2A Planning Application for Amendmen	
	A
	Appendix 3
	Traffic Impact Assessmen
	Traffic Impact Assessmen
	Traffic Impact Assessmer
	Traffic Impact Assessmen
	Traffic Impact Assessmer
	Traffic Impact Assessmen

Proposed Residential Development at Various Lots in D.D. 107 and Adjoining Government Land, Fung Kat Heung, Yuen Long

Traffic Impact Assessment Report

October 2025

CTA Consultants Limited
 志達顧問有限公司

1. INTRODUCTION

1.1 Background

- 1.1.1 CTA Consultants Limited ("CTA") is commissioned by the Applicant to prepare a Traffic Impact Assessment Study for a proposed development of various lots in D.D. 107 and adjoining Government land, Fung Kat Heung, Yuen Long.
- 1.1.2 The Applicant intends to implement a residential development at the site (the "Proposed Development").
- 1.1.3 This TIA study aims to examine the impact of the traffic generated by the proposed development on the adjacent road network. Improvement proposals would be recommended if necessary to resolve any foreseeable traffic issues.

1.2 Study Objectives

- 1.2.1 The main objectives of this study are listed below:
 - To assess the existing traffic condition in the vicinity of the proposed development;
 - To forecast traffic flows on the adjacent road network in the design year 2038;
 - To estimate the likely traffic generated by the proposed development;
 - To appraise the traffic impact induced by the proposed development on the adjacent road network;
 - To recommend traffic improvement measures to alleviate any foreseeable traffic problem to the surrounding road network, if any.

2. THE PROPOSED DEVELOPMENT

2.1 **Site Location**

2.1.1 The proposed development is located at Various Lots in D.D. 107 and Adjoining Government Land, Fung Kat Heung, Yuen Long as shown in Figure 1.1 and Figure **2.1**.

2.2 **Development Proposal**

Development parameters of the proposed development are listed in **Table 2.1**. 2.2.1

Development Parameters of the Proposed Development Table 2.1

	Development Parameters
Proposed Use	Residential Use
Site Area	~ 7,290 m ²
Proposed GFA	~ 43,740 m ²
No. of block	2
No. of units	1,439 units

2.2.2 It is anticipated that the proposed development will be completed in year 2035. Therefore, design year 2038 (i.e., 3 years after the planned completion year of the proposed development) is adopted for the Traffic Impact Assessment.

誠

We commit We deliver

3. EXISTING TRAFFIC CONDITIONS

3.1 Existing Road Network

- 3.1.1 The site is located to the north of Sha Po Tsuen, bounded by San Tin Highway and San Tam Road to the west, Mo Fan Heung to the north and Wah Shing Tsuen to the northeast in Yuen Long.
- 3.1.2 The site will be mainly served by the San Tam Road and San Tin Highway at the West and Kam Tin Road and Tsing Long Highway at the south.
- 3.1.3 Fung Kat Heung Road is a sub-standard single track access road, connecting local village of Mo Fan Heung, Yue Cheong Yuen and Fung Kat Heung to San Tam Road.
- 3.1.4 San Tin Highway is a dual-3 expressway, connecting Yuen Long Highway, Tsing Long Highway and Fanling Highway. It is currently serving as a major corridor connecting to the east- west New Territories.
- 3.1.5 San Tam Road is a rural road in mainly single-2 configuration with one traffic lane running both northbound and southbound traffic. The section at its south end connecting to Castle Peak Road Tam Mi is in dual-2 carriageway configuration.
- 3.1.6 Castle Peak Road Tam Mi is a rural road in single-2 configuration with one traffic lane running both northbound and southbound traffic. The section of Castle Peak Road Tam Mi runs parallel with San Tin Highway between Au Tau Interchange and Geranium Path and Castle Peak Road Tam Mi is a dual–2 carriageway between San Tam Road and Au Tau Interchange.

3.2 Critical Junctions in Surrounding Area

3.2.1 In order to study the existing traffic condition of the area as requested by the Transport Department, a comprehensive traffic survey has been conducted.

- 3.2.2 Based on the location of the Site and the road network in the vicinity, ten key junctions are identified for this Traffic Impact Assessment (TIA) due to the Proposed Development and listed in Table 3.1. The location of the junctions is shown in Figure 3.1, while the details of each are illustrated in Figures 3.2 3.10 respectively.
- 3.2.3 The traffic count surveys were carried out at the critical junctions in the vicinity of the Proposed Development.

Table 3.1 Identified Key Junctions

Ref.	Junction	Type	Figure No.
Α	Fairview Park Interchange	R/A	3.2
В	San Tam Road/ Local Road to Long Ha	Priority	3.3
С	San Tam Road/ Fung Kat Heung Road	Priority	3.4
D	San Tam Road / Unnamed Access	Site Access	N/A
Е	Castle Peak Road – Tam Mi/ San Tam Road	Signal	3.5
F	Au Tau Interchange	R/A	3.6
G	Kam Tin Road & Tsing Long Highway	Signal	3.7
Н	Kam Tin Road/ Kam Ho Road	R/A	3.8
I	Kam Ho Road/ Tung Wui Road	R/A	3.9
J	Pok Oi Interchange	R/A	3.10

Traffic Survey

3.2.4 In order to appraise the existing traffic conditions of these junctions, a traffic survey in the form of manual classified count was conducted on 26 Feb 2024 during AM and PM peak. The peak hour flows occurred from 8:00am to 9:00am and from 5:00pm to 6:00pm respectively. The 2024 observed traffic flows are presented in **Figure 3.11**.

Junction Assessments

3.2.5 Operation performance of the critical junctions has been examined in accordance with the existing traffic flow and the results are summarised in the **Table 3.2** below. Details of the junction assessment are enclosed in the **Appendix 1**.

用心

以

誠

Table 3.2 Existing Operational Performance of Key Junctions in 2024

Dof	Junction	Method of	Year 2024	RC/DFC (1)
Ref.	Junction	Control	AM Peak	PM Peak
A	Fairview Park Interchange	R/A	0.64	0.60
В	San Tam Road/ Long Ha	Priority	0.17	0.17
С	San Tam Road/ Fung Kat Heung Road	Priority	0.38	0.31
D	San Tam Road / Unnamed Access	Site Access	N/A	N/A
Е	Castle Peak Road – Tam Mi/ San Tam Road	Signal	35%	48%
F	Au Tau Interchange	R/A	0.64	0.66
G	Kam Tin Road & Tsing Long Highway	Signal	24%	17%
Н	Kam Tin Road/ Kam Ho Road	R/A	0.63	0.62
I	Kam Ho Road/ Tung Wui Road	R/A	0.26	0.20
		R/A	0.59	0.53
J	Pok Oi Interchange	Signal (NB) ⁽²⁾	29%	67%
		Signal (SB) ⁽²⁾	34%	48%

Notes: (1) $RC = Reserve\ Capacity$

DFC = Ratio of Flow to Capacity for Priority Junction

(2) Partially changed to signalized roundabout in February 2025

Table 3.3 V/C Ratio of Critical Road Link in Year 2024

Table 3.3	Con Observed Scenario							
7 7 (1)			Cap.					
Index ⁽¹⁾	Direction	(veh/hr)	Flow (ve	h/hr) (V)	V	<u>′C</u>		
		(C)	AM Peak	PM Peak	AM Peak	PM Peak		
L1	NB	700	210	230	0.30	0.33		
LI	SB	700	530	630	0.76	0.90		
L2	NB	700	370	320	0.53	0.46		
L2	SB	700	560	660	0.80	0.94		
L3	NB	700	230	220	0.33	0.31		
L3	SB	700	160	110	0.23	0.16		
L4	NB	2600	560	590	0.22	0.23		
L/4	SB	2600	440	400	0.17	0.15		
L5	EB	4200	1550	1670	0.37	0.40		
LS	WB	4200	850	1080	0.20	0.26		
L6	EB	2800	1400	1420	0.50	0.51		
Lo	WB	2800	1100	1500	0.39	0.54		
L7	EB	2800	1540	1710	0.55	0.61		
L/	WB	2800	1320	1470	0.47	0.53		
1.0	NB	2600	400	380	0.15	0.15		
L8	SB	2600	490	370	0.19	0.14		

Note: (1) Index please refer to Figure 3.1

3.2.6 The assessment results in **Tables 3.2** and **3.3** indicate that all key junctions and road links are operating with ample capacities during the peak hours in 2024 except L1 and L2.

3.3 Internal Transport Facilities Provisions

3.3.1 For the proposed residential development, the transport provision requirements will be referenced to the Hong Kong Planning Standards and Guidelines (HKPSG). The provision requirement is summarized in the **Table 3.4**

Table 3.4 Proposed Internal Transportation Provision under the HKPSG Requirements

	Residential Development									
					Parking Requirement					Loading/Unloading Requirement
Proposed Development		Private Car Parking Space			g Space	Motorcycle parking space	Visitors Car parking	Bicycle Parking Space	Loading / Unloading Bay for Goods Vehicles	
Private Housing	Housing	Ma	GPS:	1 space 7 flats	per 4-	GPS x	1 motorcycle	More than 75 units per block should	Within 0.5-2km radius of the rail station, 1	Provision of minimum 1 L/UL bay for goods vehicles within the site
(2 towers; P.R= 6.0)	GFA No. of Flat		R1	R2	R3	R1 X R2 X R3	parking space per 100-150 flats	provide at 5 visitor space per block in addition in the requirement	bicycle parking space for every 15 flats with flat size smaller than 70m ²	for every 800 flats or part thereof, subject to a minimum of 1 bay for each housing block or as determined by the Authority
	FS ≤40	1,439	0.5	0.75	0.9	70-122	10-15	10	96	2
		Propose	d			122(1)	15	10	96	2

Note:

3.4 Public Transport Services in the Vicinity of the Proposed Development

3.4.1 Numerous road-based public transport services are provided in the vicinity of the proposed development. Details of the current services of franchised buses and GMB routes within 500 meters catchment area are listed in **Table 3.5**, and the location of the nearby public transport stations is shown in **Figure 3.12**.

⁽¹⁾ Including 2 accessible car parking

Table 3.5 Public Transport Services in the Vicinity of the Proposed Development

Service	Route	Origin - Destination	Headway (min)
	7.CV	Sheung Shui (Ching Ho) to Long Ping Estate	25-30 ^{(1) (2)} ₍₃₎
Franchised	76K	Fanling (Wah Ming) to Long Ping Estate	06:10 ⁽¹⁾ ; 06:50 ⁽¹⁾
Buses	976	Lok Ma Chau (San Tin) to Sai Wan Ho	06:25 ⁽¹⁾ ; 07:15 ⁽¹⁾ ; 07:45 ⁽¹⁾
	976A	Lok Ma Chau (San Tin) to Siu Sai Wan (Island Resort)	06:55(1)
GMB	36	Yuen Long (Fook Hong Street) to Tai Sang Wai Village Office	
	603	Yuen Long (Fung Cheung Road) to Fung Kat Heung	20-25(4)

Note: (1) Monday to Friday (except for public holidays)

- (2) Saturdays (except for public holidays)
- (3) Sundays and public holidays
- (4) Monday to Sunday
- 3.4.2 The Au Tau Station of Northern Link Main Line will also be targeted to operate in 2034.
- 3.4.3 The PTI will be located at the Sha Po Public Housing Site B. The target completion year will be in 2031.
- 3.4.4 With the existing and planned public transport facilities, the Application Site is well served by comprehensive public transport services in the vicinity.

4. FUTURE TRAFFIC CONDITION & TRAFFIC IMPACT ASSESSMENT

4.1 Design Year

4.1.1 It is anticipated that the proposed development would be completed in 2035 tentatively. In order to assess the possible traffic impacts to the local road network due to the proposed development, year 2038 (i.e., 3 years after construction work completion) has been adopted as the design year for this TIA.

4.2 Traffic Forecast

Planning Data

4.2.1 Reference has also been made to the latest 2019-Based Territorial Population Employment Data Matrices (TPEDM) planning data published by the Planning Department for projection of population and employment within the study district from years 2019 to 2031. The average annual growth rates in terms of population and employment from 2019 to 2031 are tabulated in **Table 4.1**.

Table 4.1 2019-Based Planning Data from 2019 to 2031

Zono		Population		Employment			
Zone	2019	2026	2031	2019	2026	2031	
Northwest New Territories	58,400	76,850	140,150	222,800	239,250	353,900	
Yuen Long	68,100	70,700	70,250	175,150	172,350	159,850	
Tin Shui Wai	35,050	33,100	31,950	279,950	283,250	276,050	
Total	161,550	180,650	242,350	677,900	694,850	789,800	

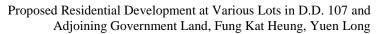
4.3 Traffic Generations of Planned Adjacent New Developments

4.3.1 To fully reflect the growth traffic, trip generations of the future vicinity developments have been taken into consideration. The planned developments are detailed in **Table**4.2 and **Figure 4.1** shows their location.

Planned Adjacent Developments in the Vicinity **Table 4.2**

Planning Application No.	Development Site	Site area	Applied use	Use	Total floor area	Development Parameter
A/YL-	Lot 592 S.C. ss1 S.A + Lots 592 S.C ss 4 and	22.711	Residential and	Domestic	70,328sqm	1,518 units
NSW/274	1252 S.C in DD 115	32,711sqm	Community Hub Development	Non- domestic	4,550sqm	/
				Domestic (Private housing)	50,179sqm	1,261 units
LSPS/002	Various Lots in DD 115 and Adjoining Government land	57,055sqm	Residential development	Domestic (Public Housing)	93,400sqm	1,868 units
				Non- domestic GFA	3,045sqm	/
A/YL-	Various Lots in DD 107	150.005	Residential and	Domestic	179,838sqm	3,891 units
KTN/604	and Adjoining Government Land	156,065sqm	Comprehensive Development Area	Non- domestic	8,088sqm	/
	Lots 1783 (Part), 1784 RP, 1788 RP, 1789 RP, 1790RP (Part), 1791RP, 1795 (Part), 1796 (Part),		Residential and	Domestic	258,896sqm	4,282 units ⁽¹⁾
A/YL- KTN/663	1797 (Part), 1836 (Part), 1927 S.A and 1927 RP (Part) in DD 107 and Adjoining Government Land	279,925sqm	Comprehensive Area	Non- domestic	10,000sqm	/
,	Public Housing		Residential	Domestic	767,650sqm	16,300 units
/	Development at Sha Po, Yuen Long	118,000sqm	Development	Non- domestic	23,600sqm	
Y/YL-	Various Lots in DD 104 and Adjoining	68,385sqm	Residential and Comprehensive Development	Domestic	97,682sqm	1,997 units
NSW/7	Government Land	00,383sqm	(Wetland Restoration Area)	Non- domestic	3,100sqm	/
A/YL- KTN/964	Lot 1071 in DD 103	16,293sqm	Residential Development	Domestic	23,299sqm	615 units
A/YL- KTN/791	Lot 2206 in D.D. 109, Kam Tai Road, Kam Tin	15,978 sqm	Residential Development	Domestic	12,782 sqm	243 flats 87 houses
Y/YL- NSW/8	Lots 8 RP (Part), 8 S.A RP, 12, 13, 14 S.B ss.2, 14 S.B RP, 14 S.C RP, 16, 17, 31 S.B RP, 33 RP, 36 RP,	116,231sqm	Comprehensive Residential Development with Government,	Domestic	255,708sqm	6,825 units

Proposed Residential Development at Various Lots in D.D. 107 and Adjoining Government Land, Fung Kat Heung, Yuen Long


Planning Application No.	Development Site	Site area	Applied use	Use	Total floor area	Development Parameter
	45, 55 S.A and 1740 S.A RP in D.D.107 and Adjoining Government Land		Institution and Community, Retail Facilities and Wetland Restoration Area	Non- domestic	10,350sqm	-
Y/YL- NSW/9	Lots 1910 RP (Part) and 1743 S.C RP (Part) in D.D. 107 and Adjoining Government Land	81,550sqm	Comprehensive Residential Development	Non-domestic	115,942sqm 24,000sqm	3,115 units
A/YL- NSW/293	Various Lots in D.D. 103 and D.D. 115	53,584sqm	Proposed Comprehensive Residential Development with Commercial Uses	Domestic Non- domestic	156,880sqm 6,337sqm	3,556 units
A/YL- NSW/314	Various Lots in D.D. 104	51,073sqm	Proposed Residential Development with Wetland Habitat	Domestic	20,429sqm	90 units

Note:

- (1) The phase 1 includes 3128 units, and phase 2 includes 1154 units. The total units of phase 1 and 2 are 4282 units.
- 4.3.2 The estimation on trip generations and attractions of the adjacent planned developments have made reference to the trip rates as stipulated in Volume 1 Chapter 3 Appendix C Table 1 of the latest T.P.D.M published by Transport Department. The trip generations and attractions are shown in Table 4.3.

Table 4.3 Estimated Trip Generations and Attractions of Adjacent **Developments**

	velopinents						
Dlanning				Trips			
Planning Application No.	Development Site	Uses	Nos of units	Weekday AM Peak		Weekday PM Peak	
110.				Gen.	Att.	Gen.	Att.
A/YL- NSW/274	Lot 592 S.C. ss1 S.A + Lots 592 S.C ss 4 and 1252 S.C in DD 115	Residential and Community Hub Development	1,518 units	161	117	96	110
1 ang/002	Various Lots in DD 115 and Adjoining Government Land	Residential Development	1,261 units (Private Housing)	1.40	107	81	98
LSPS/002			1,868 units (Public Housing)	148			
A/YL- KTN/604	Various Lots in DD 107 and Adjoining Government Land	Residential and comprehensive Development Area	3,891 units	279	165	111	144
A/YL- KTN/663	Lots 1783 (Part), 1784 RP, 1788 RP, 1789 RP, 1790 RP (Part), 1791 RP, 1795 (Part), 1796 (Part), 1797	Residential and comprehensive Development Area	Phase 2 - 1154 units	102 (1)	59(1)	41 ⁽¹⁾	55(1)

					Tr	ips	
Planning Application No.	Development Site	Uses	Nos of units	Weekday AM Peak		Weekday PM Peak	
INO.				Gen.	Att.	Gen.	Att.
	(Part), 1836 (Part), 1927 S.A and 1927 RP (Part) in D.D. 107 and Adjoining Government Land Public Housing Development at	Residential					
/	Sha Po, Yuen Long	Development	16,300 units	837	667	538	654
Y/YL- NSW/7	Various Lots in D.D. 104 and Adjoining Government Land	Residential and Comprehensive Development (Wetland Restoration Area)	1,997 units	284	226	198	216
A/YL- KTN/964	Lot 1071 in DD103	Residential Development	615 units	44	26	18	23
A/YL- KTN/791	Lot 2206 in D.D. 109, Kam Tai Road, Kam Tin	Residential Development	243 flats 87 houses	56	25	17	38
Y/YL- NSW/8 ⁽²⁾	Lots 8 RP (Part), 8 S.A RP, 12, 13, 14 S.B ss.2, 14 S.B RP, 14 S.C RP, 16, 17, 31 S.B RP, 33 RP, 36 RP, 45, 55 S.A and 1740 S.A RP in D.D.107 and Adjoining Government Land	Comprehensive Residential Development with Government, Institution and Community, Retail Facilities and Wetland Restoration Area	6,825 units	536	336	220	279
Y/YL- NSW/9 ⁽²⁾	Lots 1910 RP (Part) and 1743 S.C RP (Part) in D.D. 107 and Adjoining Government Land	Comprehensive Residential Development	3,115 units	265	202	115	134
A/YL- NSW/293 ⁽²⁾	Various Lots in D.D. 103 and D.D. 115	Proposed Comprehensive Residential Development with Commercial Uses	3,556 units	272	168	123	155
A/YL- NSW/314 ⁽²⁾	Various Lots in D.D. 104	Proposed Residential Development with Wetland Habitat	90 units	28	21	21	31

Note: (1) The planning application A/YL-KTN/663 includes 2 phases. Phase 1 is fully occupied. Hence, only phase 2 developments (total of 1154 units) will be taken into account while estimating the trip generation and attraction.

(2) Trip generation/attraction according to their approved TIAs

4.4 Traffic Generations of the Proposed Development

- 4.4.1 While for the traffic generation and attraction of the proposed residential development, reference has been made to the trip generation rates as stipulated in Volume 1 Chapter 3 Appendix C Table 1 of the latest T.P.D.M. published by Transport Department. The adopted trip rates are also summarized in below **Table 4.4**.
- 4.4.2 Based on the adopted trip rate listed above and the development parameters in **Table 2.1**, the trip generated and attracted by the proposed development are estimated and summarized in the **Table 4.4**.

Table 4.4 Adopted Trip Rate and Trips of Proposed Development

Para	meters		Trips Rates				Trips			
Use	Average Use Flat Size No. of Flats		Weekday AM Peak (pcu/hr/flat)		Weekday PM Peak (pcu/hr/flat)		Weekday AM Peak (pcu/hr)		Weekday PM Peak (pcu/hr)	
	(sq. m.)	Flats	Gen.	Gen. Att. Gen. Att.		Gen.	Att.	Gen.	Att.	
Private Housing	FS ≤ 60	1,439	0.0718	0.0425	0.0286	0.0370	103	61	41	53
	Tota						103	61	41	53

4.5 Planned Junction Improvement Scheme

- 4.5.1 According to the TIA report of the Sha Po Public Housing, relevant planned junction improvements will be completed in 2031. Its planned junction layout, planned widening of San Tam Road and some planned junction layouts under other studies (Junction E and F by Planning Application No. A/YL-KTN/663 and Junctions G to I by CEDD Contract No. YL/2017/01) have been taken into consideration in the assessment of this TIA.
- 4.5.2 The detailed design of the improvement works are shown in the **Figures 4.2-4.10**.

4.6 Traffic Modelling Methodology

Base Year

- 4.6.1 2019-based Based District Traffic Model (BDTM) NTW1 is used to develop the Local Area Traffic Model (LATM).
- 4.6.2 The model network was checked and updated. Survey flows were used to calibrate and validate the model to update to the latest condition.

Future Year

4.6.3 By considering the 2019-Based Planning Data listed in **Table 4.1**, planned developments listed in **Table 4.2**, the planned road and junction improvement schemes and the trips by the proposed development listed in **Table 4.4**, the base year model is used to produce the future year models. The reference and design flow are shown in **Figures 4.11** and **4.12** respectively.

4.7 Operational Assessment

4.7.1 To assess traffic impacts due to the proposed development, operational assessment of the critical junctions identified in **Chapter 3** and the critical Junction D to be constructed by the Government are carried out for both the reference (without the proposed development) and the design scenario (with the proposed development) in year 2038. The results are summarized in **Table 4.5**.

Table 4.5 Operational Performance of Key Junctions in Year 2038

				Year 2038	RC/DFC (1)		
Ref.	Junction	Method of Control (1)	Reference (without the develop	e proposed	Design Scenario (with the proposed development)		
			AM Peak	PM Peak	AM Peak	PM Peak	
A	Fairview Park Interchange	$R/A^{(2)}$	0.79	0.55	0.82	0.56	
В	San Tam Road/ Local Road to Long Ha	Priority ⁽²⁾	0.09	0.04	0.09	0.04	
С	San Tam Road/ Fung Kat Heung Road	Signal ⁽²⁾	25%	41%	19%	36%	
D	San Tam Road/ Proposed New Access Road	Signal ⁽²⁾	28%	45%	22%	39%	
Е	Castle Peak Road – Tam Mi/ San Tam Road	$R/A^{(2)(3)}$	0.95	0.83	0.97	0.85	
F	Au Tau Interchange	$R/A^{(2)(3)}$	0.77	0.67	0.77	0.67	
G	Kam Tin Road & Tsing Long Highway	Signal ⁽⁴⁾	23%	29%	23%	29%	
Н	Kam Tin Road/ Kam Ho Road	R/A ⁽⁴⁾	0.88	0.77	0.88	0.77	
I	Kam Ho Road/ Tung Wui Road	$R/A^{(4)}$	0.61	0.27	0.61	0.27	
		R/A	0.67	0.36	0.67	0.36	
J	Pok Oi Interchange	Signal (NB)	7%	1%	6%	0%	
		Signal (SB)	2%	25%	1%	25%	

Notes: (1) $RC = Reserve\ Capacity\ for\ Signalized\ Junction$

 $DFC = Ratio\ of\ Flow\ to\ Capacity\ for\ Priority\ Junction$

- (2) Road and junction improvement scheme under San Po Public Housing are considered
- (3) Road and junction improvement scheme under Planning Application No. A/YL-KTN/663 are considered
- (4) Road and junction improvement schemes under CEDD Contract No. YL/2017/01 is considered

用心

以

誠

Table 4.6 V/C Ratio of Critical Road Link in Year 2038

		C		nce Scena oposed do	`			ign Scena oposed de	`	
Index (1)	Direction	Cap. (veh/hr) (C) ⁽²⁾	Flow (veh/hr) (V)		V	/C	Flow (veh/hr) (V)		V/C	
		(C)(-/	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
T 1	NB	2600	640	320	0.25	0.12	0.25	0.12	0.25	0.12
L1	SB	2600	510	760	0.20	0.29	0.20	0.29	0.20	0.29
1.2	NB	2600	920	570	0.35	0.22	0.35	0.22	0.35	0.22
L2	SB	2600	450	540	0.17	0.21	0.17	0.21	0.17	0.21
L3	NB	2600	800	780	0.31	0.30	0.31	0.30	0.31	0.30
L3	SB	2600	750	660	0.29	0.25	0.29	0.25	0.29	0.25
L4	NB	2600	1590	1410	0.61	0.54	0.61	0.54	0.61	0.54
L/4	SB	2600	660	820	0.25	0.32	0.25	0.32	0.25	0.32
L5	EB	4200	2730	2850	0.65	0.68	0.65	0.68	0.65	0.68
L3	WB	4200	1470	1220	0.35	0.29	0.35	0.29	0.35	0.29
L6	EB	2800	1920	2030	0.69	0.73	0.69	0.73	0.69	0.73
Lo	WB	2800	2200	2330	0.79	0.83	0.79	0.83	0.79	0.83
L7	EB	4200	2220	2260	0.53	0.54	0.53	0.54	0.53	0.54
L/	WB	2800	2460	2040	0.88	0.73	0.88	0.73	0.88	0.73
L8	NB	2600	770	590	0.30	0.23	0.30	0.23	0.30	0.23
Lo	SB	2600	640	560	0.25	0.22	0.25	0.22	0.25	0.22

Note:

- (1) Index please refer to Figure 3.1
- (2) Include improvement works under Sha Po Public Housing Development
- 4.7.2 Based on the assessment results given in **Tables 4.5** and **4.6**, all key junctions and road links would operate with ample capacities in both reference and design scenarios in year 2038 except Junctions E in AM peak & Junction J (Signal) in both AM & PM peak. However, Junction E would still operate with DFC below 1.0 and Junction J (Signal) would still operate with R.C >=0%, which means these junctions would still have spare capacity or just at capacity. It is note that the DFC of Junction E would already over 0.85 and the R.C. of Junction J would already below 15% even without our proposed development. The impact by our development is very small which is only up to DFC 0.02 or R.C. 1% changes. Therefore, it is consider acceptable from traffic engineering point of view.

4.8 Sensitivity Test for No Sha Po Public Housing Development

- 4.8.1 A sensitivity test is carried out with the assumption that if there is a mismatch between the programme of Sha Po Public Housing Development and the proposed development.
- 4.8.2 The reference and design traffic flows are shown in Figure 4.13 and Figure 4.14 respectively. The results are shown in the **Tables 4.7** and **4.8**.

Table 4.7 Operational Performance of Key Junctions in Year 2038 (Sensitivity Test)

				Year 2038	RC/DFC (1)	
Ref.	Junction	Method of Control (1)	Reference (Without S (without the develop	ha Po PH) e proposed	(Without S (with the	Scenario Sha Po PH) proposed pment)
			AM Peak	PM Peak	AM Peak	PM Peak
A	Fairview Park Interchange	R/A	0.83	0.70	0.88	0.70
В	San Tam Road/ Local Road to Long Ha	Priority	0.33	0.12	0.35	0.13
С	San Tam Road/ Fung Kat Heung Road	Priority	0.61	0.29	0.96	0.40
D	San Tam Road/ / Unnamed Access	Site Access	N/A	N/A	N/A	N/A
Е	Castle Peak Road – Tam Mi/ San Tam Road	R/A ⁽³⁾	0.77	0.64	0.78	0.65
F	Au Tau Interchange	R/A ⁽³⁾	0.99	1.00	0.99	1.00
G	Kam Tin Road & Tsing Long Highway	Signal ⁽⁴⁾	27%	35%	26%	35%
Н	Kam Tin Road/ Kam Ho Road	R/A ⁽⁴⁾	0.79	0.72	0.80	0.72
I	Kam Ho Road/ Tung Wui Road	R/A ⁽⁴⁾	0.61	0.25	0.61	0.25
		R/A	0.61	0.38	0.61	0.38
J	Pok Oi Interchange	Signal (NB)	11%	10%	10%	9%
		Signal (SB)	6%	19%	5%	19%

RC = Reserve Capacity for Signalized Junction Notes: (1) DFC = Ratio of Flow to Capacity for Priority Junction

(4) Road and junction improvement schemes under CEDD Contract No. YL/2017/01 is considered

Road and junction improvement scheme under Planning Application No. A/YL-(3) KTN/663 are considered

17

We commit We deliver

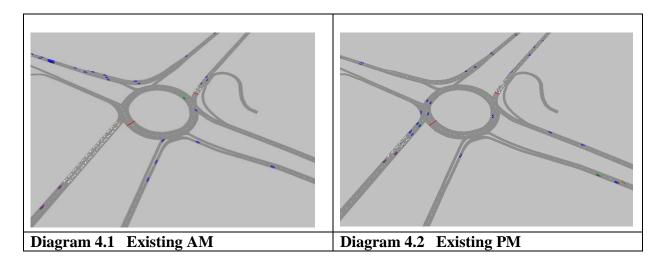
Table 4.8	V/C Ratio of	Critical Road	Link in Year	2038 (Sen	sitivity Test)
-----------	--------------	---------------	--------------	-----------	----------------

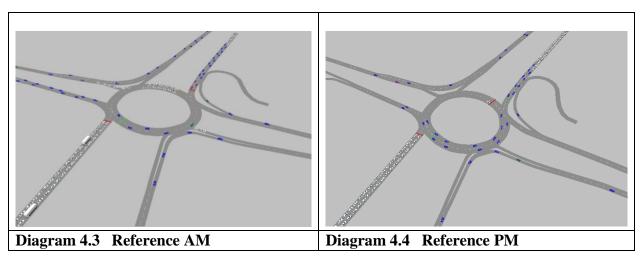
Index (1)	Direction	Cap.	(V (wi		Sha Po P	PH)	(W)		sha Po P	PH)
muex (3)	Direction	(Ven/nr) (C)	Flo (veh/h	ow ar) (V)	V/C		Flow (veh/hr) (V)		V/C	
			AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
L1	NB	700	380	170	0.54	0.24	410	180	0.59	0.26
LI	SB	700	650	570	0.93	0.81	670	570	0.96	0.81
L2	NB	700	670	400	0.96	0.57	690	430	0.99	0.61
L2	SB	700	420	250	0.60	0.36	460	270	0.66	0.39
L3	NB	700	280	220	0.40	0.31	300	250	0.43	0.36
LS	SB	700	520	240	0.74	0.34	560	260	0.80	0.37
L4	NB	2600	1280	1080	0.49	0.42	1300	1110	0.50	0.43
L4	SB	2600	730	680	0.28	0.26	730	680	0.28	0.26
L5	EB	4200	2300	2550	0.55	0.61	2320	2570	0.55	0.61
LS	WB	4200	1290	1070	0.31	0.25	1310	1080	0.31	0.26
L6	EB	2800	1850	1910	0.66	0.68	1850	1910	0.66	0.68
Lo	WB	2800	2070	2240	0.74	0.8	2070	2250	0.74	0.8
L7	EB	4200	2060	2150	0.74	0.77	2060	2150	0.74	0.77
L/	WB	2800	2230	1930	0.80	0.69	2230	1930	0.80	0.69
L8	NB	2600	760	560	0.29	0.22	760	560	0.29	0.22
Lo	SB	2600	640	560	0.25	0.22	640	560	0.25	0.22
Fung Kat Heung Road	Two-way	100	140	110	1.4	1.1	250	170	2.5	1.7

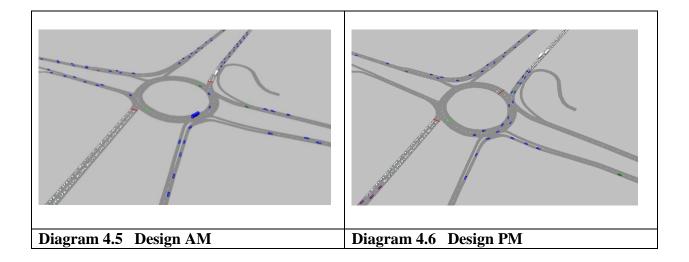
Note:

(1) Index please refer to Figure 3.1

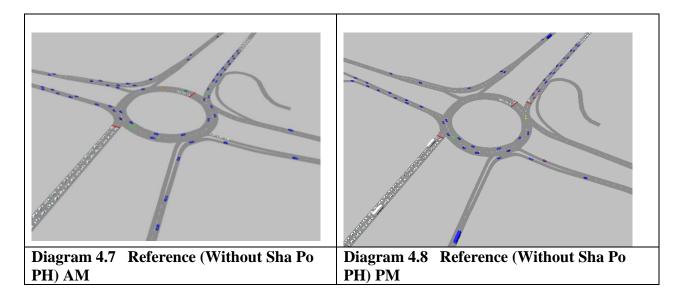
4.8.3 Based on the assessment results given in **Table 4.7**, all key junctions would operate with ample capacities in both reference and design scenarios in year 2038 except Junction F in both AM & PM peak & Junction J (Signal) in both AM & PM peak. However, Junction F would still operate with DFC below or at 1.0 and Junction J would still operate with R.C >0%, which means these junctions would still have spare capacity or just at capacity. The DFC of Junction F would already over 0.85 and the R.C. of Junction J (Signal) would already below 15% even without our proposed development. The impact by our development is very small which is no change in DFC or R.C. 1% changes. Therefore, it is consider acceptable from traffic engineering point of view.




- 4.8.4 As shown in **Table 4.8**, as Fung Kat Heung Road is a single track road at present which have only limited capacity, its V/C ratio would be overloaded if no widening works being carried out. As shown in **Figure 5.3**, it is planned to widen on Fung Kat Heung Road and construct a new road under Sha Po Public Housing development project.
- 4.8.5 It is the responsibility of the Government to implement the proposed road widening of the Fung Kat Heung Road and the new loop road to support the proposed SPPHD. It is therefore reasonable to assume that the population intake of the proposed development will be effected upon completion of the road widening of the Fung Kat Heung Road and the new loop road connecting San Tam Road by the Government.
- 4.8.6 Although the implementation programme of the SPPHD will need to be further reviewed by the Government, the Government should consider implementing the relevant road improvement works in advance or in phases to facilitate the SPPHD in the future and improve the road network of the locality, which tally with the planning principles of infrastructure-led and capacity-creating adopted by the Government. This would facilitate traffic ingress and egress for the proposed development scheme, while aligning with the broad development programme of the Sha Po Public Housing Development or, at the very least, the target completion date for the Phase 2 works of the Northern Link Main Line (with intermediate stations at Au Tau, Ngau Tam Mei and San Tin) by 2034.
- 4.8.7 As government announced that the Northern Link Main Line (include Au Tau Station) will be completed in 2034, the target completion year of our proposed development is adjusted from 2032 to 2035. Therefore, our assumption on the new implementation of improvement works and transport facilities proposed by Sha Po Public Housing Development has already been completed in year 2035 is reasonable.


4.9 Micro-simulation for Pok Oi Interchange

4.9.1 As Pok Oi Interchange was partially signalized in February 2025, to study its operation performance, micro-simulations software "VISSIM" was used to simulate the situations. Queue length were obtained and shown in **Tables 4.9** and **4.10** below.



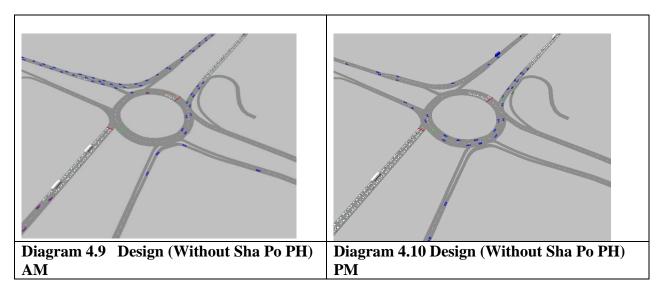


Table 4.9 Queue Length Analysis of Junction J

						Calo	culated Qu	eue Length	(m)						
Ref.	Junction	Direction Allowable Queue length (m) AM Peak PM						Queue	Existin	ng Case	(Without Proposed (Wit		(With P	sign Case h Proposed elopment)	
				PM Peak	AM Peak	PM Peak	AM Peak	PM Peak							
		NB	Entry	>250	32	20	176	163	177	166					
T	Pok Oi	ND	Circulating	50	1	1	2	1	3	1					
J	Interchange	SB	Entry	>250	32	42	138	161	139	161					
		SD	Circulating	50	3	2	8	3	8	3					

Table 4.10 Queue Length Analysis of Junction J (Sensitivity Test)

		_			Calculated Queue Length (m)					
Ref.	Junction	D	Direction		Referen (Without S (Without Develo	Sha Po PH) Proposed	(Without S	gn Case Sha Po PH) sed Development)		
					AM Peak	PM Peak	AM Peak	PM Peak		
		NB	Entry	>250	174	128	174	147		
T	Pok Oi	NB	Circulating	50	3	2	3	1		
J	Interchange	SB	Entry	>250	110	166	85	166		
		SD	Circulating	50	10	3	8	6		

4.9.2 **Tables 4.9** and **4.10** show that the traffic would not queue over their allowable queue length. It also shows that the traffic generated by our proposed development will not have significant effect on the queue length.

5. TRAFFIC ASSESSMENT FOR THE LOCAL ACCESS ROAD (AFTER THE PROPOSED ROAD WIDENING)

- 5.1 Existing Condition of the Local Access Road Branch Off from the Fung Kat Heung Road
- 5.1.1 The local access road is a one-lane two-way carriageway road and with a 1.3m eastern footpath (**Figure 5.1**).
- 5.1.2 The carriageway is narrow and its width is only approx. 3.6m (**Figure 5.1**).
- 5.1.3 There are a lot of goods vehicles parking within Fung Kat Heung and along the road side of the local access road.
- 5.2 Future Condition of the Local Access Road Branch Off from the Fung Kat Heung Road
- 5.2.1 According to the feasibility study of site formation and infrastructure works for proposed public housing development at Sha Po, Shap Pat Heung and Tai Kei Leng, Yuen Long (Agreement No CE10/2020), Fung Kat Heung Road will be partially widened to a standard 10.3m single 2 lanes carriageway with a roundabout at the eastern end partially of the widened section. It connects to the unnamed local access road which will also be partially widened to 10.3m. A 10.3m wide single 2 lanes carriageway parallel to Fung Kat Heung Road to the north of the Sha Po Public Housing Site B is proposed to provide the access to the G/IC facilities and the public housing development in site B (Figure 5.3). The proposed road network to be constructed by the Government is shown in the Figure 5.3.
- 5.2.2 In order to accommodate the proposed development, the southern section of the local access road is proposed to be widened by the Applicant to a 6m wide single 2 lanes carriageway with a 1.2m wide western footpath. The proposed road alignment is shown in the **Figure 5.2**.

5.3 Assessment Result

- 5.3.1 To fully reflect on the future conditions, the further increase of traffic demand in the locality of the local access road has been taken into consideration. The development parameter and the trip generation and attraction in relation to the proposed development are shown in **Table 2.1** and **Table 4.4** respectively.
- 5.3.2 Road link assessment of the two sections of the local access road (after the proposed road widening) has been carried out and the results are shown in the **Table 5.1.** According to the latest TPDM, for local roads, the design flow of 2 lane single carriageway is 720veh/ hr (with the 10% deduction due to the high heavy vehicles).

Table 5.1 Road Link Performance at the Widened Local Access Road in 2038

			ľ		n Section wide)	n	Southern Section (6m wide)			
Road	Direction	Capacity (veh/hr)	Fl	Peak Design Flow (veh/ hr) AM PM AM PM		Peak Design Flow (veh/ hr)		V/C Ratio		
			AM			PM	AM	PM	AM	PM
Local	NB	720	280	165	0.39	0.23	90	50	0.13	0.07
Access Road	SB	720	215	195	0.30	0.27	80	45	0.11	0.06

5.3.3 The assessment results in the **Table 5.1** revealed that after widening of the local access road, it would still operate within their capacities when the proposed residential development and the public housing development are completed in 2038.

用

6. PUBLIC TRANSPORT DEMAND

6.1 Assessment on Public Transport Demand

- 6.1.1 Reference is made to the "Travel Characteristics Survey 2011 Report" as published by Transport Department in February 2014 to derive the estimated public transport demand due to the proposed development.
- 6.1.2 The total trips generated from the proposed development are derived from development parameters and assumptions from the TCS Report 2011. The calculation of total trips during peak hours is summarized in **Table 6.1** below:

 Table 6.1
 Calculation of Total Passenger Trips from Proposed Development

Item	Proposed Development
Nos. of units	1,439
Average household size	2.7 ppl/unit
Total population	= 1,439 x 2.7 = 3,886ppl
Trip Rate per Person	1.83**
Daily trips generated from proposed development	= 3,886ppl x 1.83 = 7,110 trips
Peak Hour Factor	12%**
Peak hour trips (Two-ways)	= 7,110 trips x 12% = 853 trips

Notes: **Data extracted from TCS Report 2011

6.1.3 The distribution of trips by transport mode derived from 2021 Population Census is given in below **Table 6.2**. As no ferry services and assume there is no residential coach services from the proposed development, the modal split is therefore redistributed on a conservative approach, and the model split after re-distribution is also shown in **Table 6.2**.

 Table 6.2
 Distribution of Transport Modal Split

	Year 2021 Census (Yuen Long)													
Yuen Lo Distric		Mass Transit Railway	Bus	On foot only	Private car/ Passenger van	Public light bus	Company bus/ van	Light Rail	Taxi	Residential coach service	Ferry/ Vessel	Others	Tot	tal
Number of Po	ersons	90,523	59,345	16,860	24,012	7,913	6,848	20,458	1,275	2,628	468	4,146	234,4	476
Modal Split		39%	25%	7%	10%	3%	3%	9%	1%	1%	0%	2%	100)%
Number of Pe (excluded on only)		90,523	59,345	-	24,012	7,913	6,848	20,458	1,275	2,628	468	4,146	217,6	616
Modal Split (excluded on only)	foot	42%	27%	-	11%	4%	3%	9%	1%	1%	0%	2%	100)%
Adjusted Modal Split for	PT	48%	32%	-	•	<u>4%</u>	-	-	1	-	-	-	84 %	10
the Developm ent Site	Non -PT	-	-	-	13%	-	-	-	1%	-	•	2%	16 %	0 %

- 6.1.4 Government announced that the Northern Link Main Line (include Au Tau Station) will be completed in 2034. Therefore, the latest target completion year of our proposed development has been adjusted to 2035 (i.e. 1 year after the completion of Au Tau Station). As Au Tau Station will be located within the 500m catchment area of the proposed development, MTR will be one of the major transport modes of the residential of the proposed development.
- 6.1.5 Based on **Table 6.2**, there will be 36% (32% + 4%) of resident using Bus and Public Light Bus. Therefore, there will be $853 \times 36\% = 308$ trips/hr
- 6.1.6 Taking into consideration that the walking distance from the proposed development to the existing nearest bus stops at San Tam Road is long, the residents will most likely use the public transport in the new PTI of Sha Po Public Housing Development as shown in **Figure 5.3**. The bus assessment extracted from SPH's TIA is shown in **Table 6.3**.

Table 6.3 Public Transport Services Proposed in the New PTI of Sha Po Public Housing Development

Public	Proposed	Assumed	Proposed	Estimated Capacity per Route (Patronage/hr)	Estimated
Transport	No. of	Occupancy	Headway		Service Capacity
Services	Route	for SPH	(min)		(Patronage/hr)
Bus	9	80%	6	1,040	9,360

- 6.1.7 The SPH's TIA assumed that 80% of the public transport in new PTI would be occupied by SPH's residents, which means there will be 20% spare capacity, i.e. 2,340 patronage/hr. There will be sufficient spare capacity for 308 trip/hr for PT of the proposed development.
- 6.1.8 As there will be a new PTI with 9 bus routes proposed by Sha Po Public Housing Development, there will be sufficient spare PT capacity for our proposed development. Also, the public transport provision will be improved with the completion of Au Tau Station of Northern Link Main Line in Year 2034.

6.2 Sensitivity Test

- 6.2.1 In the case of the programme of our development mismatches with that of the Sha Po Public Housing Development, a sensitivity test is carried out to assess the future public transport demand without the proposed population and PTI from Sha Po Public Housing Development.
- 6.2.2 It is assumed that passengers from the proposed development will walk to the existing nearest bus/GMB stops located at San Tam Road. The relevant bus/GMB stops are assessed.
- 6.2.3 A traffic survey on traffic pattern and localized public transport demand survey at bus/GMB stops in the vicinity was carried out. The survey was carried out during the morning peak period from 07:30 to 09:30 and evening peak period from 17:00 to 19:00 of a typical weekday in September 2024. Analysis of the observed traffic data indicates that the peak hour flow in the AM Peak and PM Peak occurred from 08:00 to 09:00 and from 17:00 to 18:00 respectively.

6.2.4 The details of bus stops location and finding are presented in **Figure 6.1** and **Table 6.4** respectively.

Table 6.4 Observed Boarding/Alighting of Public Transport in 2024

						Year 2024 Observed Scenario (per hour)							
	Bus /GMB Stop	Mode	Route No.	Observed Vehicular Trips [A]	Passenger Capacity (per hour) [B]	Surveyed passengers on board arriving bus stop [C]	Total no. of Boarding passengers [D]		Surveyed	Surplus Capacity [G]=[B]-[F]	Surplus Capacity %		
						In	bound						
		RMB	17	19	319	243	0	8	235	84	26%		
			37	7	118	87	0	8	79	39	33%		
			38	7	121	115	0	6	109	12	10%		
	A	GMB	75	10	169	115	2	1	116	53	31%		
			76	2	32	32	0	1	31	1	3%		
			78	3	57	37	0	1	36	21	37%		
AM		Bus	76K	3	411	137	1	3	135	276	67%		
Peak (0800-	C	GMB	36	1	19	13	0	1	12	7	37%		
0900)						Ou	tbound						
		RMB	17	33	615	502	32	5	529	86	14%		
			37	5	95	79	3	1	81	14	15%		
	D	GMB	38	5	95	78	2	0	80	15	16%		
	Ъ	GIVID	603	5	80	41	3	0	44	36	45%		
			75	8	146	117	5	3	119	27	18%		
		Bus	76K	2	268	121	3	2	122	146	54%		
	В	GMB	36	1	19	15	1	0	16	3	16%		
	Inbound												
		RMB	17	24	411	322	9	0	331	80	19%		
			36	1	16	16	0	1	15	1	6%		
		GMB	37	6	102	102	2	2	102	0	0%		
	A		38	8	140	138	0	1	137	3	2%		
	А		75	6	102	76	2	1	77	25	25%		
			76	3	48	40	1	1	40	8	17%		
PM			78	2	38	16	2	0	18	20	53%		
Peak		Bus	76K	3	411	179	2	1	180	231	56%		
(1700-	C	GMB	36	2	38	24	1	3	22	16	42%		
1800)						Ou	tbound						
		RMB	17	23	389	380	6	1	385	4	1%		
			37	7	127	99	9	0	108	19	15%		
			38	4	73	63	4	0	67	6	8%		
	D	GMB	603	3	48	34	7	0	41	7	15%		
			75	12	213	178	1	0	179	34	16%		
			76	3	48	48	1	1	48	0	0%		
		Bus	76K	2	268	121	4	0	125	143	53%		

- 6.2.5 Based on the assessment shown in the **Table 6.4**, the existing public transport service in both AM and PM peak are having ample capacities in year 2024.
- 6.2.6 The same design year as vehicular traffic forecast for Year 2038 is adopted for the future public transport demand forecast.
- 6.2.7 Based on the observed flow and adopted growth rate of 1.79% (as shown in **Table 7.3** in **Chapter 7**) on the public transport demand, the expected surplus of public transport in reference scenario is shown in **Table 6.5**.

Table 6.5 Expected Surplus in 2038 Reference Scenario (Without Proposed Development)

	Year 2038 Reference Scenario (per hour)											
	Bus /GMB Stop	Mode	Route No.	Passenger Capacity (per hour) [H]	Surveyed passengers on board arriving bus stop with growth [I] = [C] x (1+G.F %)^14	Total no of boarding with growth [J]=[D]*(1+G .F%)^14	Total no of alighting with growth [K]=[E]*(1+ G.F%)^14	Surveyed passengers on board leaving bus stop [L]=[I]+[J] -[K]	Total passenger from the adjacent development [M]	Surplus Capacity [N]=[H]- [K]-[M]	Surplus in %	Additional Frequency Required
							Inbound					
		RMB	17	319	312	0	9	302	0	17	5%	-
			37	118	112	0	10	101	0	17	14%	-
			38	121	147	0	8	140	0	-19	-15%	-2
	Α	GMB	75	169	147	3	1	149	1	20	12%	-
			76	32	41	0	1	40	0	-8	-24%	-1
			78	57	47	0	1	46	0	11	19%	-
AM		Bus	76K	411	176	1	4	173	3	235	57%	-
Peak (0800-	C	GMB	36	19	17	0	1	15	0	4	19%	-
0900)						(Outbound					
	D	RMB	17	615	579	41	6	614	11	-10	-2%	-1
			37	95	91	4	1	94	1	0	0%	-
		GMB	38	95	90	3	0	92	1	2	2%	-
		GMB	603	80	47	4	0	51	1	28	35%	-
			75	146	135	6	3	138	2	7	4%	-
		Bus	76K	268	139	4	2	141	8	119	45%	-
	В	GMB	36	19	17	1	0	19	0	0	0%	-
	Inbound											
		RMB	17	411	413	12	0	424	3	-16	-4%	-1
		GMB	36	16	21	0	1	19	0	-3	-21%	-1
			37	102	131	3	3	131	1	-29	-29%	-2
	A		38	140	177	0	1	176	0	-36	-25%	-3
	А		75	102	97	3	1	99	1	3	3%	-
			76	48	51	1	1	51	0	-4	-8%	-1
PM			78	38	21	3	0	23	1	14	37%	-
Peak		Bus	76K	411	229	3	1	231	5	175	43%	-
(1700-	C	GMB	36	38	31	1	4	28	0	9	25%	-
1800)							Outbound					
		RMB	17	389	438	8	1	444	2	-58	-15%	-4
			37	127	114	12	0	126	3	-2	-1%	-1
			38	73	73	5	0	78	1	-6	-8%	-1
	D	GMB	603	48	39	9	0	48	2	-3	-5%	-1
			75	213	205	1	0	206	0	6	3%	-
			76	48	55	1	1	55	0	-8	-16%	-1
		Bus	76K	268	139	5	0	145	10	113	42%	-

6.2.8 **Table 6.5** indicates that there is a shortage of public transport services for both AM and PM peak of the reference scenario in year 2038.

6.2.9 Based on **Table 6.1 and 6.2**, the expected demand of public transport for design scenario in year 2038 is assessed by considering the proposed development and is shown in **Table 6.6**.

Table 6.6 Expected Surplus in 2038 Design Scenario (With Proposed Development)

					Year 2038 Design Scenario (per hour)							
	Bus /GMB Stop	Mode	Route No.	Surplus from Reference Scenario [N]	% of distribution	No of Passengers from Proposed Development [P]	Surplus Capacity [Q] = [N] – [P]	Surplus in %	Additional Frequency Required			
						Inbound						
		RMB	17	17	0%	0	17	5%	-			
			37	17	0%	0	17	14%	-			
			38	-19	0%	0	-19	-15%	-2			
	A	GMB	75	20	4%	1	18	11%	-			
			76	-8	0%	0	-8	-24%	-1			
			78	11	0%	0	11	19%	-			
AM		Bus	76K	235	2%	5	230	56%	-			
Peak (0800-	C	GMB	36	4	0%	0	4	19%	-			
0900)					(Outbound						
	D	RMB	17	-10	62%	22	-32	-5%	-2			
			37	0	6%	2	-2	-2%	-1			
		GMB	38	2	4%	1	0	1%	-			
	Ъ	GMD	603	28	6%	2	26	32%	-			
			75	7	10%	3	3	2%	-			
		Bus	76K	119	6%	16	104	39%	-			
	В	GMB	36	0	2%	1	-1	-3%	-1			
	Inbound											
		RMB	17	-16	18%	6	-23	-6%	-2			
			36	-3	0%	0	-3	-21%	-1			
		GMB	37	-29	4%	1	-31	-30%	-2			
	A		38	-36	0%	0	-36	-25%	-3			
	А		75	3	4%	1	1	1%	-			
			76	-4	2%	1	-4	-9%	-1			
PM			78	14	4%	1	13	34%	-			
Peak		Bus	76K	175	4%	11	164	40%	-			
(1700-	C	GMB	36	9	2%	1	9	23%	-			
1800)					(Outbound						
		RMB	17	-58	12%	4	-62	-16%	-4			
			37	-2	18%	6	-8	-6%	-1			
			38	-6	8%	3	-9	-12%	-1			
	D	GMB	603	-3	14%	5	-8	-16%	-1			
			75	6	2%	1	6	3%	-			
			76	-8	2%	1	-9	-18%	-1			
		Bus	76K	113	8%	21	92	34%	-			

6.2.10 The assessment results in **Table 6.6** indicate that for the design scenario in year 2038, it is proposed to increase the frequency of the bus and minibus services. However, as shown in **Table 6.5**, there will be shortage of public transport services even without considering the proposed development. As the scale of the proposed development is small and it is believed that it will not bring significant impact to the future demand of public transport services.

6.3 Conclusion

- 6.3.1 As the proposed development is planned to be completed after the completion of Au Tau Station of Northern Link Main Line, the residents of the proposed development could be served by MTR services.
- 6.3.2 There will be a new PTI with 9 bus routes proposed by Sha Po Public Housing Development, there will be sufficient spare PT capacity for our proposed development.
- 6.3.3 Even if the Sha Po Public Housing Development is deferred, by future residents could be well serviced by increasing the frequency of the existing public transport services.

用

We commit We deliver

7. PEDESTRIAN ASSESSMENT

7.1 Existing Pedestrian Condition

7.1.1 In order to acquire the existing pedestrian condition around the proposed development, a pedestrian headcount survey was conducted at concerned footpath sections during periods on a typical weekday on September 2024 The layout of the critical sections of footpath is shown in **Figure 7.1**.

Footpath Assessment

7.1.2 The level-of-service (LOS) for the observed pedestrian flows of the identified critical sections are shown in **Table 7.1**.

 Table 7.1
 Operational Performance of Critical Footpath in Existing Scenario

	Total Footpath Width (m)	Effective Width (m) ⁽¹⁾	Year 2024 Observed Scenario							
				AM Peak		PM Peak				
Critical Section			Two-way Pedestrian Flow (ped/hr)	Two-way Pedestrian Flow Rate (ped/min/m)	LOS ⁽³⁾	Two-way Pedestrian Flow (ped/hr)	Two-way Pedestrian Flow Rate (ped/min/m)	LOS ⁽³⁾		
F1	0.9	0.4	10	0.42	A	20	0.83	A		

Notes:

7.1.3 The assessment results shown in **Table 7.1** indicate that critical sections are operating within LOS A.

⁽¹⁾ Effective Width = Total Footpath Width - Death Width (0.5m from railings or walls each for both sides and Im from shop frontage).

⁽²⁾ Two-way Pedestrian Flow Rate (ped/min/m) = Peak Pedestrian Flow / 60 min / Effective Width.

⁽³⁾ LOS details extracted from the HCM are tabulated in TPDM Volume 6 Chapter 10 Clause 10.5.2.2.

7.2 Pedestrian Traffic Forecast

Reference Scenario (Without the Proposed Development)

Historical Trend

7.2.1 Transport Department has traffic count stations in the vicinity of the proposed development. The traffic counts reported in the Annual Traffic Census over a period of seven years, i.e., 2012 to 2018 are summarized in **Table 7.2**.

Table 7.2 Historical Traffic Data from Annual Traffic Census (ATC)

ATC Stn	Road Name	Annual Average Daily Traffic (AADT)								
		2012	2013	2014	2015	2016	2017	2018	Rate	
5016	San Tin Highway, Castle Peak Road and San Tam Road (From Kam Tin Road to Fairview Park)	92,060	90,610	88,800	86,180	92,230	90,650	86,230	-1.08%	
5019	Castle Peak Road – Yuen Long (From Yuen Long On Lok Road to Kam Tin Road)	34,550	34,530	36,490	34,380	31,990	30,040	29,300	-2.71%	
	Total	126,610	125,140	125,290	120,560	124,220	120,690	115,530	-1.51%	

Note: *AADT estimated by Growth factor

Planning Data

7.2.2 Reference has also been made to the latest 2019-Based Territorial Population Employment Data Matrices (TPEDM) planning data published by the Planning Department for projection of population and employment within the study district from years 2019 to 2031. The average annual growth rates in terms of population and employment from 2019 to 2031 are tabulated in **Table 7.3**.

^{**}Due to the social movement in 2019 and COVID in 2020, the traffic flow will not be reliable and hence the growth rate will only take into account from 2016 to 2018

^{***}As the traffic flow listed in the designated ATC stations are predicted, yet the flow will not be reliable and will not take it into the account.

Table 7.3 2019-Based Planning Data from 2019 to 2031

		Popu	lation		Employment					
Zone	2019	2026	2031	Avg Annual Growth Rate (2019- 2031)	2019	2026	2031	Avg Annual Growth Rate (2019- 2031)		
Northwest New Territories	58,400	76,850	140,150	7.57%	222,800	239,250	353,900	3.93%		
Yuen Long	68,100	70,700	70,250	0.26%	175,150	172,350	159,850	-0.76%		
Tin Shui Wai	35,050	33,100	31,950	-0.77%	279,950	283,250	276,050	-0.12%		
Total	161,550	180,650	242,350	3.44%	677,900	694,850	789,800	1.28%		
	Weight Average Growth									

Note (1) $((242,350 \times 3.44\%) + (789800 \times 1.28\%))/(242,350 + 789,800) = \sim 1.79\%$

Adopted Growth Rate

- 7.2.3 A.A.D.T. of ATC indicates that the traffic flow of the local road network has an average annual growth rate of <u>-1.51%</u> from year 2012 to year 2018.
- 7.2.4 Whilst, the 2019-based planning data indicates that the population and employment data of the study area are expected to grow with an average annual growth rate range from <u>-0.77% to 7.57%</u> and the range from <u>-0.12% to 3.93%</u> respectively from 2019 to 2031.
- 7.2.5 Therefore, the weight average growth $\pm 1.79\%$ p.a. has been adopted for projecting traffic forecasts from year 2024 to year 2038.
- 7.2.6 To assess the future impact due to the proposed development, based on the survey flow and the growth rate of +1.79% adopted, future reference pedestrian flows (without the proposed development) at the critical sections are estimated.

Footpath Assessment

7.2.7 The LOS are assessed and summarized in **Table 7.4** below:

用心

以

誠

Table 7.4	Operational Performance of Critical Footpath in Reference
	Scenario (Without the Proposed Development)

Critical Section	Total Footpath Width (m)	Width	(Without the Propo			erence Scenario osed Development) PM Peak		
			Two-way Pedestrian	Two-way Pedestrian Flow Rate (ped/min/m)	LOS ⁽³⁾	Two-way Pedestrian Flow (ped/hr)	Two-way Pedestrian Flow Rate (ped/min/m)	LOS ⁽³⁾
F1	0.9	0.4	15	0.63	A	25	1.07	A

Notes:

7.2.8 The assessment results shown in **Table 7.4** indicate that critical sections are operating within LOS A.

<u>Design Scenario (With the Proposed Development)</u>

7.2.9 The total trips generated from the proposed development are estimated in **Tables 6.1** of **Chapter 6** above.

Footpath Assessment

- 7.2.10 As mentioned in subsection 5.2 and **Figure 5.2**, the Applicant proposes to widen the southern section of the local access road into a 6m wide, two-lane single carriageway, accompanied by a 1.2m wide footpath on the western side. To enhance the pedestrian walking environment, the footpath widening will continue along the western footpath adjacent to the Site, maintaining a consistent width of 1.2m.
- 7.2.11 The estimated trips are superimposed to the network. The assessment of the design scenario is summarized in **Table 7.5**.

23004HK (October 2025) 35

⁽¹⁾ Effective Width = Total Footpath Width - Death Width (0.5m from railings or walls each for both sides and Im from shop frontage).

⁽²⁾ Two-way Pedestrian Flow Rate (ped/min/m) = Peak Pedestrian Flow / 60 min / Effective Width.

⁽³⁾ LOS details extracted from the HCM are tabulated in TPDM Volume 6 Chapter 10 Clause 10.5.2.2.

Table 7.5 Operational Performance of Critical Footpath in Design Scenario (With the Proposed Development)

Critical Section	Total Footpath Width (m)	Width	(With the Propos			esign Scenario sed Development) PM Peak		
			Two-way Pedestrian Flow (ped/hr)	Two-way Pedestrian Flow Rate (ped/min/m)	LOS ⁽³⁾	Two-way Pedestrian Flow (ped/hr)	Two-way Pedestrian Flow Rate (ped/min/m)	LOS ⁽³⁾
F1	1.2(4)	0.7	870	20.67	В	880	20.90	В

Notes:

7.2.12 The assessment results in **Table 7.5** shows that all critical footpaths would operate with LOS B and therefore considered acceptable.

7.3 Conclusion

7.3.1 Based on the assessment results, the critical footpath and crossing facilities are able to meet the future pedestrian demand due to the proposed development.

23004HK (October 2025) 36

⁽¹⁾ Effective Width = Total Footpath Width - Death Width (0.5m from railings or walls each for both sides and Im from shop frontage).

⁽²⁾ Two-way Pedestrian Flow Rate (ped/min/m) = Peak Pedestrian Flow / 60 min / Effective Width.

⁽³⁾ LOS details extracted from the HCM are tabulated in TPDM Volume 6 Chapter 10 Clause 10.5.2.2.

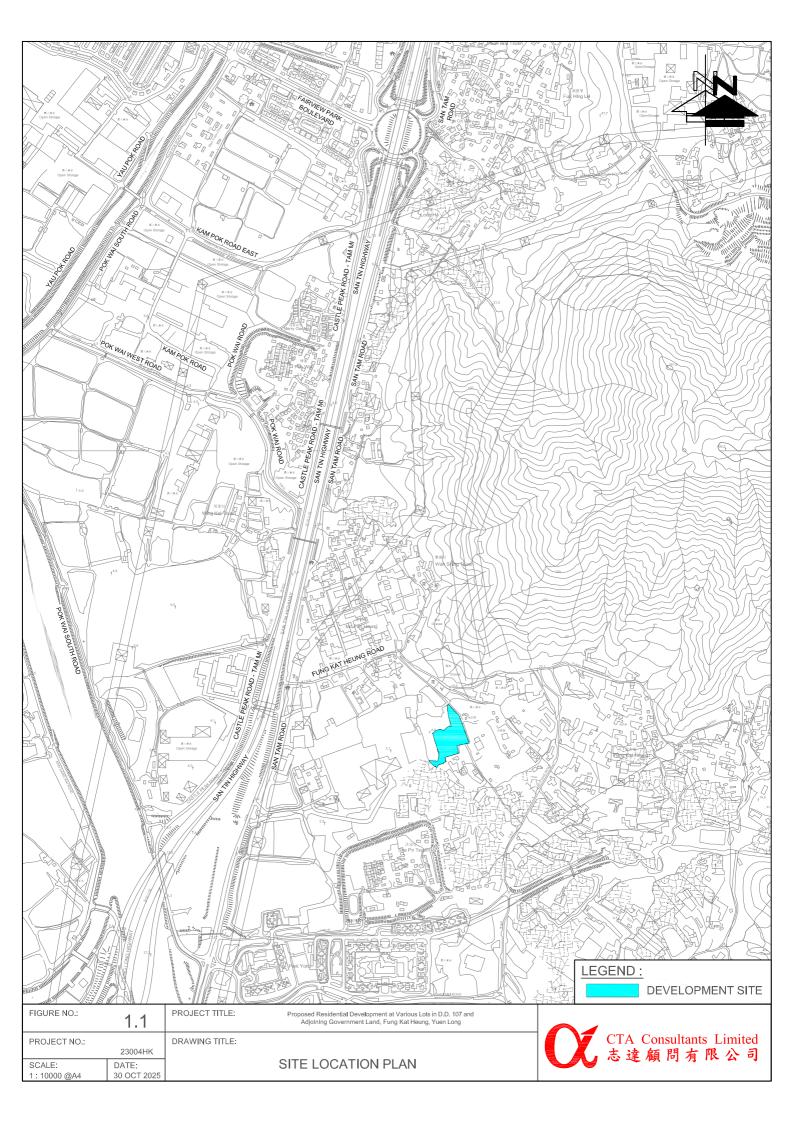
⁽⁴⁾ Proposed widening of footpath as shown in Figure 7.2

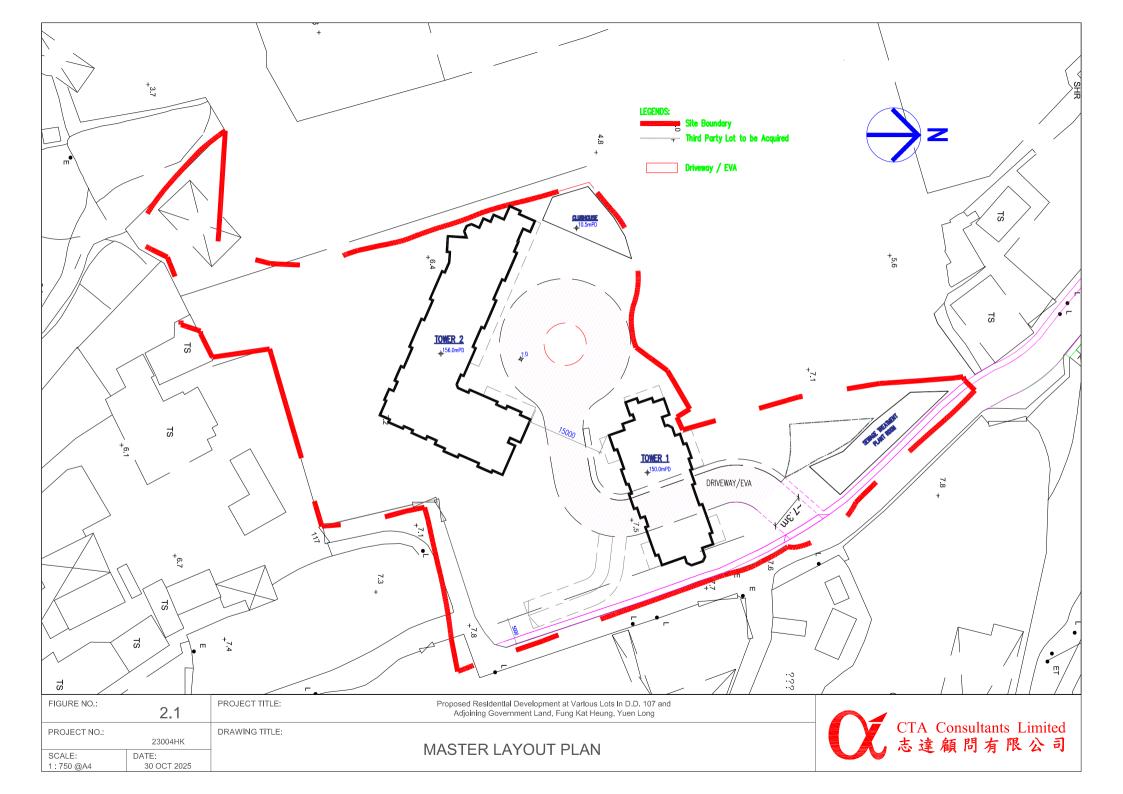
8. SUMMARY AND CONCLUSION

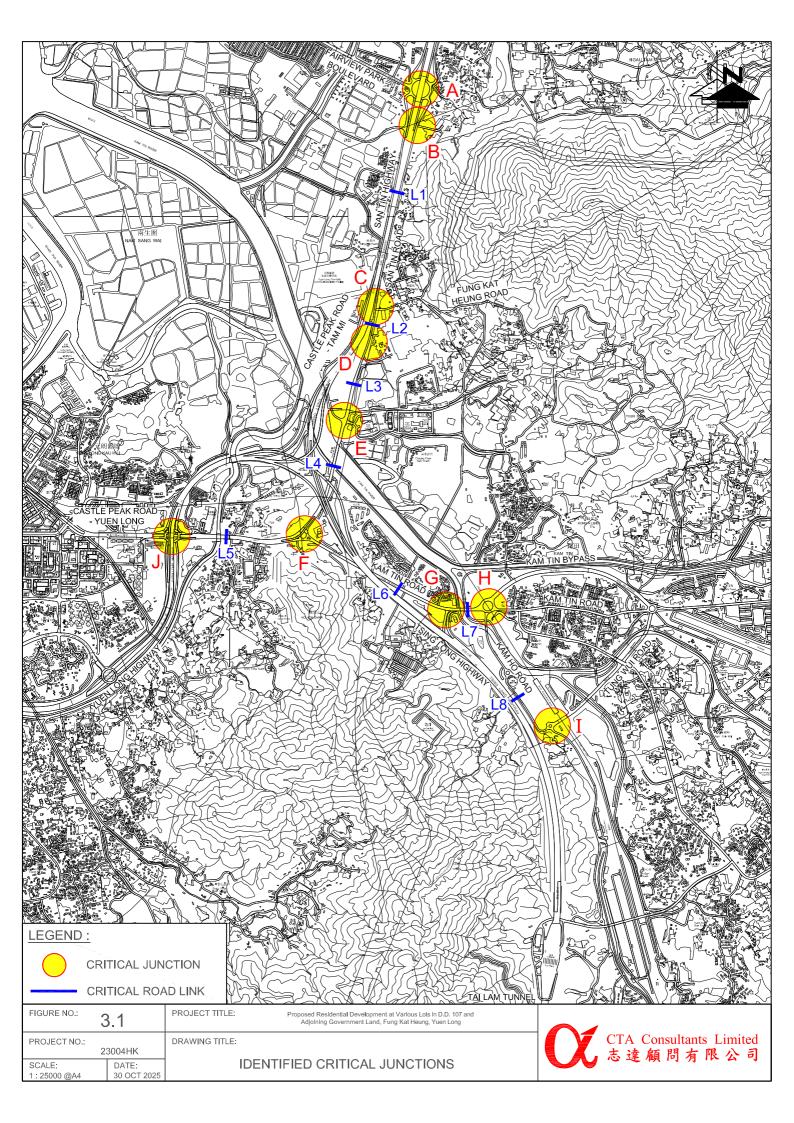
8.1 Summary

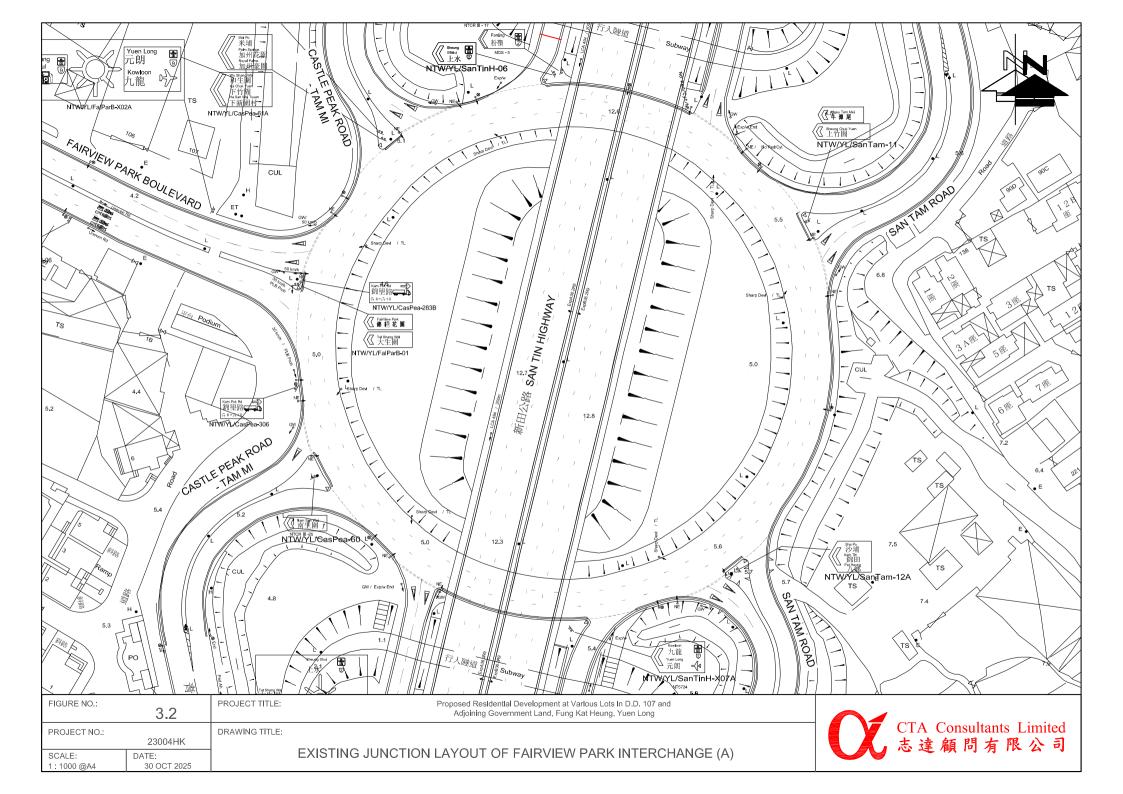
- 8.1.1 CTA Consultants Limited (CTA) is commissioned as the traffic consultant to prepare the Traffic Impact Assessment (TIA) and technical justifications in supporting the S12A Amendment of Plan Application for proposed rezoning of the Site from "Industrial (Group D)", "Residential (Group A)" and "Agriculture to Residential (Group A) 1" for Residential Development at Various Lots in D.D. 107 and Adjoining Government Land, Fung Kat Heung, Yuen Long.
- 8.1.2 To appraise the existing traffic condition, a vehicular survey in the form of manual classified count was conducted at the surrounding road network of the proposed development. Current operational performance of the critical junctions has been assessed with the observed traffic flow. The results reveal that all critical junctions are at present operating within its capacities.
- 8.1.3 Assessment of operational performance of the critical junctions indicates that all critical junctions will still operate within their capacities in both reference and design scenarios in year 2038 except Junctions E, F and J. However, these junctions would already over DFC 0.85 or R.C. below 15% even without our proposed development. The impact by our development is very small and insignificant.
- 8.1.4 As the traffic trips of the proposed development will not result in significant impact on the surrounding road network. Therefore, the application is supported from the traffic point of view.
- 8.1.5 Road link assessment for the local access road has been carried out with the proposed improvement including widening of the northern section to 10.3m and the southern section to 6m. The assessment has indicated that after widening the local access road, the roads would still operate within their capacities when the proposed development and the public housing developments are completed in 2038.

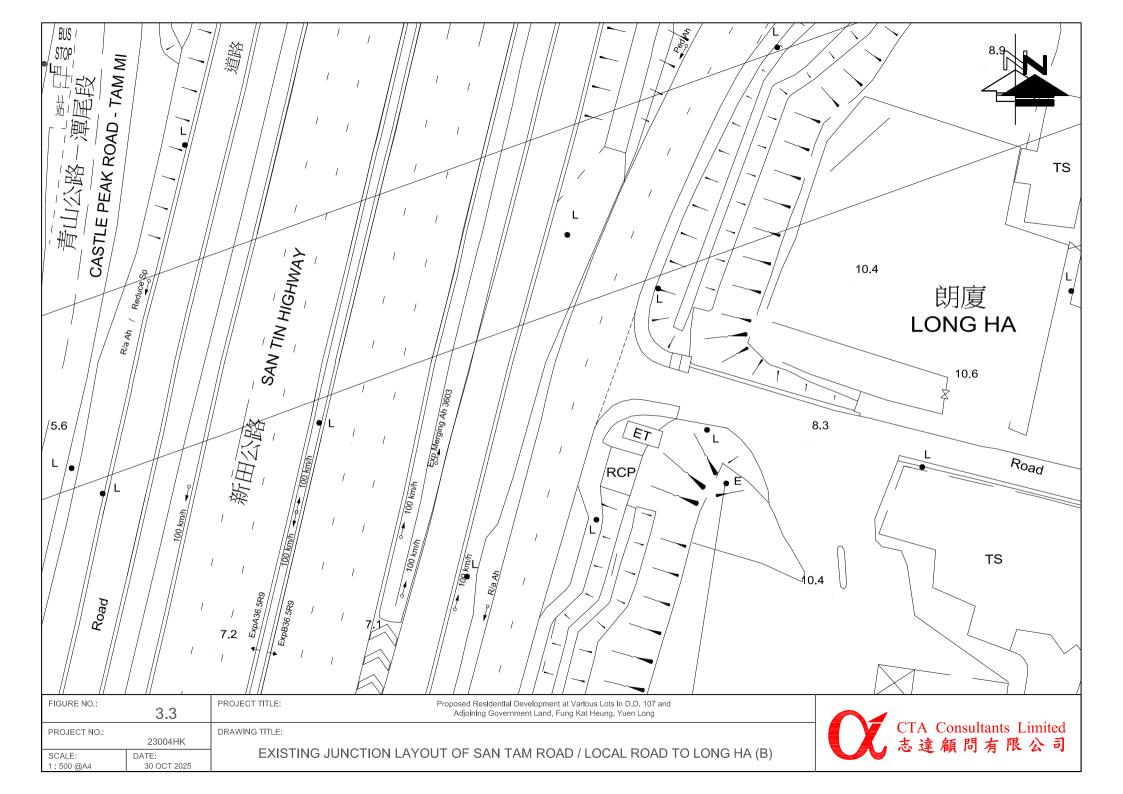
- 8.1.6 It is the responsibility of the Government to implement the proposed road widening of the Fung Kat Heung Road and the new loop road to support the proposed SPPHD. It is therefore reasonable to assume that the population intake of the proposed development will be effected upon completion of the road widening of the Fung Kat Heung Road and the new loop road connecting San Tam Road by the Government.
- 8.1.7 Although the implementation programme of the SPPHD will need to be further reviewed by the Government, the Government should consider implementing the relevant road improvement works in advance or in phases to facilitate the SPPHD in the future and improve the road network of the locality, which tally with the planning principles of infrastructure-led and capacity-creating adopted by the Government. This would facilitate traffic ingress and egress for the proposed development scheme, while aligning with the broad development programme of the Sha Po Public Housing Development or, at the very least, the target completion date for the Phase 2 works of the Northern Link Main Line (with intermediate stations at Au Tau, Ngau Tam Mei and San Tin) by 2034.
- 8.1.8 As government announced that the Northern Link Main Line (include Au Tau Station) will be completed in 2034, the target completion year of our proposed development is adjusted from 2032 to 2035. Therefore, our assumption on the new implementation of improvement works and transport facilities proposed by Sha Po Public Housing Development has already been completed in year 2035 is reasonable.
- 8.1.9 Public transport demand has also been assessed. Due to the long walking distance to the existing public transport, it is believed that the residents of the proposed development will most likely use the public transport in the new PTI of Sha Po Public Housing Development. The assessment shows that there will be sufficient spare capacity of the public transport in the new PTI for the residents of the proposed development. Even if the PTI is deferred, the residents of the proposed development could be well serviced by increasing the frequency of the existing public transport services.
- 8.1.10 Pedestrian assessment also revealed that the concerned sections of footpath would all operate with ample LOS during AM and PM peak hours in design year 2038.

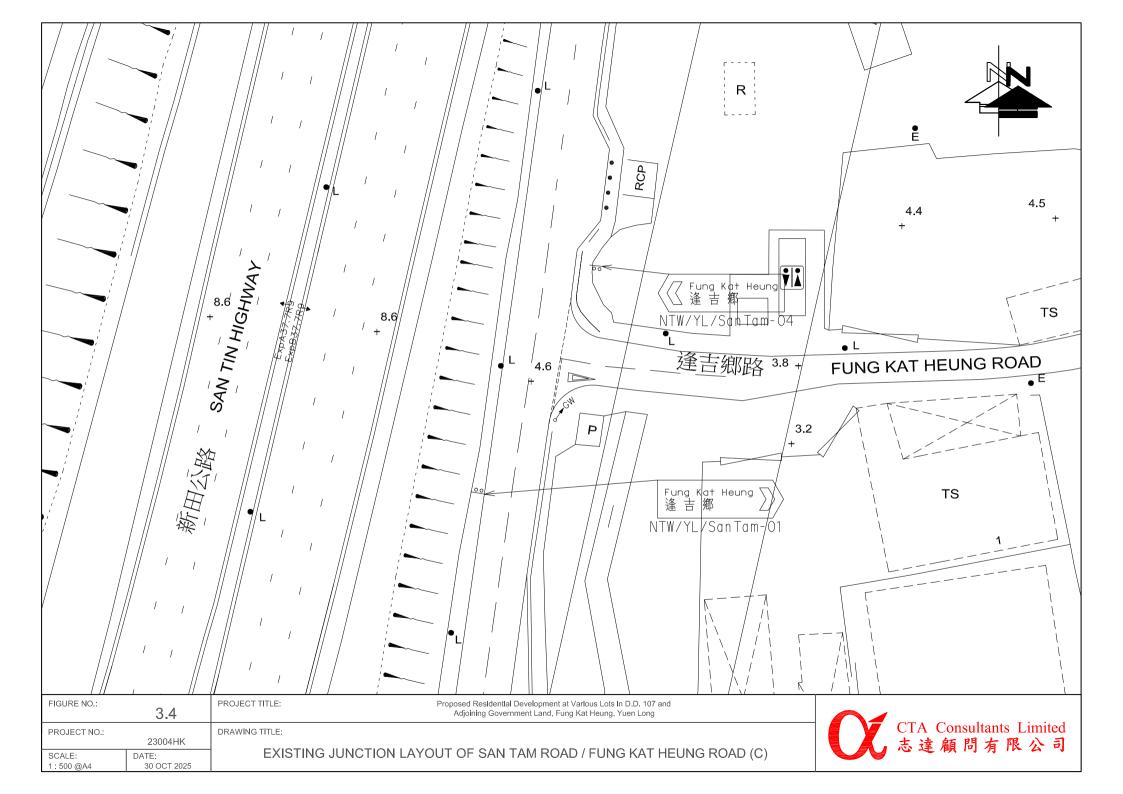


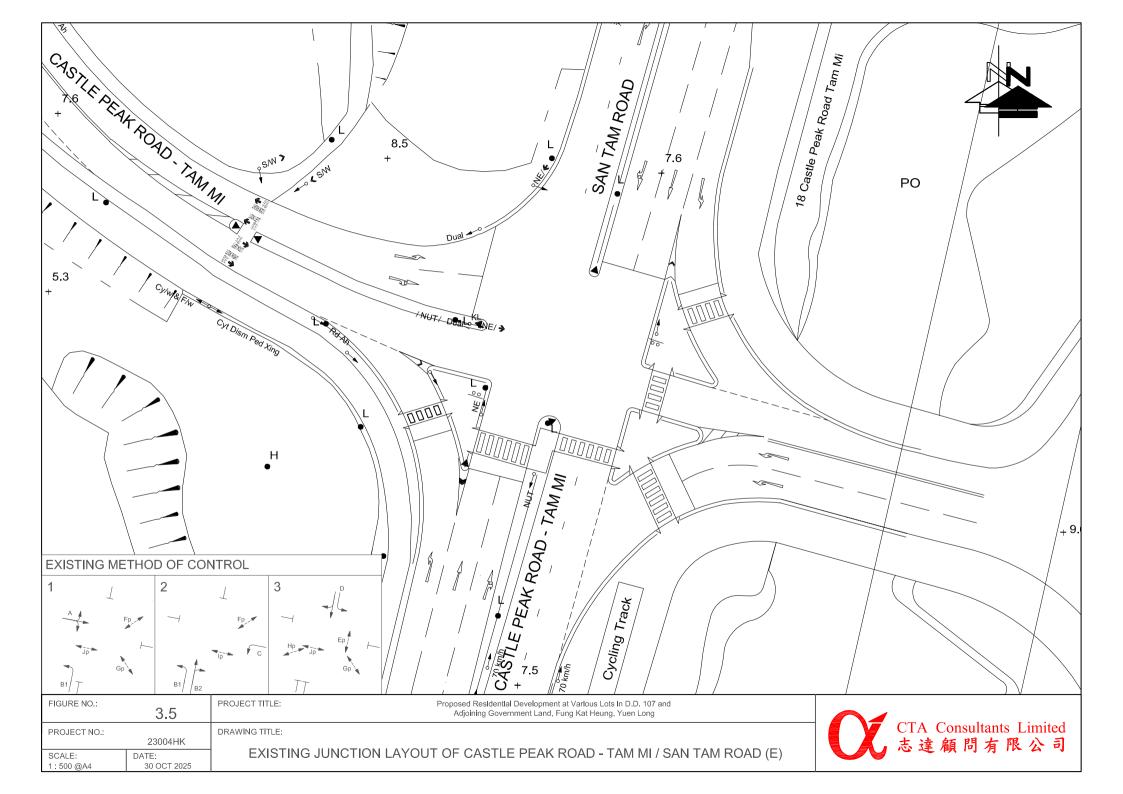

8.1.11 Thus, the proposed residential development will not cause any significant impact on the widened local access road.

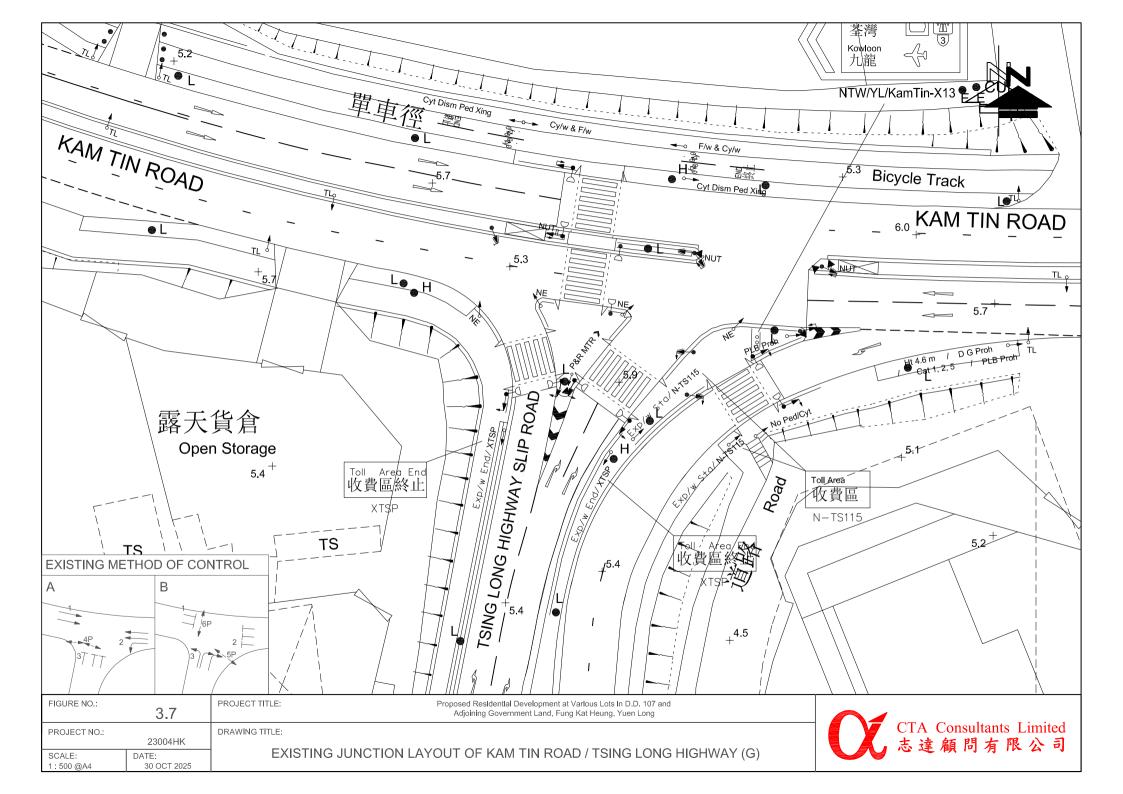

8.2 Conclusion

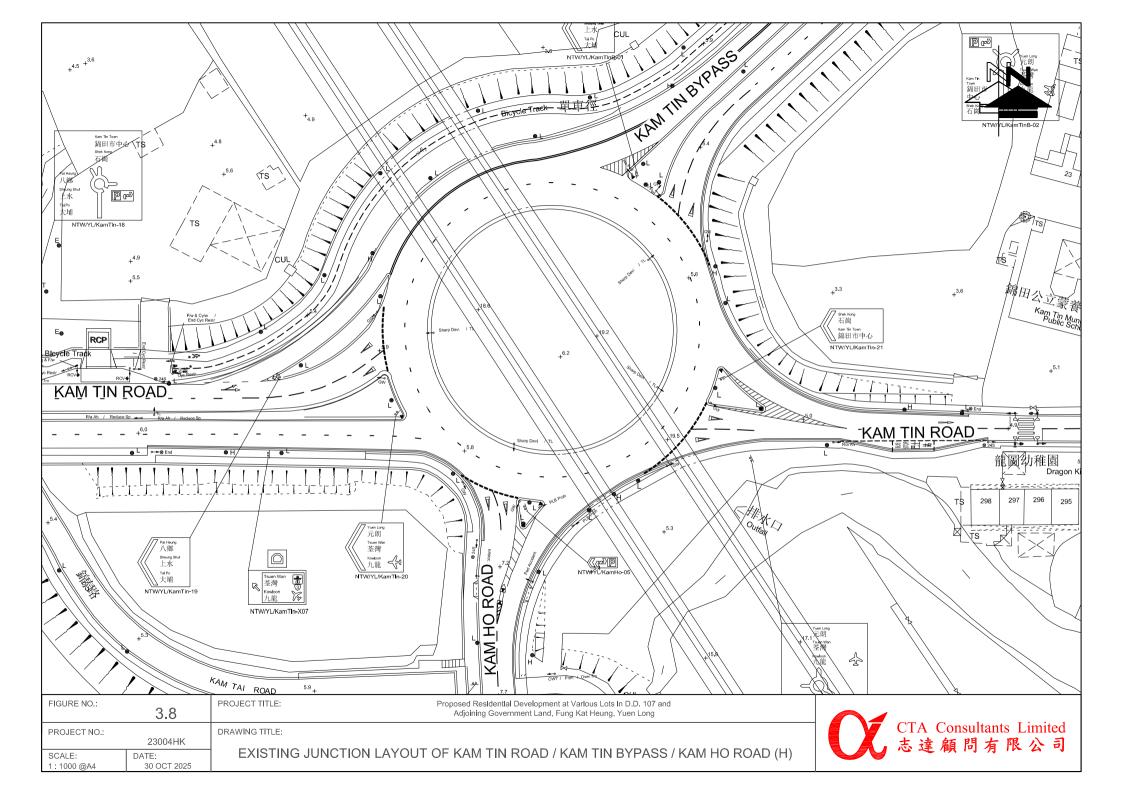

- 8.2.1 Traffic Impact Assessment (TIA) study indicates that no adverse traffic impact will be induced by the proposed development.
- 8.2.2 Therefore, the proposed residential development at Various Lots in D.D. 107 and Adjoining Government Land, Fung Kat Heung, Yuen Long is reckoned feasible from traffic engineering point of view.

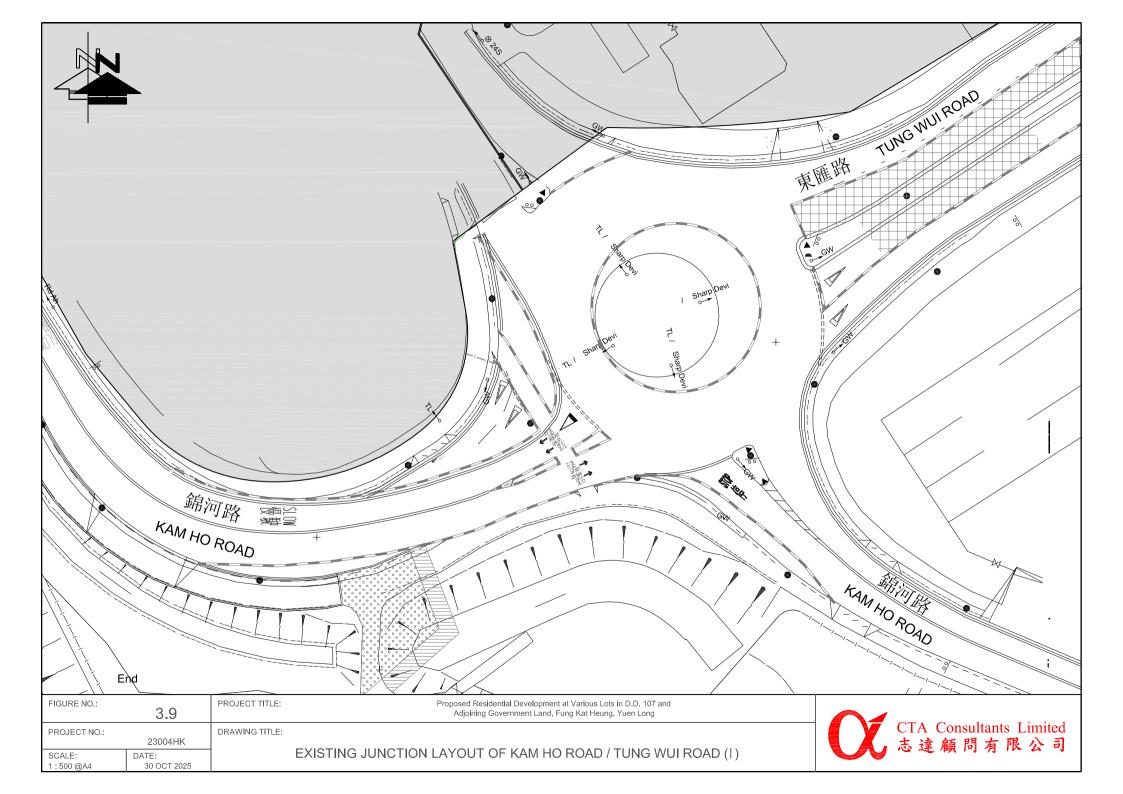

23004HK (October 2025) 39

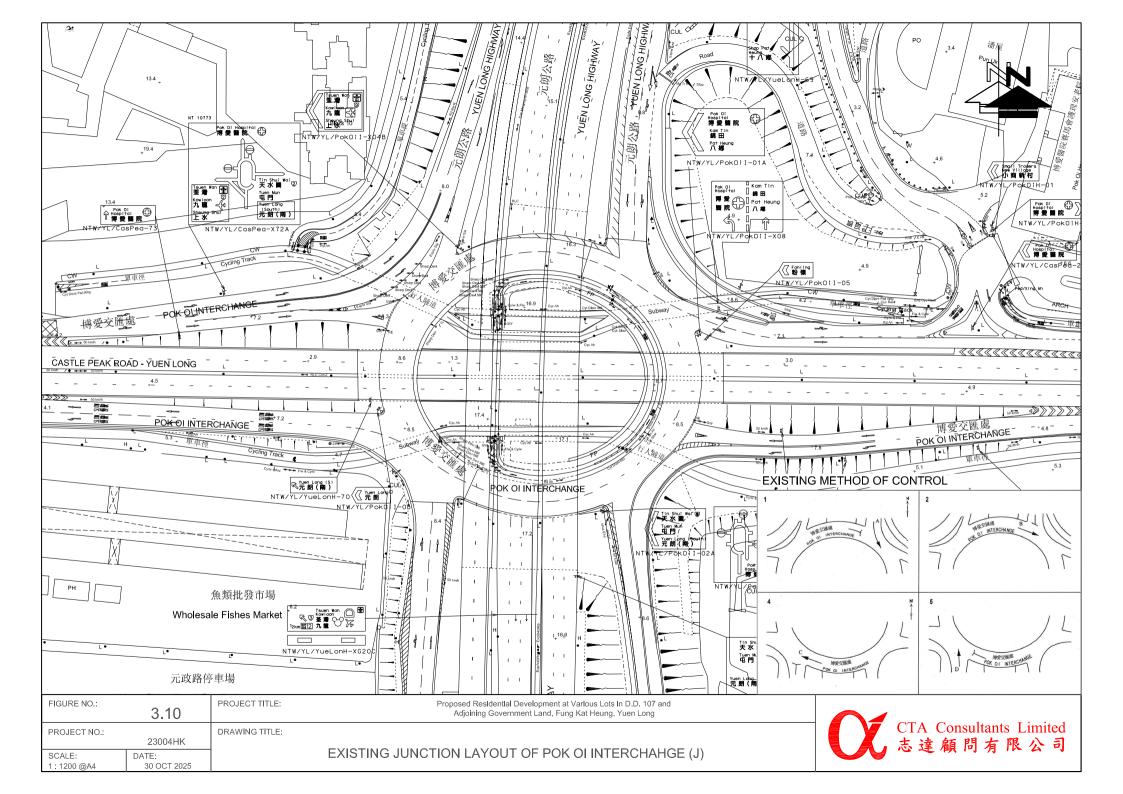


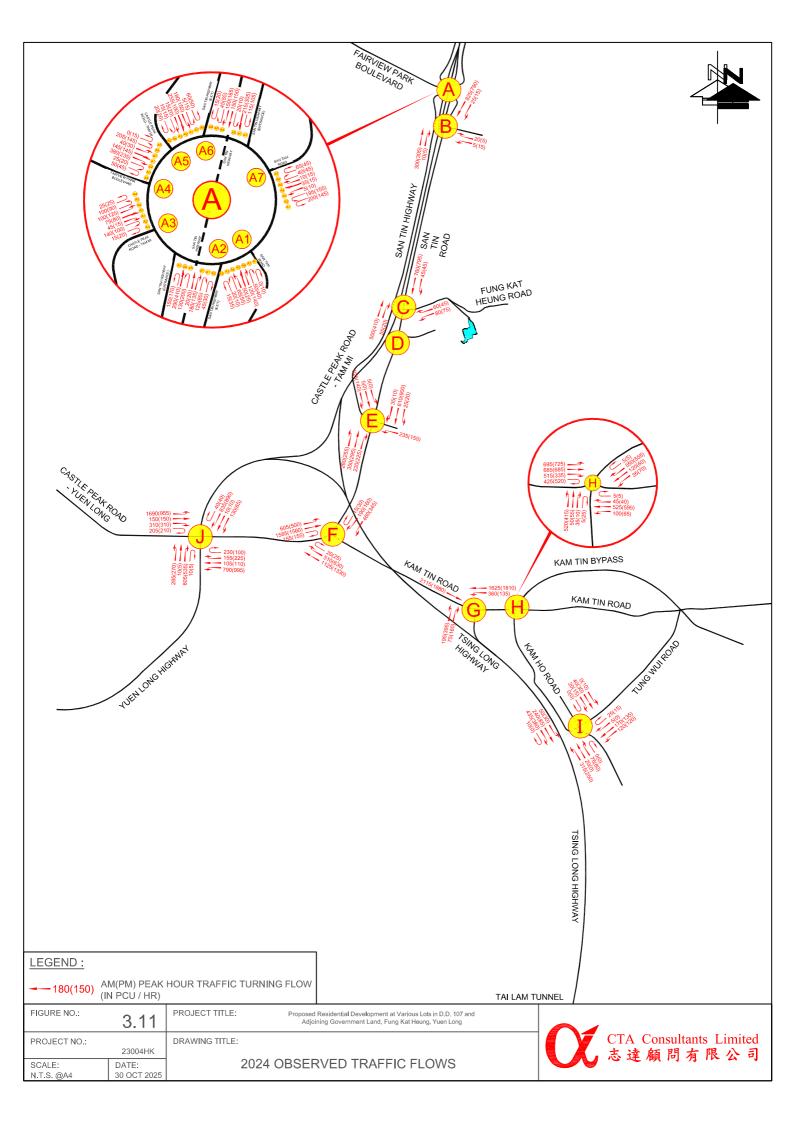


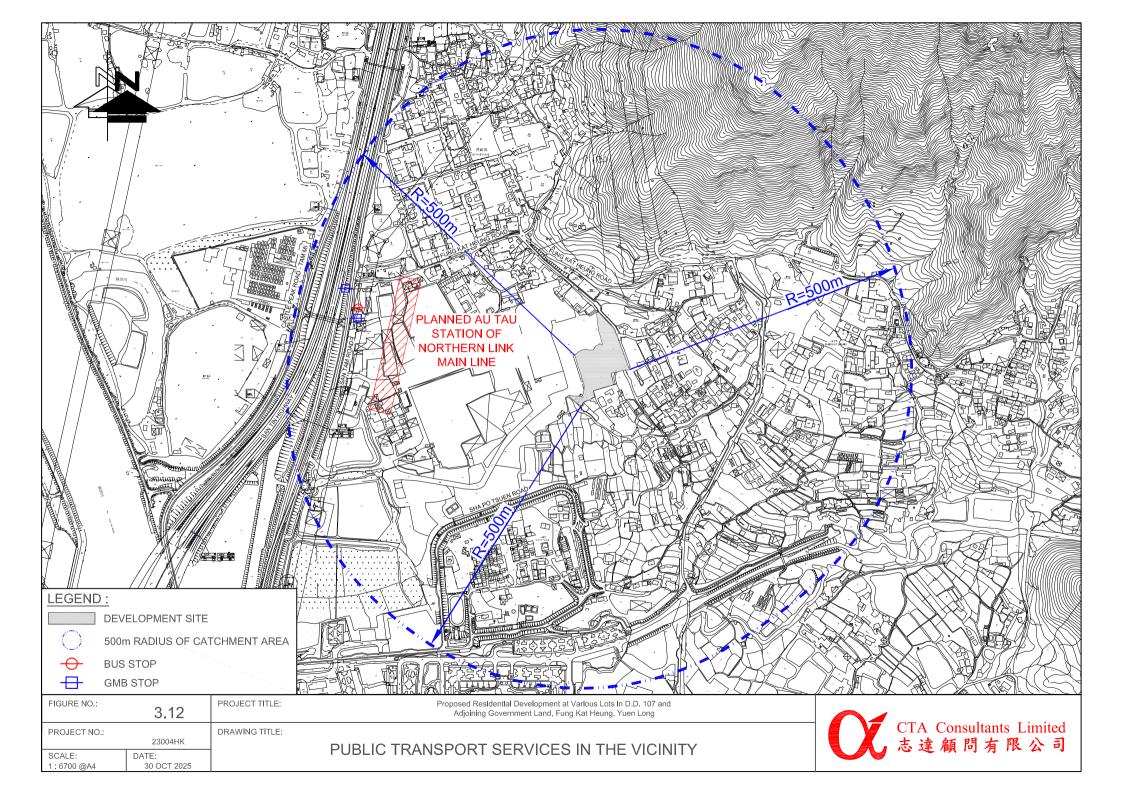


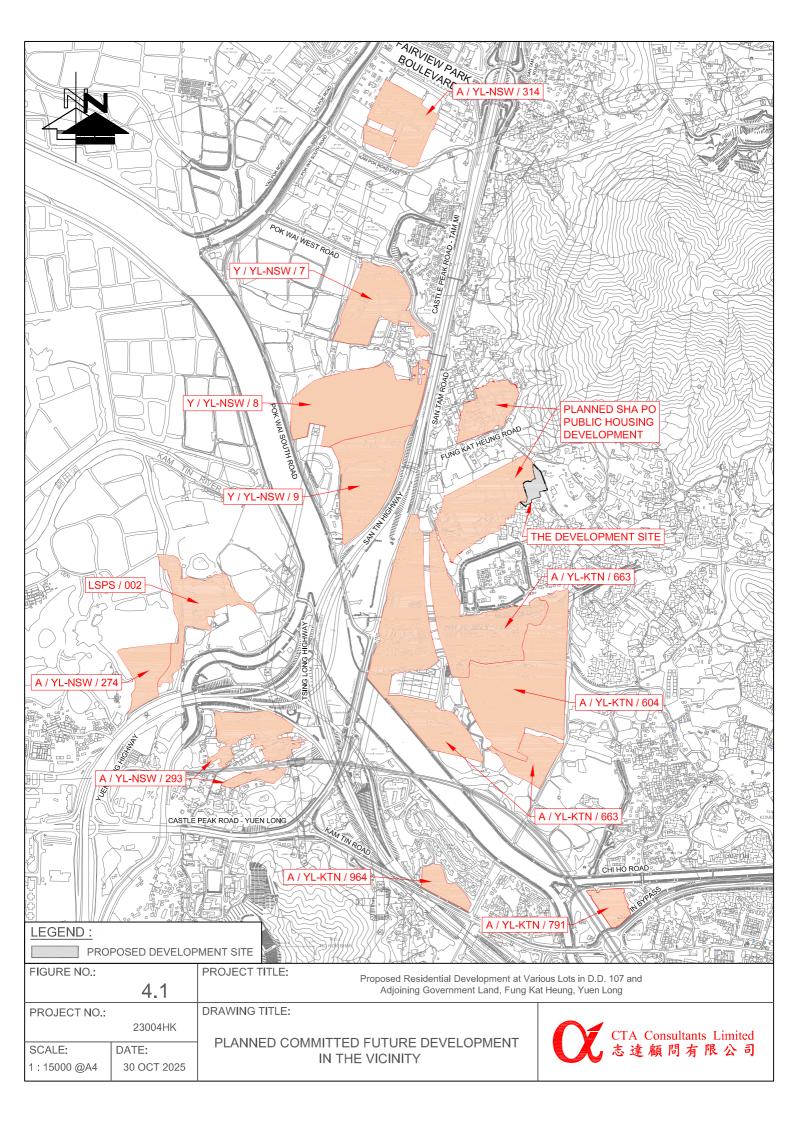


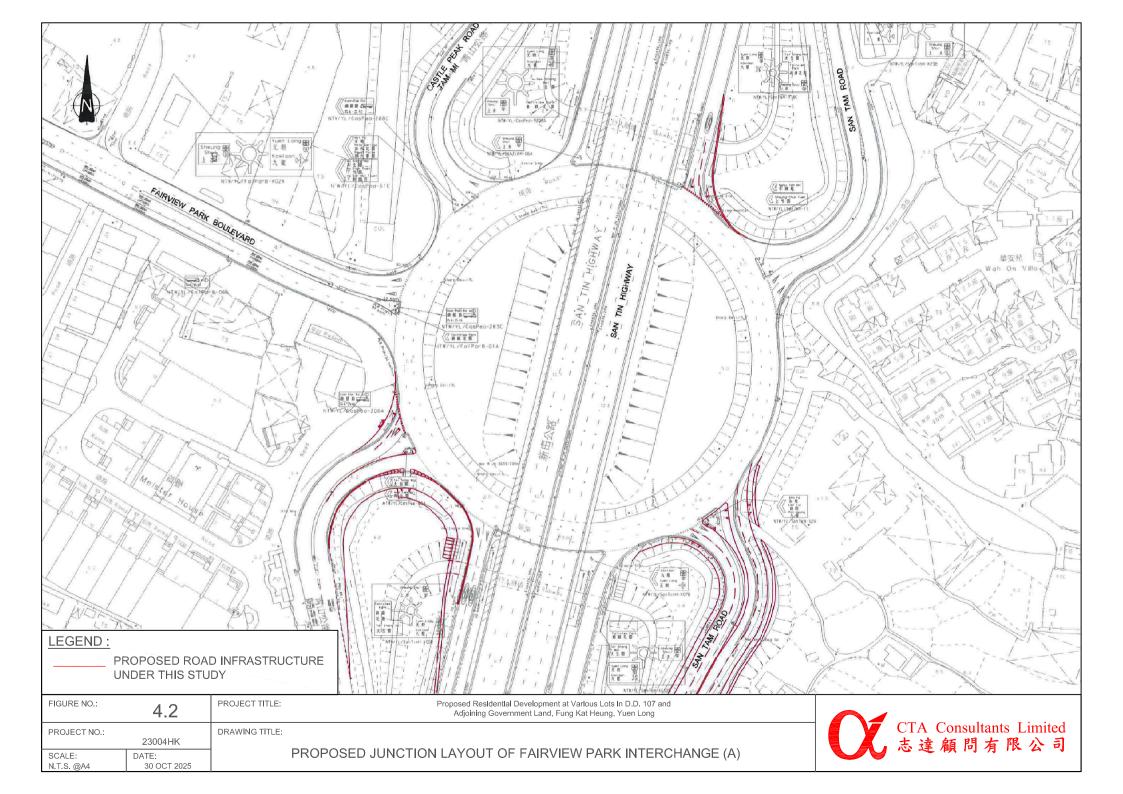


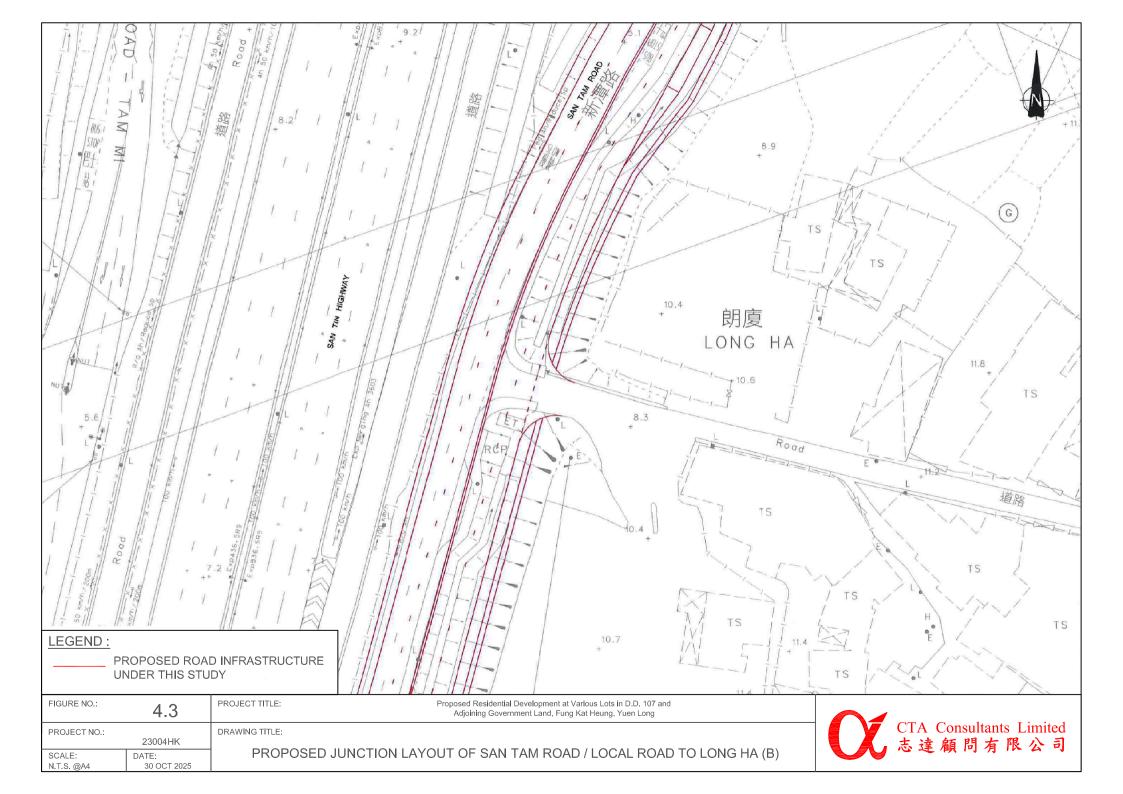


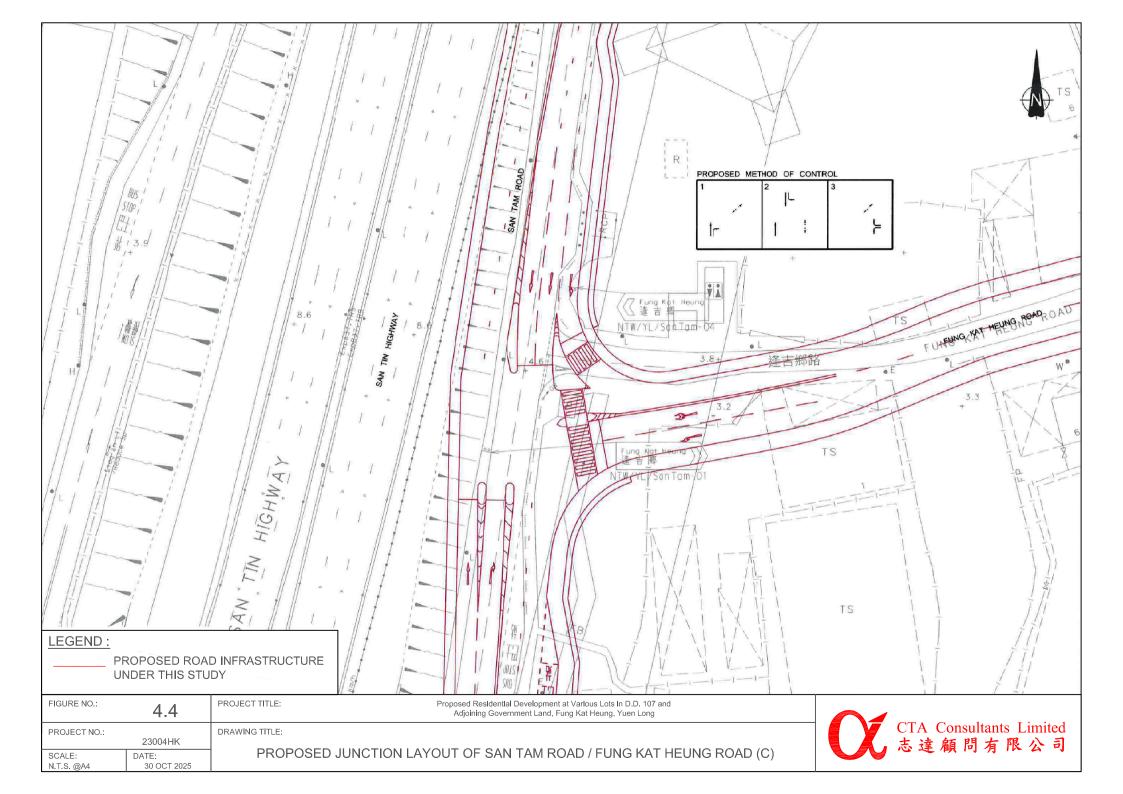


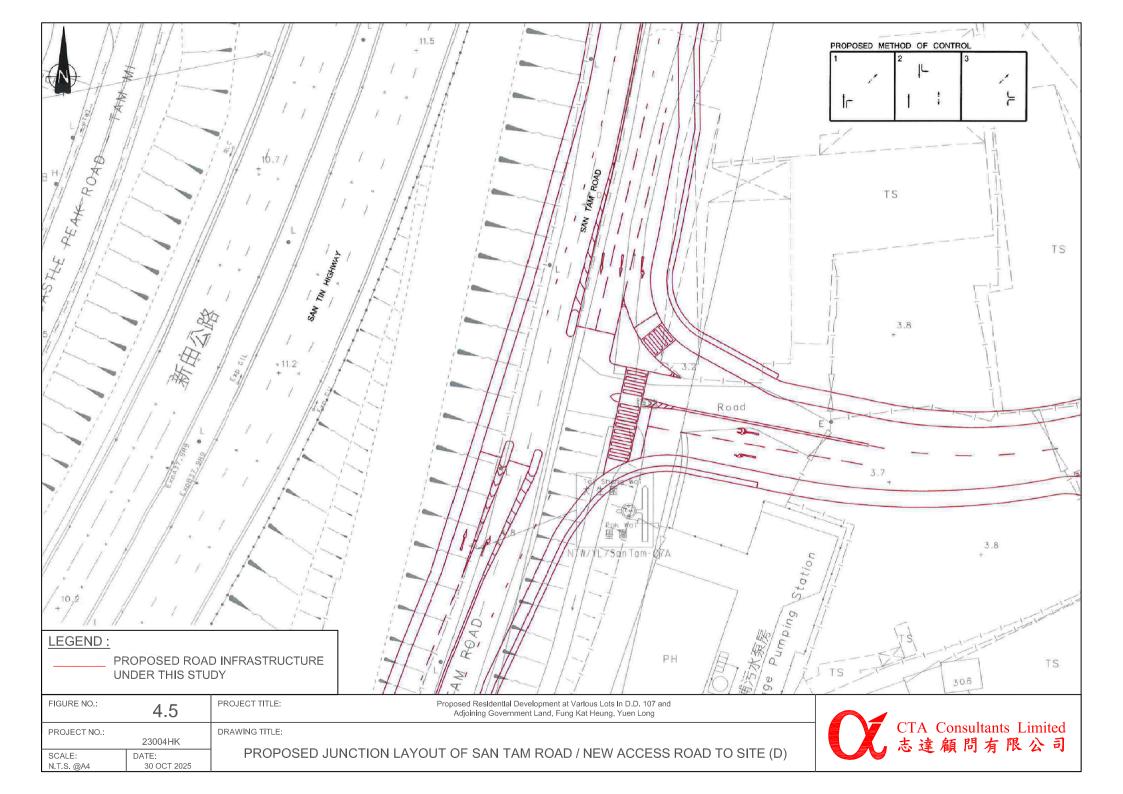


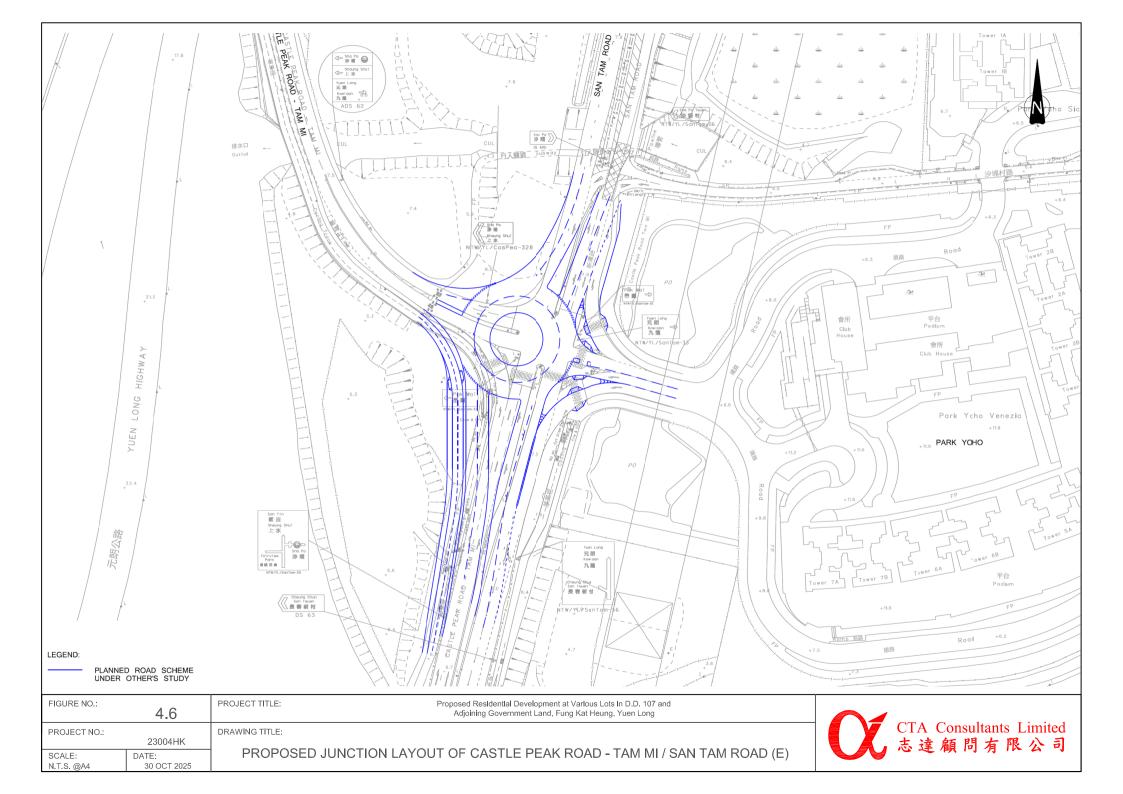




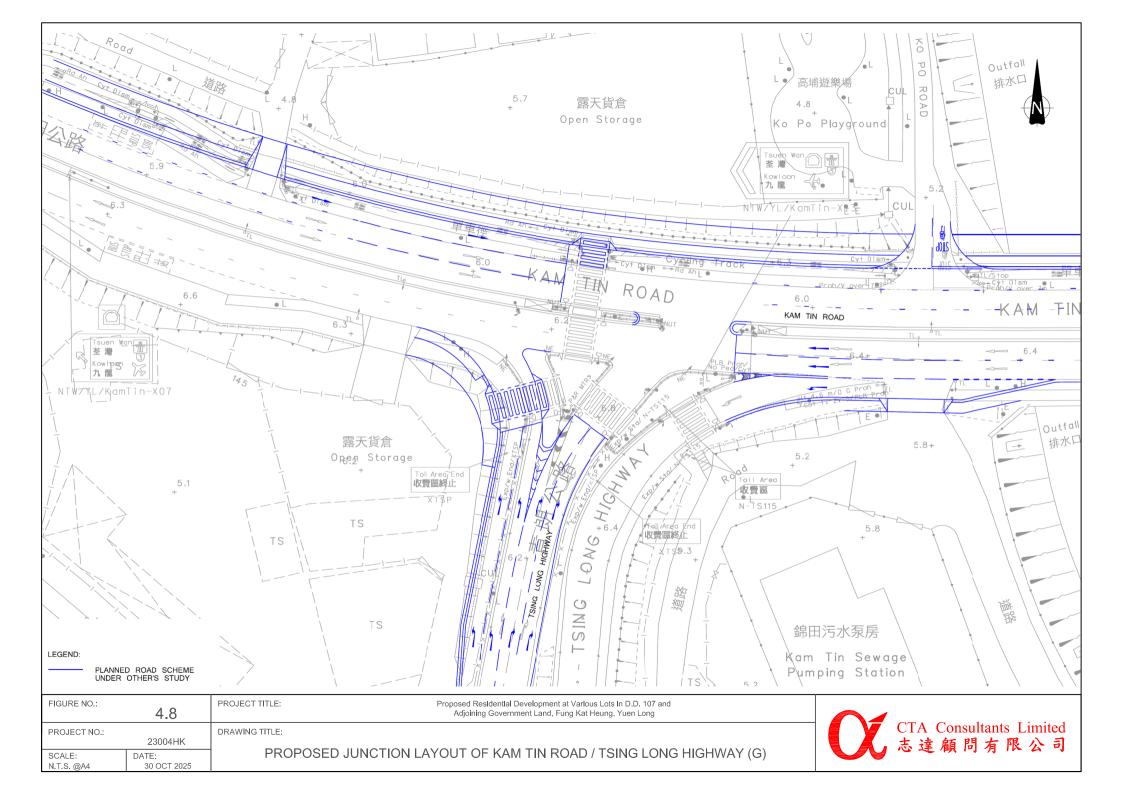


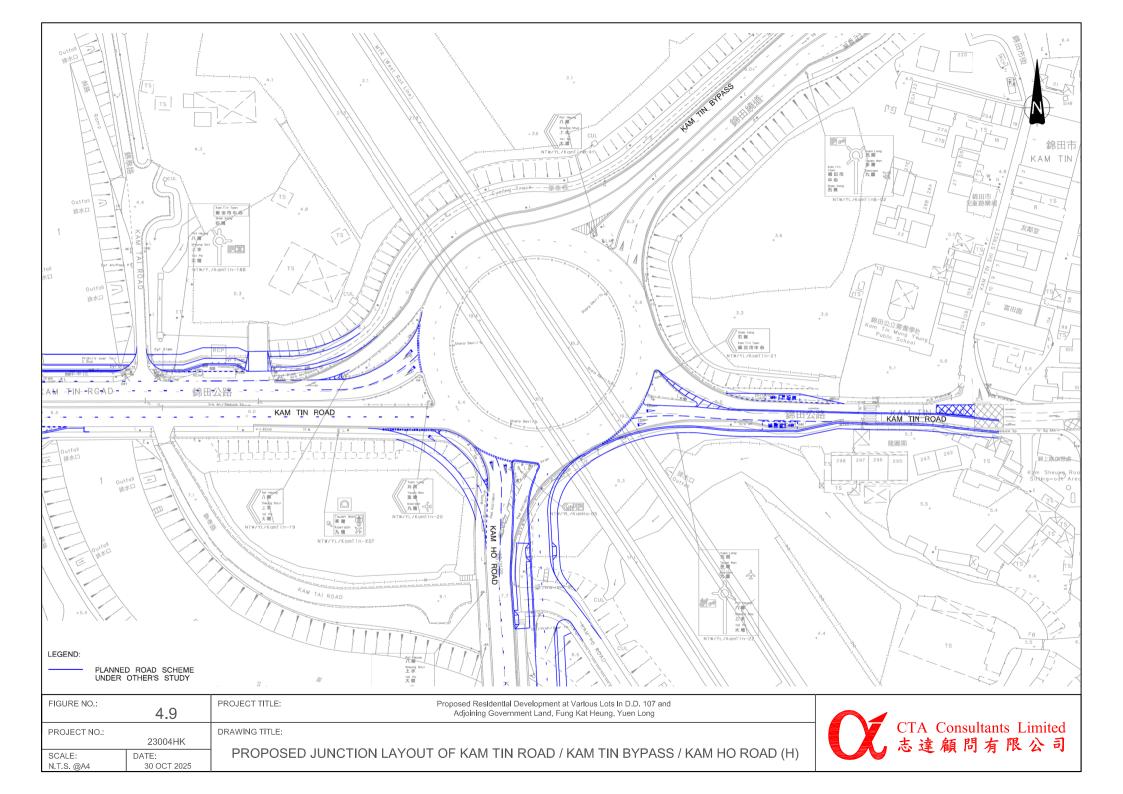


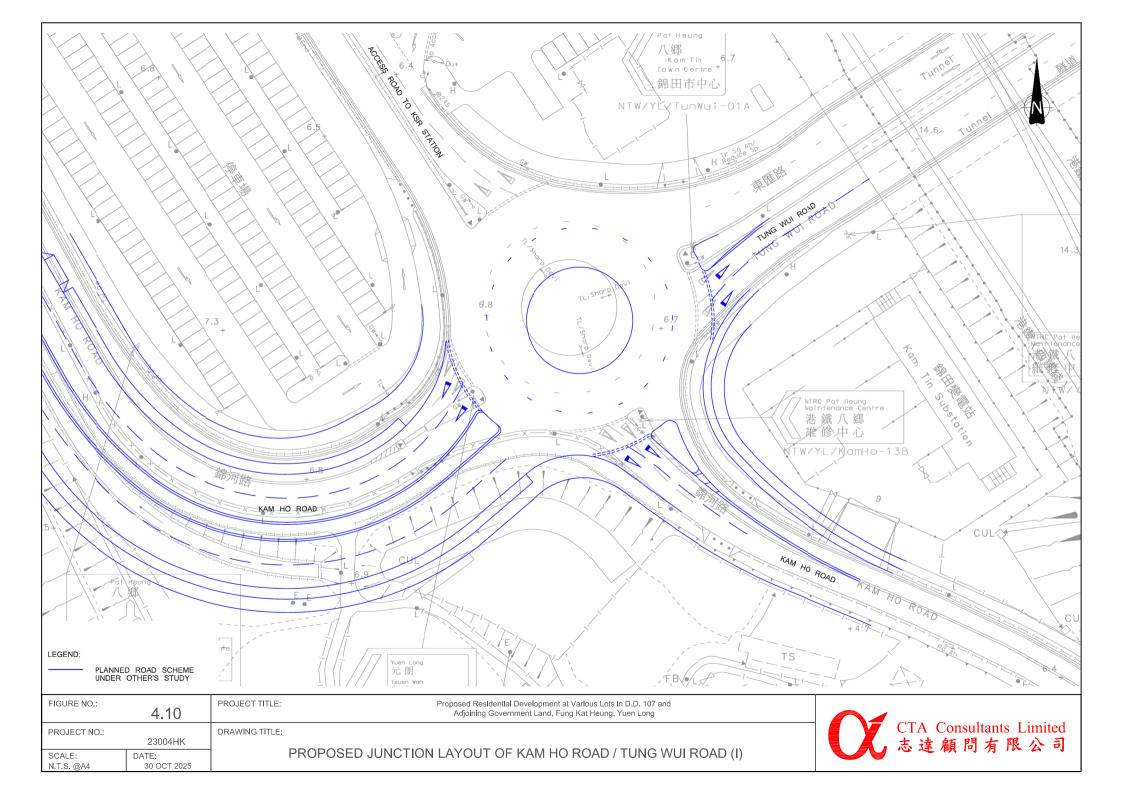


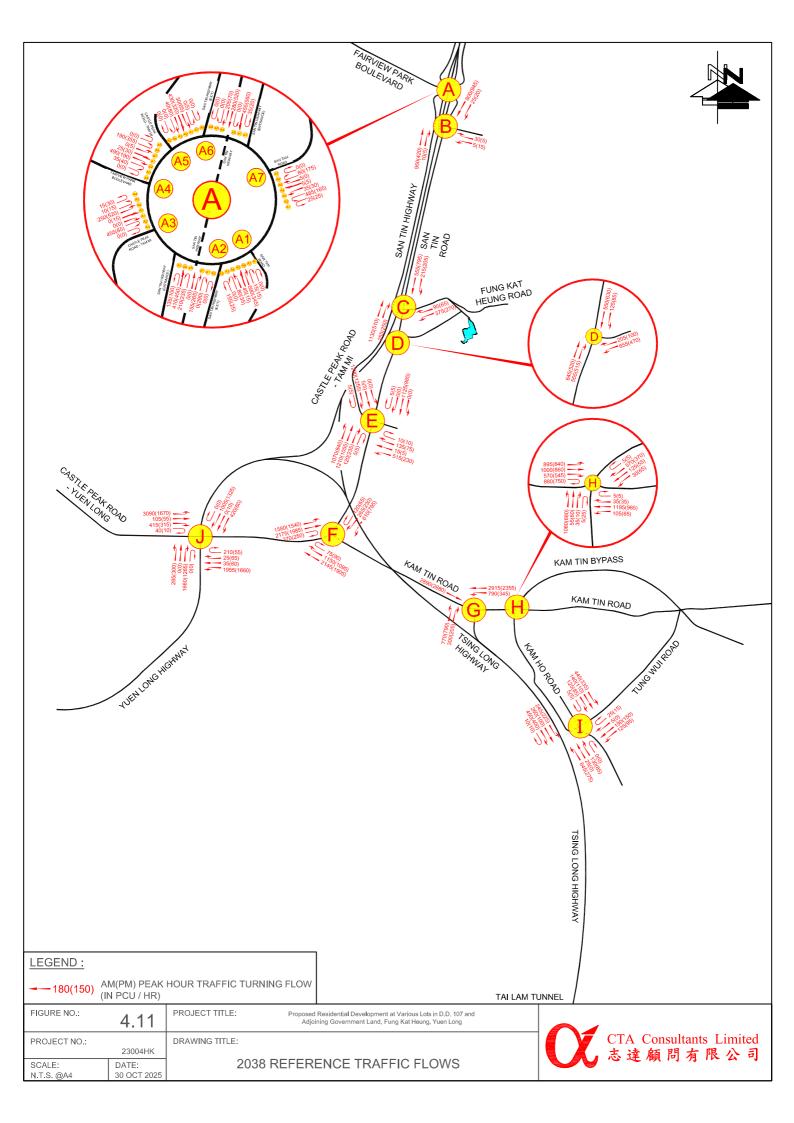


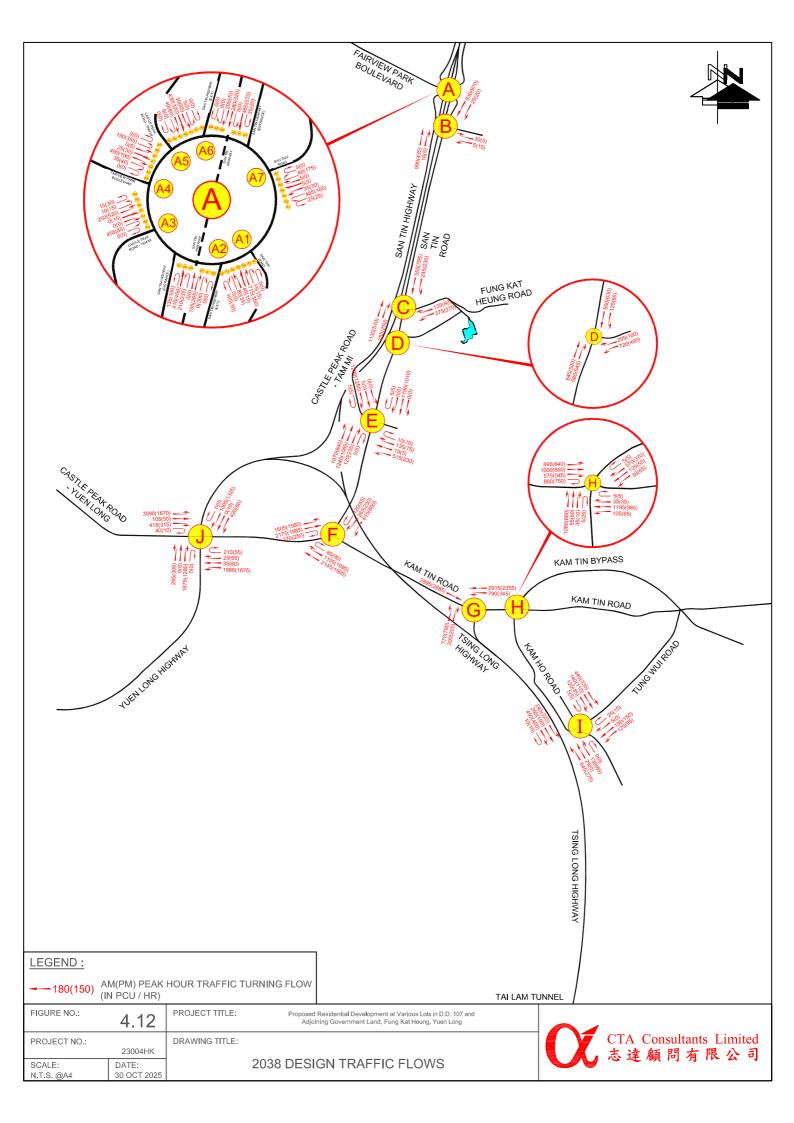


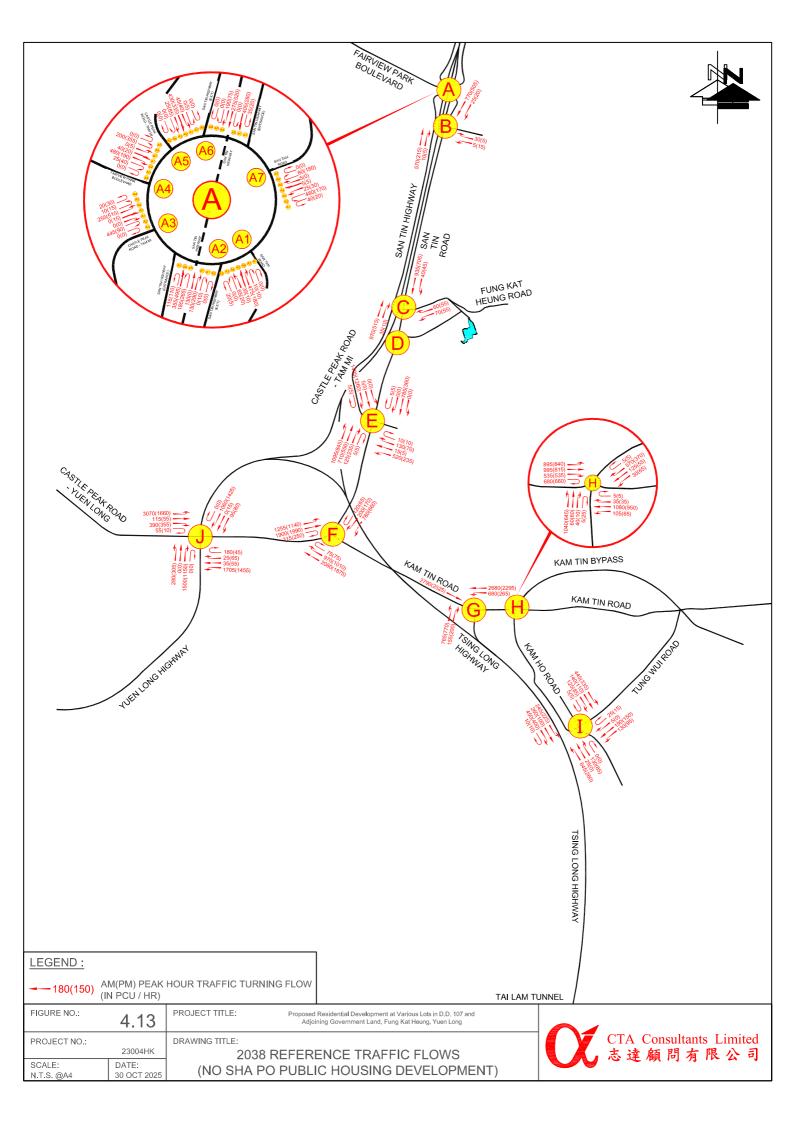


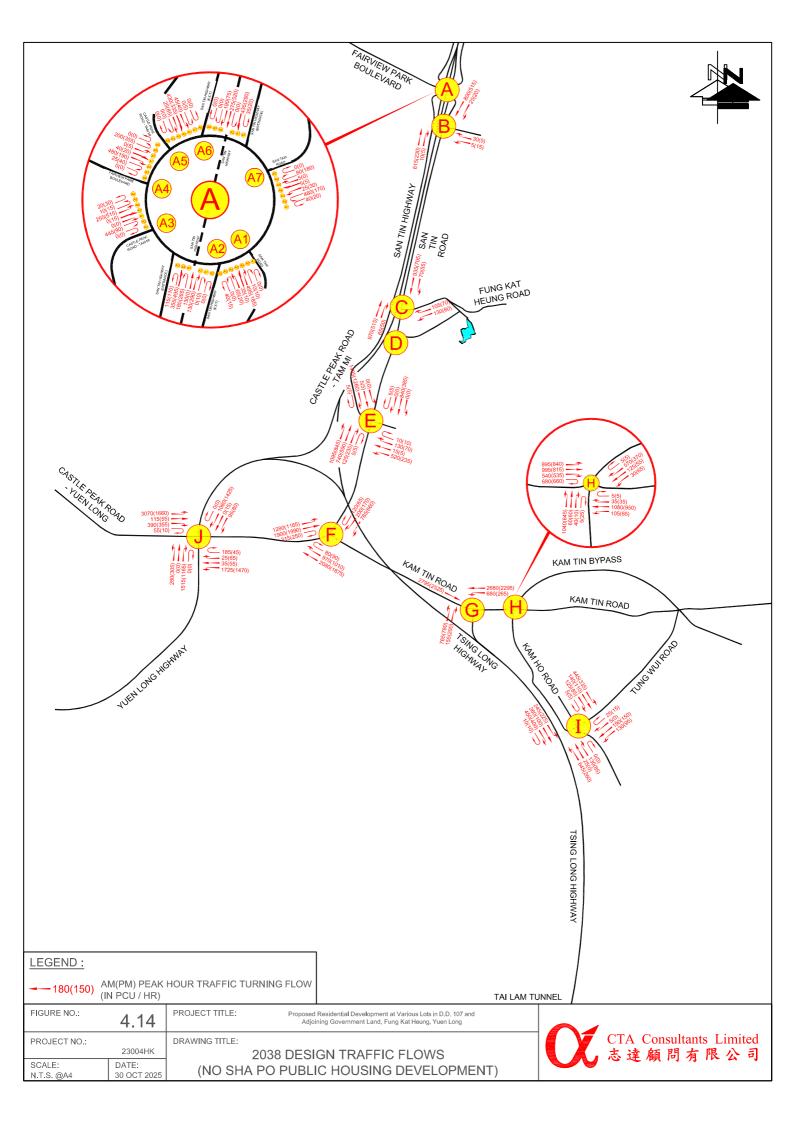


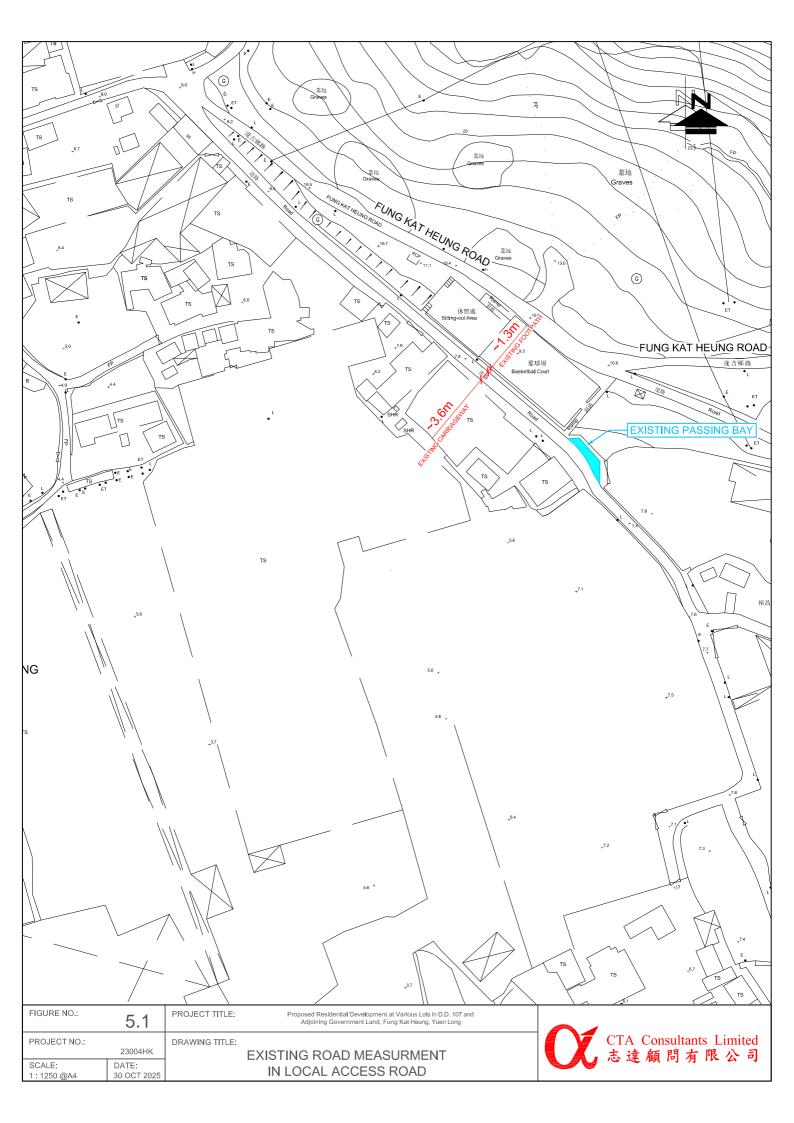


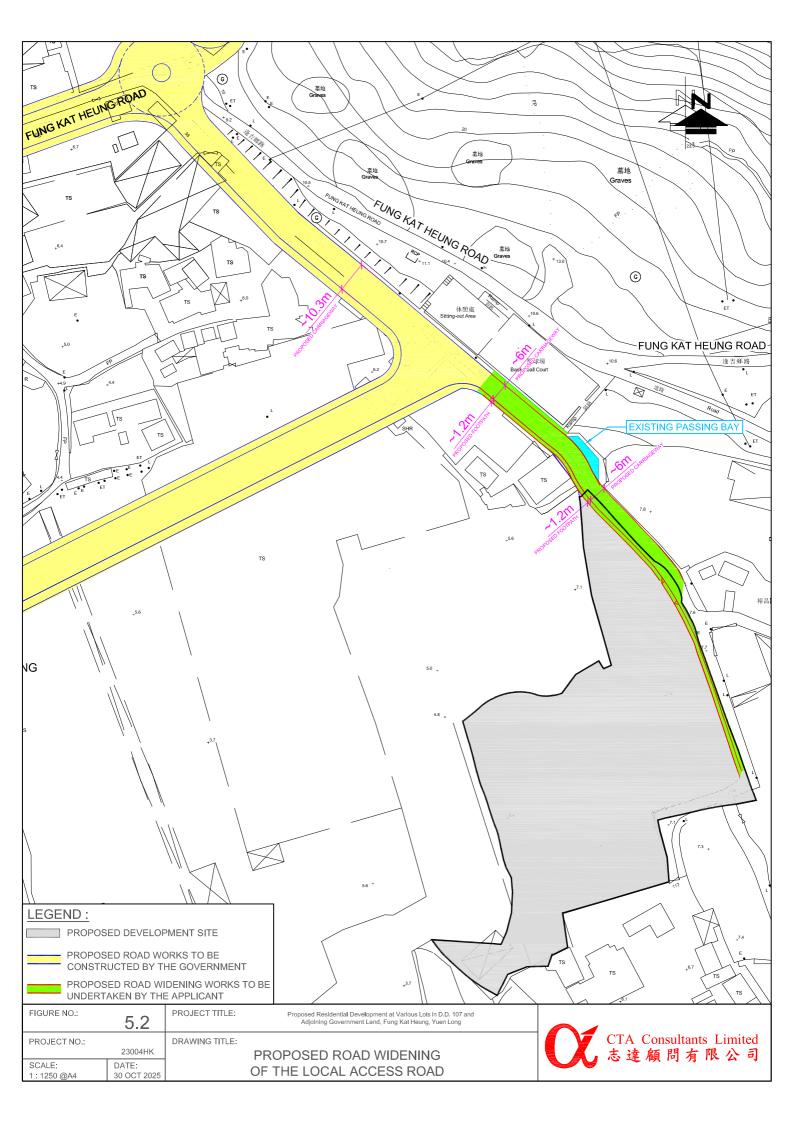


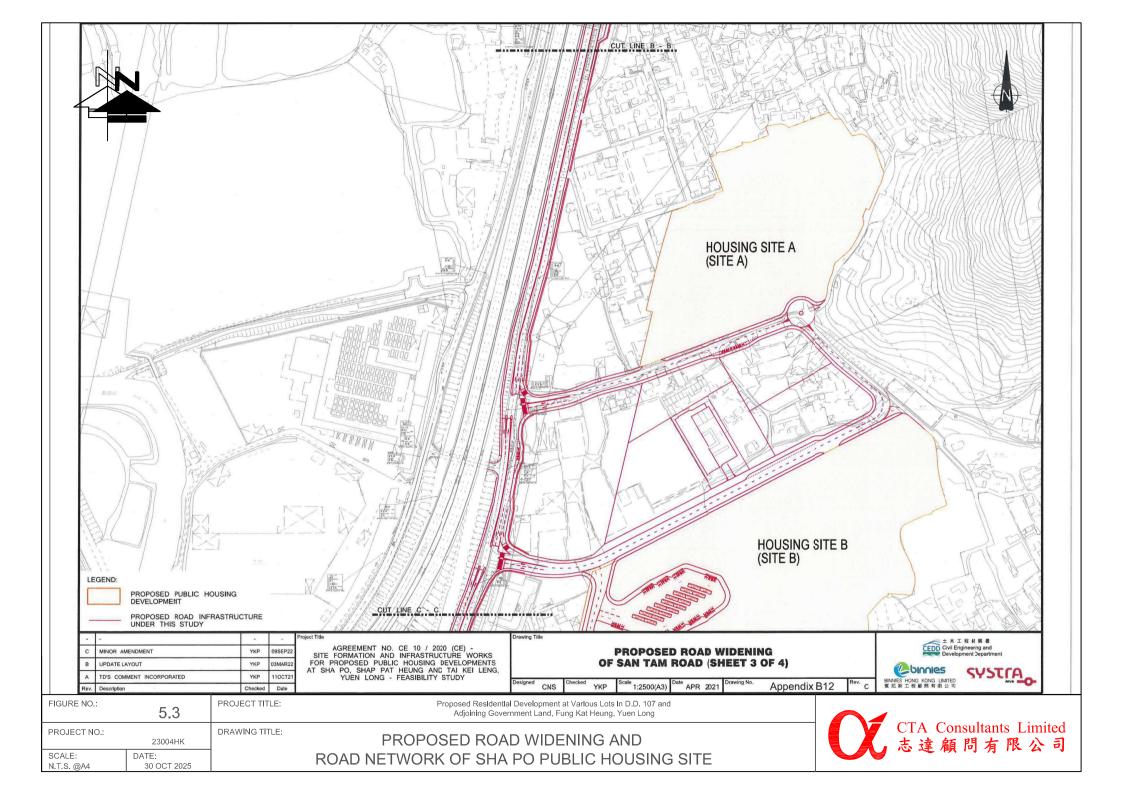


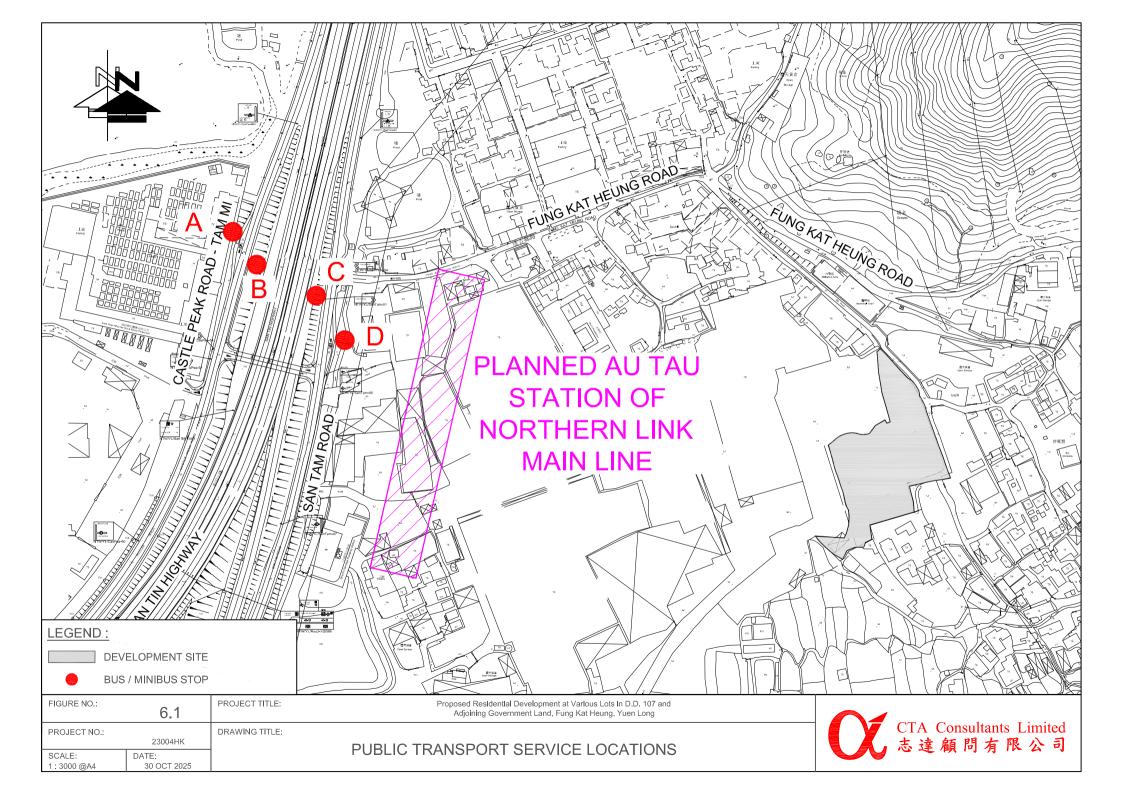


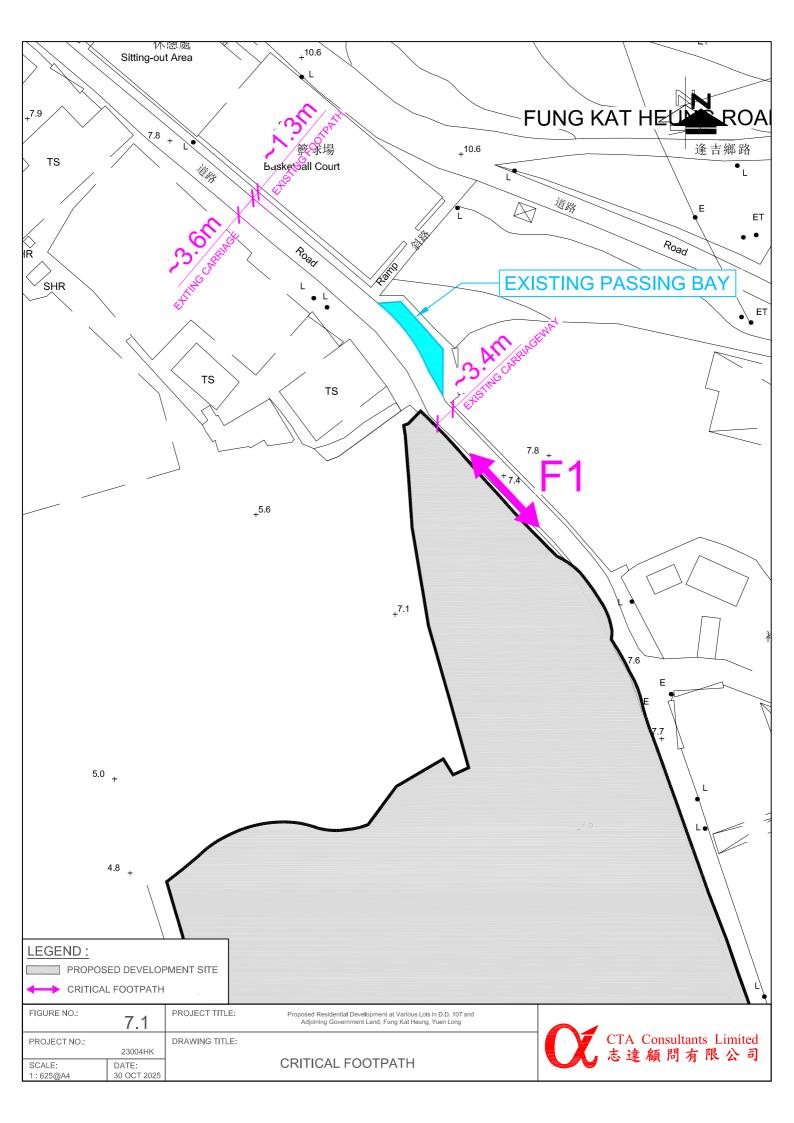


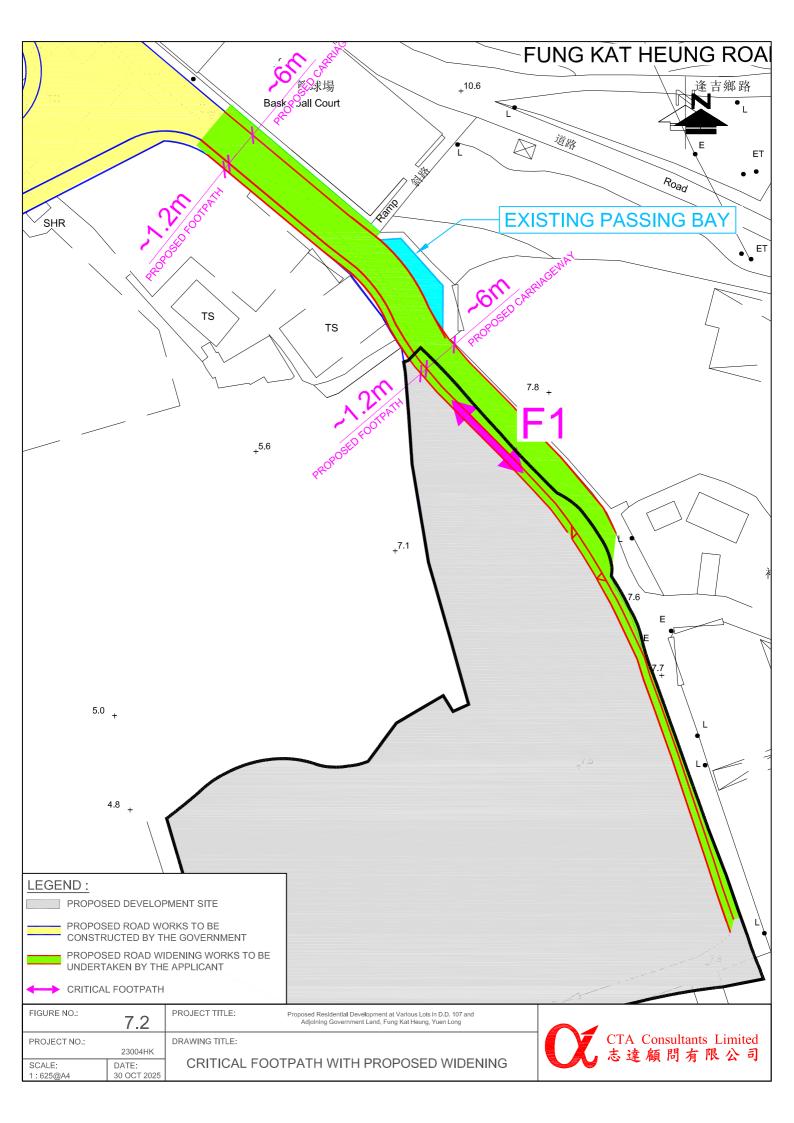






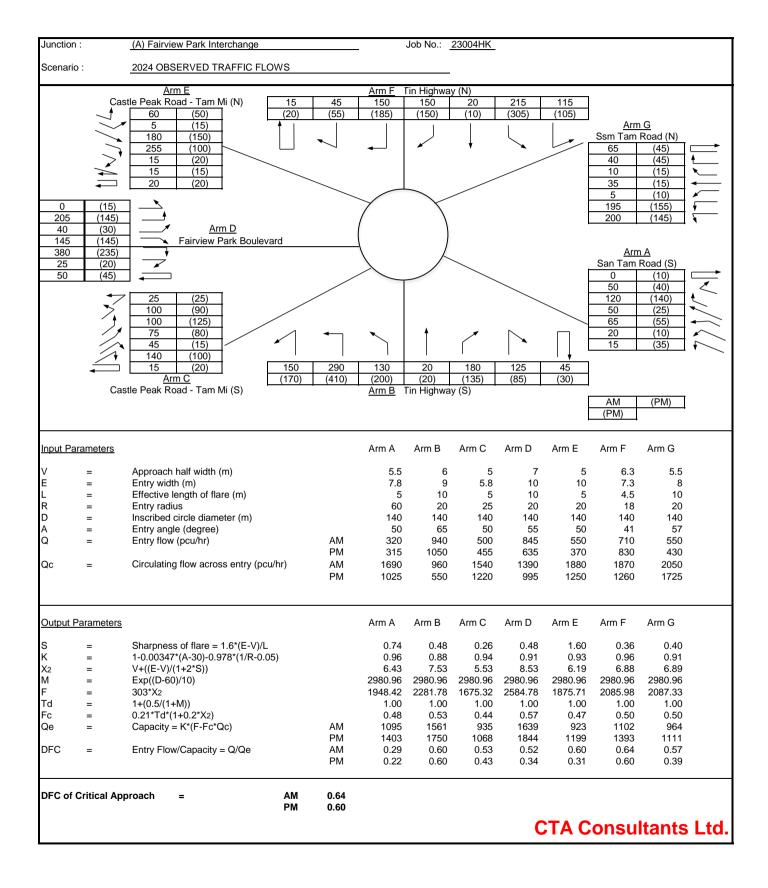






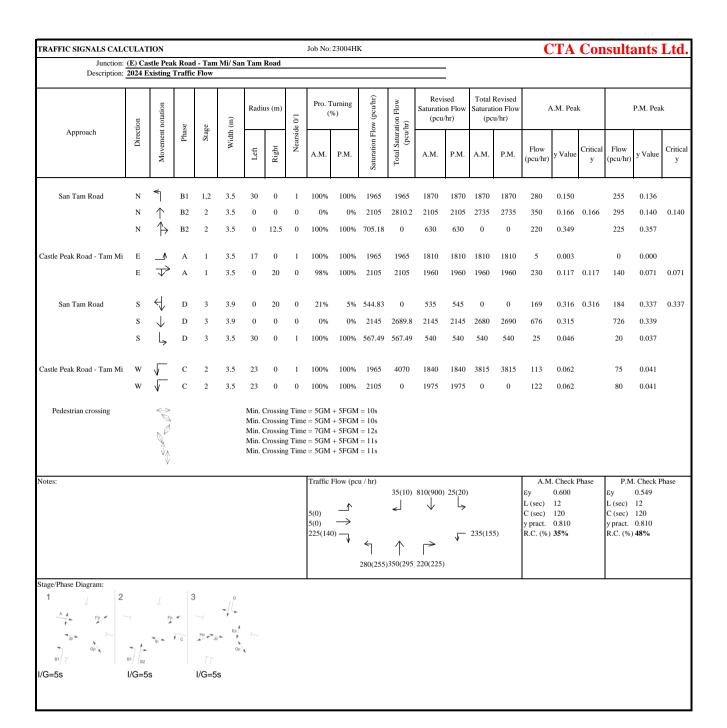
以

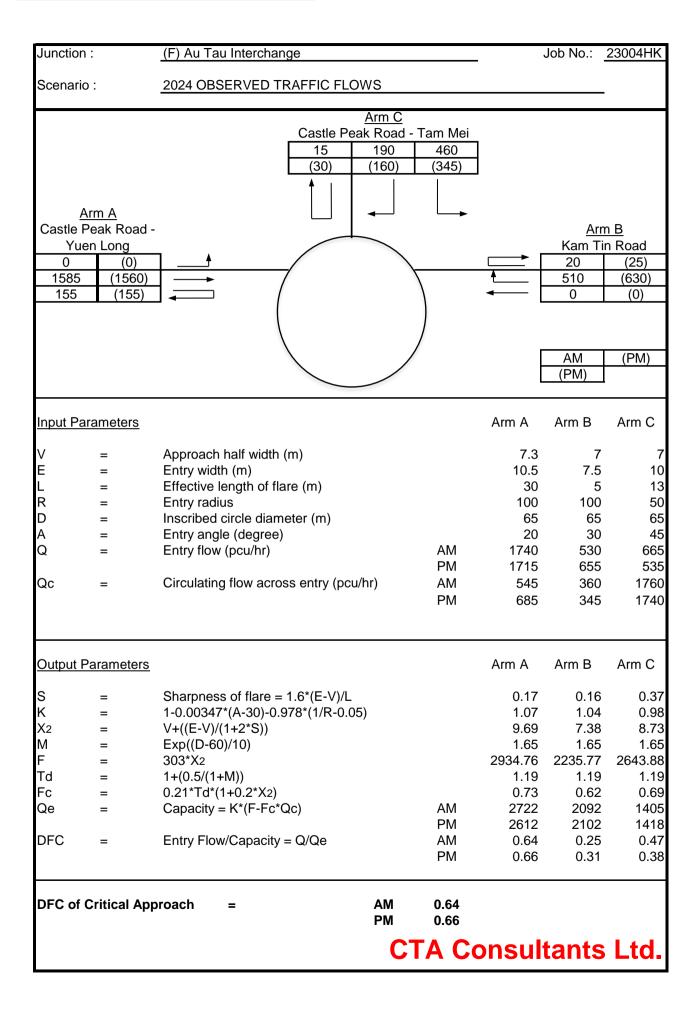
誠



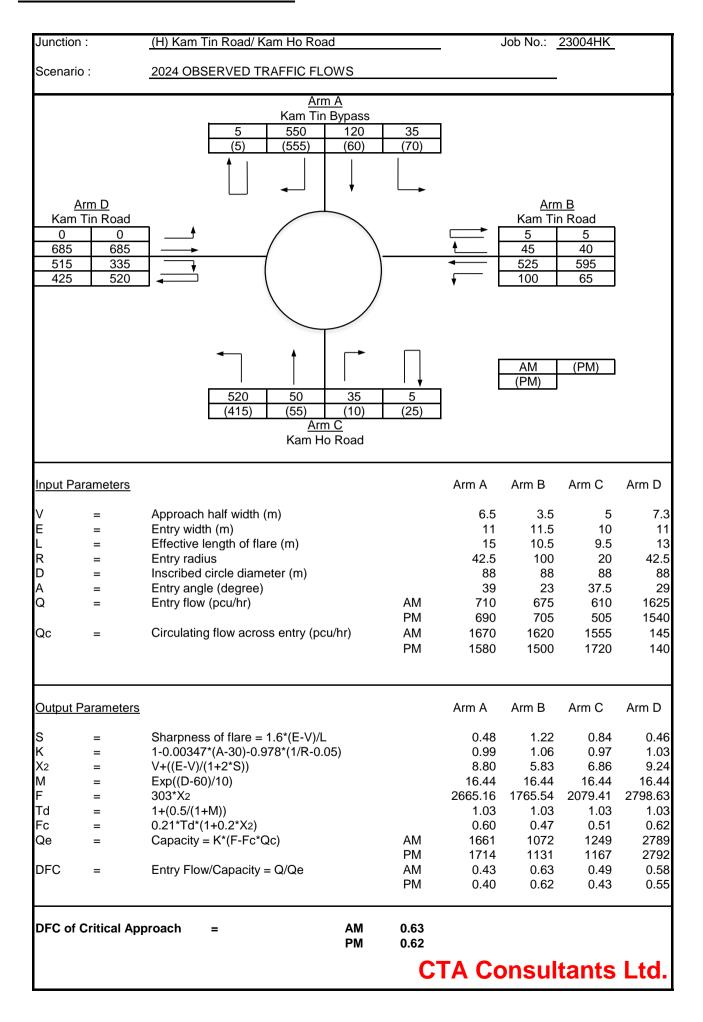
We commit We deliver

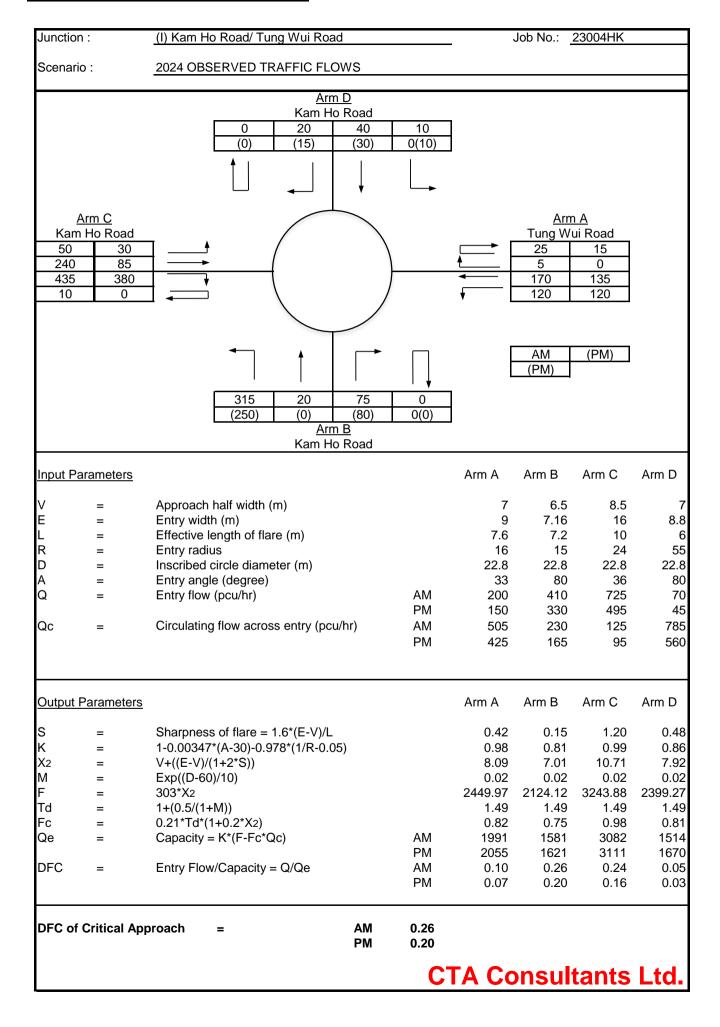
APPENDIX 1

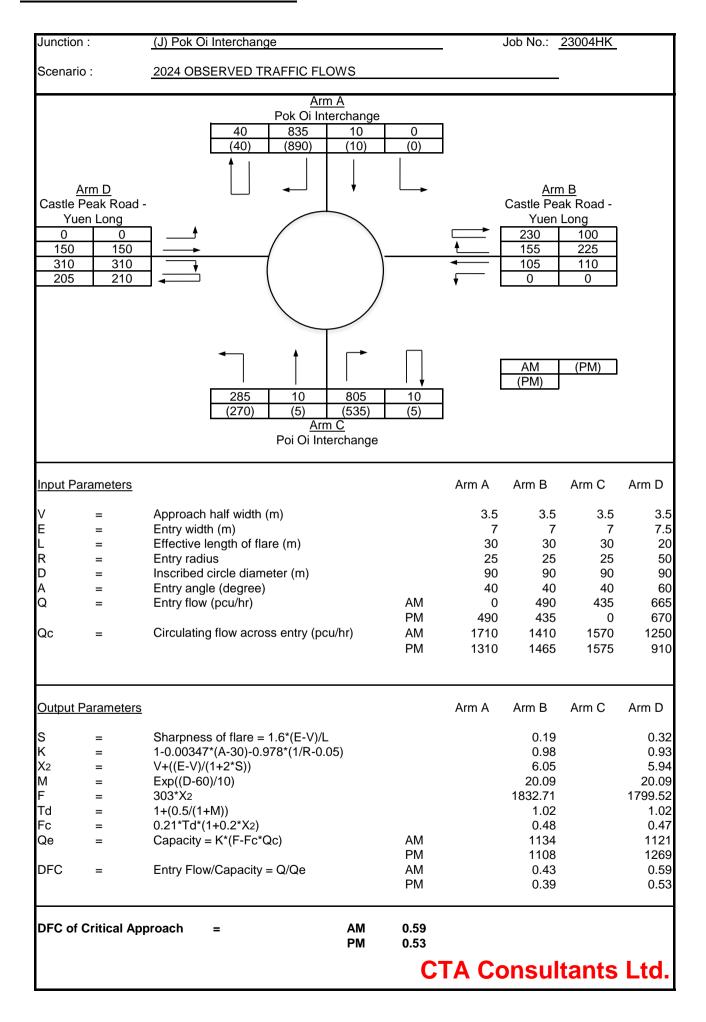

JUNCTION CALCULATION SHEETS


23004HK (October 2025) 40

1		San Tam Ro	ad / Local	Road to Lor	ng Ha (Jun	ction B)	_	Job No.:	23004HK
Scenario :		2024 OBSE	RVED TR	AFFIC FLOV	VS				
	Arm C 300 10	San Tam Ro 305 5	5 (15)	20 (5) Fung Kat H	825 25	San Tam 790 15	Road	AM (PM)	(PM)
The predictive	Q-BC =	acity of move D(627 + 14V E(745 - Y(0. F(745 - 0.36	V-CR - Y(0 364q-AC -	0.364q-AC + + 0.144q-AB)		s + 0.229q	-CA + 0.52q	-CB))	
The geometric	E =	esented by D (1 + 0.094(w (1 + 0.094(w (1 + 0.094(w	/-BA - 3.65 /-BC - 3.65	5))(1 + 0.000 5))(1 + 0.000	9(V-rBC - 1	(20))).0006(V-IBA	150))	
where	q-AB, etc = W = W-CR = w-BA, etc = v-rBA, etc =	1 - 0.0345W the design fl major road v central reser lane width to visibility to the	ow of mov vidth rve width o vehicle ne right for	waiting vehi	cles in stre				
Geometry :	<u>Input</u> W	8	V-rBA	50	w-BA	3.8	8_	<u>Calculated</u>	0.893
	W-CR (ed C-A, residual	<u> </u>	V-IBA V-rBC	50 50	w-BC w-CB	3.8	<u>8</u> 0	E F	0.950 0.616
	? (Yes: 1, No: 0) d Share LT&RT? (Yes: 1, No: 0)	1	V-rCB	50			_	Υ	0.724
Analysis :									0.724
, 5.5	Traffic Flow pcu/hr q-CA	300	PM 305	Capacity pcu/hr Q-BA	AM 316	PM 326	_		0.724
, 5.3	pcu/hr			pcu/hr			_ _ _		0.724
	pcu/hr q-CA q-CB	300 10	305 5	pcu/hr Q-BA Q-BC	316 499	326 509	(If C-B blocked C-A)		0.724
	pcu/hr q-CA q-CB q-AB	300 10 25	305 5 15	pcu/hr Q-BA Q-BC Q-CB	316 499 321	326 509 328	blocked C-		0.724
	pcu/hr q-CA q-CB q-AB q-AC	300 10 25 825	305 5 15 790	pcu/hr Q-BA _ Q-BC _ Q-CB _ Q-CA	316 499 321 1744	326 509 328 1773	blocked C-A) (If Minor Road Share		0.724
Results :	pcu/hr q-CA q-CB q-AB q-AC	300 10 25 825 20 5 0.200	305 5 15 790 5 15 0.750	pcu/hr Q-BA _ Q-BC _ Q-CB _ Q-CA	316 499 321 1744	326 509 328 1773	blocked C-A) (If Minor Road Share LT&RT) // PM A N/A A N/A 3 0.02 7 0.17	_	0.724
	pcu/hr q-CA q-CB q-AB q-AC q-BA	300 10 25 825 20 5 0.200	305 5 15 790 5 15 0.750	pcu/hr Q-BA _ Q-BC _ Q-CB _ Q-CA	316 499 321 1744 341 B-A B-C C-B C-A	326 509 328 1773 446 AN N// 0.03 0.17	blocked C-A) (If Minor Road Share LT&RT) // PM A N/A A N/A 3 0.02 7 0.17	_	0.724


Junction:		San Tam Ro	ad / Fung	Kat Heung F	Road (Junc	tion C)	_	Job No.:	23004HK
Scenario :		2024 OBSEI	RVED TR	AFFIC FLOV	VS				
	Arm C 500 55	San Tam Ro 410 20	80 (75) Arm B	60 (45) Fung Kat H	760 45	San Tam 795 45	Road	AM (PM)	(PM)
The predictive	Q-BC =	acity of move D(627 + 14V E(745 - Y(0.: F(745 - 0.36	V-CR - Y(0 364q-AC -	0.364q-AC + + 0.144q-AB)		+ 0.229q-	CA + 0.52q-	CB))	
The geometric	E =	esented by D (1 + 0.094(w (1 + 0.094(w (1 + 0.094(w	/-BA - 3.65 /-BC - 3.65	5))(1 + 0.000 5))(1 + 0.000	9(V-rBC - 1	20))	.0006(V-IBA	- 150))	
where	q-AB, etc = W = W-CR = w-BA, etc = v-rBA, etc =	1 - 0.0345W the design flemajor road we central reser lane width to visibility to the	ow of mov vidth ve width vehicle ne right for	· waiting vehi	cles in stre		c		
Geometry :	<u>Input</u> W	7.5	V-rBA	50	w-BA	3.6	<u>i</u>	Calculated D	<u>I</u> 0.877
C-B block	W-CR ced C-A, residual	0	V-IBA	50	w-BC	3.6	<u> </u>	Е	0.933
	? (Yes: 1, No: 0)	1	V-rBC	50	w-CB	C)	F	0.616
	Share LT&RT? (Yes: 1, No: 0)	1	V-rCB	50	-		-	Υ	0.741
Analysis :	Traffic Flow pcu/hr		PM	Capacity pcu/hr	AM	PM			
	q-CA q-CB	500 55	410 20	Q-BA_ Q-BC	273 499	290 490	-		
	q-AB	45	45	Q-CB	325	319	- -		
	q-AC	760	795	Q-CA	1495	1687	(If C-B blocked C- A) (If Minor		
	q-BA	60	45	Q-BAC	368	389	Road Share LT&RT)		
	q-BC f	80 0.571	75 0.625	 - -					
Results :	Ratio of Flo	w-to-Capaci	ty		B-A B-C C-B C-A B-AC	AM N/A N/A 0.17 0.33 0.38	N/A		
	Critical DFC					0.38	0.31		
	2.2					_	_	ultant	s Ltd.
						CIA	CUIIS	uitaiil	.o ∟lu.





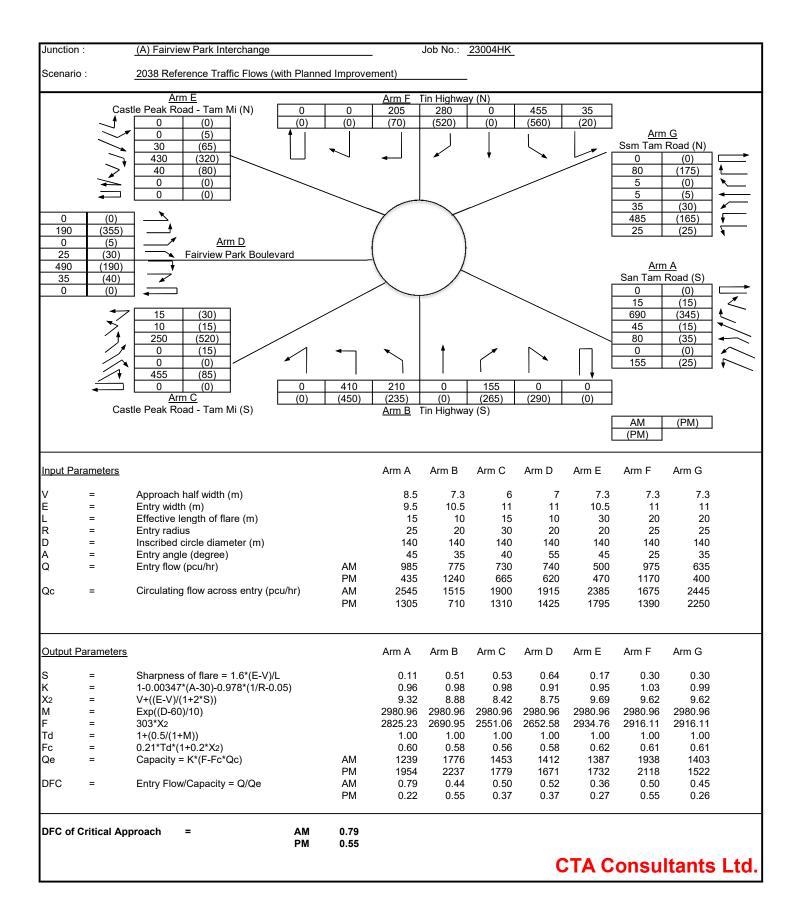
Job No: 23004HK

I KAFFIC SIGNALS C								23004П	K			CI	A C	JIISUI	tants	Lu
	(G) Kam Tin					ay Sli	p Road			į.						
Description:	2024 OBSER	VED '	TRAFI	FIC FI	LOWS					i						
		1		1					Rev	ised				1		
Approach	Direction Movement notation Phase	Stage	Width (m)	Radi	us (m)	Nearside 0/1	Pro. Tur	ning (%)	Satur Flow (1	ation		A.M. Peak			P.M. Peal	C.
- 17	Dire Mov not	St	Widi	Left	Right	Nears	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical
Kam Tin Road	E 1 E 1	A A	3.50 3.75	0	0 0	1 0	0% 0%	0% 0%	1965 2130	1965 2130	1015 1100	0.516 0.516	0.516	902 978	0.459 0.459	0.459
Kam Tin Road	$\begin{array}{c} W \longrightarrow 2 \\ W \longrightarrow 2 \\ W \longrightarrow 2 \end{array}$	A A A	3.50 4.00 5.00	0 0 15	0 0 0	0 0 1	0% 0% 100%	0% 0% 100%	2105 2155 1925	2105 2155 1925	803 822 360	0.381 0.381 0.187		894 916 135	0.425 0.425 0.070	
Tsing Long Highway Slip Road	N 3 N 3 N 3	B B B	5.60 3.60 3.50	25 0 0	0 30 28	1 0 0	100% 100% 100%	100% 100% 100%	2050 2015 75 (*revise	2050 2015 75 ed satur	195 72 3	0.095 0.036 0.036	0.095	395 154 6	0.193 0.077 0.077	0.193
*Pedestrian Crossing	4p 5p	В			Crossing Crossing			7 Gm + 7 Gm +								
otes:				Traffi	ic Flow	(pcu /)	hr)	[AM (P.	M)]			Check Phase	2		Check Phas	se
(D)					95(395)	>)	\leftarrow	1625(18 360(135		Ey L (sec) C (sec) y pract. R.C. (%)	0.612 15 96 0.759 24%		Ey L (sec) C (sec) y pract. R.C. (%)	0.652 15 96 0.759 17%	
Stage / Phase Diagrams $ \begin{array}{c} A \\ $	2 B		5p) > K												

TRAFFIC SIGNALS (CALC	CUL	ATIC	N					Job No:	23004H	K			CT	A Co	onsul	tants	Ltd.
Junction: Description:								hway	Slip Road	North b	ound)							
Description.	202	+ OD	SEK	VED	IKAFI	СП	20113					1						
Approach	Direction Movement notation Phase Stage		Phase Stage	th (m)	Radi	us (m)	ide 0/1	Pro. Turr	ing (%)		ised ation ocu/hr)		A.M. Peak			P.M. Peak	ī	
11	Dire	Mov not	Pŀ	St	Width	Left	Right	Nearside	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Yuen Long Highway Slip Road	N N	*	D D	2 2	5.00 5.00	25 0	0 0	1 0	54% 0%	70% 0%	2050 2255	2030 2255	528 582	0.258 0.258	0.258	386 429	0.190 0.190	0.190
Pok Oi Interchange		<u>_</u>		1	5.00 5.00	0	0 25	1 0	0% 19%	0% 35%	2115 2230	2115 2210	764 806	0.361 0.361	0.361	612 638	0.289 0.289	0.289

*Pedestrian Crossing

Notes:	Traffic Flow (pcu / hr)	[AM (PM)]	C	Check Phase	C	heck Phase
	285(270) 825(545)	155(225) 1415(1025)	Ey L (sec) C (sec) y pract. R.C. (%)	0.619 12 110 0.802 29%	Ey L (sec) C (sec) y pract. R.C. (%)	0.479 12 110 0.802 67%
Stage / Phase Diagrams 1 C D D	<u> </u>					


CTA Consultants Ltd.

SIGNALS CALCULATION	Job No: 23004HK
Junction: (J) Pok Oi Interchange (Yuen	Long Highway Slip Road Southbound)

Description:								nway	эпр Коас	Southo	ounu)	•										
Approach	Direction	Movement notation	Phase	Stage	h (m)	Radi	us (m)	ide 0/1	Pro. Turning (%)		Pro. Turning (%)		Pro. Turning (%)		Rev Satur Flow (1			A.M. Peak			P.M. Peak	ζ
- 11	Dire	Mov	Ph	St	Width	Left	Right	Nearsio	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y				
Pok Oi Interchange		$\overrightarrow{\rightarrow}$		1 1	5.00 5.00	0	0 50	1 0	0% 35%	0% 43%	2115 2230	2115 2225	832 878	0.393 0.394	0.394	687 723	0.325 0.325	0.325				
Yuen Long Highway Slip Road	W W	1	A A	2 2	5.00 5.00	50 0	0	1 0	0% 0%	0% 0%	2115 2255	2115 2255	428 457	0.203 0.203	0.203	455 485	0.215 0.215	0.215				

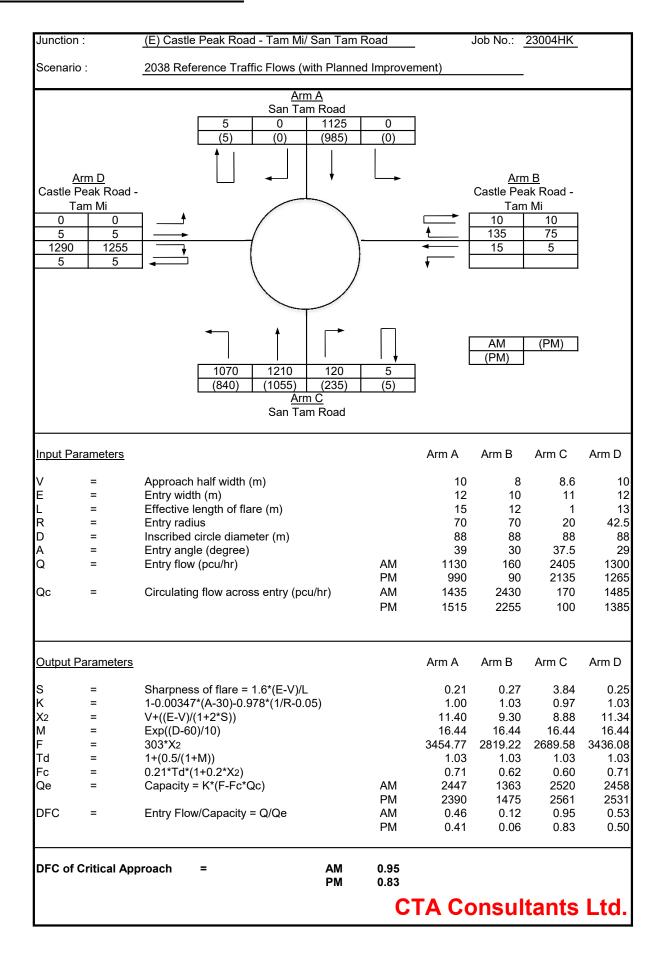
*Pedestrian Crossing

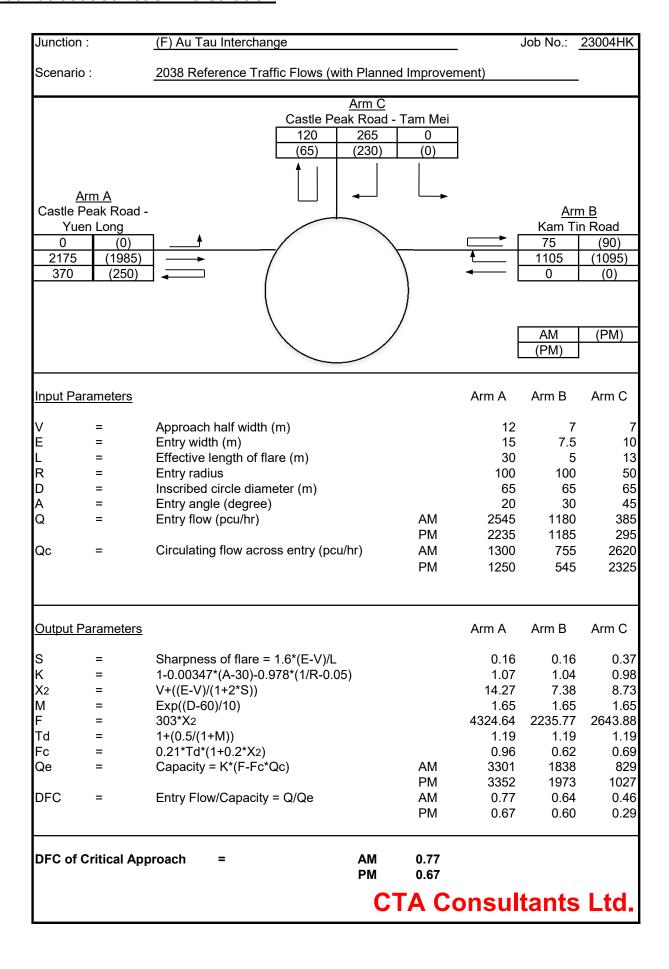
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Notes:	Traffic Flow (pcu / hr) [AM (PM)]	Check Phase	Check Phase
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L (sec) 12 C (sec) 110 y pract. 0.802	L (sec) 12 C (sec) 110 y pract. 0.802
I/G = 5		В		

## Arm C San Tam Road	Junction :	<u>:</u>	San Tam Ro	ad / Local	Road to Lon	g Ha (Junc	tion B)	_ Jo	b No.:	23004HK
Secondary Seco	Scenario :	<u>:</u>	2038 Refere	nce Traffic	Flows (with	Planned In	nproveme	nt)		
Q-BA = D(627 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB)) Q-BC = [745 - V(0.364q-AC + 0.144q-AB)) Q-CB = F(745 - 0.364Y(q-AC + q-AB)) The geometric parameters represented by D, E, F are: D = (1 + 0.094(w-BC - 3.65))(1 + 0.0009(V-rBA - 120))(1 + 0.0006(V-IBA - 150)) E = (1 + 0.094(w-BC - 3.65))(1 + 0.0009(V-rBC - 120)) F = (1 + 0.094(w-BC - 3.65))(1 + 0.0009(V-rBC - 120)) F = (1 + 0.094(w-BC - 3.65))(1 + 0.0009(V-rBC - 120)) Where Y = 1 - 0.0345W Q-AB, etc = the design flow of movement AB, etc W = major road width W-CR = central reserve width W-BA, etc = lane width to vehicle V-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc V-rBA, etc = visibility to w-rBC V-rBA,		950	420	5 (15)	(5)	800 25	945 20	Road		(PM)
D = (1 + 0.094(w-BA - 3.65))(1 + 0.0009(V-BA - 120))(1 + 0.0006(V-IBA - 150)) E = (1 + 0.094(w-BC - 3.65))(1 + 0.0009(V-RBC - 120)) Where	The predictive equ	Q-BA = 1 Q-BC = 1	D(627 + 14V E(745 - Y(0.3	V-CR - Y(0 364q-AC +).364q-AC + + 0.144q-AB)		+ 0.229q-	CA + 0.52q-Cl	B))	
q-AB, etc = the design flow of movement AB, etc W = major road width W-CR = central reserve width W-BA, etc = lane width to vehicle V-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc Geometry: Input W 14.6 V-rBA 50 w-BA 4.7 D 0.968 C-B blocked C-A, residual width <2.5m? (Yes: 1, No: 0)	The geometric para	D = (E = ((1 + 0.094(w (1 + 0.094(w	-BA - 3.65 -BC - 3.65	5))(1 + 0.0009 5))(1 + 0.0009	0(V-rBC - 1	20))	.0006(V-IBA -	150))	
W	where	q-AB, etc = 1 W = 1 W-CR = 0 w-BA, etc = 1 v-rBA, etc = 1	the design flomajor road we central reservante to the central reservan	vidth ve width vehicle ne right for	waiting vehi	cles in stre				
C-B blocked C-A, residual width <2.5m² (Yes: 1, No: 0)	Geometry :		14.6	V-rBA	50	_	4.7			0.968
Analysis: Traffic Flow pcu/hr q-CA 950 420 Q-BA 358 393 q-CB 10 5 Q-BC 616 590 q-AB 25 20 Q-CB 367 351 (If C-B q-AB 30 945 Q-CA N/A N/A blocked C-A) (If Minor Road Share LT&RT) Q-BC 5 15 0.143 0.750 Results: Ratio of Flow-to-Capacity Ratio of Flow-to-Capacity Results: Ratio DFC 0.09 0.04	width <2.5m? (Y Minor Road Sh	C-A, residual es: 1, No: 0) are LT&RT?	0	V-rBC	50				F	0.616 0.496
Q-CB 10 5 Q-BC 367 351 (If C-B 367 351 (If Minor Road Share LT&RT)	Analysis :	Traffic Flow			pcu/hr					
Q-AB 25 20 Q-CB 367 351 (If C-B Q-AC 800 945 Q-CA N/A N/A blocked C-A) (If Minor Road Share LT&RT)					_			_		
Q-AC 800 945 Q-CA N/A N/A blocked C-A) (If Minor Road Share LT&RT)								-		
Q-BA 30 5 Q-BAC 381 524 Road Share LT&RT)		q-AC -	800	945	Q-CA —	N/A	N/A	blocked C- A)		
Facility Results: Ratio of Flow-to-Capacity AM PM B-A N/A N/A B-C N/A N/A C-B 0.03 0.01 C-A N/A N/A B-AC 0.09 0.04 Critical DFC 0.09 0.04		_	30	5	Q-BAC	381	524	Road Share		
B-A N/A N/A B-C N/A N/A C-B 0.03 0.01 C-A N/A N/A B-AC 0.09 0.04 Critical DFC 0.09 0.04										
	Results :	Ratio of Flow	v-to-Capacit	ty		B-C _ C-B _ C-A _	N/A N/A 0.03 N/A	N/A N/A 0.01 N/A		
		Critical DFC					0.09	0.04		
						-			Itante	L td

I/G = 5

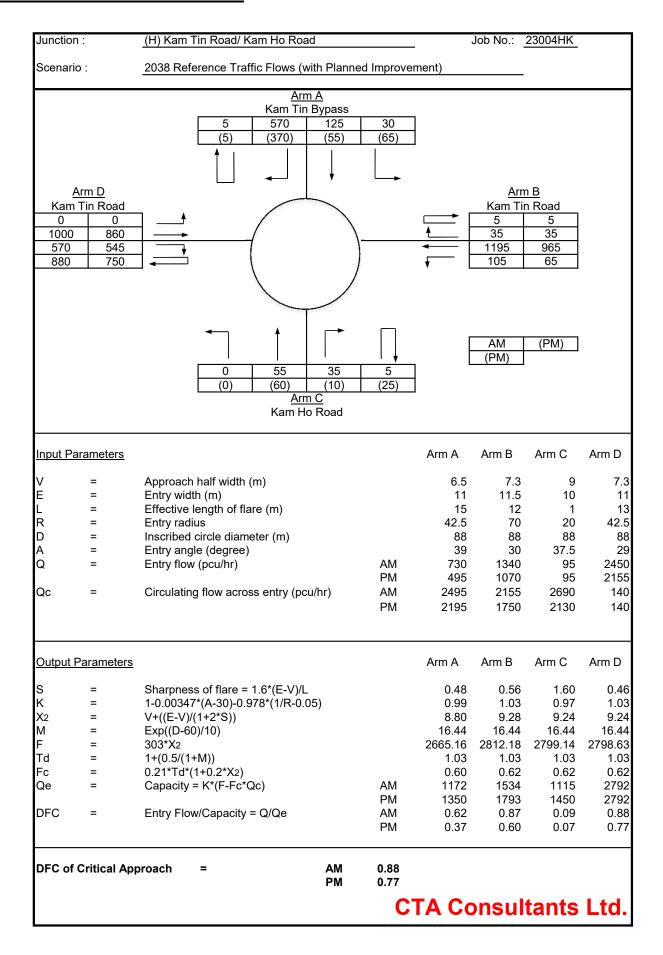
I/G = 5

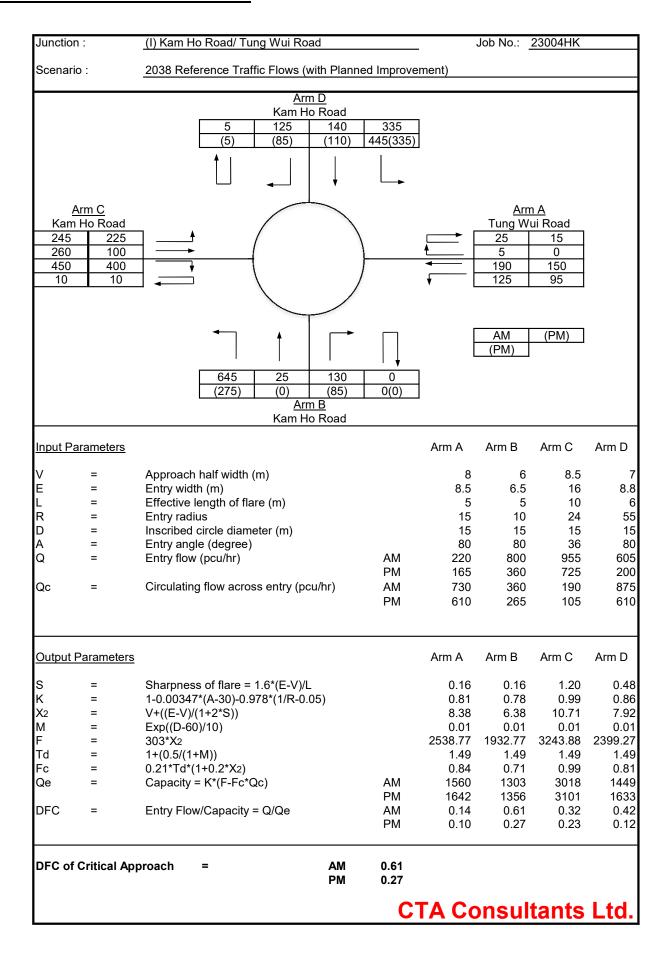

TRAFFIC SIGNALS O	CALC	ULA	TIO	N					Job No:	23004H	K			CT	A Co	onsul	tants	Ltd
Junction: Description:								(Junction				-						
Description.	2030	Keie	Tenc	c II ai	HC FIO	ws (wi	tii 1 1aii	neu impre	ovement)									
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Radi	us (m)	Nearside 0/1	Pro. Turi	ning (%)	Revi Saturation (pcu.	n Flow		A.M. Peak			P.M. Peal	k
	Dir	Mov	P]	Ś	Wid	Left	Right	Near	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical
San Tam Road	S S S	 		2 2 2	4.50 3.00 3.25	13.5 0 0	0 0 0	1 1 0	100% 0% 0%	100% 0% 0%	1860 1915 2080	1860 1915 2080	215 264 286	0.116 0.138 0.138	0.138	205 302 328	0.110 0.158 0.158	0.158
San Tam Road	N N	<u>†</u>		1,2	3.50 3.50	0	0 13.75	1 0	0% 100%	0% 100%	1965 1900	1965 1900	645 555	0.328 0.292	0.292	520 515	0.265 0.271	0.271
Fung Kat Heung Road	W W	<u>‡</u>	-	3 3	4.00 5.00	23.8 18.8	10 0	0 1	52% / 48% 100%	45% / 359 100%	1950 1960	1970 1960	429 431	0.220 0.220	0.220	286 284	0.145 0.145	0.145
otes:						Traffi		(pcu / hr) 555(795)	215(205)	[AM (Pl	M)]		εγ	Check Phase	;	εy	Check Phas	se
								J	15(203)		95(65)		L (sec) C (sec) y pract.	12 120 0.810		L (sec) C (sec) y pract.	12 120 0.810	
								1130(510)	255(250)	*	375(270))	R.C. (%)	25%		R.C. (%)	41%	
Stage / Phase Diagrams			2	ĮL.	!				3	/ }								

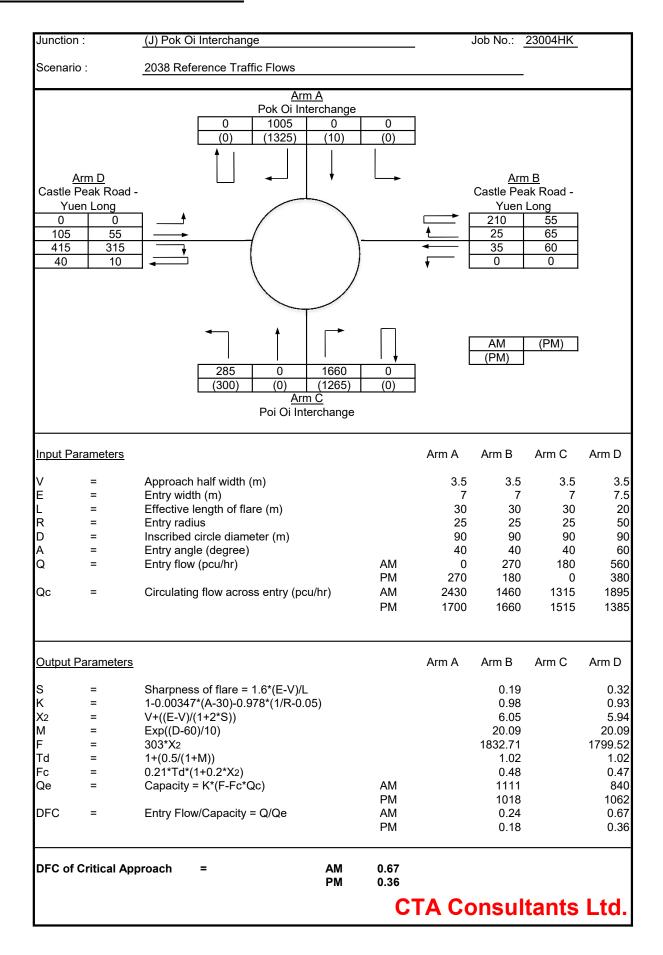

I/G = 5s

Job No: 23004HK

FRAFFIC SIGNALS (CALC	CULATIO	N					Job No:	23004H	K			CT	A Co	nsul	tants	Ltd.
Junction: Description:		Tam Road						vement)			-						
Bescription.	2030	, Kelerene	C IIa	inc 110	W3 (WI	tii I iai	incu impro	ovement)			-						
Approach	Direction	Movement notation Phase	Stage	Width (m)	Radi	us (m)	Nearside 0/1	Pro. Turr	ning (%)	Revi Saturation (pcu	on Flow	A.M. Peak			P.M. Peal	k	
1.pp.rouen	Dire	Mov nota Ph	St	Widt	Left	Right	Nears	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
San Tam Road	S S S		2 2 2	5.00 3.50 3.50	15 0 0	0 0 0	1 1 0	100% 0% 0%	100% 0% 0%	1925 1965 2105	1925 1965 2105	125 266 284	0.065 0.135 0.135	0.135	85 304 326	0.044 0.155 0.155	0.155
San Tam Road	N N	<u>†</u>	1,2 1	4.00 4.00	0	0 15	1	0% 100%	0% 100%	2015 1960	2015 1960	645 555	0.320 0.283	0.283	520 515	0.258 0.263	0.263
Access Road	W W	<u></u>	3	3.50 6.00	28.5 22.5	11.25 0	0 1	50% / 50% 100%	4% / 369 100%	1925 2075	1945 2075	414 446	0.215 0.215	0.215	276 294	0.142 0.142	0.142
*Pedestrian Crossing																	


Notes:		Traffic Flow (pcu / hr)	[AM (PM)]	Check Phase	Check Phase
			205(100)	Ey 0.633 L (sec) 12 C (sec) 120 y pract. 0.810	Ey 0.559 L (sec) 12 C (sec) 120 y pract. 0.810
Stage / Phase Diagram	ns	645(520) 555	655(470)	R.C. (%) 28%	R.C. (%) 45%
1	2	3			
I/G = 5	I/G = 5	I/G	=5s		





TRAFFIC SIGNALS C	CALCULA	TIC	N					Job No:	23004H	K			CI	A C	nsul	tants	Lta.
Junction: Description:	Tsing Lo																
Bescription.	2000 1101			1110 1 1	3113 (11	1111 1 1111	incu ii	приотенн	circ)		•						
	tion ment ion	se	ge .	(m)	Radi	us (m)	le 0/1	Pro. Tur	ning (%)		rised ration		A.M. Peak			P.M. Peal	k
Approach	Direction Movement notation	Phase	Stage	Width (m)	Left	Right	Nearside 0/1	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Kam Tin Road	E — E — E	· 1 · 1 · 1	A A A	3.50 3.50 3.50	0 0 0	0 0 0	1 0 0	0% 0% 0%	0% 0% 0%	1965 2105 2105	1965 2105 2105	920 985 985	0.468 0.468 0.468	0.468	853 914 914	0.434 0.434 0.434	0.434
Kam Tin Road	W ← W ← W ←	2 2 2 2	A A A,B	3.75 3.75 5.00	0 0 15	0 0 0	0 0 1	0% 0% 100%	0% 0% 100%	2130 2130 1925	2130 2130 1925	1458 1458 790	0.684 0.684 0.410		1178 1178 345	0.553 0.553 0.179	
Tsing Long Highway Slip Road	N N N N	3 3 3 3	B B B	3.60 3.60 3.60 3.50	20 25 0 0	0 0 30 28	1 0 0 0	100% 100% 100% 100%	100% 100% 100% 100%	1835 1995 2015 2000	1835 1995 2015 2000	369 401 151 149	0.201 0.201 0.075 0.075	0.201	378 412 103 102	0.206 0.206 0.051 0.051	0.206
*Pedestrian Crossing		4p 5p	A B			Crossing Crossing	_		7 Gm + 7 Gm +								

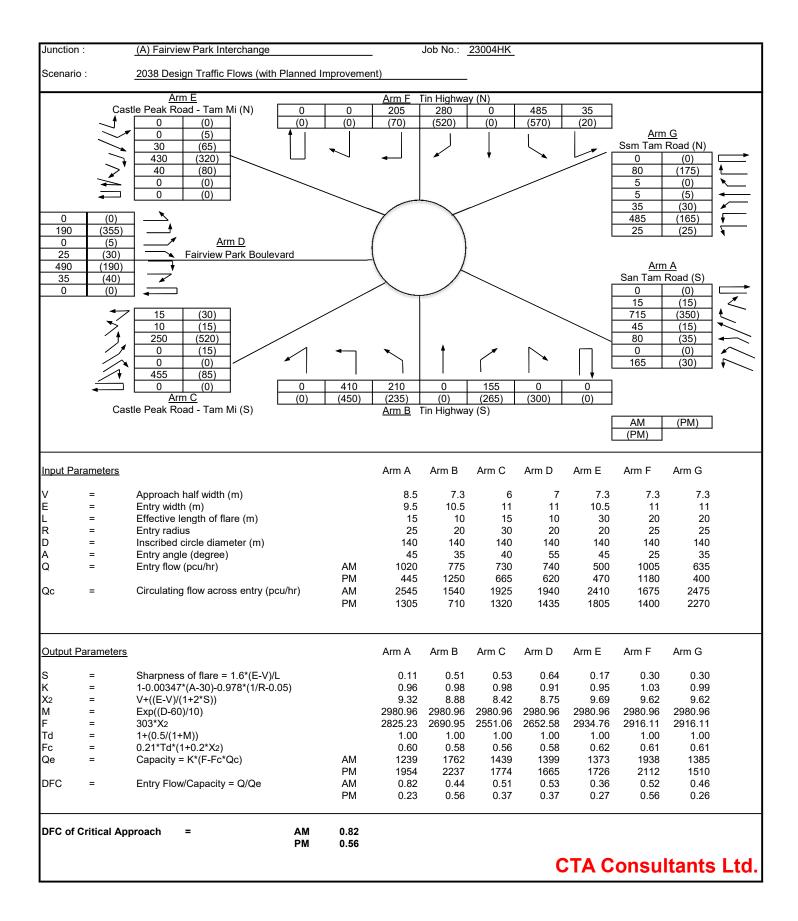
Notes:	Traffic Flow (pcu / hr)	[AM (PM)]	A.M. Check Phase	P.M. Check Phase
	2890(2680)		εy 0.669 L (sec) 10	εy 0.640 L (sec) 10
	2890(2080)		L (sec) 10 C (sec) 120	L (sec) 10 C (sec) 120
	 		y pract. 0.825	y pract. 0.825
	770(790) 300(205)		R.C. (%) 23%	R.C. (%) 29%
Stage / Phase Diagrams	•	•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5p			
I/G = 5 I/G = 7				

CTA Consultants Ltd.

Job No: 23004HK

Junction: Description:	\rightarrow						ng Hig	hway \$	Slip Road	North b	ound)							
Approach	Direction	Movement notation	Phase	Stage	h (m)	Radi	us (m)	ide 0/1	Pro. Turr	ning (%)	Rev Satur Flow (1			A.M. Peak			P.M. Peak	ζ
прионен	Dire	Move	Ph	St	Width	Left	Right	Nearside	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Yuen Long Highway Slip Road	N N	*	D D	2 2	5.00 5.00	25 0	0	1 0	31% 0%	40% 0%	2075 2255	2065 2255	933 1012	0.449 0.449	0.449	748 817	0.362 0.362	0.362
Pok Oi Interchange		<u> </u>		1 1	5.00 5.00	0 0	0 25	1 0	0% 4%	0% 7%	2115 2250	2115 2245	637 678	0.301 0.301	0.301	919 976	0.435 0.435	0.435

Notes:	Traffic Flow (pcu / ht	r) [AM (PM)]	Check Phase	Check Phase
	285(300) 1660(12		Ey 0.751 L (sec) 12 C (sec) 110 y pract. 0.802 R.C. (%) 7%	Ey 0.797 L (sec) 12 C (sec) 110 y pract. 0.802 R.C. (%) 1%
Stage / Phase Diagrams 1 C D D HG T	<u></u>			
I/G = 5 $I/G = 5$				


^{*}Pedestrian Crossing

Job No: 23004HK

Junction: Description:							ng Hig	hway \$	Slip Road	Southbo	ound)							
Approach	Direction Movement		Phase	Stage	h (m)	Radi	us (m)	ide 0/1	Pro. Turr	ning (%)	l	rised ration pcu/hr)		A.M. Peak			P.M. Peak	ζ
ripprouen	Dire	Move	ЧЫ	Sta	Width	Left	Right	Nearside	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Pok Oi Interchange		$\overrightarrow{\downarrow}$		1	5.00 5.00	0	0 50	1 0	0% 33%	0% 42%	2115 2235	2115 2225	1182 1248	0.559 0.558	0.559	711 749	0.336 0.337	0.337
Yuen Long Highway Slip Road	W W	1	A A	2 2	5.00 5.00	50 0	0	1 0	0% 0%	0% 0%	2115 2255	2115 2255	486 519	0.230 0.230	0.230	646 689	0.305 0.305	0.305

Notes:	Traffic Flow (pcu / hr) [AM (PM)]	Check Phase	Check Phase
	$ \begin{array}{c} 2015(1145) \longrightarrow \\ 415(315) \longrightarrow \\ \end{array} $	L (sec) 12 C (sec) 110 y pract. 0.802	Ey 0.642 L (sec) 12 C (sec) 110 y pract. 0.802 R.C. (%) 25%
Stage / Phase Diagrams 1 A 2	В		
I/G = 5 $I/G = 5$			

^{*}Pedestrian Crossing

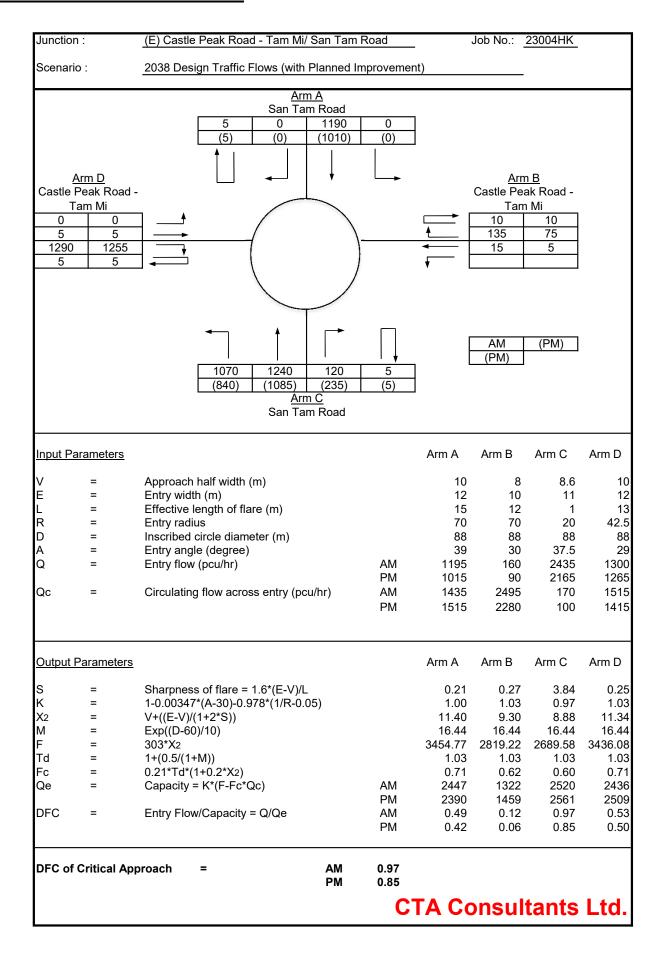
### C San Tam Road	Junction :		San Tam Ro	oad / Loca	l Road to Lor	ng Ha (Junc	tion B)	_	Job No.:	23004HK
## Predictive equations of capacity of movement are: C-BA = D(827 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB))	Scenario :		2038 Design	n Traffic FI	ows (with Pla	inned Impro	ovement)			
Q-BA = D(627 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB)) Q-BC = [745 - (0.364q-AC + 0.144q-AB)) Q-CB = F(745 - 0.364Y(q-AC + q-AB)) The geometric parameters represented by D. E., F are: D = (1 + 0.094(w-BC - 3.65))(1 + 0.0009(V-rBA - 120))(1 + 0.0006(V-lBA - 150)) E = (1 + 0.094(w-BC - 3.65))(1 + 0.0009(V-rBC - 120)) F = (1 + 0.094(w-BC - 3.65))(1 + 0.0009(V-rBC - 120)) F = (1 + 0.094(w-BC - 3.65))(1 + 0.0009(V-rBC - 120)) Where Y = 1 - 0.0345W Q-AB, etc = the design flow of movement AB, etc W = major road width W-CR = central reserve width W-BA, etc = lane width to vehicle V-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the left for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the left for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the left for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the left for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the left for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the left for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the left for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the left for waiting vehicles in stream BA, etc V-rBA, etc = visibility to the left for waiting vehicles in stream BA, etc V-rBA, etc = visibility to vehicle V-rBA, etc = visibility to	[990	435	5 (15)	(5)	830 25	970	Road		(PM)
D = (1 + 0.094(w-BA - 3.65))(1 + 0.0009(V-rBC - 120)) E = (1 + 0.094(w-CB - 3.65))(1 + 0.0009(V-rBC - 120)) F = (1 + 0.094(w-CB - 3.65))(1 + 0.0009(V-rBC - 120)) where Y = 1 - 0.0345W q-AB, etc = the design flow of movement AB, etc W = major road width W-CR = central reserve width w-BA, etc = lane width to vehicle v-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc V-IBA = visibility to the right for waiting vehicles in stream BA, etc Geometry: Input	The predictive equa	Q-BA = Q-BC =	D(627 + 14V E(745 - Y(0	V-CR - Y(0 364q-AC -	0.364q-AC + + 0.144q-AB)		+ 0.229q-	-CA + 0.52q	-CB))	
Q-AB, etc = the design flow of movement AB, etc W = major road width	The geometric para	D = E =	(1 + 0.094(v)) (1 + 0.094(v))	v-BA - 3.65 v-BC - 3.65	5))(1 + 0.0009 5))(1 + 0.0009	9(V-rBC - 1	20))	.0006(V-IB <i>A</i>	A - 150))	
W		q-AB, etc = W = W-CR = w-BA, etc = v-rBA, etc =	the design fi major road v central rese lane width to visibility to the	low of move width rve width o vehicle ne right for	· waiting vehi	cles in stre				
C-B blocked C-A, residual width <2.5m? (Yes: 1, No: 0)	Geometry :	W				_		_	D	0.968
Minor Road Share LT&RT?	C-B blocked C					_				
Analysis: Traffic Flow pcu/hr q-CA 990 435 Q-BA 349 387 Q-CB 10 5 Q-BC 611 585 Q-BC	Minor Road Sha	are LT&RT?	-			W-CB				
Q-CB		Traffic Flow		PM	pcu/hr	AM	PM			
Q-AB 25 20 Q-CB 363 348 (If C-B Q-AC 830 970 Q-CA N/A N/A blocked C-A (If Minor Road Share LT&RT)					_			_		
Q-AC 830 970 Q-CA N/A N/A blocked C-A) (If Minor Road Share LT&RT)					_			-		
q-BA 30 5 Q-BAC 371 519 Road Share LT&RT)		q-AC	830	970	Q-CA	N/A	N/A	blocked C- _A)		
q-BC 5 15 15 15 15 15 15 15 15 15 15 15 15 1		q-BA	30	5	Q-BAC	371	519	Road Share		
B-A N/A N/A B-C N/A N/A C-B 0.03 0.01 C-A N/A N/A B-AC 0.09 0.04 Critical DFC 0.09 0.04					-			- ,		
	Results :	Ratio of Flo	w-to-Capaci	ty		B-C _ C-B _ C-A _	N/A N/A 0.03 N/A	N/A N/A 0.01 N/A	•	
		ritical DEC					0 00	0.04		
		ATTICAL DEC							ultars	60 4d

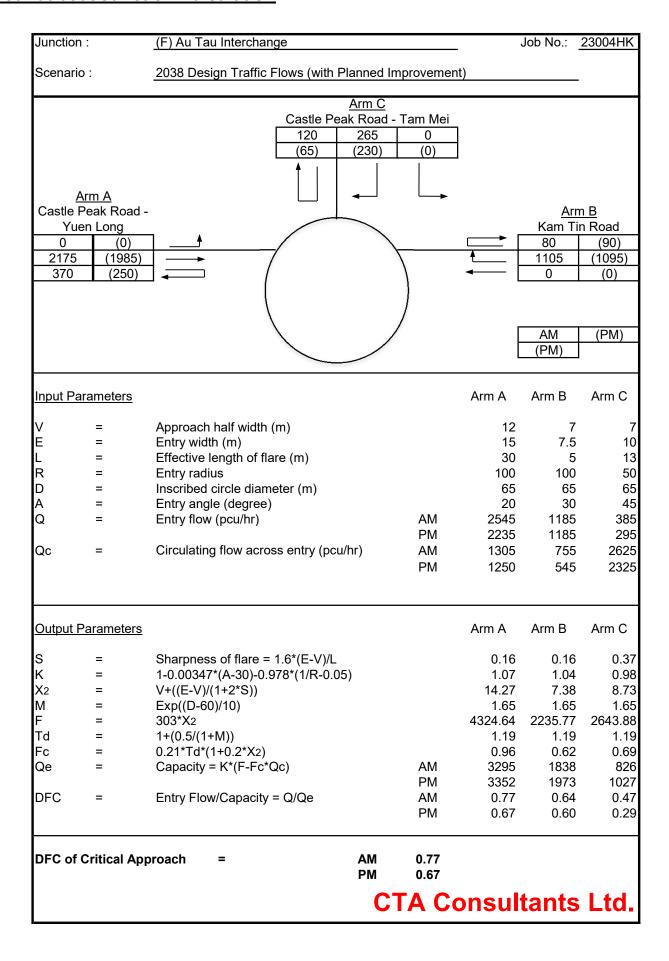
I/G = 5

I/G = 5

TRAFFIC SIGNALS O										23004H	K			CT	A Co	onsul	tants	Ltd
Junction: Description:	San 2038	Tam Desi	Roac	l / Fur raffic	ng Kat	Heung (with 1	Road	(Junction	C) ment)			-						
	<u></u>	1	5		<u> </u>	[(1		Rev	ised				1		
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Radi	us (m)	Nearside 0/1	Pro. Turr	ning (%)		on Flow		A.M. Peak			P.M. Peal	k
	Dir	Mov	Pl	Š	Wid	Left	Right	Near	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical
San Tam Road	S S S			2 2 2	4.50 3.00 3.25	13.5 0 0	0 0 0	1 1 0	100% 0% 0%	100% 0% 0%	1860 1915 2080	1860 1915 2080	245 264 286	0.132 0.138 0.138	0.138	230 302 328	0.124 0.158 0.158	0.158
San Tam Road	N N	<u>†</u>		1,2 1	3.50 3.50	0	0 13.75	1 0	0% 100%	0% 100%	1965 1900	1965 1900	645 585	0.328 0.308	0.308	520 545	0.265 0.287	0.287
Fung Kat Heung Road	W W	‡	·	3	4.00 5.00	23.8 18.8	10 0	0 1	56% / 44% 100%	46% / 349 100%	1955 1960	1975 1960	462 463	0.236 0.236	0.236	298 297	0.151 0.151	0.151
*Pedestrian Crossing																		
Jotes:						Traffi		(peu / hr) 555(795)	245(230)	<u>+</u>	M)] 135(80) 375(270)		Ey L (sec) C (sec) y pract. R.C. (%)	Check Phase 0.682 12 120 0.810 19%	;	Ey L (sec) C (sec) y pract. R.C. (%)	Check Phas 0.596 12 120 0.810 36%	se
tage / Phase Diagrams			2	JL.		Τ		1130(310)	3	,								
le			1		!					´ _								

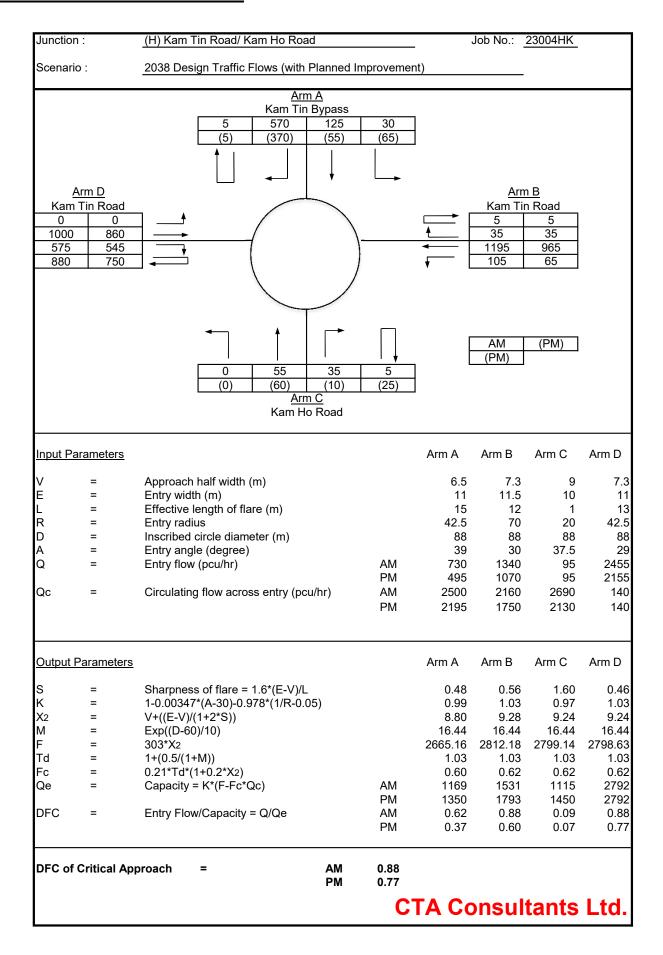
I/G = 5s

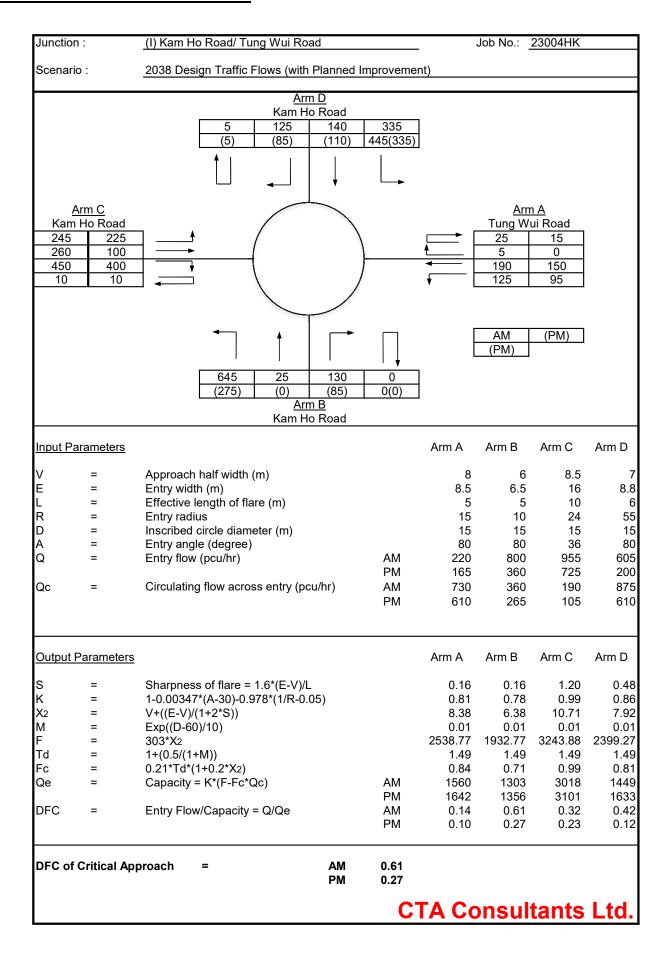

I/G = 5

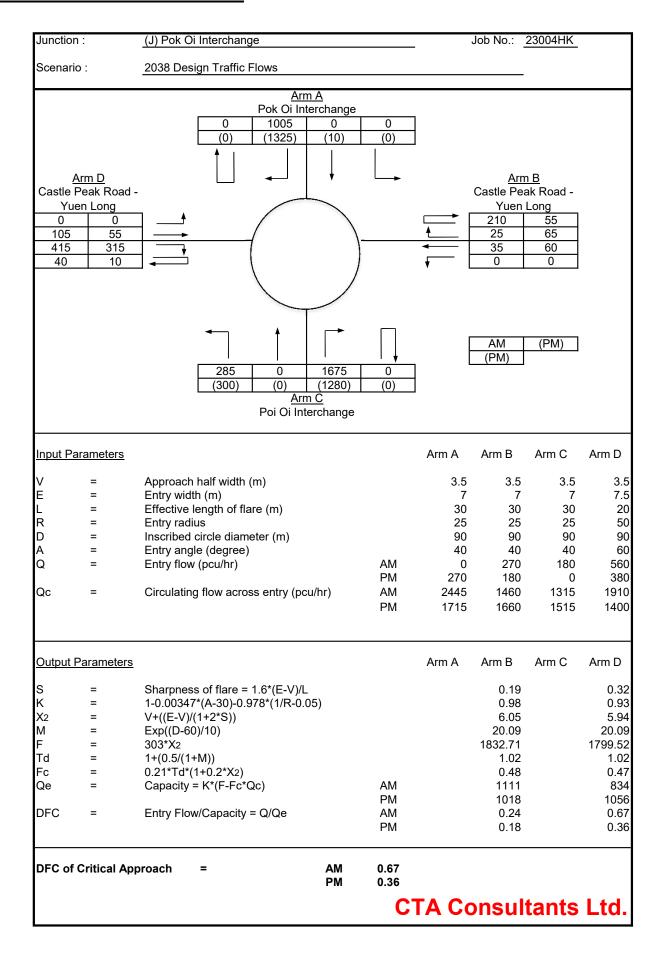

I/G = 5

Job No: 23004HK

TRAFFIC SIGNALS (CALC	CULATIO	N					Job No:	23004H	K			CI	A C	nsuli	tants	Lta
Junction: Description:		Tam Road Design T						ment)			•						
Approach		Movement notation Phase	Stage	Width (m)		ius (m)	Nearside 0/1	Ι	ning (%)	Revi	on Flow		A.M. Peak			P.M. Pea	k
7 ipproueir	Dire	Mov nota Ph	St	Widt	Left	Right	Nears	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical
San Tam Road	S S S	1	2 2 2	5.00 3.50 3.50	15 0 0	0 0 0	1 1 0	100% 0% 0%	100% 0% 0%	1925 1965 2105	1925 1965 2105	125 266 284	0.065 0.135 0.135	0.135	85 304 326	0.044 0.155 0.155	0.155
San Tam Road	N N	<u>†</u>	1,2 1	4.00 4.00	0	0 15	1 0	0% 100%	0% 100%	2015 1960	2015 1960	645 585	0.320 0.298	0.298	520 545	0.258 0.278	0.278
Access Road	W W	<u>‡</u>	3	3.50 6.00	28.5 22.5	11.25	0 1	54% / 46% 100%	45% / 35% 100%	1930 2075	1950 2075	446 479	0.231 0.231	0.231	288 307	0.148 0.148	0.148
*Pedestrian Crossing																	
Notes:					Traffi		(pcu / hr) 550(630)	125(85)	[AM (Pi	M)]		εγ	Check Phase 0.665	e	Ε	heck Pha	se
							†	125(03)		205(100) 720(495))	L (sec) C (sec) y pract. R.C. (%)	12 120 0.810 22%		L (sec) C (sec) y pract. R.C. (%)	12 120 0.810 39%	


I/G = 5s





Tsin	a I an														IISUI	tants	Lu
								d (Junct									
2038	Desig	gn 1	raine	Flows	(With	Pianneo	u impr	ovement))								
tion	ment ion	se	ge	(m)	Radi	us (m)	le 0/1	Pro. Tur	ning (%)	Satur	ation		A.M. Peak			P.M. Peal	c c
Direc	Move	Pha	Sta	Width	Left	Right	Nearsio	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical
E - E -		1	A A A	3.50 3.50 3.50	0 0 0	0 0 0	1 0 0	0% 0% 0%	0% 0% 0%	1965 2105 2105	1965 2105 2105	921 987 987	0.469 0.469 0.469	0.469	854 915 915	0.435 0.435 0.435	0.433
W-		2	A A A,B	3.75 3.75 5.00	0 0 15	0 0 0	0 0 1	0% 0% 100%	0% 0% 100%	2130 2130 1925	2130 2130 1925	1458 1458 790	0.684 0.684 0.410		1178 1178 345	0.553 0.553 0.179	
N N N N] 	3 3 3	B B B	3.60 3.60 3.60 3.50	20 25 0 0	0 0 30 28	1 0 0 0	100% 100% 100% 100%	100% 100% 100% 100%	1835 1995 2015 2000	1835 1995 2015 2000	369 401 151 149	0.201 0.201 0.075 0.075	0.201	378 412 103 102	0.206 0.206 0.051 0.051	0.206
			A B					=									
	E - E - W W W N N N N	E — E — E — W — W — W — W — N N N N N N N N N N N	$\begin{array}{c} E \longrightarrow 1 \\ E \longrightarrow 1 \\ E \longrightarrow 1 \end{array}$ $\begin{array}{c} W \longleftarrow 2 \\ W \longleftarrow 2 \\ W \longleftarrow 2 \end{array}$ $\begin{array}{c} W \longrightarrow 2 \\ W \longrightarrow 3 \\ N \longrightarrow 3 \\ N \longrightarrow 3 \end{array}$	$E \longrightarrow 1 A$ $E \longrightarrow 1 A$ $E \longrightarrow 1 A$ $W \longrightarrow 2 A$ $W \longrightarrow 2 A,B$ $N \longrightarrow 3 B$	E 1 A 3.50 E 1 A 3.50 E 1 A 3.50 E 1 A 3.50 W 2 A 3.75 W 2 A 3.75 W 2 A,B 5.00 N 3 B 3.60 N 3 B 3.60 N 3 B 3.60 N 3 B 3.60 N A 3 B 3.60 N A 3 B 3.60 N A 3 B 3.60	E 1 A 3.50 0 E 1 A 3.50 0 E 1 A 3.50 0 E 1 A 3.50 0 W 2 A 3.75 0 W 2 A 3.75 0 W 2 A,B 5.00 15 N 3 B 3.60 20 N 3 B 3.60 25 N 3 B 3.60 0 N 4p A Min. 6	E 1 A 3.50 0 0 E 1 A 3.50 0 0 E 1 A 3.50 0 0 E 1 A 3.50 0 0 W 2 A 3.75 0 0 W 2 A,B 5.00 15 0 N 3 B 3.60 20 0 N 3 B 3.60 25 0 N 3 B 3.60 0 30 N 3 B 3.60 0 30 N A 3 B 3.60 0 30 N M A Min. Crossing	E 1 A 3.50 0 0 1 E 1 A 3.50 0 0 0 E 1 A 3.50 0 0 0 E 1 A 3.50 0 0 0 W 2 A 3.75 0 0 0 W 2 A,B 5.00 15 0 1 N 3 B 3.60 20 0 1 N 3 B 3.60 25 0 0 N 3 B 3.60 0 30 0 N 3 B 3.50 0 28 0 4p A Min. Crossing Time	E 1 A 3.50 0 0 1 0% E 1 A 3.50 0 0 0 0 0 0% E 1 A 3.50 0 0 0 0 0 0% W 2 A 3.75 0 0 0 0 0 0% W 2 A,B 5.00 15 0 1 100% N 3 B 3.60 25 0 0 100% N 3 B 3.60 0 30 0 100% N A 3 B 3.50 0 28 0 100% A Min. Crossing Time =	E 1 A 3.50 0 0 1 0% 0% E 1 A 3.50 0 0 0 0 0 0% 0% E 1 A 3.50 0 0 0 0 0 0% 0% 0% E 2 A 3.75 0 0 0 0 0 0% 0% 0% W 2 A,B 5.00 15 0 1 100% 100% 100% N 3 B 3.60 25 0 0 100% 100% N 3 B 3.60 0 30 0 100% 100% N 3 B 3.50 0 28 0 100% 100% 4p A Min. Crossing Time = 7 Gm +	Radius (m) Flow (now for the large of th	E 1 A 3.50 0 0 1 0% 0% 1965 1965 E 1 A 3.50 0 0 0 0 0% 0% 2105 2105 E 1 A 3.50 0 0 0 0 0% 0% 2105 2105 E 2 A 3.75 0 0 0 0 0% 0% 2130 2130 W 2 A,B 5.00 15 0 1 100% 100% 1925 1925 N 3 B 3.60 25 0 0 100% 100% 1995 1995 N 3 B 3.60 0 30 0 100% 100% 2015 2015 N 4 A Min. Crossing Time = 7 Gm + 7 Fm = 14s	Radius (m) Rad	Radius (m) Pro. Turning (%) Saturation Flow (pcu/hr) Pro. Turning (%) Pro. Turning (%) Saturation Flow (pcu/hr) Pro. Turning (%) Pro. Turning (%) Saturation Flow (pcu/hr) Pro. Turning (%) Pro. Turning (%) Saturation Flow (pcu/hr) Pro. Turning (%) Pro. Turning (%) Pro. Turning (%) Saturation Flow (pcu/hr) Pro. Turning (%) Pro. Turning (%) Saturation Pro. Turning (%) Pro. Turning (Radius (m) Saturation Flow (pcu/hr) Fl	Radius (m) Saturation Flow (peu/hr) Fl	Radius (m) Saturation Flow (pcu/hr) Fl

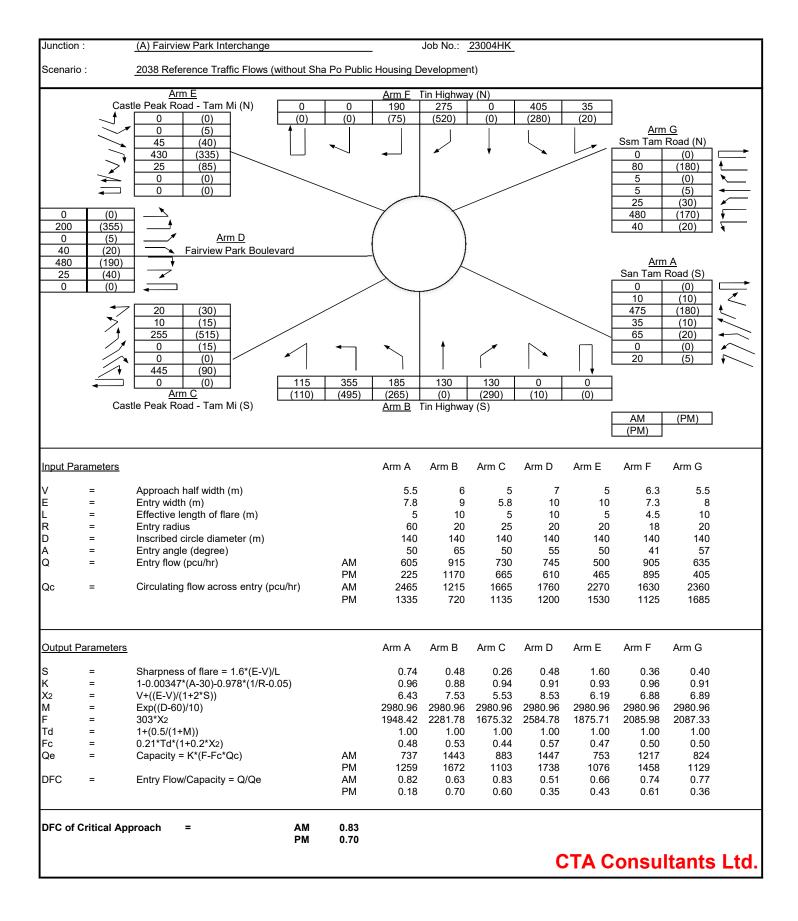
Notes:	Traffic Flow (pcu / hr)	[AM (PM)]	A.M. Check Phase	P.M. Check Phase
			εy 0.670	εy 0.641
	2895(2685)		L (sec) 10	L (sec) 10
			C (sec) 120	C (sec) 120
			y pract. 0.825	y pract. 0.825
			R.C. (%) 23%	R.C. (%) 29%
	770(790) 300(205)	2915(2355)		
		790(345)		
Stage / Phase Diagrams		•		
	5p 3 5p 5p			
I/G = 5 $I/G = 7$				

CTA Consultants Ltd.

Job No: 23004HK

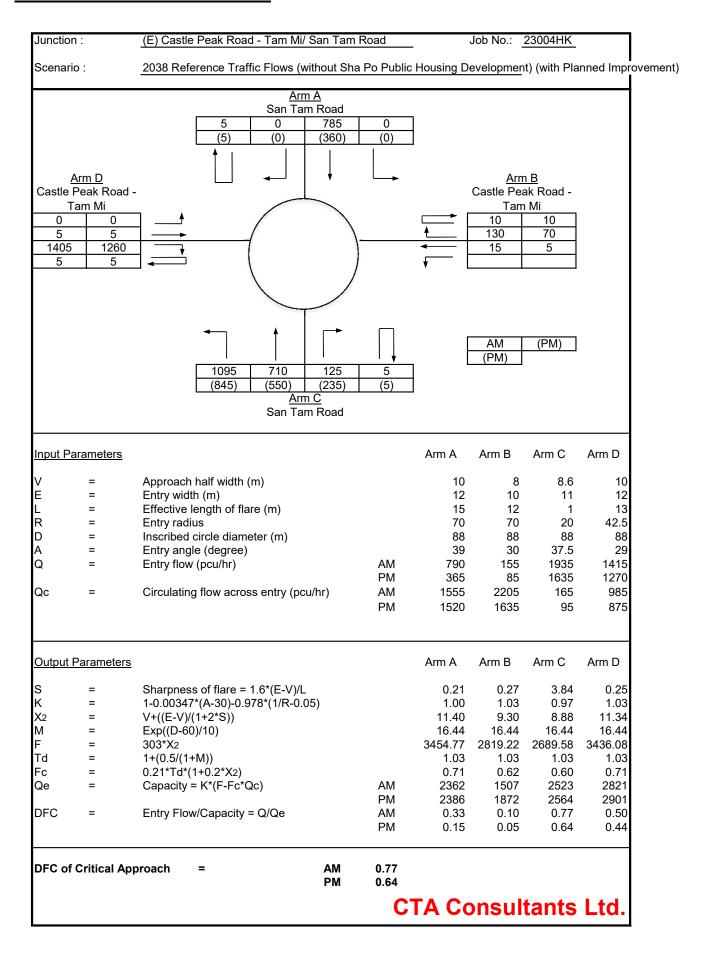
Junction: Description:	$\overline{}$					ien Lo	ng Hig	hway	Slip Road	North b	ound)							
Approach	Direction	Movement notation	Phase	Stage	h (m)	Radi	us (m)	ide 0/1	Pro. Turr	ning (%)	Rev Satur Flow (1			A.M. Peak			P.M. Peak	ζ
ripprouen	Dire	Move	ЧЫ	Sta	Width	Left	Right	Nearside	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Yuen Long Highway Slip Road	N N	*	D D	2 2	5.00 5.00	25 0	0	1 0	30% 0%	40% 0%	2075 2255	2065 2255	940 1020	0.453 0.452	0.453	755 825	0.366 0.366	0.366
Pok Oi Interchange		\leftarrow		1 1	5.00 5.00	0	0 25	1 0	0% 4%	0% 7%	2115 2250	2115 2245	637 678	0.301 0.301	0.301	926 984	0.438 0.438	0.438

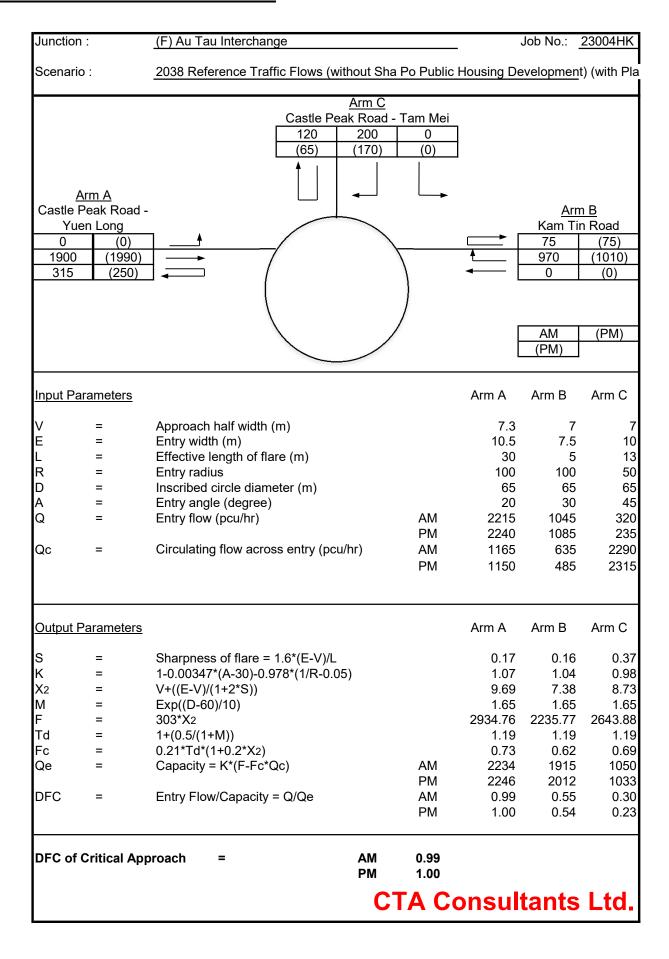
Notes:	Traffic Flow (pcu / h	r) [AM (PM)]	Check Phase	Check Phase
	285(300) 1675(1	25(65) 1290(1845)	y pract. 0.802	Ey 0.804 L (sec) 12 C (sec) 110 y pract. 0.802 R.C. (%) 0%
Stage / Phase Diagrams	•			
1 C D D	<u> </u>			
I/G = 5 $I/G = 5$				


^{*}Pedestrian Crossing

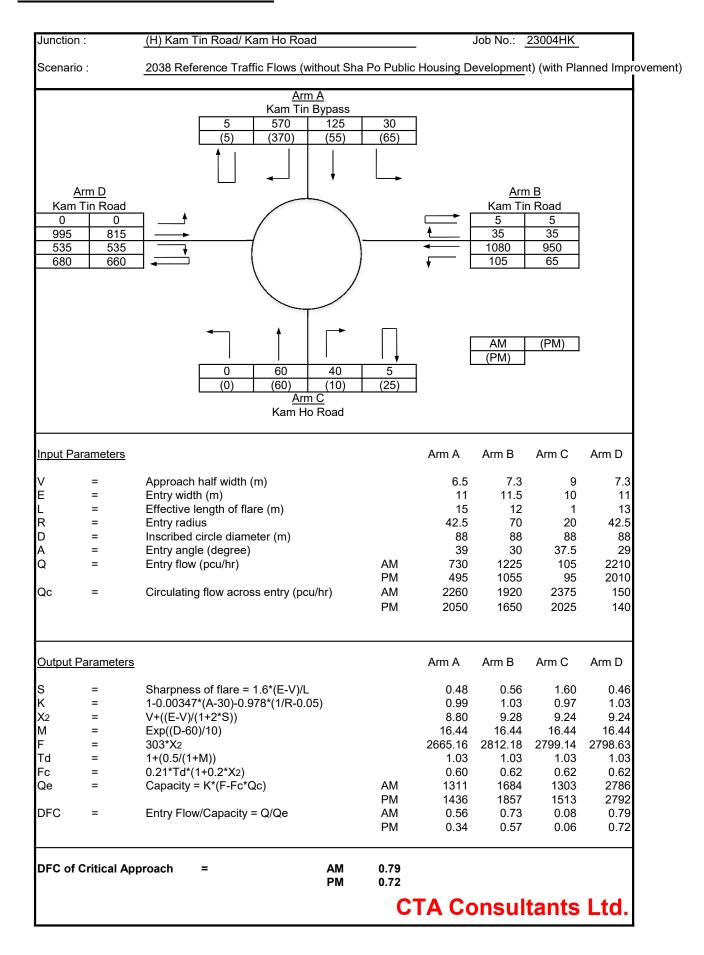
Job No: 23004HK

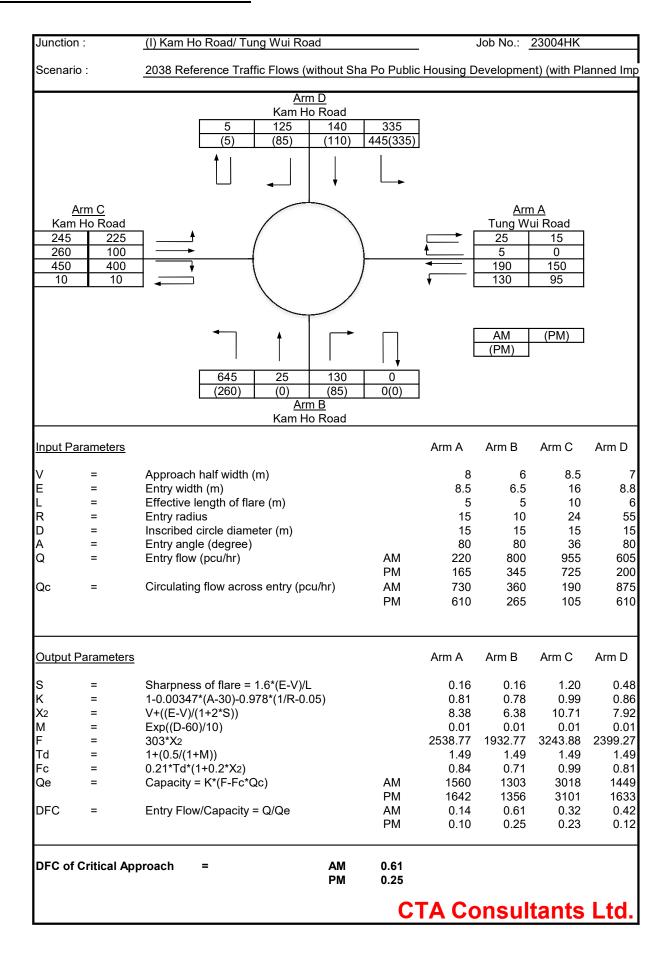
Junction: Description:	\rightarrow					ien Lo	ng Hig	hway S	Slip Road	Southbo	ound)							
Approach	Direction	Movement notation	Phase	Stage	h (m)	Radi	us (m)	ide 0/1	Pro. Turr	ning (%)	l	ration		A.M. Peak			P.M. Peak	ζ
ripprouen	Dire	Move	ЧЫ	Sta	Width	Left	Right	Nearside	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Pok Oi Interchange		$\overrightarrow{\downarrow}$	_	1	5.00 5.00	0	0 50	1 0	0% 33%	0% 42%	2115 2235	2115 2225	1189 1256	0.562 0.562	0.562	711 749	0.336 0.337	0.337
Yuen Long Highway Slip Road	W W	1	A A	2 2	5.00 5.00	50 0	0 0	1 0	0% 0%	0% 0%	2115 2255	2115 2255	486 519	0.230 0.230	0.230	646 689	0.305 0.305	0.305

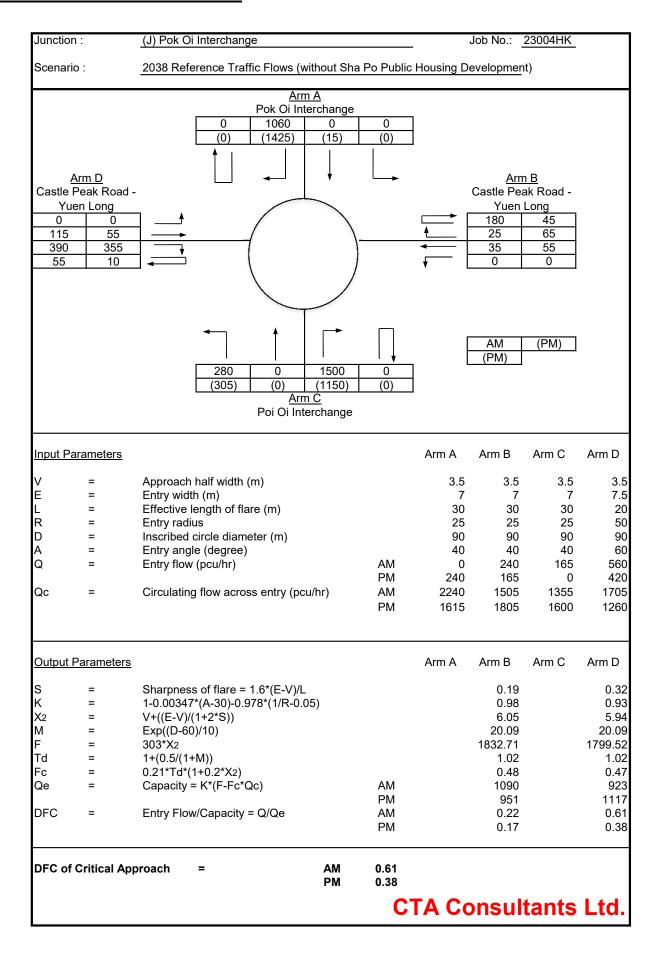

Notes:	Traffic Flow (pcu / hr) [AM (PM)]	Check Phase	Check Phase
	$ \begin{array}{c} 2030(1145) \longrightarrow \\ 415(315) \longrightarrow \end{array} $	L (sec) 12 C (sec) 110 y pract. 0.802	Ey 0.642 L (sec) 12 C (sec) 110 y pract. 0.802 R.C. (%) 25%
Stage / Phase Diagrams 1 A 2	В		
I/G = 5 $I/G = 5$			


^{*}Pedestrian Crossing

Junction:		San Tam Ro	oad / Local	Road to Lor	ng Ha (Jund	ction B)	_	Job No.:	23004HK
Scenario :		2038 Refere	ence Traffic	c Flows (with	out Sha Po	Public H	ousing Deve	lopment)	
	Arm C 570 10	San Tam R o 215 5	oad	#	Arm A 770 25	San Tam 505 20	Road		
		E	5 (15) Arm B	30 (5) Fung Kat H	eung Roac	<u>i</u>		AM (PM)	(PM)
The predictive	Q-BC =	D(627 + 14V	N-CR - Y(0 .364q-AC	0.364q-AC + + 0.144q-AB)		+ 0.229q	-CA + 0.52q	-CB))	
The geometric	E =	(1 + 0.094(v (1 + 0.094(v	v-BA - 3.65 v-BC - 3.65	: 5))(1 + 0.000 5))(1 + 0.000 5))(1 + 0.000	9(V-rBC - 1	20))).0006(V-IBA	x - 150))	
where	q-AB, etc =	major road v central rese lane width to visibility to tl	low of mov width rve width o vehicle he right for		cles in stre				
Geometry :	Input W	8	V-rBA	50	w-BA_	3.8	_	Calculated D	0.893
width <2.5m	W-CR ked C-A, residual ? (Yes: 1, No: 0) d Share LT&RT?	0 1 1	V-IBA V-rBC V-rCB	50 50 50	w-BC _ w-CB _	3.8		E _ F Y _	0.950 0.616 0.724
Analysis :	(Yes: 1, No: 0) Traffic Flow pcu/hr	AM	PM	Capacity pcu/hr	АМ	PM			
	q-CA	570	215	Q-BA	289	406	_		
	q-CB	10	5	Q-BC	513	579	_		
	q-AB _.	25	20	Q-CB_	330	373	(If C-B		
							(II O-B		
	q-AC	770	505	Q-CA	1745	1776	blocked C- A)		
	q-AC - q-BA	30	505	Q-CA - Q-BAC	1745 308	1776 523	_A) (If Minor Road Share		
				_			_A) (If Minor Road		
Results :	q-BA q-BC	30 5 0.143	5 15 0.750	_			A) (If Minor Road Share LT&RT) I PM N/A N/A 0.01		
Results :	q-BA q-BC f Ratio of Flow	30 5 0.143	5 15 0.750	_	308 B-A B-C C-B C-A	523 AN N/A N/A 0.03 0.33 0.11	A) (If Minor Road Share LT&RT) I PM A N/A O.01 0.12 0.04		
Results :	q-BA q-BC f	30 5 0.143	5 15 0.750	_	308 B-A B-C C-B C-A B-AC	523 AN N/A N/A 0.03 0.33 0.11	A) (If Minor Road Share LT&RT) I PM A N/A 0.01 0.12 0.04		


Junction :	_	San Tam Ro	oad / Fung	Kat Heung I	Road (Junc	tion C)	_	Job No.:	23004HK
Scenario :	<u>.</u>	2038 Refere	nce Traffic	c Flows (with	out Sha Po	Public Ho	ousing Deve	lopment)	
	970 35	515 10	70	60	935 40	705 45	Road	AM	(PM)
		L	(55) Arm B	(55) Fung Kat H	eung Road	I		(PM)	
			<u> =</u>	<u> </u>		=			
The predictive	Q-BC =	D(627 + 14V	V-CR - Y(0 364q-AC +	0.364q-AC + + 0.144q-AB)		+ 0.229q-	-CA + 0.52q-	-CB))	
The geometric	E =	(1 + 0.094(w (1 + 0.094(w	/-BA - 3.65 /-BC - 3.65	: 5))(1 + 0.000 5))(1 + 0.000 5))(1 + 0.000	9(V-rBC - 1	20))	.0006(V-IBA	150))	
where	q-AB, etc = W = W-CR = w-BA, etc = v-rBA, etc = w-RA,	major road v central reser lane width to visibility to th	ow of mov vidth rve width o vehicle ne right for		cles in stre				
Geometry :	Input W	7.5	\/ ~ D A	F0	w-BA	2.6		Calculated	0.077
	W-CR	7.5	V-rBA V-IBA	50 50	w-BA _ w-BC _	3.6 3.6	_	D_ E_	0.877 0.933
	ed C-A, residual	1	V-rBC	50	w-CB	0)	F	0.616
	? (Yes: 1, No: 0)	1	V-rCB	50	-		_	Υ	0.741
Analysis :	(Yes: 1, No: 0) Traffic Flow pcu/hr	AM	PM	Capacity pcu/hr	АМ	PM			
	q-CA	970	515	Q-BA	169	299	_		
	q-CB	35	10	Q-BC_	456	513	_		
	q-AB _	40	45	Q-CB_	297	334	(If C-B		
	q-AC	935	705	Q-CA	1588	1746	blocked C- _A)		
	q-BA	60	55	Q-BAC	255	378	(If Minor Road Share LT&RT)		
	q-BC ⁻ f	70 0.538	55 0.500	-			,		
Results :	Ratio of Flov	v-to-Canaci	tv			AM	l PM		
	1.00.00 01 1 100	10-оарасі	•3		B-A _ B-C _ C-B _ C-A _ B-AC _	N/A N/A 0.12 0.61 0.51	N/A N/A		
	Critical DFC					0.61	0.29		
	Official Di G						Consi	المحاجلات	. 1 4 - 1





Junction:	Tsir	g Lo	ng H	ighwa	v Slin	Road	/ Kam T	Tin Roa	d (Junct	ion G)						onsul		
Description:											evelopi	nent) (v	vith Plann	ed Improve	ement)			
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Radi	ius (m)	Nearside 0/1	Pro. Tur	ning (%)		ised ration		A.M. Peak			P.M. Peal	k
Арргоасп	Direc	Move nota	Pha	Sta	Widtl	Left	Right	Nearsi	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical
Kam Tin Road	E · E ·		- 1 - 1 - 1	A A A	3.50 3.50 3.50	0 0 0	0 0 0	1 0 0	0% 0% 0%	0% 0% 0%	1965 2105 2105	1965 2105 2105	888 951 951	0.452 0.452 0.452	0.452	804 861 861	0.409 0.409 0.409	0.409
Kam Tin Road	W - W -	•	2 2 2 2	A A A,B	3.75 3.75 5.00	0 0 15	0 0 0	0 0 1	0% 0% 100%	0% 0% 100%	2130 2130 1925	2130 2130 1925	1340 1340 680	0.629 0.629 0.353		1148 1148 265	0.539 0.539 0.138	
Tsing Long Highway Slip Road	N N N N	- - -	3 3 3	B B B	3.60 3.60 3.60 3.50	20 25 0 0	0 0 30 28	1 0 0 0	100% 100% 100% 100%	100% 100% 100% 100%	1835 1995 2015 2000	1835 1995 2015 2000	367 398 78 77	0.200 0.200 0.039 0.039	0.200	369 401 100 100	0.201 0.201 0.050 0.050	0.201
*Pedestrian Crossing			4p 5p	A B			Crossin Crossin	_	=	7 Gm + 7 Gm +								

Notes:	Traffic Flow (pcu / hr)	[AM (PM)]	A.M. Check Phase	P.M. Check Phase
			εy 0.652	εy 0.610
	2790(2525)		L (sec) 10	L (sec) 10
			C (sec) 120	C (sec) 120
	│ ← →		y pract. 0.825	y pract. 0.825
			R.C. (%) 27%	R.C. (%) 35%
	765(770) 155(200)	2680(2295)		
		680(265)		
Stage / Phase Diagrams		•		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5p			
I/G = 5 $I/G = 7$				

CTA Consultants Ltd.

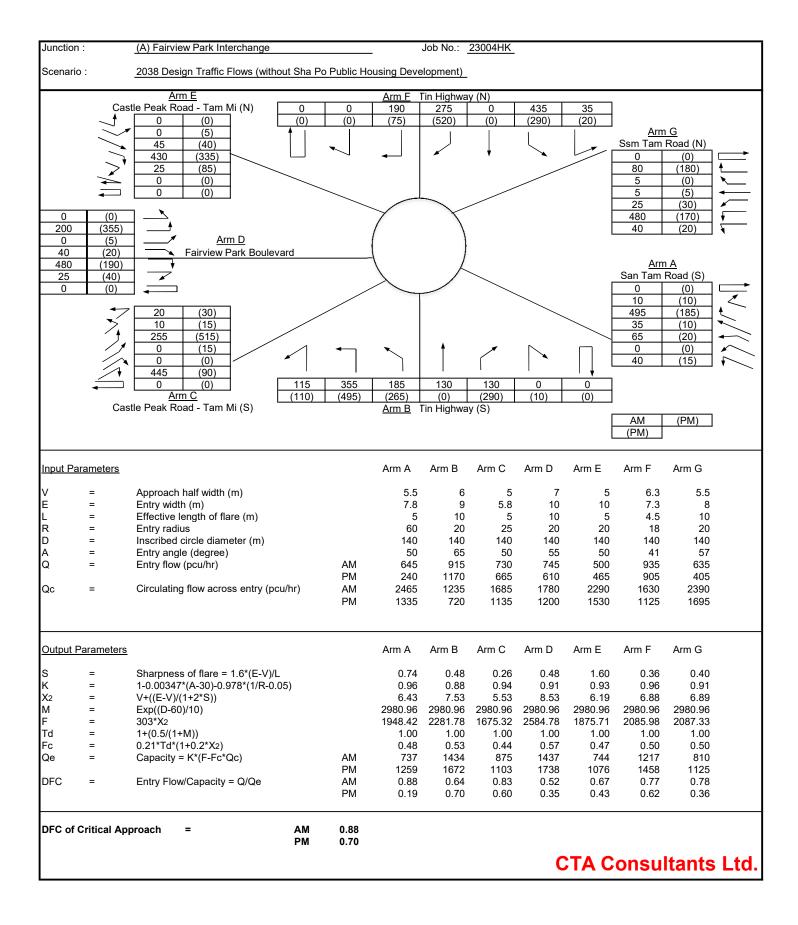
Job No: 23004HK

Junction: Description:							0 0		Slip Road Public H			nent)						
Approach	Direction	Movement notation	Phase	Stage	th (m)	Radi	us (m)	ide 0/1	Pro. Turr	ning (%)	Satur	ised ration pcu/hr)		A.M. Peak			P.M. Peak	ς
	Dire	Mov	Ph	St	Width	Left	Right	Nearside	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Yuen Long Highway Slip Road	N N	\$	D D	2 2	5.00 5.00	25 0	0	1 0	33% 0%	44% 0%	2075 2255	2060 2255	853 927	0.411 0.411	0.411	695 760	0.337 0.337	0.337
Pok Oi Interchange		<u> </u>		1	5.00 5.00	0	0 25	1 0	0% 4%	0% 7%	2115 2250	2115 2245	657 698	0.310 0.310	0.310	827 878	0.391 0.391	0.391

Notes:	Traffic Flow (pcu / h	ar) [AM (PM)]	Check Phase	Check Phase
	280(305) 1500(1	25(65) 1330(1640)	y pract. 0.802	Ey 0.728 L (sec) 12 C (sec) 110 y pract. 0.802 R.C. (%) 10%
Stage / Phase Diagrams	•			
1 C D D	—			
I/G = 5 $I/G = 5$				

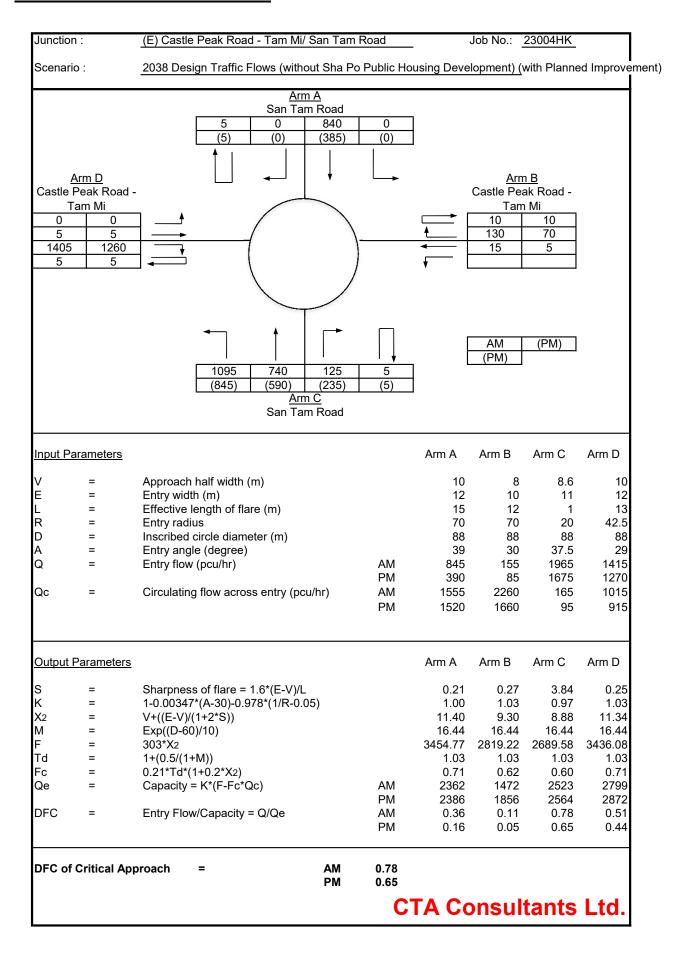
^{*}Pedestrian Crossing

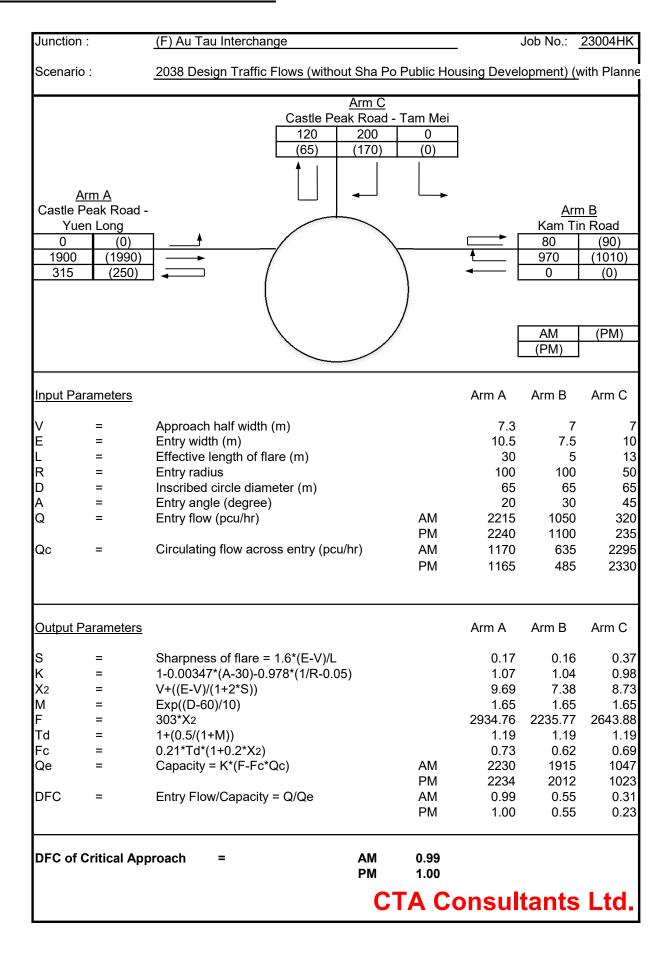
CTA Consultants Ltd.


Job No: 23004HK Junction: (J) Pok Oi Interchange (Yuen Long Highway Slip Road Southbound)

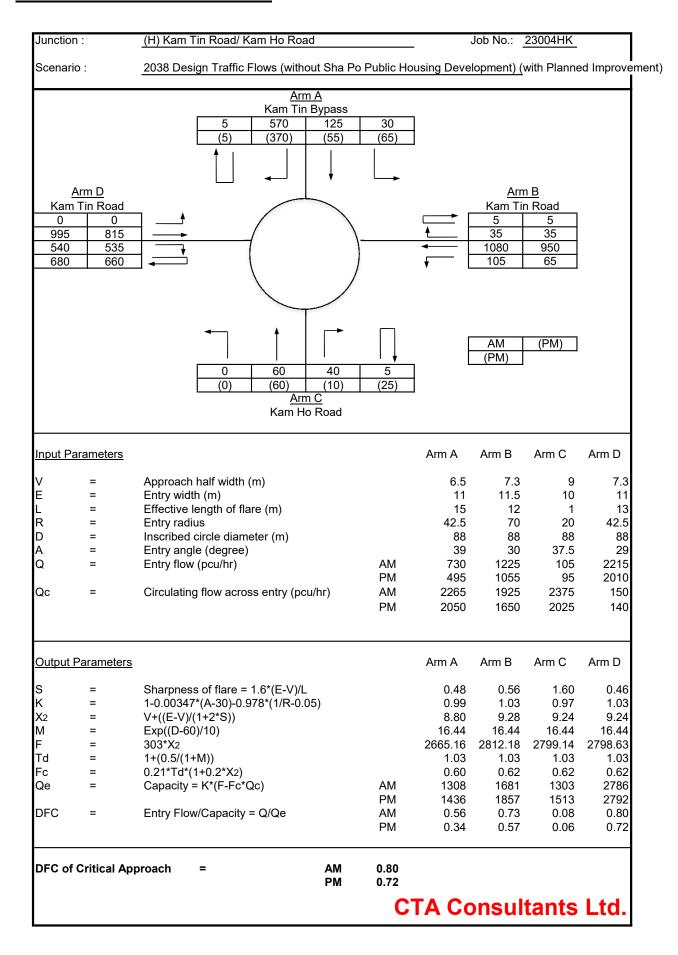
Description: 2038 Reference Traffic Flows (without Sha Po Public Housing Development)

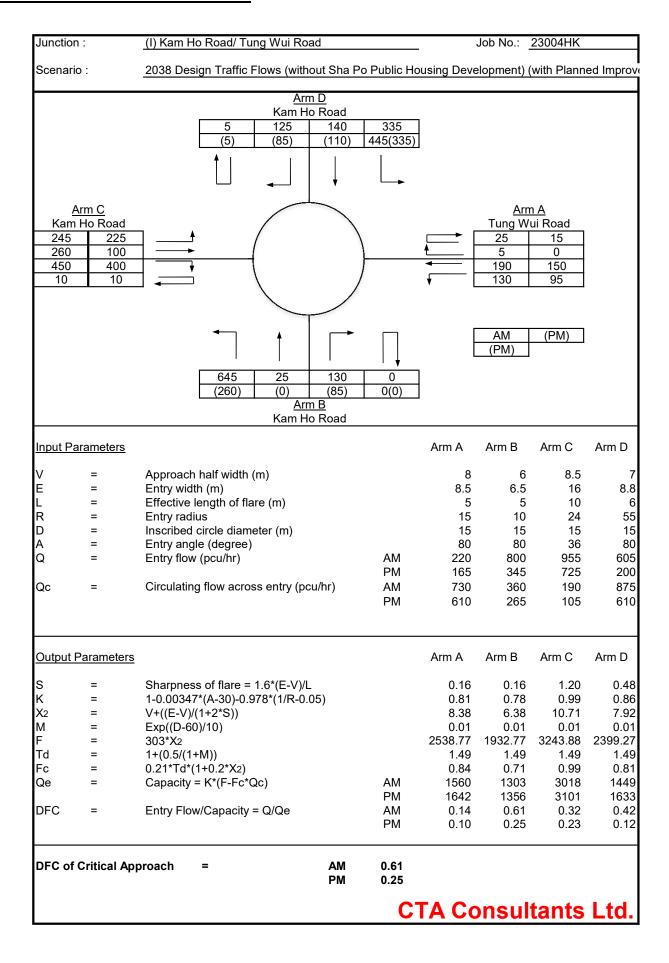
Approach	Direction	lovement notation	Phase	Stage	th (m)	Radi	us (m)	ide 0/1	Pro. Turr	ning (%)	Rev Satur Flow (1	ation		A.M. Peak			P.M. Peak	[
- 47	Dire	Mov	Ph	St	Width	Left	Right	Nearside	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Pok Oi Interchange		↓ >		1	5.00 5.00	0 0	0 50	1 0	0% 34%	0% 46%	2115 2230	2115 2225	1090 1150	0.515 0.516	0.516	734 771	0.347 0.347	0.347
Yuen Long Highway Slip Road	W W	1 →	A A	2 2	5.00 5.00	50 0	0 0	1 0	0% 0%	0% 0%	2115 2255	2115 2255	513 547	0.243 0.243	0.243	697 743	0.330 0.330	0.330

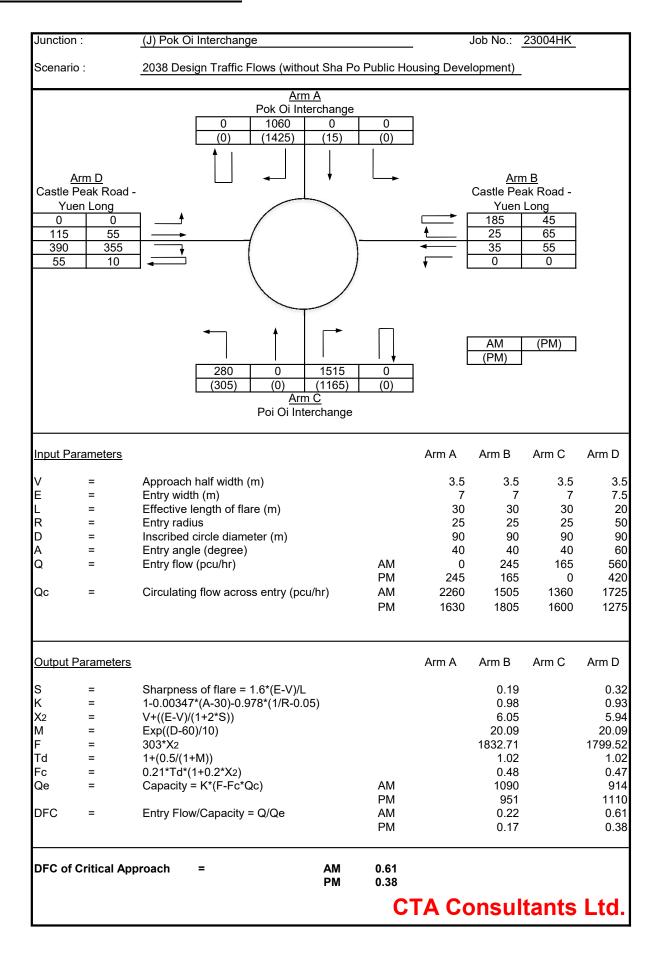

*Pedestrian Crossing


	1060(1440) 0(0)	εy 0.758	εy 0.676
	$ \begin{array}{c} 1850(1150) \longrightarrow \\ 390(355) \longrightarrow \\ \end{array} $	L (sec) 12 C (sec) 110 y pract. 0.802	L (sec) 12 C (sec) 110 y pract. 0.802 R.C. (%) 19%
Stage / Phase Diagrams 2	В		

Junction :		San Tam Ro	oad / Local	Road to Lor	ng Ha (Jund	ction B)		Job No.:	23004HK
Scenario :	_	2038 Desigr	Traffic Fl	ows (without	Sha Po Pu	blic Housi	ing Develop	ment)	
	Arm C 615 10	230 5	5 (15)	30 (5)	800 25	San Tam 515 20	Road	AM (PM)	(PM)
			Arm B	Fung Kat H	eung Road	<u>l</u>			
The predictive	Q-BC =	D(627 + 14V	V-CR - Y(0 364q-AC +	0.364q-AC + + 0.144q-AB)		+ 0.229q-	-CA + 0.52q	-CB))	
The geometric	E =	(1 + 0.094(w (1 + 0.094(w	/-BA - 3.65 /-BC - 3.65	: 5))(1 + 0.000 5))(1 + 0.000 5))(1 + 0.000	9(V-rBC - 1	20))	.0006(V-IBA	150))	
where	q-AB, etc = W = W-CR = w-BA, etc = v-rBA, etc = w-rBA, et	major road v central rese lane width to visibility to th	ow of mov vidth rve width o vehicle ne right for		cles in stre				
Geometry :	Input W	8	V-rBA	50	w-BA	3.8	1	Calculated D	0.893
0.011	W-CR	0	V-IBA	50	w-BC	3.8	_	E.	0.950
	(ed C-A, residual ? (Yes: 1, No: 0)	1	V-rBC	50	w-CB	0)	F	0.616
	d Share LT&RT?	1	V-rCB	50	-		-	Y]	0.724
Analysis :	(Yes: 1, No: 0) Traffic Flow pcu/hr	AM	PM	Capacity pcu/hr	AM	PM			
	· q-CA	615	230	Q-BA_	275	401	_		
	q-CB	10	5	Q-BC_	505	577	_		
	q-AB ₋	25	20	. Q-CB_	325	372	(If C-B		
	q-AC	800	515	Q-CA	1745	1776	blocked C- _A)		
	q-BA	30	5	Q-BAC	294	520	(If Minor Road Share LT&RT)		
	q-BC f	5 0.143	15 0.750	-			,		
Results :	Ratio of Flov	w-to-Capaci	tv			AM	I PM		
			•		B-A _ B-C _ C-B _ C-A _ B-AC _	N/A N/A 0.03 0.35 0.12	N/A N/A 0.01 0.13		
	Critical DFC					0.05	0.42		
						0.35	() 1.5		
	CHICAI DEC					0.35	0.13	ultant	s Ltd.


Junction :		San Tam Ro	ad / Fung	Kat Heung	Road (Junc	tion C)	_	Job No.:	23004HK
Scenario :	-	2038 Design	Traffic Fl	ows (without	Sha Po Pu	ıblic Hous	ing Develop	ment)	
	Arm C 970 65	San Tam Ro 515 50	130 (80)	105 (70) Fung Kat H	935 70	San Tam 705 55	Road	AM (PM)	(PM)
The predictive	Q-BC =	acity of move D(627 + 14V E(745 - Y(0. F(745 - 0.36	V-CR - Y(0 364q-AC +	0.364q-AC + + 0.144q-AB		s + 0.229q	-CA + 0.52q	-CB))	
The geometric	E =	esented by D (1 + 0.094(w (1 + 0.094(w (1 + 0.094(w	/-BA - 3.65 /-BC - 3.65	5))(1 + 0.000 5))(1 + 0.000	9(V-rBC - 1	120))).0006(V-IBA	A - 150))	
where	q-AB, etc =		ow of mov vidth ve width vehicle ne right for	waiting veh	icles in stre				
Geometry :	Input W	7.5	V-rBA		w-BA_	3.6	_	Calculated	0.877
width <2.5m	W-CR ked C-A, residual ? (Yes: 1, No: 0) d Share LT&RT?	1	V-IBA V-rBC V-rCB	50	w-BC _ w-CB _	3.6		E F Y	0.933 0.616 0.741
Analysis :	(Yes: 1, No: 0) Traffic Flow pcu/hr	AM	PM	Capacity pcu/hr	AM	PM			
	q-CA	970	515	Q-BA_	156	284	_		
	q-CB	65	50	Q-BC_	453	512	_		
	q-AB .	70	55	. Q-CB_	292	332	(If C-B		
	q-AC	935	705	Q-CA	1399	1529	blocked C- _A)		
	q-BA	105	70	Q-BAC	244	373	(If Minor Road Share _LT&RT)		
	q-BC f	130 0.553	0.533						
Results :	Ratio of Flo	w-to-Capaci	ty		B-A _ B-C _ C-B _ C-A _ B-AC _	N/A N/A 0.22 0.69 0.96	N/A N/A 0.15 0.34	·	
	Critical DEC					0.00	0.40		
	Critical DFC					0.96		14 4	s Ltd.





TRAFFIC SIGNALS O	CALC	CULA	TIO	N					Job No:	23004H	K			CT	A Co	nsul	tants	Ltd.
Junction:	Tsir	ng Lo	ng H	lighwa	y Slip	Road /	Kam T	Γin Ro	ad (Junct	ion G)								
Description:	203	8 Des	ign 🛚	Traffic	Flows	(with	out Sha	Po Pu	blic Hous	sing Deve	lopmen	t) (with	Planned	Improveme	nt)			
Approach	Direction	Movement notation	Phase	Stage	Width (m)	Radius (m)		Nearside 0/1	Pro. Tur	ning (%)	Revised Saturation Flow (pcu/hr)		A.M. Peak			P.M. Peak		
Арргоасп	Dire	Move	Ph	Sta	Widt	Left	Right	Nears	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Kam Tin Road	Е		- 1	A	3.50	0	0	1	0%	0%	1965	1965	889	0.453	0.453	804	0.409	0.409
	E		- 1	A	3.50	0	0	0	0%	0%	2105	2105	953	0.453		861	0.409	
	Е		1	A	3.50	0	0	0	0%	0%	2105	2105	953	0.453		861	0.409	
Kam Tin Road	w-	•	. 2	A	3.75	0	0	0	0%	0%	2130	2130	1340	0.629		1148	0.539	
Kum im Roud	W	•	- 2	A	3.75	0	0	0	0%	0%	2130	2130	1340	0.629		1148	0.539	
	W	+	2	A,B	5.00	15	0	1	100%	100%	1925	1925	680	0.353		265	0.138	
Tsing Long Highway	N	•7	3	В	3.60	20	0	1	100%	100%	1835	1835	367	0.200	0.200	374	0.204	0.204
Slip Road	N	•	3	В	3.60	25	0	0	100%	100%	1995	1995	398	0.200	0.200	406	0.204	0.20 .
•	N	' ►	3	В	3.60	0	30	0	100%	100%	2015	2015	78	0.039		100	0.050	
	N		3	В	3.50	0	28	0	100%	100%	2000	2000	77	0.039		100	0.050	
*Pedestrian Crossing			4p	A		Min.	Crossin	g Time	=	7 Gm +								
			5p	В		Min.	Crossin	g Time	=	7 Gm +	7 Fm =	14s						
			5p	В		Min.	Crossin	g Time	=	7 Gm +	7 Fm =	14s						

Notes:	Traffic Flow (pcu / hr)	[AM (PM)]	A.M. Check Phase	P.M. Check Phase
	2795(2525)		Ey 0.652 L (sec) 10	Ey 0.613 L (sec) 10
	5 7	,	C (sec) 120 y pract. 0.825 R.C. (%) 26%	C (sec) 120 y pract. 0.825 R.C. (%) 35%
Stage / Phase Diagrams	765(780) 155(200)	2680(2295) √ 680(265)		
$ \begin{array}{c cccc} A & & & & & & & & & & & & & & & & & & &$	> 5p			
I/G = 5 I/G = 7				

TRAFFIC SIGNALS (CALCULA	TIO	N					Job No:	23004H	K			CT	A Co	nsul	tants	Ltd.
Junction: Description:	(J) Pok O 2038 Desi										- nt)						
Approach	Direction Movement notation		Stage	Width (m)	Radius (m)		Nearside 0/1		ning (%)	Revised Saturation Flow (pcu/hr)		A.M. Peak			P.M. Peak		
Approach	Direc Move nota	Ph	Sta	Widtl	Left	Right	Nearsi	A.M.	P.M.	A.M.		Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Yuen Long Highway Slip Road	N 🕇	D D	2 2	5.00 5.00	25 0	0	1 0	33% 0%	43% 0%	2075 2255	2060 2255	860 935	0.414 0.415	0.415	702 768	0.341 0.341	0.341
Pok Oi Interchange	$W \stackrel{\uparrow}{\longleftarrow} W {\longleftarrow}$	C C	1	5.00 5.00	0 0	0 25	1 0	0% 4%	0% 7%	2115 2250	2115 2245	659 701	0.312 0.312	0.312	837 888	0.396 0.396	0.396
*Pedestrian Crossing																	
Notae:					Troff	c Flow	(nou / l	hr)	[AM (P	M)1		ı	Chack Dhace		I (Shack Dho	
Notes:						0(305)	↑	<u> </u>	25(65) 1335(16	, <u>-</u>		Ey L (sec) C (sec) y pract. R.C. (%)	Check Phase 0.726 12 110 0.802 10%	;	Ey L (sec) C (sec) y pract. R.C. (%)	0.736 12 110 0.802 9%	SC.
Stage / Phase Diagrams		2						1				<u> </u>			I		

I/G = 5

I/G = 5

Job No: 23004HK CTA Consultants Ltd.

Junction:	(J) Pok Oi Interchange (Yuen Long Highway Slip Road Southbound)
Description:	2038 Design Traffic Flows (without Sha Po Public Housing Development)

Approach	Direction Movement notation Phase		ovement otation Phase Stage		th (m)	Radius (m)		ide 0/1	Pro. Turning (%)		Revised Saturation Flow (pcu/hr)		A.M. Peak			P.M. Peak		
- 41	Dire	Mov not	Ph	St	Width	Left	Right	Nearside	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Pok Oi Interchange		√ >		1	5.00 5.00	0	0 50	1 0	0% 34%	0% 46%	2115 2230	2115 2225	1099 1161	0.520 0.520	0.520	734 771	0.347 0.347	0.347
Yuen Long Highway Slip Road	W W	1 →	A A	2 2	5.00 5.00	50 0	0	1 0	0% 0%	0% 0%	2115 2255	2115 2255	513 547	0.243 0.243	0.243	697 743	0.330 0.330	0.330

*Pedestrian Crossing

Notes:	Traffic Flow (pcu / hr) [AM (PM)]	Check Phase	Check Phase
	$ \begin{array}{c} 1870(1150) \\ 390(355) \end{array} $	Ey 0.763 L (sec) 12 C (sec) 110 y pract. 0.802 R.C. (%) 5%	Ey 0.676 L (sec) 12 C (sec) 110 y pract. 0.802 R.C. (%) 19%
Stage / Phase Diagrams 1 2	В		
I/G = 5 $I/G = 5$			