,125	3300	2800	0.64	0.55	
LI	WB	2,800	3,415	3335	2750	0.98	0.80	
L2	EB	2,800	3,415	830	770	0.24	0.23	
L2	WB	2,800	3,415	850	865	0.25	0.25	
L3	EB	850	1,035	525	390	0.51	0.38	
LS	WB	850	1,035	415	445	0.40	0.43	
L4	EB	850	1,035	1265	1125	1.22	<u>1.08</u>	
(w/o PWP)	WB	850	1,035	1270	1180	1.22	<u>1.14</u>	
L4	EB	1,100	1,340	1265	1125	<u>0.94</u>	0.84	
(w PWP)	WB	1,100	1,340	1270	1180	<u>0.95</u>	<u>0.88</u>	
L5	EB	850	1,035	1310	1095	<u>1.26</u>	<u>1.06</u>	
(w/o PWP)	WB	850	1,035	1285	1295	<u>1.24</u>	<u>1.25</u>	
L5	EB	1,100	1,340	1310	1095	0.98	0.82	
(w PWP)	WB	1,100	1,340	1285	1295	<u>0.96</u>	<u>0.96</u>	
Tai Lam	NB	4,700	5,735	2955	4725	0.52	0.82	
Tunnel	SB	4,700	5,735	6850	2730	<u>1.19</u>	0.48	

Note: (1) Index please refer to Figure 3.1

- 5.2.4 The assessment result in **Tables 5.7 to 5.10** reveals that all Junctions and V/C will operate with ample capacities in both reference and design scenarios with planned PWP's works and with the Remaining Sites under LUR in year 2034, except Link L1, L4, L5, Tai Lam Tunnel above 0.85 but still lower than 1.0, which means there are still have spare capacity.
- 5.2.5 It is noted that the traffic generated by the proposed development is very small and would induce insignificant impact on the surrounding road network. Therefore, the application is supported from the traffic points of view.

⁽²⁾ Capacity based on future widening schemes under government projects

Revised Final Report (November 2025)

We commit We deliver

5.3 Mitigation Measure

- 5.3.1 As the programme of PWP works are still under review, the PWP works maybe delayed and the programme may be mis-match between the development and the public works project.
- 5.3.2 Except for Junction C (the DFC changes from 1.08 (reference case) to 1.09 (design case)), the rest of the road junction/road links only changes by 0 to 0.01 (DFC or V/C)
- 5.3.3 For Junction C, an improvement scheme is proposed as shown in **Figure 5.1**. The Applicant considers carrying out the improvement works as per the improvement scheme, in case of programme mis-match between the development and the public works project.

Table 5.11 Operational Performance of Critical Junctions for Design Case in Year 2034

			Year 2034 RC/DFC (1)					
Ref.	Junction	Junction Method Design Scenario (Without Proposed Control Improvement)		(With P	Scenario roposed ement)			
			AM Peak	PM Peak	AM Peak	PM Peak		
С	Kam Tin Road / Kam Tai Road	Priority	<u>1.09</u>	<u>0.98</u>	0.80	0.35		

Notes: (1) $RC = Reserve\ Capacity\ for\ Signal\ Junction;$

DFC = Design Ratio of Flow to Capacity for Priority Junction/Roundabout

- 5.3.4 The assessment results in **Table 5.11** indicate that Junction would be operating with ample capacities with the proposed improvement scheme.
- 5.3.5 It is noted that widening length of Kam Tin Road is very long and extensive, and may involve land resumption of private land. The scale of the works is beyond the capability of a private sector and it could not be carried out by a private sector. It is revealed that L4 and L5 will already be overloaded even without the development trips of the Proposed Development. The additional traffic generated by the Proposed Development is minimal (maximum 25 pcu/hr, one-way), resulting in only a marginal increase in the DFC or V/C ratio by 0 ~ 0.01. It is considered the impact caused by the Proposed Development is minimal and to be tolerable.

Revised Final Report (November 2025)

We commit We deliver

6. PUBLIC TRANSPORT DEMAND

6.1 Survey on Existing Public Transport Service

- 6.1.1 The proposed development is not close to MTR station and the public transport service is not comprehensive. A public transport survey was carried out at the existing bus/GMB stops on Kam Tin Road as shown in **Figure 3.15**.
- 6.1.2 The survey was carried out on 26 February 2025 during the morning / evening peak periods. The findings are presented in the **Tables 6.1** to **6.4** below.

Table 6.1 Public Transport Survey at Stop P1 – Eastbound (To Sheung Shui / Tsuen Wan)

	P1									
Eastbound (To Sheung Shui / Tsuen Wan)										
	Routes Observed Average Occupancy Spare Capacity (passenger)									
		54	2	38%	89					
	BUS	77K	3	43%	115	329				
AM		251B	2	23%	125					
Peak (0730-	GMB	608	17	69%	84					
0830)		608S	3	38%	30	202				
ĺ		18	11	50%	88	202				
	RMB	-	7 100% 0		0					
		54	3	38%	133					
	BUS	77K	4	49%	125	438				
PM		251B	3	25%	180					
Peak (1700-	CMD	608	13	94%	12					
1800)	GMB	608S	2	63%	12	22				
	DMD	18	7	100%	0	32				
	RMB	Tai Po – Yuen Long	8	94%	8					

Notes: (a) Full capacity of 120 passengers with max. 75% for double-decked Franchised Bus is assumed.

(b) Part of the observed GMBs are 19-seater. For conservative, full capacity of 16 passengers for minibus is assumed.

Revised Final Report (November 2025)

We commit We deliver

Table 6.2 Summary of Public Transport Survey – Eastbound (To Sheung Shui / Tsuen Wan)

P1							
	Eastbo	und (To Sheung Shui / Tsuen	Wan)				
Period PT Total Spare Capacity (passenger) Expected Spare Capacity 2034 (passenger) (a)							
AM Peak	Bus	329	270				
(0730-0830)	Minibus	202	166				
PM Peak	Bus	438	359				
(1700-1800)	Minibus	32	26				

Notes: (a) 2.18% growth rate adopted in Section 4.2

Table 6.3 Public Transport Survey at Stop B – Westbound (To Yuen Long / Kam Sheung Road)

	P2								
Westbound (To Yuen Long / Kam Sheung Road)									
	Routes Observed Average Occupancy Spare Capacity (passenger)								
		54	2	49%	62				
	DIIC	77K	5	53%	132	262			
AM	BUS	251B	2	27%	115	363			
Peak		251M	1	30%	54				
(0730-	GMB RMB	608	21	113%	-44				
0830)		608S	1	119%	-3	1			
		18	14	81%	43	-1			
		-	3	94%	3				
		54	2	19%	134				
	BUS	77K	3	25%	180	448			
PM		251B	2	19%	134				
Peak (1700-	CMD	608	11	100%	0				
1800)	GMB	608S	3	50%	24	22			
,	DMD	18	9	94%	9	33			
	RMB	Tai Po – Yuen Long	5	100%	0				

(a) Full capacity of 120 passengers with max. 75% for double-decked Franchised Bus is assumed.

(b) Part of the observed GMBs are 19-seater. For conservative, full capacity of 16 passengers for minibus is assumed.

Notes:

Revised Final Report (November 2025)

We commit We deliver

Table 6.4 Summary of Public Transport Survey – Westbound (To Yuen Long / Kam Sheung Road)

	P2							
	Westbound (To Yuen Long / Kam Sheung Road)							
Period PT Total Spare Capacity (passenger) Expected Spare Capacity 2034 (passenger) (a)								
AM Peak	Bus	363	298					
(0730-0830)	Minibus	-1	-1					
PM Peak	Bus	448	367					
(1700-1800)	Minibus	33	27					

Notes: (a) 2.18% growth rate adopted in Section 4.2

6.2 Assessment on Public Transport Demand

- 6.2.1 Reference is made to the "Travel Characteristics Survey 2011 Report" as published by Transport Department in February 2014 to derive the estimated public transport demand due to the proposed development.
- 6.2.2 The total trips generated from the proposed development are derived from development parameters and assumptions from the TCS Report 2011. The calculation of total trips during peak hours is summarized in **Table 6.5** below:

Table 6.5 Calculation of Total Passenger Trips from Proposed Development

Item	Proposed Development
Nos. of units	240
Average household size	2.7 ppl/unit*
Total population	= 240 x 2.7 = 648 ppl
Trip Rate per Person	1.83**
Daily trips generated from proposed development	= 648 ppl x 1.83 = 1,186 trips
Peak Hour Factor	12%**
Peak hour trips (Two-ways)	= 1,186 trips x 12% = 142 trips

Notes:

^{*} Latest average household size 2.7 in Hong Kong obtains from Census and Statistics Department

^{**}Data extracted from TCS Report 2011

We commit We deliver

用

Revised Final Report (November 2025)

6.2.3 The distribution of trips by transport mode derived from 2021 Population Census is given in below **Table 6.6**. As the nearest MTR station is outside walking distance, no ferry services, and assumes there is no residential coach service from the proposed development, the modal split is therefore re-distributed on a conservative approach,

and the model split after re-distribution is also shown in **Table 6.6**.

Table 6.6 Distribution of Transport Modal Split

	Year 2021 Census (Yuen Long)													
Yuen Lo Distric		Mass Transit Railway	Bus	On foot only	Private car/ Passenger van	Public light bus	Company bus/ van	Light Rail	Taxi	Residential coach service	Ferry/ Vessel	Others	Tot	al
Number of P	ersons	90,523	59,345	16,860	24,012	7,913	6,848	20,458	1,275	2,628	468	4,146	234, 6	
Modal Split		39%	25%	7%	10%	3%	3%	9%	1%	1%	0%	2%	100	%
Number of Po (excluded on only)		90,523	59,345	-	24,012	7,913	6,848	20,458	1,275	2,628	468	4,146	217,	
Modal Split (excluded on only)	foot	42%	27%	-1	11%	4%	3%	9%	1%	1%	0%	2%	100	%
Adjusted Modal Split for	PT	51%	27%	-	-	4%	-	-	-	-	-	-	82 %	1 0
the Developm ent Site	Non -PT	-	-	-	14%	-	-	-	1%	-	-	3%	18 %	0 %
Adjusted Modal Split for the	PT	-	71%	-	-	11%	-	-	-	-	-	-	82 %	1
Developm ent Site (MTR services by feeder bus/GMB)	Non -PT	-	-	-	14%	-	-	-	1%	-	-	3%	18 %	0 0 %

Notes: Example for PT:

Adjusted Modal Split of MTR = 42% + 9% = 51%

Example for Non-PT:

%Sum of Remaining Non related Model Split = 3% + 1% + 0% = 4%

%Sum of Remaining related Model Split = 11% + 1% + 2% = 14%

Adjusted Modal Split of PV = $11\% + 4\% \times 11\% / 14\% = 14\%$

Example for Further Adjust on PT:

Adjusted Modal Split of Bus = 51% x (27%/ (27% + 4%)) + 27% = 71%

6.2.4 Taking into consideration that the majority of residents will go out to work at AM peak and back at PM peak and the critical bus stops would be westbound stop at AM peak and eastbound stop at PM peak.

Traffic Impact Assessment

誠

Rezoning from "Residential (Group C)2" and "Open Space" zones to "Residential (Group C)4" zone for a Proposed Residential Development at Lot Nos. 519 RP (part) and 520 RP in D.D. 110 and the Adjoining Government land, Shek Kong, Yuen Long, N.T.

Revised Final Report (November 2025)

We commit We deliver

- 6.2.5 For conservative approach, assume all residents will go out at AM peak and come back at PM peak and all the 82% public transport passengers will use westbound stop at AM peak and eastbound stop at PM peak in the assessment.
- The distribution of proposed development trips are summarized in **Table 6.7**. 6.2.6

Table 6.7 Estimated Passenger Trips using Public Transports at Critical Stop

Period	Stop	Passenger trips
	Stop P2	
AM Peak	Westbound	$= 142 \times 82\% = 117 \text{ ppl}$
	(To Kam Sheung Road MTR)	
	Stop P1	
PM Peak	Eastbound	$= 142 \times 82\% = 117 \text{ ppl}$
	(From Kam Sheung Road MTR)	

Estimated Passenger Trips using Bus and Mini-buses Table 6.8

	PT Passenger trips								
	Stop P2 Westbound (To Yuen Long / Kam Sheung Road)								
Period		В	us	Min	ibus				
	Total Trips	Demand	Spare Capacity ^(b)	Demand	Spare Capacity ^(b)				
AM Peak	117	142 x 71% = 101	< 298, OK	142 x 11% = 16	> -1, Not OK				
		Eastbound	Stop P1 (To Sheung Shui	/ Tsuen Wan)					
Period		В	us	Min	ibus				
	Total Trips	Demand	Spare Capacity ^(a)	Demand	Spare Capacity ^(a)				
PM Peak	117	142 x 71% = 101	< 359, OK	142 x 11% = 16	< 26, OK				

Note:

- Refer to Table 6.2 (a)
- (b) Refer to Table 6.4
- Based on the assessment results shows in **Table 6.8**, part of the forecast spare capacity are not able to meet the expected public transport demand due to the proposed development in design year 2034. Therefore, it is proposed to increase the no. of PT trips as estimated in **Table 6.9** below.

Revised Final Report (November 2025)

We commit We deliver

Table 6.9 Additional Bus and Mini-buses Trips

	PT Passenger trips		
	Westbound (To Yvon Long / Kom Shoung Bood)		
D • 1	(To Yuen Long / Kam Sheung Road)		
Period	Minibus		
	Spaces No. of Additional GMB Required (a) Trips Required		
	Required (a)	Trips Required	
AM Peak	16 - (-1) = 17	17 / 19 = 1	

Note:

- Refer to Table 6.8
- (b) 19 seaters GMB are proposed to use
- From **Table 6.9**, the demand could be solved by providing additional maximum 1 GMB trip.

6.3 **Bus Stop Bay Assessment**

- At present, there is one bay at the eastbound and westbound bus stop respectively. Kam Tin Road will be widened by Highway Department and the bus stops will be upgraded to standard one bay bus layby.
- 6.3.2 The queuing situation can be assessed based on a single channel queuing system, thus Poisson distribution and multi-server queuing (M/M/N) theory is used.
- The assessment is work out the probability that n bus are in the bus bay. 6.3.3

The formula in deriving the probability is given by:

$$P(n) = \frac{1}{\sum_{n=0}^{N-1} \frac{e^n}{n!} + \frac{e^N}{N! \left(1 - \frac{e}{N}\right)}}$$
 for $n = 0$

$$P(n) = \frac{e^n}{n!} P(0)$$
 for $0 < n$

$$P(n) = \frac{e^n}{n!} P(0)$$
 for $0 < n \le N$

$$P(n) = \frac{e^n}{N^{n-N}N!}P(0)$$
 for $n > N$

P(n)where: = Probability of *n* buses in the system

= Peak 15-minutes arrival rate

Revised Final Report (November 2025)

We commit We deliver

 μ = Servicing rate

n = Number of bus in the system

N = Number of bus bay

 $e = \lambda/\mu$

Peak 15-minutes arrival Rate (λ)

6.3.4 Based on the survey result shown in **Tables 6.1** and **6.3**, the no of bus/GMB arrive/departure to the bus stop is shown in **Table 6.10** below.

Table 6.10 Trip Rates for Bus Stop

ī	Period			
Bus Stop			AM Peak	PM Peak
Stop P1 Eastbound (To Sheung Shui / Tsuen Wan)	Bus	No of trips (veh/hr)	7	10
	Minibus	No of trips (veh/hr)	38	30
	Total	No of trips (veh/hr)	45	40
Stop P2	Bus	No of trips (veh/hr)	10	7
Westbound (To Yuen Long / Kam	Minibus	No of trips (veh/hr)	39	28
Sheung Road)	Total	No of trips (veh/hr)	49	35

6.3.5 Based on the data shown in **Table 6.10** above, the maximum peak 15-minutes arrival rate is 13 veh/15 min/bay (= 49 x 15 minutes/60 minutes).

Revised Final Report (November 2025)

We commit We deliver

6.3.6 As mentioned in **Section 6.3**, 1 no. of GMB trip/hr is proposed to be added. Therefore, the Peak 15-minutes arrival Rate (λ) is 13 veh/15min/bay (= (49+ 1) x 15 minutes/60 minutes).

Servicing Rate (μ)

- 6.3.7 Based on site observation and internal survey, a bus/GMB will pick-up/drop-off for an average 20 sec = 0.33 min.
- 6.3.8 For conservative, assume a GMB would occupy a whole bus bay during pick-up/drop-off.
- 6.3.9 The average servicing rate ($^{\mu}$) is 60 / 0.33 = 180 veh/hr = 45 veh/15min

The probability that n vehicles are in the bus bay is given by:

$$P(n) = \frac{1}{\sum_{n=0}^{N-1} \frac{e^n}{n!} + \frac{e^N}{N! \left(1 - \frac{e}{N}\right)}}$$
 for $n = 0$

$$P(n) = \frac{e^n}{n!} P(0)$$
 for $0 < n \le N$

$$P(n) = \frac{e^n}{N^{n-N}N!} P(0)$$
 for $n > N$

where:
$$P(n)$$
 = Probability of n vehicles in the system
$$\lambda = \text{Peak 15-minutes arrival rate} = \underline{13}$$

$$\mu = \text{Servicing rate} = \underline{45 \text{ veh/15min}}$$

$$N = \text{Number of bus bay} = 1$$

$$e = \lambda/\mu = \underline{0.289}$$

$$n = \text{Number of bus in the system}$$

Revised Final Report (November 2025)

We commit We deliver

6.3.10 Probability of requiring more than 1 bus bay

Table 6.11 Probability of requiring more than 1 bus bay

n	λ	μ	e	N	P(n)
0	13	49	0.265	1	0.734693878
1	13	49	0.265	1	0.194918784
				Total	0.929612661

- 6.3.11 As can be seen, it is anticipated that the probability for more than one bus coming to the bus stop and waiting outside the bus bay is 0.070387339 (= 1 **0.929612661**), i.e. approximately 3 out of 49 expected vehicles in the peak hour.
- 6.3.12 Based on the assessment results and the above points of view, it is concluded that one bus bay for one bus stop is considered acceptable and no further lengthening is required.

6.4 Railway Assessment

6.4.1 Railway Assessment is carried out to assess the impact by the proposed development. The existing railway information was obtained from "Reply Serial No. TLB162 of Replies to initial written questions raised by Legislative Council Members in examining the Estimates of Expenditure 2024-2025". The assessment of Tuen Ma Line is summarized in **Table 6.10** below:

 Table 6.11
 Railway Assessment

	Tuen Ma Line			
	2023	2034	2034	
Item	Existing	Reference (without Proposed development)	Design (with Proposed development)	
Carrying Capacity (6 ppsm)	58,800	58,800	58,800	
Passenger Throughput	35,700	45,258 ^(b)	$45,258+ (142^{(c)}*51\%^{(d)}) = 45,330$	
Loading (6 ppsm) [Passenger Throughput / Carrying Capacity]	61% (Tsuen Wan West to Mei Foo)	77.0%	77.1%	
Loading (4 ppsm) [Loading (6 ppsm) / 71.2%]	85%	108.1%	108.3%	

Notes:

Rezoning from "Residential (Group C)2" and "Open Space" zones to "Residential (Group C)4" zone for a Proposed Residential Development at Lot Nos. 519 RP (part) and 520 RP in D.D. 110 and the Adjoining Government land, Shek Kong, Yuen Long, N.T.

> Traffic Impact Assessment **Revised Final Report** (November 2025)

We commit We deliver

(a) Source of the data: "Reply Serial No. TLB162 of Replies to initial written questions raised by Legislative Council Members in examining the Estimates of Expenditure 2024-2025"

- (b) 2.18% growth rate adopted in Section 4.2
- (c) Expected passenger trips from Table 6.5
- (d) MTR modal Split from Table 6.6
- 6.4.2 From the result, it is revealed that the loading (6 ppsm) of Tuen Ma Line would be below 100% but loading (4 ppsm) would be over 100% even without the proposed development. However, the change of loading is very small (+0.1% to +0.2%) with the proposed development and thus the impact by the proposed development is insignificant.

6.5 **Conclusion**

Based on the surveyed results and the forecast spare capacity for the public transport in 2034, the forecast spare capacity is able to meet the expected public transport demand due to the proposed development by providing additional maximum 1 GMB trip/hr. The impact by the proposed development to Tuen Ma Line is very small and insignificant.

Rezoning from "Residential (Group C)2" and "Open Space" zones to "Residential (Group C)4" zone for a Proposed Residential Development at Lot Nos. 519 RP (part) and 520 RP in D.D. 110 and the Adjoining Government land, Shek Kong, Yuen Long, N.T.

> Traffic Impact Assessment **Revised Final Report** (November 2025)

> > We commit We deliver

7. PEDESTRIAN ASSESSMENT

7.1 **Existing Pedestrian Condition**

7.1.1 In order to acquire the existing pedestrian condition around the proposed development, a pedestrian headcount survey was conducted at concerned footpath sections during periods on a typical weekday on 26 February 2025 from 07:30 to 09:30 and 17:00 to 19:00 respectively. The layout of the critical sections of footpath is shown in **Figure 7.1**.

Footpath Assessment

The level-of-services (LOS) for the observed pedestrian flows of the identified critical 7.1.2 sections are shown in **Table 7.1**.

Table 7.1 Operational Performance of Critical Footpath in Existing Scenario

			Year 2025 Observed Scenario							
	Total			AM Peak		PM Peak				
Critical Section	Footpath Width (m)	Effective Width (m) ⁽¹⁾	Two-way Pedestrian Flow (ped/hr)	Two-way Pedestrian Flow Rate (ped/min/m)	LOS	Two-way Pedestrian Flow (ped/hr)	Two-way Pedestrian Flow Rate (ped/min/m)	$\mathbf{LOS}^{(3)}$		
F1	1.50	1.00	40	0.67	A	30	0.50	A		
F2	1.50	1.00	30	0.50	A	35	0.58	A		

- (1) Effective Width = Total Footpath Width Death Width (0.5m from railings or walls each for both sides and 1m from shop frontage).
- (2) Two-way Pedestrian Flow Rate (ped/min/m) = Peak Pedestrian Flow / 60 min / Effective Width.
- (3) LOS details extracted from the HCM are tabulated in TPDM Volume 6 Chapter 10 Clause 10.4.2.3.
- 7.1.3 The assessment results shown in **Table 7.1** indicate that critical sections are operating within LOS A.

Pedestrian Crossing

The V/C Ratio of the pedestrian at the pedestrian crossing of the identified critical section are shown in **Tables 7.2**.

Ċ Traffic Impact Assessment

以

用

Revised Final Report (November 2025)

誠

We commit We deliver

Table 7.2 V/C Ratio of Critical Crossing in Existing Scenario

						Year 202	5 Obs	erved Sco	enario				
Critical	Lateral Width of Ped.			AN	I Peak			PM Peak					
	ections Ped. Crossing [W] (m)	Two- way Ped. Flow (ped/hr)	Ped. Green + Flashing Green Time	Cycle time	Tima	Ped. Crossing Capacity [PC] (ped/hr)	V/C	Two- way Ped. Flow (ped/hr)	Ped. Green + Flashing Green Time	Cycle	Green Time Proportion [GTP)]	Ped. Crossing Capacity [PC] (ped/hr)	
C1	4.00	30	12	60	0.20	1520	0.02	15	12	60	0.20	1520	0.01

Note:

(1) $PC = K \times GTP \times W$

where PC Pedestrian crossing capacity in pedestrians per hour

GTP Green time proportion =

i.e. (Pedestrian green + flashing green time) / Cycle time

W Lateral width of pedestrian crossing

K A constant equivalent to saturation flow for pedestrians

(1900 ped/metre/hours)

7.1.5 The assessment results shown in **Tables 7.2** indicate that all critical sections are operating within acceptable criteria (V/C < 0.85), and therefore considered acceptable.

7.2 **Pedestrian Traffic Forecast**

<u>Reference Scenario (Without the Proposed Development)</u>

7.2.1 To assess the future impact due to the proposed development, based on the survey flow and the growth rate of +2.18% adopted in **Chapter 4**, future reference pedestrian flows (without the proposed development) at the critical sections are estimated.

Footpath Assessment

7.2.2 The LOS are assessed and summarized in **Table 7.3** below:

110 and the Adjoining Government land, Shek Kong, Yuen Long, N.T.

Traffic Impact Assessment

Revised Final Report (November 2025)

We commit We deliver

Table 7.3 Operational Performance of Critical Footpath in Reference Scenario (Without the Proposed Development)

			Year 2034 Reference Scenario (Without the Proposed Development)							
	Total Footpath	Effective		AM Peak			PM Peak			
Critical Section	Width (m)	Width (m) ⁽¹⁾			LOS ⁽³⁾	Two-way Pedestrian Flow (ped/hr)	Two-way Pedestrian Flow Rate (ped/min/m) (2)	LOS ⁽³⁾		
F1 (without Widening)	1.5	1.0	50	0.83	A	35	0.58	A		
F1 (with Widening)	$2.0^{(4)}$	1.5	50	0.56	A	35	0.39	A		
F2 (without Widening)	1.5	1.0	35	0.58	A	40	0.67	A		
F2 (with Widening)	$2.0^{(4)}$	1.5	35	0.39	A	40	0.44	A		

Notes:

- (1) Effective Width = Total Footpath Width Death Width (0.5m from railings or walls each for both sides and 1m from shop frontage).
- (2) Two-way Pedestrian Flow Rate (ped/min/m) = Peak Pedestrian Flow / 60 min / Effective Width.
- (3) LOS details extracted from the HCM are tabulated in TPDM Volume 6 Chapter 10 Clause 10.4.2.3.
- (4) Widening of Kam Tin Road will be carried out by HyD and 2m footpaths will be provided along both sides of the road.
- 7.2.3 The assessment results shown in **Table 7.3** indicate that critical sections are operating within LOS A.

Pedestrian Crossing

7.2.4 The V/C Ratio of the pedestrian at the pedestrian crossing of the identified critical section are shown in **Tables 7.4**.

Table 7.4 V/C Ratio of Critical Crossing in Reference Scenario (Without the Proposed Development)

	Lotoval	Year 2034 Reference Scenario (Without the Proposed Development)												
Critical	Lateral Width of Ped.		AM Peak						PM Peak					
		way	Ped. Green + Flashing Green Time	Cycle	Time	Ped. Crossing Capacity [PC] (ped/hr)	V/C	Two- way Ped. Flow (ped/hr)	Ped. Green + Flashing Green Time	Cycle	Green Time Proportion [GTP)]	Ped. Crossing Capacity [PC] (ped/hr)	V/C	
C1 (without Widening)	4	35	12	60	0.20	1520	0.02	20	12	60	0.20	1520	0.01	
C1 (with Widening)	4	35	11 ⁽²⁾	60	0.18	1395	0.03	20	11 ⁽²⁾	60	0.18	1395	0.01	

Note:

Rezoning from "Residential (Group C)2" and "Open Space" zones to "Residential (Group C)4" zone for a Proposed Residential Development at Lot Nos. 519 RP (part) and 520 RP in D.D. 110 and the Adjoining Government land, Shek Kong, Yuen Long, N.T.

> Traffic Impact Assessment **Revised Final Report** (November 2025)

We commit We deliver

(1) $PC = K \times GTP \times W$

where PC Pedestrian crossing capacity in pedestrians per hour

GTP Green time proportion

> (Pedestrian green + flashing green time) / Cycle time i.e.

W Lateral width of pedestrian crossing =

K A constant equivalent to saturation flow for pedestrians

(1900 ped/metre/hours)

The assessment results shown in **Tables 7.4** indicate that all critical sections are operating within acceptable criteria (V/C < 0.85), and therefore considered acceptable.

Design Scenario (With the Proposed Development)

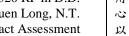
7.2.6 The total trips generated from the proposed development are estimated in **Tables 6.5** of **Chapter 6** above.

Footpath Assessment

7.2.7 The estimated trips are superimposed to the network. The assessment of the design scenario is summarized in **Tables 7.5**.

Table 7.5 Operational Performance of Critical Footpath in Design Scenario (With the Proposed Development)

			Year 2034 Design Scenario (With the Proposed Development)							
	Total Footpath	Effective		AM Peak			PM Peak			
Critical Section	Width (m)	Width (m) ⁽¹⁾	Two-way Pedestrian Flow (ped/hr)	Two-way Pedestrian Flow Rate (ped/min/m) (2)	LOS ⁽³⁾	Two-way Pedestrian Flow (ped/hr)	Two-way Pedestrian Flow Rate (ped/min/m) (2)	LOS ⁽³⁾		
F1 (without Widening)	1.5	1.0	190	3.17	A	175	2.92	A		
F1 (with Widening)	2.0(4)	1.5	190	2.11	A	175	1.94	A		
F2 (without Widening)	1.5	1.0	175	2.92	A	180	3.00	A		
F2 (with Widening)	$2.0^{(4)}$	1.5	175	1.94	A	180	2.00	A		


⁽²⁾ Future crossing layout carried out by HyD is used for assessment.

⁽¹⁾ Effective Width = Total Footpath Width - Death Width (0.5m from railings or walls each for both sides and 1m from shop frontage).

⁽²⁾ Two-way Pedestrian Flow Rate (ped/min/m) = Peak Pedestrian Flow / 60 min / Effective Width.

⁽³⁾ LOS details extracted from the HCM are tabulated in TPDM Volume 6 Chapter 10 Clause 10.4.2.3.

⁽⁴⁾ Widening of Kam Tin Road will be carried out by HyD and 2m footpaths will be provided along both sides of the road.

Traffic Impact Assessment **Revised Final Report** (November 2025)

We commit We deliver

7.2.8 The assessment results in **Table 7.5** shows that all critical footpaths would operate with LOS A and therefore considered acceptable.

Pedestrian Crossing

7.2.9 As a cautionary crossing was planned to be constructed near the proposed development under HyD's PWP works as shown in **Figure 7.2**. Part of the pedestrians will be diverted to use this crossing. The V/C Ratio and LOS of the pedestrian at the pedestrian crossing of the identified critical section are shown in **Tables 7.6** and **7.7**.

Table 7.6 V/C Ratio of Critical Crossing in Design Scenario (With the **Proposed Development)**

	Latanal		Year 2034 Design Scenario (With the Proposed Development)											
Critical	Lateral Width of Ped.			AM Peak					PM Peak					
Sections		Two- way Ped. Flow (ped/hr)	Ped. Green + Flashing Green Time	Cycle time	Green Time Proportion [GTP)]	Ped. Crossing Capacity [PC] (ped/hr)	V/C	Two- way Ped. Flow (ped/hr)	Ped. Green + Flashing Green Time	Cycle time	Green Time Proportion [GTP)]	Ped. Crossing Capacity [PC] (ped/hr)		
C1 (without Widening)	4	175	12	60	0.20	1520	0.12	160	11	60	0.18	1395	0.11	
C1 (with Widening)	4	105	11 ⁽²⁾	60	0.18	1395	0.08	90	11 ⁽²⁾	60	0.18	1395	0.06	

Note:

(1) $PC = K \times GTP \times W$

where PC Pedestrian crossing capacity in pedestrians per hour

GTP Green time proportion

(Pedestrian green + flashing green time) / Cycle time i.e.

W Lateral width of pedestrian crossing

K A constant equivalent to saturation flow for pedestrians

(1900 ped/metre/hours)

(2) Future crossing layout carried out by HyD is used for assessment.

Revised Final Report (November 2025)

We commit We deliver

Table 7.7 Operational Performance of Cautionary Crossing in Design Scenario

Critical Sections		Input Parameters	Year 2034 Design Scenario (With HyD's PWP works)		
			AM Peak	PM Peak	
	S_p	= average pedestrian walking speed (m/s)	1.2	1.2	
	ts	= pedestrian start-up time and end clearance time (s)	3	3	
	L	= crosswalk length (m)	4.8	4.8	
C2	Vp	= pedestrian flow rate (p/h)	70	70	
C2		= pedestrian flow rate (p/s)	0.02	0.02	
	v	= vehicular flow rate (veh/h)	1035	965	
	v	= vehicular flow rate (veh/s)	0.29	0.27	
	WE	= effective crosswalk (m)	3	3	
		Step			
1	tc	= single pedestrian critical gap	7	7	
2	Nc	= total number of pedestrian in the crossing platoon (p)	1.3	1.3	
3	Np	= spatial distribution of pedestrian (p)	1	1	
4	tG	= group critical gap (s)	7	7	
5	dp	= average pedestrian delay (s)	15.8	13.8	
6	LOS	= Level of Services	<u>C</u>	<u>C</u>	

Note: Methodology from HCM Chapter 18

- 7.2.10 The assessment results shown in **Tables 7.6** and **7.7** indicate that all critical sections are operating within acceptable criteria (V/C < 0.85, LOS <= C), and therefore considered acceptable.
- 7.2.11 As the programme of PWP works are still under review, the PWP works maybe delayed. In case delay occurs, to facilitate residents crossing, the Applicant will provide a pair of dropped kerbs at the same location of planned cautionary crossing at Kam Tin Road as shown in **Figure 7.3**. Details arrangement would be discussed with government departments at detailed design stage.

7.3 Conclusion

7.3.1 Based on the assessment results, the critical footpath and crossing facilities are able to meet the future pedestrian demand due to the proposed development. It is revealed that footpaths and the pedestrian crossing at Kam Tin Road will be upgraded by HyD and thus the future walking condition will be improved.

Revised Final Report (November 2025)

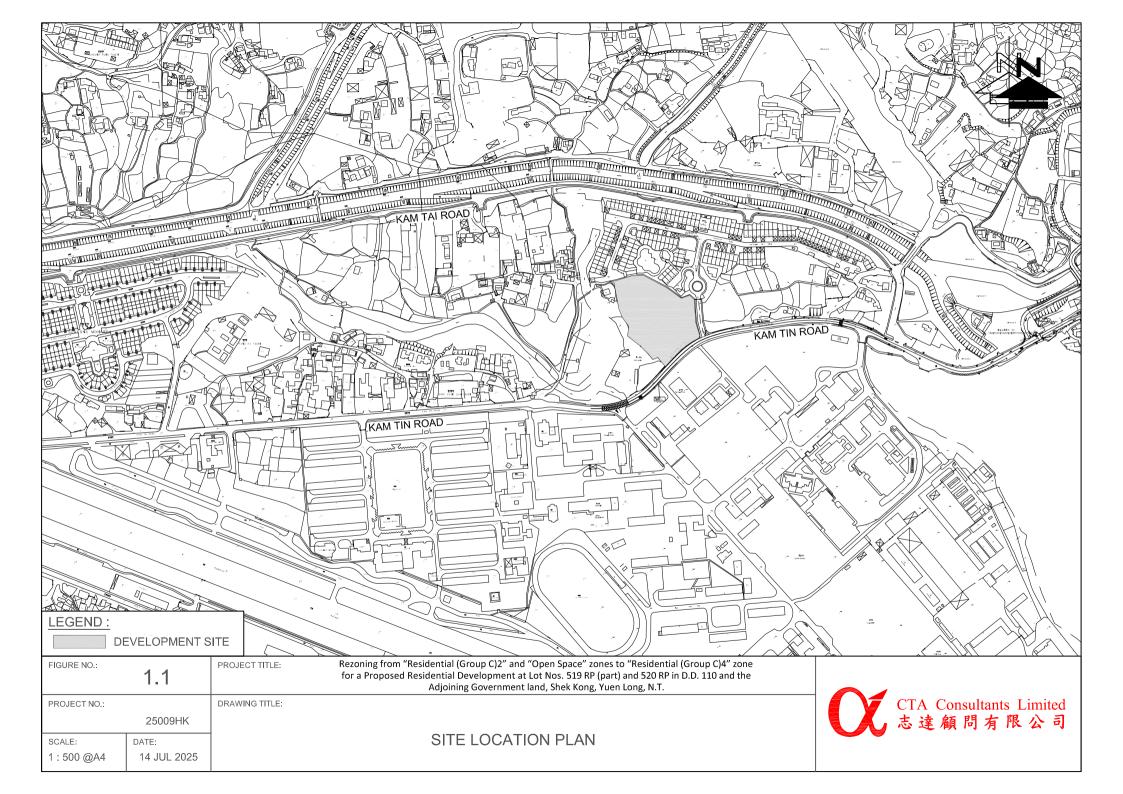
We commit We deliver

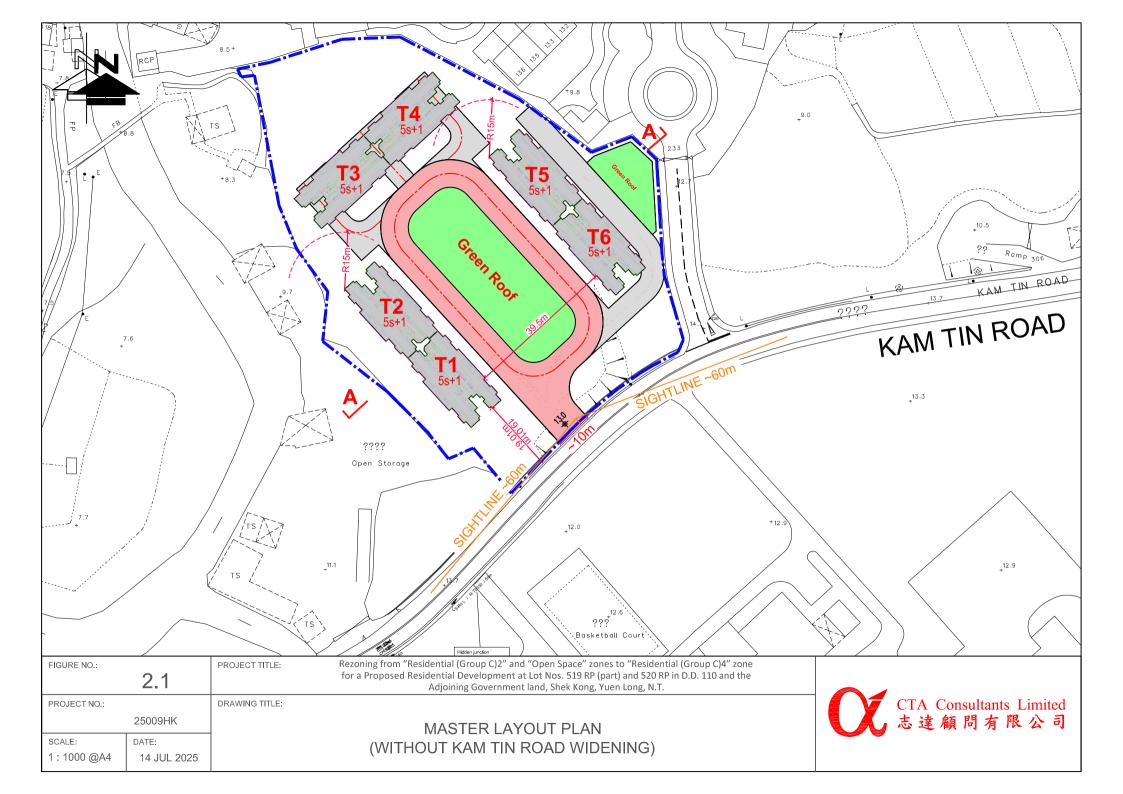
8. SUMMARY AND CONCLUSION

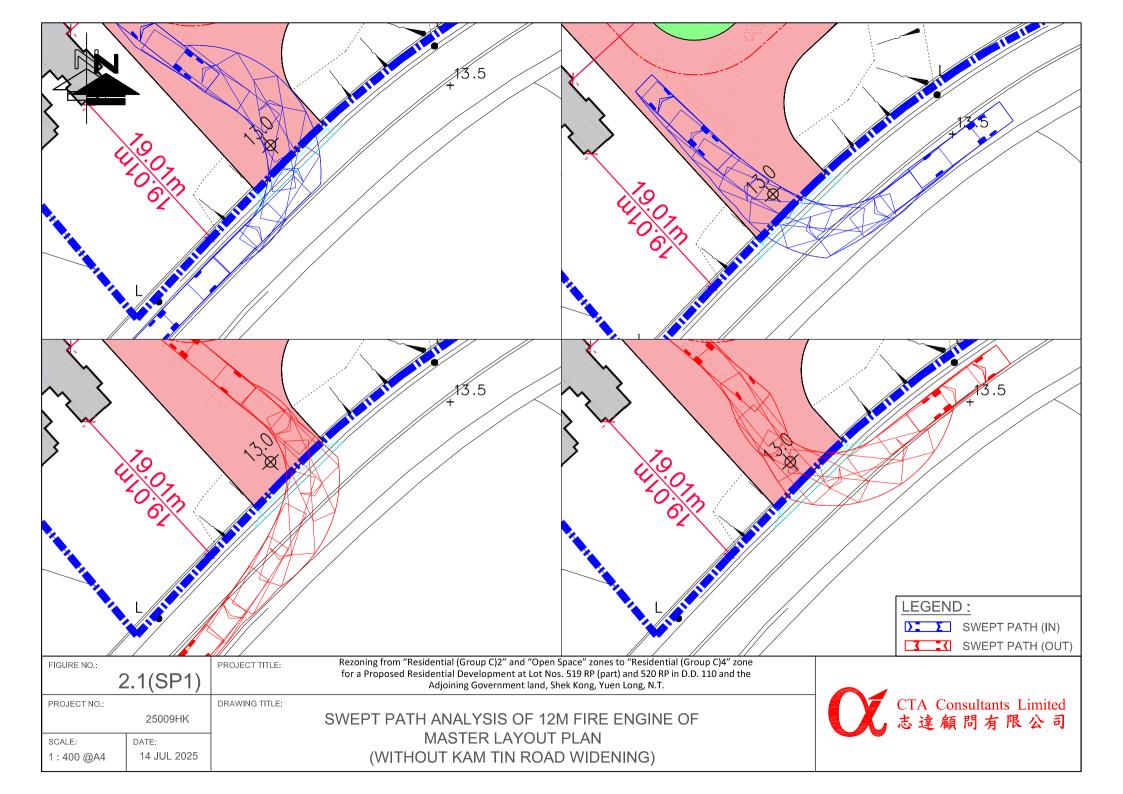
8.1 Summary

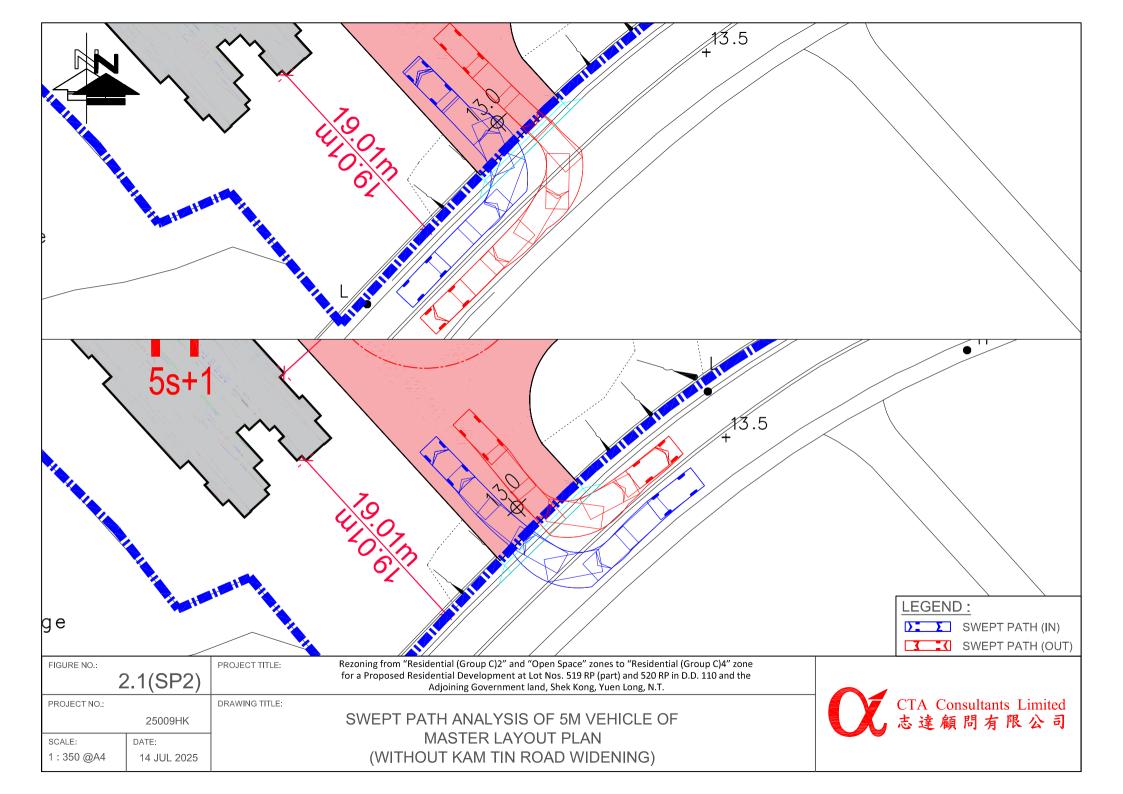
- 8.1.1 The Applicant intends to rezone the Development Site from "Residential (Group C)2" and "Open Space" to "Residential (Group C)4" to enable the proposed residential development.
- 8.1.2 CTA Consultants Limited (CTA), are therefore commissioned as the traffic consultant to prepare the Traffic Impact Assessment (TIA) and provide technical justifications in supporting the application from traffic engineering point of view.
- 8.1.3 To appraise the existing traffic condition, a vehicular survey in the form of manual-classified count was conducted at the surrounding road network of the proposed development. Current operational performance of the critical junctions has been assessed with the observed traffic flow. The results reveal that all critical junctions are at present operating within its capacities, except Link L4, L5 above 0.85 but still lower than 1.0, which means there are still have spare capacity.
- 8.1.4 Assessment of operational performance of the critical junctions indicates that all critical junctions will still operate within their capacities in both reference and design scenarios with planned PWP's works in year 2034, except Link L1, L4, L5, Tai Lam Tunnel above 0.85 but still lower than 1.0, which means there are still have spare capacity.
- 8.1.5 It is revealed that these junction/links will already be overloaded even without our development trips. The additional traffic generated by our proposed development is minimal, resulting in only a marginal increase in the DFC or V/C ratio by just 0.01 or no change at all. As such, the proposed development would have an insignificant traffic impact on the road networks, and it could commence even if the planned PWP widening works were to be deferred.

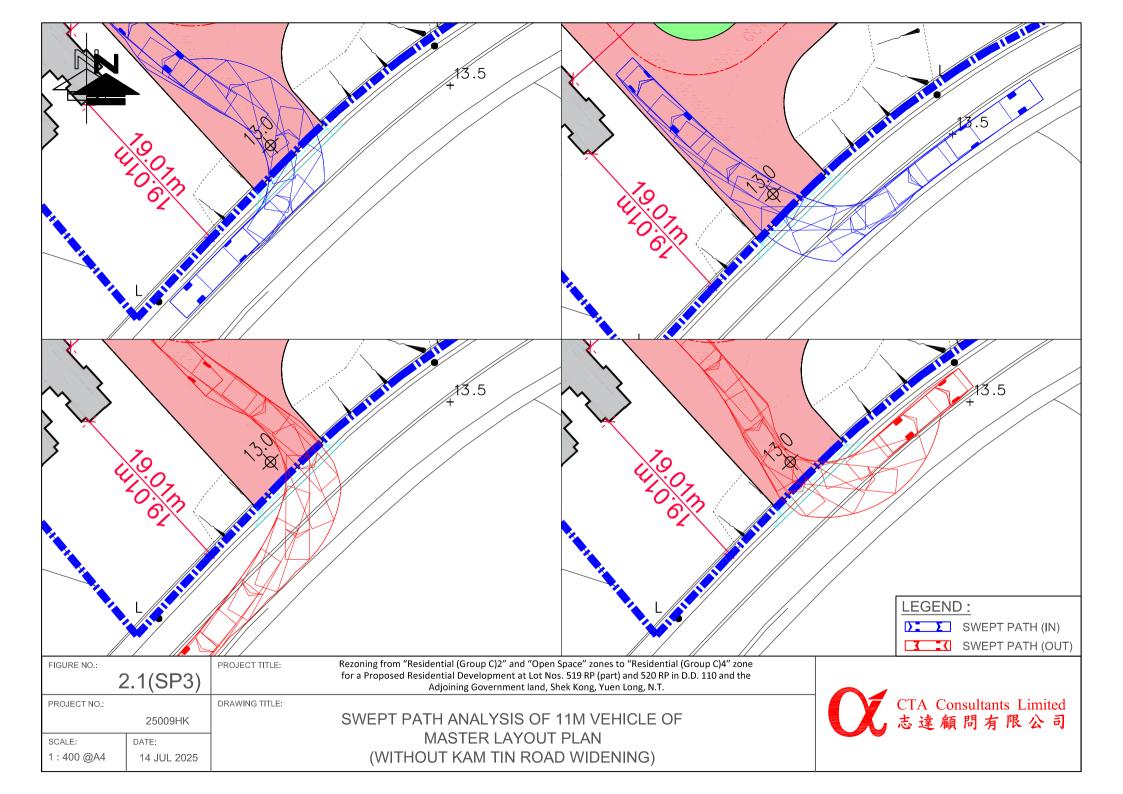
We commit We deliver

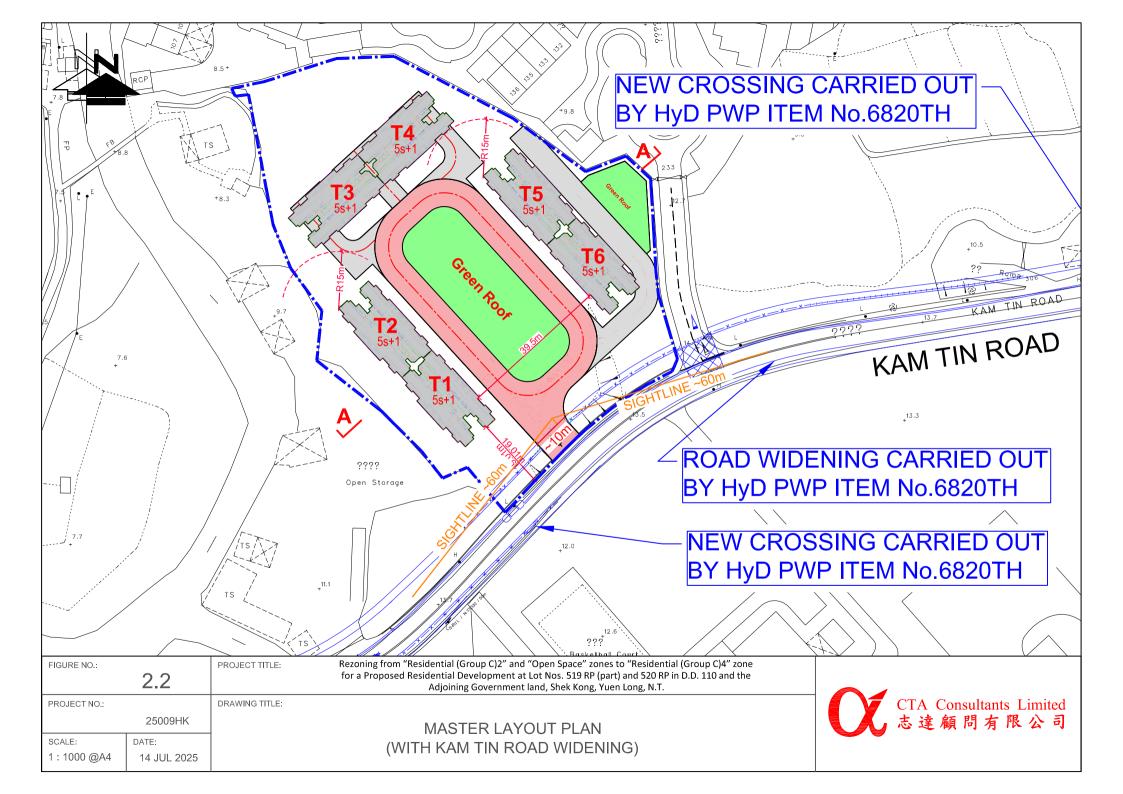

Revised Final Report (November 2025)

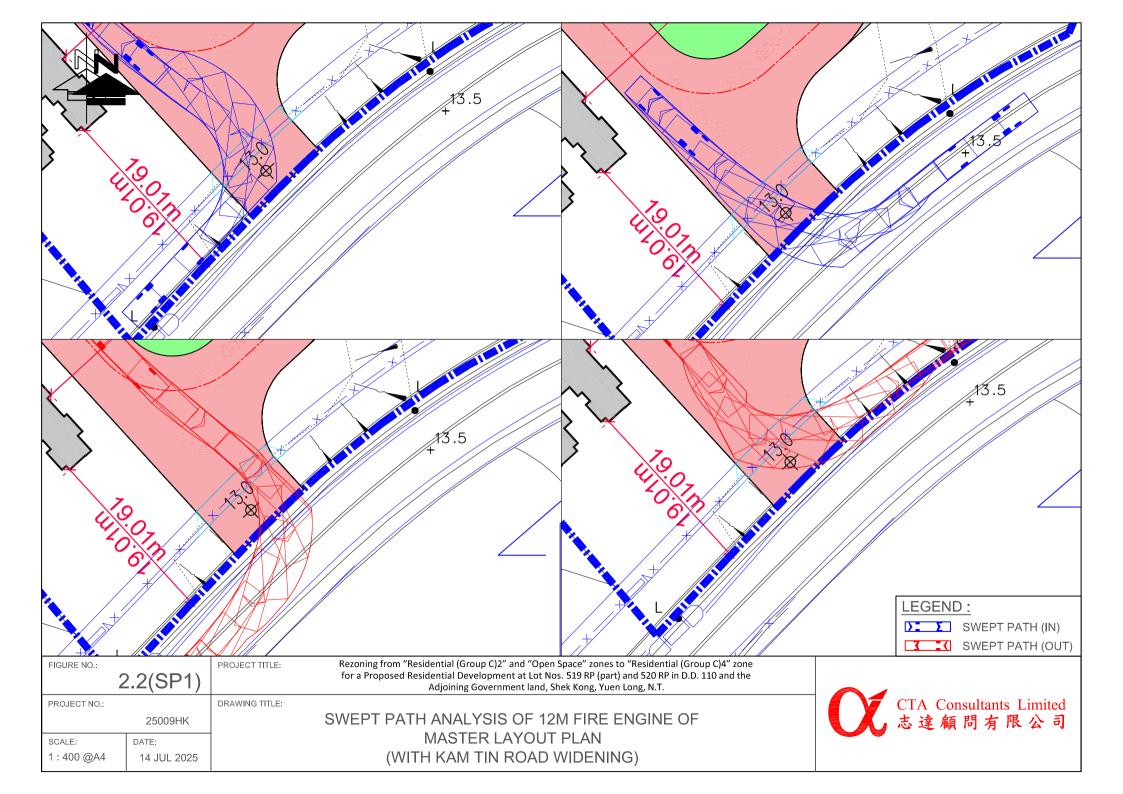


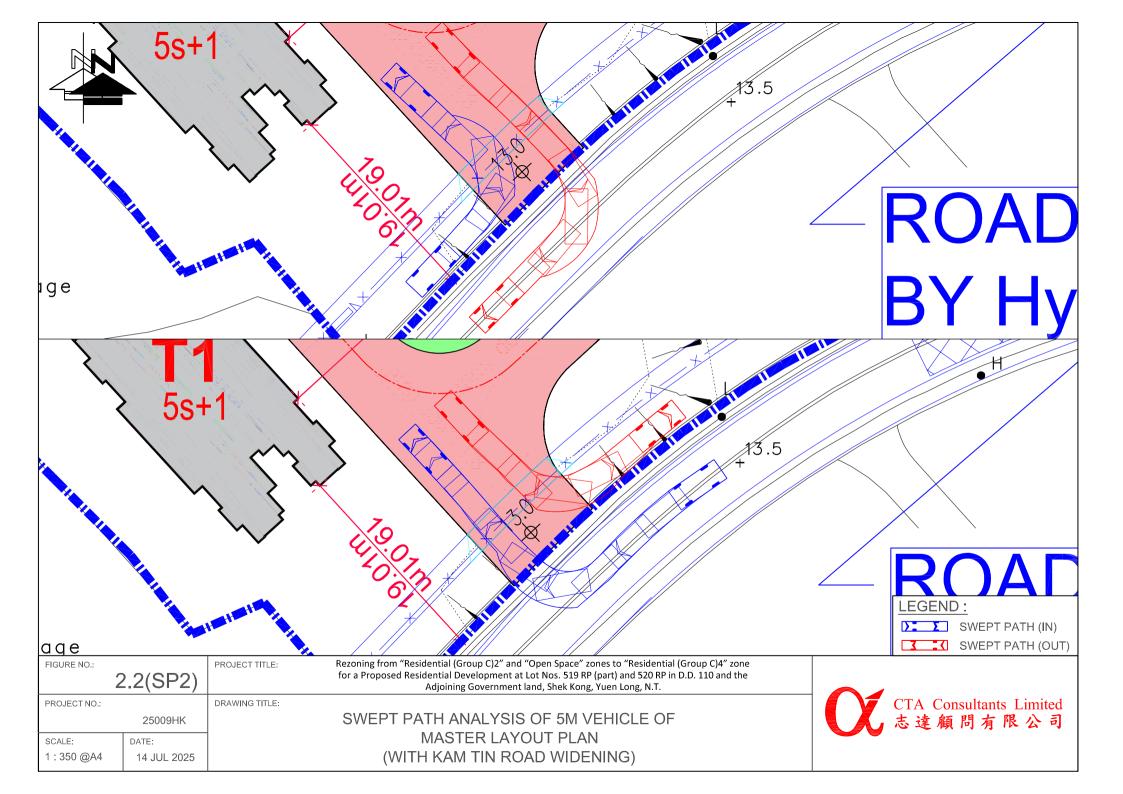

- 8.1.6 Assessment of public transport indicates that the existing public transport could cater the future public transport demand by providing additional maximum 1 GMB trip/hr. The impact by the proposed development to the loading of railway is very small and insignificant.
- 8.1.7 Assessment of pedestrian indicates that all footpath and pedestrian crossing could cater the future pedestrian demand in both reference and design scenarios in year 2034.
- 8.1.8 The traffic generated by the proposed development is very small and would induce insignificant impact on the surrounding road network. Therefore, the application is supported from the traffic points of view.

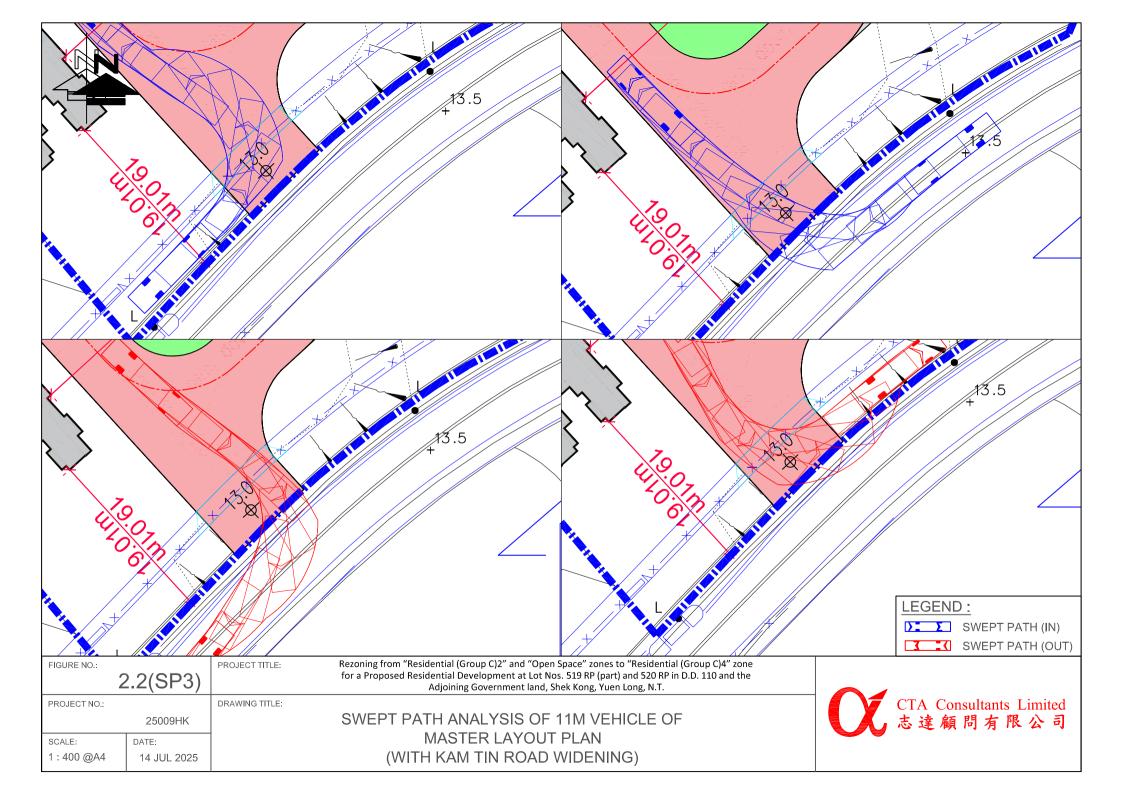

8.2 Conclusion

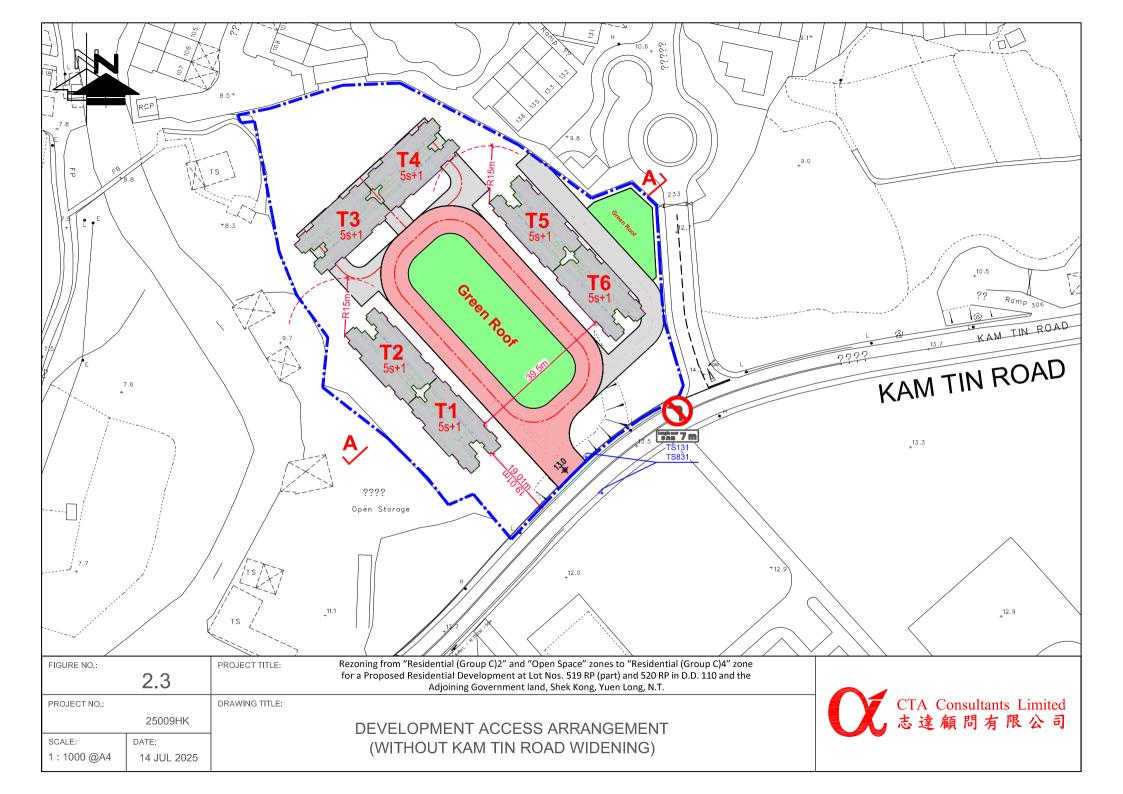

- 8.2.1 In conclusion, this Traffic Impact Assessment (TIA) study demonstrated that the related traffic trips related to the proposed development can be absorbed by the nearby road network and no significant traffic impact will be induced.
- 8.2.2 Therefore, the proposed residential development is reckoned feasible from traffic engineering point of view.

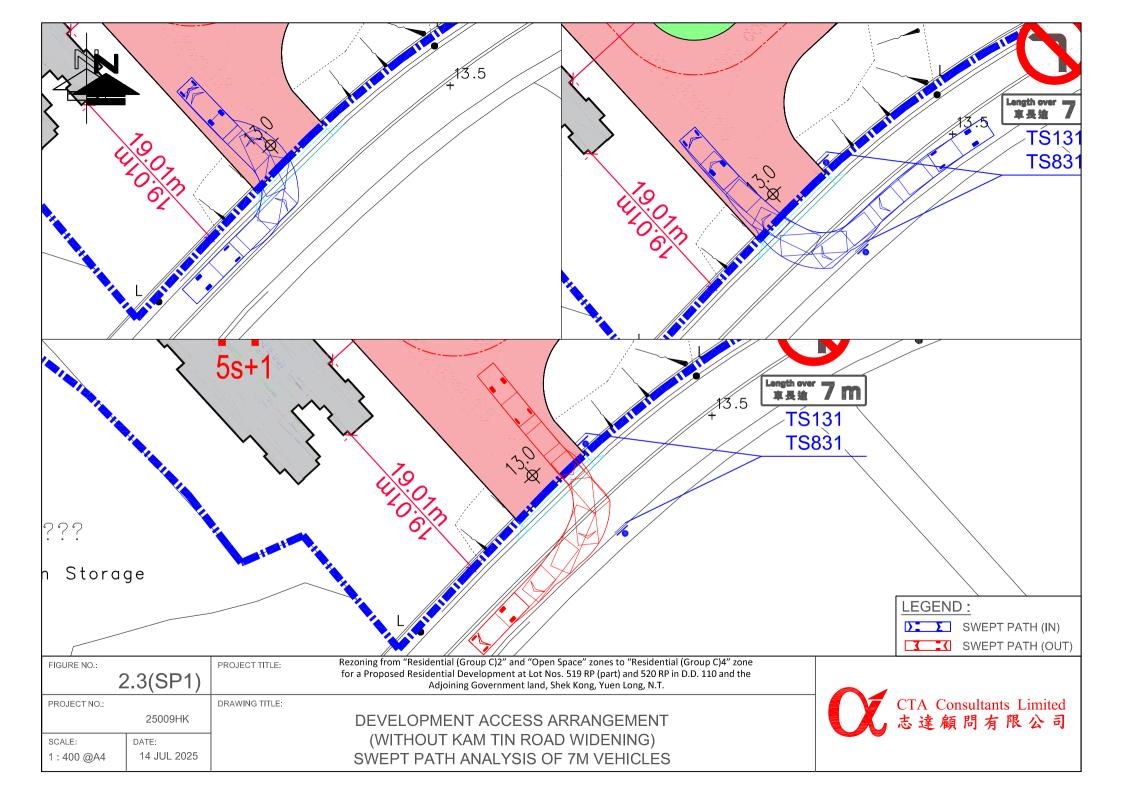


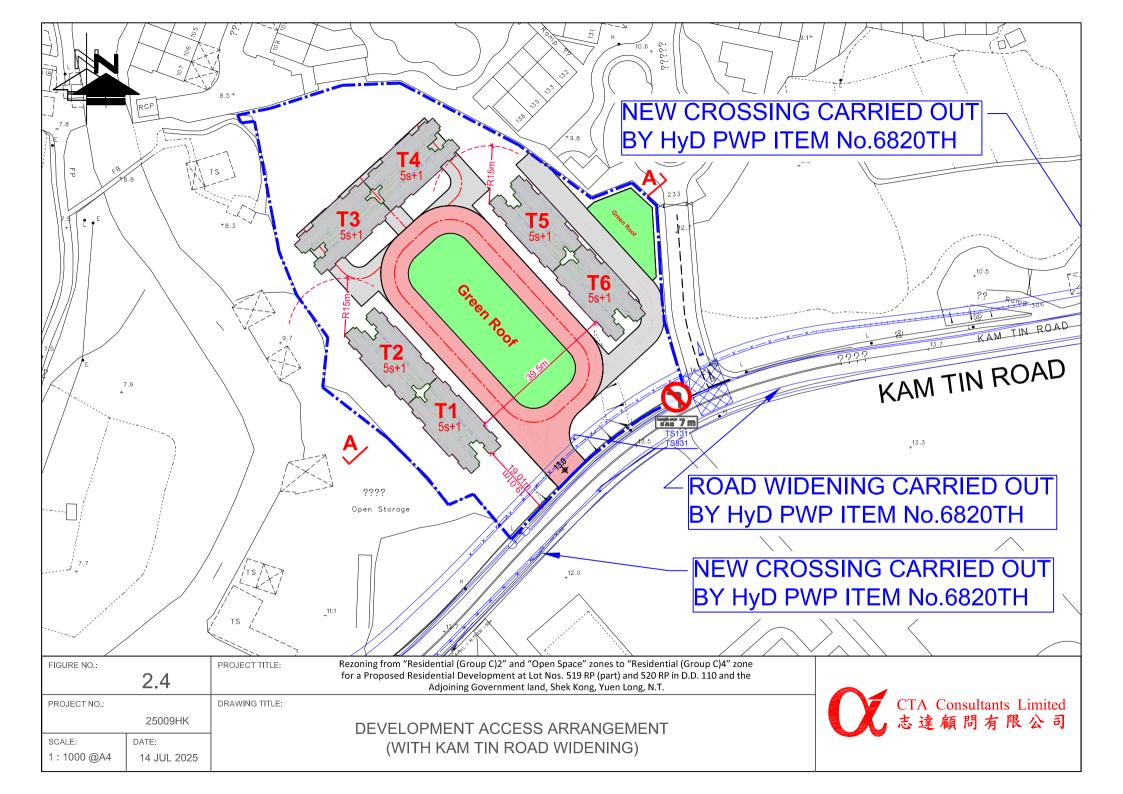


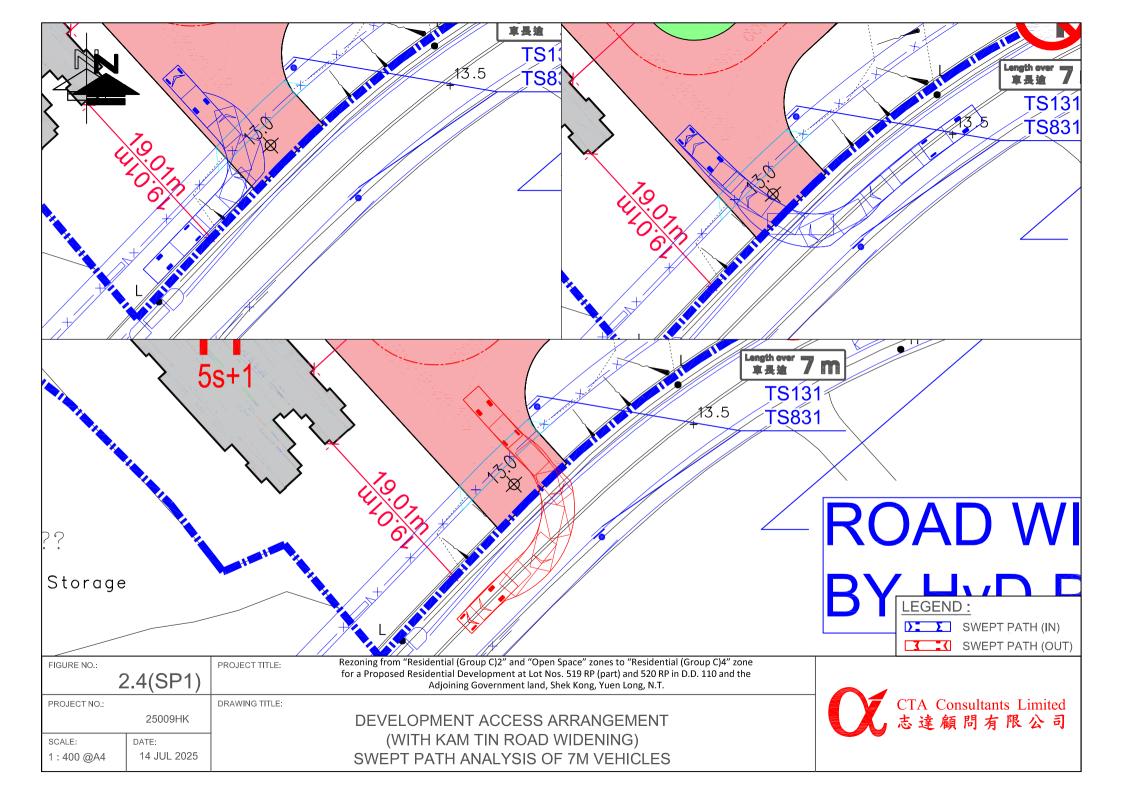


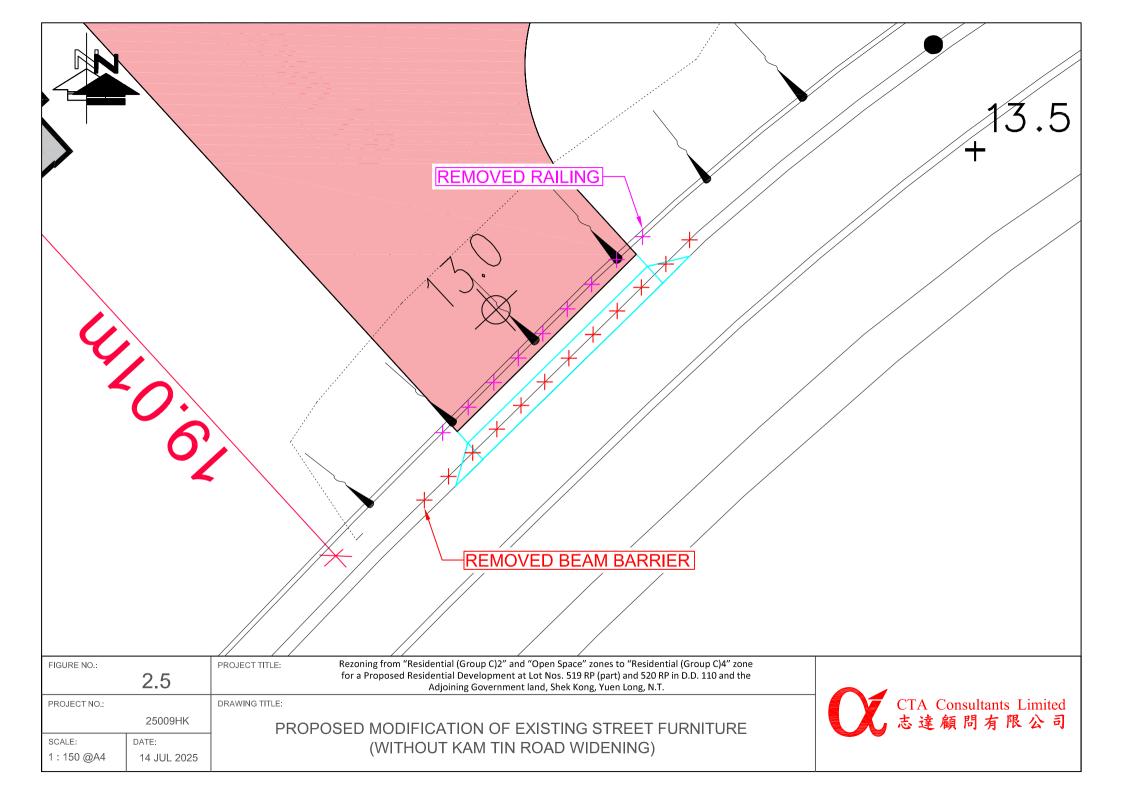


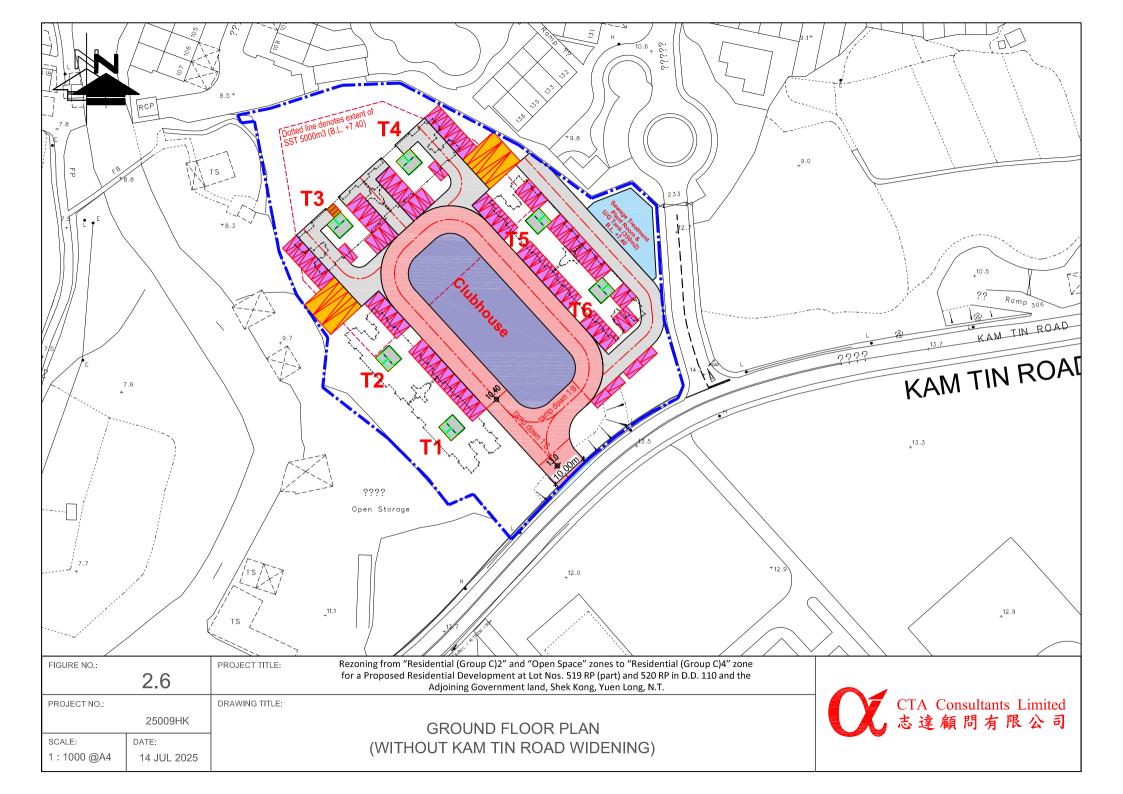


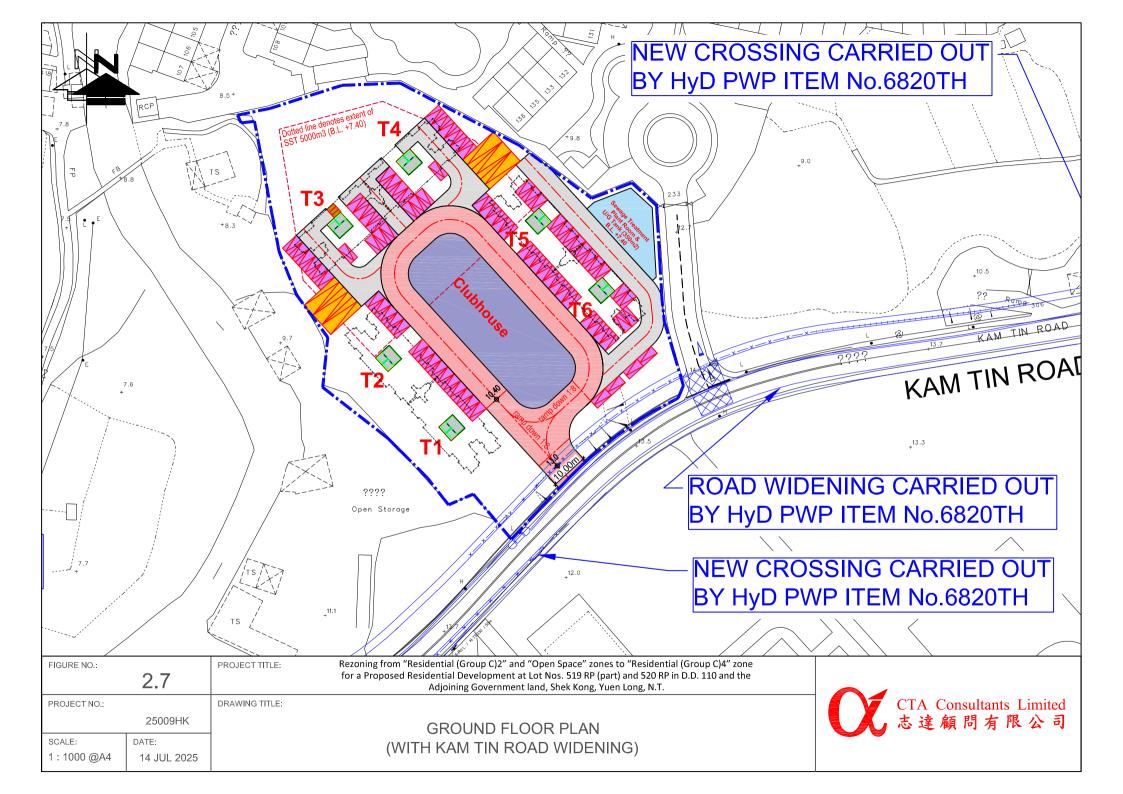












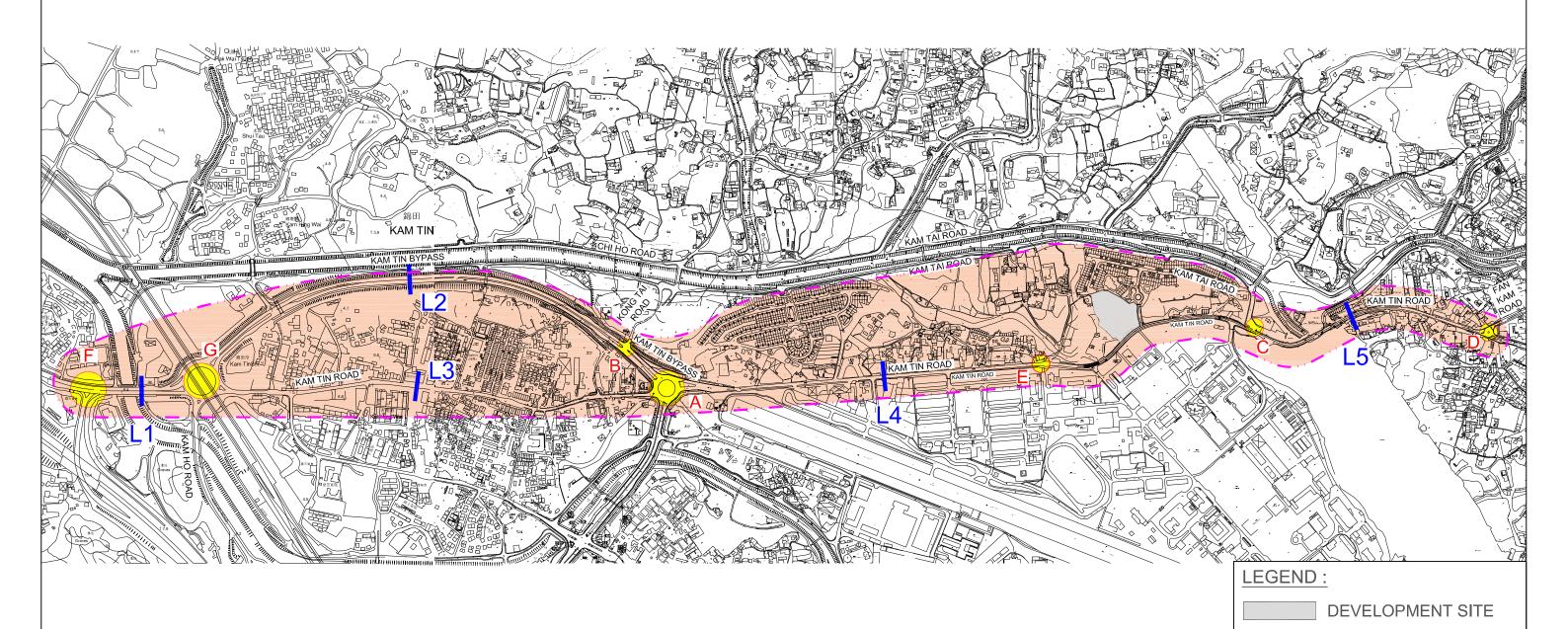


FIGURE NO.:	3.1	PROJECT TITLE:	Rezoning from "Residential (Group C)2" and "Open Space" zones to "Residential (Group C)4" zone for a Proposed Residential Development at Lot Nos. 519 RP (part) and 520 RP in D.D. 110 and the Adjoining Government land, Shek Kong, Yuen Long, N.T.
PROJECT NO.:		DRAWING TITLE:	

25009HK

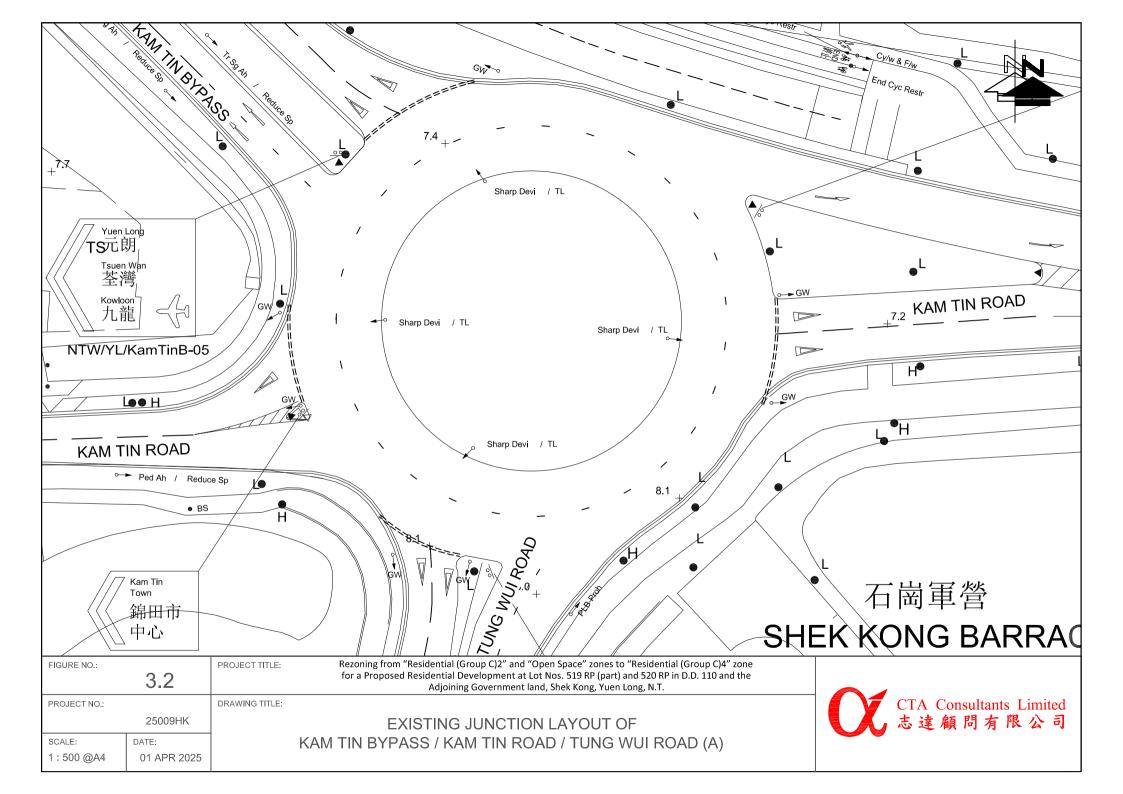
14 JUL 2025

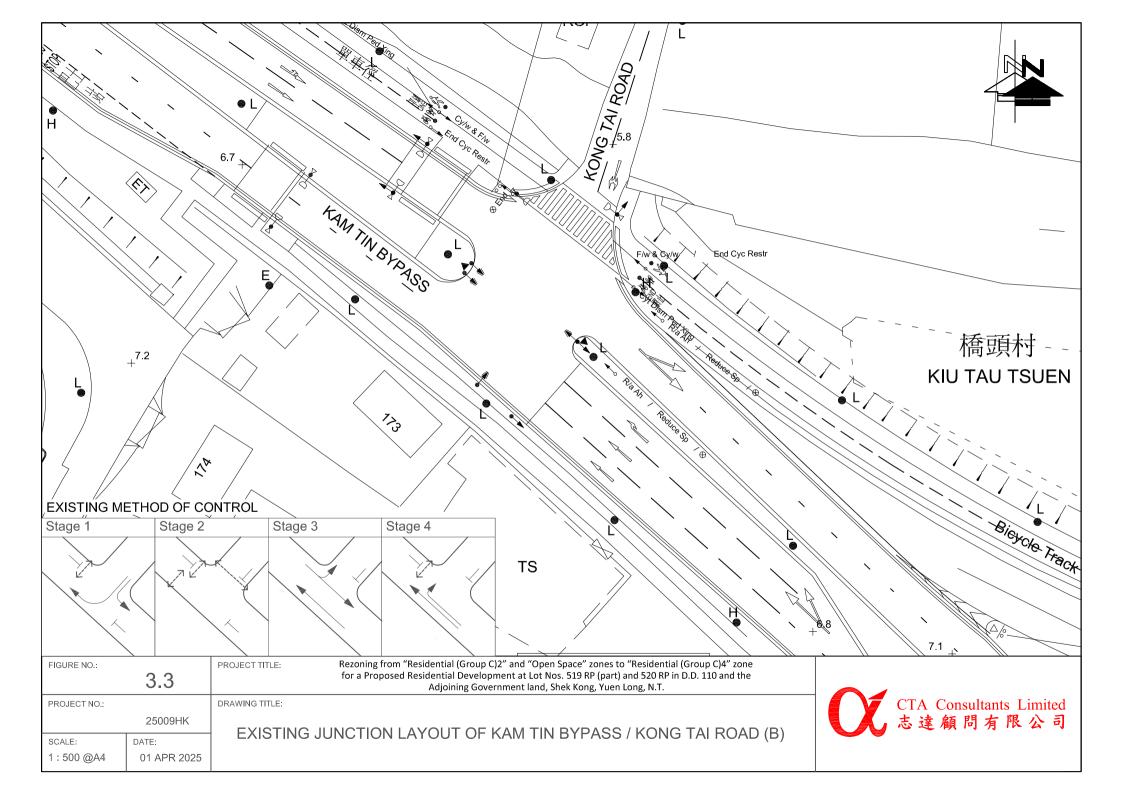
DATE:

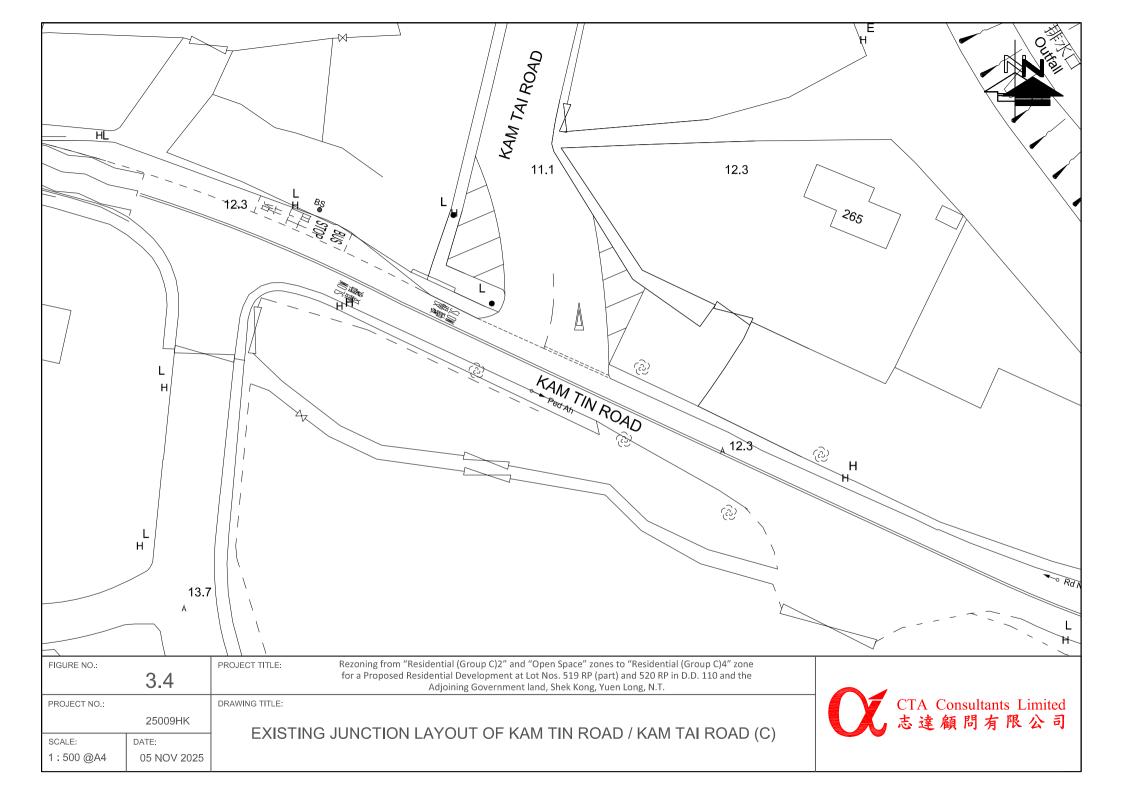
SCALE:

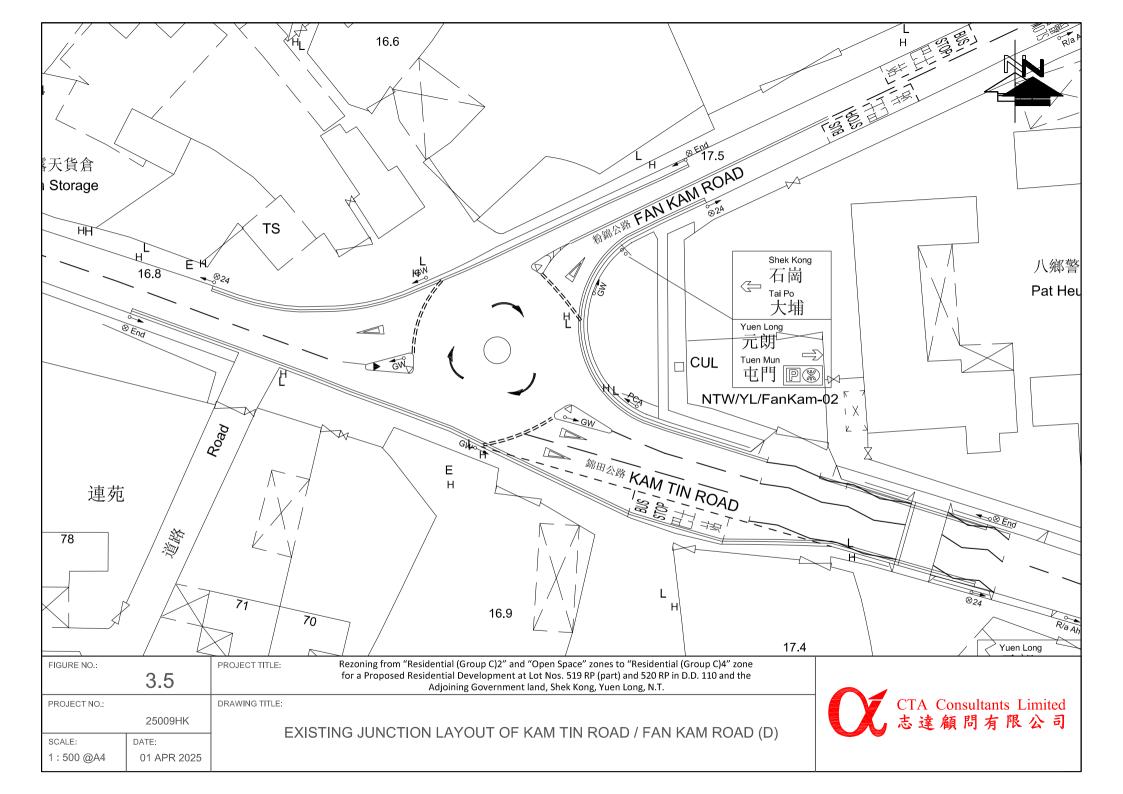
1:8700@A3

IDENTIFIED CRITICAL JUNCTIONS

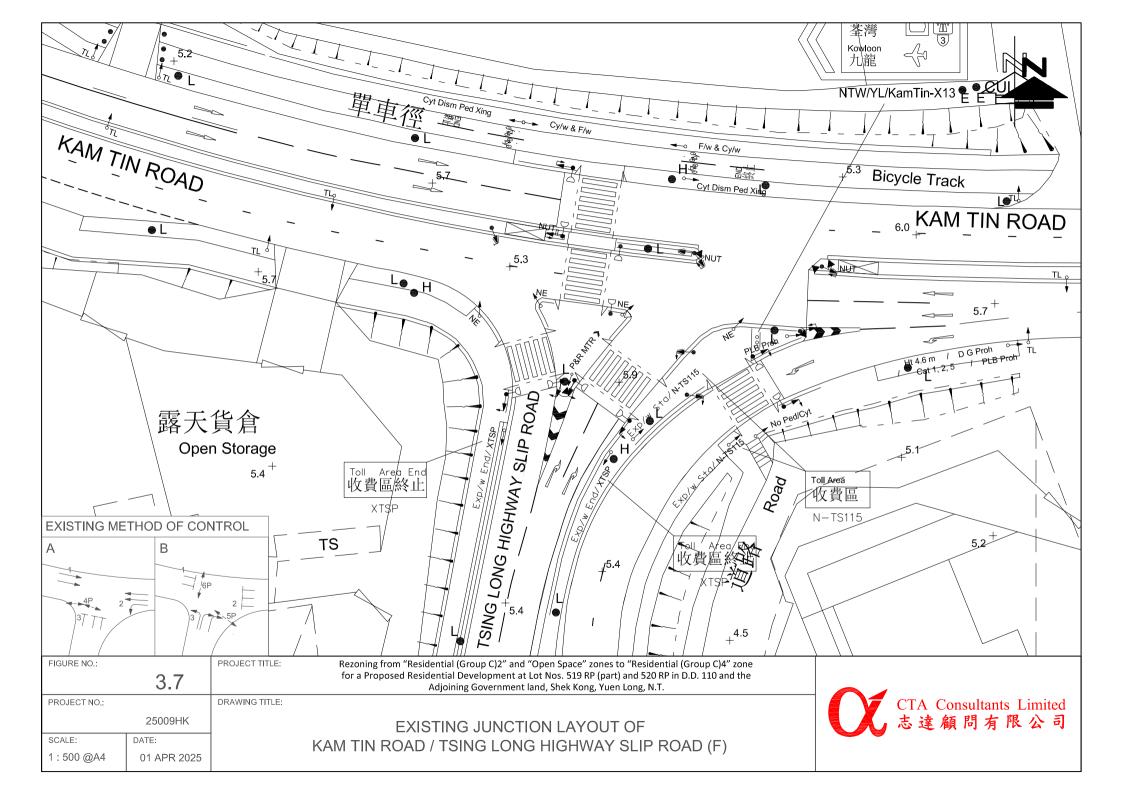


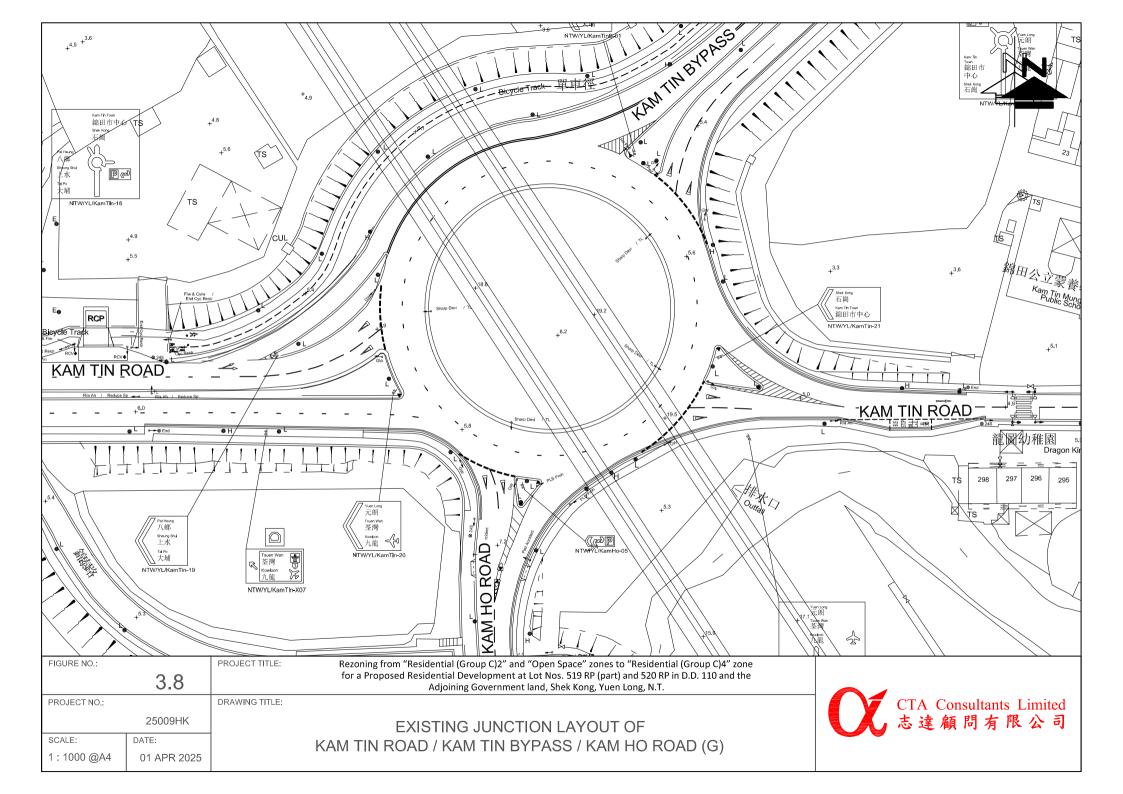

CTA Consultants Limited 志達顧問有限公司

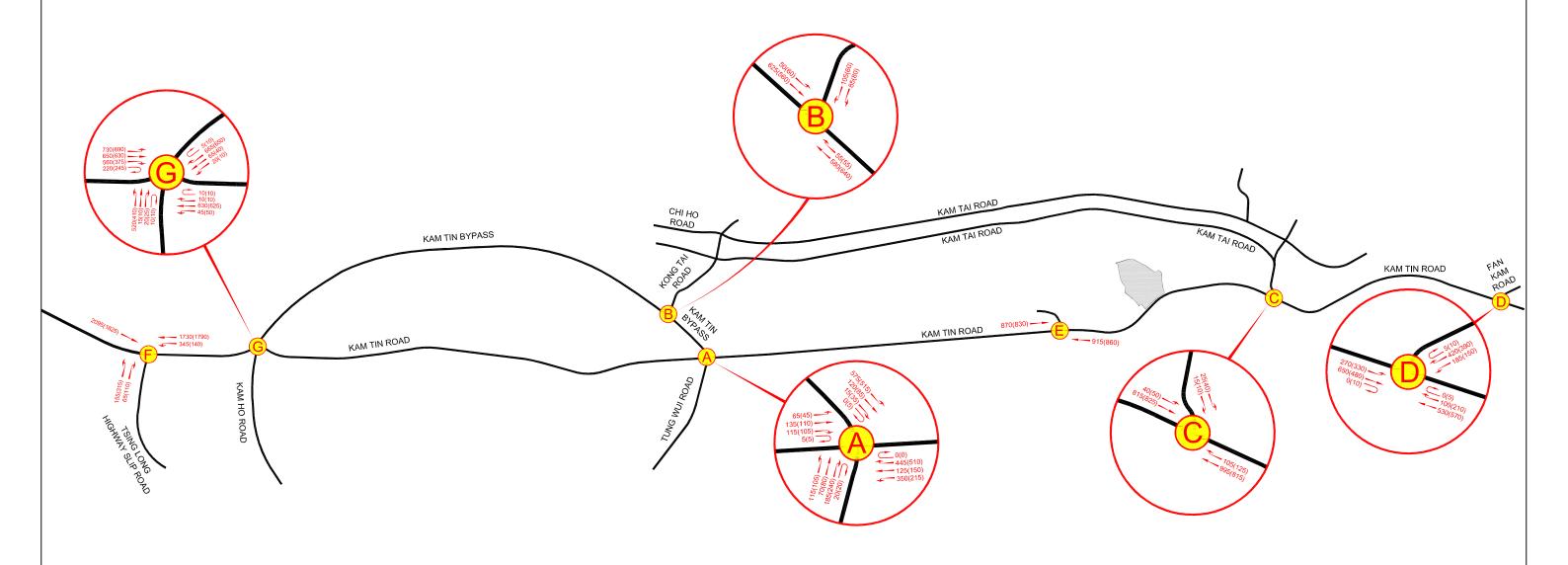

CRITICAL JUNCTION


AREA OF INFLUENCE


CRITICAL ROAD LINK







LEGEND:

DEVELOPMENT SITE

595(540

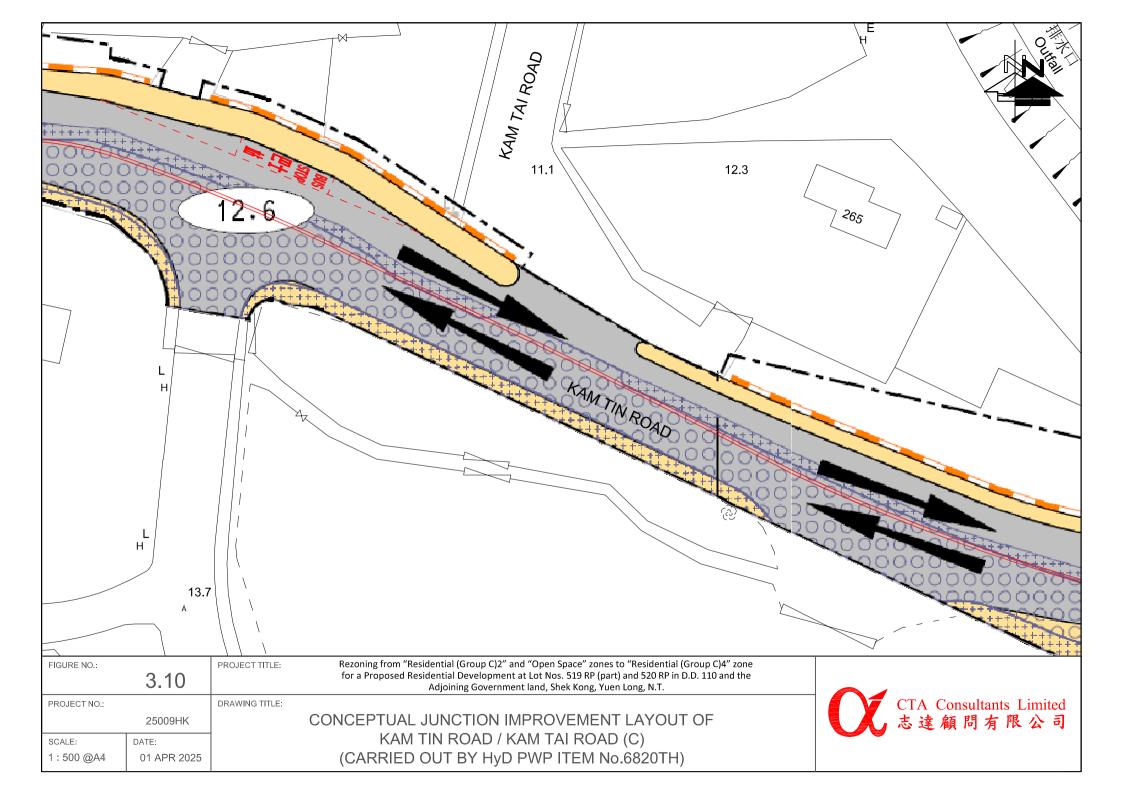
AM (PM) PEAK HOUR TRAFFIC FLOW (IN PCU / HR)

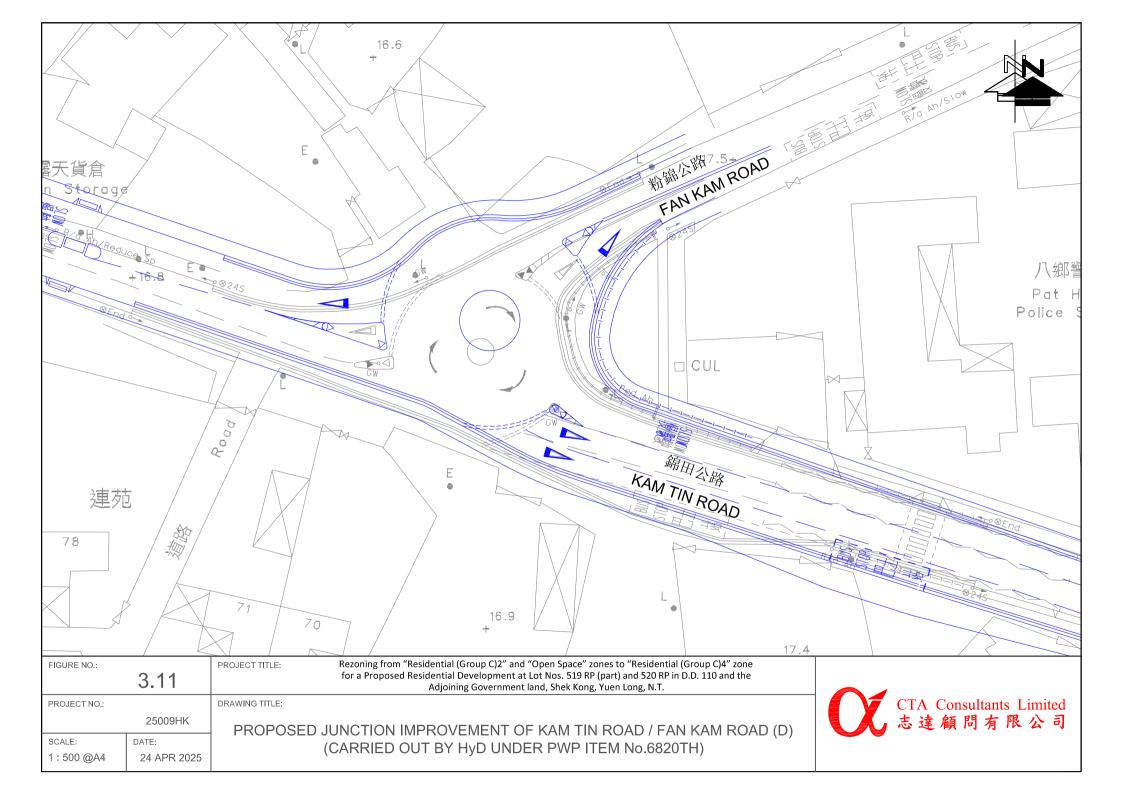
FIGURE NO.:	PROJECT TITLE:	Rezoning from "Residential (Group C)2" and "Open Space" zones to "Residential (Group C)4" zone for a Proposed Residential Development at Lot Nos. 519 RP (part) and 520 RP in D.D. 110 and the Adjoining Government land, Shek Kong, Yuen Long, N.T.
PROJECT NO.:	DRAWING TITLE:	

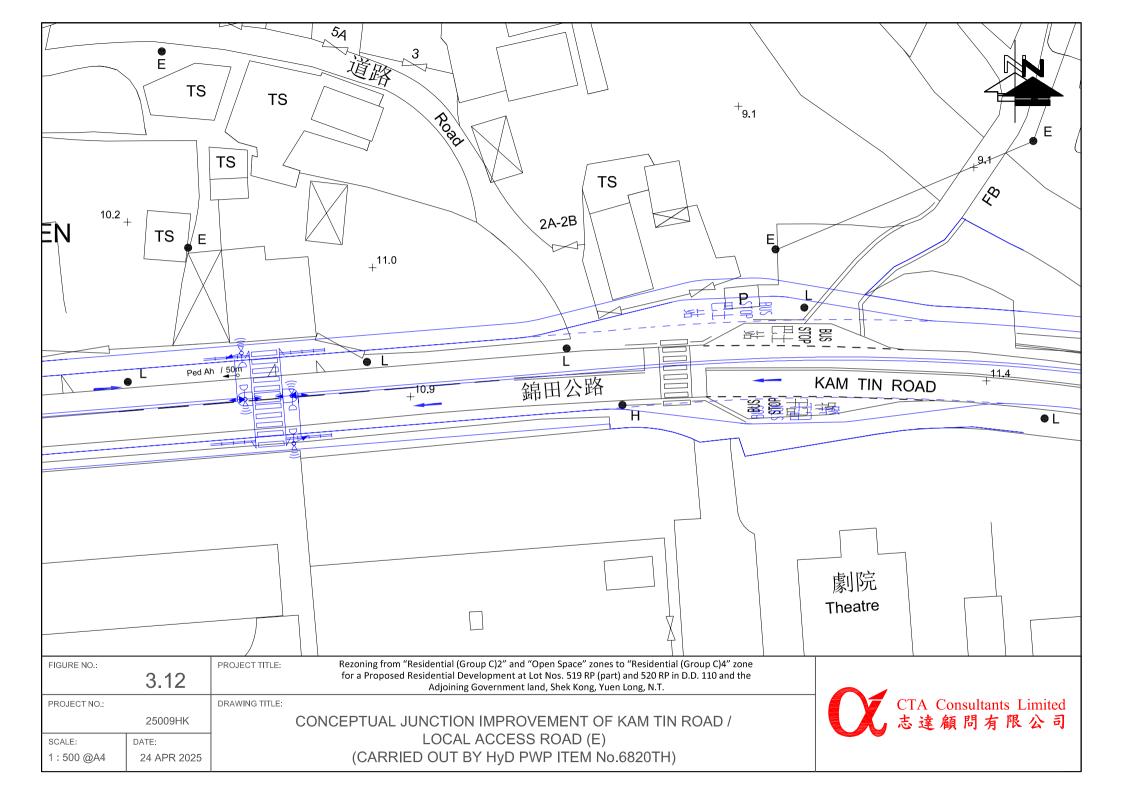
25009HK

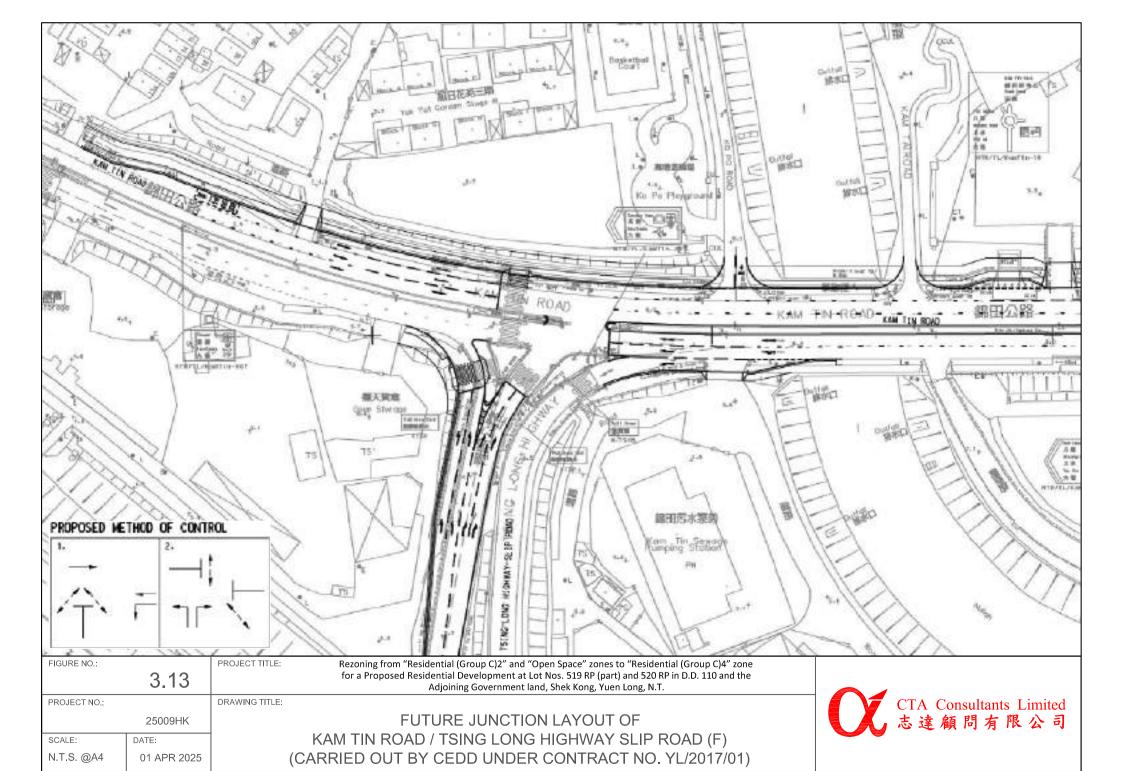
14 JUL 2025

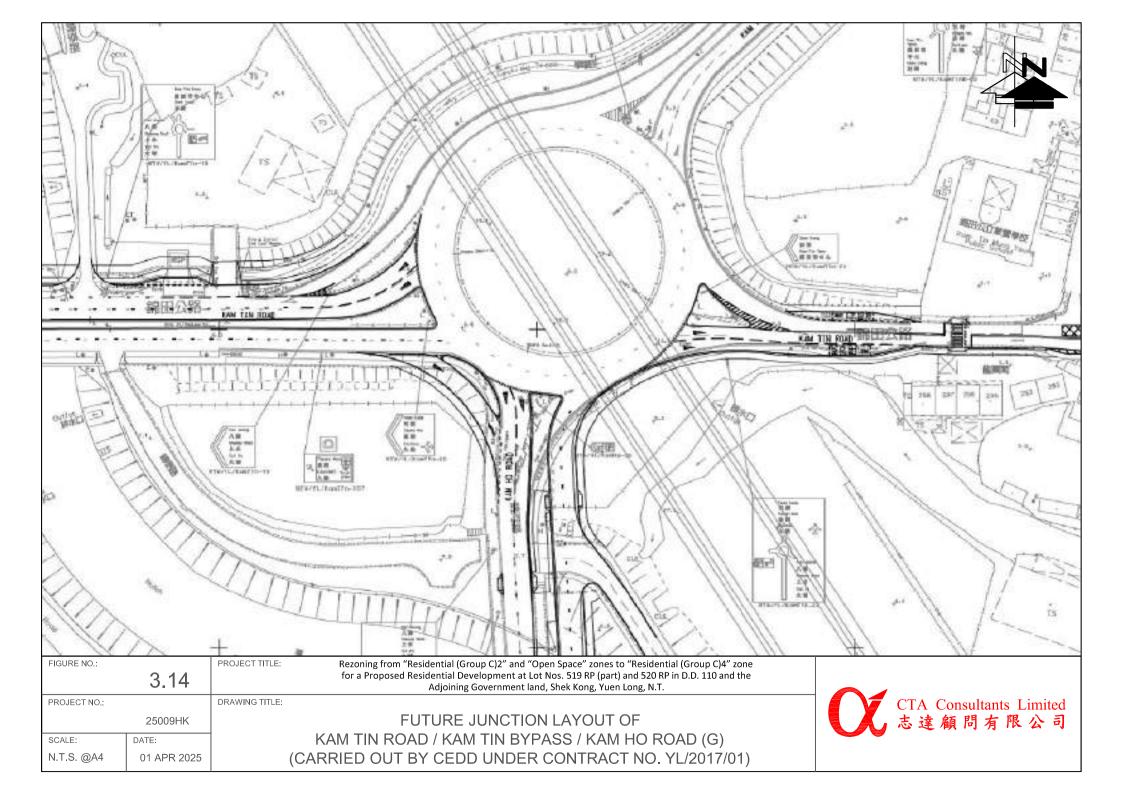
DATE:

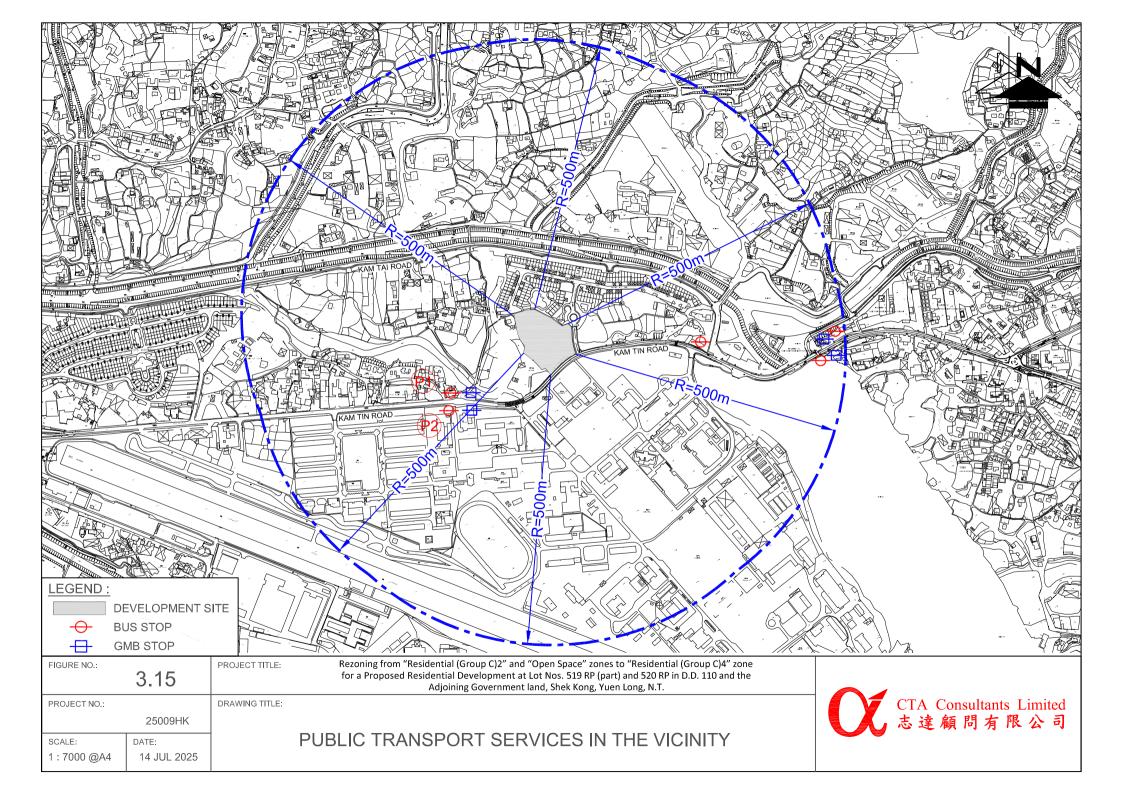

SCALE:

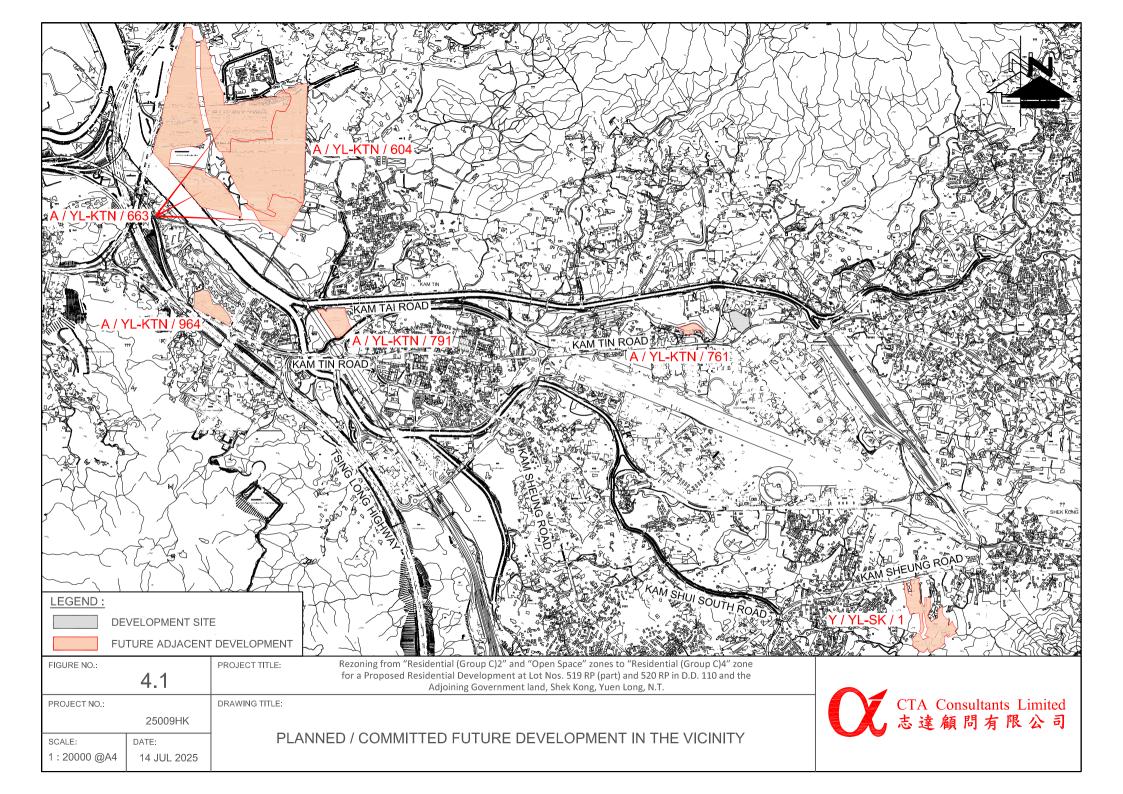

N. T. S. @A3

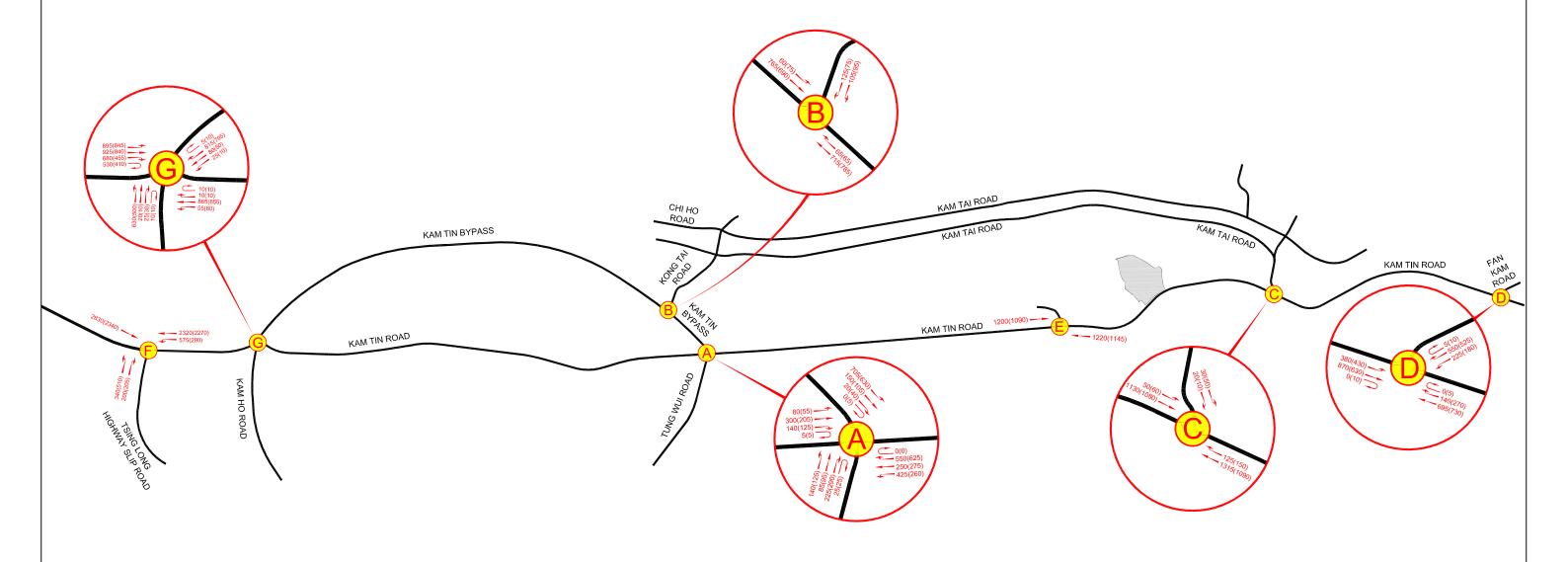



CTA Consultants Limited 志達顧問有限公司


2025 OBSERVED TRAFFIC FLOWS







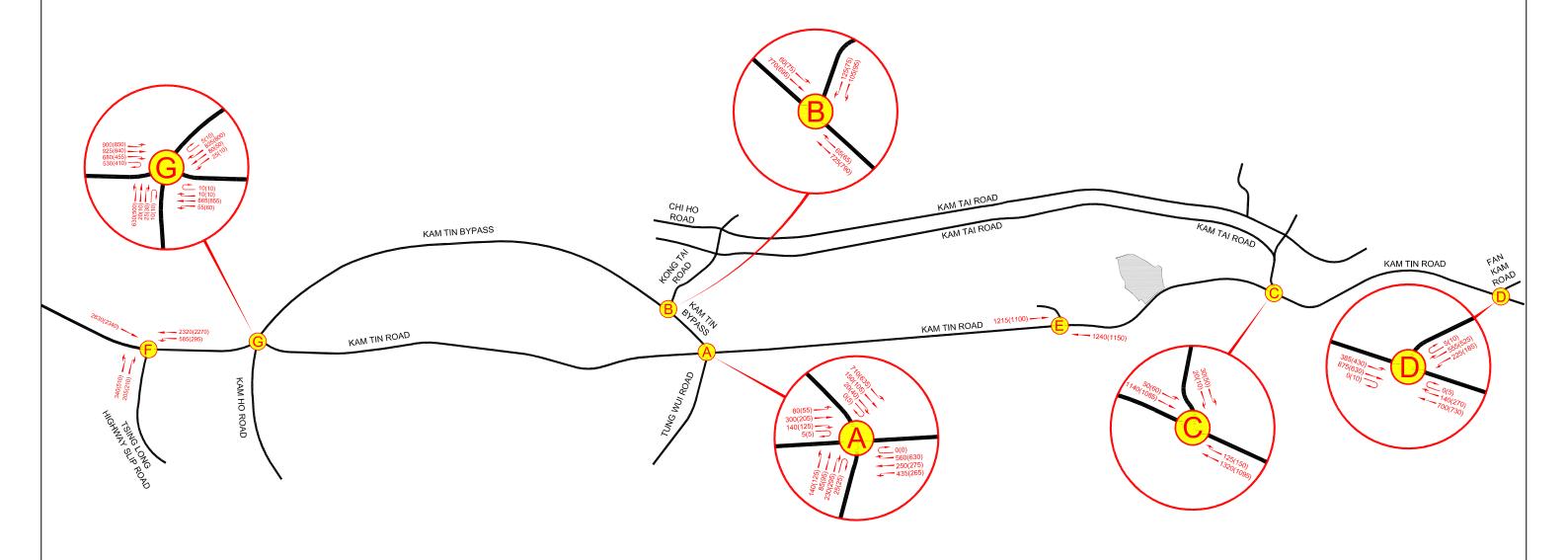
DEVELOPMENT SITE

595(540

AM (PM) PEAK HOUR TRAFFIC FLOW (IN PCU / HR)

FIGURE NO.:	4.2	PROJECT TITLE:	Rezoning from "Residential (Group C)2" and "Open Space" zones to "Residential (Group C)4" zone for a Proposed Residential Development at Lot Nos. 519 RP (part) and 520 RP in D.D. 110 and the Adjoining Government land, Shek Kong, Yuen Long, N.T.
PROJECT NO.:		DRAWING TITLE:	

O


CTA Consultants Limited 志達顧問有限公司

25009HK

SCALE: DATE: N. T. S. @A3 14 JUL 2025

2034 REFERENCE TRAFFIC FLOWS

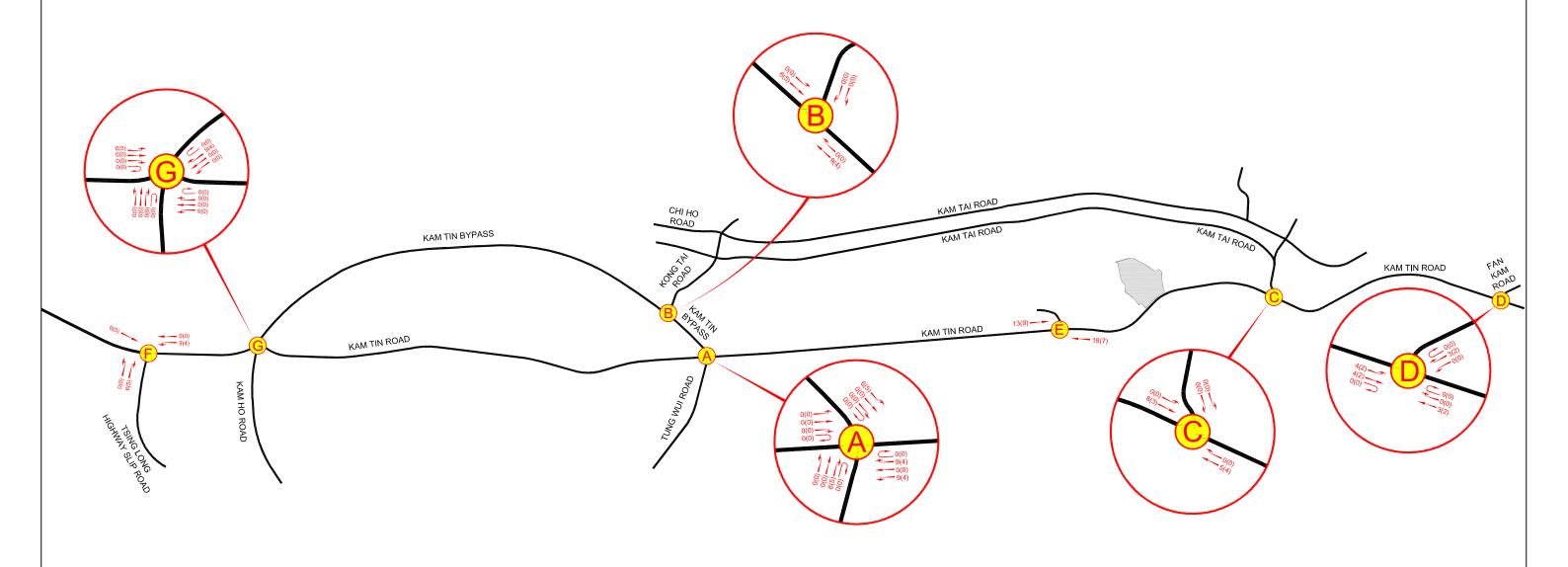
DEVELOPMENT SITE

595(540)

AM (PM) PEAK HOUR TRAFFIC FLOW (IN PCU / HR)

FIGURE NO.:	4.3	PROJECT TITLE:	Rezoning from "Residential (Group C)2" and "Open Space" zones to "Residential (Group C)4" zone for a Proposed Residential Development at Lot Nos. 519 RP (part) and 520 RP in D.D. 110 and the Adjoining Government land, Shek Kong, Yuen Long, N.T.
PROJECT NO.:		DRAWING TITLE:	

O


CTA Consultants Limited 志達顧問有限公司

25009HK

SCALE: DATE: N. T. S. @A3 15 JUL 2025

2034 DESIGN TRAFFIC FLOWS

DEVELOPMENT SITE

595(540

AM (PM) PEAK HOUR TRAFFIC FLOW (IN PCU / HR)

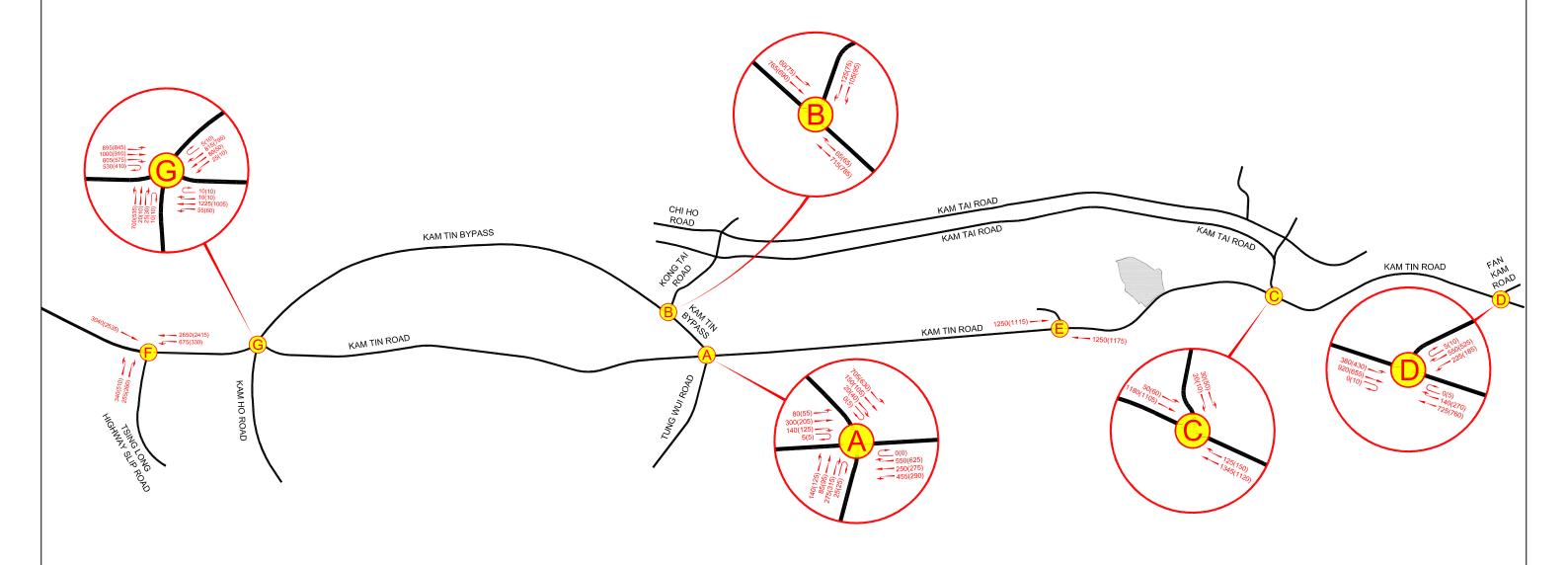
FIGURE NO.: 4.4	PROJECT TITLE:	Rezoning from "Residential (Group C)2" and "Open Space" zones to "Residential (Group C)4" zone for a Proposed Residential Development at Lot Nos. 519 RP (part) and 520 RP in D.D. 110 and the Adjoining Government land, Shek Kong, Yuen Long, N.T.
PROJECT NO.:	DRAWING TITLE:	

25009HK

15 JUL 2025

DATE:

SCALE:


N. T. S. @A3

O

CTA Consultants Limited 志達顧問有限公司

2034 DEVELOPMENT TRAFFIC FLOWS

DEVELOPMENT SITE

595(540)

AM (PM) PEAK HOUR TRAFFIC FLOW (IN PCU / HR)

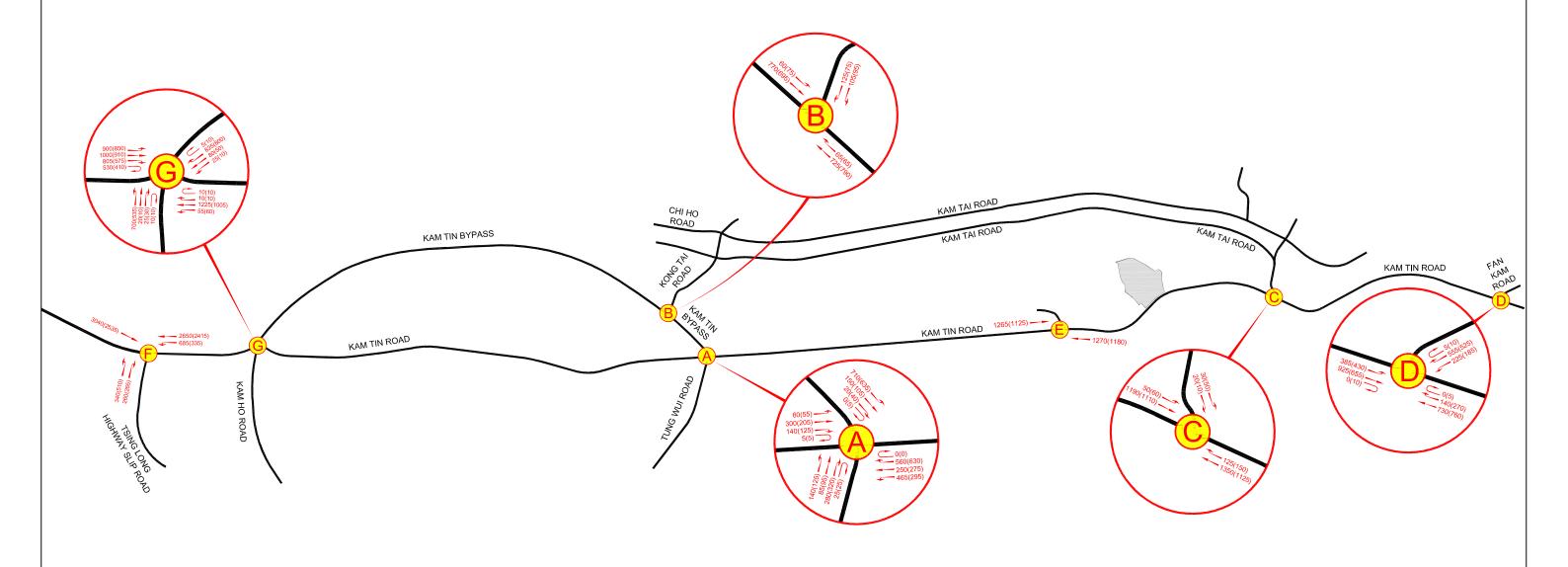
FIGURE NO.:	4.5	PROJECT TITLE:	Rezoning from "Residential (Group C)2" and "Open Space" zones to "Residential (Group C)4" zone for a Proposed Residential Development at Lot Nos. 519 RP (part) and 520 RP in D.D. 110 and the Adjoining Government land, Shek Kong, Yuen Long, N.T.
PROJECT NO.:		DRAWING TITLE:	

25009HK

14 JUL 2025

DATE:

SCALE:


N. T. S. @A3

2034 REFERENCE TRAFFIC FLOWS (WITH REMAINING SITES OF LUR)

CTA Consultants Limited 志達顧問有限公司

DEVELOPMENT SITE

595(540

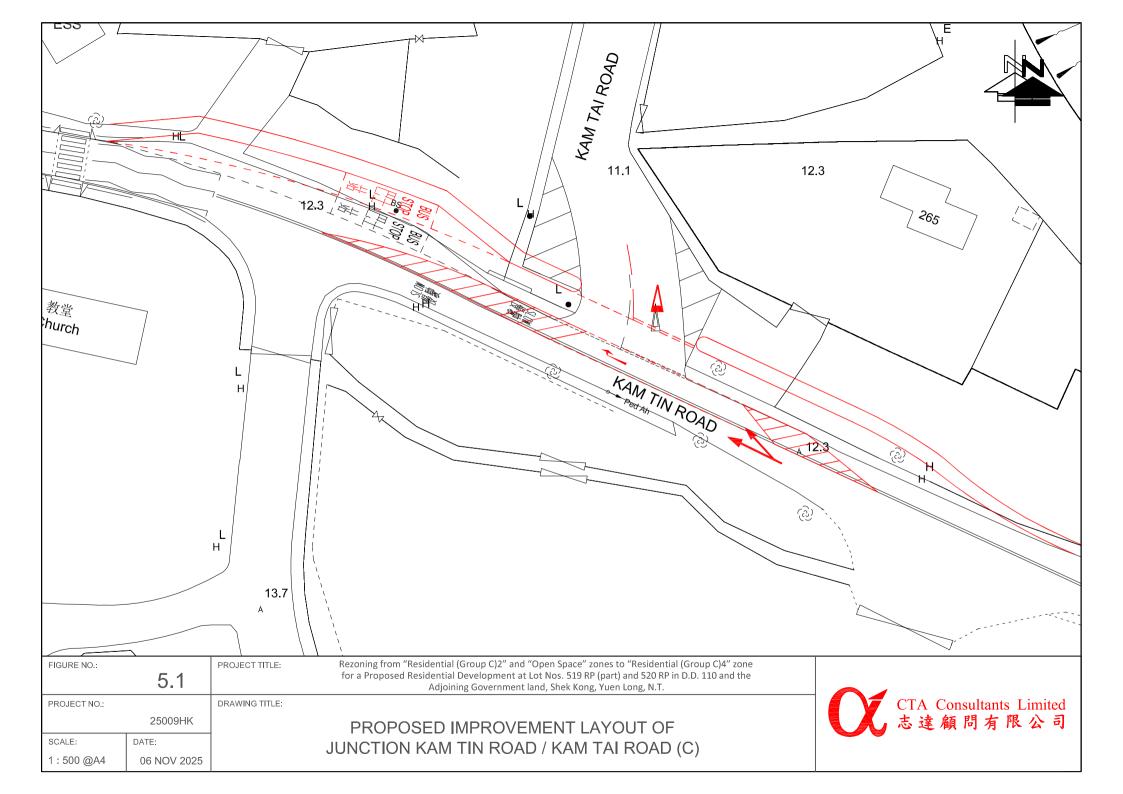
AM (PM) PEAK HOUR TRAFFIC FLOW (IN PCU / HR)

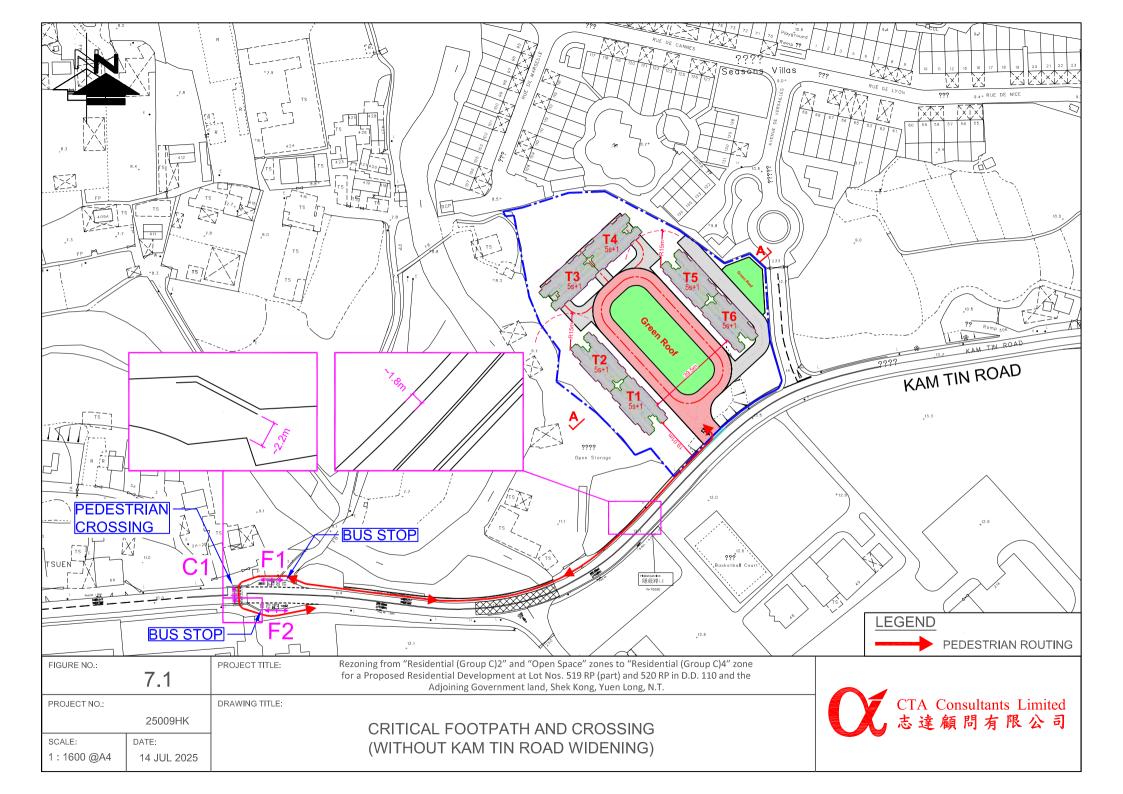
FIGURE NO.:	4.6	PROJECT TITLE:	Rezoning from "Residential (Group C)2" and "Open Space" zones to "Residential (Group C)4" zone for a Proposed Residential Development at Lot Nos. 519 RP (part) and 520 RP in D.D. 110 and the Adjoining Government land, Shek Kong, Yuen Long, N.T.
PROJECT NO.:		DRAWING TITLE:	

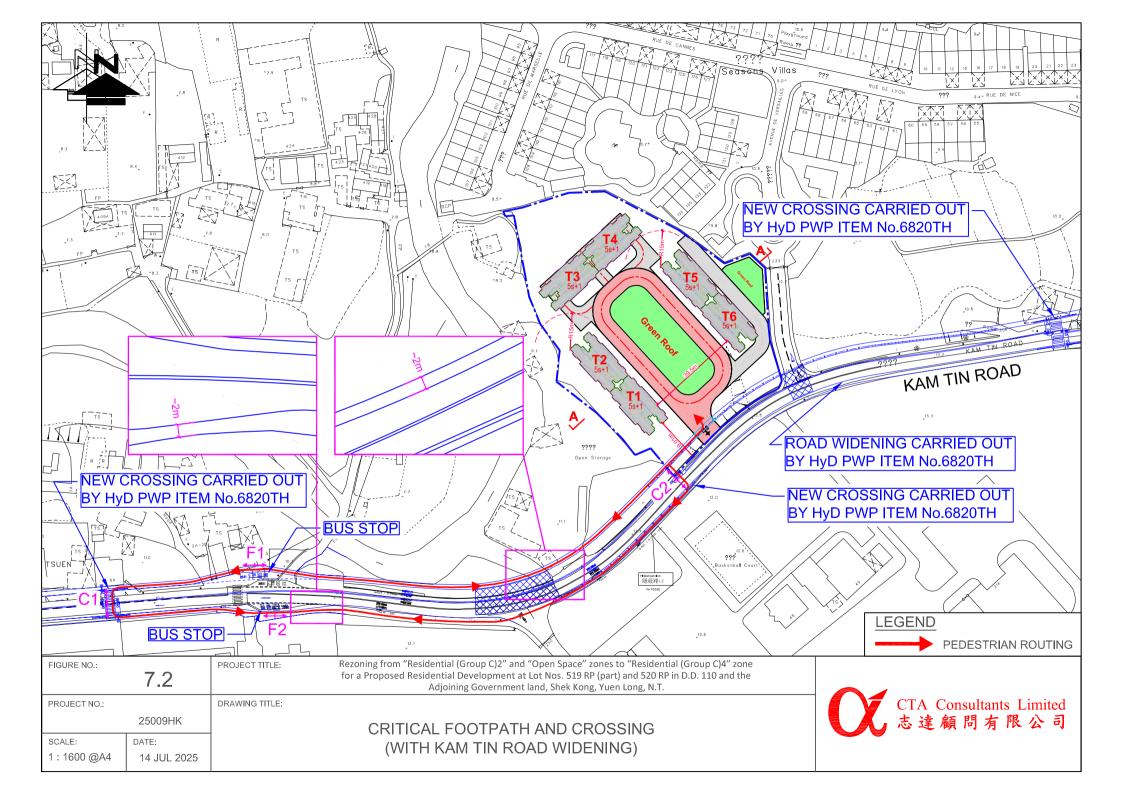
25009HK

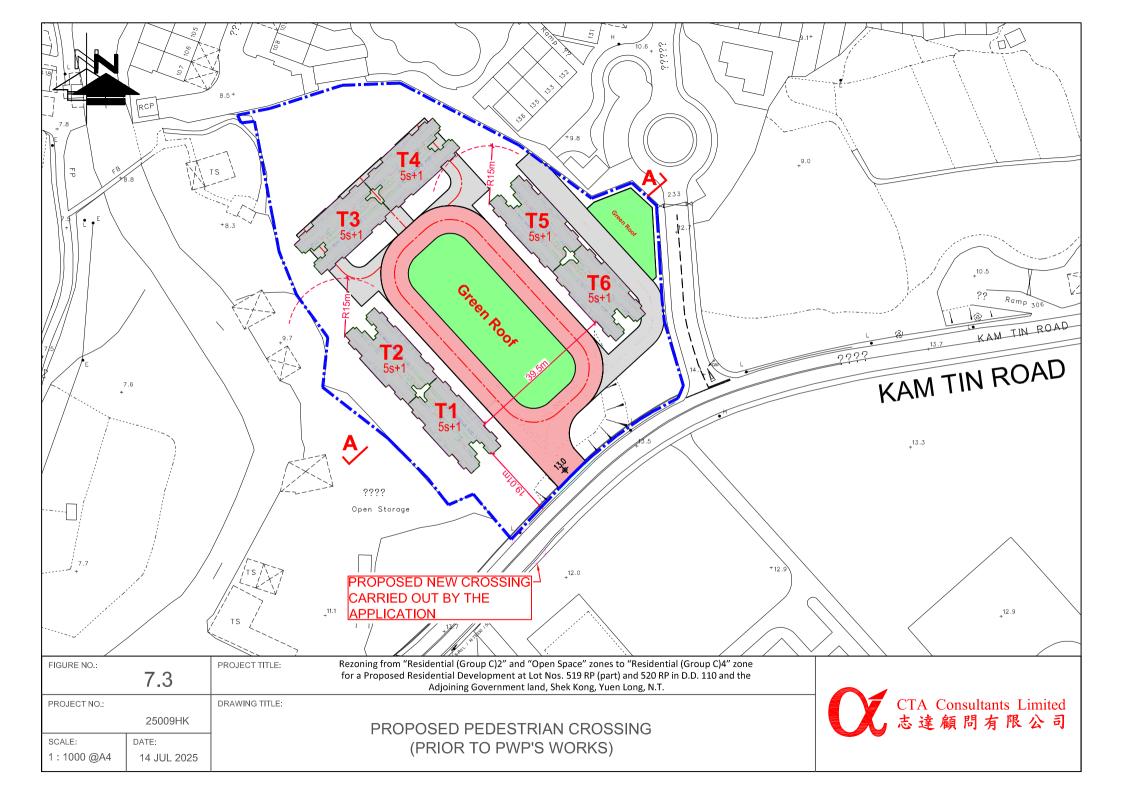
15 JUL 2025

DATE:


SCALE:


N. T. S. @A3


2034 DESIGN TRAFFIC FLOWS (WITH REMAINING SITES OF LUR)

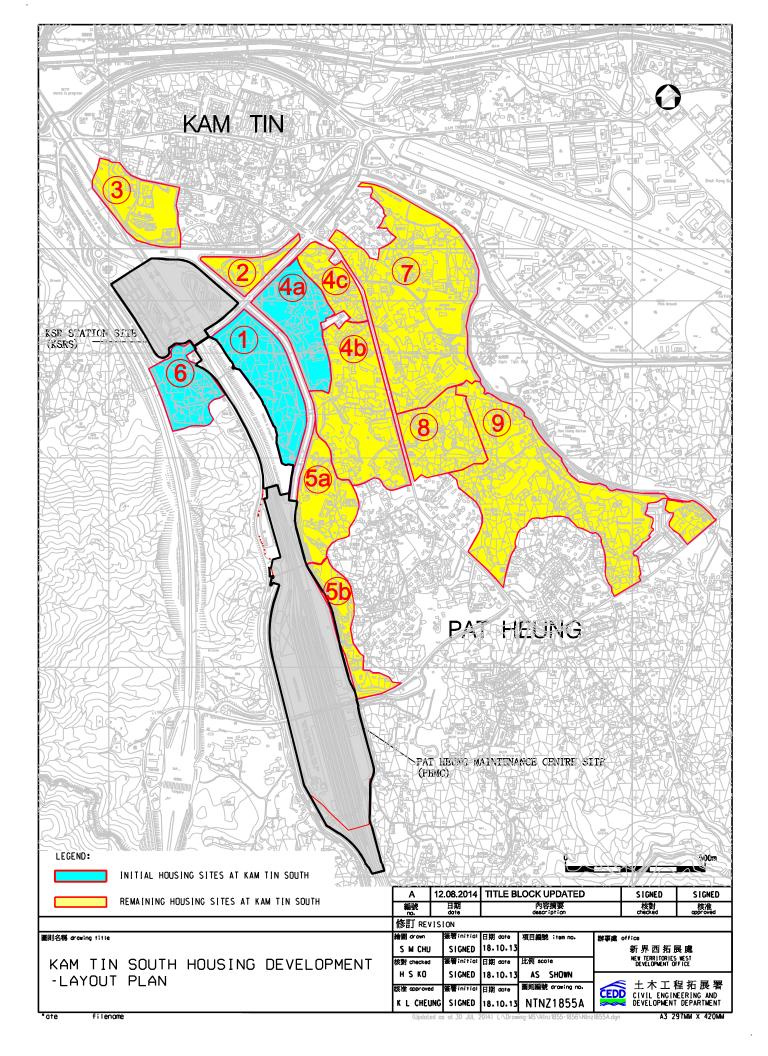


CTA Consultants Limited 志達顧問有限公司

Ü Traffic Impact Assessment

以

用


誠

Revised Final Report (November 2025)

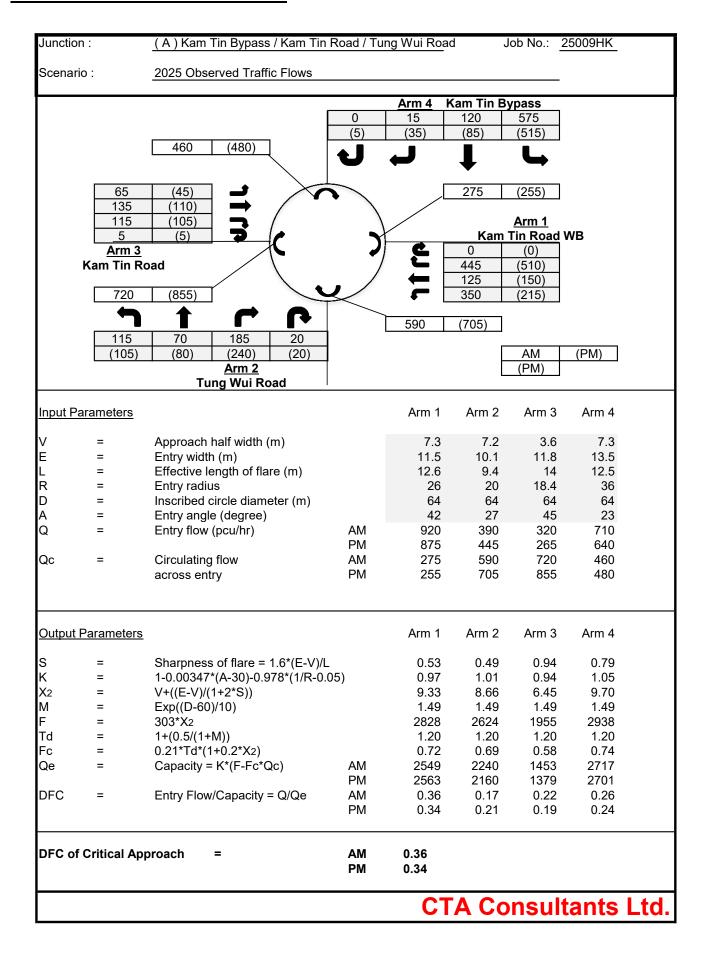
We commit We deliver

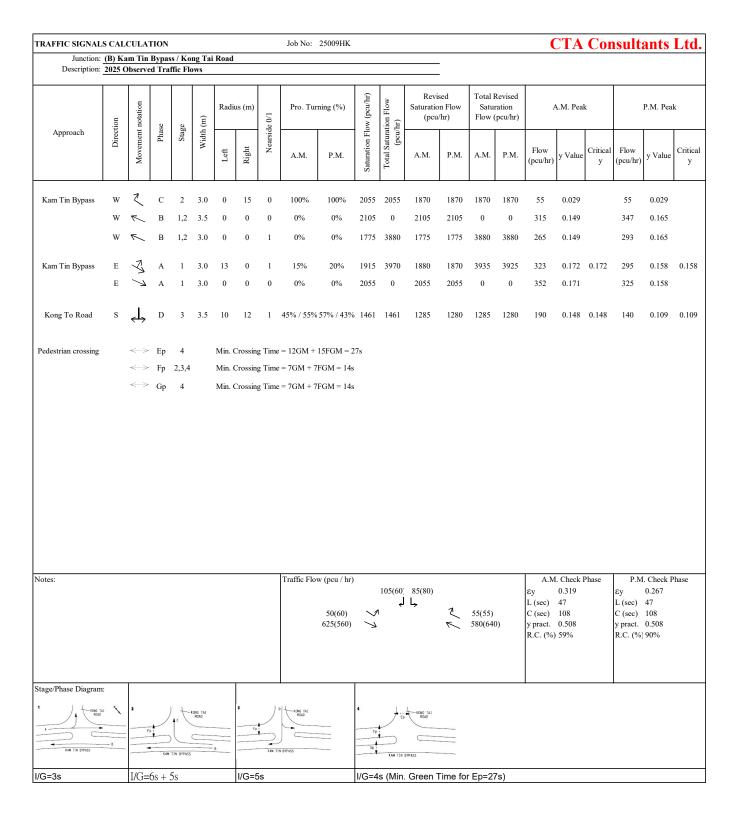
Appendix I

Kam Tin South Housing Development – Layout Plan

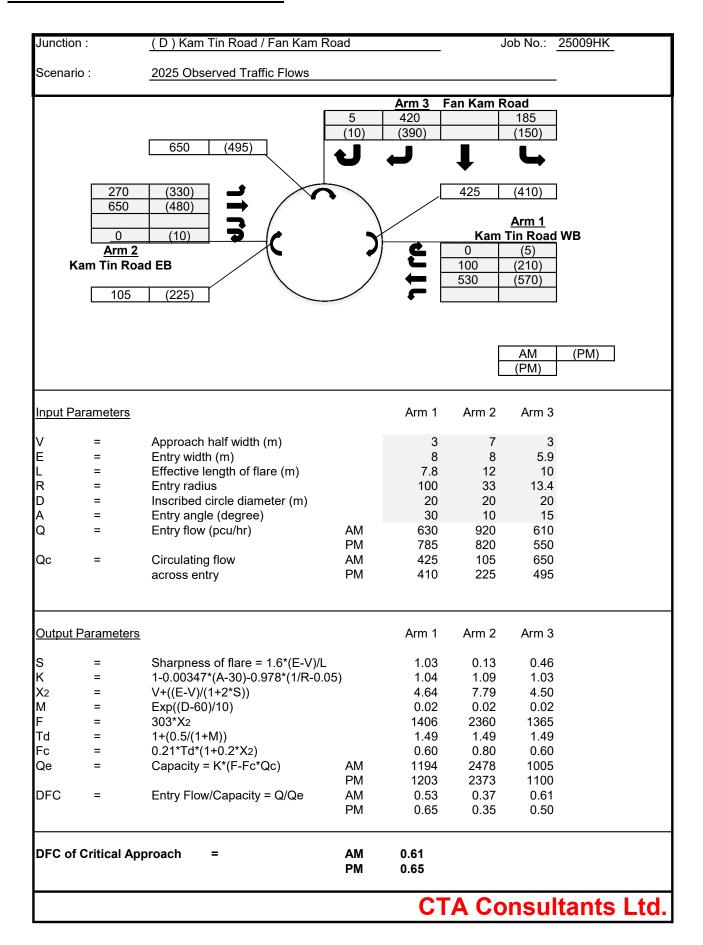
Traffic Impact Assessment

心以誠

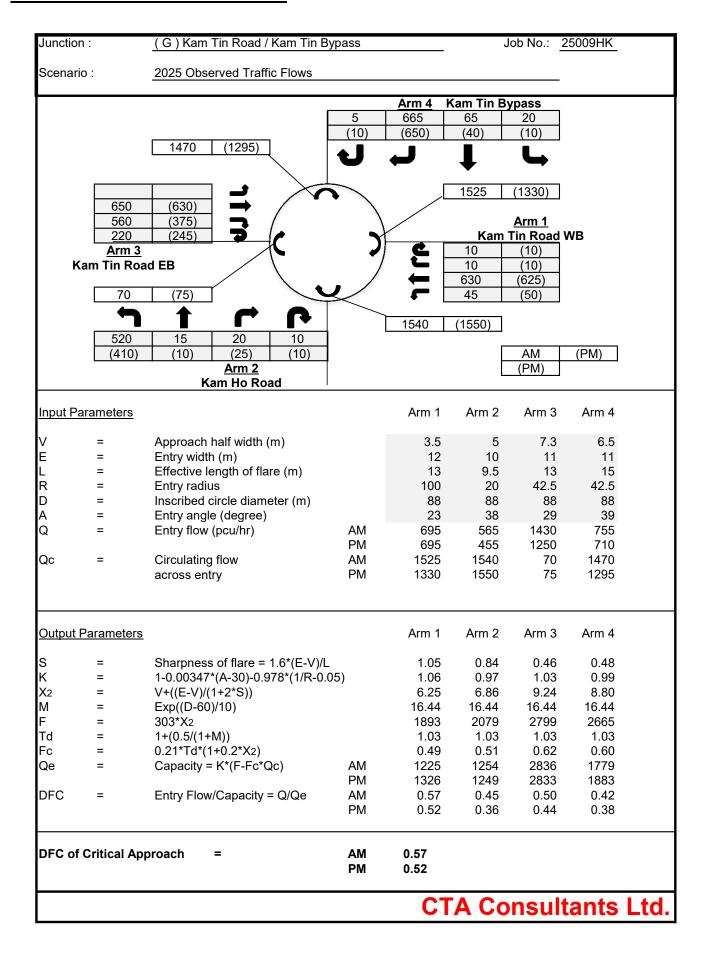

用

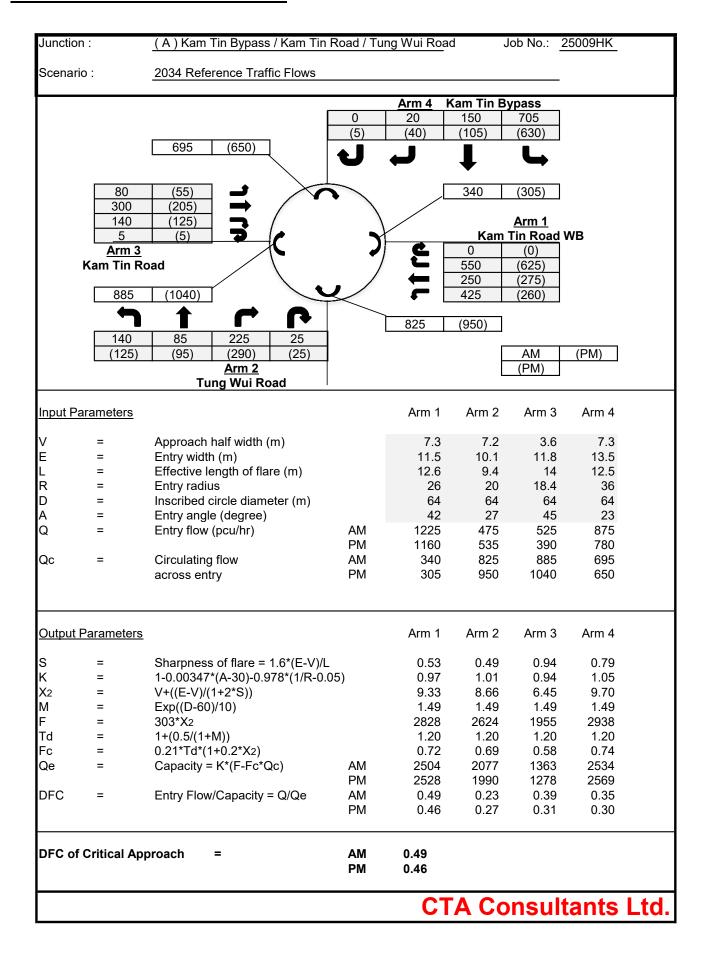

Revised Final Report (November 2025)

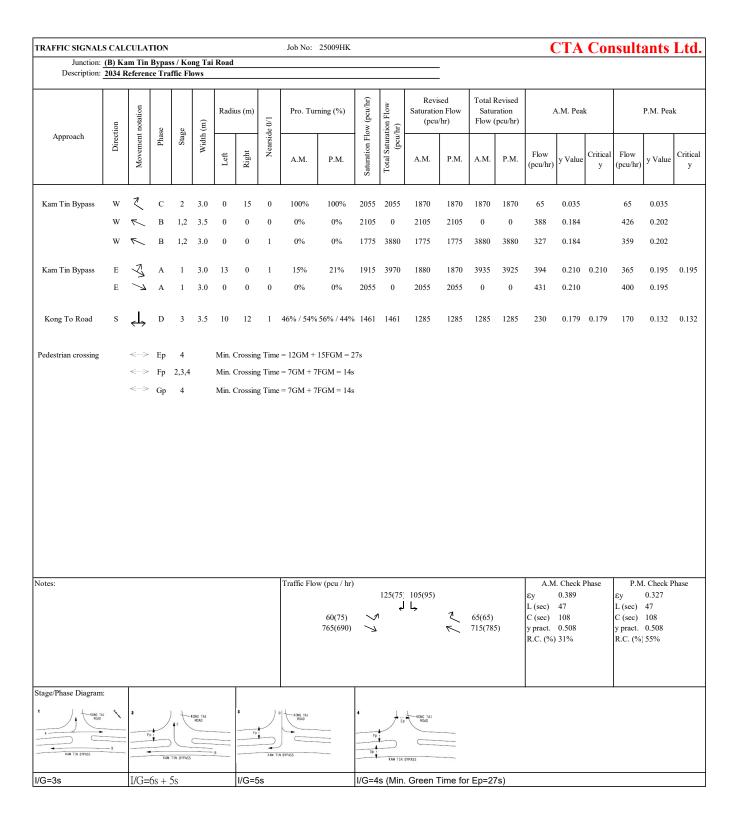
We commit We deliver


Appendix II

Junction Calculation Sheets

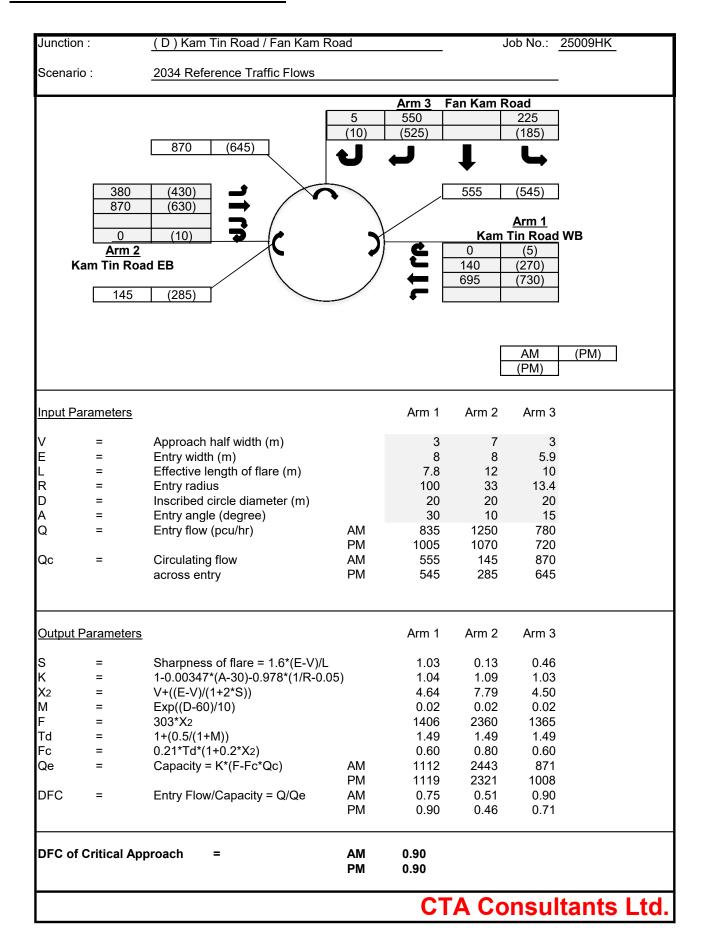

Junction :	-	(C) Kam Ti	in Road / I	Kam Tai Roa	nd		_ J	ob No.:	25009HK
Scenario :	-	2025 Obser	ved Traffic	c Flows					
	40 815 Arm A	(50) (825) Kam Tin Ro	Arm B 15 (10) J oad EB	25 (40)	105 995	(125) (815) Kam Tin I	Road WB	AM (PM)	(PM)
The predictive	Q-BC =	D(627 + 14\	V-CR - Y(364q-AC	0.364q-AC + + 0.144q-AB		3 + 0.2290	q-CA + 0.52q-0	CB))	
The geometric	E =	(1 + 0.094(v (1 + 0.094(v	v-BA - 3.69 v-BC - 3.69)9(V-rBC -	120))	0.0006(V-IBA	- 150))	
where	q-AB, etc =	major road v central rese lane width to visibility to th	low of move width rve width o vehicle ne right fo		icles in stre				
Geometry :	Input W	7	V-rBA		w-BA	4.7	_	alculated	0.968
width <2.5m	W-CR ed C-A, residual ? (Yes: 1, No: 0) d Share LT&RT?	1	V-IBA V-rBC V-rCB	50	w-BC ₋ w-CB ₋	4.7 3.5		E F Y	1.029 0.924 0.759
Analysis :	(Yes: 1, No: 0) Traffic Flow pcu/hr	AM	PM	Capacity pcu/hr	AM	PM			
	q-CA q-CB q-AB	995 105 40	815 125 50	Q-BA _ Q-BC _ Q-CB _	177 531 470	196 527 465	- -		
	q-AC -	815	825	Q-CA	1398	1316	(If C-B blocked C-A) (If Minor		
	q-BA	15	10	Q-BAC	304	394	Road Share LT&RT)		
	q-BC ⁻ f ₋	25 0.625	40 0.800	-					
Results :	Ratio of Flo	w-to-Capac	ity		B-A B-C C-B C-A B-AC	N/A N/A N/A 0.22 0.71 0.13	N/A		
	Critical DFC					0.71	0.62		
						CTA	Consu	Itant	s Ltd.

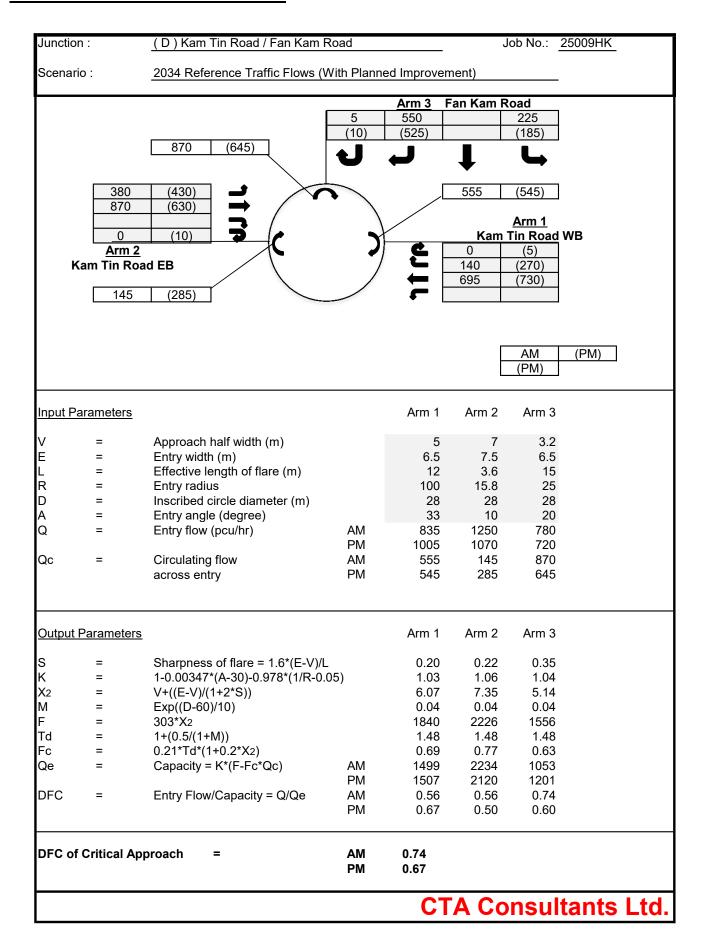



TRAFFIC SIGNALS CALCULATION Junction: (E) Kam Tin Road Job No. 25009HK CTA Consultants Ltd.																						
Junction: Description:	(E) Ka 2025 (ım Tin Observe	Road ed Tra	ffic F	lows									-								
	tion	notation	es	əg	(m)	Radio	us (m)	le 0/1	Pro. Tu		ow (pcu/hr)	tion Flow (hr)	Revi Saturatio (pcu	n Flow	Satu	Revised ration (pcu/hr)	1	A.M. Pea	k		P.M. Pea	k
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Left	Right	Nearside 0/1	A.M.	P.M.	Saturation Flow (pcu/hr)	Total Saturation Flow (pcu/hr)	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Kam Tin Road	W	\leftarrow	A	1	3.4	0	0	1	0%	0%	1955	1955	1955	1955	1955	1955	915	0.468	0.468	860	0.440	0.440
Kam Tin Road	Е	\rightarrow	A	1	3.4	0	0	1	0%	0%	1955	1955	1955	1955	1955	1955	870	0.445		830	0.425	
Pedestrian crossing		<i>←</i> >	Вр	2		Min. C	Crossin	ng Timo	e = 5GM Traffic								A.M	. Check l	Phase	P.M	I. Check F	Phase
									8	370(830)) →	•		←	915(86	0)	Ey L (sec) C (sec) y pract. R.C. (%)	120 0.750		Ey L (sec) C (sec) y pract. R.C. (%)	120 0.750	
Stage/Phase Diagran 1	1:	2 I/G =	<u></u>	12s	<u>—</u>																	

Job No: 25009HK

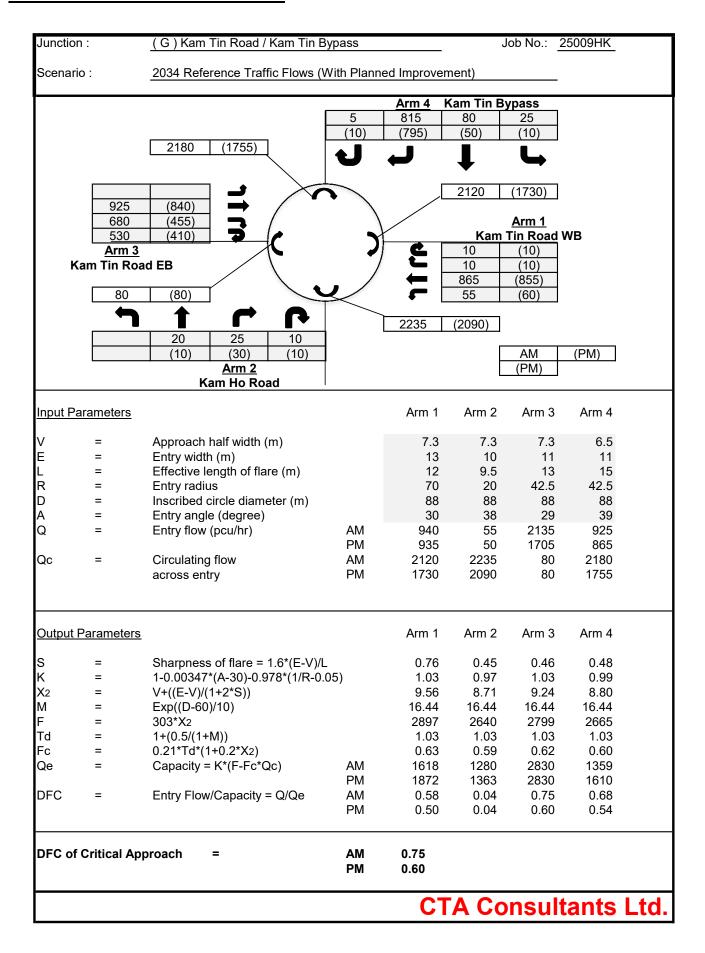
TRAFFIC SIGNALS (CAL	CULA	ATIC)N					Job No:	25009H	K			CT	A C	onsul	tants	Lta
Junction:									Road									
Description:	202	5 Obs	serve	ed Tra	ffic Flo	ows (V	Vith TT	A)										
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Radi	us (m)	Nearside 0/1	Pro. Turi	ning (%)	Rev Satur Flow (1	ation		A.M. Peak			P.M. Peak	ς.
Арргоасп	Dire	Move nota	Ph	Sta	Widt	Left	Right	Nearsi	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critica
Kam Tin Road	E E	→	· 1	A A	3.65 3.65	0	0	1 0	0% 0%	0% 0%	1980 2120	1980 2120	1012 1083	0.511 0.511	0.511	881 944	0.445 0.445	
Kam Tin Road	W W W	•	2 2 2 2	A A A	3.80 3.80 5.00	0 0 15	0 0 0	0 0 1	0% 0% 100%	0% 0% 100%	2135 2135 1925	2135 2135 1925	865 865 345	0.405 0.405 0.179		895 895 140	0.419 0.419 0.073	0.445
Tsing Long Highway Slip Road	N N N	1	3 3 3	B B	5.60 3.60 3.50	25 0 0	0 30 28	1 0 0	100% 100% 100%	100% 100% 100%	2050 525 75 (*revise	2050 525 75 ed satura	155 57 8 ation flow	0.076 0.108 0.108	0.108	315 96 14	0.154 0.183 0.183	0.183
*Pedestrian Crossing			4p 5p	A B			Crossin Crossin			7 Gm + 7 Gm +								
Notes:						Traffi	c Flow	(pcu / 1	hr)	[AM (P	M)]			Check Phase		I (Check Phas	se
									/	[(/1		εγ	0.619		εу	0.628	
							095(182: 55(315)	>)	\leftarrow	1730(17	90)	L (sec) C (sec) y pract. R.C. (%)	15 96 0.759 23%		L (sec) C (sec) y pract. R.C. (%)	15 106 0.773 23%	
Ctops / Dhos - Di										V	345(140)						
Stage / Phase Diagrams A \downarrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow \downarrow	$\stackrel{2}{\leftarrow}$		B -			* r.	 	<u> </u>										

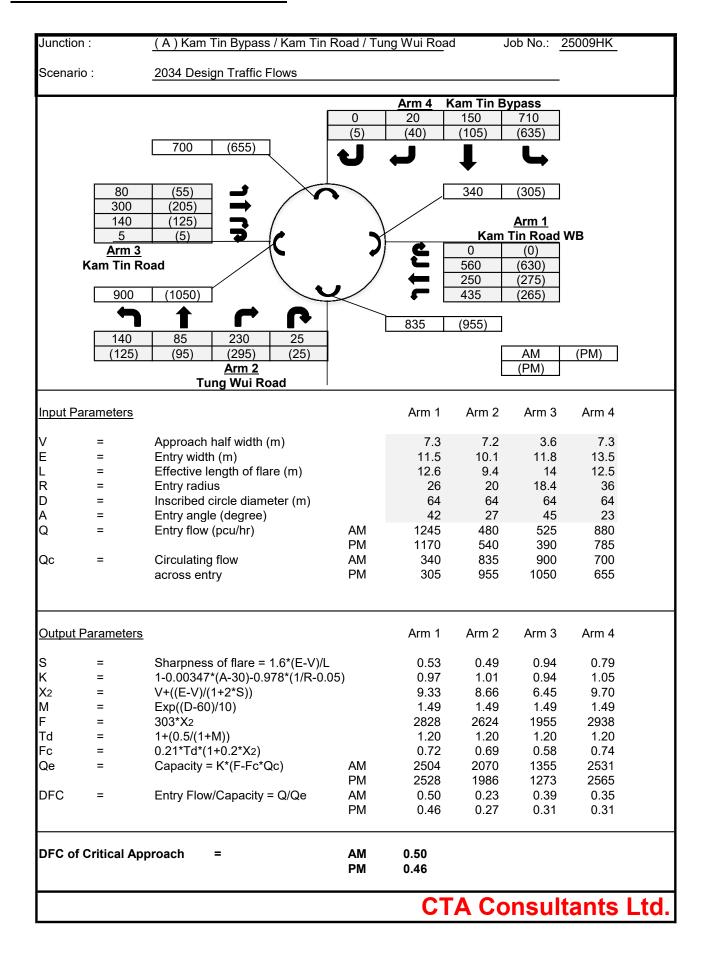


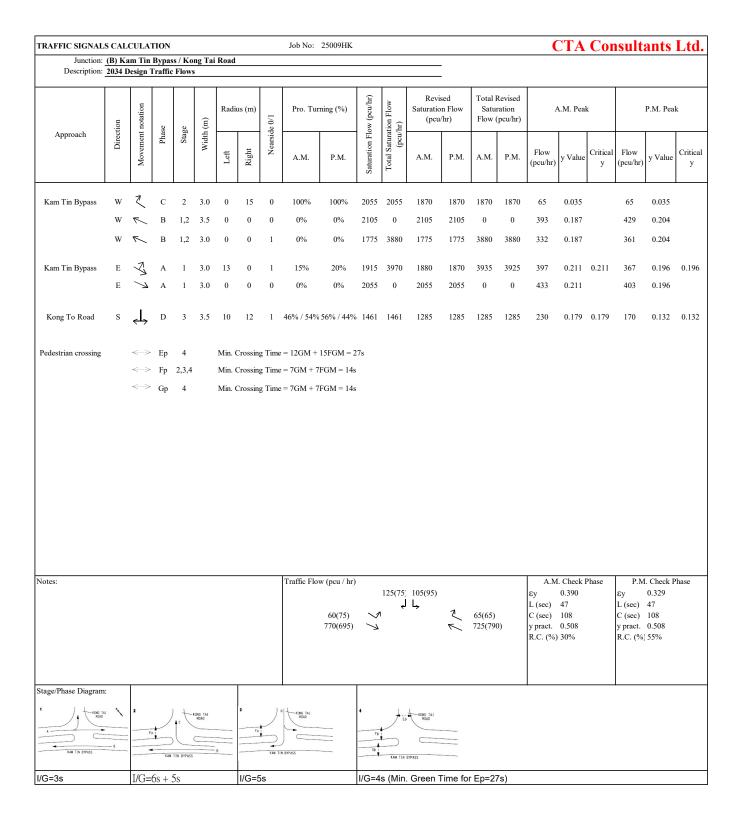


Junction :	-	(C)Kam T	in Road / I	Kam Tai Roa	nd			Job No.:	25009HK
Scenario :	-	2034 Refere	ence Traffi	c Flows					
	50 1130 Arm A	(60) (1080) Kam Tin Ro	20 (10)	30 (50)	125 1315	(150) (1090) Kam Tin I] - Road WB	AM (PM)	(PM)
The predictive	Q-BC =	D(627 + 14\	N-CR - Y(.364q-AC	0.364q-AC + + 0.144q-AB		B + 0.229d	q-CA + 0.52d	ı-CB))	
The geometric	E =	(1 + 0.094(v (1 + 0.094(v	v-BA - 3.69 v-BC - 3.69)9(V-rBC -	120))	0.0006(V-IB <i>i</i>	A - 150))	
where	q-AB, etc =	major road v central rese lane width to visibility to tl	low of mov width rve width o vehicle he right fol		icles in stre				
Geometry :	Input W	7	V-rBA		w-BA	4.7	<u>,</u>	Calculated D	0.968
width <2.5m	W-CR ed C-A, residual ? (Yes: 1, No: 0) d Share LT&RT?	1	V-IBA V-rBC V-rCB	50	w-BC ₋ w-CB ₋	4.7 3.5		E F Y	0.924 0.759
Analysis :	(Yes: 1, No: 0) Traffic Flow pcu/hr	AM	PM	Capacity pcu/hr	AM	PM			
	q-CA q-CB q-AB	1315 125 50	1090 150 60	Q-BA _ Q-BC _ Q-CB _	31 440 387	71 453 397	- -		
	q-AC -	1130	1080	Q-CA	1219	1121	(If C-B blocked _C-A) (If Minor		
	q-BA	20	10	Q-BAC	70	240	Road Share LT&RT)		
	q-BC ⁻ f <u>-</u>	30 0.600	50 0.833	-			_		
Results :	Ratio of Flo	w-to-Capac	ity		B-A B-C C-B C-A B-AC	N/A N/A N/A 0.32 1.08 0.72	N/A N/A 0.38 0.97		
	Critical DFC					1.08	0.97		
						CTA	Consi	ultant	s Ltd.

Junction :		(C) Kam 1	in Road / I	Kam Tai Roa	d		-	Job No.:	25009HK
Scenario :		2034 Refer	ence Traffi	c Flows (Wit	h Planned	Improvem	ent)		
	50 1130 Arm A	(60) (1080) Kam Tin R	20 (10)	30 (50)	125 1315	(150) (1090) Kam Tin F	Road WB	AM (PM)	(PM)
The predictive	Q-BC =	D(627 + 14	W-CR - Y().364q-AC	0.364q-AC + + 0.144q-AB		B + 0.229q	-CA + 0.52	2q-CB))	
The geometric	E =	(1 + 0.094) (1 + 0.094)	w-BA - 3.69 w-BC - 3.69	e: 5))(1 + 0.000 5))(1 + 0.000 5))(1 + 0.000	9(V-rBC -	120))).0006(V-IE	BA - 150))	
where	q-AB, etc = W = W-CR = w-BA, etc = v-rBA, etc =	major road central rese lane width t visibility to	flow of move width erve width to vehicle the right for	vement AB, e r waiting vehi waiting vehic	cles in str				
Geometry :	Input W	11	V-rBA	50	w-BA	4.7	-	Calculated	0.968
width <2.5m2	W-CR ed C-A, residual ? (Yes: 1, No: 0) I Share LT&RT? (Yes: 1, No: 0)	0 0 1	V-IBA V-rBC V-rCB	50 50 50	w-BC w-CB	4.7		E ₋ F Y	1.029 1.029 0.62
Analysis :	Traffic Flow pcu/hr	AM	PM 1000	Capacity pcu/hr	AM	PM			
	q-CA q-CB q-AB	1315 125 50	1090 150 60	Q-BA _ Q-BC _ Q-CB _	136 500 493	169 510 502	- - (If C-B		
	q-AC	1130	1080	Q-CA	N/A	N/A	blocked C-A)		
					0.4.4	000	Road		
	q-BA	20	10	Q-BAC	241	382	Share LT&RT)		
	q-BC f	30 0.600	50 0.833	Q-BAC - –	241	382			
Results :		30 0.600	50 0.833	Q-BAC _	B-A B-C C-B C-A B-AC	AM N/A N/A 0.25 N/A 0.21	PN N/A 0.30	<u>4</u>	
Results :	q-BC	30 0.600	50 0.833	Q-BAC	B-A B-C C-B C-A	AM N/A N/A 0.25 N/A	PN N/A 0.30 N/A	<u>4</u>	

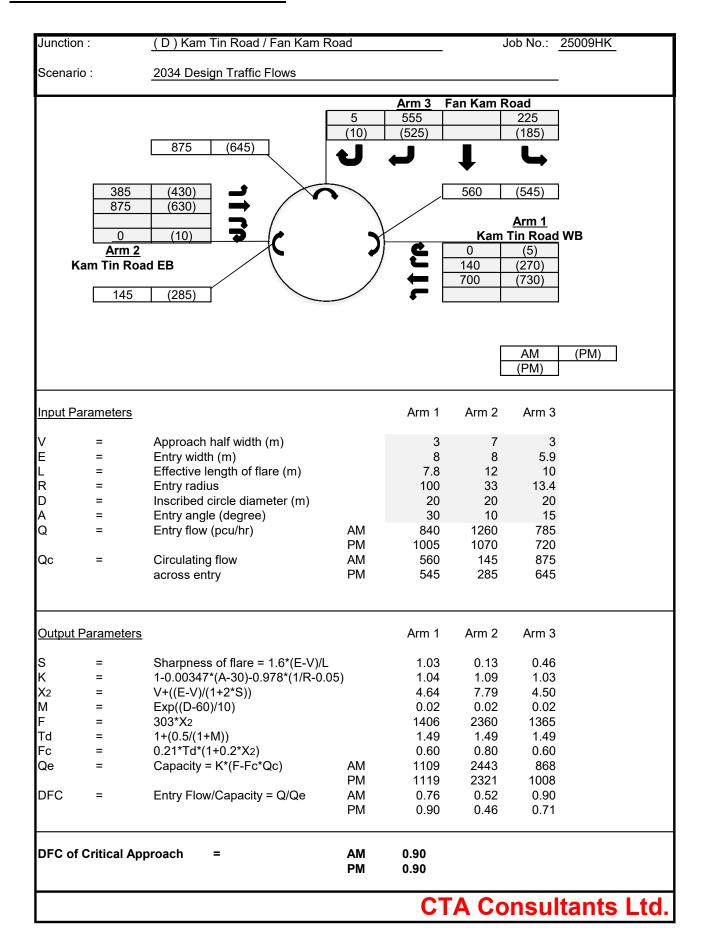


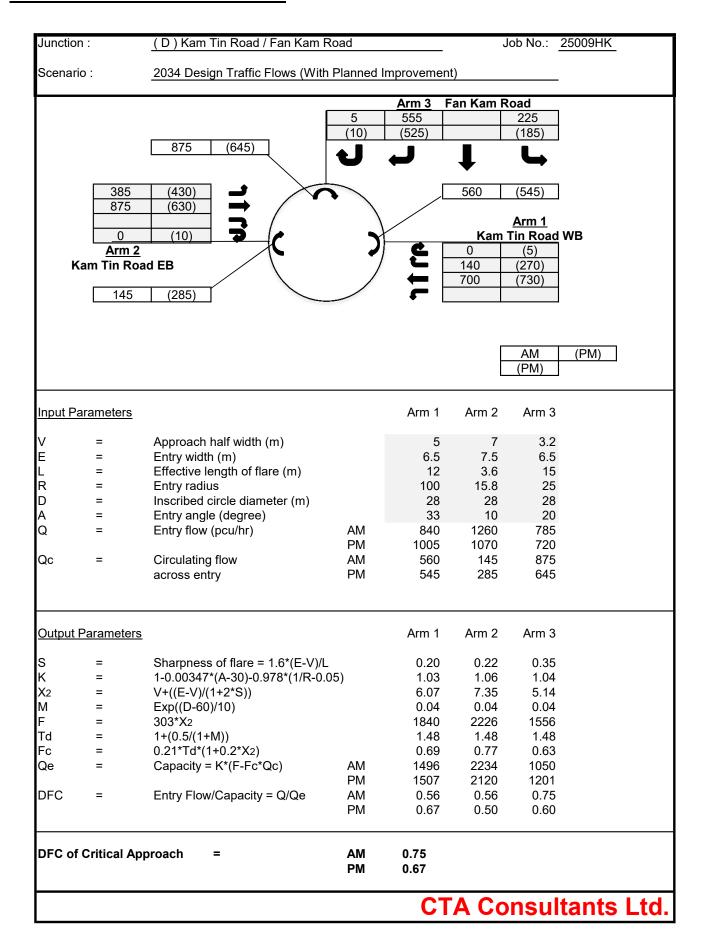

TRAFFIC SIGNALS CALCULATION Junction: (E) Kam Tin Road Job No. 25009HK CTA Consultants Ltc														Ltd.								
Junction: Description:	(E) Ka 2034 F	ım Tin Referen	Road ce Tra	ıffic F	lows									-								
	tion	notation	es	ege	(m)	Radiu	us (m)	le 0/1	Pro. Tu		ow (pcu/hr)	tion Flow hr)	Revi Saturatio (pcu	n Flow	Satu	Revised ration (pcu/hr)	1	A.M. Pea	k		P.M. Pea	k
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Left	Right	Nearside 0/1	A.M.	P.M.	Saturation Flow (pcu/hr)	Total Saturation Flow (pcu/hr)	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Kam Tin Road	W	\leftarrow	A	1	3.4	0	0	1	0%	0%	1955	1955	1955	1955	1955	1955	1220	0.624	0.624	1145	0.586	0.586
Kam Tin Road	Е	\rightarrow	A	1	3.4	0	0	1	0%	0%	1955	1955	1955	1955	1955	1955	1200	0.614		1090	0.558	
Pedestrian crossing		← ····>	Вр	2		Min. C	Crossin	ng Timo	e = 5GM Traffic								A.M	I. Check l	Phase	P.M	I. Check F	·hase
									12	200(109	00) ->			←	1220(1	145)	Ey L (sec) C (sec) y pract. R.C. (%)	120 0.750		Ey L (sec) C (sec) y pract. R.C. (%)	120 0.750	
Stage/Phase Diagran 1	1:	2 I/G =	 = 4s +	12s	<u>—</u>																	


TRAFFIC SIGNAL	AFFIC SIGNALS CALCULATION Junction: (E) Kam Tin Road Graduation Job No. 25009HK CTA Consultant													ants	Ltd.							
Junction: Description:				ıffic F	lows (With P	lanned	l Impr	ovement)					-							
	tion	notation	es	ege	(m)	Radiu	us (m)	le 0/1	Pro. Tu		ow (pcu/hr)	tion Flow hr)	Revi Saturatio (pcu	n Flow	Satu	Revised ration (pcu/hr)	1	A.M. Peal	k		P.M. Pea	k
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Left	Right	Nearside 0/1	A.M.	P.M.	Saturation Flow (pcu/hr)	Total Saturation Flow (pcu/hr)	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Kam Tin Road	W	\leftarrow	A	1	4.4	0	0	1	0%	0%	2055	2055	2055	2055	2055	2055	1220	0.594	0.594	1145	0.557	0.557
Kam Tin Road	Е	\rightarrow	A	1	4.4	0	0	1	0%	0%	2055	2055	2055	2055	2055	2055	1200	0.584		1090	0.530	
Pedestrian crossing		<i>←</i> →>	Вр	2		Min. C	Crossin	ag Time	e = 5GM								A.M	I. Check I	Phase	P.M	I. Check F	Phase
									12	00(109	90) ->			←	1220(1	145)	Ey L (sec) C (sec) y pract. R.C. (%)	120 0.758		Ey L (sec) C (sec) y pract. R.C. (%)	120 0.758	
Stage/Phase Diagran 1 → I/G = 5s	n:	2 I/G =	—	11s	<u> </u>																	

FRAFFIC SIGNALS C	CALCULATIO	N					Job No:	25009Н	K			CT	A Co	onsul	tants	Ltd.
	(F) Kam Tin 2034 Referen							nent)			-					
Approach	Direction Movement notation Phase	Stage	Width (m)	Radius (m)		Nearside 0/1		ning (%)	Revised Saturation Flow (pcu/hr)		A.M. Peak			P.M. Peak		
				Left	Right	Nearsi	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical
Kam Tin Road	E 1 E 1 E 1	A A A	3.65 3.65 3.65	0 0 0	0 0 0	1 0 0	0% 0% 0%	0% 0% 0%	1980 2120 2120	1980 2120 2120	901 965 965	0.455 0.455 0.455		745 798 798	0.376 0.376 0.376	
Kam Tin Road	W ← 2 W ← 2 W ← 2	A A A	3.80 3.80 5.00	0 0 15	0 0 0	0 0 1	0% 0% 100%	0% 0% 100%	2135 2135 1925	2135 2135 1925	1160 1160 575	0.543 0.543 0.299	0.543	1135 1135 290	0.532 0.532 0.151	0.532
Tsing Long Highway Slip Road	N 3 N 3 N 3 N 3	B B B	3.50 3.50 3.60 3.50	20 25 0 0	0 0 30 28	1 0 0 0	100% 100% 100% 100%	100% 100% 100% 100%	1830 1985 2015 2000	1830 1985 2015 2000	163 177 100 100	0.089 0.089 0.050 0.050	0.089	245 265 103 102	0.134 0.134 0.051 0.051	0.134
*Pedestrian Crossing	4p 5p	A B			Crossinį Crossinį		= =	7 Gm + 7 Gm +								
Notes:					ic Flow		r)	[AM (P	M)]		εγ	Check Phase 0.632	•	εγ	Check Phas 0.665	se
					830(234) — 40(510)	>	5)	\leftarrow	2320(22		L (sec) C (sec) y pract. R.C. (%)	10 120 0.825 30%		L (sec) C (sec) y pract. R.C. (%)	10 120 0.825	

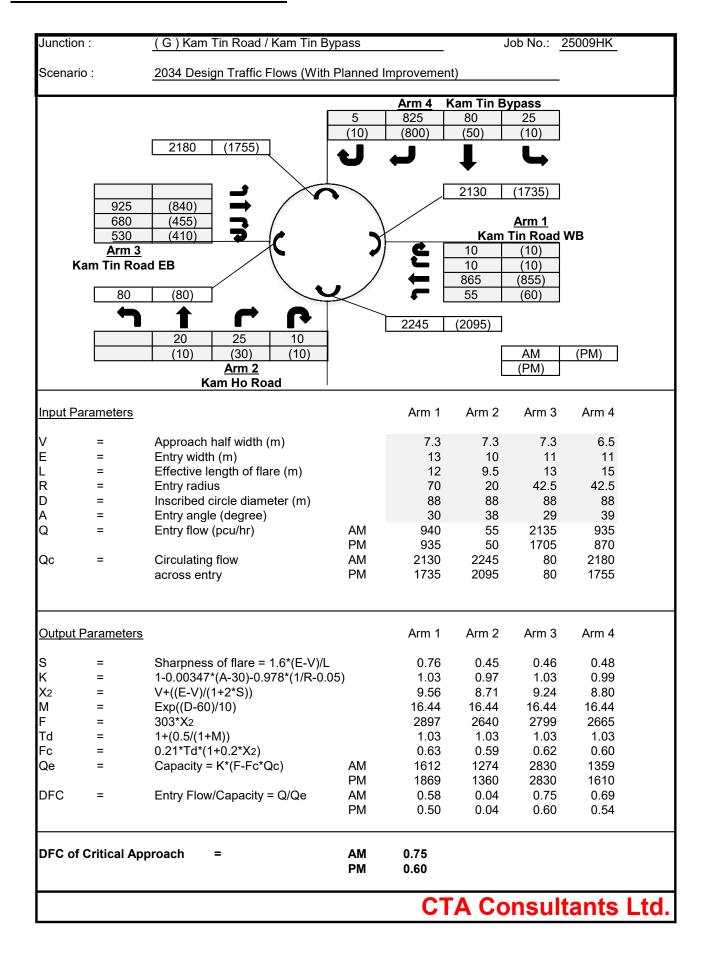
	340(310) 200(203) 2320(3 V 575(29	
Stage / Phase Diagrams		
	5p —	
I/G = 5 I/G = 7		

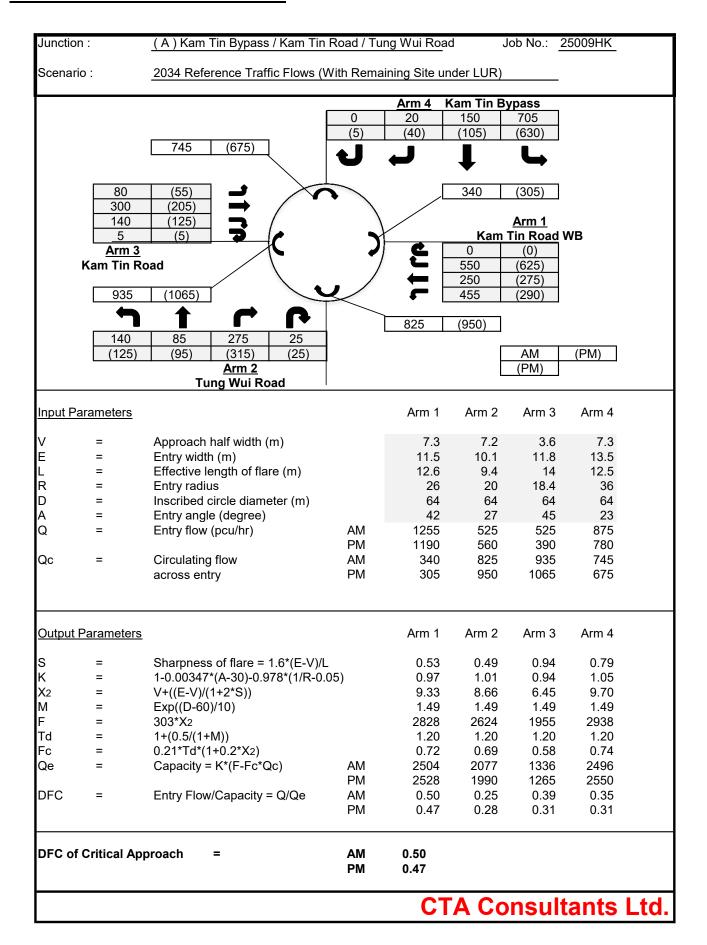




Junction :	-	(C)Kam T	in Road / I	Kam Tai Roa	ad		_ Job N	0.:	25009HK
Scenario :	-	2034 Desigr							
	50 1140 Arm A	(60) (1085) Kam Tin Ro	Arm B 20 (10) J oad EB	30 (50)	125 1320	(150) (1095) Kam Tin F	Al (Pl		(PM)
The predictive	Q-BC =	D(627 + 14\	N-CR - Y(.364q-AC	0.364q-AC + + 0.144q-AB		B + 0.229c	_I -CA + 0.52q-CB))		
The geometric	E =	(1 + 0.094(v (1 + 0.094(v	v-BA - 3.69 v-BC - 3.69)9(V-rBC -	120))	0.0006(V-IBA - 150	D)))	
where	q-AB, etc =	major road v central rese lane width to visibility to tl	low of move width rve width o vehicle ne right fo		icles in stre				
Geometry :	Input W	7	V-rBA		w-BA	4.7	-		0.968
width <2.5m	W-CR ed C-A, residual ? (Yes: 1, No: 0) I Share LT&RT?	1	V-IBA V-rBC V-rCB	50	w-BC w-CB	3.5		E_ F Y_	1.029 0.924 0.759
Analysis :	(Yes: 1, No: 0) Traffic Flow pcu/hr	AM	PM	Capacity pcu/hr	AM	PM			
	q-CA q-CB q-AB	1320 125 50	1095 150 60	Q-BA _ Q-BC _ Q-CB _	27 437 385	69 452 396	- -		
	q-AC -	1140	1085	Q-CA	1215	1119	(If C-B blocked _C-A) (If Minor		
	q-BA	20	10	Q-BAC	62	235	Road Share LT&RT)		
	q-BC f	30 0.600	50 0.833	-					
Results :	Ratio of Flo	w-to-Capac	ity		B-A B-C C-B C-A B-AC	N/A N/A 0.32 1.09 0.80	N/A		
	Critical DFC					1.09	0.98		
						CTA	Consulta	ants	Ltd.

Junction :	-	(C) Kam T	in Road / I	Kam Tai Roa	d		_	Job No.:	25009HK
Scenario :	-	2034 Desig	n Traffic F	lows (With P	anned Imp	orovement)		
	50 1140 Arm A	(60) (1085) Kam Tin R	Arm B 20 (10) J oad EB	30 (50)	125 1320	(150) (1095) Kam Tin F	Road WB	AM (PM)	(PM)
The predictive	Q-BC =	D(627 + 14	W-CR - Y(.364q-AC	0.364q-AC + + 0.144q-AB		B + 0.229c	_I -CA + 0.52q-	-CB))	
The geometric	E =	(1 + 0.094(¹ (1 + 0.094(¹	w-BA - 3.6 w-BC - 3.6	e: 5))(1 + 0.000 5))(1 + 0.000 5))(1 + 0.000	9(V-rBC -	120))).0006(V-IBA	150))	
where	q-AB, etc =	major road central rese lane width t visibility to t	flow of move width erve width o vehicle the right fo	vement AB, e r waiting vehi waiting vehic	cles in stre				
Geometry :	Input W	11	V-rBA		w-BA	4.7	_	Calculated	0.968
width <2.5m	W-CR ed C-A, residual ? (Yes: 1, No: 0) d Share LT&RT?	0 0	V-IBA V-rBC V-rCB	50	w-BC __ w-CB __	4.7		E. F Y]	1.029 1.029 0.621
Analysis :	(Yes: 1, No: 0) Traffic Flow pcu/hr	AM	PM	Capacity pcu/hr	AM	PM			
	q-CA ₋ q-CB ₋ q-AB ₋	1320 125 50	1095 150 60	Q-BA _ Q-BC _ Q-CB _	133 497 490	167 509 501	- - -		
	q-AC	1140	1085	Q-CA	N/A	N/A	(If C-B blocked C-A)		
	q-BA	20	10	Q-BAC	237	380	(If Minor Road Share LT&RT)		
	q-BC ⁻ f ₋	30 0.600	50 0.833	- - -			,		
Results :	Ratio of Flor	w-to-Capad	city		B-A B-C C-B C-A B-AC	N/A N/A 0.25 N/A 0.21	N/A N/A 0.30		
	Critical DFC					0.25	0.30	14. 4	- 1 ()
						CTA	Consu	ııtant	s Ltd.

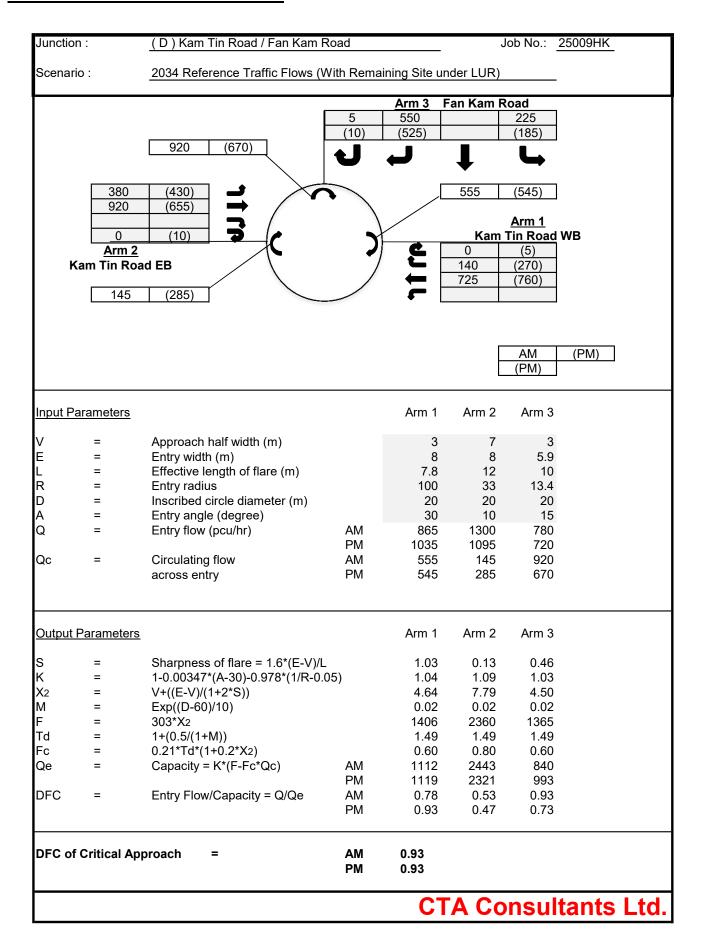


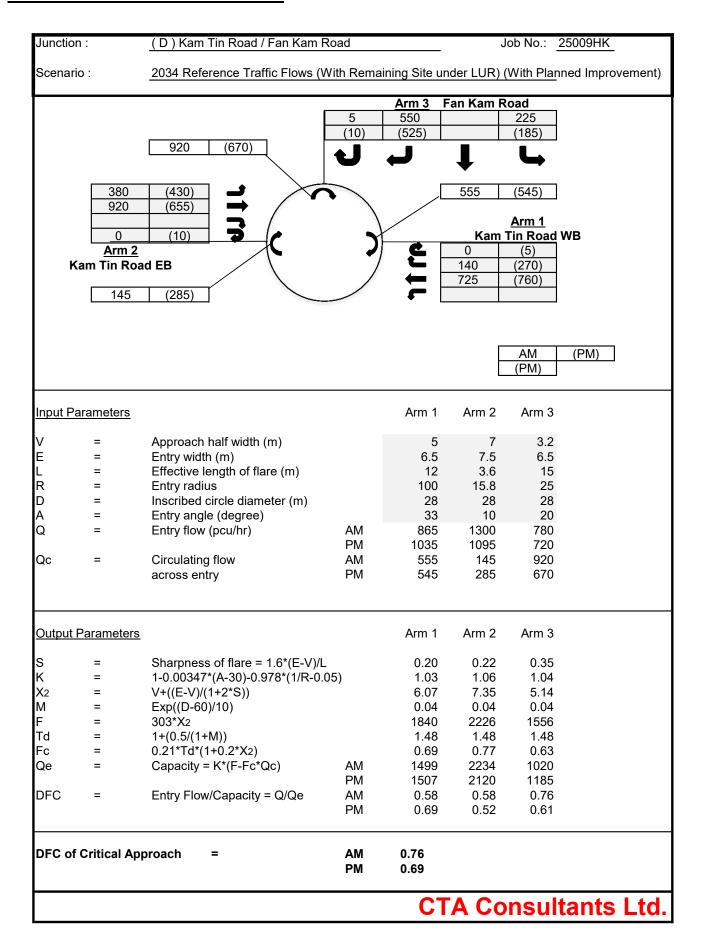


TRAFFIC SIGNAL	S CAL	CULA	TION						Job No:	25009I	НK						(CTA	Cor	sult	ants	Ltd.
Junction: Description:				Flow	/S									-								
	tion	notation	se	ge .	(m)	Radio	us (m)	le 0/1	Pro. To	urning %)	ow (pcu/hr)	tion Flow hr)	Revi Saturatio (pcu	on Flow	Satu	Revised ration (pcu/hr)	1	A.M. Pea	k		P.M. Pea	k
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Left	Right	Nearside 0/1	A.M.	P.M.	Saturation Flow (pcu/hr)	Total Saturation Flow (pcu/hr)	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Kam Tin Road	W	\leftarrow	A	1	3.4	0	0	1	0%	0%	1955	1955	1955	1955	1955	1955	1240	0.634	0.634	1150	0.588	0.588
Kam Tin Road	Е	\rightarrow	Α	1	3.4	0	0	1	0%	0%	1955	1955	1955	1955	1955	1955	1215	0.621		1100	0.563	
Pedestrian crossing		«···»	Вр	2		Min. C	Crossin	ng Tim	e = 5GM	1+7FG							A.M	. Check l	Phase		. Check F	Phase
									12	215(110	00) ->	•		←	1240(1	150)	Ey L (sec) C (sec) y pract. R.C. (%)	120 0.750		Ey L (sec) C (sec) y pract. R.C. (%)	120 0.750	
Stage/Phase Diagran 1	n:	2 I/G =	<u> </u>	12c	<u> </u>																	

TRAFFIC SIGNAL									Job No:	25009F	łK						(CTA	Cor	sult	ants	Ltd.
Junction: Description:				Flow	s (Wit	h Plan	ned Im	prove	ment)						-							
	tion	t notation	se	ae	r (m)	Radiu	us (m)	de 0/1	Pro. Tu	urning 6)	ow (pcu/hr)	tion Flow Ar)	Revi Saturatio (pcu	n Flow	Satu	Revised ration pcu/hr)	A	A.M. Pea	k		P.M. Pea	k
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Left	Right	Nearside 0/1	A.M.	P.M.	Saturation Flow (pcu/hr)	Total Saturation Flow (pcu/hr)	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Kam Tin Road	W	\leftarrow	A	1	4.4	0	0	1	0%	0%	2055	2055	2055	2055	2055	2055	1240	0.603	0.603	1150	0.560	0.560
Kam Tin Road	Е	\rightarrow	A	1	4.4	0	0	1	0%	0%	2055	2055	2055	2055	2055	2055	1215	0.591		1100	0.535	
Pedestrian crossing Notes:		←→	Вр	2		Min. C	Crossin	ag Time	e = 5GM Traffic		M = 11s						A.M	. Check	Phase	P.M	. Check F	Phase
									12	215(110	00) ->			\leftarrow	1240(1	150)	Ey L (sec) C (sec) y pract. R.C. (%)	120 0.758		Ey L (sec) C (sec) y pract. R.C. (%)	120 0.758	
Stage/Phase Diagran 1 → I/G = 5s	n:	2 I/G =		↑ - - - - - - - - - -	<u> </u>																	

TRAFFIC SIGNALS C	CALCULATIO	N					Job No:	25009H	K			CT	A Co	onsul	tants	Ltd.
	(F) Kam Tin							`								
Description:	2034 Design	raine	Flows	(With	Pianne	ea 1mp	rovement)			-					
Approach	Direction Movement notation Phase	Stage	Width (m)	Radi	us (m)	Nearside 0/1	Pro. Tur	ning (%)	Revi Satur Flow (1	ation		A.M. Peak			P.M. Peal	ζ.
Арргоасп	Direction Movement notation Phase	Sta	Widt	Left	Right	Nearsi	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Kam Tin Road	E 1 E 1 E 1	A A A	3.65 3.65 3.65	0 0 0	0 0 0	1 0 0	0% 0% 0%	0% 0% 0%	1980 2120 2120	1980 2120 2120	901 965 965	0.455 0.455 0.455		745 798 798	0.376 0.376 0.376	
Kam Tin Road	W ← 2 W ← 2 W ← 2	A A A	3.80 3.80 5.00	0 0 15	0 0 0	0 0 1	0% 0% 100%	0% 0% 100%	2135 2135 1925	2135 2135 1925	1160 1160 585	0.543 0.543 0.304	0.543	1135 1135 295	0.532 0.532 0.153	0.532
Tsing Long Highway Slip Road	N 3 3 N 3 N 3 N 3 3	B B B	3.50 3.50 3.60 3.50	20 25 0 0	0 0 30 28	1 0 0	100% 100% 100% 100%	100% 100% 100% 100%	1830 1985 2015 2000	1830 1985 2015 2000	163 177 103 102	0.089 0.089 0.051 0.051	0.089	245 265 105 105	0.134 0.134 0.052 0.052	0.134
*Pedestrian Crossing	4p 5p	A B			Crossin _i Crossin _i			7 Gm +								
Notes:				Traffi	c Flow	(pcu /]	hr)	[AM (P	M)]			Check Phase			Check Phas	se
				28	330(234) 5 40(510)	0) ->		<u>←</u>	2320(22 585(295		Ey L (sec) C (sec) y pract. R.C. (%)	0.632 10 120 0.825 30%		Ey L (sec) C (sec) y pract. R.C. (%)	0.665 10 120 0.825	
Stage / Phase Diagrams A 1 $4p$ $I/G = 5$	2 B -	—————————————————————————————————————	5p	> 5p												

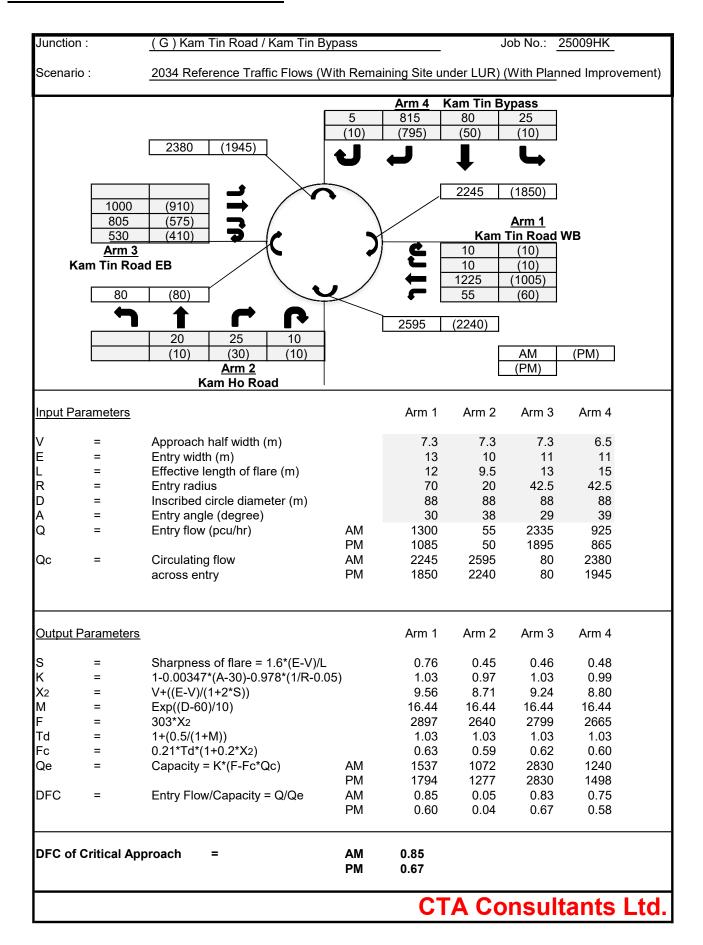


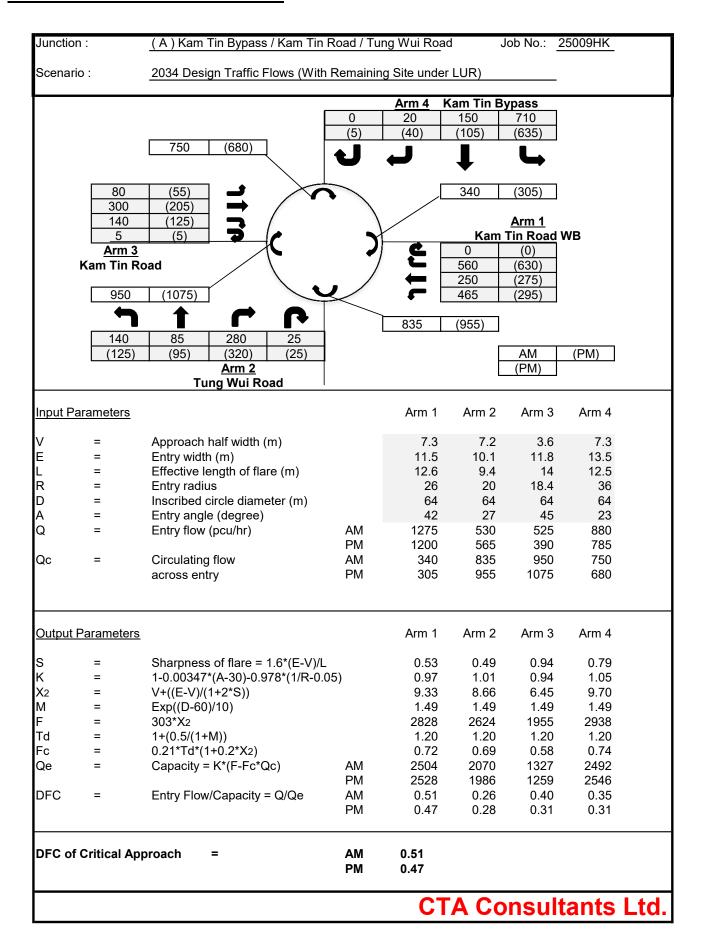


TRAFFIC SIGNALS									Job No:	25009HK							(CTA	Cor	isult	ants	Ltd.
Junction: Obscription:								ıg Site	e under LU	R)				-								
	tion	t notation	se	eg	ı (m)	Radii	us (m)	le 0/1	Pro. Tui	rning (%)	ow (pcu/hr)	ition Flow 'hr)	Revi Saturatio (pcu	n Flow	Satu	Revised ration (pcu/hr)	1	A.M. Pea	k		P.M. Pea	k
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Left	Right	Nearside 0/1	A.M.	P.M.	Saturation Flow (pcu/hr)	Total Saturation Flow (pcu/hr)	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Kam Tin Bypass	W	Z	С	2	3.0	0	15	0	100%	100%	2055	2055	1870	1870	1870	1870	65	0.035		65	0.035	
	W	Γ,	В	1,2	3.5	0	0	0	0%	0%	2105	0	2105	2105	0	0	388	0.184		426	0.202	
	W	~	В	1,2	3.0	0	0	1	0%	0%	1775	3880	1775	1775	3880	3880	327	0.184		359	0.202	
Kam Tin Bypass	Е	Z	A	1	3.0	13	0	1	15%	21%	1915	3970	1880	1870	3935	3925	394	0.210	0.210	365	0.195	0.195
	E	7	A	1	3.0	0	0	0	0%	0%	2055	0	2055	2055	0	0	431	0.210		400	0.195	
Kong To Road	S	4	D	3	3.5	10	12	1	46% / 54%	56% / 44%	1461	1461	1285	1285	1285	1285	230	0.179	0.179	170	0.132	0.132
Pedestrian crossing		<>	Ер	4		Min. (Crossing	g Time	e = 12GM +	15FGM = 2	7s											
		<>	Fp	2,3,4		Min. 0	Crossing	g Time	e = 7GM + 7	FGM = 14s												
		<>	Gp	4		Min. 0	Crossing	g Time	e = 7GM + 7	FGM = 14s												
Notes:									Traffic Flo	w (pcu / hr) 60(75) 765(690)	77	*	105(95)	2 1	65(65) 715(78:	5)	A.M. Ey L (sec) C (sec) y pract. R.C. (%)			P.M Ey L (sec) C (sec) y pract. R.C. (%)	108	'hase
Stage/Phase Diagram:		2 Fp			ONG TAI ROAD	B	3		D KONG TALI POLAD		Fp Sp		KONG TAI									
				TIN BYPASS					in ell'Ass			KAN TIN										
/G=3s		I/G=6	ós + :	5s			I/G=5	is			I/G=4	s (Min	. Green	Time for	r Ep=27	7s)						

Junction :	-	(C) Kam T	in Road / I	Kam Tai Roa	nd		-	Job No.:	25009HK
Scenario :	-	2034 Refer	ence Traffi	c Flows (Wit	h Remaini	ng Site und	der LUR)		
	50 1180 Arm A	(60) (1105) Kam Tin R	Arm B 20 (10) J oad EB	Kam Tai Ro 30 (50)	125 1345	(150) (1120) Kam Tin F	Road WB	AM (PM)	(PM)
The predictive	Q-BC =	D(627 + 14	W-CR - Y().364q-AC	0.364q-AC + + 0.144q-AB		B + 0.229q	-CA + 0.520	q-CB))	
The geometric	E =	(1 + 0.094(¹ (1 + 0.094(¹	w-BA - 3.6 w-BC - 3.6	e: 5))(1 + 0.000 5))(1 + 0.000 5))(1 + 0.000)9(V-rBC -	120))).0006(V-IB	A - 150))	
where	q-AB, etc =	major road central rese lane width t visibility to t	flow of move width erve width to vehicle the right fo		icles in str				
Geometry :	Input W	7	V-rBA	50	w-BA	4.7		Calculated	0.968
width <2.5m	W-CR ed C-A, residual ? (Yes: 1, No: 0) d Share LT&RT?	1 1	V-IBA V-rBC V-rCB	50	w-BC w-CB	3.5		E ₋ F Y <u>-</u>	0.924 0.759
Analysis :	(Yes: 1, No: 0) Traffic Flow pcu/hr	AM	PM	Capacity pcu/hr	AM	PM			
	q-CA q-CB q-AB	1345 125 50	1120 150 60	Q-BA _ Q-BC _ Q-CB _	12 426 375	60 446 391			
	q-AC	1180	1105	Q-CA	1199	1110	(If C-B blocked C-A)		
	q-BA	20	10	Q-BAC	30	215	(If Minor Road Share LT&RT)		
	q-BC] f _	30 0.600	50 0.833	- -					
Results :	Ratio of Flo	w-to-Capad	city		B-A B-C C-B C-A B-AC	AM N/A N/A 0.33 1.12 1.68	PM N/A N/A 0.38 1.01 0.28	- - - -	
	Critical DFC					1.68	1.01	14 4	141
						CTA	Cons	ultant	s Ltd.

Junction :		(C)KamT	in Road / I	Kam Tai Roa	ıd		_	Job No.:	25009HK
Scenario :		2034 Refere	ence Traffi	ic Flows (Wit	h Remainir	ng Site und	der LUR) (Wi	th Planned	l Improveme
			20 (10)	Kam Tai Ro 30 (50)	oad] _г	AM	(PM)
	50 1180 Arm A	(60) (1105) Kam Tin Ro	pad EB	<u></u>	125 1345 Arm C	(150) (1120) Kam Tin F	Road WB	(PM)	<u>(FIW)</u>
The predictive	Q-BC =	D(627 + 14\	V-CR - Y(364q-AC	0.364q-AC + + 0.144q-AB		3 + 0.229q	-CA + 0.52q·	-CB))	
The geometric	E =	(1 + 0.094(v)) (1 + 0.094(v))	v-BA - 3.69 v-BC - 3.69		9(V-rBC -	120))).0006(V-IBA	150))	
where	q-AB, etc =	major road v central rese lane width to visibility to the	low of move width rve width o vehicle ne right fo	vement AB, e r waiting veh waiting vehic	icles in stre				
Geometry :	<u>Input</u> W	11	V-rBA	50	w-BA	4.7	_	Calculated D	<u>i</u> 0.968
	W-CR ed C-A, residual ? (Yes: 1, No: 0)	0	V-IBA V-rBC		w-BC w-CB	4.7 4.7		E.	1.029 1.029
Minor Road	Share LT&RT? (Yes: 1, No: 0)	1	V-rCB	50				Y	0.621
Analysis :	Traffic Flow pcu/hr q-CA	AM 1345	PM 1120	Capacity pcu/hr Q-BA	AM 121	PM 159			
	q-CA q-CB q-AB	125 50	150 60	Q-BC _ Q-CB _	488	505 496	- - (If C-B		
	q-AC	1180	1105	Q-CA	N/A	N/A	blocked C-A)		
	q-BA	20	10	Q-BAC	220	371	Road Share LT&RT)		
	q-BC f	0.600	50 0.833						
Results :	Ratio of Flo	w-to-Capac	ity		B-A B-C C-B C-A B-AC	AM N/A N/A 0.26 N/A 0.23	N/A N/A 0.30		
	Critical DFC					0.26	0.30		
						CTA	Consu	ıltant	s Ltd.

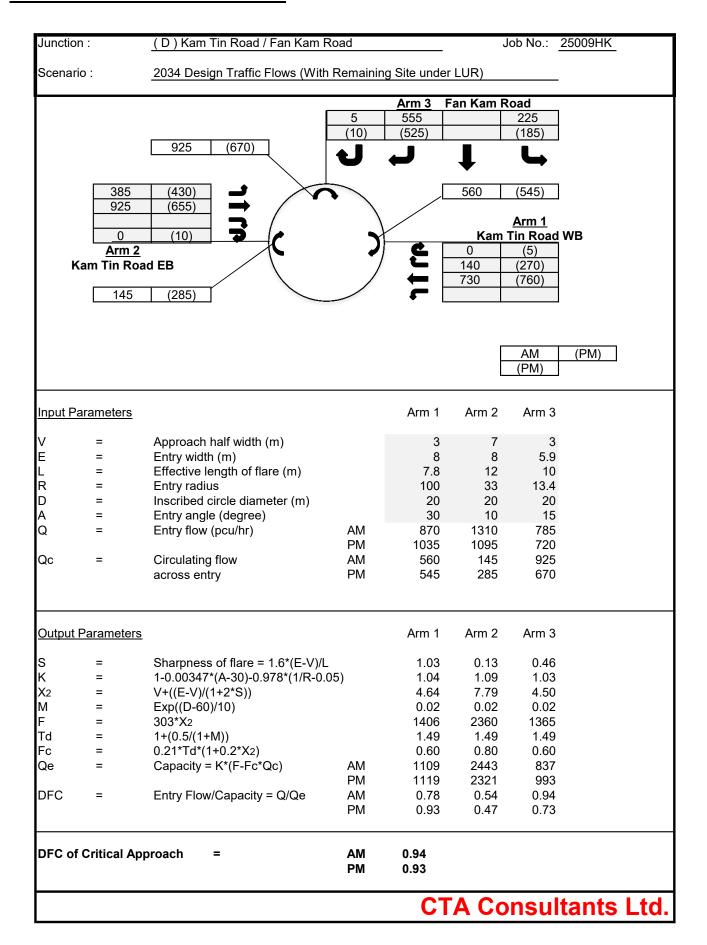


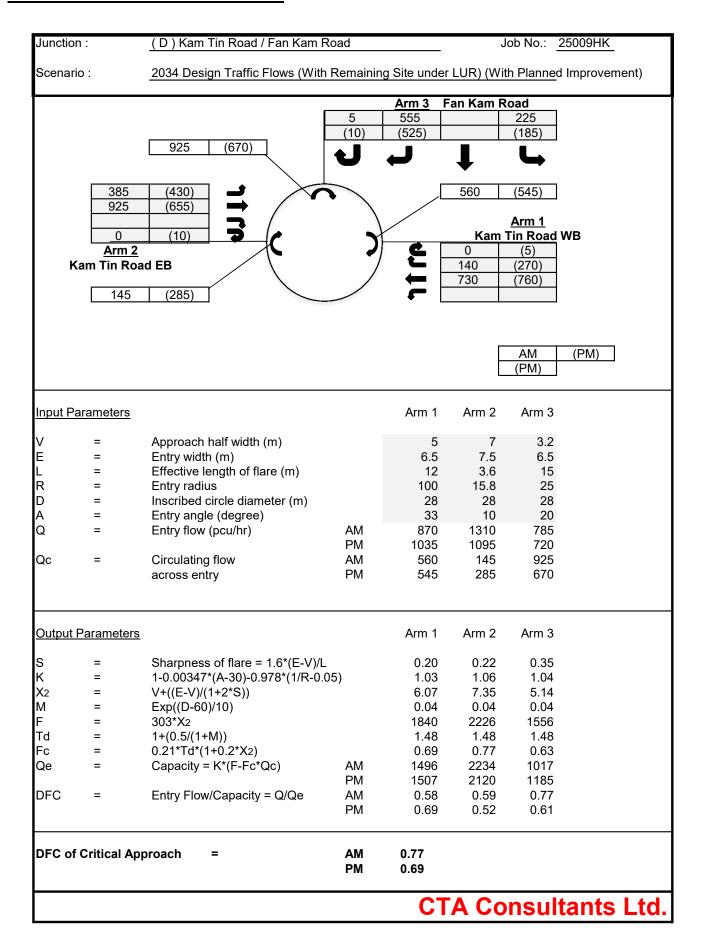

TRAFFIC SIGNAL	S CAL	CULA	TION						Job No:	25009F	łK						(CTA	Cor	sult	ants	Ltd.
Junction: Description:				ıffic F	lows (V	With R	Remain	ing Sit	e under	LUR)				-								
	tion	notation	se	eg.	(m)	Radiu	us (m)	le 0/1	Pro. Tu		ow (pcu/hr)	tion Flow hr)	Revi Saturatio (pcu	on Flow	Satu	Revised ration (pcu/hr)	I	A.M. Pea	k		P.M. Pea	k
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Teft	Right	Nearside 0/1	A.M.	P.M.	Saturation Flow (pcu/hr)	Total Saturation Flow (pcu/hr)	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Kam Tin Road	W	\leftarrow	A	1	3.4	0	0	1	0%	0%	1955	1955	1955	1955	1955	1955	1250	0.639	0.639	1175	0.601	0.601
Kam Tin Road	Е	\rightarrow	A	1	3.4	0	0	1	0%	0%	1955	1955	1955	1955	1955	1955	1250	0.639		1115	0.570	
Pedestrian crossing		<>	Вр	2		Min. C	Crossin	g Time	e = 5GM								A.M	. Check	Phase	P.M	. Check P	rhase
									12	250(111	5) ->			←	1250(1	175)	Ey L (sec) C (sec) y pract. R.C. (%)	120 0.750		Ey L (sec) C (sec) y pract. R.C. (%)	120 0.750	
Stage/Phase Diagran 1 → I/G = 5s	1:	2 I/G =		- 12s	<u> </u>																	

TRAFFIC SIGNAL	S CAL	CULA	TION						Job No:	25009F	łK						(CTA	Cor	sult	ants	Ltd.
Junction: Description:				iffic F	lows (V	With R	emaini	ing Sit	e under	LUR) ((With P	lanned	Improven	nent)	-							
	ion	notation	e.	9.	(m)	Radiu	us (m)	e 0/1	Pro. Tu		w (pcu/hr)	ion Flow 1r)	Revi Saturatio	n Flow	Satu	Revised ration (pcu/hr)	A	A.M. Pea	k		P.M. Pea	k
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Left	Right	Nearside 0/1	A.M.	P.M.	Saturation Flow (pcu/hr)	Total Saturation Flow (pcu/hr)	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Kam Tin Road	W	\leftarrow	A	1	4.4	0	0	1	0%	0%	2055	2055	2055	2055	2055	2055	1250	0.608	0.608	1175	0.572	0.572
Kam Tin Road	E	\rightarrow	A	1	4.4	0	0	1	0%	0%	2055	2055	2055	2055	2055	2055	1250	0.608		1115	0.543	
Pedestrian crossing		←>	Вр	2		Min. C	Crossin	g Time	e = 5GM Traffic								A.M	. Check	Phase	P.M	. Check P	rhase
									12	250(111	5) →			←	1250(1	175)	Ey L (sec) C (sec) y pract. R.C. (%)	120 0.758		Ey L (sec) C (sec) y pract. R.C. (%)	120 0.758	
Stage/Phase Diagran 1	n:	2	—	← →	<u> </u>																	
I/G = 5s		I/G =	4s +	lls																		

Junction: Description:	(F)	Kam '	Fin l	Road /	Tsing	Long	Highwa	y Slip	Road	dor I IID	(With	Dlanna	d Improve	mont)				
Description.	203	+ IXCIC	ı cıı	e IIa	inc ra) WS (VI	itii Kei	панни	g Site uni	uei LUK,			u improve	ment)				
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Radi	us (m)	Nearside 0/1	Pro. Tur	ning (%)	Rev Satur Flow (A.M. Peak			P.M. Peal	ζ
прргосси	Dire	Move	Ph	St	Widt	Left	Right	Nears	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical
Kam Tin Road	Е		1	A	3.65	0	0	1	0%	0%	1980	1980	968	0.489		807	0.408	
	E			A	3.65	0	0	0	0%	0%	2120	2120	1036	0.489		864	0.408	
	E	-	1	A	3.65	0	0	0	0%	0%	2120	2120	1036	0.489		864	0.408	
Kam Tin Road	W	-		A	3.80	0	0	0	0%	0%	2135	2135	1325	0.621	0.621	1208	0.566	0.566
	W		2	A A	3.80 5.00	0 15	0	0 1	0% 100%	0% 100%	2135 1925	2135 1925	1325 675	0.621 0.351		1208 330	0.566 0.171	
	vv	•	2	А	5.00	13	U	1	10070	10070	1923	1923	073	0.331		330	0.171	
Γsing Long Highway	N		3	В	3.50	20	0	1	100%	100%	1830	1830	163	0.089	0.089	245	0.134	0.134
Slip Road	N N	-	3	B B	3.50 3.60	25 0	0 30	0	100% 100%	100% 100%	1985 2015	1985 2015	177 128	0.089 0.064		265 130	0.134 0.065	
	N	-	3	В	3.50	0	28	0	100%	100%	2000	2000	127	0.064		130	0.065	
Pedestrian Crossing			4p 5p	A B			Crossing Crossing			7 Gm + 7 Gm +								
			Эр	ь		IVIIII.	Crossin	grime	_	7 Gill 1	/ TIII —	145						
otes:						Traff	ic Flow	(pcu / l	nr)	[AM (P	M)]			Check Phase	e		Check Phas	e
							040(253:						εу	0.710		εу	0.699	
						3	040(253) 7					L (sec)	10		L (sec)	10	

	T-11-1	[()]		
			εy 0.710	εy 0.699
	3040(2535)		L (sec) 10	L (sec) 10
			C (sec) 120	C (sec) 120
	<⊓		y pract. 0.825	y pract. 0.825
	I I		R.C. (%) 16%	R.C. (%) 18%
	340(510) 255(260)	2650(2415)		
		675(330)		
Stage / Phase Diagrams				
	-			
I/G = 5 I/G = 7				

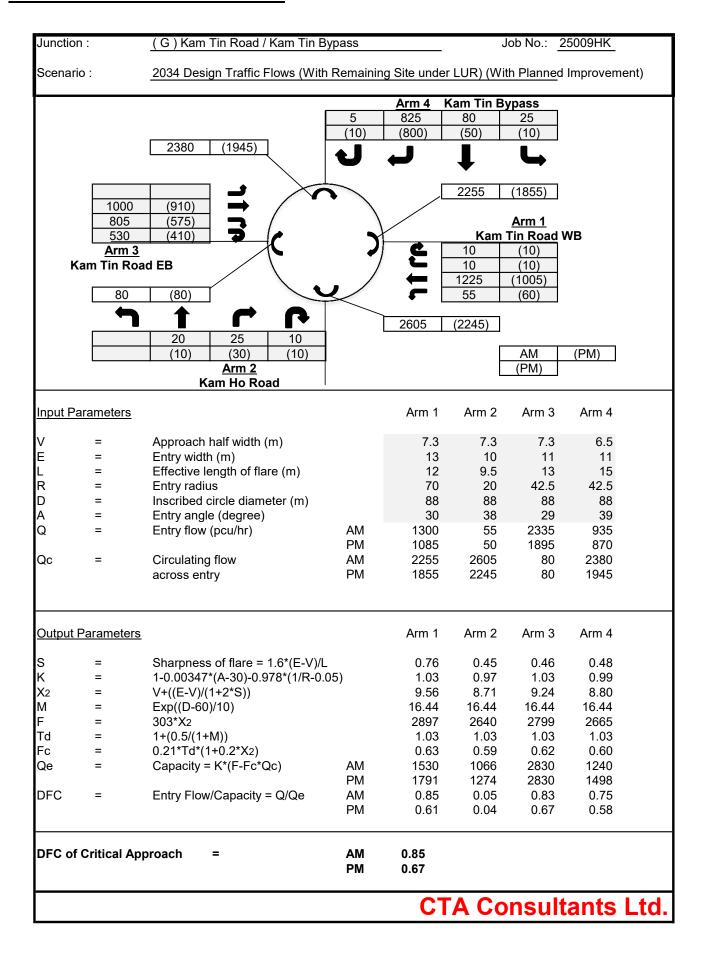




Junction:		CULAT							Job No:	25009HK							(CTA	Cor	ısulta	ants	Ltd.
Description:							ining S	ite ur	ider LUR)					-								
	tion	notation	se	je Se	(m)	Radii	us (m)	le 0/1	Pro. Tur	rning (%)	ow (pcu/hr)	tion Flow hr)	Revi Saturatio (pcu	n Flow	Satu	Revised ration (pcu/hr)	A	A.M. Peal	k		P.M. Peal	k
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Left	Right	Nearside 0/1	A.M.	P.M.	Saturation Flow (pcu/hr)	Total Saturation Flow (pcu/hr)	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Kam Tin Bypass	W	2	С	2	3.0	0	15	0	100%	100%	2055	2055	1870	1870	1870	1870	65	0.035		65	0.035	
	W	Γ,	В	1,2	3.5	0	0	0	0%	0%	2105	0	2105	2105	0	0	393	0.187		429	0.204	
	W	~	В	1,2	3.0	0	0	1	0%	0%	1775	3880	1775	1775	3880	3880	332	0.187		361	0.204	
Kam Tin Bypass	E E	RN 7	A A	1	3.0	13	0	1	15% 0%	20% 0%	1915 2055	3970 0	1880 2055	1870 2055	3935 0	3925 0	397 433	0.211	0.211	367 403	0.196 0.196	0.196
Kong To Road	S	4	D	3	3.5	10	12	1	46% / 54%	56% / 44%	1461	1461	1285	1285	1285	1285	230	0.179	0.179	170	0.132	0.132
Notes:									Traffic Flov	w (pcu / hr) 60(75) 770(695)	~ ~ ~	ل	105(95) L	2 6	65(65) 725(796)))	A.M Ey L (sec) C (sec) y pract. R.C. (%)	0.508			108	hase

Junction :	-	(C)Kam T	in Road / I	Kam Tai Roa	nd			Job No.:	25009HK
Scenario :	-	2034 Desigr	n Traffic F	lows (With R	emaining S	Site under	LUR)		
	50 1190 Arm A	(60) (1110) Kam Tin Ro	20 (10) J pad EB	30 (50)	125 1350	(150) (1125) Kam Tin F	Road WB	AM (PM)	(РМ)
The predictive	Q-BC =	D(627 + 14\	N-CR - Y(.364q-AC	0.364q-AC + + 0.144q-AB		3 + 0.229c	_I -CA + 0.52q	-CB))	
The geometric	E =	(1 + 0.094(v (1 + 0.094(v	v-BA - 3.69 v-BC - 3.69)9(V-rBC -	120))	D.0006(V-IB <i>A</i>	A - 150))	
where	q-AB, etc =	major road v central rese lane width to visibility to tl	low of move width rve width o vehicle ne right fo		icles in stre				
Geometry :	Input W W-CR	7 0	V-rBA V-IBA		w-BA w-BC	4.7 4.7		Calculated D E	0.968 1.029
width <2.5m	ed C-A, residual ? (Yes: 1, No: 0) d Share LT&RT?	1	V-rBC V-rCB	50	w-BC _ w-CB _	3.5		F Y	0.924
Analysis :	(Yes: 1, No: 0) Traffic Flow pcu/hr	AM	PM	Capacity pcu/hr	AM	PM			
	q-CA ₋ q-CB ₋ q-AB ₋	1350 125 50	1125 150 60	Q-BA _ Q-BC _ Q-CB _	9 423 372	57 445 390	-		
	q-AC	1190	1110	Q-CA	1195	1107	(If C-B blocked C-A)		
	q-BA	20	10	Q-BAC	22	210	(If Minor Road Share LT&RT)		
	q-BC ⁻ f ₋	30 0.600	50 0.833	- -			- ,		
Results :	Ratio of Flo	w-to-Capac	ity		B-A B-C C-B C-A B-AC	N/A N/A 0.34 1.13 2.32	N/A		
	Critical DFC					2.32	1.02		
						CTA	Consu	ıltant	s Ltd.

Junction :	_	(C) Kam T	in Road /	Kam Tai Roa	d		_	Job No.:	25009HK
Scenario :	-	2034 Desig	n Traffic F	lows (With R	emaining S	Site under	LUR) (With	Planned Im	provement)
	50 1190 Arm A	(60) (1110) Kam Tin R	Arm B 20 (10) J oad EB	Kam Tai Ro	125 1350	(150) (1125) Kam Tin F	Road WB	AM (PM)	(PM)
The predictive	Q-BC =	D(627 + 14	W-CR - Y(.364q-AC	0.364q-AC + + 0.144q-AB		B + 0.229q	-CA + 0.52	q-CB))	
The geometric	E =	(1 + 0.094(\ (1 + 0.094(\	w-BA - 3.6 w-BC - 3.6	e: 5))(1 + 0.000 5))(1 + 0.000 5))(1 + 0.000	9(V-rBC -	120))).0006(V-IB	A - 150))	
where	q-AB, etc = W = W-CR = w-BA, etc = v-rBA, etc =	major road central rese lane width t visibility to t	flow of move width erve width o vehicle he right fo	vement AB, e r waiting vehi waiting vehic	cles in stre				
Geometry :	Input W	11	V-rBA		w-BA	4.7		<u>Calculated</u>	0.968
width <2.5m?	W-CR d C-A, residual (Yes: 1, No: 0) Share LT&RT?	0 0 1	V-IBA V-rBC V-rCB	50	w-BC w-CB	4.7 4.7		E_ F Y_	1.029 1.029 0.621
Analysis :	(Yes: 1, No: 0) Traffic Flow pcu/hr	АМ	PM	Capacity pcu/hr	AM	PM			
	q-CA ₋ q-CB ₋ q-AB ₋	1350 125 50	1125 150 60	Q-BA _ Q-BC _ Q-CB _	118 486 479	157 503 495	- - - // 0 D		
	q-AC	1190	1110	Q-CA	N/A	N/A	(If C-B blocked C-A) (If Minor		
	q-BA	20	10	Q-BAC	216	368	Road Share LT&RT)		
	q-BC f	30 0.600	50 0.833	- - -			- ′		
Results :	Ratio of Flor	v-to-Capad	city		B-A B-C C-B C-A B-AC	N/A N/A 0.26 N/A 0.23	N/A N/A 0.30	- -	
	Critical DFC					0.26	0.30	14 4	- 1 ()
						CTA	Cons	ultant	s Ltd



TRAFFIC SIGNAL	S CAL	CULA	TION						Job No:	25009F	łK						(CTA	Cor	sult	ants	Ltd.
Junction: Description:				Flow	s (Wit	h Rem	aining	Site u	nder LU	R)				-								
	tion	notation	es	eg.	(m)	Radio	us (m)	le 0/1	Pro. Tu		ow (pcu/hr)	tion Flow hr)	Revi Saturatio (pcu	on Flow	Satu	Revised ration (pcu/hr)	,	A.M. Peal	k		P.M. Pea	k
Approach	Direction	Movement notation	Phase	əgas	Width (m)	Left	Right	Nearside 0/1	A.M.	P.M.	Saturation Flow (pcu/hr)	Total Saturation Flow (pcu/hr)	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Kam Tin Road	W	\leftarrow	A	1	3.4	0	0	1	0%	0%	1955	1955	1955	1955	1955	1955	1270	0.650	0.650	1180	0.604	0.604
Kam Tin Road	Е	\rightarrow	A	1	3.4	0	0	1	0%	0%	1955	1955	1955	1955	1955	1955	1265	0.647		1125	0.575	
Pedestrian crossing		<>	Вр	2		Min. C	Crossin	ng Time	e = 5GM Traffic									I. Check I	Phase		I. Check F	'hase
									12	265(112	5) →			←	1270(1		Ey L (sec) C (sec) y pract. R.C. (%)	120 0.750		Ey L (sec) C (sec) y pract. R.C. (%)	120 0.750	
Stage/Phase Diagran 1 → I/G = 5s	n:	2 I/G =	<u></u>	12s	<u> </u>																	

TRAFFIC SIGNAL	S CAL	CULA	TION						Job No:	25009F	łK						(CTA	Cor	sult	ants	Ltd.
Junction: Description:				Flow	s (Wit	h Rem	aining	Site u	nder LU	R) (Wi	th Plan	ned Imj	provement	t)	- -							
	tion	notation	se	ge	(m)	Radii	us (m)	le 0/1	Pro. Tu		ow (pcu/hr)	tion Flow hr)	Revi Saturatio (pcu	on Flow	Satu	Revised ration (pcu/hr)	1	A.M. Peal	k	P.M. Pea		k
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Left	Right	Nearside 0/1	A.M.	P.M.	Saturation Flow (pcu/hr)	Total Saturation Flow (pcu/hr)	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Kam Tin Road	W	\leftarrow	A	1	4.4	0	0	1	0%	0%	2055	2055	2055	2055	2055	2055	1270	0.618	0.618	1180	0.574	0.574
Kam Tin Road	Е	\rightarrow	A	1	4.4	0	0	1	0%	0%	2055	2055	2055	2055	2055	2055	1265	0.616		1125	0.547	
Pedestrian crossing Notes:		<i>←</i> >	Вр	2		Min. C	Crossin	ng Time	e = 5GM								A.M	I. Check I	Phase	P.M	. Check F	Phase
									12	265(112	≥5) →			←	1270(1	180)	Ey L (sec) C (sec) y pract. R.C. (%)	120 0.758		Ey L (sec) C (sec) y pract. R.C. (%)	120 0.758	
Stage/Phase Diagran	n:	2 I/G =	<u></u>	11s	<u> </u>																	

TRAFFIC SIGNALS C	ALC	CULA	TIO	N					Job No:	25009H	K			CT	A Co	nsul	tants	Ltd.
Junction: Description:										LUR) (V	Vith Pla	nned I1	mproveme	nt)				
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Radi	us (m)	Nearside 0/1	Pro. Turi	ning (%)	Rev Satur Flow (1	ation		A.M. Peak		P.M. Peak		
ripprouen	Dire	Move nota	Ph	St	Widt	Left	Right	Nears	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Kam Tin Road	E · E ·		1 1 1	A A A	3.65 3.65 3.65	0 0 0	0 0 0	1 0 0	0% 0% 0%	0% 0% 0%	1980 2120 2120	1980 2120 2120	968 1036 1036	0.489 0.489 0.489		807 864 864	0.408 0.408 0.408	
Kam Tin Road	W w	←	2 2 2	A A A	3.80 3.80 5.00	0 0 15	0 0 0	0 0 1	0% 0% 100%	0% 0% 100%	2135 2135 1925	2135 2135 1925	1325 1325 685	0.621 0.621 0.356	0.621	1208 1208 335	0.566 0.566 0.174	0.566
Tsing Long Highway Slip Road	N N N N	• • •	3 3 3 3	B B B	3.50 3.50 3.60 3.50	20 25 0 0	0 0 30 28	1 0 0 0	100% 100% 100% 100%	100% 100% 100% 100%	1830 1985 2015 2000	1830 1985 2015 2000	163 177 130 130	0.089 0.089 0.065 0.065	0.089	245 265 133 132	0.134 0.134 0.066 0.066	0.134
*Pedestrian Crossing			4p 5p	A B			Crossing Crossing	_		7 Gm + 7 Gm +								

Notes:	Traffic Flow (pcu / hr)	[AM (PM)]	Check Phase	Check Phase
	3040(2535)		εy 0.710 L (sec) 10	εy 0.699 L (sec) 10
	340(510) 260(265)	← 2650(2415) ← 685(335)	C (sec) 120 y pract. 0.825 R.C. (%) 16%	C (sec) 120 y pract. 0.825 R.C. (%) 18%
Stage / Phase Diagrams A \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	⊢	·		
I/G = 5 I/G = 7				

Junction :		(C)KamT	in Road / k	(am Tai Roa	d		_	Job No.:	25009HK
Scenario :		2034 Design	n Traffic Flo	ows (With Pr	oposed Imp	orovemen	t)		
	•				оросси		•/		•
	50 1140 Arm A	(60) (1085) Kam Tin Ro	20 (10)	30 (50)	125 1320	(150) (1095) Kam Tin F	Road WB	AM (PM)	(PM)
The predictive e	Q-BC =	D(627 + 14\	W-CR - Y(0 .364q-AC -	0.364q-AC + + 0.144q-AB)	•	+ 0.229q-	CA + 0.52q	-CB))	
The geometric p	E =	(1 + 0.094(v)) (1 + 0.094(v))	v-BA - 3.65 v-BC - 3.65	5))(1 + 0.000 5))(1 + 0.000 5))(1 + 0.000	9(V-rBC - 1	20))	.0006(V-IB <i>A</i>	A - 150))	
where	q-AB, etc =	major road ventral rese lane width to visibility to the	low of mov width rve width o vehicle he right for		cles in strea		c		
Geometry :	Input							Calculated	<u>k</u>
	W-CR	7	V-rBA	50	w-BA_	4.7		D	0.968
C-B blocke	ed C-A, residual	0	V-IBA	50	w-BC_	4.7	-	E	1.029
	(Yes: 1, No: 0)	0	V-rBC	50	w-CB	3.5		F	0.924
Minor Road	Share LT&RT? (Yes: 1, No: 0)	1	V-rCB	50				Y	0.759
Analysis :	Traffic Flow pcu/hr	AM	PM	Capacity pcu/hr	AM	PM			
	q-CA	1320	1095	Q-BA	27	69	•		
	q-CB q-AB	125 50	150 60	Q-BC Q-CB	437 385	452 396	-		
	q-AC	1140	1085	Q-CA	N/A	N/A	(If C-B blocked C-A)		
	q-BA	20	10	Q-BAC	62	235	(If Minor Road Share		
	q-BC	30	50	_			LT&RT)		
	f	0.600	0.833						
Results :	Ratio of Flo	w-to-Capac	ity		B-A _ B-C _ C-B _	AM N/A N/A 0.32	N/A N/A 0.38		
					C-A B-AC	N/A 0.80	0.26	<u>.</u>	
	Critical DFC							· ·	