Appendix 8 Drainage Impact Assessment

S.12A Planning Application on the Draft Mai Po & Fairview Park OZP No. S/YL-MP/7 Rezoning from "Residential (Group D)" to "Residential (Group C) 1" Zone for a Proposed Residential Development at Various Lots in D.D. 104 and the Adjoining Government Land in Yuen Long, N.T.

Drainage Impact Assessment Report

December 2024

Table of Contents

1.	Intro	duction	3
	1.1	Background	3
	1.2	Objective of this Submission	3
	1.3	Project Description	4
2.	Met	hodology of Drainage Impact Assessment	4
3.	Clim	hate change and design allowance	5
4.	Exis	ting Drainage Characteristics	6
	4.1	Existing Drainage Structures	6
	4.2	Existing Drainage Conditions	6
5.	Prop	bosed Drainage System	7
	5.1	Change in Site Level	7
	5.2	Change in Paving Conditions	8
6.	Mitiç	gation Measures	9
	6.1	Proposed Storm Water Detention Tank	9
7.	Mair	ntenance Responsibility1	0
8.	Con	clusion1	0

List of Tables

- Table 1-1 Site Condition
- Table 2-1 Adopted Parameters in Drainage Impact Assessment
- Table 5-1
 Summary of the Peripheral Drainage System
- Table 5-2
 Proposed Stormwater Discharges to Flooding Relief Pond and NTMDC

List of Drawings

- Figure 1 Location Plan
- Figure 2 Master Layout Plan
- Figure 3 Catchment Plan under Existing Condition
- Figure 4 Peripheral Drainage System and its Corresponding Catchment
- Figure 5 Detention System Plan

List of Appendices

- Appendix 1 Calculation of Peripheral Drainage and Outlet Pipe for External Catchments
- Appendix 2 Calculation of Peripheral Drainage and Outlet Pipe for Internal Catchments
- Appendix 3 Calculation of Volume of the Proposed Detention Tank
- Appendix 4 Cross Sections Drawings and Maintenance Plan

1. INTRODUCTION

1.1 Background

- 1.1.1 AECOM Asia Company Limited (AECOM) has been commissioned by the Applicant to conduct a Drainage Impact Assessment (DIA) in support of the S12A planning application to enable a medium-rise residential development on the Application Site.
- 1.1.2 The Application Site is bounded by Kam Pok Road to its immediate north and west, a village area and Ha Chuk Yuen Tsuen Road to its immediate east, and the existing Drainage Services Department (DSD) Chuk Yuen Floodwater Pumping Station (CYFPS) with its water retention pond to its immediate south. Figure 1 presents the location of the Application Site.
- 1.1.3 The Application Site has been previously approved for a 2-storey house development (TPB Ref.: A/YL-MP/205 & 205-1). The current application aims to better utilize the land resource/development potential of the Site to increase flat supply without generating any insurmountable adverse impacts.

1.2 Objective of this Submission

- 1.2.1 The main objectives of this assessment include the following:-
 - (i) Review the existing drainage condition of the Application Site based on available information.
 - (ii) Outline the methodology adopted in this assessment;
 - (iii) Outline changes to the drainage characteristics and potential drainage impacts which may arise from the Proposed Development, especially in the respect of the following:
 - effect on the existing drainage conditions;
 - susceptibility to flooding of neighbouring areas upstream or downstream of the Proposed Development; and
 - assessing the drainage impact upon completion of the Proposed Development.
 - (iv) Propose drainage mitigation measures where appropriate to mitigate the potential drainage impact from the proposed development.

1.3 **Project Description**

1.3.1 The overall development parameters of the proposed development at the Application Site are shown in **Table 1-1**. The Master Layout Plan (MLP) of the Proposed Development is illustrated in **Figure 2**.

	Development Parameters
Site Area	About 65,690m ² in total
Site condition (Pre-development)	Mostly unpaved
Site Condition (Post-development)	Mostly paved development area with a landscape pond, and landscape open space
Development Type	Residential Development, i.e. 10 residential blocks with a height of 14 to 16 storeys and commercial (retail and kindergarten), social welfare and transport facilities

2. METHODOLOGY OF DRAINAGE IMPACT ASSESSMENT

2.1.1 This DIA assesses the drainage impact of the proposed residential scheme (i.e. a medium-rise residential development) to the downstream section of Ngau Tam Mei Drainage Channel (NTMDC). The assessment is carried out in accordance with the requirements stated in "Advice Note No.1 – Application of the Drainage Impact Assessment Process to Private Sector Projects" issued by Drainage Services Department (DSD). The design parameters adopted from Stormwater Drainage Manual (SDM) are summarized in **Table 2-1**.

Design Standard	1 in 200 year for trunk drainage		
	1 in 50 year for branch drainage		
Runoff Coefficient	0.95 for paved area and landscape pond		
	0.3 for unpaved area		
	1.0 for swimming pool		
Sediment Depth	5% for pipe gradient greater than 1 in 25		
	10% for other pipes		
Pipe Roughness (K _s)	$k_s = 0.6mm$ for precast concrete pipe with ' condition	O' ring	joints in poor
	$k_s = 0.15$ mm for precast concrete pipe with condition	'O' rin	g joints in normal
	n=0.012 for concrete channel		
Storm Constants	1 in 50 year: a= 505.5, b=3.29, c=0.355]	Table 3a of SDM
	1 in 200 year: a=508.8, b=3.46, c=0.322]	Corrigendum No. 1/2024
	Extreme Intensity (mm/hr) at 240 minutes]	
	duration for various Return Periods:]	Table 2a of SDM
	1 in 2 year: i = 31.5 mm/hr]	Corrigendum No.
	1 in 50 year: i = 63.9 mm/hr]	1/2024
	1 in 200 year: i = 77.3 mm/hr]	
Rainfall Increase due to	16.0% for End of 21st Century]	Table 28 of SDM
]	1/2022
Design Allowance	12.1% for End of 21st Century]]	Table 31 of SDM Corrigendum No. 1/2022

Table 2-1: Adopted Parameters in Drainage Impact Assessment

- 2.1.2 Rational Method is used for estimation of surface runoff for the current residential scheme.
- 2.1.3 Colebrook-White Equation and Manning's Equation would be used for hydraulic checking of existing and proposed drainage system.
- 2.1.4 The drainage system for the proposed medium-rise residential development would be designed for 1 in 50-year rainfall event as urban drainage branch system following SDM.

3. CLIMATE CHANGE AND DESIGN ALLOWANCE

3.1.1 Climate change and design allowance for end of 21st century have been considered with the projection of rainfall increase and sea level rise in accordance with Section 6.8 of SDM, reference is made to Table 28 and Table 31 [SDM Corrigendum No. 1/2022].

4. EXISTING DRAINAGE CHARACTERISTICS

4.1 Existing Drainage Structures

- 4.1.1 **Figure 3** presents the existing drainage infrastructure on site and its sub-catchment flow direction. There are existing 450mm dia. outlet pipes located to the immediate north of the site, which discharge the site runoff to NTMDC.
- 4.1.2 An existing flooding relief pond is located to the immediate south of the site. The runoff from the site will discharge to the flooding relief pond during storm events. The stormwater collected by the flooding relief pond is then pumped into NTMDC via CYFPS.
- 4.1.3 The NTMDC is an engineered channel which is divided into upstream section (Section B upstream of San Tin Highway) and downstream section (Section A between San Tin Highway and Kam Tin River). The river training works for Section B and Section A were completed in 2003 and early 2005 respectively under the project "Construction of Main Drainage Channels for Ngau Tam Mei" by DSD. After the completion of the river training project, the flood risk at the low-lying areas within the Ngau Tam Mei Drainage Catchment has been substantially reduced.

4.2 Existing Drainage Conditions

- 4.2.1 Currently, the subject site is located in an area with ground levels ranging from about +2.2mPD to about +4mPD in general. It is low-lying in terrain with two local higher-level areas, one at the south of the site (about +4.5mPD to about +6.5mPD) and the other at the middle (about +4.1mPD to about +4.2mPD) of the site. The existing topographic ground levels and flow directions are indicated in **Figure 3**.
- 4.2.2 The Application Site presently is mainly unpaved. The surface runoff within the site is currently collected by surface channels and discharge to NTMDC and the flooding relief pond via a series of existing discharge pipes located along perimeter of the Application Site. The existing drainage facilities are shown in **Figure 3**.
- 4.2.3 The southern tip of the site separated from the main site by Ha Chuk Yuen Road is an unpaved area at present with a size of about 1,077m². This vacant land is proposed to be used for a landscaped open space under the current development proposal with the existing site level unaltered. Currently, the surface runoff from this vacant land drains to the existing drainage channel SCP1013738. No impact on the existing drainage from this vacant land (or the future landscaped area) is anticipated and hence, no additional drainage system is required for this small land parcel.

5. PROPOSED DRAINAGE SYSTEM

5.1 Change in Site Level

- 5.1.1 According to the topography survey, parts of the external catchment area at the east of the Application Site, bounded by Ha Chuk Yuen Road, generally falls towards Kam Pok Road. Surface runoff is currently intercepted by existing drains along the edge of Kam Pok Road within the Application Site. The proposed medium-rise residential scheme will have a mean site formation level of about +5.4mPD, suggesting that the future ground level will be higher than existing one at about +3.0mPD, and thus the existing drains would require modification.
- 5.1.2 It is proposed to convey the runoff from these external areas through U-channel. Following the existing topography, the external areas can generally be divided into Area 1 and Area 2. A 450mm U-channel is proposed along the eastern boundary of the subject site to collect surface runoff from the adjacent areas (i.e. Area 1 and 2). The eastern part of the peripheral drainage system (i.e. Area 1) is proposed to be connected to the existing 450mm dia. outlet pipe while the rest (i.e. Area 2) is proposed to be connected to the existing engineered channel / nullah along Ha Chuk Yuen Road via a new 600mm dia. outlet pipe.
- 5.1.3 The proposed peripheral drainage system and its corresponding catchment areas are shown in **Figure 4.** The details of the peripheral drainage system have been summarized below in **Table 5-1** and the detailed calculation for peripheral drainage system for collecting runoff from Area 1 and 2 is presented in **Appendix 1**.

	U-channel			Outlet Pipe		
Location Mark	Size (mm)	Design Velocity (m²/s)	Utilization Rate	Size (mm)	Design Velocity (m²/s)	Utilization of Outlet Pipes
Area 1	450	2.70	71%	450	2.93	80%
Area 2	450	2.70	79%	600	2.81	52%

Table 5-1: Summary of the Peripheral Drainage System

5.1.4 In addition, 375mm to 450mm peripheral drains are proposed along the southern and north-western boundaries of the development where appropriate to ensure that no surface runoff overflows onto adjacent lots. The detailed design of the peripheral drains is part of the internal drainage system and will be addressed in the detailed design stage.

5.2 Change in Paving Conditions

- 5.2.1 Comparing the existing and proposed catchment areas, the paving conditions have generally changed from unpaved to paved, which will increase the total runoff from the proposed site. To manage this, it is proposed to store the additional runoff in a detention tank, which will be further detailed in Section 6. Additionally, a designated portion of the catchment area after the proposed development, will be designed to allow direct discharge to the flooding relief pond and the North Tuen Mun Drainage Channel (NTMDC), ensuring no increase in overall peak runoff.
- 5.2.2 A designated portion of the proposed development area is designed to allow direct discharge to the flooding relief pond and NTMDC. The details of this designated development area and its direct discharge to the flooding relief pond and NTMDC are summarized below in **Table 5-2**.

Table 5-2: Proposed Designated Development Area Discharges to Flooding Relief Pond and NTMDC

	Pre-development				
Discharge Point	Area (m²)	Paving Condition	Runoff coefficient	Runoff Area (m ²)	
	(A)		(B)	(A) x (B)	
Flooding Relief Pond	24,940	Unpaved	0.30	7,482	
NTMDC	39,673	Unpaved	0.30	11,902	
	Post-development				
		Post-dev	elopment		
	Designated Area (m ²)	Post-dev Paving Condition	elopment Runoff coefficient	Runoff Area (m²)	
	Designated Area (m ²) (A)	Post-dev Paving Condition	elopment Runoff coefficient (B)	Runoff Area (m²) (A) x (B)	
Flooding Relief Pond	Designated Area (m ²) (A) 7,876	Post-dev Paving Condition Paved/Pond	elopment Runoff coefficient (B) 0.95	Runoff Area (m²) (A) x (B) 7,482	

- 5.2.3 It is proposed to convey the runoff from the designated portions through internal drainage system and discharge it to the flooding relief pond and NTMDC via existing discharge outlets along the southwest and northwest boundaries, respectively.
- 5.2.4 The designated areas and the proposed drainage systems are shown in **Figure 4**. The details of the proposed drainage systems have been summarized below in **Table 5-3** and the detailed calculation is presented in **Appendix 2**.

Location	U-channel			Outlet Pipe (Existing)		
Mark	Size (mm)	Design Velocity (m²/s)	Utilization Rate	Size (mm)	Design Velocity (m²/s)	Utilization of Outlet Pipes
Area A	450	2.89	77%	750	2.28	45%
Area B	450	2.42	74%	450	2.88	78%

Table 5-3: Proposed Stormwater Discharges to Flooding Relief Pond and NTMDC

5.2.5 The proposed internal drainage system within the Application Site will be equipped with sand traps and oil interceptor to remove potential pollutants from the runoff collected before discharging into the flooding relief pond and NTMDC. The remaining catchments of the Application Site will be diverted to the proposed stormwater storage tank for detention and off-peak discharge after each storm event.

6. MITIGATION MEASURES

6.1 **Proposed Storm Water Detention Tank**

- 6.1.1 Rational method is adopted in the assessment to estimate the pre- and postdevelopment site runoff based on the design 4-hour rainfall accumulation. As mentioned in Section 5.2, a designated portion of the proposed development area is designed to allow direct discharge to the flooding relief pond and the NTMDC. The additional runoff will be conveyed and stored in a detention tank. This detention tank is intended to store the additional runoff, i.e., the net difference in volume between the pre-development and post-development 4-hour accumulated rainfall.
- 6.1.2 It is proposed that detention tank with capacity of min. 9,821m³ would be provided, in addition to the detention tank volume a minimum 500mm freeboard would be required to cater for the 1 in 50 years rainfall event. The location of the proposed detention tank is presented in Figure 5 and the estimation of required detention volume is presented in Appendix 3.
- 6.1.3 Under a typical storm event, the surface runoff would be diverted to the proposed detention tank via the internal drainage system. Details of the internal stormwater drainage system would be further developed in detailed design stage.

- 6.1.4 Stormwater temporary stored in the detention tank would be discharged to NTMDC by pump with flowrate not more than 0.32m³/s after each storm event, which is the peak flow discharge to NTMDC as shown in **Appendix 2**. For the designed 1 in 50-year storm, the discharge cycle to empty the proposed detention tank requires approximately 9 hours.
- 6.1.5 The additional runoff induced by the proposed development will be stored in the detention tank and discharged to NTMDC after the storm event. No adverse impact on the existing NTMDC under the design rainfall events is anticipated.

7. MAINTENANCE RESPONSIBILITY

- 7.1.1 The general operation and maintenance requirements will be referenced to Practice Note No. 1/2024 for "Design Checklists on Operation & Maintenance Requirements".
- 7.1.2 The Applicant will be responsible for the construction of all necessary stormwater network within site and carry out connection works to the public drainage system.
- 7.1.3 The Applicant will maintain the terminal manholes and all upstream stormwater network within the site.
- 7.1.4 The Applicant will maintain the slope toe half-round channels and U-channels within the site boundary. The drainage pipes, channels and catchpits outside the site boundary will be maintained by relevant Government departments.
- 7.1.5 As requested by DSD, Cross Sections Drawings and Maintenance Plan are shown in **Appendix 4** for vetting.

8. CONCLUSION

- 8.1.1 The current S.12A planning application aims to better utilise the land resource/development potential of the site to increase flat supply by proposing a medium-rise residential development.
- 8.1.2 Based on the assessment, surface runoff at a rate not larger than that of predevelopment scenario would be discharged into the flooding relief pond and NTMDC in the 1 in 50 year storm event via the proposed drainage pipes.
- 8.1.3 The additional runoff due to the increase in paved area induced by the proposed development would be stored in the detention tank. It would be discharged to NTMDC after each rainfall event within 9 hours with a rate of 0.32m³/s by pumping.
- 8.1.4 Proper internal and peripheral drainage system will be provided within the site to ensure no adverse drainage impact arising from the proposed residential development. Hence, it could be concluded that no adverse drainage impact on the existing drainage system due to the project is envisaged.

End of Report

Drainage Impact Assessment Report

Drawings

AECOM

PROJECT

S.12A PLANNING APPLICATION ON THE DRAFT MAI PO & FAIRVIEW PARK OZP NO. S/YL-MP/7 REZONING FROM "RESIDENTIAL (GROUP D)" TO "RESIDENTIAL (GROUP C) 1" ZONE FOR A PROPOSED RESIDENTIAL DEVELOPMENT AT VARIOUS LOTS IN D.D. 104 AND THE ADJOINING GOVERNMENT LAND IN YUEN LONG, N.T.

CLIENT

CONSULTANT

AECOM Asia Company Ltd. www.aecom.com

SUB-CONSULTANTS 分到工程随时公司

ISSUE/REVISION

I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK. 複核

-+			<u> </u>
-			
I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK. 複核

\square			
I/R 修訂	DATE	DESCRIPTION 內充確要	Снк.

_			
I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK 複核

I/R 修訂	DATE _{日期}	DESCRIPTION 內容摘要	CHK 複核

	DATE 日期	DESCRIPTION 內容摘要	(
ATUS			

STA 階段

ATE Ⅰ期	DESCRIPTION 內容摘要	CI
s		

SCALE

DIMENSION UNIT

PROJECT NO.

SHEET NUMBER

60098971/DIA/FIGURE 1

60098971 SHEET TITLE LOCATION PLAN

KEY PLAN

A31:8000

METRES

AGREEMENT NO.

60098971/DIA/FIGURE 2

SHEET NUMBER

MASTER LAYOUT PLAN

SHEET TITLE 圆纸幺編

60098971

PROJECT NO.

AGREEMENT NO.

KEY PLAN

A31:2000

DIMENSION UNIT

METRES

STATUS

SCALE

_			
_			
-			
VR 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK. 複核

AECOM PROJECT

S.12A PLANNING APPLICATION ON THE DRAFT MAI PO & FAIRVIEW PARK OZP NO. S/YL-MP/7 REZONING FROM "RESIDENTIAL (GROUP D)" TO "RESIDENTIAL (GROUP C) 1" ZONE FOR A PROPOSED RESIDENTIAL DEVELOPMENT AT VARIOUS LOTS IN D.D. 104 AND THE ADJOINING GOVERNMENT LAND IN YUEN LONG, N.T.

CLIENT

CONSULTANT

AECOM Asla Company Ltd. www.aecom.com

SUB-CONSULTANTS 分判工程间因公司

END:	
·	SITE BOUNDARY
	U-CHANNEL
	STORMWATER DRAIN
	OUTLET HEADWALL
[□]	FLAP VALVE
+3.0	EXISTING GROUND LEVELS
	EXISTING FLOW DIRECTION
	DEVELOPMENT

AREA	AREA REF		AREA (m²)	
	1A		8.488	
	2A	24,940	4,535	
A	3A		4,238	
	4A		3.079	
	5A		4.600	
	1B		7,321	
	2B		6,794	
В	3B	39.673	12.344	
	4B		7,804	
	5B		5,410	

ΑΞϹΟΜ

PROJECT

S.12A PLANNING APPLICATION ON THE DRAFT MAI PO & FAIRVIEW PARK OZP NO. S/YL-MP/7 REZONING FROM "RESIDENTIAL (GROUP D)" TO "RESIDENTIAL (GROUP C) 1" ZONE FOR A PROPOSED RESIDENTIAL DEVELOPMENT AT VARIOUS LOTS IN D.D. 104 AND THE ADJOINING GOVERNMENT LAND IN YUEN LONG, N.T.

CLIENT

CONSULTANT

AECOM Asia Company Ltd. www.aecom.com

SUB-CONSULTANTS

ISSUE/REVISION

I/R 修订	DATE 日期	DESCRIPTION 內容摘要	CHK 複核

ΰ.		内容摘要
	T 110	

R iT	DATE 日期	DESCRIPTION 內容摘要

R iT	DATE 日期	DESCRIPTION 內容摘要

DATE	DESCRIPTION
_{日期}	內容摘要
ATUS	

२	DATE 日期	DESCRIPTION 內容摘要	
-	TATUS		

DATE	DESCRIPTION
日期	內容摘要
ATUS	

DIMENSION UNIT

METRES

KEY PLAN

A31:2000

SCALE

60098971/DIA/FIGURE 3

CATCHMENT PLAN UNDER EXISTING CONDITION

SHEET TITLE

60098971

PROJECT NO.

AGREEMENT NO.

SHEET NUMBER

GEI	ND:					
			SITE BO	UNDARY		
450	u a	· 1	J-CHANN	EL		
450	ø		STORM D	RAIN		
		I	LOW DI	RECTIO	N	
		l	RE INFOR DETENTI	CED CO ON TAN	NCRETE K	
C	0		CATCHPI	T		
	~	I	DISCHAR	GE OUT	LET	
Ê	Ĵ	I	LAP VA	LVE		
0			MANHOLE			
4	50Ø		XISTIN	G STOR GE OUT	M DRAIN LET	AND
× -4	50Ø	1	XISTIN	G STOR		AND
C)		XISTIN	G CATC	HPIT	JUNED
						-
	AREA	REF		AREA	(m ²)	
	A	1 A	- 7	876	4854	
\vdash		2A 1B			3022 945	-
		2B			3704	
	В	3B 4B	12	2528	3055 2336	_
		5B			2488	
(i	\sim	1	N,	// //	E	
 E	/ . /	d'iví	111	///		\mathbb{Z}
1	t for	181/' ; 7//	211	//	/	TS
$ \leq$	ח גר	FL'		//	,4.	\sim
∇	ξ ¹ .		/ // +4.3	//		4
		Ľ	F]		(TR	$\langle \ \rangle$
	ent /					$\langle \rangle$
	/	X				
		۰ ⁴ +3	俞人	\geq	第天宣启	
1	E			√ • ^{s+1}		
Æ		7/ 4				
Å-	- 4.1		/			/
7	1 E23 1			4.0		/
	a	/ /			1	7 /
526 E.		//				///
X		11	A ~		:[[]]]]]
9 9 1		1	$\left \right\rangle$	27 /	11/15	
1	1.0	-	ŁŚ	1/1	///	F/
	¥ 80,	1	7	71	' / l	/
	E PEA	1	A		$ \rangle$	
Æ	SASTL	截天月	A	/ /	/ /	
1	× +		/	· /	5.2	
	MA	,d.4	/			/
18	6)	/	//		1 / m
K RO	/ /	~		/	HIC.	<u></u>
	-			/	N ZIM	
	1	Π	//		24	// (
/	4		/	41	: ///	(
	5/	// }		CHW,		E
	//	//	A	1/1 + H		P
P	1-1	/	1		///	ARCH
			1 5	1	/ Josep	
1//	[]]]		/	4M RC		70
	//	1		NA I		
	/			~ //		
4			.	//-[] ''CU		Ŀ [/
~	Her			7 1	ı∥ Г.	ה]ר ה]ר
		$ \rightarrow \downarrow \downarrow$				T
)	//					- T
4		/// н/		1.17		L
//		'		/		₂ 515
	//	, 117	11 101	/		

PROJECT

S.12A PLANNING APPLICATION ON THE DRAFT MAI PO & FAIRVIEW PARK OZP NO. S/YL-MP/7 REZONING FROM "RESIDENTIAL (GROUP D)" TO "RESIDENTIAL (GROUP C) 1" ZONE FOR A PROPOSED RESIDENTIAL DEVELOPMENT AT VARIOUS LOTS IN D.D. 104 AND THE ADJOINING GOVERNMENT LAND IN YUEN LONG, N.T.

CLIENT

CONSULTANT

AECOM Asia Company Ltd. www.aecom.com

SUB-CONSULTANTS

ISSUE/REVISION

STATUS

SCALE A31:2000

DIMENSION UNIT

KEY PLAN

METRES

PROJECT NO.

AGREEMENT NO.

PERIPHERAL DRAINAGE SYSTEM AND ITS CORRESPONDING CATCHMENT

SHEET TITLE

SHEET NUMBER

60098971/DIA/FIGURE 4

60098971

PROJECT

S.12A PLANNING APPLICATION ON THE DRAFT MAI PO & FAIRVIEW PARK OZP NO. S/YL-MP/7 REZONING FROM "RESIDENTIAL (GROUP D)" TO "RESIDENTIAL (GROUP C) 1" ZONE FOR A PROPOSED RESIDENTIAL DEVELOPMENT AT VARIOUS LOTS IN D.D. 104 AND THE ADJOINING GOVERNMENT LAND IN YUEN LONG, N.T.

CLIENT

CONSULTANT

AECOM Asla Company Ltd. www.aecom.com

SUB-CONSULTANTS

ISSUE/REVISION

_			
_			
I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	СНК.
BA11	1.74	13-5714-34	BR1×

-			
_			
I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK. 複核
			I

DATE _{日期}	DESCRIPTION 內容摘要	CHK. 複核
	DATE 日期	DATE DESCRIPTION 日期 内容検察

_			
_			
I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK. 複核

I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK 複核

S 階部

2	DATE 日期	DESCRIPTION 內容摘要	CHH 複核
Į	ATUS		

SCALE

DIMENSION UNIT

A3 1:2000

METRES

KEY PLAN

PROJECT NO.

DETENTION SYSTEM PLAN

60098971/DIA/FIGURE 5

60098971 SHEET TITLE AGREEMENT NO.

Appendix 1

Calculation of Peripheral Drainage and Outlet Pipe

for External Catchments

Drainage Impact Assessment Report

Catchment Area 1

Checking of Peripheral Drainage and Catchment Runoff Catchment Area 1 - Uchannel

A) SURFACE RUNOFF ESTIMATION

The surface runoff in the development would be collected by internal road drainage system which would be designed to the road drainage standard as stipulated in HyD's "Guidance Notes on Road Pavement Drainage Design".

Therefore $t_d = 5.0 \text{ min}$

B) RAINFALL INTENSITY

The Intensity-Duration-Frequency data can be expressed by the following algebraic equation:

i	=	$\frac{a}{\left(t_{d} + b\right)^{c}}$	(SDM 4.3.2)

where

i		=	extreme mean intensity in mm/hr
t _d		=	duration in minutes (t_o less than or equal to 240), and
а,	b, c	=	storm constants given in SDM - Corrigendum No. 1/2024 Table 3a

For 50-year return period, according to SDM - Corrigendum No. 1/2024 Table 3a

á t	a = 0 = 2 =	505.5 3.29 0.355				
==>	i	=	239	mm/hr		
Consid 1 F 2 I	ering: Rainfall inc Design Allo	rease in Climat wance in End (e Change of 21st Century	=	16% 12.1%	(Table 28, SDM Corrigendum No. 1/2022) (Table 31, SDM Corrigendum No. 1/2022)
==>	i	= 239	9x(1+16%+12.1%) 306	mm/hr		

C) PEAK RUNOFF ESTIMATION

The peak runoff by Rational Method is given by the following expression:

	Q _p	=	0.278 C i A	(SMD7.5.2)
where	Qp	=	peak runoff in m ³ /s	
	С	=	runoff coefficient (dir	mensionless)
	i	=	rainfall intensity in m	m/hr
	А	=	catchment area in km	1 ²

 $8,585 m^2$ Catchment area of Catchment Area 1 = 1. 35% Paved Area and 65% Unpaved Area Assuming:

- 2. Considering the existing U-channel on the east and northern sides, it is conservatively assumed that
 - 90% of the runoff will flow into the proposed U-channel.

3,005 m² Paved Area (C = 0.95) = (C = Unpaved Area 5,580 m² 0.3) = Weighted C Value 0.528 = ~

=

=

$$=>$$
 Q_p $=$ 0.347 m³/s

D) DRAINAGE CHANNEL CHECKING

Channel Type:	Concrete-lined	U-Channel	
Channel Size (H):	450 mm	=	0.45 m

The full-bore capacity is calculated by Manning's Equation:

$$V = \frac{R^{2/3}\sqrt{S}}{n}$$
Where $V =$ velocity of the flow (m/s)
R = hydraulic radius (m)
S = hydraulic graident
n = Manning's Roughness n
Area of Channel (A) = 0.181 m²
Wetted Perimeter (P) = 1.157 m
Hydraulic Radius (R) = 0.156 m
Flow Velocity (V) = 2.703 m/s
Flow Rate (Q) = V x A
= 0.48862 m³/s

=

 \triangleright

0.01250	(1 in	80)	
0.012			(SDM Table 13)

Checking of Peripheral Drainage and Catchment Runoff Catchment Area 1 - Outlet Pipe

A) Time of Concentration

 $t_{d} = 5.0 \text{ min} \qquad (U\text{-channel})$ Length of the drainage path L= 150 m Flow velocity in u-channel v= 2.70 m/s $t_{c} = L/v$ $t_{c} = 0.9 \text{ min}$ $t_{d} = 5.9 \text{ min} \qquad (Pipe)$

B) RAINFALL INTENSITY

The Intensity-Duration-Frequency data can be expressed by the following algebraic equation:

 $i = \frac{a}{(t_d + b)^c}$ (SDM4.3.2)

where	i	=	extreme mean intensity in mm/hr
	t _d	=	duration in minutes (t_o less than or equal to 240), and
	a, b, c	=	storm constants given in SDM - Corrigendum No. 1/2024 Table 3a

For 50-year return period, according to SDM - Corrigendum No. 1/2024 Table 3a

а	=	505.5
b	=	3.29
С	=	0.355

==> i = 230 mm/hr

Considering:

1 Rainfall increase in Climate Change	=	16%	(Table 28, SDM Corrigendum No. 1/2022)
2 Design Allowance in End of 21st Century	=	12.1%	(Table 31, SDM Corrigendum No. 1/2022)

==> i = 230x(1+16%+12.1%) = 295 mm/hr

C) PEAK RUNOFF ESTIMATION

The peak runoff by Rational Method is given by the following expression:

	Q_p	=	0.278 C	i A		(SMD7.5.2)				
where	Q _p C i A	= = =	peak ru runoff c rainfall catchm	noff i coeffi inten ent a	in m ³ /s icient (d nsity in r rea in k	limensionles nm/hr m ²	s)			
Catchment area of Catchment Area 1 = 8585 m^2										
Assuming: 1	. 35% Pav	ed Area	and 65%	JUnp	aved Ar	ea				
2	2. Consider	ing the	existing l	J-cha	annel or	n the east an	d northe	rn sides, it i	s conserva	atively
	assumed	I that 90	0% of the	runo	off will f	low into the	propose	d U-channe	Ι.	
	Paved Ar	rea	=		3,005	m ²	(C =	0.95)		
	Unpaved	l Area	=		5,580	m ²	(C =	0.3)		
	Weighte	d C Valu	he =	=	0.528					
==>	Q _p		=	0.	334	m³/s				

D) OUTLET PIPE CAPACITY CHECKING

The full-bore capacity of the pipe is calculated by Colebrook-White equation:

	V	= _	$-2\sqrt{2gDS}$ le	$\log\left[\frac{1}{3}\right]$	$\frac{k_s}{.7D}$ +	$\frac{2.5}{D\sqrt{2}}$	$\frac{51v}{2gDS}$			
where	V	=	velocity of the pipe	e flow (m	/s)			-		
	S _f	=	hydraulic gradient		=	0.0154	(or 1	l in	65)
	k _s	=	roughness value (m	ו)		(Precast	concrete	pipes with	'O' ring	J
		=	0.15	x 10 ⁻³	m	joints in	normal co	ondition)		
	V	=	kinematic viscosity	of fluid		=	1E-06			
	D	=	pipe diameter (m)			=	0.450 r	n		
==>	V	=	2.93	m/s						
	Q	=	V x A =		Flow cap	pacity of t	he pipe			
where	А	=	pipe sectional area		= '	0.1590		m	2	
==>	Q	=	0.466	m³/s						
Assume		10%	reduction of	f pipe cap	bacity due	e to siltatio	on			
==>	Qa		= Adjusted flo	w capaci	ty of the	pipe				
			= 0.420			m ³ /s				
			> 0 _p			(ОК)				
			> 0.334			m ³ /s				
Utilization of the	e Pipe	=	80%							

Drainage Impact Assessment Report

Catchment Area 2

Checking of Peripheral Drainage and Catchment Runoff Catchment Area 2 - Uchannel

A) SURFACE RUNOFF ESTIMATION

The surface runoff in the development would be collected by internal road drainage system which would be designed to the road drainage standard as stipulated in HyD's "Guidance Notes on Road Pavement Drainage Design".

Therefore $t_d = 5.0 \text{ min}$

B) RAINFALL INTENSITY

The Intensity-Duration-Frequency data can be expressed by the following algebraic equation:

i =	a	(SDM 4 3 2)
. –	$(t_d + b)^c$	(301114.3.2)

where

i	=	extreme mean intensity in mm/hr
t _d	=	duration in minutes (t_o less than or equal to 240), and
a, b, c	=	storm constants given in SDM - Corrigendum No. 1/2024 Table 3a

For 50-year return period, according to SDM - Corrigendum No. 1/2024 Table 3a

a t	a = 0 = C =	505.5 3.29 0.355				
==>	i	=	239	mm/hr		
Consid 1 F 2 I	ering: Rainfall inc Design Allc	rease in Clima wance in End	te Change of 21st Century	= =	16% 12.1%	(Table 28, SDM Corrigendum No. 1/2022) (Table 31, SDM Corrigendum No. 1/2022)
==>	i	= 23 =	9x(1+16%+12.1%) 306	mm/hr		

C) PEAK RUNOFF ESTIMATION

The peak runoff by Rational Method is given by the following expression:

	Q _p	=	0.278 C i A	(SMD7.5.2)
where	Q _p C i A	= = =	peak runoff in m ³ /s runoff coefficient (din rainfall intensity in mr catchment area in km	nensionless) n/hr 2

Catchment area of Catchment Area 2 = 8,064 m² Assuming: 1. 50% Paved Area and 50% Unpaved Area

2. Considering the existing U-channel on the east and northern sides, it is conservatively assumed that 90% of the runoff will flow into the proposed U-channel.

=

79%

=

Paved Area =		4,032 m ²	(C =	0.95)
Unpaved Area =		4,032 m ²	(C =	0.3)
Weighted C Value	=	0.625		

=> Q_p = 0.386 m^3/s

D) DRAINAGE CHANNEL CHECKING

Channel Type:	Concrete-lined	U-Channel	
Channel Size (H):	450 mm	=	0.45 m

The full-bore capacity is calculated by Manning's Equation:

V	=	$R^{2/3}$	\sqrt{S}				
Where	V R S	= = =	v (m/s) n)				
	n	=	Manning's Roughne	ess	n		
	Area of C Wetted F Hydraulic	hanne Perime : Radiu	el (A) iter (P) us (R)	= =	0.181 1.157 0.156	m² m m	
	Flow Velo	ocity (V)	=	2.703	m/s	
	Flow Rate	e (Q)		=	V x A 0.48862	m³/s	

Utilization of the U-channel

0.01250	(1 in	80)	
0.012			(SDM Table 13)

Checking of Peripheral Drainage and Catchment Runoff Catchment Area 2 - Outlet Pipe

A) Time of Concentration

 $t_{d} = 5.0 \text{ min} \qquad (U\text{-channel})$ Length of the drainage path L= 170 m Flow velocity in u-channel v= 2.70 m/s $t_{c} = L/v$ $t_{c} = 1.0 \text{ min}$ $t_{d} = 6.0 \text{ min} \qquad (Pipe)$

B) RAINFALL INTENSITY

The Intensity-Duration-Frequency data can be expressed by the following algebraic equation:

 $i = \frac{a}{(t_d + b)^c}$ (SDM4.3.2)

where	i	=	extreme mean intensity in mm/hr
	t _d	=	duration in minutes (t_o less than or equal to 240), and
	a, b, c	=	storm constants given in SDM - Corrigendum No. 1/2024 Table 3a

For 50-year return period, according to SDM - Corrigendum No. 1/2024 Table 3a

а	=	505.5
b	=	3.29
С	=	0.355

==> i = 229 mm/hr

Considering:

1 Rainfall increase in Climate Change	=	16%	(Table 28, SDM Corrigendum No. 1/2022)
2 Design Allowance in End of 21st Century	=	12.1%	(Table 31, SDM Corrigendum No. 1/2022)

==> i = 229x(1+16%+12.1%) = 293 mm/hr

D)

C) PEAK RUNOFF ESTIMATION

The peak runoff by Rational Method is given by the following expression:

	Q _p	=	0.278 C	i A	(SMD7.5.	2)				
where	Q _p C i A	= = =	peak rui runoff c rainfall i catchme	noff in m ³ coefficient intensity i ent area i	/s : (dimension n mm/hr n km ²	less)				
Catchment area of Catchment Area 2 = $8,064 \text{ m}^2$										
Assuming:	I. 50% Pav	ed Area	and 50%	Unpaved	Area	and partha	rn aidea it is aan	convetively		
-	assume	d that 9	0% of the	runoff wi	ll flow into t	he propose	d U-channel.	servativery		
	Paved A	rea	=	4,03	32 m ²	(C =	0.95)			
	Unpaved	d Area	=	4,03	32 m ²	(C =	0.3)			
	Weighte	ed C Val	ue =	= 0.6	25					
==>	Q _p		=	0.370	m ³ /s					
OUTLET PIPE CAPACITY CHECKING										
The full-bore capacity of the pipe is calculated by Colebrook-White equation:										
	V	= .	$-2\sqrt{2}$	2gDS	$\log\left[\frac{k}{2}\right]$	$\frac{2}{s}$ + -	$\frac{2.51v}{\sqrt{2.51}}$			

		_	$-2\sqrt{2}$	<i>gDS</i> lo	$\left \frac{g}{3}\right $	$\frac{3}{.7D}$ +	$\overline{D_{\sqrt{2}}}$	2gD	$\overline{\overline{s}}$			
where	V	=	velocity	of the pipe f	∟ low (m/	/s)	v	0	_			
	S _f	=	hydraulic	c gradient		=	0.0100	(or	1	in	100)
	ks	=	roughnes	ss value (m)			(Precast	concre	te pi	pes with	'0' rin	g
		=	C).15	x 10 ⁻³	m	joints in	norma	l con	dition)		-
	V	=	kinemati	c viscosity c	of fluid		=	1E-0	6			
	D	=	pipe diar	neter (m)			=	0.60) m			
==>	V	=	2.81		m/s							
	Q	=	V x A	=		Flow cap	acity of th	ne pipe	9			
where	А	=	pipe sect	ional area		=	0.2827			m	2	
==>	Q	=	0.80		m³/s							
Assume		10%	re	eduction of p	oipe cap	bacity due	to siltatio	on				
==>	Q _a		= A0	djusted flow	<i>i</i> capaci	ty of the p	oipe					
			= 0.	716			m ³ /s					
			> Q	p			(ОК)					
			> 0.	.370			m ³ /s					

Utilization of the Pipe = 52%

Appendix 2

Calculation of Peripheral Drainage and Outlet Pipe

for Internal Catchments

Drainage Impact Assessment Report

Catchment Area A

Appendix 2

Checking of Peripheral Drainage and Catchment Runoff Catchment Area A - Uchannel

A) Proposed Designated Development Area Discharges to Flooding Relief Pond

Considering pre-developed area as unpaved area. The runoff coefficient is derived as follows:

Unpaved Area	=	24,940	m²	(C1	=	0.30)
Paved Area	=	-	m²	(C2	=	0.95)
Water Pond	=	-	m²	(C3	=	1.00)

Which is equivalent to the following post-developed area.

		Unpav	ved Area	=	-	m^2	(C1	=	0.30)				
		Paved	Area	=	2,621	m^2	(C2	=	0.95)				
		Water	Pond	=	5,255	m²	(C3	=	0.95)				
(i.e.,	24,940	*	0.30	=		2,621	*	0.95	+	5,255	*	0.95)

B) SURFACE RUNOFF ESTIMATION

The surface runoff in the development would be collected by internal road drainage system which would be designed to the road drainage standard as stipulated in HyD's "Guidance Notes on Road Pavement Drainage Design".

Therefore $t_0 = 5.0 \text{ min}$

i

 t_{d}

a, b, c

=

=

=

C) RAINFALL INTENSITY

The Intensity-Duration-Frequency data can be expressed by the following algebraic equation:

 $i = \frac{a}{(t_d + b)^c}$ (SDM 4.3.2)

where	

extreme mean intensity in mm/hr duration in minutes (t_o less than or equal to 240), and storm constants given in SDM - Corrigendum No. 1/2024 Table 3a

For 50-year return period, according to SDM - Corrigendum No. 1/2024 Table 3a

	a b c	= =	505.5 3.29 0.355				
==>		i	=	239	mm/hr		
Cons 1 2	iderir Rain Desi	ng: Ifall increa gn Allowa	ase in C ance in	limate Change End of 21st Century	= =	16% 12.1%	(Table 28, SDM Corrigendum No. 1/2022) (Table 31, SDM Corrigendum No. 1/2022)
==>		i	= =	239x(1+16%+12.1%) 306	mm/hr		, , , , , , , , , , , , , , , , , , ,

E)

D) PEAK RUNOFF ESTIMATION

The peak runoff by Rational Method is given by the following expression:

	O _p	= 0.278 C	i A	(SMD7.5.2)			
where	Q _p C i A	= peak rur = runoff c = rainfall i = catchme	noff in m ³ /s pefficient (dime ntensity in mm ent area in km ²	ensionless) /hr			
	Paved/Pond A Unpaved Area	rea = =	5,000) m ² m ²	(C = (C =	0.95) 0.95)	
	Weighted C Va	llue	= 0.950)			
==>	Q _p	=	0.404	m³/s			
DRAINAG	E CHANNEL CHE	CKING					
Cha Chan	nnel Type: nel Size (H):	Concrete-lined 450 mm	U-Channel = 0.4	5 m			
The full-b	ore capacity is c	alculated by Mar	ning's Equatior	1:			, D
V	$=$ $\frac{R^{2/3}}{R}$	$\frac{3\sqrt{S}}{n}$				` A ,	`
Where	V = R = S = n =	velocity of the f hydraulic radius hydraulic graide Manning's Roug	low (m/s) 5 (m) ent ghness n	= =		0.01429 (1 in 0.012	70) (SDM Table 13)
Area of Channel (A) Wetted Perimeter (P) Hydraulic Radius (R)			= 0.18 = 1.15 = 0.15	1 m ² 7 m 6 m			
	Flow Velocity ((V)	= 2.89	0 m/s			
	Flow Rate (Q)		= V x A = 0.5223	6 m³/s			
	Utilization of t	he U-channel	= 779	%			

Checking of Peripheral Drainage and Catchment Runoff Catchment Area A - Outlet Pipe

Time of Concentration A)

> 5.0 min (U-channel) t_d =

RAINFALL INTENSITY B)

> The Intensity-Duration-Frequency data can be expressed by the following algebraic equation:

> > $\frac{a}{\left(t_{d} + b\right)^{c}}$ i (SDM4.3.2) =

where

i extreme mean intensity in mm/hr = duration in minutes (t_o less than or equal to 240), and t_d = a, b, c storm constants given in SDM - Corrigendum No. 1/2024 Table 3a =

For 50-year return period, according to SDM - Corrigendum No. 1/2024 Table 3a

	a b	=	505.5 3.29				
	С	=	0.355				
==>		i	=	239	mm/hr		
Cons	sideri	ng:					
1	Rair	nfall ir	ncrease in Cli	mate Change	=	16%	(Table 28, SDM Corrigendum No. 1/2022)
2	2 Des	ign A	llowance in Ei	nd of 21st Ce	ntu =	12.1%	(Table 31, SDM Corrigendum No. 1/2022)
==>		i	= 2	239x(1+16%+	12.1%)		
			=	300	11111/11/		

C) PEAK RUNOFF ESTIMATION

The peak runoff by Rational Method is given by the following expression:

	<i>Q</i> _p =	0.278 C i A (SMD7.5.2)								
where	O _p = C = i = A =	peak runoff in m ³ /s runoff coefficient (dimensionless) rainfall intensity in mm/hr catchment area in km ²								
	Paved/Pond Area Unpaved Area	$= 5,000 \text{ m}^2 (C = 0.95)$ $= - \text{m}^2 (C = 0.95)$								
	Weighted C Value	= 0.950								
==>	Q _p	= 0.404 m ³ /s								

D) OUTLET PIPE CAPACITY CHECKING

The full-bore capacity of the pipe is calculated by Colebrook-White equation:

	V	= _	$-2\sqrt{2gDS}\log\left[\frac{1}{2}\right]$	$\frac{k_s}{3.7D}$ +	$-\frac{2.5}{D\sqrt{2}}$	$\frac{51v}{gDS}$	
where	V	=	velocity of the pipe flow (m/s)	v		
	S _f	=	hydraulic gradient	=	0.0067	(or 1	in 150)
	k _s	=	roughness value (m)		(Precast o	concrete pipe	e with 'O' ring
		=	0.60 x 10 ⁻³	m	joints in p	poor conditio	on)
	V	=	kinematic viscosity of flui	b	=	1E-06	
	D	=	pipe diameter (m)		=	0.750 m	
==>	V	=	2.28 m/s				
	Q	=	V x A =	Flow cap	pacity of th	ne pipe	
where	А	=	pipe sectional area	=	0.4418		m ²
==>	Q	=	1.01 m ³ /s				
Assume		10%	reduction of pipe ca	apacity due	e to siltatio	n	
==>	Q _a		 Adjusted flow ca 	pacity of	the pipe		
			= 0.908		m ³ /s		
			> 0 _p		(ОК)		
			> 0.404		m ³ /s		
Utilization of the	e Pipe	=	45%				

Drainage Impact Assessment Report

Catchment Area B

Checking of Peripheral Drainage and Catchment Runoff Catchment Area B - Uchannel

A) Proposed Designated Development Area Discharges to NTMDC

Considering pre-developed area as unpaved area. The runoff coefficient is derived as follows:

Unpaved Area	=	39,673	m²	(C1	=	0.30)
Paved Area	=	-	m²	(C2	=	0.95)
Water Pond	=	-	m²	(C3	=	1.00)

Which is equivalent to the following post-developed area.

		Unpav	ved Area	=	-	m²	(C1	=	0.30)
		Paved	l Area	=	4,000	m²	(C2	=	0.95)
		Water	Pond	=	-	m²	(C3	=	0.95)
(i.e.,	39,673	*	0.30	=		4,000	*	0.95)

SURFACE RUNOFF ESTIMATION B)

The surface runoff in the development would be collected by internal road drainage system which would be designed to the road drainage standard as stipulated in HyD's "Guidance Notes on Road Pavement Drainage Design".

Therefore $t_0 =$ 5.0 min

C) RAINFALL INTENSITY

The Intensity-Duration-Frequency data can be expressed by the following algebraic equation:

_____a

	i	=	$\frac{a}{\left(t_{d} + b\right)^{c}} \qquad (SDM 4.3.2)$
where	i	=	extreme mean intensity in mm/hr
	t _d	=	duration in minutes (t _o less than or equal to 240), and
	a, b, c	=	storm constants given in SDM - Corrigendum No. 1/2024 Table 3a

For 50-year return period, according to SDM - Corrigendum No. 1/2024 Table 3a

306

=

	a b c	= = =	505.5 3.29 0.355				
==>		i	=	239	mm/hr		
Considering: 1 Rainfall increase in Climate Change 2 Design Allowance in End of 21st Century				ate Change I of 21st Century	= =	16% 12.1%	(Table 28, SDM Corrigendum No. 1/2022) (Table 31, SDM Corrigendum No. 1/2022)
==>		i	= 23	9x(1+16%+12.1%)			

mm/hr

D) PEAK RUNOFF ESTIMATION The peak runoff by Rational Method is given by the following expression:

		Qp)	=	0.278 C	i A		(SMD7	.5.2)				
	where	Q _p C i A		= = =	peak rur runoff c rainfall i catchme	noff in r oefficie ntensit <u>y</u> ent area	n ³ /s nt (dime y in mm/ i in km ²	nsionle: hr	ss)				
		Pav Un We	ved Ar paved eighte	rea I Area d C Valu	ie =	=	4,000 - 0.950	m² m²		(C = (C =	0.95) 0.95)		
	==>	Q _p			=	().323	m³/s					
E)	DRAINAG Cha Chan The full-b V	E CHANNI nnel Type nel Size (H ore capaci =	EL CHI : 1): ity is c <u>R^{2/3}</u>	ECKING Concre 450 alculate $\frac{3}{\sqrt{S}}$	ete-lined) mm ed by Mar	U-Chan = nning's l	nel 0.45 Equation	m :					
	Where	V R S n Area of 0 Wetted I Hydrauli Flow Vel Flow Rat	+ = = Chann Perim c Radi ocity (ocity (veloci hydrau hydrau Mann el (A) eter (P) us (R) (V)	ty of the f ulic radius ulic graide ing's Roug	flow (m. s (m) ent ghness r = = = =	/s) 0.181 1.157 0.156 2.418 V x A 0.437	m² m m/s m³/s	=		0.01000 0.012	(1 in 100)	(SDM Table 13)
		Utilizatio	on of t	he U-ch	annel	=	74%						

Checking of Peripheral Drainage and Catchment Runoff Catchment Area B - Outlet Pipe

A) Time of Concentration

t_d = 5.0 min (U-channel)

B) RAINFALL INTENSITY

The Intensity-Duration-Frequency data can be expressed by the following algebraic equation:

i	=	$\frac{a}{\left(t_{d} + b\right)^{c}}$	(SDM4.3.2)

where	i	=	extreme mean intensity in mm/hr
	t _d	=	duration in minutes (t_o less than or equal to 240), and
	a, b, c	=	storm constants given in SDM - Corrigendum No. 1/2024 Table 3a

For 50-year return period, according to SDM - Corrigendum No. 1/2024 Table 3a

	а	=	505.5					
	b	=	3.29					
	С	=	0.355					
==>		i	=	239	mm/hr			
Con	idori	na.						
COII	sideri	ng.						
1	l Rair	nfall	increase in C	limate Change	=	16%	(Table 28, SDM Corrigendum No. 1/2022))
2	2 Des	ign /	Allowance in	End of 21st Cer	nturį =	12.1%	(Table 31, SDM Corrigendum No. 1/2022)
==>		i	=	239x(1+16%+1	2.1%)			
			=	306	mm/hr			

C) PEAK RUNOFF ESTIMATION

The peak runoff by Rational Method is given by the following expression:

	Q _p	=	0.278 (CiA		(SMD7.5.2)					
where	Q _p	=	peak ru	unoff	in m³/s						
	С	=	runoff coefficient (dimensionless) rainfall intensity in mm/hr								
	i	=									
	А	=	catchm	nent a	area in k	m ²					
						0					
	Paved	Area	=		4,000	m²	(C =	0.95)			
	Unpave	ed Area	=			m ²	(C =	0.3)			
	Weight	ted C Val	ue	=	0.950						
==>	Q _p		=	C	.323	m ³ /s					

D) OUTLET PIPE CAPACITY CHECKING

The full-bore capacity of the pipe is calculated by Colebrook-White equation:

	V	= _	$-2\sqrt{2}$	gDS lo	$\left \frac{1}{3}\right $	$\frac{k_s}{7D}$ +	$\frac{2.5}{D\sqrt{2}}$	51v	$\overline{\overline{s}}$			
where	V	=	velocity	of the pipe f	L low (m/	/s)	- v -	- 0 - ~				
	S _f	=	hydrauli	c gradient		=	0.0200	(or	1	in	50)
	k _s	=	roughne	ss value (m)			(Precast	concre	te pipe	es with	ו 'O' ring	J
		=	(0.60	x 10 ⁻³	m	joints in	poor co	onditio	n)		
	V	=	kinemat	ic viscosity c	of fluid		=	1E-06	þ			
	D	=	pipe diar	meter (m)			=	0.450) m			
==>	V	=	2.88		m/s							
	Q	=	VxA	=		Flow cap	acity of t	he pipe				
where	А	=	pipe sec	tional area		=	0.1590			n	1 ²	
==>	Q	=	0.46		m³/s							
Assume		10%	re	eduction of p	pipe cap	bacity due	e to siltatio	on				
==>	Q _a		= A	djusted flo	ow cap	acity of	the pipe	9				
			= 0	.412			m ³ /s					
			> 0	\mathcal{O}_{p}			(ОК)					
			> 0	.323			m³/s					
	. D'		700/									

Utilization of the Pipe = 78%

Appendix 3

Calculation of Volume of the Proposed Detention Tank

Surface Runoff Estimation - Rational Method Pre-Development Scenario 1 in 50 year RAINFALL INTENSITY (A) The Intensity-Duration-Frequency data can be expressed by the following Table (Extracted from SDM Table 2a, Intensity-Duration-Frequency (IDF) Relationship of HKO Headquarters, SDM Corrigendum No. 1/2024): Extreme Intensity (mm/h) for various Return Periods Duration T (year) 5 10 20 50 100 200 500 1000 (min) 2 240** 31.5 41.6 48.5 55.1 63.9 70.6 77.3 86.3 93.2 For 50-year return period, 63.9 mm/hr ==> i = Considering: 1 Rainfall increase in Climate Change 16% (Table 28, SDM Corrigendum No. 1/2022) = 2 Design Allowance in End of 21st Century 12.1% (Table 31, SDM Corrigendum No. 1/2022) 63.9x(1+16%+12.1%) i = ==> _ 82 mm/hr (B) PEAK RUNOFF ESTIMATION 64,613 m² Site Area = The peak runoff by Rational Method is given by the following expression: Q_p 0.278 C i A (SDM 7.5.2) = Q_p peak runoff in m°/s where = С runoff coefficient (dimensionless) = rainfall intensity in mm/hr i. = А catchment area in km² = Considering the catchment of the site mainly natural terrain. The runoff coefficient is derived as follows: 64,613 m² Unpaved Area = (C1 0.30) = ${\rm m}^2$ Paved Area = (C2 = 0.95) -Water Pond ${\rm m}^2$ (C3 1.00) = = -С 0.30 = Q_p **0.44** m³/s ==> =

(B)

Surface Runoff Estimation - Rational Method Post-Development Scenario 1 in 50 year

(A) RAINFALL INTENSITY

The Intensity-Duration-Frequency data can be expressed by the following Table (Extracted from SDM Table 2a, Intensity-Duration-Frequency (IDF) Relationship of HKO Headquarters, SDM Corrigendum No. 1/2024):

Duration	T (vear)			ioity (11111/11)		INCLUIT FEIO	uð			
(min)	2	5	10	20	50	100	200	500	1000	
240**	31.5	41.6	48.5	55.1	63.9	70.6	77.3	86.3	93.2	
For 50-year	return peri	od,								
==> i	i	=	63.9	mm/hr						
Considering	: Deinfell in e		nata Channa			4.00/		(T-61-00)		
2	Design Allo	wance in E	nd of 21st Ce	entury	=	12.1%		(Table 28, 3) (Table 31, 3)	SDM Corrige	ndum No. 1/2022 ndum No. 1/2022
==> i	i	=	63.9x(1+16 81.9	%+12.1%) mm/hr						
PEAK RUN	OFF ESTIN	MATION								
Site Area					=	64,613	m²			
The peak ru	noff by Rat	tional Metho	od is given by	the followin	g expressio	on:				
			Q _p		=	0.278 C i A		(SDM 7.5.2)	
where			Q _o		=	peak runoff	in m³/s			
			c		=	runoff coeff	icient (dim	ensionless)		
			i		=	rainfall inter	nsity in mn	n/hr		
			А		=	catchment a	area in km	2		
Considering	the catchn	nent of the s	site mainly na	tural terrain.	The runo	ff coefficient is	s derived a	as follows:		
			Unpaved A	rea	=	18.630	m ²	(C1	=	0.30)
			Paved Area	a	=	38,923	m²	(C2	=	0.95)
			Swimming I	Pool	=	1,805	m ²	(C3	=	1.00)
			Water Pond	b	=	5,255	m²	(C4	=	0.95)
			С		=	0.76				
==>			Q_p		=	1.12	m°/s			
Permissible	discharging	g volume		=	Qp (Pre-d	evelop) x Dur 60*4	ation			
				=	6,365			m ³		
Post development discharging volume =			Qp (Post-	develop) x Du	iration					
				=	1.124^60* 16,186	ou"4		m ³		
Size of dete	ntion tank			=	Post deve	lopment disch	narging vol	ume - Permiss	sible dischar	ging volume
				=	16186 - 63	365				
				=	9,821			m ³		
					,	_				

Appendix 4

Cross Sections Drawings and Maintenance Plan

LEGEND:

EXISTING SITE LEVEL

PROJECT

S.12A PLANNING APPLICATION ON THE APPROVED MAI PO & ON THE APPROVED MAI PO & FAIRVIEW PARK OZP NO. S/YL-MP/6 REZONING FROM "RESIDENTIAL (GROUP D)" TO "RESIDENTIAL (GROUP C) 1" ZONE FOR A PROPOSED RESIDENTIAL DEVELOPMENT AT VARIOUS LOTS IN D.D. 104 AND THE ADJOINING GOVERNMENT LAND IN YUEN LONG, N.T.

CLIENT

CONSULTANT

AECOM Asia Company Ltd. www.aecom.com

SUB-CONSULTANTS

ISSUE/REVISION

I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK . 複核

STATUS

SCALE

DIMENSION UNIT

N.T.S.

METRES

KEY PLAN

PROJECT NO.

AGREEMENT NO.

60098971

SHEET TITLE

INDICATIVE SECTIONS

SHEET NUMBER

60098971/SK4002

AECOM

PROJECT

S.12A PLANNING APPLICATION ON THE DRAFT MAI PO & FAIRVIEW PARK OZP NO. S/YL-MP/7 REZONING FROM "RESIDENTIAL (GROUP D)" TO "RESIDENTIAL (GROUP C) 1" ZONE FOR A PROPOSED RESIDENTIAL DEVELOPMENT AT VARIOUS LOTS IN D.D. 104 AND THE ADJOINING GOVERNMENT LAND IN YUEN LONG, N.T.

CLIENT

CONSULTANT

AECOM Asia Company Ltd. www.aecom.com

SUB-CONSULTANTS

ISSUE/REVISION

_			
I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK . 複核

 /R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK. 被核

_			
I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK . 複核

I/R 修訂	DATE 日期	DESCRIPTION 內容摘要	CHK. 複核

-		
I/R 修订	DATE 日期	DESCRIPTION 內容摘要
STA	ATUS	

I/R	DATE	DESCRIPTION	
修訂	日期	內容摘要	
ST	ATUS		

DATE 日期	DESCRIPTION 內容摘要	C
ATUS		

SCALE

DIMENSION UNIT

METRES

A31:2000

KEY PLAN

60098971 SHEET TITLE

AGREEMENT NO.

PROJECT NO.

MAINTENANCE PLAN

60098971/DIA/FIGURE 6

SHEET NUMBER