> Traffic Impact Assessment Final Report 30 September 2022

Prepared by: CKM Asia Limited

Prepared for: Yat Tak Kwun Management Limited

CONTENTS

CHA	PTER	PAGE
1.	INTRODUCTION Background Contents of the Report	1
2.	THE EXISTING SITUATION Yat Tak Kwun The Road Network Public Transport Services Traffic and Pedestrian Flow Surveys Junction Capacity Analysis Footpath Levels of Service Analysis Population Projection Historic Traffic Flow	2
3.	THE PROPOSED COLUMBARIUM Development Schedule Provision of Internal Transport Facilities Special Traffic Arrangements on Ching Ming and Chung Yeung Festival Periods Estimation on Traffic Generation Estimation on Pedestrian Generation	7
4.	TRAFFIC IMPACT Traffic and Pedestrian Forecast 2026 Junction Capacity Analysis 2026 Footpath Levels of Service Analysis	10
5.	SUMMARY Figures Appendix A – Junction Capacity Analysis	13

TABLES

NUMBER

- 2.1 Road-Based Public Transport Services Operating near Yat Tak Kwun
- 2.2 Existing Junction Operational Performance
- 2.3 Existing Footpath Operational Performance
- 2.4 Projected Population and Employment by 2019-Based TPEDM for Northwest New Territories (Other Area)
- 2.5 AADT of ATC Stations located in the vicinity of Yat Tak Kwun
- 3.1 Existing Niche Status of the Proposed Columbarium
- 3.2 Visiting Capacity with Visit-by-Appointment Arrangement
- 3.3 Comparison on Visitor Demand and Visiting Capacity
- 3.4 Mode of Transport Used by Visitors of Gig Lok Monastery
- 3.5 Estimated Traffic and Pedestrian Generations of the Proposed Columbarium
- 4.1 2027 Junction Operational Performance
- 4.2 2027 Footpath Operational Performance

FIGURES

NUMBER

- 1.1 Locations of Yat Tak Kwun and the Application Site
- 2.1 Road-Based Public Transport Services Operating Near Yat Tak Kwun
- 2.2 Location and Layout of the Surveyed Junctions
- 2.3 Year 2020 Columbarium Peak Hour Traffic Flows
- 2.4 Location of the Surveyed Footpath
- 3.1 Layout of the Proposed Columbarium
- 3.2 Pedestrian Routing to/from the Proposed Columbarium
- 4.1 Year 2027 Columbarium Peak Hour Traffic Flows Without the Proposed Columbarium
- 4.2 Year 2027 Columbarium Peak Hour Traffic Flows With the Proposed Columbarium

1.0 INTRODUCTION

Background

- The Application Site includes part of the existing 2 buildings, namely Building 1 and Building 2, within Yat Tak Kwun ("一德觀"), which is located at 45 Tan Kwai Tsuen in Hung Shui Kiu, Yuen Long. At present, the G/F of Building 1 and Building 2 are being used for storage of cremated human bodies, i.e. columbarium (hereinafter "the Proposed Columbarium"). Figure 1.1 shows the location of the Yat Tak Kwun, and the Application Site..
- 1.2 The Applicant has the intention to regularise the existing columbarium use. Hence, CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned to carry out a Traffic Impact Assessment ("TIA") in support of the Proposed Columbarium.

Contents of the Report

1.6 After this introduction, the remaining chapters contain the following:

Chapter Two – Describes the existing situation; Chapter Three – Outline the development proposal;

Chapter Four - Presents the traffic and pedestrian impact analyses; and

Chapter Five – Gives the overall conclusion.

2.0 THE EXISTING SITUATION

Yat Tak Kwun and the Application Site

- Yat Tak Kwun is located in Tan Kwai Tsuen, Hung Shui Kiu, Yuen Long. It is bounded by a footpath and a cycle track to the west along a nullah, a residential development (i.e. the Verdancy) to the east, and various other temporary developments to the north and to the south. The Application Site is part of the existing 2 buildings within Yat Tak Kwun.
- 2.2 Yat Tak Kwun does not abut any road carriageway and therefore cannot be accessed by vehicular traffic. Two (2) pedestrian accesses are located to the west at the footpath along the nullah, and a third pedestrian access is located to the east at the footpath within Tan Kwai Tsuen leading towards Tan Kwai Tsuen Road.

The Road Network

- 2.3 Yat Tak Kwun is served by Wo Ping San Tsuen Lane, Tan Kwai Tsuen Road, and Castle Peak Road Hung Shui Kiu.
- 2.4 <u>Wo Ping San Tsuen Lane</u> is of a single-2 carriageway local road. It is some 6m wide and 350m long running parallel to the nullah from Castle Peak Road Hung Shui Kiu and terminates as a cul-de-sac. It serves the existing developments in Wo Ping San Tsuen and Tan Kwai Tsuen along both sides of the nullah. Wo Ping San Tsuen Lane is only accessible from and to Castle Peak Road Hung Shui Kiu westbound.
- 2.5 <u>Tan Kwai Tsuen Road</u> in the vicinity of Yat Tak Kwun is a single-2 carriageway local road. It is some 7.3m wide and 900m long running from Castle Peak Road Hung Shui Kiu and terminates as a single track access road within Tan Kwai Tsuen to the south. It serves numbers of residential and industrial developments within Tan Kwai Tsuen. Tan Kwai Tsuen Road is only accessible from Castle Peak Road Hung Shui Kiu eastbound, and to Castle Peak Road Hung Shui Kiu westbound.
- 2.6 <u>Castle Peak Road Hung Shui Kiu</u> is a dual-2/3 carriageway Rural Trunk Road with 3 eastbound traffic lanes towards Yuen Long, and 2 westbound traffic lanes towards Tuen Mun. It intersects with the Lam Tei Interchange to the west and the Tin Shui Wai West Interchange via Hung Tin Road to the east where providing regional access to and from Yat Tak Kwun via Tuen Mun Road and Yuen Long Highway respectively.

Public Transport Services

Yat Tak Kwun is served by road-based public transport, in particular along Castle Peak Road – Hung Shui Kiu, where there are many franchised bus, green minibus ("GMB"), red minibus ("RMB"), and MTR Light Rail Transit ("LRT") routes. Figure 2.1 shows the location of the public transport service stops, and details of these services are summarised in Table 2.1.

TABLE 2.1 ROAD-BASED PUBLIC TRANSPORT SERVICES OPERATING NEAR YAT TAK KWUN

	1741 1746 1644 014		-
Route	Origin - Destination	Frequency (min)	Remark
KMB 53	Yoho Mall (Yuen Long) ↔ Tsuen Wan (Nina Tower)	25 - 35	
KMB 63X	Hung Shui Kiu (Hung Fuk Estate) ↔ Jordan (West Kowloon Station)	12 - 30	
KMB 68A	Long Ping Estate ↔ Tsing Yi Station	8 - 25	
KMB 68X	Mong Kok (Park Avenue) ↔ Hung Shui Kiu (Hung Fuk Estate)	9 - 25	
KMB 258A	Hung Shui Kiu (Hung Fuk Estate) → Lam Tin Station	2 per AM	(1)
KMB 258P	Hung Shui Kiu (Hung Fuk Estate) → Lam Tin Station	12 - 30	(3)
	Lam Tin Station → Hung Shui Kiu (Hung Fuk Estate)	20 - 30	(4)
KMB 261P	Tuen Mun (Siu Hong Court) → Sheung Shui (Tin Ping)	2 - 3 per AM	(3)
	Sheung Shui (Tin Ping) →Tuen Mun (Siu Hong Court)	1 per PM	(2)
KMB 268X	Hung Shui Kiu (Hung Fuk Estate) ↔ Jordan (West Kowloon Station)	6 - 30	
KMB 276P	Tin Shui Wai Station ↔ Sheung Shui	5 - 20	
KMB 960A	Central → Hung Shui Kiu (Hung Fuk Estate)	1 per PM	(2)
KMB 960P	Hung Shui Kiu (Hung Yuen Road) → Causeway Bay (Victoria Park)	10 - 35	(5)
KMB 960X	Hung Shui Kiu (Hung Yuen Road) →Quarry Bay	8 per AM	(1)
LWB A34	Hung Shui Kiu (Hung Yuen Road) ↔ Airport (Ground Transportation Centre)	20 - 60	
LWB NA37	Tin Shui Wai Town Centre → Cathay Pacific City	4 per Day	(6)
CTB N969	Tin Shui Wai Town Centre ↔ Causeway Bay (Moreton Terrace)	20 - 30	(6)
MTRB K75A	Tin Shui Wai Station ↔ Hung Shui Kiu	30	
MTRB K75P	Tin Shui ↔ Hung Shui Kiu	10 - 15	
NLB B2	Yuen Long Station ↔ Shenzhen Bay Port	60	
GMB 32	Yuen Long Station ↔ Tan Kwai Estate	10 - 15	
GMB 621	Hung Fuk Estate ↔ Tin Shui Wai Hospital	20 - 30	
GMB 622	Hung Fuk Estate ↔ Long Ping Station	15 - 30	(6)
GMB 606S	Yuen Long (Fung Cheung Road) ↔ Tsim Sha Tsui East	6 - 13	
RMB	Tuen Mun (Chi Lok Fa Yuen) ↔ Yuen Long (Yuen Long Hong Lok Rd)	n/a	
RMB	Tsuen Wan (Chung On St) → Tuen Mun and Yuen Long	n/a	(6)
RMB	Mong Kok (Reclamation St) → Tuen Mun and Yuen Long	n/a	
RMB	Yuen Long ↔ Jordan Rd (Parkes St)	n/a	
LRT 610	Yuen Long ↔ Tuen Mun Ferry Pier	7 - 17	
LRT 614	Yuen Long ↔ Tuen Mun Ferry Pier	14 - 23	
LRT 615	Yuen Long ↔ Tuen Mun Ferry Pier	9 - 23	
LRT 751	Tin Yat ↔ Yau Oi	6 - 15	
The second secon			Market Street Street Street

Note: KMB – Kowloon Motor Bus LWB – Long Wing Bus CTB – City Bus MTRB – MTR Feeder Services NLB – New Lantao Bus GMB – Green Minibus

RMB – Red Minibus LR

LRT - MTR Light Rail Transit

Remarks:

- (1) Monday to Friday. AM Peak Only. Except Public Holidays.
- (2) Monday to Friday. PM Peak Only. Except Public Holidays.
- (3) Monday to Saturday. AM Peak Only. Except Public Holidays.
 (4) Monday to Saturday. PM Peak Only. Except Public Holidays.
- (5) Monday to Sunday. AM Only. Except Public Holidays.
- (6) Overnight Services.
- 2.8 The above franchised bus routes provide convenient transfer service at the Tuen Mun Road Bus Interchange and the Tai Lam Tunnel Bus Interchange. Whereas, the LRT services provide transfer to the MTR West Rail at Siu Hong, Tin Shui Wai and Yuen Long Stations. Hence, the nearby public transport services provide excellent access throughout the New Territories, Kowloon and Hong Kong Island.

Traffic and Pedestrian Flow Surveys

- 2.9 In view that Yat Tak Kwun has only 8 occupied niches and there is no other existing columbarium located in the vicinity of Yat Tak Kwun, the transport services nearby do not currently serve any grave sweeping traffic during the Chung Yeung and Ching Ming Festival periods. Hence, a the traffic and pedestrian flow surveys were conducted on Sunday, 5th July 2020, which was a general holiday to replicate the Ching Ming Festival Day condition.
- 2.10 The traffic and pedestrian flow surveys were carried out between 1100 and 1400 hours, which are the typical peak operation period associated to a columbarium facility.
- 2.11 Manual classified count surveys were conducted to enable traffic flows in passenger car units ("pcu") to be calculated. The surveys were conducted at the following junctions:
 - J01 Castle Peak Road Hung Shui Kiu / Tan Kwai Tsuen Road,
 - J02 Castle Peak Road Hung Shui Kiu / Hung Shui Kiu Main Street, and
 - J02 Castle Peak Road Hung Shui Kiu / Wo Ping San Tsuen Lane,
- 2.12 Locations of the surveyed junctions are shown in Figure 2.2, and the peak hour traffic flows are presented in Figure 2.3.
- 2.13 Figure 2.4 shows the location of the pedestrian flow surveys and the locations include the following:
 - FP01 Footpath along Nullah between Yat Tak Kwun and Castle Peak Road Hung Shui Kiu, and
 - FP02 Footpath along Castle Peak Road Hung Shui Kiu westbound between Tan Kwai Tsuen Road and Nullah, and
 - FP03 Footpath along Castle Peak Road Hung Shui Kiu westbound between Nullah and Wo Ping San Tsuen Lane

Junction Capacity Analysis

2.14 Junction capacity analyses are calculated based on the columbarium peak hour traffic flows, and the analyses were undertaken using the methods outlined in Volume 2 of the Transport Planning and Design Manual ("TPDM"). Table 2.2 summarises the results and the detailed calculations are found in Appendix A.

TABLE 2.2 EXISTING JUNCTION OPERATIONAL PERFORMANCE

	Junction	Junction Control	Performance Indicator	Columbarium Peak Hour
J01	Castle Peak Road – Hung Shui Kiu / Tan Kwai Tsuen Road	Signalised	RC	>100%
J02	Castle Peak Road – Hung Shui Kiu / Hung Shui Kiu Main Street	Signalised	RC	>100%
J03	Castle Peak Road – Hung Shui Kiu / Wo Ping San Tsuen Lane	Priority	RFC	0.010

Note: RC – Reserve Capacity RFC - Ratio of Flow to Capacity

2.15 The above result indicates that the surveyed junctions operate with capacities during the columbarium peak hour.

Footpath Levels of Service Analysis

2.16 Based on the peak hour pedestrian flows shown in Figure 2.5, the Levels of Service ("LOS") analysis was conducted. The LOS grading is as per TPDM Vol 6, Section 10.4, and LOS 'C' is generally considered as desirable at streets with dominant 'living' pedestrian activities. Table 2.3 summarizes the analysis results.

TABLE 2.3 EXISTING FOOTPATH OPERATIONAL PERFORMANCE

	Pedestrian Facilities		Ching Ming Festival Day Columbarium Peak Hour	
		(m)	Observed 2-way Pedestrian Flow (ped/hour)	
FP01	Footpath along Nullah between Yat Tak Kwun and Castle Peak Road – Hung Shui Kiu	3.0m	137	0.76 [A]
FP02	Footpath along Castle Peak Road – Hung Shui Kiu westbound between Tan Kwai Tsuen Road and Nullah	4.5m	219	0.81 [A]
FP03	Footpath along Castle Peak Road – Hung Shui Kiu westbound between Nullah and Wo Ping San Tsuen Lane	3.0m	218	1.21 [A]

Note:

(1) Width of adjacent cycle track excluded.

Population Projection

2.17 Reference is made to the latest "2019 – based Territorial Population and Employment Data Matrix" ("2019-based TPEDM") published by the Planning Department for the "Northwest New Territories (Other Area)", where Yat Tak Kwun is located. Table 2.4 summarises the projected population and employment obtained from the 2019-based TPEDM.

TABLE 2.4 PROJECTED POPULATION AND EMPLOYMENT BY 2019-BASED TPEDM FOR NORTHWEST NEW TERRITORIES (OTHER AREA)

ltem	Year 2019	Year 2031	Average Annual Percentage Change (2021 – 2026)
Population	228,000	353,900	3.7%
Employment	58,400	140,150	7.6%
Total	286,400	494,050	4.7%

- 2.18 Table 2.4 shows that the overall population and employment in the Northwest New Territories (Other Area) is projected to increase by some 4.7% per annum between 2019 and 2031.
- 2.19 The high annual growth rate is likely due to the expected population intake of various New Development Areas ("NDA") within the Northwest New Territories (Other Area), such as the Hung Shui Kiu and the Yuen Long South NDAs etc.

Historic Traffic Flow

2.20 Table 2.5 summarises the historic Annual Average Daily Traffic ("AADT") between 2010 and 2019 obtained from the Annual Traffic Census ("ATC") which is published by Transport Department, for the roads located in the vicinity of Yat Tak Kwun.

TABLE 2.5 AADT OF ATC STATIONS LOCATED IN THE VICINITY OF YAT TAK KWUN

ATC Station No.	6213	5658	5252
Road	Castle Peak Road – Hung Shui Kiu	Tin Ha Rd	Castle Peak Road – Ping Shan
Road Type	Rural Trunk	Rural Road	Rural Trunk
From	Tin Ha Road	Castle Peak Road – Hung Shui Kiu	Ping Ha Road
То	Lam Tei INT	Ping Ha Rd	Tin Ha Rd
Year	Annual Av	erage Daily Traffic (veh	
2010	31,280	6,750	16,660*
2011	30,910	6,860	16,900*
2012	31,210	6,820*	16,740*
2013	30,520	6,880*	15,780
2014	33,510	6,800*	17,050
2015	31,720	6,280	17,840*
2016	33,490	7,300	18,840*
2017	34,140	7,190*	18,710*
2018	32,740	7,370*	18,270
2019	33,220	7,320*	19,290
Average Annual Growth (2010 – 2019)	0.7%	0.9%	1.6%

Note: * Estimated by Growth Factor

- 2.1 It should be noted that "The Annual Traffic Census 2020" stated that due to the outbreak of COVID-19 in 2020, normal traffic flow pattern across Hong Kong were affected with significant drop in traffic flows in view of work-from-home arrangement for many government and private sector offices, suspension of face-to-face classes for schools, and disruption of tourism, etc. Hence, the traffic data of 2020 is not adopted to determine the average annual growth.
- 2.21 Table 2.6 shows that the overall average annual growth in AADT between 2010 and 2020 is some 0.7% to 1.6%.

3.0 THE PROPOSED COLUMBARIUM

Development Schedule

- 3.1 Figure 3.1 shows the layout of the Proposed Columbarium which consists of 2 buildings, i.e. Buildings 1 and 2, of which Building 1 is an existing 2-storey building and the G/F is being used as a columbarium, and Building 2 is an existing 1-storey building also being used as a columbarium.
- 3.2 According to the Applicant, Table 3.1 summarise the existing niche status found in the Proposed Columbarium.

TABLE 3.1 EXISTING NICHE STATUS OF THE PROPOSED COLUMBARIUM

	Status	Building 1	Number of Niches Building 2	Total
Occupied	Sold and occupied [a]	8 (0.2%)	0 (0.0%)	8 (0.2%)
Vacant	Sold but vacant [b]	574 (12.9%)	0 (0.0%)	582 (13.1%)
	Unsold (and vacant) [c]	1,882 (42.2%)	1,992 (44.7%)	3,874 (86.9%)
	Subtotal [b] + [c]	2456, (55.1%)	1,992 (44.7%)	4,448 (99.8%)
TOTAL [a] + [b] + [c]		2,464 (55.3%)	1,992 (44.7%)	4,456 (100.0%)

Provision of Internal Transport Facilities

3.3 Yat Tak Kwun does not abut any road carriageway, and is inaccessible by vehicles; hence no internal transport facilities are provided for the Proposed Columbarium.

<u>Special Traffic and Crowd Arrangements on Ching Ming and Chung Yeung</u> Festival Periods

3.4 Special traffic and crowd arrangements are proposed by the Proposed Columbarium to manage and minimise the potential traffic and pedestrian impact associated with the Proposed Columbarium. The details are described in paragraphs below:

Implementation Period

- 3.5 The special traffic arrangements will be implemented during the Ching Ming and Chung Yeung Festival Periods including:
 - (i) 3 weekends (Saturdays and Sundays) before the Ching Ming and Chung Yeung Festival Days,
 - (ii) On the Ching Ming and Chung Yeung Festival Days,
 - (iii) 3 weekends (Saturdays and Sundays) after the Ching Ming and Chung Yeung Festival Days, and
 - (iv) Any public holidays within the 3 weekends (Saturdays and Sundays) before and after the Ching Ming and Chung Yeung Festival Days.

Visit-by-Appointment Arrangement

- The Applicant will implement a mandatory Visit-by-Appointment Arrangement requiring all visitors to register with the Applicant prior to visiting Yat Tak Kwun during each Ching Ming and Chung Yeung Festival Period. Hence, the number of visitors can be regulated.
- 3.7 The registration will be available via smartphone application, or by phone. Visitors are required to provide the Applicant with the number of people visiting in their group, the columbarium hall and niche to be visited, and the intended visiting time and date. The registration will be regarded as successful after the Applicant has confirmed the visiting details with the visitor.

3.8 The visiting capacity with the Visit-by-Appointment arrangement is calculated and is presented in Table 3.2.

TABLE 3.2 VISITING CAPACITY WITH VISIT-BY-APPOINTMENT ARRANGEMENT

ltemh	Proposed Columbarium		
	Building 1	Building 2	
Approximate Gross Floor Area [a]	124m²	55m ²	
Housing Capacity [b] (Note 1)	3m ² of gross floor area per person		
Visiting Capacity per Grave Sweeping Session	40 persons	15 persons	
$[c] = [a] \div [b]$ (Rounded-down to nearest 5)	Subtotal: 55 persons per session		
Duration of Grave Sweeping per Session [d]	20 minutes	20 minutes	
Number of Grave Sweeping per Hour	3 sessions	3 sessions	
$[e] = 60 \div [d]$			
Visiting Capacity per Hour [d] = [a]x[c]	120 persons per hour	45 persons per hour	
TOTAL	165 person	s per hour	

Note 1: PNAP APP-154, "Design Requirements for Columbarium Facilities", Buildings Department. Assessment of population density = 2m² of **usable** floor area per person, i.e. approximate 3m² of **gross** floor area per person.

3.9 As shown in Table 3.2, the Applicant will impose three 20-minute grave sweeping sessions per hour with a maximum 55 persons per session, i.e. an hourly visiting capacity of 165 persons per hour.

Waiting and Queuing Area

3.10 Yat Tak Kwun has an open yard within its premise, and an area of some 600m² (Figure 3.2 refers) will be set as waiting and queuing area for grave sweepers to wait before entering the respective columbarium. With a standing capacity of 4 persons per square metre, the holding area can hold some 2,400 persons, which is sufficient to hold the expected visitors.

Mandatory No Car Parking Policy

In view that the Proposed Columbarium is inaccessible by vehicles and it has no internal transport facilities, the Applicant will remind and implement a no car parking policy to its grave sweepers during the Ching Ming and Chung Yeung Festival Periods to discourage grave sweepers from driving to Yat Tak Kwun, and a the same time remind and encourage grave sweepers to visit by public transport.

Operation Hours of the Proposed Columbarium

The normal operation hours of the Proposed Columbarium are from 0900 to 1700 hours, including the Ching Ming and Chung Yeung Festival Periods.

Mandatory Policy Agreement in Condition of Sale

The Applicant will specify the above mandatory policies and the operation hours of the Proposed Columbarium in the condition of sale. All niche owners must agree and abide to the policies in order to purchase and visit the Proposed Columbarium.

On-Site One-Way Pedestrian Flow and Provision of Holding and Queuing Areas

One-way pedestrian flow will be implemented, as illustrated in Figure 3.2. A holding area will also be provided within Yat Tak Kwun for grave sweepers waiting to enter the columbarium.

Data Collection and Review of the Special Traffic Arrangement

3.15 The Applicant will maintain a record of visitors, and number of niches occupied, etc. throughout the Ching Ming and Chung Yeung Festival Periods. This information could be reviewed to evaluate the operation efficiency of the special traffic arrangement. If necessary, the information can be provided to the Government for review and comments in order to improve the overall special traffic arrangement with a goal to minimise the traffic impact to the general public.

Stationing of In-House Staff

3.16 In-house trained staff will be stationed within Yat Tak Kwun to ensure smooth pedestrian flow and safety of visitors.

Comparison on Visiting Demand and Visiting Capacity

3.17 Table 3.3 compares the estimated visitor demand and visiting capacity for the Proposed Columbarium during the Ching Ming and Chung Yeung Festival Periods.

TABLE 3.3 COMPARISON ON VISITOR DEMAND AND VISITING CAPACITY

TABLE 5.5 COMITARISON ON VISI	HOR DEMAND AND VISITING CALACIT				
Visitor Demar	nd per Festival Period				
Number of visitors per sold and occupied niches = 2.89 visitors/niche (based on CKM's in-house data)					
Total number of niches	= 4,456 niches				
Total number of visitor	= 4,456 niches x 2.89 visitors/niche				
(Visitor Demand per Festival Period)	= 12,878 visitors				
Visiting Capac	ity per Festival Period				
Visiting capacity	= 55 persons per session				
Number of sessions per hour	= 60 min/hr ÷ 20 min/session				
	= 3 sessions/hr				
Opening hours of the Subject Site	= 0900 to 1700 hours				
	= 8 hr/day				
Number of sessions per day	= 8 hr / day x 3 sessions/hr				
251 172	= 24 sessions/day				
Daily visiting capacity	= 55 visitors/session x 24 sessions / day				
90 27 28V	= 1,320 visitors/day				
Number of Days within the Festival Period	= Minimum 12 Days (including 3 weekends before				
	and 3 weekends after the Festival Day, and assuming				
	the Festival Day falls on a Saturday or Sunday; other				
	public holidays in between also excluded.)				
Minimum Visiting Capacity per Festival Period	= 1,320 visitors / day x 12 days				
	= 15,840 visitors				
	> Visitor Demand of 12,878 visitors, hence, OK				

- 3.18 As shown in Table 3.3, the visitor demand is estimated to be some 12,878 across the Festival Period; whereas the visiting capacity for minimum 12 days will be 15,840 visitors, i.e. at least 1.2 times more than the visitor demand.
- Hence, the proposed visiting capacity of 55 persons for each visiting session with the proposed implementation period of minimum 12 days, i.e. 3 weekends before and 3 weekends after the festival day, is considered appropriate and will be sufficient to accommodate the expected visitor demand.
- 3.20 In addition, special arrangement can also be requested by the visitors to visit the Proposed Columbarium on a weekday. Visitors must contact the Applicant inadvance for this special arrangement. The number of visitors on weekday is expected to be negligible, and shall not result in any adverse traffic impact.

Estimation on Pedestrian and Traffic Generation

Traffic Generation at Other Existing Columbarium

- 3.21 To predict the number of visitor and mode of transport associated with the Proposed Columbarium, reference is made to the transport mode of Gig Lok Monastery located at Tuen Fu Lane, Tuen Mum. Gig Lok Monastery has an existing columbarium and it is located around 3km the Proposed Columbarium.
- 3.22 Similar to the Proposed Columbarium, Gig Lok Monastery is also well-served by public transport services, including many franchised bus, GMB and RMB routes along Castle Peak Road Lingnan, and the MTR and LRT Siu Hong Stations. Hence, the transport characteristics, i.e. road and public transport network, between the Gig Lok Monastery and the Proposed Columbarium are similar, and therefore, the mode of transport of Gig Lok Monastery is adopted which is summarised in Table 3.4.

TABLE 3.4 MODE OF TRANSPORT USED BY VISITORS OF GIG LOK MONASTERY

Mode of Transport	Number of Visitors	Average Occupancy	Percentage
LRT and MTR	573	-	53.6%
Private Car	207	4.8	19.3%
Green / Red Minibus and Franchised Bus	104	-	9.7%
Taxi	87	3.8	8.1%
Walk	83	-	7.8%
TOTAL	1,070	_	100%

3.23 Based on Table 3.4, the pedestrian and traffic generations associated with the Proposed Columbarium with the special traffic and crowd management implemented, i.e. with an hourly visiting capacity of 165 persons, are estimated and summarised in Table 3.5.

TABLE 3.5 ESTIMATED TRAFFIC AND PEDESTRIAN GENERATIONS OF THE PROPOSED COLUMBARIUM

Mode of Transport	Percentage	Pedestrian Generation (ped/hour)	Average Occupancy (persons/veh)	Traffic Generation (pcu/hour)
LRT and MTR	53.6%	88	_	-
Private Car	19.3%	32	4.8	7
Green / Red Minibus and Franchised Bus	9.7%	19	-	-
Taxi	8.1%	13	3.8	4
Walk	7.8%	13	-	-
TOTAL	100%	165	_	11

3.24 Table 3.5 shows that, with the special traffic and crowd arrangement implemented during the Ching Ming and Chung Yeung Festival Period, the Proposed Columbarium is expected to generate 165 persons per hour, 7 private car trips per hour, and 4 taxi trips per hour.

4.0 TRAFFIC AND PEDESTRIAN IMPACT

Traffic and Pedestrian Forecast

- 4.1 Reference is made to the TPDM which states "the planning horizon for traffic forecast... should be set at the time when the development is completed or preferably at a design year within 5 years of the completion."
- 4.2 In view the Proposed Columbarium is an existing building which has been completed; the design year is set to be 5 years from Year 2022, i.e. Year 2027.
- 4.3 Two design scenarios were assessed including (i) Year 2027 Festival Days without the Proposed Columbarium, and (ii) Year 2027 Festival Days with the Proposed Columbarium.
- 4.4 After the review of the population projection (Table 2.4) and the historic traffic growth (Table 2.5), a conservative growth rate of 5.0% per annum is adopted to derive the 2027 traffic flows, which is assumed to include the additional traffic and pedestrian generation due to other new developments located in the vicinity of Yat Tak Kwun, such as the Hung Shui Kiu NDA.
- 4.5 Hence, the year 2027 columbarium peak hour traffic flows on the Festival Days are derived as follows:

2027 Traffic / Pedestrian Flows Without the Proposed Columbarium [A] = Existing Traffic / Pedestrian Flows + Estimated Traffic / Pedestrian Growth from 2020 to 2027

2027 Traffic / Pedestrian Flows With the Proposed Columbarium = [A] + Traffic / Pedestrian Generation associated with the Proposed Columbarium

2027 Junction Capacity Analysis

- 4.6 The Year 2027 columbarium peak hour traffic flows without and with the Proposed Columbarium on Ching Ming Festival Day are shown in Figures 4.1 and 4.2 respectively.
- 4.7 Junction capacity analyses for Year 2027 columbarium peak hour are summarised in Table 4.1 and detailed calculations are presented in the Appendix A.

TABLE 4.1 2027 JUNCTION OPERATIONAL PERFORMANCE

	**************************************		Performance Indicator	Peak Hour o	Columbarium n Ching Ming al Day
				Without the Proposed Columbarium	With the Proposed Columbarium
J01	Castle Peak Road – Hung Shui Kiu / Tan Kwai Tsuen Road	Signalised	RC	69%	69%
J02	Castle Peak Road – Hung Shui Kiu / Hung Shui Kiu Main Street	Signalised	RC	79%	76%
J03	Castle Peak Road – Hung Shui Kiu / Wo Ping San Tsuen Lane	Priority	RFC	0.0158	0.0159

Note: RC – Reserve Capacity

RFC - Ratio of Flow to Capacity

4.8 The above results indicate that the analysed junctions are expected to operate with capacity during the columbarium peak hour on the Ching Ming and Chung Yeung Festival Days, and the Proposed Columbarium will have no adverse traffic impact to the junctions analysed.

2027 Footpath Levels of Service Analysis

4.9 Table 4.2 summarises the columbarium peak hour pedestrian flow and results of the LOS analysis on the Ching Ming Festival Day without and with the Proposed Columbarium.

TABLE 4.2 2027 FOOTPATH OPERATIONAL PERFORMANCE

Ped	destrian Facilities	Clear Width (m) ⁽¹⁾	2-way Pede			tes [LOS] n/min) With the Proposed Columbarium
FP01	Footpath along Nullah between Yat Tak Kwun and Castle Peak Road – Hung Shui Kiu	3.0m	184	514	1.0 [A]	2.9 [A]
FP02	Footpath along Castle Peak Road – Hung Shui Kiu westbound between Tan Kwai Tsuen Road and Nullah	4.5m	294	624	1.1 [A]	2.3 [A]
FP03	Footpath along Castle Peak Road – Hung Shui Kiu westbound between Nullah and Wo Ping San Tsuen Lane	3.0m	293	623	1.6 [A]	3.5 [A]

Note:

(1) Width of adjacent cycle track excluded.

4.10 The above results indicate that the footpaths analysed are expected to operate with capacity during the columbarium peak hour on the Ching Ming and Chung Yeung Festival Days. Hence, it can be concluded that the Proposed Columbarium will have no adverse pedestrian impact to the footpaths analysed.

5.0 SUMMARY

- The Application Site includes part of the 2 existing buildings within Yat Tak Kwun (一德觀) located at 45 Tan Kwai Tsuen in Hung Shui Kiu, Yuen Long The Applicant has the intention to regularise 4,456 niches, of which 8 niches are now sold and occupied, 582 niches are sold but vacant, and the remaining 3,866 niches are unsold and vacant.
- 5.2 Special traffic and crowd arrangements will be implemented during the Ching Ming and Chung Yeung Festival Periods, which include the Ching Ming and Chung Yeung Festival Days, 3 weekends before and 3 weekends after the Festival Days, and any public holidays occurring during these periods. This special arrangements include:
 - (i) Mandatory Visit-by-Appointment Arrangement
 - (ii) Reminder on the mandatory no parking policy,
 - (iii) Operation hours will be from 0900 to 1700 hours,
 - (iv) On-site 1-way pedestrian flow, and provision of holding and queuing areas, and
 - (v) Data collection and review of the special traffic arrangement.
- 5.3 Traffic and pedestrian generations of the Proposed Columbarium during the columbarium peak hour on Ching Ming Festival Day were estimated based on the mode of transport obtained surveys conducted at the Gig Lok Monastery which is located in the vicinity.
- 5.4 Special traffic and pedestrian traffic arrangement will be implemented during the Ching Ming and Chung Yeung Festival periods to minimise the potential traffic impact, which includes implementation of the Visit-By-Appointment arrangement. With the Visit-By-Appointment arrangement, the Proposed Columbarium can limit the number of visitors to 55 persons per 20-minute visiting session.
- 5.5 The year 2027 junction capacity and footpath LOS analyses concluded that, the junctions and footpaths analysed are expected to have capacity to accommodate the expected traffic growth and the traffic generated by the Proposed Columbarium.
- 5.6 From traffic engineering aspect, the Proposed Columbarium is acceptable.

PEDESTRIAN ROUTING TO/FROM THE PROPOSED COLUMBARIUM

:\JOB\J6950-J6999\J6963\2022 09\Fig 2.X, 3.X & 4.X RevC.dwg

CKM Asia Limited
Traffic and Transportation Planning Consultants
21st Floor, Methodist House, 36 Hennessy Road, Wan Chai, Hong Kong

Tel: (852) 2520 5990 Fax: (852) 2528 6343 Email: mail@ckmasia.com.hl

Junction:	Castle Peak Roa		ii Kiu / Hun	g Shui Kiu	Main Stre	et								40	Job Numb	er.	J6963
cenario:	Existing Condition										49554					Page	
esign Year:	2020 .	Designed	Ву:		HCF		-	Checked	Ву:		WCH			Date:	30 S	eptember	2022
							%	C	ning Ming C	Columbariu	m Peak H	our					
	Approach		Phase	Stage	Width	Radius	Uphill	Turning		100000		Critical y	Tuming	Sat. Flow	Flow	y value	Critica
				-	(m)	(m)	Gradient	%	(pcu/hr)	(pcu/hr)		500 0001180	%	(pcu/hr)	(pcu/hr)		
astle Peak Road	i – Hung Shui Kiu Ni	3 LT	A1	1	3.50	12.5		100	1754	74	0.042						
astle Peak Road	d – Hung Shui Kiu Ni	3 SA	A2	1,2	3.30		1		2085	156	0.075	0.075					
astle Peak Road	l – Hung Shui Kiu Ni	3 SA	A3	1,2	3.30				2085	156	0.075						
astle Peak Road	I – Hung Shui Kiu Ni	3 SA	A4	1,2	3.30				2085	156	0.075						
ung Shui Kiu Ma	in Street	LT	B2	3	3.30	21.0		100	1815	139	0.076						
							-										

		-															
edestrian Phase			E _(P)	2		Min	Crossing Ti	me =	6	sec (GM +	6	sec F	GM =	12	sec	
oon Traffic Flow	w (pcu/hr)		N													-	
loon Traffic Flow	w (peu/hr)		N #				-					40 + 100 (: S / (1 + 1				80 + 100 (\ - 230) / (1	
	139		5000									S/(1+1		Hour			
	139	*	5000									S/(1+1	.5 f/r)	Hour Check			
		*	5000									S / (1 + 1	.5 f/r) Col. Peak				
	139	*	5000								S _M =	CM Check 2 0.075	.5 f/r) Col. Peak Check 1,2,3 0.1936				
	139	*	5000								S _M =	Check 2 0.075 36	.5 f/r) Col. Peak Check 1,2,3 0.1936 14				
Joon Traffic Flow 74 468	139	▶	5000								Sum y L (s) C (s)	Check 2 0.075 36	.5 f/r) Col. Peak Check 1,2,3 0.1936 14 60				
	139	*	5000								Sum y L (s) C (s) Prac. y	Check 2 0.075 36 60 0.360	5 f/r) Col. Peak Check 1,2,3 0.1936 14 60 0.690				
74 468	139	>	5000								Sum y L (s) C (s)	Check 2 0.075 36	.5 f/r) Col. Peak Check 1,2,3 0.1936 14 60				
	139	2	5000			3				4	Sum y L (s) C (s) Prac. y	Check 2 0.075 36 60 0.360	5 f/r) Col. Peak Check 1,2,3 0.1936 14 60 0.690				
74 468	139	2	<i>†</i>	1.		3		B2		4	Sum y L (s) C (s) Prac. y	Check 2 0.075 36 60 0.360	5 f/r) Col. Peak Check 1,2,3 0.1936 14 60 0.690	Check			
74 468	139	2	5000	→ 4		3		B2		4	Sum y L (s) C (s) Prac. y	Check 2 0.075 36 60 0.360	5 f/r) Col. Peak Check 1,2,3 0.1936 14 60 0.690	Check			
74 468	139 	2 LRT	₽	- ▶		3 LRT	⊢ –	_ Ļ		4	Sum y L (s) C (s) Prac. y	Check 2 0.075 36 60 0.360	5 f/r) Col. Peak Check 1,2,3 0.1936 14 60 0.690	Check			
74 468 OTE:	139	LRT	£ _(p)	- ▶	LRT	LRT		_ Ļ	LRT	4	Sum y L (s) C (s) Prac. y	Check 2 0.075 36 60 0.360	5 f/r) Col. Peak Check 1,2,3 0.1936 14 60 0.690	Check			
74 468 OTE:	139 	LRT	€ _(P)	- ▶	LRT	LRT A1		_ Ļ	LRT	4	Sum y L (s) C (s) Prac. y	Check 2 0.075 36 60 0.360	5 f/r) Col. Peak Check 1,2,3 0.1936 14 60 0.690	Check			
74 468 OTE:	139 	LRT A1 A2	♣	- ▶	LRT	LRT A1 A2	 -	_ Ļ	LRT	4	Sum y L (s) C (s) Prac. y	Check 2 0.075 36 60 0.360	5 f/r) Col. Peak Check 1,2,3 0.1936 14 60 0.690	Check			
74 468 IOTE: LRT	139 	LRT A1 A2 A3	↑	- ▶	LRT	LRT A1 A2 A3		_ Ļ	LRT	4	Sum y L (s) C (s) Prac. y	Check 2 0.075 36 60 0.360	5 f/r) Col. Peak Check 1,2,3 0.1936 14 60 0.690	Check			
74 468 IOTE:	139 	LRT A1 A2	↑	- ▶	LRT	LRT A1 A2		_ Ļ	LRT	4	Sum y L (s) C (s) Prac. y	Check 2 0.075 36 60 0.360	5 f/r) Col. Peak Check 1,2,3 0.1936 14 60 0.690	Check			
74 468 IOTE: LRT	139 	LRT A1 A2 A3	↑	- ▶	LRT	LRT A1 A2 A3		_ Ļ	LRT	4	Sum y L (s) C (s) Prac. y	Check 2 0.075 36 60 0.360	5 f/r) Col. Peak Check 1,2,3 0.1936 14 60 0.690	Check			
74 468 IOTE: LRT	139 	LRT A1 A2 A3	↑	- ▶	LRT	LRT A1 A2 A3		_ Ļ	LRT	4	Sum y L (s) C (s) Prac. y	Check 2 0.075 36 60 0.360	5 f/r) Col. Peak Check 1,2,3 0.1936 14 60 0.690	Check			
74 468 IOTE: LRT	1339	LRT A1 A2 A3 A4	₽	- ▶		LRT A1 A2 A3 A4	 	 			Sum y L (s) C (s) Prac. y R.C. (%)	Check 2 0.075 36 60 0.360	.5 f/r) Col. Peak Check 1,2,3 0.1936 14 60 0.690 256%	Check	S _M = (S	- 230) / (1	
74 468 IOTE: LRT	139 LRT	LRT A1 A2 A3	↑	- ▶	I/G =	LRT A1 A2 A3 A4		 	LRT I/G = I/G =	5	Sum y L (s) C (s) Prac. y	Check 2 0.075 36 60 0.360	5 f/r) Col. Peak Check 1,2,3 0.1936 14 60 0.690	Check		- 230) / (1	
74 468 OTE: LRT	139 LRT	A1 A2 A3 A4 = 3 = 3	₽ E (P) → → → → → → → →	- ▶		LRT A1 A2 A3 A4	G=	 	I/G =	5	S _M = Sum y L (s) C (s) Prac. y R.C. (%)	Check 2 0.075 36 60 0.360	.5 f/r) Col. Peak Check 1,2,3 0,1936 14 60 0,690 256%	Check	S _M = (S	- 230) / (1	
74 468 OTE: LRT	139 LRT	A1 A2 A3 A4 = 3 = 3 = 3 =	₹	- ▶	I/G = I/G =	LRT A1 A2 A3 A4	G = G =	 	I/G = I/G =	5	S _M = Sum y L (s) C (s) Prac. y R.C. (%)	Check 2 0.075 36 60 0.360	.5 f/r) Col. Peak Check 1,2,3 0.1936 14 60 0.690 256%	Check	G = G =	- 230) / (1	
74 468 OTE: LRT	139 LRT	A1 A2 A3 A4 A4 = 3 = 3 = 3 = 3	G = G = G =	- ▶	I/G = I/G =	LRT A1 A2 A3 A4	G = G = G =	 	I/G = I/G = I/G =	5	S _M = Sum y L (s) C (s) Prac. y R.C. (%)	Check 2 0.075 36 60 0.360	.5 f/r) Col. Peak Check 1,2,3 0.1936 14 60 0.690 256%	Check	G = G = G =	- 230) / (1	

Junction:	Castle Peak Road	- Hung Shu	i Kiu / Hun	g Shui Kiu	Main Stre	et									Job Numb	er.	J6963
Scenario:	Without Proposed	Columbariur	m													Page	
Design Year:	2026	Designed	Ву:		HCF	114.50		Checked	Ву:		WCH			Date:	30 S	eptember	2022
							%	C	hing Ming C	Columbariu	m Deak H	our					
	Approach		Phase	Stage	Width	Radius	Uphill	Turning			y value		Turning %	Sat. Flow	Flow	y value	Critica
	Approach				(m)	(m)	Gradient	%	(pcu/hr)	(pcu/hr)	,			(pcu/hr)	(pcu/hr)		
Castle Peak Road -	Hung Shui Kiu NB	LT	A1	1	3.50	12.5		100	1754	105	0.060						
Castle Peak Road -		SA	A2	1,2	3,30				2085	220	0.106	0.106					
Castle Peak Road -		SA	А3	1,2	3.30				2085	220	0.106						
		SA	A4	1,2	3.30				2085	219	0.105						
lung Shui Kiu Main	Street	LT	B2	3	3.30	21.0		100	1815	195	0.107	0.107					
Pedestrian Phase			P1	1		Min	Crossing T	me =	5	sec	GM+	6	sec F	GM =	11	sec	
			P2	3			Crossing T	0.00	5	sec	GM+	7	sec F	GM =	12	sec	
			P3	1, 2		Min	Crossing T	ime =	5	sec	GM +	8	sec F	GM =	13	sec	
		Olemano de la como							-								
									-								
loon Traffic Flow ((pcu/hr)		N A									40 + 100 (= S / (1 + 1	.5 f/r)	Hour		80 + 100 (- 230) / (1	
Noon Traffic Flow (·									S _M :	S / (1 + 1 CM Check 2	.5 f/r) Col. Peak Check 1,2,3	Hour Check			
105 .		>									S _M :	CM Check 2 0.213	.5 f/r) Col. Peak Check 1,2,3 0.2728				
105 .		>									Sum y	S / (1 + 1 CM Check 2	.5 f/r) Col. Peak Check 1,2,3				
		>									S _M :	CM Check 2 0.213	.5 f/r) Col. Peak Check 1,2,3 0.2728 14				
105 . 659		>									Sum y L (s) C (s)	CM Check 2 0.213 36 60 0.360	.5 f/r) Col. Peak Check 1,2,3 0.2728 14 60				
105 .		>									Sum y L (s) C (s) Prac. y	CM Check 2 0.213 36 60 0.360	.5 f/r) Col. Peak Check 1,2,3 0.2728 14 60 0.690	Check			
105 . 659 :	195	2	<i>*</i>			3		B2		4	Sum y L (s) C (s) Prac. y	CM Check 2 0.213 36 60 0.360	.5 f/r) Col. Peak Check 1,2,3 0.2728 14 60 0.690				
105 659 NOTE:			↑	→ 4				B2		4	Sum y L (s) C (s) Prac. y	CM Check 2 0.213 36 60 0.360	.5 f/r) Col. Peak Check 1,2,3 0.2728 14 60 0.690	Check			
105 . 659	195 L4	2 LRT	↑	- \ \ >				B2		4	Sum y L (s) C (s) Prac. y	CM Check 2 0.213 36 60 0.360	.5 f/r) Col. Peak Check 1,2,3 0.2728 14 60 0.690	Check			
105	195	LRT	E _P ,	→ 4	LRT	LRT		B2	LRT	4	Sum y L (s) C (s) Prac. y	CM Check 2 0.213 36 60 0.360	.5 f/r) Col. Peak Check 1,2,3 0.2728 14 60 0.690	Check			
105 659 NOTE:	195 L4	LRT A1	♣ E _P ,	→ ¹ 4	LRT	LRT		B2 	LRT	4	Sum y L (s) C (s) Prac. y	CM Check 2 0.213 36 60 0.360	.5 f/r) Col. Peak Check 1,2,3 0.2728 14 60 0.690	Check			
105 659 NOTE: LRT	195 L4	LRT A1 A2	₹ 4	→ ¹ 4	LRT	LRT A1 A2	 	B2 	LRT	4	Sum y L (s) C (s) Prac. y	CM Check 2 0.213 36 60 0.360	.5 f/r) Col. Peak Check 1,2,3 0.2728 14 60 0.690	Check			
105 659 NOTE:	195 L4	LRT A1	₹ 4	→ ¹ 4	LRT	LRT	 	B2	LRT	4	Sum y L (s) C (s) Prac. y	CM Check 2 0.213 36 60 0.360	.5 f/r) Col. Peak Check 1,2,3 0.2728 14 60 0.690	Check			
105 659 NOTE:	195 L4	LRT A1 A2 A3	₹ 4	. ↓ ↓ - ▶	LRT	LRT A1 A2	 	B2	LRT	4	Sum y L (s) C (s) Prac. y	CM Check 2 0.213 36 60 0.360	.5 f/r) Col. Peak Check 1,2,3 0.2728 14 60 0.690	Check			
105 659 NOTE:	195 	LRT A1 A2 A3 A4	↑ E _{pp} → → → → → → → →			LRT A1 A2 A3 A4		 1	LRT		Sum y L (s) C (s) Prac. y	= S / (1 + 1 CM Check 2 0.213 36 60 0.360 69%	.5 f/r) Col. Peak Check 1,2,3 0.2728 14 60 0.690	Check		- 230) / (1	
105 659 NOTE:	195 	A1 A2 A3 A4	₹ 4		VG = VG =	A1 A2 A3 A4	 	 1		5	Sum y L (s) C (s) Prac. y R.C. (%)	= S / (1 + 1 CM Check 2 0.213 36 60 0.360 69%	.5 f/r) Col. Peak Check 1,2,3 0.2728 14 60 0.690 153%	5	S _M = (S	- 230) / (1	
105 659 NOTE: 1 LRT	195 LRT	A1 A2 A3 A4	↑ E _{pp}		I/G =	A1 A2 A3 A4	G=	 1	VG =	5	Sum y L (s) C (s) Prac. y R.C. (%)	= S / (1 + 1 CM Check 2 0.213 36 60 0.360 69%	.5 f/r) Col. Peak Check 1,2,3 0.2728 14 60 0.690 153%	5	S _M = (S	- 230) / (1	
105 659 NOTE: A1 A2 A3 A4 A4 A4 A6 G = G =	195 LRT	A1 A2 A3 A4	♣ E _{ρ,}		I/G = I/G =	A1 A2 A3 A4	G = G =	 1	VG = VG =	5	Sum y L (s) C (s) Prac. y R.C. (%)	= S / (1 + 1 CM Check 2 0.213 36 60 0.360 69%	.5 f/r) Col. Peak Check 1,2,3 0.2728 14 60 0.690 153%	5	G = G = G = G =	- 230) / (1	
105 659 NOTE: A1 A2 A3 A4 A4 A4 A4 A6 G = G = G = G = G = G = G = G = G	195 LRT 10 V/G V/G V/G V/G V/G	LRT A1 A2 A3 A4	₹ ————————————————————————————————————	>	VG = VG =	A1 A2 A3 A4	G = G = G = G =	 1	VG = VG = VG =	5 5	Sum y L (s) C (s) Prac. y R.C. (%)	= S / (1 + 1 CM Check 2 0.213 36 60 0.360 69%	.5 f/r) Col. Peak Check 1,2,3 0.2728 14 60 0.690 153%	5	S _M = (S	- 230) / (1	

Junction:	Castle Peak Road	- Hung Shu	i Kiu / Hun	g Shui Kiu	Main Stree	et									Job Numb	er.	J6963
Scenario:	With Proposed Co								-							Page	3
Design Year.	2026	Designed	Ву:		HCF			Checked	Ву:		WCH			Date:	30 S	eptember	2022
					1.00		%		ning Ming C						_		
	Approach		Phase	Stage	Width	Radius	Uphill	5.	Sat. Flow		y value	Critical y	Turning %	Sat. Flow		y value	Critical
Castle Book Bood	- Hung Shui Kiu NB	LT	۸1	1	(m) 3.50	(m)	Gradient	100	(pcu/hr) 1754	(pcu/hr) 105	0.060			(pcu/hr)	(pcu/hr)		
	- Hung Shui Kiu NB - Hung Shui Kiu NB	SA	A1 A2	1,2	3.30	12.5		100	2085	221	0.106	0.106					
AND THE PERSON NAMED IN COLUMN TWO	- Hung Shui Kiu NB	SA	A3	1,2	3,30				2085	221	0.106	0.106					
Dasile F Cak Hoad	- Hang Sharkla 145	SA	A4	1,2	3.30			-	2085	222	0.106						
				1,2	0.00				2000		0.700						-
Hung Shui Kiu Mair	n Street	LT	B2	3	3.30	21.0		100	1815	195	0.107	0.107					
																	-
Pedestrian Phase			P1	1		Min (Crossing Ti	me =	5	sec	GM+	6	sec F	GM =	11	sec	
III			P2	3		700000	Crossing Ti		5	sec		7		GM =	12	sec	
			P3	1, 2			Crossing Ti		5	sec	0.01(0),000	8		GM =	13	sec	
	(pcu/hr)		N #										.5 f/r) Col. Peak			80 + 100 (\ - 230) / (1	
Noon Traffic Flow		•										S/(1+1	.5 f/r)	Hour Check			
105		-									S _M =	Check 2 0.213	5 f/r) Col. Peak Check 1,2,3 0.2733 14				
105 . 664 1											Sum y L (s) C (s)	Check 2 0.213 36 60	5 f/r) Col. Peak Check 1,2,3 0.2733 14 60				
Noon Traffic Flow		2				3				4	Sum y L (s) C (s) Prac. y	Check 2 0.213 36 60 0.360	5 f/r) Col. Peak Check 1,2,3 0.2733 14 60 0.690				
105 . 664 1		LRT A1 A2 A3	↑ E _P	- ▶ '	LRT	LRT	<u> </u>	B2	LRT	4	Sum y L (s) C (s) Prac. y	Check 2 0.213 36 60 0.360	5 f/r) Col. Peak Check 1,2,3 0.2733 14 60 0.690	Check			
105 664 NOTE: A1	195 LRT	LRT A1 A2 A3 A4	₹	- ▶ '	I/G =	LRT A1 A2 A3 A4	G = G =	 	LRT	5	S _M = Sum y L (s) C (s) Prac. y R.C. (%)	Check 2 0.213 36 60 0.360	5.5 f/r) Col. Peak Check 1,2,3 0.2733 14 60 0.690 153%	Check	G = G =		
105 664 IOTE: LRT	195 195 LRT	LRT A1 A2 A3 A4	₹	- ▶ '	I/G =	LRT A1 A2 A3 A4	G = G = G = G =	 	I/G = I/G =	5	S _M = Sum y L (s) C (s) Prac. y R.C. (%)	Check 2 0.213 36 60 0.360	5.5 f/r) Col. Peak Check 1,2,3 0.2733 14 60 0.690 153%	Check	G = G = G =		
105 664 NOTE:	195 LRT 10	LRT A1 A2 A3 A4 A4	₹	- ▶ '	I/G =	LRT A1 A2 A3 A4	G = G =	 	LRT	5	S _M = Sum y L (s) C (s) Prac. y R.C. (%)	Check 2 0.213 36 60 0.360	5.5 f/r) Col. Peak Check 1,2,3 0.2733 14 60 0.690 153%	Check	G = G =		

	Name and the same			Kwai i sue	en Road										Job Numb	er.	J6963
Scenario:	Existing Condition	Desired	D		1105			0 1 1			141011				20.0	Page	
Design Year:	2020	Designed	ву:		HCF		-00	Checked	ву:		WCH		-	Date:		eptember	2022
			T			T	%	С	hing Ming (Columbario	ım Peak H	our					
	Approach		Phase	Stage	Width	Radius	Uphill	-	Sat. Flow		y value	Critical y	Turning	Sat. Flow	Flow	y value	Critica
					(m)	(m)	Gradient	%	(pcu/hr)	(pcu/hr)			%	(pcu/hr)	(pcu/hr)		
Castle Peak Road -	- Hung Shui Kiu WB	SA	A1	1	3.50				1965	241	0.123	0.123					
Castle Peak Road -	- Hung Shui Kiu WB	SA	A2	1	3.50				2105	259	0.123						
Tan Kwai Tsuen Str	reet NB	LT	B1	3	3.75	15.0		100	1809	105	0.058	0.058					
Jastle Peak Road -	- Hung Shui Kiu EB	RT	C1	2	3.30	20.0		100	1809	136	0.075	0.075					
								_					_				_
						-		 						-		-	
												2.00					
Pedestrian Phase			I _(P)	1		Min	Crossing T	ime =	10	sec	GM +	7	sec F	GM =	17	sec	

																-	
										and the same of th	And to the state of						
											S _M s	S/(1+1	The second second		S _M = (S	- 230) / (1	
136 —	1										- 5 _M =	The second second	.5 f/r) Col. Peak Check	Hour	S _M = (S	- 230) / (1	
136 —	→ ←	500										CM Check	Col. Peak Check 1	Hour	S _M = (S	- 230) / (1	
136	→ ←	500									Sum y	CM Check 1+2+3 0.256	Col. Peak Check 1 0.123	Hour	S _M = (S	- 230) / (1	
136 -	→ ←	500									Sum y L (s)	CM Check 1+2+3 0.256	Col. Peak Check 1 0.123 35	Hour	5 _M = (5	- 230) / (1	
136 —	105	500									Sum y L (s) C (s)	CM 6 Check 1+2+3 0.256 17 60	Col. Peak Check 1 0.123 35 60	Hour	5 _M = (5	- 230) / (1	
136 —	105	500									Sum y L (s) C (s) Prac. y	CM 6 Check 1+2+3 0.256 17 60 0.645	Col. Peak Check 1 0.123 35 60 0.375	Hour	5 _M = (5	- 230) / (1	
	105	500									Sum y L (s) C (s)	CM 6 Check 1+2+3 0.256 17 60	Col. Peak Check 1 0.123 35 60	Hour	S _M = (S	- 230) / (1	
136 —	105	500				3				4	Sum y L (s) C (s) Prac. y	CM 6 Check 1+2+3 0.256 17 60 0.645	Col. Peak Check 1 0.123 35 60 0.375	Hour	S _M = (5	- 230) / (1	
	105					3 C1				4	Sum y L (s) C (s) Prac. y	CM 6 Check 1+2+3 0.256 17 60 0.645	Col. Peak Check 1 0.123 35 60 0.375		S _M = (5	- 230)/(1	
NOTE:	A1 A2	2	-		A1 A2				A1 A2	4	Sum y L (s) C (s) Prac. y	CM 6 Check 1+2+3 0.256 17 60 0.645	Col. Peak Check 1 0.123 35 60 0.375		S _M = (5	- 230)/(1	
NOTE:	A1	2 C1	₩ B1							4	Sum y L (s) C (s) Prac. y	CM 6 Check 1+2+3 0.256 17 60 0.645	Col. Peak Check 1 0.123 35 60 0.375		S _M = (5	- 230)/(1	
CI .	A1	2 <u>C1</u>	+			C1					Sum y L (s) C (s) Prac. y	CM 6 Check 1+2+3 0.256 17 60 0.645	Col. Peak Check 1 0.123 35 60 0.375		S _M = (5	- 230)/(1	
C1 B1	A1	2 <u>C1</u>	в1 Т	-	A2	C1	B1 ◀	10	A2	6	Sum y L (s) C (s) Prac. y R.C. (%)	CM 6 Check 1+2+3 0.256 17 60 0.645	Col. Peak			- 230)/(1	
Col. PH G = G = G = G =	A1 A2 I(P) V/G = V/G = V/G =	2 <u>C1</u> 5 5 5	B1	-	A2	C1	B1 ◆ G =	10	A2	6	Sum y L (s) C (s) Prac. y R.C. (%)	CM 6 Check 1+2+3 0.256 17 60 0.645	Col. Peak		G = G = G =	- 230)/(1	
Col. PH G = G = G = G = G = G = G = G = G = G	A1 A2 I _(P) I/G = I/G = I/G = I/G =	2 <u>C1</u> 5 5 5	G = G = G = G =	-	I/G = I/G = I/G =	C1	G = G = G = G =	10	NG = 1/G = 1/G = 1/G =	6	Sum y L (s) C (s) Prac. y R.C. (%) G = G = G = G = G = G =	CM 1 Check 1+2+3 0.256 17 60 0.645 152%	Col. Peak	5	G = G = G =	- 230)/(1	
C1 B1 G = G = G = G =	A1 A2 I _(P) I/G =	2 <u>C1</u> 5 5 5	B1 ☐ G = G = G = G =	-	I/G = I/G = I/G =	C1	G = G = G =	10	A2 I/G = I/G = I/G =	6	Sum y L (s) C (s) Prac. y R.C. (%)	CM 1 Check 1+2+3 0.256 17 60 0.645 152%	Col. Peak	5	G = G = G =	- 230)/(1	

Junction:	Castle Peak Road			Kwai Isue	en Road										Job Numb	er.	J6963
Scenario:	Without Proposed															Page	
Design Year:	2026	Designed	ву:		HCF		-	Checked	BA:		WCH		-	Date:	30 S	eptember	2022
							%	С	hing Ming C	Columbariu	m Peak H	our					
	Approach		Phase	Stage	Width	Radius	Uphill	Turning	Sat. Flow	Flow	y value	Critical y	Turning %	Sat. Flow	Flow	y value	Critical
					(m)	(m)	Gradient	%	(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		
	- Hung Shui Kiu WB		A1	1	3.50				1965	340	0.173	0.173					
Castle Peak Road -	- Hung Shui Kiu WB	SA	A2	1	3,50				2105	364	0.173						
Tan Kwai Tsuen Str	reet NB	LT	B1	3	3.75	15.0		100	1809	148	0.082	0.082					
_ Castle Peak Road -	- Hung Shui Kiu EB	RT	C1	2	3.30	20.0		100	1809	191	0.106	0.106					
Pedestrian Phase	***************************************		P1	1		Min	Crossing Ti	me =	5	sec	GM +	6	sec F	GM =	11	sec	
			P2	3		_	Crossing Ti		5		GM +	7		GM =	12	sec	
			P3	1, 2		Min	Crossing Ti	me =	5	sec	GM +	8	sec F	GM =	13	sec	
191 -																	
101	† ←	704									Sum y L (s) C (s)	Check 1+2+3 0.360 17 60	1 0.173 35 60				
	148	704									L (s)	1+2+3 0.360 17	1 0.173 35				
NOTE:	148										L (s) C (s) Prac. y	1+2+3 0.360 17 60 0.645	1 0.173 35 60 0.375				
NOTE:	148	2				3				4	L (s) C (s) Prac. y	1+2+3 0.360 17 60 0.645	1 0.173 35 60 0.375	5			
NOTE:	148 A1 A2		-		A1 A2	3 C1			A1 A2	4	L (s) C (s) Prac. y	1+2+3 0.360 17 60 0.645	1 0.173 35 60 0.375	5			
NOTE:	A1	2 C1	в1 Т			C1		——————————————————————————————————————	A1	4	L (s) C (s) Prac. y	1+2+3 0.360 17 60 0.645	1 0.173 35 60 0.375	5			
Col. PH G =	A1 A2 I(P) I/G =	2 <u>C1</u>	G =	—	A2	C1 9	G =	——————————————————————————————————————	A1 A2 I/G =	6	L (s) C (s) Prac. y R.C. (%)	1+2+3 0.360 17 60 0.645	1 0.173 35 60 0.375 117%	5	G =		
Col. PH G = G =	A1	2 <u>C1</u> 5 5 5	G = G =	—	I/G = I/G =	C1 9	G = G =	10	A1	6	L (s) C (s) Prac. y R.C. (%) G = G = G =	1+2+3 0.360 17 60 0.645	1 0.173 35 60 0.375 117%	5	G =		
Col. PH G =	A1 A2 I(P) I/G = I/G = I/G = I/G =	2 <u>C1</u> 5 5 5	G =	—	A2	C1 9	G =	10	A1 A2 I/G =	6	L (s) C (s) Prac. y R.C. (%)	1+2+3 0.360 17 60 0.645	1 0.173 35 60 0.375 117%	5			
Col. PH G = G = G = G =	A1 A2 I(P) I/G = I	2 <u>C1</u>	G = G = G =	—	I/G = I/G = I/G =	C1 9	G = G = G =	10	A1 A2 I/G = I/G = I/G =	6	L (s) C (s) Prac. y R.C. (%) G = G = G = G =	1+2+3 0.360 17 60 0.645	1 0.173 35 60 0.375 117% V/G =	5	G = G =		

Junction:	Castle Peak Road		i Kiu / Tan	Kwai Tsue	n Road									3	Job Numb		J6963
Scenario:	With Proposed Col				1105						141411				22.0	Page	
esign Year:	2026	Designed	ву:		HCF		-	Checked	ву:		WCH			Date:	30 3	eptember	2022
							%	CI	ning Ming C	Columbariu	ım Peak H	our				-	
	Approach		Phase	Stage	Width	Radius	Uphill	Turning			y value		Turning %	Sat. Flow	Flow	y value	Critica
					(m)	(m)	Gradient	%	(pcu/hr)	(pcu/hr)				(pcu/hr)	(pcu/hr)		
Castle Peak Road –	- Hung Shui Kiu WB	SA	A1	1	3.50				1965	340	0.173	0.173					
Castle Peak Road –	- Hung Shui Kiu WB	SA	A2	1	3.50				2105	364	0.173						
					11.543.15.5												
Tan Kwai Tsuen Stre	eet NB	LT	B1	3	3.75	15.0		100	1809	153	0.085	0.085					
O#- D!- D#	United Shall Kin ED	DT	- 04	_	2.22	20.0		400	4000	100	0.400	0.400					
Castle Peak Road -	- Hung Shui Kiu EB	RT	C1	2	3.30	20.0		100	1809	196	0.108	0.108					
													-	-			
																	110.00
Pedestrian Phase			P1	1			Crossing Ti		5		GM +	6		GM =	11	sec	
			P2	3			Crossing Ti		5	1000000	GM +	7	2000000	FGM =	12	sec	
			P3	1, 2		Min	Crossing Ti	me =	5	sec (GM +	8	sec l	FGM =	13	sec	
oon Traffic Flow ((pcu/hr)		N						N			40 + 100 (S / (1 + 1		Hour		80 + 100 (V - 230) / (1	
loon Traffic Flow (i	_	704	N				The star state of the star star star star star star star star		N		S _M =	CM Check 1+2+3 0.366	.5 f/r) Col. Peak Check 1 0.173	Hour			
	_	704	N						N		S _M =	Check 1+2+3 0.366	.5 f/r) Col. Peak Check 1 0.173 35	Hour			
Noon Traffic Flow ()	→ ←	704	N						N		Sum y L (s) C (s)	Check 1+2+3 0.366 17	.5 f/r) Col. Peak Check 1 0.173 35 60	Hour			
	_	704	N						N		Sum y L (s) C (s) Prac. y	Check 1+2+3 0.366 17 60 0.645	5 f/r) Col. Peak Check 1 0.173 35 60 0.375	Hour			
196 —	→ ←	704	N						N		Sum y L (s) C (s)	Check 1+2+3 0.366 17	.5 f/r) Col. Peak Check 1 0.173 35 60	Hour			
	→ ←		N								Sum y L (s) C (s) Prac. y	Check 1+2+3 0.366 17 60 0.645	5 f/r) Col. Peak Check 1 0.173 35 60 0.375				
196 —	→ ←	704	N			3				4	Sum y L (s) C (s) Prac. y	Check 1+2+3 0.366 17 60 0.645	5 f/r) Col. Peak Check 1 0.173 35 60 0.375	Hour			
196 —	→ ←		N			3				4	Sum y L (s) C (s) Prac. y	Check 1+2+3 0.366 17 60 0.645	5 f/r) Col. Peak Check 1 0.173 35 60 0.375				
196 —	→ ←		N			3				4	Sum y L (s) C (s) Prac. y	Check 1+2+3 0.366 17 60 0.645	5 f/r) Col. Peak Check 1 0.173 35 60 0.375				
196 —	→ ←	2	N							4	Sum y L (s) C (s) Prac. y	Check 1+2+3 0.366 17 60 0.645	5 f/r) Col. Peak Check 1 0.173 35 60 0.375				
196 —	→ ←		N			3				4	Sum y L (s) C (s) Prac. y	Check 1+2+3 0.366 17 60 0.645	5 f/r) Col. Peak Check 1 0.173 35 60 0.375				
196 —	→ ←	2	N		A1					4	Sum y L (s) C (s) Prac. y	Check 1+2+3 0.366 17 60 0.645	5 f/r) Col. Peak Check 1 0.173 35 60 0.375				
196 —	153	2	N							4	Sum y L (s) C (s) Prac. y	Check 1+2+3 0.366 17 60 0.645	5 f/r) Col. Peak Check 1 0.173 35 60 0.375				
196 —	153 A1 A2 I(P)	2 <u>C1</u>	-		A 1		<u></u>		A1	4	Sum y L (s) C (s) Prac. y	Check 1+2+3 0.366 17 60 0.645	5 f/r) Col. Peak Check 1 0.173 35 60 0.375				
196 —	153 A1 A2	2 <u>C1</u>	N B1		A 1			<u> </u>	A1	4	Sum y L (s) C (s) Prac. y	Check 1+2+3 0.366 17 60 0.645	5 f/r) Col. Peak Check 1 0.173 35 60 0.375				
196 —	153 A1 A2 I(P)	2 <u>C1</u>	→		A1 A2	C1	B1 ◀		A1 A2		S _M = Sum y L (s) C (s) Prac. y R.C. (%)	Check 1+2+3 0.366 17 60 0.645	.5 f/r) Col. Peak Check 1 0.173 35 60 0.375 117%		S _M = (S		
196 —	153 A1 A2 I(P)	2 <u>c1</u>	-		A 1	C1	<u></u>		A1 A2	6	Sum y L (s) C (s) Prac. y	Check 1+2+3 0.366 17 60 0.645	.5 f/r) Col. Peak Check 1 0.173 35 60 0.375 117%				
196 — NOTE: B1 1	A1 A2 I(P)	2 <u>c1</u>	B1		A1 A2 I/G =	C1	B1 ◀ G =		A1 A2	6	S _M = Sum y L (s) C (s) Prac. y R.C. (%)	Check 1+2+3 0.366 17 60 0.645	.5 f/r) Col. Peak Check 1 0.173 35 60 0.375 117%		S _M = (S		
196 — NOTE: B1	A1 A2 I(P) I/G = I/G =	2 <u>C1</u> 5 5 5	G = G =		A1 A2 I/G = I/G =	C1	G = G =		A1 A2 I/G = I/G =	6	S _M = Sum y L (s) C (s) Prac. y R.C. (%)	Check 1+2+3 0.366 17 60 0.645	.5 f/r) Col. Peak Check 1 0.173 35 60 0.375 117%		G = G =		
196 — NOTE: B1	153 A1 A2 I(P) I/G = I/G = I/G = I/G =	2 <u>C1</u> 5 5 5	G = G = G =		A1 A2 I/G = I/G = I/G =	C1	G = G = G =	—	A1 A2 I/G = I/G = I/G =	6	S _M = Sum y L (s) C (s) Prac. y R.C. (%)	Check 1+2+3 0.366 17 60 0.645	.5 f/r) Col. Peak Check 1 0.173 35 60 0.375 117%		G = G = G =		

Priority Junction Analysis

Priority Junction Analysis

Priority Junction Analysis

Castle Peak Road – Hung Shui Kiu / Wo Ping San Tsuen Lane Job Number: J6963 Junction: P 9 Scenario: With Proposed Columbarium 44834 Design Year: 2026 Designed By: Checked By: Date: Castle Peak Road - Hung Shui Kiu (Arm C) Castle Peak Road - Hung Shui Kiu (Arm A) 849 8 North 9 Noon Wo Ping San Tsuen Lane (Arm B) The predictive equations of capacity of movement are: Q-BA = D[627 + 14W-CR - Y(0.364q-AC + 0.144q-AB + 0.229q-CA + 0.52q-CB)]Q-BC = E[745 - Y(0.364q-AC + 0.144q-AB)]Q-CB = F[745 - 0.364Y(q-AC + q-AB)]The geometric parameters represented by D, E, F are: D = [1 + 0.094(w-BA - 3.65)][1 + 0.0009(V-rBA - 120)][1 + 0.0006(V-lBA - 150)]E = [1 + 0.094(w-BC - 3.65)][1 + 0.0009(V-rBC - 120)]F = [1 + 0.094(w-CB - 3.65)][1 + 0.0009(V-rCB - 120)]Y = 1 - 0.0345Wwhere q-AB, etc = the design flow of movement AB, etc W = major road width W-CR = central reserve width w-BA, etc = lane width to vehicle v-rBA, etc = visibility to the right for waiting vehicles in stream BA, etc v-IBA, etc = visibility to the left for waiting vehicles in stream BA, etc Calculated Geometry: Input Input Input W 7.30 V-rBA w-BA 0.00 D 0.5332 W-CR E 1.1066 0.00 V-IBA 0 w-BC 5.00 F 0.5860 V-rBC 100 w-CB 0.00 Υ 0.7482 V-rCB 0 Analysis: Traffic Flows, pcu/hr Capacity, pcu/hr Noon Noon Q-BA 211 q-CA 0 q-CB 0 Q-BC 568 Q-CB 300 q-AB 8 568 849 Q-BAC q-AC q-BA 0 q-BC 9 1.000 Ratio-of-flow to Capacity AM 0.016 B-C