METRO PLANNING COMMITTEE OF THE TOWN PLANNING BOARD

MPC Paper No. 9/16
For Consideration by the
Metro Planning Committee on 15.7.2016

PROPOSE AMENDMENTS TO
THE APPROVED NORTH POINT OUTLINE ZONING PLAN NO. S/H8/24

PROPOSED AMENDMENTS TO THE APPROVED NORTH POINT OUTLINE ZONING PLAN NO. S/H8/24

1. Introduction

This paper is to seek Members' agreement that:

- (a) the proposed amendments to the approved North Point Outline Zoning Plan (OZP) No. S/H8/24 as shown on the draft OZP No. S/H8/24A (**Attachment II**) (to be renumbered as S/H8/25 upon exhibition) and its Notes (**Attachment III**) are suitable for exhibition for public inspection under section 5 of the Town Planning Ordinance (the Ordinance); and
- (b) the revised Explanatory Statement (ES) of the OZP (**Attachment IV**) is an expression of the planning intentions and objectives of the Town Planning Board (the Board) for the various land use zonings of the draft OZP No. S/H8/24A (to be renumbered as S/H8/25 upon exhibition) and is suitable for exhibition together with the draft OZP.

2. Status of the Current OZP

- 2.1 On 30.11.2010, the Chief Executive in Council (CE in C) under section 9(1)(a) of the Ordinance approved the draft North Point OZP. On 10.12.2010, the approved North Point OZP No. S/H8/24 (**Attachment I**) was exhibited for public inspection under section 9(5) of the Ordinance.
- On 30.10.2012, the CE in C agreed to refer the approved North Point OZP to the Board for amendment under section 12(1)(b)(ii) of the Ordinance. The reference back of the OZP was notified in the Gazette on 9.11.2012 under section 12(2) of the Ordinance.

3. Proposed Amendments to the OZP

The proposed amendments mainly relate to the rezoning of Tin Chiu Street Playground which is located at the junction of Java Road, Tin Chiu Street and Marble Road from "Government, Institution or Community" ("G/IC") to "Residential (Group A)" ("R(A)") and some technical amendments to the Notes of the OZP.

4. Rezoning of Tin Chiu Street Playground from "G/IC" to "R(A)" (Amendment Item A)

Background

- 4.1 It was stated in the 2013 Policy Address that the Government would adopt a multi-pronged approach to build up land reserve with a view to meeting housing and other development needs. The Government has been carrying out land use reviews on an on-going basis, including examination of Government sites which are vacant, held under short-term tenancies and for other short-term or Government uses; "G/IC" sites; and two stages of "Green Belt" review with a view to increasing land supply.
- 4.2 In the 2015 Policy Address, it was announced that the housing target in the next decade is 480,000 units. The 2016 Policy Address further forecasted that the Hong Kong Housing Authority and the Hong Kong Housing Society will, over the next 5 years, produce about 97,100 public housing units, of which about 76,700 will be public rental housing units and about 20,400 will be subsidised sale flats (SSF).
- 4.3 Given the above policy framework, a "G/IC" site at the junction of Java Road, Tin Chiu Street and Marble Road has been identified as one of the potential public housing sites for SSF.

The Site and Its Surroundings (**Plans 1 to 5**)

- 4.4 The site, with an area of about 0.12 ha, is located at the junction of Java Road, Tin Chiu Street and Marble Road and accessible by these roads. It is a piece of Government land zoned "G/IC" with a maximum building height (BH) of one storey on the current North Point OZP No. S/H8/24 without designated Government, institution or community (GIC) use ¹. The site is currently occupied by the Tin Chiu Street Playground (TCSP) which contains a 5-a-side soccer pitch and a basketball court managed by the Leisure and Cultural Services Department (LCSD).
- 4.5 The site is located within the built-up area of North Point and in a neighbourhood mixed with residential and commercial developments, GIC facilities, and open spaces. To the northwest of the site across Java Road is the ex-North Point Estate zoned "Comprehensive Development Area (3)" ("CDA(3)"). Planning permission for a proposed comprehensive residential, commercial, public open space, GIC uses, public coach park and public transport terminus development was granted by the Board on 8.11.2013 under Application No. A/H8/419. The "CDA(3)" zone is currently under construction. North Point (East) and (West) Ferry Piers are located to the further northwest of the site.

Planning Brief and approved Application No. A/H8/419.

¹ The site was previously reserved for the provision of a community hall and Home Affairs Bureau has confirmed that the site could be released for other uses. For Members' information, a proposed community hall will be provided within the "Comprehensive Development Area (3)" zone to the north of the subject site according to the respective

- 4.6 To the immediately west of the site is the North Point Welfare Association which is zoned "G/IC". Areas to the southwest of the site are mainly zoned "Commercial/Residential" ("C/R") which comprises residential, commercial or composite developments.
- 4.7 To the east of the site across Tin Chiu Street and to the south of the site across Marble Road are GIC facilities which include Customs Headquarters Building, Chan's Creative School (Hong Kong Island) and Marble Road Telephone Exchange.
- 4.8 Open spaces are located to the northeast, southeast and further northeast of the site across Tin Chiu Street, namely Tin Chiu Street Children's Playground, King's Road Playground and North Point Ferry Concourse Promenade. The land between Tin Chiu Street Children's Playground and North Point Vehicular Ferry Pier is currently occupied by Drainage Services Department (DSD) as temporary works area of the Harbour Area Treatment Scheme Stage 2A project.

Proposed Public Housing Development

4.9 According to the Housing Department (HD), the proposed development has the following development parameters:

Development Parameters (for reference only, subject to detailed design)	
Site Area	0.12 ha (about)
Plot Ratio (PR)	10 (about)
No. of Blocks	1
No. of Storeys	34 including a 1-storey podium (about)
Building Height (BH)	Maximum 110mPD
No. of Flats	240 (about)
Design Population	630 (about)
Parking and	Private car parking space: 11
Loading/unloading	Visitor car parking space: 2
Facilities	Motorcycle parking space: 3
	Loading/unloading bay: 1
Other Facilities	Recreational Facilities; Management Facilities

The indicative layout and photomontages of the proposed development provided by HD are in **Drawings 1 to 6**. The podium corners of the building along Tin Chiu Street are truncated due to the project site boundary. A setback of 2m at the corner splays at the northeastern and southeastern parts of the site and a one-storey podium level empty bay (3.5m wide x 3m high) on G/F of the building along Tin Chiu Street are proposed (subject to detailed design) to enhance air ventilation. The SSF development is targeted to complete in 2022.

4.10 TCSP will be reprovisioned at DSD's temporary works area adjacent to the Tin Chiu Street Children's Playground upon DSD's vacation of the site in the latter half of 2016 (**Plan 2**). To enhance the recreational facilities in this

locality, opportunity is taken to upgrade the facilities by providing one standard size 5-a-side soccer pitch and one standard size basketball court at the new playground. The existing TCSP will not be closed before the new playground is open for public use.

Rezoning Proposal (Plan 1)

4.11 Relevant Government departments have confirmed the proposed housing development would not cause insurmountable technical problems. It is proposed to rezone the subject site from "G/IC" to "R(A)" to facilitate the proposed housing development and to stipulate a BH restriction of 110mPD for the site, taking account of the following considerations:

Land Use and Visual Compatibility

- 4.12 The site is situated in an urban neighbourhood mixed with residential and commercial developments, GIC facilities and open spaces. As such, the proposed residential development is generally compatible with the surrounding land uses.
- 4.13 The site is located in a built-up area in North Point abutting the Victoria Harbour. The proposed BH restriction of 110mPD generally follows the BH band for the street blocks between Java Road and King's Road west of Tin Chiu Street (**Plan 1**) such that a stepped BH profile from the waterfront towards the inland as stipulated in the OZP could be preserved.
- 4.14 Based on the photomontages provided by HD (**Drawings 3 to 6**), the proposed development will be comparable in scale and height to the surrounding developments with high-rise residential buildings (e.g. Island Lodge) mingled with GIC uses (e.g. Customs Headquarters Building, Chan's Creative School (Hong Kong Island)). The proposed development will not affect views to the ridgelines or Victoria Harbour. Visual effect of the proposed development on medium range and long range is considered negligible. Views from close range will inevitably result in some loss of visual permeability. In overall terms, while the resultant visual impact is slightly adverse, the proposed development will not be incompatible with its surroundings. The Chief Town Planner/Urban Design and Landscape, Planning Department (CTP/UD&L, PlanD) has no comment on the visual appraisal conducted by HD (**Attachment Va**).

Provision of Open Space and GIC Facilities

- 4.15 There is neither designated GIC use, nor request from relevant departments for taking up the site for standalone GIC facilities.
- 4.16 Based on a planned population of about 181,300 (including the proposed residential development under Amendment Item A), a table on the provision of open space and major community facilities in North Point area is compiled at **Attachment VI**. In respect of open space, the existing TCSP will be reprovisioned at a site nearby with upgraded playground facilities. With

reference to the Hong Kong Planning Standards and Guidelines (HKPSG), there will be a shortfall of local open space (-4.49 ha), but this can be off-set by the surplus in district open space of 10.15 ha, resulting in a net overall surplus of about 5.66 ha of open space in the area.

- 4.17 As advised by LCSD, the provision of leisure facilities for meeting district needs, such as sports centre, would be considered by LCSD taking into account various factors including the demand for such facilities in the district, usage of existing facilities, HKPSG, resource availability as well as views of the relevant District Council. It should be noted that the site under amendment is too small (0.12 ha) to accommodate a standard sports centre (0.6 ha) and there is already a sports centre located nearby (i.e. Java Road Sports Centre). LCSD has no comment on the proposed OZP amendment as long as public enjoyment of TCSP would not be discontinued or affected.
- 4.18 Regarding other major community facilities, relevant departments consulted including the Education Bureau, Social Welfare Department, Food and Environmental Hygiene Department, Department of Health and Hongkong Post have no objection/comment on the rezoning proposal.

Air Ventilation Consideration

4.19 HD has conducted a qualitative air ventilation assessment Expert Evaluation (AVA EE) (Attachment Vb) to assess the potential ventilation impact of the proposed rezoning of the subject site. Based on the site wind availability data, the annual prevailing winds come from N, ENE, E and ESE directions and the summer prevailing winds come from ENE, E, S, SW and WSW directions. The proposed development will not disturb the general wind flow along Java Road, Marble Road and Tin Chiu Street under major prevailing winds as it is governed by the surrounding built environment. It is anticipated that the proposed development would induce some localised ventilation impacts in the vicinity. The AVA EE concludes that the corner splay design with 2m setback from the site boundary would facilitate wind flow between the streets and recommends a ground floor empty bay of 3.5m (width) x 3m (height) at the eastern side along Tin Chiu Street to further alleviate the potential ventilation impact to the surrounding area. CTP/UD&L, PlanD advises that with these measures, significant adverse air ventilation impact induced by the proposal is not anticipated. The above measures will be incorporated in the planning brief of the proposed public housing development for implementation.

Traffic Consideration

4.20 The Commissioner for Transport (C for T) has no objection to the rezoning of the site from "G/IC" to "R(A)" from traffic engineering point of view. C for T advises that the proposed public housing at the junction of Java Road, Tin Chiu Street and Marble Road is well served by public transport services including Mass Transit Railway, franchised buses, minibuses and ferry. There is also a new Public Transport Interchange located just to the north of the concerned public housing. The additional traffic generated by the proposed development and the construction traffic would be limited and the traffic impact due to the proposed development would not be significant according to

the traffic impact assessment (TIA) conducted by HD (**Attachment Vc**). He also advises that since the scale of the housing development is small, the additional pedestrian flow generated would not be great. The existing pedestrian crossing facilities and footpath in the vicinity would be able to cater for the additional pedestrian flow.

Environmental and Infrastructure Considerations

- 4.21 The Director of Environmental Protection (DEP) has no comment on the proposed rezoning from the environmental protection point of view. He advises that no insurmountable noise, air and sewerage problem is anticipated and he has no in-principle objection to the proposed public housing development. HD will conduct an Environmental Assessment Study and a Sewerage Impact Assessment (SIA) for the proposed development and circulate the reports to relevant departments for comment/agreement in detailed design stage. In order to reduce environmental nuisances during construction, HD advises that there would be stringent control for construction vehicles and environmental nuisance under contract conditions. The contractors are required to comply with relevant regulations and carry out precautionary and mitigation measures as necessary. The contractors are also required to provide washing facilities to clean the dust and mud from the wheels of lorries prior to leaving the site.
- 4.22 As for other infrastructures, the Chief Engineer/Hong Kong & Islands (CE/HK&I), DSD advises that the project proponent shall verify the existing public sewerage system has adequate capacity to accommodate the flow from the proposed development. Agreement/approval should be sought regarding the need for SIA from Environmental Protection Department. If required, the project proponent shall bear all costs and undertake improvement and upgrading works to the existing public sewerage system for handling additional discharge due to the proposed development to the satisfaction of DSD. The Chief Engineer/Construction, Water Supplies Department (CE/C, WSD) has no comment on the proposed OZP amendment from water supply planning point of view.

Landscape Consideration

4.23 There are 12 trees located on the pavements of Java Road, Tin Chiu Street and Marble Road immediately outside the site (**Plan 5 and Attachment Vd**). These trees are all common species, and no Champion tree or registered old and valuable tree is found. HD advises that these trees will be retained as far as practicable.

5. Proposed Amendment to Matters Shown on the Plan

5.1 The proposed amendment as shown on the draft North Point OZP No. S/H8/24A (**Attachment II**) is as follows:

Item A (about 0.12 ha)

Rezoning of TCSP from "G/IC" to "R(A)" with stipulation of a maximum BH of 110mPD as set out in paragraph 4.11 above.

Opportunity is also taken to update the proposed railway reserve for the Shatin to Central Link currently shown on the OZP for information (**Attachment I**) as per the Railway Scheme authorized by the CE in C under the Railways Ordinance on 27.3.2012 (**Attachment II**).

6. Proposed Amendments to the Notes of the OZP

- 6.1 Amendments to the Notes of the OZP are proposed as follows:
 - (a) with a view to supporting art development, the feasibility of allowing 'Art Studio' in the industrial and Industrial-Office (I-O) buildings has been investigated by relevant bureaux and departments. As the key concern is on fire safety, 'Art Studio' is considered acceptable in the industrial and I-O buildings if it does not involve direct provision of services or goods (e.g. hobby classes, seminars and sale of goods, art gallery and venue for rehearsal for art performance). The proposal was generally supported by the stakeholders and no objection from concerned Government departments. To take forward the above proposal, it is proposed to incorporate 'Art Studio (excluding those involving direct provision of services or goods)' as a Column 1 use in Schedule II of the "Residential (Group E)" zone. As 'Art Studio' is subsumed under the 'Place of Recreation, Sports or Culture' use, corresponding amendment will also be made to replace 'Place of Recreation, Sports or Culture' under Column 2 by 'Place of Recreation, Sports or Culture (not elsewhere specified)'. The Secretary for Home Affairs (SHA) welcomes these proposed amendments to support the development of local art scene:
 - (b) amendments to the exemption clause on maximum gross floor area/PR in the remarks for the "CDA", "CDA(2)", "CDA(3)", "C/R(1)" to "C/R (3)", "R(A)1" to "R(A)3", "Residential (Group B)" and "Residential (Group C)" zones to clarify that exemption of caretaker's quarters and recreational facilities are only applicable to those facilities for the use and benefit of all the owners or occupiers of the domestic building or domestic part of the building. For consistency, the same exemption is added to the remarks for the "CDA(1)" zone; and
 - (c) other minor textual amendments, which would not have any implications on the interpretation of the OZP provision.
- 6.2 The proposed amendments to the Notes of the OZP (with additions in **bold and italics** and deletions in 'erossed out') are at **Attachment III** for Members' consideration.

7. Revision to the Explanatory Statement of the OZP

The ES of the OZP is proposed to be revised to take into account the proposed amendments as mentioned in the above paragraphs. Opportunity has also been taken to update the general information for the various land use zones to reflect the latest status and planning circumstances of the OZP. The proposed amendments to the ES of the OZP (with additions in **bold and italics** and deletions in 'erossed out') are at **Attachment IV** for Members' consideration.

8. Plan Number

Upon exhibition for public inspection, the Plan will be renumbered as S/H8/25.

9. Consultation

Departmental Consultation

- 9.1 The proposed amendments have been circulated to relevant bureaux and departments for comments. The comments of Secretary for Education, SHA, Director of Social Welfare, Director of Food and Environmental Hygiene, Postmaster General, Director of Health, Director of Leisure and Cultural Services, C for T, DEP, CE/HK&I of DSD, CE/C of WSD and CTP/UD&L of PlanD have been incorporated in the above paragraphs where appropriate.
- 9.2 The District Land Officer/Hong Kong East has no comment from land administrative point of view for the proposed amendments to OZP, subject to LCSD's agreement to return the site under Amendment Item A to Lands Department for disposal for the public housing proposal and the reprovisioning proposal of TCSP.
- 9.3 The following bureaux and departments have no objection to or no comment on the proposed amendments:
 - Development Bureau;
 - Antiquities and Monuments Office, LCSD;
 - Chief Architect/Central Management Division 2, Architectural Services Department;
 - Chief Building Surveyor/Hong Kong East and Heritage, Buildings Department;
 - Chief Engineer/Land Works, Civil Engineering and Development Department (CEDD);
 - Chief Engineer/Railway Development 2-2, Railway Development Office, Highways Department (HyD);
 - Chief Engineer 4/Major Works, Major Works Project Management Office, HyD;
 - Chief Highway Engineer/Hong Kong, HyD;
 - Commissioner of Police;
 - Director of Agriculture, Fisheries and Conservation;
 - Director of Electrical and Mechanical Services:

- Director of Fire Services;
- Director-General of Trade and Industry;
- District Officer (Eastern), Home Affairs Department;
- Government Property Administrator;
- Head of Geotechnical Engineering Office, CEDD; and
- Project Manager (Hong Kong Island & Islands), CEDD.

Consultation with Eastern District Council

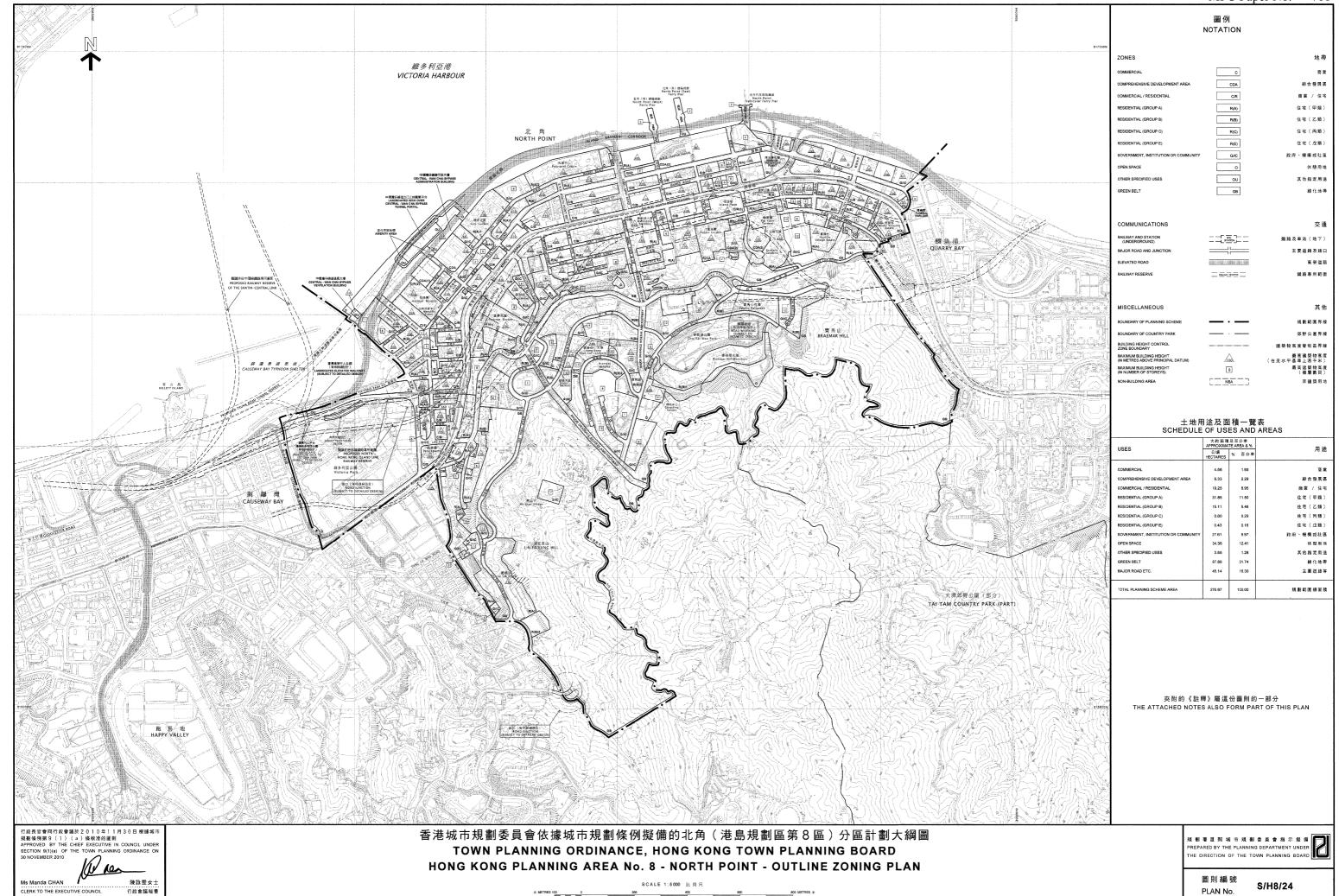
- 9.4 On 19.4.2016, HD, LCSD and PlanD consulted the Planning, Works and Housing Committee (PWHC) of the Eastern District Council (EDC) on the proposed public housing development, reprovisioning of TCSP and the proposed OZP amendments. Members of PWHC generally supported increasing the housing supply to meet the community demand for housing, but there were concerns on the selling price of the SSF, traffic issues (including traffic impact on the road network in the area and pedestrian safety), proposed BH restriction and environmental impact of the proposed SSF development. In addition, Members raised concern on the provision of recreational open space facilities in the area and requested for compensation of another soccer pitch, which had already been converted to the Independent Commission Against Corruption Headquarters. The minutes of the PWHC meeting is at **Attachment VII**.
- PWHC's concern, it should be noted that the selling price of SSF is not a land use consideration of the Board. For the concerns on traffic matters, BH restriction and environmental impact, the considerations set out in paragraphs 4.13, 4.14, 4.19 to 4.21 above are relevant. As for the provision of recreational open space, the existing TSCP will not be closed before the reprovisioned playground with upgraded facilities is open for public use. There is an overall surplus of open space provision in North Point and the specific types of open space facilities provided/to be provided in the "Open Space" zones are to be determined by LCSD taking account of the site characteristics and local context of individual sites.

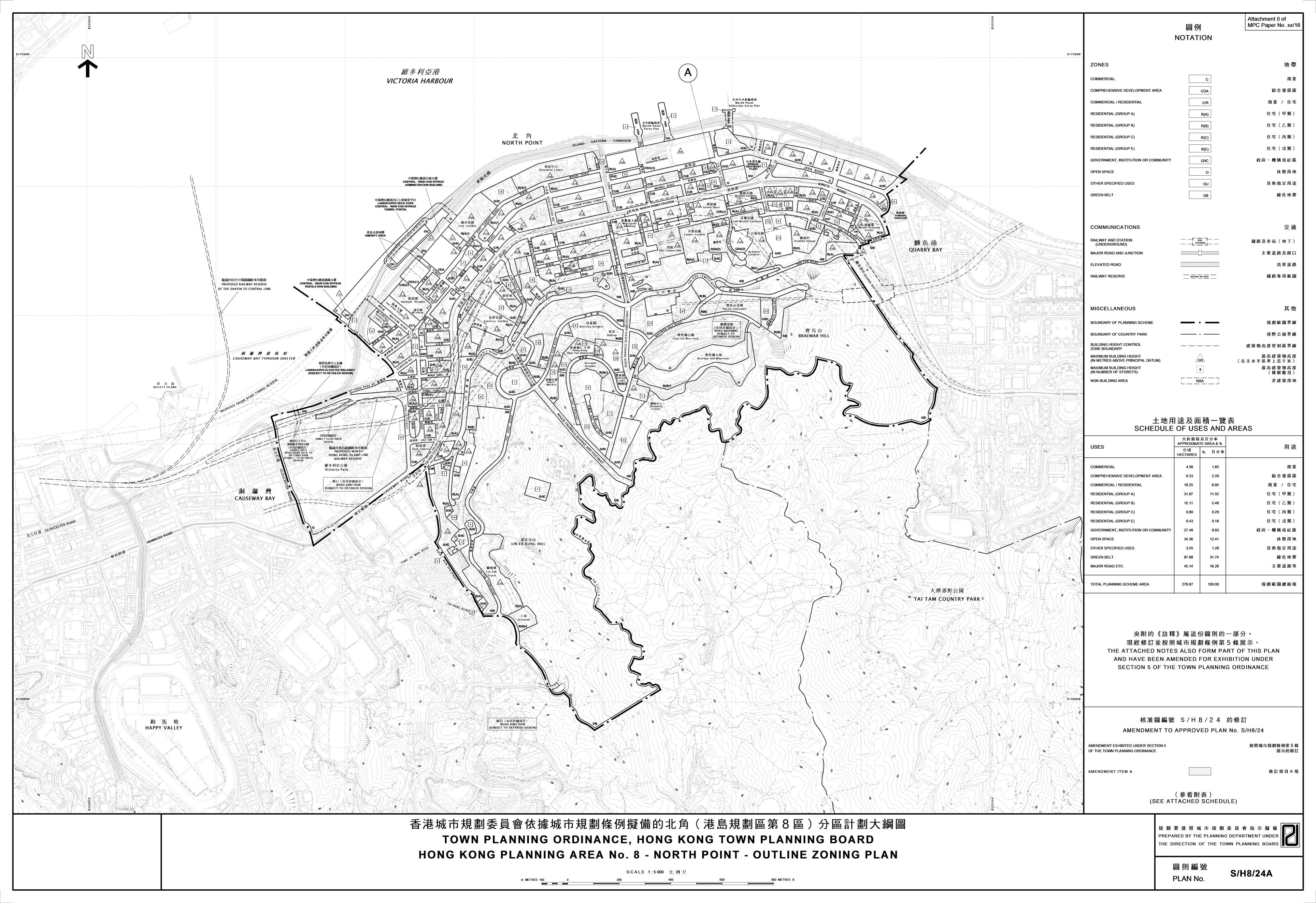
Public Consultation

9.6 If the proposed amendments are agreed by the Committee, the draft OZP and its Notes will be made available for public inspection under section 5 of the Ordinance. Members of the public can submit representations on the OZP to the Board during the two-month statutory public inspection period.

10. <u>Decision Sought</u>

Members are invited to:


(a) <u>agree</u> to the proposed amendments to the approved North Point OZP and that the draft North Point OZP No. S/H8/24A at **Attachment II** (to be renumbered to S/H8/25 upon exhibition) and its Notes at **Attachment III** are suitable for exhibition under section 5 of the Ordinance; and


(b) <u>adopt</u> the revised ES at **Attachment IV** for the draft North Point OZP No. S/H8/24A as an expression of the planning intentions and objectives of the Board for the various land use zonings of the OZP and the revised ES will be published together with the OZP.

11. Attachments

Attachment I	Approved North Point Outline Zoning Plan No. S/H8/24 (reduced to A3 size)	
Attachment II	Draft North Point Outline Zoning Plan No. S/H8/24A	
Attachment III	Revised Notes of the draft North Point Outline Zoning Plan No. S/H8/24A	
Attachment IV	Revised Explanatory Statement of the draft North Point Outline Zoning Plan No. S/H8/24A	
Attachment Va	Visual Appraisal conducted by HD	
Attachment Vb	Air Ventilation Assessment (Expert Evaluation Report) conducted by HD	
Attachment Vc	Traffic Impact Assessment Study conducted by HD	
Attachment Vd	Preliminary Tree Survey Report conducted by HD	
Attachment VI	Provision of Open Space and Major Community Facilities in North Point Area	
Attachment VII	Minutes of EDC's PWHC Meeting on 19.4.2016	
Drawing 1	Conceptual Layout of the Proposed Development	
Drawing 2	Section Plan of the Proposed Development	
Drawings 3 to 6	Photomontages of the Proposed Development	
Plan 1	Comparison of Existing and Proposed Zonings on the OZP for Amendment Item A	
Plan 2	Site Plan of Tin Chiu Street Playground	
Plan 3	Aerial Photo of Tin Chiu Street Playground	
Plans 4 to 5	Site Photos of Tin Chiu Street Playground	

PLANNING DEPARTMENT JULY 2016

HONG KONG PLANNING AREA NO. 8

APPROVED DRAFT NORTH POINT OUTLINE ZONING PLAN NO. S/H8/24A

(Being an Approveda *Draft* Plan for the Purposes of the Town Planning Ordinance)

NOTES

(N.B. These form part of the Plan)

- (1) These Notes show the uses or developments on land falling within the boundaries of the Plan which are always permitted and which may be permitted by the Town Planning Board, with or without conditions on application. Where permission from the Town Planning Board for a use or development is required, the application for such permission should be made in a prescribed form. The application shall be addressed to the Secretary of the Town Planning Board, from whom the prescribed application form may be obtained.
- (2) Any use or development which is always permitted or may be permitted in accordance with these Notes must also conform to any other relevant legislation, the conditions of the Government lease concerned, and any other Government requirements, as may be applicable.
- (3) (a) No action is required to make the existing use of any land or building conform to this Plan until there is a material change of use or the building is redeveloped.
 - (b) Any material change of use or any other development (except minor alteration and/or modification to the development of the land or building in respect of the existing use which is always permitted) or redevelopment must be always permitted in terms of the Plan or, if permission is required, in accordance with the permission granted by the Town Planning Board.
 - (c) For the purposes of sub-paragraph (a) above, "existing use of any land or building" means-
 - (i) before the publication in the Gazette of the notice of the first statutory plan covering the land or building (hereafter referred as 'the first plan'),
 - a use in existence before the publication of the first plan which has continued since it came into existence; or
 - a use or a change of use approved under the Buildings Ordinance which relates to an existing building; and
 - (ii) after the publication of the first plan,
 - a use permitted under a plan which was effected during the effective period of that plan and has continued since it was effected; or

- 2 - <u>S/H8/24</u>*A*

- a use or a change of use approved under the Buildings Ordinance which relates to an existing building and permitted under a plan prevailing at the time when the use or change of use was approved.
- (4) Except as otherwise specified by the Town Planning Board, when a use or material change of use is effected or a development or redevelopment is undertaken, as always permitted in terms of the Plan or in accordance with a permission granted by the Town Planning Board, all permissions granted by the Town Planning Board in respect of the site of the use or material change of use or development or redevelopment shall lapse.
- (5) Road junctions, alignments of roads and railway/tram tracks, and boundaries between zones may be subject to minor adjustments as detailed planning proceeds.
- (6) Temporary uses (expected to be 5 years or less) of any land or buildings are always permitted as long as they comply with any other relevant legislation, the conditions of the Government lease concerned, and any other Government requirements, and there is no need for these to conform to the zoned use or these Notes. For temporary uses expected to be over 5 years, the uses must conform to the zoned use or these Notes.
- (7) The following uses or developments are always permitted on land falling within the boundaries of the Plan except where the uses or developments are specified in Column 2 of the Notes of individual zones:
 - (a) provision, maintenance or repair of plant nursery, amenity planting, open space, rain shelter, refreshment kiosk, road, bus/tram/public light bus stop or lay-by, cycle track, Mass Transit Railway station entrance, Mass Transit Railway structure below ground level, taxi rank, nullah, public utility pipeline, electricity mast, lamp pole, telephone booth, telecommunications radio base station, automatic teller machine and shrine;
 - (b) geotechnical works, local public works, road works, sewerage works, drainage works, environmental improvement works, marine related facilities, waterworks (excluding works on service reservoir) and such other public works co-ordinated or implemented by Government; and
 - (c) maintenance or repair of watercourse and grave.
- (8) In any area shown as 'Road', all uses or developments except those specified in paragraph (7) above and those specified below require permission from the Town Planning Board:

on-street vehicle park, railway track and tram track.

- (9) Unless otherwise specified, all building, engineering and other operations incidental to and all uses directly related and ancillary to the permitted uses and developments within the same zone are always permitted and no separate permission is required.
- (10) In these Notes, "existing building" means a building, including a structure, which is physically existing and is in compliance with any relevant legislation and the conditions of the Government lease concerned.

HONG KONG PLANNING AREA NO. 8

APPROVED DRAFT NORTH POINT OUTLINE ZONING PLAN NO. S/H8/24A

Schedule of Uses

	<u>Page</u>
COMMERCIAL	1
COMPREHENSIVE DEVELOPMENT AREA	3
COMPREHENSIVE DEVELOPMENT AREA (1)	5
COMPREHENSIVE DEVELOPMENT AREA (2)	8
COMPREHENSIVE DEVELOPMENT AREA (3)	11
COMMERCIAL / RESIDENTIAL	14
RESIDENTIAL (GROUP A)	16
RESIDENTIAL (GROUP B)	19 20
RESIDENTIAL (GROUP C)	2122
RESIDENTIAL (GROUP E)	23 24
GOVERNMENT, INSTITUTION OR COMMUNITY	28 29
OPEN SPACE	30 31
OTHER SPECIFIED USES	31 32
GREEN BELT	35 36

COMMERCIAL

Column 1 Uses always permitted

Column 2
Uses that may be permitted with or without conditions on application to the Town Planning Board

Ambulance Depot

Commercial Bathhouse/Massage Establishment

Eating Place

Educational Institution

Exhibition or Convention Hall

Government Use (not elsewhere specified)

Hotel

Information Technology and

Telecommunications Industries

Institutional Use (not elsewhere specified)

Library

Market

Off-course Betting Centre

Office

Place of Entertainment

Place of Recreation, Sports or Culture

Private Club

Public Clinic

Public Convenience

Public Transport Terminus or Station

Public Utility Installation

Public Vehicle Park (excluding container vehicle)

Recyclable Collection Centre

Religious Institution

School

Shop and Services

Social Welfare Facility

Training Centre

Utility Installation for Private Project

Broadcasting, Television and/or Film Studio

Fla

Government Refuse Collection Point

Hospital

Mass Transit Railway Vent Shaft and/or Other

Structure above Ground Level other than

Entrances

Petrol Filling Station

Residential Institution

Planning Intention

This zone is intended primarily for commercial developments, which may include uses such as office, shop, services, place of entertainment, eating place and hotel, functioning as regional or district commercial/shopping centre(s). These areas are usually major employment nodes.

- 2 - <u>S/H8/24</u>*A*

COMMERCIAL (Cont'd)

- (1) On land designated "Commercial" and "Commercial (1)", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of the maximum building heights, in terms of number of storeys and/or metres above Principal Datum, as stipulated on the Plan, or height of the existing building, whichever is *the* greater.
- (2) On land designated "Commercial (1)", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of a maximum gross floor area (GFA) of 109,120m².
- (3) In determining the maximum GFA for the purposes of paragraph (2) above, any floor space that is constructed or intended for use solely as car park, loading/unloading bay, plant room and caretaker's office, provided such uses and facilities are ancillary and directly related to the development or redevelopment, may be disregarded.
- (4) Based on the individual merits of a development or redevelopment proposal, minor relaxation of the building height restrictions stated in paragraph (1) above and GFA restriction stated in paragraph (2) above may be considered by the Town Planning Board on application under section 16 of the Town Planning Ordinance.

- 3 - <u>S/H8/24</u>*A*

COMPREHENSIVE DEVELOPMENT AREA

COMPREHENSIVE DEVELOPMENT AREA	
Column 1 Uses always permitted	Column 2 Uses that may be permitted with or without conditions on application to the Town Planning Board
	Ambulance Depot Commercial Bathhouse/Massage Establishment Eating Place Educational Institution Exhibition or Convention Hall Flat Government Refuse Collection Point Government Use (not elsewhere specified) Hospital Hotel House Information Technology and Telecommunications Industries Institutional Use (not elsewhere specified) Library Market Mass Transit Railway Vent Shaft and/or Other Structure above Ground Level other than Entrances Off-course Betting Centre Office Petrol Filling Station Pier Place of Entertainment Place of Recreation, Sports or Culture Private Club Public Clinic Public Convenience Public Transport Terminus or Station Public Utility Installation Public Vehicle Park (excluding container vehicle) Recyclable Collection Centre Religious Institution Research, Design and Development Centre Residential Institution School
	Shop and Services

Planning Intention

Social Welfare Facility Training Centre

Utility Installation for Private Project

This zone is intended for comprehensive development/redevelopment of the area for residential and/or commercial uses with the provision of open space and other supporting facilities. The zoning is to facilitate appropriate planning control over the development mix, scale, design and layout of development, taking account of various environmental, traffic, infrastructure and other constraints.

(Please see next page)

- 4 - <u>S/H8/24A</u>

COMPREHENSIVE DEVELOPMENT AREA (Cont'd)

- (1) Pursuant to section 4A(2) of the Town Planning Ordinance, and except as otherwise expressly provided that it is not required by the Town Planning Board, an applicant for permission for development on land designated "Comprehensive Development Area" shall prepare a Master Layout Plan for the approval of the Town Planning Board and include therein the following information:
 - (i) the area of the proposed land uses, the nature, position, dimensions, and heights of all buildings to be erected in the area;
 - (ii) the proposed total site area and gross floor areas *(GFA)* for various uses, total number of flats and flat sizes, where applicable;
 - (iii) the details and extent of Government, institution or community (GIC) and recreational facilities, public transport and parking facilities, and open space to be provided within the area;
 - (iv) the alignment, widths and levels of any roads proposed to be constructed within the area;
 - (v) the landscape and urban design proposals within the area;
 - (vi) programme of development in detail;
 - (vii) an environmental assessment report to examine any possible environmental problems that may be caused to or by the proposed development during and after construction and the proposed mitigation measures to tackle them;
 - (viii) a drainage and sewerage impact assessment report to examine any possible drainage and sewerage problems that may be caused by the proposed development and the proposed mitigation measures to tackle them;
 - (ix) a traffic impact assessment report to examine any possible traffic problems that may be caused by the proposed development and the proposed mitigation measures to tackle them; and
 - (x) such other information as may be required by the Town Planning Board.
- (2) The Master Layout Plan should be supported by an explanatory statement which contains an adequate explanation of the development proposal, including such information as land tenure, relevant lease conditions, existing conditions of the site, the character of the site in relation to the surrounding areas, principles of layout design, major development parameters, design population, types of GIC facilities, and recreational and open space facilities.
- (3) No new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of a maximum GFA of 123,470m² of which a maximum GFA of 18,180m² shall be for office use.
- (4) In determining the maximum GFA for the purposes of paragraph (3) above, any floor space that is constructed or intended for use solely as car park, loading/unloading bay, plant room, and caretaker's office, andor caretaker's quarters, or and recreational facilities for the use and benefit of all the owners or occupiers of the domestic building or domestic part of the building, provided such uses and facilities are ancillary and directly related to the development or redevelopment, may be disregarded.

- 5 - <u>S/H8/24</u>*A*

COMPREHENSIVE DEVELOPMENT AREA (1)

Column 1 Uses always permitted	Column 2 Uses that may be permitted with or without conditions on application
	to the Town Planning Board
	Commoraid Dathhaysa/Massaga Establishman
	Commercial Bathhouse/Massage Establishmen Eating Place
	Educational Institution
	Exhibition or Convention Hall
	Flat
	Government Refuse Collection Point
	Government Use (not elsewhere specified)
	Hotel
	Information Technology and
	Telecommunications Industries
	Institutional Use (not elsewhere specified)
	Library
	Market
	Mass Transit Railway Vent Shaft and/or Other
	Structure above Ground Level other than
	Entrances
	Off-course Betting Centre
	Office
	Petrol Filling Station
	Pier
	Place of Entertainment
	Place of Recreation, Sports or Culture
	Private Club
	Public Clinic
	Public Convenience
	Public Transport Terminus or Station
	Public Utility Installation
	Public Vehicle Park (excluding container vehic
	Recyclable Collection Centre
	Religious Institution
	Research, Design and Development Centre
	School
	Delicoi

Planning Intention

Shop and Services Social Welfare Facility Training Centre

Utility Installation for Private Project

This zone is intended for comprehensive development/redevelopment of the area for residential, commercial, leisure and tourism related uses with the provision of open space and other supporting facilities. The zoning is to facilitate appropriate planning control over the development mix, scale, design and layout of development, taking account of various environmental, traffic, infrastructure and other constraints.

(Please see next page)

COMPREHENSIVE DEVELOPMENT AREA (1) (Cont'd)

- 6 -

- (1) Pursuant to section 4A(2) of the Town Planning Ordinance, and except as otherwise expressly provided that it is not required by the Town Planning Board, an applicant for permission for development on land designated "Comprehensive Development Area (1)" shall prepare a Master Layout Plan for the approval of the Town Planning Board and include therein the following information:
 - (i) the area of the proposed land uses, the nature, position, dimensions, and heights of all buildings to be erected in the area;
 - (ii) the proposed total site area and gross floor areas for various uses, where applicable;
 - (iii) the details and extent of *Government, institution or community (GIC)* and recreational facilities, public transport and parking facilities, and open space to be provided within the area;
 - (iv) the alignment, widths and levels of any roads proposed to be constructed within the area;
 - (v) the landscape and urban design proposals within the area;
 - (vi) programme of development in detail;
 - (vii) an environmental assessment report to examine any possible environmental problems that may be caused to or by the proposed development during and after construction and the proposed mitigation measures to tackle them;
 - (viii) a drainage and sewerage impact assessment report to examine any possible drainage and sewerage problems that may be caused by the proposed development and the proposed mitigation measures to tackle them;
 - (ix) a traffic impact assessment report to examine any possible traffic problems that may be caused by the proposed development and the proposed mitigation measures to tackle them; and
 - (x) such other information as may be required by the Town Planning Board.

- 7 - <u>S/H8/24</u>*A*

COMPREHENSIVE DEVELOPMENT AREA (1) (Cont'd)

Remarks (Cont'd)

- (2) The Master Layout Plan should be supported by an explanatory statement which contains an adequate explanation of the development proposal, including such information as land tenure, relevant lease conditions, existing conditions of the site, the character of the site in relation to the surrounding areas, principles of layout design, major development parameters, design population, types of GIC facilities, and recreational and open space facilities.
- (3) On land designated "Comprehensive Development Area (1)", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of a maximum building height and/or plot ratio for different parts of the land, as demarcated by the thin pecked line on the Plan, set out below:
 - (a) a maximum building height of 165 metres above Principal Datum and a maximum plot ratio of 15 for the southern part; and
 - (b) a maximum building height of not exceeding the soffit level of Island Eastern Corridor for the northern part.
- (4) In determining the maximum plot ratio for the purposes of paragraph (3) above, any floor space that is constructed or intended for use solely as car park, loading/unloading bay, plant room and caretaker's office, or caretakers' quarters and recreational facilities for the use and benefit of all the owners or occupiers of the domestic building or domestic part of the building, provided such uses and facilities are ancillary and directly related to the development or redevelopment, may be disregarded.
- (5) Where the permitted plot ratio as defined in Building (Planning) Regulations is permitted to be exceeded in circumstances as set out in Regulation 22(1) or (2) of the said Regulations, the plot ratio for the building on land to which paragraph (3)(a) above applies may be increased by the additional plot ratio by which the permitted plot ratio is permitted to be exceeded under and in accordance with the said Regulation 22(1) or (2), notwithstanding that the relevant maximum plot ratio specified in paragraph (3)(a) above may thereby be exceeded.
- (6) Based on the individual merits of a development or redevelopment proposal, minor relaxation of the building height restriction stated in paragraph (3)(a) above may be considered by the Town Planning Board on application under section 16 of the Town Planning Ordinance.

- 8 - <u>S/H8/24</u>*A*

COMPREHENSIVE DEVELOPMENT AREA (2)

COMPREHENSIVE DE VELOT MENT AREA (2)	
	Column 2
Column 1	Uses that may be permitted with or
Uses always permitted	without conditions on application
• •	to the Town Planning Board
	Commercial Bathhouse/Massage Establishment
	Eating Place
	Educational Institution
	Flat
	Government Refuse Collection Point
	Government Use (not elsewhere specified)
	Information Technology and
	Telecommunications Industries
	Institutional Use (not elsewhere specified)
	Library
	Market
	Mass Transit Railway Vent Shaft and/or Other
	Structure above Ground Level other than
	Entrances
	Office
	Place of Entertainment
	Place of Recreation, Sports or Culture
	Private Club
	Public Clinic
	Public Convenience
	Public Utility Installation
	Recyclable Collection Centre
	Religious Institution
	Research, Design and Development Centre
	School
	Shop and Services
	Social Welfare Facility

Planning Intention

Training Centre

Utility Installation for Private Project

This zone is intended for comprehensive development/redevelopment of the area primarily for residential uses. As the area within this zone is subject to traffic constraints due to the substandard conditions of the local road, suitable traffic and road improvement measures should be proposed and implemented upon development and/or redevelopment of the area. The zoning is to facilitate appropriate planning control over the development mix, scale, design and layout of development, taking account of the environmental, traffic, infrastructure and other constraints.

COMPREHENSIVE DEVELOPMENT AREA (2) (Cont'd)

- (1) Pursuant to section 4A(2) of the Town Planning Ordinance, and except as otherwise expressly provided that it is not required by the Town Planning Board, an applicant for permission for development on land designated "Comprehensive Development Area (2)" shall prepare a Master Layout Plan for the approval of the Town Planning Board and include therein the following information:
 - (i) the area of the proposed land uses, the nature, position, dimensions, and heights of all buildings to be erected in the area;
 - (ii) the proposed total site area and gross floor areas for various uses, total number of flats and flat sizes, where applicable;
 - (iii) the details and extent of *Government, institution or community (GIC)* and recreational facilities, public transport and parking facilities, and open space to be provided within the area;
 - (iv) the alignment, widths and levels of any roads proposed to be constructed/upgraded within the area:
 - (v) the landscape and urban design proposals within the area;
 - (vi) programme of development in detail;
 - (vii) an environmental assessment report to examine any possible environmental problems that may be caused to or by the proposed development during and after construction and the proposed mitigation measures to tackle them;
 - (viii) a drainage and sewerage impact assessment report to examine any possible drainage and sewerage problems that may be caused by the proposed development and the proposed mitigation measures to tackle them;
 - (ix) a traffic impact assessment report to examine any possible traffic problems that may be caused by the proposed development and the proposed mitigation measures to tackle them; and
 - (x) such other information as may be required by the Town Planning Board.

- 10 - <u>S/H8/24</u>*A*

COMPREHENSIVE DEVELOPMENT AREA (2) (Cont'd)

Remarks (Cont'd)

- (2) The Master Layout Plan should be supported by an explanatory statement which contains an adequate explanation of the development proposal, including such information as land tenure, relevant lease conditions, existing conditions of the site, the character of the site in relation to the surrounding areas, principles of layout design, major development parameters, design population, types of GIC facilities, and recreational and open space facilities.
- (3) Subject to implementation of the required traffic and road improvement measures to address the traffic impacts arising from development/redevelopment, no new development, or addition, alteration and/or modification to or redevelopment of an existing building on land designated "Comprehensive Development Area (2)" shall result in a total development and/or redevelopment in excess of a maximum plot ratio of 8 and a maximum building height for different parts of the land as stipulated on the Plan and set out below:
 - (a) a maximum building height of 120 metres above Principal Datum for the area on the eastern side of Kai Yuen Street; and
 - (b) a maximum building height of 130 metres above Principal Datum for the area on the western side of Kai Yuen Street.
- (4) In determining the maximum plot ratio for the purposes of paragraph (3) above, any floor space that is constructed or intended for use solely as car park, loading/unloading bay, plant room and caretaker's office, *or*-and caretaker's quarters, or and recreational facilities for the use and benefit of all the owners or occupiers of the domestic building or domestic part of the building, provided such uses and facilities are ancillary and directly related to the development or redevelopment, may be disregarded.
- (5) Based on the individual merits of a development or redevelopment proposal, minor relaxation of the building height and plot ratio restrictions as stated in paragraph (3) above may be considered by the Town Planning Board on application under section 16 of the Town Planning Ordinance.

- 11 - <u>S/H8/24</u>*A*

COMPREHENSIVE DEVELOPMENT AREA (3)

COMPREHENSIVE DEVELOPMENT AREA (3)	
	Column 2
Column 1	Uses that may be permitted with or
Uses always permitted	without conditions on application
	to the Town Planning Board
	Commercial Bathhouse/Massage Establishment
	Eating Place
	Educational Institution
	Exhibition or Convention Hall
	Flat
	Government Refuse Collection Point
	Government Use (not elsewhere specified)
	Hotel
	Information Technology and
	Telecommunications Industries
	Institutional Use (not elsewhere specified)
	Library
	Market
	Mass Transit Railway Vent Shaft and/or Other
	Structure above Ground Level other than
	Entrances
	Off-course Betting Centre
	Office
	Place of Entertainment
	Place of Recreation, Sports or Culture
	Private Club
	Public Clinic
	Public Convenience
	Public Transport Terminus or Station
	Public Utility Installation
	Public Vehicle Park (excluding container vehicle)
	Recyclable Collection Centre
	Religious Institution
	Research, Design and Development Centre
	Residential Institution
	School

Planning Intention

Shop and Services Social Welfare Facility

Utility Installation for Private Project

Training Centre

This zone is intended for comprehensive development/redevelopment of the area for residential and/or commercial uses with the provision of open space, *Government, institution or community (GIC)* uses and other supporting facilities. The zoning is to facilitate appropriate planning control over the development mix, scale, design and layout of development, taking account of various environmental, traffic, infrastructure and other constraints.

COMPREHENSIVE DEVELOPMENT AREA (3) (Cont'd)

- (1) Pursuant to section 4A(2) of the Town Planning Ordinance, and except as otherwise expressly provided that it is not required by the Town Planning Board, an applicant for permission for development on land designated "Comprehensive Development Area (3)" shall prepare a Master Layout Plan for the approval of the Town Planning Board and include therein the following information:
 - (i) the area of the proposed land uses, the nature, position, dimensions, and heights of all buildings to be erected in the area;
 - (ii) the proposed total site area and gross floor areas *(GFA)* for various uses, total number of flats and flat sizes, where applicable;
 - (iii) the details and extent of GIC and recreational facilities, public transport and parking facilities, and open space to be provided within the area;
 - (iv) the alignment, widths and levels of any roads proposed to be constructed/upgraded within the area;
 - (v) the landscape and urban design proposals within the area;
 - (vi) programme of development in detail;
 - (vii) an environmental assessment report to examine any possible environmental problems that may be caused to or by the proposed development during and after construction and the proposed mitigation measures to tackle them;
 - (viii) a drainage and sewerage impact assessment report to examine any possible drainage and sewerage problems that may be caused by the proposed development and the proposed mitigation measures to tackle them;
 - (ix) a traffic impact assessment report to examine any possible traffic problems that may be caused by the proposed development and the proposed mitigation measures to tackle them; and
 - (x) such other information as may be required by the Town Planning Board.

- 13 - <u>S/H8/24</u>*A*

COMPREHENSIVE DEVELOPMENT AREA (3) (Cont'd)

Remarks (Cont'd)

- (2) The Master Layout Plan should be supported by an explanatory statement which contains an adequate explanation of the development proposal, including such information as land tenure, relevant lease conditions, existing conditions of the site, the character of the site in relation to the surrounding areas, principles of layout design, major development parameters, design population, types of GIC facilities, and recreational and open space facilities.
- (3) On land designated "Comprehensive Development Area (3)", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of a maximum domestic GFA of 53,680m² and a maximum non-domestic GFA of 29,995m² of which a GFA of not less than 5,155m² shall be provided for GIC facilities, a maximum site coverage of 60% (excluding basement(s)), and the maximum building height, in terms of metres above Principal Datum, as stipulated on the Plan. A public open space of not less than 12,680m² including a 20*m*-metre wide waterfront promenade shall be provided. Ancillary car parking and public coach park shall be provided in the basement.
- (4) In determining the maximum GFA for the purposes of paragraph (3) above, any floor space that is constructed or intended for use solely as car park, loading/unloading bay, plant room and caretaker's office, andor caretaker's quarters, or and recreational facilities for the use and benefit of all the owners or occupiers of the domestic building or domestic part of the building, provided such uses and facilities are ancillary and directly related to the development or redevelopment, may be disregarded.
- (5) In determining the maximum non-domestic GFA for the purposes of paragraph (3) above, any floor space that is constructed or intended for use solely as public transport terminus and public coach park as required by the Government shall be included for calculation.
- (6) Based on the individual merits of a development or redevelopment proposal, minor relaxation of the site coverage and/or building height restrictions stated in paragraph (3) above may be considered by the Town Planning Board on application under section 16 of the Town Planning Ordinance.

COMMERCIAL/RESIDENTIAL

Column 2 Column 1 Uses that may be permitted with or Uses always permitted without conditions on application to the Town Planning Board Broadcasting, Television and/or Film Studio Ambulance Depot Eating Place (not elsewhere specified) Commercial Bathhouse/Massage Establishment **Exhibition or Convention Hall** Eating Place (Cooked Food Centre only) **Educational Institution** Government Use (not elsewhere specified) Government Refuse Collection Point Hotel Hospital House Information Technology and Telecommunications Library Industries Market (not elsewhere specified) Institutional Use (not elsewhere specified) Off-course Betting Centre Market (Hawker Centre only) Office Mass Transit Railway Vent Shaft and/or Other Place of Entertainment Structure above Ground Level other than Private Club Entrances **Petrol Filling Station** Public Clinic Public Utility Installation Place of Recreation, Sports or Culture Public Vehicle Park (excluding container vehicle) **Public Convenience Residential Institution Public Transport Terminus or Station** School (in free-standing purpose-designed Recyclable Collection Centre school building, in a commercial building **Religious Institution** or in the purpose-designed non-residential School (not elsewhere specified) portion[®] of an existing building only) Shop and Services (Motor-vehicle Showroom and Shop and Services (not elsewhere specified) Printing, Publishing and Allied Industries only) Social Welfare Facility Training Centre

Utility Installation for Private Project

Planning Intention

This zone is intended primarily for commercial and/or residential development. Commercial, residential and mixed commercial/residential uses are always permitted.

[®] Excluding floors containing wholly or mainly car parking, loading/unloading bay and/or plant room

- 15 - <u>S/H8/24</u>A

COMMERCIAL/RESIDENTIAL (Cont'd)

- (1) On land designated "Commercial/Residential" and sub-areas of the "Commercial/Residential" zone, no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of the maximum building heights, in terms of metres above Principal Datum, as stipulated on the Plan, or height of the existing building, whichever is *the* greater.
- (2) On land designated "Commercial/Residential (1)", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of a maximum domestic gross floor area (GFA) of 32,531m² and a maximum non-domestic GFA of 13,503m² of which a GFA of not less than 577m² shall be provided for Government, institution or community (GIC) facilities (including a public toilet of not less than 47m²). A public open space of not less than 1,080m² at Watson Road level shall be provided, of which an area of 275m² could be covered.
- (3) On land designated "Commercial/Residential (2)", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of a maximum domestic GFA of 72,600m² and a maximum non-domestic GFA of 45,375m² of which a GFA of not less than 3,150m² shall be provided for Government, institution or community GIC facilities. A public open space of not less than 2,600m² at Fook Yum Road level shall be provided.
- (4) On land designated "Commercial/Residential (3)", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of a maximum domestic GFA of 59,310m² and a maximum non-domestic GFA of 58,030m². In addition, a GFA of not less than 2,011m² shall be provided for Government, institution or community GIC facilities of which a GFA of not less than 484m² shall be provided for a refuse collection point. A public open space of not less than 625m² at King's Road level shall be provided.
- (5) On land designated "Commercial/Residential (4)", a 1.5m wide non-building area fronting the southern side of Tsing Fung Street shall be provided.
- (6) In determining the maximum GFA for the purposes of paragraphs (2) to (4) above, any floor space that is constructed or intended for use solely as car park, loading/unloading bay, plant room, and caretaker's office, andor caretaker's quarters, or and recreational facilities for the use and benefit of all the owners or occupiers of the domestic building or domestic part of the building, provided such uses and facilities are ancillary and directly related to the development or redevelopment, may be disregarded.
- (7) Based on the individual merits of a development or redevelopment proposal, minor relaxation of the building height restrictions stated in paragraph (1) above and GFA restrictions as stated in paragraphs (2) to (4) above may be considered by the Town Planning Board on application under section 16 of the Town Planning Ordinance.
- (8) Under exceptional circumstances, for a development or redevelopment proposal, minor relaxation of the non-building area restriction stated in paragraph (5) above may be considered by the Town Planning Board on application under section 16 of the Town Planning Ordinance.

RESIDENTIAL (GROUP A)

For "Residential (Group A)" zone and sub-areas of "Residential (Group A)" zone except "Residential (Group A) 4"

	Column 2
Column 1	Uses that may be permitted with or
Uses always permitted	without conditions on application
	to the Town Planning Board
Ambulance Depot	Commercial Bathhouse/Massage Establishment
Flat	Eating Place
Government Use (not elsewhere specified)	Educational Institution
House	Exhibition or Convention Hall
Library	Government Refuse Collection Point
Market	Hospital
Public Place of Recreation, Sports or Culture	Hotel
Public Clinic	Institutional Use (not elsewhere specified)
Public Transport Terminus or Station	Mass Transit Railway Vent Shaft and/or Other
(excluding open-air terminus or station)	Structure above Ground Level other than
Residential Institution	Entrances
School (in free-standing purpose-designed	Office
building only)	Petrol Filling Station
Social Welfare Facility	Place of Entertainment
Utility Installation for Private Project	Private Club
	Public Convenience
	Public Transport Terminus or Station
	(not elsewhere specified)
	Public Utility Installation
	Public Vehicle Park (excluding container vehicle)
	Religious Institution
	School (not elsewhere specified)
	Shop and Services
	Training Centre
In addition, the following uses are always permitted	
(a) on the lowest three floors of a building, taken to	
include basements; or (b) in the purpose-designed	
non-residential portion of an existing building, both	
excluding floors containing wholly or mainly car	
parking, loading/unloading bays and/or plant room:	

Eating Place

Educational Institution

Institutional Use (not elsewhere specified)

Off-course Betting Centre

Office

Place of Entertainment

Private Club

Public Convenience

Recyclable Collection Centre

School

Shop and Services

Training Centre

- 17 - <u>S/H8/24</u>*A*

RESIDENTIAL (GROUP A) (Cont'd)

For "Residential (Group A)" zone and sub-areas of "Residential (Group A)" zone except "Residential (Group A) 4" (Cont'd)

Planning Intention

This zone is intended primarily for high-density residential developments. Commercial uses are always permitted on the lowest three floors of a building or in the purpose-designed non-residential portion of an existing building except in "Residential (Group A) 4" zone.

- 18 - <u>S/H8/24</u>*A*

RESIDENTIAL (GROUP A)-4(Cont'd)

For "Residential (Group A) 4" Only

Column 1 Uses always permitted	Column 2 Uses that may be permitted with or without conditions on application to the Town Planning Board
Flat Government Use (not elsewhere specified) House Library Public Clinic Residential Institution School (in free-standing purpose-designed building only) Social Welfare Facility Utility Installation for Private Project	Educational Institution Hotel Institutional Use (not elsewhere specified) Mass Transit Railway Vent Shaft and/or Other Structure above Ground Level other than Entrances Private Club Public Utility Installation Religious Institution School (not elsewhere specified) Training Centre

<u>Planning Intention</u>

This sub-area is intended primarily for high-density residential developments. As the sub-area is subject to traffic constraints, uses that may cause traffic circulation problem are not permitted.

- 19 - <u>S/H8/24</u>*A*

RESIDENTIAL (GROUP A) (Cont'd)

- (1) On land designated "Residential (Group A)" and sub-areas of the "Residential (Group A)" zone, no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of the maximum building heights, in terms of metres above Principal Datum, as stipulated on the Plan, or height of the existing building, whichever is *the* greater.
- (2) On land designated "Residential (Group A) 1", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of a maximum domestic gross floor area (GFA) of 219,160m² and a maximum non-domestic GFA of 35,574m². A public open space of not less than 5,420m² at City Garden Road level shall be provided.
- (3) On land designated "Residential (Group A) 2", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of a maximum domestic GFA of 156,000m² and a maximum non-domestic GFA of 19,500m² of which a GFA of not less than 1,330m² shall be provided for Government, institution or community facilities. A public open space, including a 5m wide waterfront promenade, of not less than 5,200m² at Wharf Road level shall be provided.
- (4) On land designated "Residential (Group A) 3", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of a maximum domestic GFA of 62,820m² and a maximum non-domestic GFA of 2,740m². A public open space of not less than 4,248m² shall be provided, of which 920m² shall be at Tanner Road level.
- (5) On land designated "Residential (Group A) 5", a 1.5m wide non-building area fronting the southern side of Tsing Fung Street shall be provided.
- (6) In determining the maximum GFA for the purposes of paragraphs (2) to (4) above, any floor space that is constructed or intended for use solely as car park, loading/unloading bay, plant room, *and* caretaker's office, andor caretaker's quarters, or and recreational facilities for the use and benefit of all the owners or occupiers of the domestic building or domestic part of the building, provided such uses and facilities are ancillary and directly related to the development or redevelopment, may be disregarded.
- (7) Based on the individual merits of a development or redevelopment proposal, minor relaxation of the building height restrictions stated in paragraph (1) above and GFA restrictions as stated in paragraphs (2) to (4) above may be considered by the Town Planning Board on application under section 16 of the Town Planning Ordinance.
- (8) Under exceptional circumstances, for a development or redevelopment proposal, minor relaxation of the non-building area restrictions as stipulated on the Plan and/or stated in paragraph (5) above may be considered by the Town Planning Board on application under section 16 of the Town Planning Ordinance.

- 20 - <u>S/H8/24</u>*A*

RESIDENTIAL (GROUP B)

Column 1 Uses always permitted with or without conditions on application to the Town Planning Board Flat Government Use (Police Reporting Centre, Post Office only) House Library Residential Institution School (in free-standing purposedesigned building only) Utility Installation for Private Project Market Mass Transit Railway Vent Shaft and/or Other Structure above Ground Level other than Entrances Off-course Betting Centre Office Petrol Filling Station Place of Recreation, Sports or Culture Private Club Public Clinic Public Convenience Public Transport Terminus or Station Public Vehicle Park (excluding container vehicle) Recyclable Collection Centre Religious Institution School (not elsewhere specified) Shop and Services Social Welfare Facility		
Government Use (Police Reporting Centre, Post Office only) House Library Residential Institution School (in free-standing purpose- designed building only) Utility Installation for Private Project Market Mass Transit Railway Vent Shaft and/or Other Structure above Ground Level other than Entrances Off-course Betting Centre Office Petrol Filling Station Place of Entertainment Place of Recreation, Sports or Culture Private Club Public Clinic Public Convenience Public Transport Terminus or Station Public Vehicle Park (excluding container vehicle) Recyclable Collection Centre Religious Institution School (not elsewhere specified) Market Mass Transit Railway Vent Shaft and/or Other Structure above Ground Level other than Entrances Off-course Betting Centre Office Petrol Filling Station Place of Entertainment Place of Recreation, Sports or Culture Private Club Public Clinic Public Clinic Public Vehicle Park (excluding container vehicle) Recyclable Collection Centre Religious Institution School (not elsewhere specified) Shop and Services Social Welfare Facility		without conditions on application
Training Centre	Government Use (Police Reporting Centre, Post Office only) House Library Residential Institution School (in free-standing purposedesigned building only)	Eating Place Educational Institution Government Refuse Collection Point Government Use (not elsewhere specified) Hospital Hotel Institutional Use (not elsewhere specified) Market Mass Transit Railway Vent Shaft and/or Other Structure above Ground Level other than Entrances Off-course Betting Centre Office Petrol Filling Station Place of Entertainment Place of Recreation, Sports or Culture Private Club Public Clinic Public Convenience Public Transport Terminus or Station Public Utility Installation Public Vehicle Park (excluding container vehicle) Recyclable Collection Centre Religious Institution School (not elsewhere specified) Shop and Services

Planning Intention

This zone is intended primarily for medium-density residential developments where commercial uses serving the residential neighbourhood may be permitted on application to the Town Planning Board.

- 21 - S/H8/24*A*

RESIDENTIAL (GROUP B) (Cont'd)

Remarks

- (1) On land designated "Residential (Group B)", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of a maximum plot ratio of 5 and a maximum building height of 30 storeys including carports, or the plot ratio and the height of the existing building, whichever is the greater.
- On land designated sub-areas of the "Residential (Group B)" zone, no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of a maximum gross floor area (GFA) and a maximum building height specified for each sub-area as set out below:

Sub-area	Restriction
R(B)1	Maximum GFA of 120,774m ² and a maximum building height of 30 storeys including carports
R(B)2	Maximum GFA of 9,775m ² and a maximum building height of 20 storeys including carports
R(B)3	Maximum GFA of 13,150.75m ² and a maximum building height of 20 storeys including carports
R(B)4	Maximum plot ratio of 5 and a maximum building height of 213m above Principal Datum

- (3) In determining the maximum plot ratio/GFA for the purposes of paragraphs (1) and (2) above, any floor space that is constructed or intended for use solely as car park, loading/unloading bay, plant room, and caretaker's office, orand caretaker's quarters, or and recreational facilities for the use and benefit of all the owners or occupiers of the domestic building or domestic part of the building, provided such uses and facilities are ancillary and directly related to the development or redevelopment, may be disregarded.
- (4) Based on the individual merits of a development or redevelopment proposal, minor relaxation of the plot ratio, GFA and building height restrictions stated in paragraphs (1) and (2) above may be considered by the Town Planning Board on application under section 16 of the Town Planning Ordinance.

- 22 - <u>S/H8/24</u>*A*

RESIDENTIAL (GROUP C)

Column 1 Uses always permitted	Column 2 Uses that may be permitted with or without conditions on application to the Town Planning Board
Flat Government Use (Police Reporting Centre, Post Office only) House Utility Installation for Private Project	Eating Place Educational Institution Government Refuse Collection Point Government Use (not elsewhere specified) Hospital Hotel Institutional Use (not elsewhere specified) Library Mass Transit Railway Vent Shaft and/or Other Structure above Ground Level other than Entrances Petrol Filling Station Place of Recreation, Sports or Culture Private Club Public Clinic Public Convenience Public Transport Terminus or Station Public Utility Installation Public Vehicle Park (excluding container vehicle) Recyclable Collection Centre Religious Institution Residential Institution School Shop and Services Social Welfare Facility Training Centre

Planning Intention

This zone is intended primarily for low-density residential developments where commercial uses serving the residential neighbourhood may be permitted on application to the Town Planning Board.

- 23 - <u>S/H8/24</u>*A*

RESIDENTIAL (GROUP C) (Cont'd)

Remarks

(1) No new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of a maximum plot ratio as specified for each class of site as set out below or the plot ratio of the existing building, whichever is the greater, and a maximum building height of 20 storeys including carports.

<u>Class of Site</u> <u>Restriction</u>

Class A site Maximum plot ratio of 3.3 Class B site Maximum plot ratio of 3.75

(The definition of Class A and Class B sites shall be in accordance with the Buildings Ordinance.)

- (2) In determining the maximum plot ratio for the purposes of paragraph (1) above, any floor space that is constructed or intended for use solely as car park, loading/unloading bay, plant room, *and* caretaker's office, *or* and caretaker's quarters, or *and* recreational facilities for the use and benefit of all the owners or occupiers of the domestic building or domestic part of the building, provided such uses and facilities are ancillary and directly related to the development or redevelopment, may be disregarded.
- (3) Based on the individual merits of a development or redevelopment proposal, minor relaxation of the plot ratio and building height restrictions stated in paragraph (1) above may be considered by the Town Planning Board on application under section 16 of the Town Planning Ordinance.

- 24 - S/H8/24*A*

RESIDENTIAL (GROUP E)

Column 1 Uses always permitted

Column 2
Uses that may be permitted with or without conditions on application to the Town Planning Board

Schedule I: for open-air development or for building other than industrial or industrial-office building[@]

Ambulance Depot Government Use (not elsewhere specified) Public Transport Terminus or Station (excluding open-air terminus or station) Utility Installation for Private Project Commercial Bathhouse/Massage Establishment

Eating Place

Educational Institution

Exhibition or Convention Hall

Flat

Government Refuse Collection Point

Hospital Hotel House

Institutional Use (not elsewhere specified)

Library

Mass Transit Railway Vent Shaft and/or Other Structure above Ground Level other than Entrances

Market Office

Petrol Filling Station Place of Entertainment

Place of Recreation, Sports or Culture

Private Club Public Clinic Public Convenience

Public Transport Terminus or Station

(not elsewhere specified) Public Utility Installation

Public Vehicle Park

(excluding container vehicle)

Religious Institution Residential Institution

School

Shop and Services Social Welfare Facility

Training Centre

RESIDENTIAL (GROUP E) (Cont'd)

Schedule I: for open-air development or for building other than industrial or industrial-office building[®] (Cont'd)

In addition, the following uses are always permitted (a) on the lowest three floors of a building, taken to include basements; or (b) in the purpose-designed non-residential portion of an existing building, both excluding floors containing wholly or mainly car parking, loading/unloading bays and/or plant room:

Eating Place
Educational Institution
Institutional Use (not elsewhere specified)
Library
Off-course Betting Centre
Office
Place of Entertainment
Place of Recreation, Sports or Culture
Private Club
Public Clinic
Public Convenience
Recyclable Collection Centre
School
Shop and Services
Social Welfare Facility

Training Centre

RESIDENTIAL (GROUP E) (Cont'd)

Column 1 Uses always permitted

Column 2 Uses that may be permitted with or without conditions on application to the Town Planning Board

Schedule II: for existing industrial or industrial-office building[@]

Ambulance Depot

Art Studio (excluding those involving direct provision of services or goods)

Cargo Handling and Forwarding Facility (not elsewhere specified)

Eating Place (Canteen only)

Government Refuse Collection Point

Government Use (not elsewhere specified)

Information Technology and

Telecommunications Industries

Non-polluting Industrial Use

(excluding industrial undertakings

involving the use/storage of

Dangerous Goods[△])

Office (Audio-visual Recording Studio,

Design and Media Production,

Office Related to Industrial Use only)

Public Convenience

Public Transport Terminus or Station

Public Utility Installation

Public Vehicle Park

(excluding container vehicle)

Radar, Telecommunications Electronic Microwave Repeater, Television and/or Radio Transmitter

Installation

Recyclable Collection Centre

Research, Design and Development Centre

Shop and Services (Motor-vehicle Showroom on ground floor, Service Trades only)

Utility Installation for Private Project

Warehouse (excluding Dangerous Goods[△]

Godown)

Cargo Handling and Forwarding Facility

(Container Freight Station, free-standing purpose-

designed Logistics Centre only)

Industrial Use (not elsewhere specified)

Mass Transit Railway Vent Shaft and/or Other

Structure above Ground Level Other than

Entrances

Off-course Betting Centre

Office (not elsewhere specified)

Petrol Filling Station

Place of Recreation, Sports or Culture (not

elsewhere specified)

Private Club

Shop and Services (not elsewhere specified)

(ground floor only except Ancillary Showroom[#] which may be permitted on any floor)

Vehicle Repair Workshop

Wholesale Trade

RESIDENTIAL (GROUP E) (Cont'd)

Schedule II: for existing industrial or industrial-office building[®] (Cont'd)

In addition, the following uses are always permitted in the purpose-designed non-industrial portion on the lower floors (except basements and floors containing wholly or mainly car parking, loading/unloading bays and/or plant room) of an existing building, provided that the uses are separated from the industrial uses located above by a buffer floor or floors and no industrial uses are located within the non-industrial portion:

In addition, the following use may be permitted with or without conditions on application to the Town Planning Board in the purpose-designed non-industrial portion on the lower floors (except basements and floors containing wholly or mainly car parking, loading/unloading bays and/or plant room) of an existing building, provided that the use is separated from the industrial uses located above by a buffer floor or floors and no industrial uses are located within the non-industrial portion:

Commercial Bathhouse/Massage Establishment **Eating Place Educational Institution Exhibition or Convention Hall** Institutional Use (not elsewhere specified) Library Off-course Betting Centre Office Place of Entertainment Place of Recreation, Sports or Culture Private Club Public Clinic **Religious Institution** School (excluding kindergarten) Shop and Services **Training Centre**

Social Welfare Facility (excluding those involving residential care)

- [®] An industrial or industrial-office building means a building which is constructed for or intended to be used by industrial or industrial-office purpose respectively as approved by the Building Authority.
- Dangerous Goods refer to substances classified as Dangerous Goods and requiring a licence for their use/storage under the Dangerous Goods Ordinance (Cap. 295).
- # Ancillary Showroom requiring planning permission refers to showroom use of greater than 20% of the total usable floor area of an industrial firm in the same premises or building.

Planning Intention

This zone is intended primarily for phasing out of existing industrial uses through redevelopment (or conversion) for residential use on application to the Town Planning Board. Whilst existing industrial uses will be tolerated, new industrial developments are not permitted in order to avoid perpetuation of industrial/residential interface problem.

- 28 - <u>S/H8/24</u>*A*

RESIDENTIAL (GROUP E) (Cont'd)

Remarks

- (1) On land designated "Residential (Group E)", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of the maximum building heights, in terms of metres above Principal Datum, as stipulated on the Plan, or height of the existing building, whichever is *the* greater.
- (2) Based on the individual merits of a development or redevelopment proposal, minor relaxation of the building height restrictions in paragraph (1) above may be considered by the Town Planning Board on application under section 16 of the Town Planning Ordinance.

to the Town Planning Board

GOVERNMENT, INSTITUTION OR COMMUNITY

Column 1 Uses always permitted

Column 2
Uses that may be permitted with or without conditions on application

Ambulance Depot
Animal Quarantine Centre
(in Government building only)

Broadcasting, Television and/or Film Studio Cable Car Route and Terminal Building

Eating Place (Canteen, Cooked Food Centre only)

Educational Institution

Exhibition or Convention Hall Field Study/Education/Visitor Centre Government Refuse Collection Point Government Use (not elsewhere specified)

Hospital

Institutional Use (not elsewhere specified)

Library Market Pier

Place of Recreation, Sports or Culture

Public Clinic Public Convenience

Public Transport Terminus or Station

Public Utility Installation

Public Vehicle Park (excluding container vehicle)

Recyclable Collection Centre

Religious Institution

Research, Design and Development Centre

School

Service Reservoir Social Welfare Facility Training Centre

Wholesale Trade

Animal Boarding Establishment Animal Quarantine Centre (not elsewhere specified) Correctional Institution

Driving School

Eating Place (not elsewhere specified)

Flat

Funeral Facility Holiday Camp

Hotel House

Marine Fuelling Station

Mass Transit Railway Vent Shaft and/or Other Structure above Ground Level other than

Entrances

Off-course Betting Centre

Office

Petrol Filling Station Place of Entertainment

Private Club

Radar, Telecommunications Electronic Microwave Repeater, Television and/or

Radio Transmitter Installation Refuse Disposal Installation (Refuse Transfer Station only)

Residential Institution

Sewage Treatment/Screening Plant

Shop and Services

Utility Installation for Private Project

Zoo

Planning Intention

This zone is intended primarily for the provision of Government, institution or community facilities serving the needs of the local residents in the Area and, where appropriate, residents in the adjoining districts. It is also intended to provide land for uses directly related to or in support of the work of the Government, organizations providing social services to meet community needs, and other institutional establishments.

- 30 - <u>S/H8/24</u>*A*

GOVERNMENT, INSTITUTION OR COMMUNITY (Cont'd)

Remarks

- (1) On land designated "Government, Institution or Community", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of the maximum building heights, in terms of number of storeys and/or metres above Principal Datum, as stipulated on the Plan, or height of the existing building, whichever is *the* greater.
- (2) On land designated "Government, Institution or Community (1)", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of the maximum building heights, in terms of number of storeys and/or metres above Principal Datum, as stipulated on the Plan.
- (3) In determining the relevant maximum number of storey(s) for the purposes of paragraphs (1) and (2) above, any basement floor(s) may be disregarded except the site at Wai Tsui Crescent to the east of Hong Kong Shue Yan University Residential and Amenities Complex.
- (4) Based on individual merits of a development or redevelopment proposal, minor relaxation of the building height restrictions stated in paragraphs (1) and (2) above may be considered by the Town Planning Board on application under section 16 of the Town Planning Ordinance.
- (5) Under exceptional circumstances, for a development or redevelopment proposal, minor relaxation of the non-building area restrictions as stipulated on the Plan may be considered by the Town Planning Board on application under section 16 of the Town Planning Ordinance.

- 31 - <u>S/H8/24</u>*A*

OPEN SPACE

Column 1 Uses always permitted	Column 2 Uses that may be permitted with or without conditions on application to the Town Planning Board		
Aviary Field Study/Education/Visitor Centre Park and Garden Pavilion Pedestrian Area Picnic Area Playground/Playing Field Promenade Public Convenience Sitting Out Area Zoo	Cable Car Route and Terminal Building Eating Place Government Refuse Collection Point Government Use (not elsewhere specified) Holiday Camp Mass Transit Railway Vent Shaft and/or Other Structure above Ground Level other than Entrances Pier Place of Entertainment Place of Recreation, Sports or Culture Private Club Public Transport Terminus or Station Public Utility Installation Public Vehicle Park (excluding container vehicle) Religious Institution Service Reservoir Shop and Services Tent Camping Ground Utility Installation for Private Project		

Planning Intention

This zone is intended primarily for the provision of outdoor open-air space for active and/or passive recreational uses serving the needs of local residents as well as the general public.

- 32 - S/H8/24*A*

OTHER SPECIFIED USES

Column 1 Uses always permitted Column 2
Uses that may be permitted with or without conditions on application to the Town Planning Board

For "Amenity Area" Only

Amenity Area

Government Use Public Utility Installation Utility Installation for Private Project

Planning Intention

This zone is intended for the provision of major roadside amenity areas and other landscape buffers.

For "Central – Wan Chai Bypass Administration Building" Only

Highways Administration Building

Government Use Public Utility Installation

Planning Intention

This zone is intended primarily to reserve land for the development of an administration building for the Central – Wan Chai Bypass.

Remarks

- (1) The exterior design of any new development or redevelopment, or any change to the exterior design of an existing structure/building, including that for a use specified in Columns 1 and 2 above, requires permission from the Town Planning Board under section 16 of the Town Planning Ordinance.
- (2) No new development, or addition, alteration and/or modification to or redevelopment of an existing building (including structure(s)) shall result in a total development and/or redevelopment in excess of the maximum building height, in terms of metres above Principal Datum, as stipulated on the Plan.
- (3) Based on the individual merits of a development or redevelopment proposal, minor relaxation of the building height restriction stated in paragraph (2) above may be considered by the Town Planning Board on application under section 16 of the Town Planning Ordinance.

For "Landscaped Deck over Central – Wan Chai Bypass Tunnel Portal" Only

Landscaped Deck

Government Use Public Utility Installation

Planning Intention

This zone is intended primarily to reserve land for the development of a landscaped deck over the Central – Wan Chai Bypass tunnel portal.

(Please see next page)

- 33 - <u>S/H8/24</u>*A*

OTHER SPECIFIED USES (Cont'd)

Column 1 Uses always permitted

Column 2
Uses that may be permitted with or without conditions on application to the Town Planning Board

For "Central – Wan Chai Bypass Ventilation Building" Only

Highways Ventilation Building

Government Use Public Utility Installation

Planning Intention

This zone is intended primarily to reserve land for the development of a ventilation building for the Central – Wan Chai Bypass.

Remarks

- (1) The exterior design of any new development or redevelopment, or any change to the exterior design of an existing structure/building, including that for a use specified in Columns 1 and 2 above, requires permission from the Town Planning Board under section 16 of the Town Planning Ordinance.
- (2) No new development, or addition, alteration and/or modification to or redevelopment of an existing building (including structure(s)) shall result in a total development and/or redevelopment in excess of the maximum building height, in terms of metres above Principal Datum, as stipulated on the Plan.
- (3) Based on the individual merits of a development or redevelopment proposal, minor relaxation of the building height restriction stated in paragraph (2) above may be considered by the Town Planning Board on application under section 16 of the Town Planning Ordinance.

For "Landscaped Elevated Walkway" Only

Landscaped Elevated Walkway Government Use Public Utility Installation

Planning Intention

This zone is intended for the provision of a landscaped elevated walkway to connect the Victoria Park with the waterfront.

- 34 - S/H8/24*A*

OTHER SPECIFIED USES (Cont'd)

Column 2 Column 1 Uses that may be permitted with or without conditions on application to the Town Planning Board

For "Pier" Only

Pier Eating Place

Government Use Exhibition or Convention Hall

Flat Hotel

Marine Fuelling Station

Office

Shop and Services (not elsewhere specified)

Planning Intention

This zone is primarily to reserve land intended for Government or public piers providing marine services in the harbour areas.

Remarks

- (1) On land designated "Other Specified Uses" annotated "Pier", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of the maximum building height exceeding the soffit level of the Island Eastern Corridor and in terms of number of storeys, as stipulated on the Plan, or the height of the existing building, whichever is the greater.
- (2) Kiosks not greater than 10m^2 each in area and not more than 10 in number for uses as shop and services are considered as ancillary to "Pier" use.

For "Funeral Parlour" Only

Funeral Parlour Government Use

Utility Installation not Ancillary to the Specified Use

Planning Intention

This zone is intended primarily for the provision of funeral parlour serving the needs of the general public.

Remarks

- (1) On land designated "Other Specified Uses" annotated "Funeral Parlour", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of the maximum building height, in terms of number of storeys and metres above Principal Datum, as stipulated on the Plan, or the height of the existing building, whichever is the greater.
- (2) In determining the relevant maximum number of storey(s) for the purposes of paragraph (1) above, any basement floor(s) may be disregarded.

(Please see next page)

- 35 - <u>S/H8/24A</u>

OTHER SPECIFIED USES (Cont'd)

Column 1 Uses always permitted

Column 2
Uses that may be permitted with or without conditions on application to the Town Planning Board

For "Sewage Treatment Plant" Only

Sewage Treatment/Screening Plant Pumping Station

Government Use (not elsewhere specified)
Utility Installation not Ancillary to the Specified Use

Planning Intention

This zone is intended primarily for the provision of sewage treatment/screening plant and pumping station serving the needs of the general public.

Remarks

- (1) On land designated "Other Specified Uses" annotated "Sewage Treatment Plant", no new development, or addition, alteration and/or modification to or redevelopment of an existing building shall result in a total development and/or redevelopment in excess of the maximum building height, in terms of number of storeys, as stipulated on the Plan, or the height of the existing building, whichever is the greater.
- (2) In determining the relevant maximum number of storey(s) for the purposes of paragraph (1) above, any basement floor(s) may be disregarded.

- 36 - <u>S/H8/24</u>*A*

GREEN BELT

Column 2 Uses that may be permitted with or Uses always permitted without conditions on application to the Town Planning Board

Agricultural Use
Barbecue Spot
Government Use (Police Reporting Centre only)
Nature Reserve
Nature Trail
On-Farm Domestic Structure
Picnic Area
Public Convenience
Tent Camping Ground

Wild Animals Protection Area

Animal Boarding Establishment

Broadcasting, Television and/or Film Studio Cable Car Route and Terminal Building Field Study/Education/Visitor Centre

Flat

Government Refuse Collection Point Government Use (not elsewhere specified)

Holiday Camp

House

Marine Fuelling Station

Mass Transit Railway Vent Shaft and/or Other Structure above Ground Level other than

Entrances

Petrol Filling Station

Place of Recreation, Sports or Culture Public Transport Terminus or Station

Public Utility Installation

Public Vehicle Park (excluding container vehicle)

Radar, Telecommunications Electronic Microwave Repeater, Television and/or Radio Transmitter Installation

Religious Institution Residential Institution

School

Service Reservoir Social Welfare Facility

Utility Installation for Private Project

Zoo

Planning Intention

The planning intention of this zone is primarily for the conservation of the existing natural environment amid the built-up areas/at the urban fringe, to safeguard it from encroachment by urban type development, and to provide additional outlets for passive recreational activities. There is a general presumption against development within this zone.

HONG KONG PLANNING AREA NO. 8

APPROVED DRAFT NORTH POINT OUTLINE ZONING PLAN NO. S/H8/24A

EXPLANATORY STATEMENT

HONG KONG PLANNING AREA NO. 8

APPROVED DRAFT NORTH POINT OUTLINE ZONING PLAN NO. S/H8/24A

EXPLANATORY STATEMENT

	<u>Content</u>	<u>ts</u>	<u>Page</u>	
1.	Introdu	1		
2.	Authori	Authority for the Plan and Procedures		
3.	Object	Object of the Plan		
4.	Notes o	3		
5.	The Pla	3		
6.	Populat	4		
7.	Buildin Scheme	g Height Restrictions in North Point Planning Area	4	
8.	Land Use Zonings			
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13	Commercial Comprehensive Development Area Comprehensive Development Area (1) Comprehensive Development Area (2) Comprehensive Development Area (3) Commercial/Residential Residential (Group A) Residential (Group B) Residential (Group C) Residential (Group E) Government, Institution or Community Open Space Other Specified Uses Green Belt	6 7 7 8 9 10 11 13 13 14 14 14 15 16 16	
9.	Commu	Communications		
10.	Utility	Utility Services		
11.	Cultura	18		
12.	Implementation		18	

HONG KONG PLANNING AREA NO. 8

APPROVED DRAFT NORTH POINT OUTLINE ZONING PLAN NO. S/H8/24A

(Being an Approved *Draft* Plan for the Purposes of the Town Planning Ordinance)

EXPLANATORY STATEMENT

Note: For the purposes of the Town Planning Ordinance, this statement shall not be deemed to constitute a part of the Plan.

1. <u>INTRODUCTION</u>

This explanatory statement is intended to assist an understanding of the approved *draft* North Point Outline Zoning Plan (OZP) No. S/H8/24A. It reflects the planning intention and objectives of the Town Planning Board (the Board) for the various land use zonings of the Plan.

2. AUTHORITY FOR THE PLAN AND PROCEDURES

- 2.1 On 29 June 1956, the North Point Outline Development Plan No. LH8/15 was approved by the then Governor in Council. On 6 July 1956, the approved plan was exhibited under section 8 of the then Town Planning Ordinance (the Ordinance). Since then, the plan had been amended many times to reflect the changing circumstances.
- On 19 April 1988, the then Governor in Council, under section 9(1)(a) of the Ordinance, approved the draft North Point OZP, which was subsequently renumbered as S/H8/4. On 24 October 1989, the then Governor in Council referred the approved OZP No. S/H8/4 to the Board for amendment under section 12(1)(b)(ii) of the Ordinance. Since then, the OZP had been amended five times and exhibited for public inspection under section 5 or 7 of the Ordinance to reflect the changing circumstances.
- 2.3 On 23 May 2000, the Chief Executive in Council (CE in C), under section 9(1)(a) of the Ordinance, approved the draft North Point OZP, which was subsequently renumbered as S/H8/10. On 27 June 2000, the CE in C referred the approved OZP No. S/H8/10 to the Board for amendment under section 12(1)(b)(ii) of the Ordinance. Since then, the OZP had been amended six times and exhibited for public inspection under section 5 or 7 of the Ordinance to reflect the changing circumstances.
- On 1 April 2003, the CE in C, under section 9(1)(a) of the Ordinance, approved the draft North Point OZP, which was subsequently renumbered as S/H8/17. On 9 December 2003, the CE in C referred the approved North Point OZP No. S/H8/17 to the Board for amendment under section 12(1)(b)(ii) of the Ordinance. Since then, the OZP had been amended once to incorporate amendments to the

- Notes of the OZP in accordance with the revised Master Schedule of Notes to Statutory Plans endorsed by the Board.
- 2.5 On 1 February 2005, the CE in C, under section 9(1)(a) of the Ordinance, approved the draft North Point OZP, which was subsequently renumbered as S/H8/19. On 19 December 2006, the CE in C referred the approved North Point OZP No. S/H8/19 to the Board for amendment under the section 12(1)(b)(ii) of the Ordinance.
- 2.6 On 13 April 2007, under the power delegated by the Chief Executive, the then Secretary for Housing, Planning and Lands directed the Board, under section 3(1)(a) of the Ordinance, to extend the Planning Scheme Area of the North Point OZP to incorporate the reclamation for the construction of the Central Wan Chai Bypass (CWB). Since then, the OZP had been amended twice and exhibited for public inspection under sections 5 or 7 of the Ordinance to incorporate amendments to stipulate building height restrictions for various zones and reflect the CWB and associated road works and facilities.
- 2.7 On 19 May 2009, the CE in C, under section 9(1)(a) of the Ordinance, approved the draft North Point OZP, which was subsequently renumbered as S/H8/22. On 22 May 2009, the approved North Point OZP No. S/H8/22 was exhibited for public inspection under section 9(5) of the Ordinance. On 2 February 2010, the CE in C referred the approved North Point OZP No. S/H8/22 to the Board for amendments under section 12(1)(b)(ii) of the Ordinance. Since then, the OZP had been amended once to reflect the changing circumstances.
- 2.8 On 2 February 2010, the CE in C referred the approved North Point OZP No. S/H8/22 to the Board for amendments under section 12(1)(b)(ii) of the Ordinance. The reference back of the OZP was notified in the Gazette on 12 March 2010 under section 12(2) of the Ordinance.
- 2.9 On 19 March 2010, the draft North Point OZP No. S/H8/23 incorporating amendments mainly to rezone the major part of the ex-North Point Estate site to "Comprehensive Development Area (3)" ("CDA(3)") and amend the maximum building height for a "Government, Institution or Community" ("G/IC") site at Mansion Street was exhibited for public inspection under section 5 of the Ordinance. During the two-month public exhibition period, a total of six representations were received. On 28 May 2010, the representations were published for three weeks for public comments. A total of two comments were received.
- 2.108 On 3 September 2010, the Board gave consideration to the representations and comments and decided not to uphold the representations. On 30 November 2010, the CE in C, under section 9(1)(a) of the Ordinance, approved the draft North Point OZP, which was subsequently renumbered as S/H8/24. On 10 December 2010, the approved North Point OZP No. S/H8/24 (the Plan) was exhibited for public inspection under section 9(5) of the Ordinance.
- 2.9 On 30 October 2012, the CE in C referred the approved North Point OZP No. S/H8/24 to the Board for amendment under section 12(1)(b)(ii) of the

- Ordinance. The reference back of the OZP was notified in the Gazette on 9 November 2012 under section 12(2) of the Ordinance.
- 2.10 On XX XX 2016, the draft North Point Outline Zoning Plan No. S/H8/25 (the Plan) incorporating amendments mainly to rezone the Tin Chiu Street Playground from "Government, Institution or Community" ("G/IC") to "Residential (Group A)" ("R(A)") and to incorporate 'Art Studio (excluding those involving direct provision of services or goods)' as Column 1 use in Schedule II of the "Residential (Group E)" ("R(E)") zone, was exhibited for public inspection under section 5 of the Ordinance.

3. OBJECT OF THE PLAN

- 3.1 The object of the Plan is to indicate the broad land use zonings and major transport networks so that development and redevelopment within the Area can be put under statutory planning control.
- 3.2 The Plan is to illustrate only the broad principles of development within the Area. As it is a small-scale plan, the road and railway alignments and boundaries between the land use zones may be subject to minor adjustments as detailed planning and development proceed.
- 3.3 Since the Plan is to show broad land use zonings, there would be situations in which small strips of land not intended for building development purposes and carry no development right under the lease, such as the areas restricted for garden, slope maintenance and access road purposes, are included in the residential zones. The general principle is that such areas should not be taken into account in plot ratio and site coverage calculation. Development within residential zones should be restricted to building lots carrying development right in order to maintain the character and amenity of the North Point area and not to overload the road network in this area.

4. NOTES OF THE PLAN

- 4.1 Attached to the Plan is a set of Notes which shows the types of uses or developments which are always permitted within the Planning Scheme Area and in particular zones and which may be permitted by the Board, with or without conditions, on application. The provision for application for planning permission under section 16 of the Ordinance allows greater flexibility in land use planning and control of development to meet changing needs.
- 4.2 For the guidance of the general public, a set of definitions that explains some of the terms used in the Notes may be obtained from the Technical Services Division of the Planning Department and can be downloaded from the Board's website at http://www.info.gov.hk/tpb.

5. THE PLANNING SCHEME AREA

- 5.1 The Planning Scheme Area (the Area) is shown by a heavy broken line on the Plan. The Area covers about 277 hectares (ha) of land in the northern part of Hong Kong Island. It includes the planned reclamation for the CWB and existing built-up area on the northern shore and the well-wooded slope rising to the Sir Cecil's Ride in the south. To the west, the Area is bounded by Hing Fat Street/Gloucester Road/Wun Sha Street and to the east, by Mansion Street/Java Road/Hoi Yu Street.
- 5.2 There is a mixture of commercial and residential uses in the Area. Most of the commercial/residential buildings and public housing estates are found on both sides of King's Road and Java Road. Towards the mid-levels to the south of Tin Hau Temple Road, there is a mix of high-rise residential and educational developments. Government, institution or community (GIC) facilities are situated in different locations to meet local and district needs.
- 5.3 The Area covers land on the waterfront of Victoria Harbour. For any development proposal affecting such land, due regard shall be given to the Vision Statement for Victoria Harbour published by the Board and the requirements under the Protection of the Harbour Ordinance (Cap. 531).
- At the northwestern part of the Area, there will be is reclamation with an area of about 3.3 ha for the construction of the CWB. The proposed reclamation is based on the WDII Review, which is to investigate the minimum practicable reclamation option for providing the intended to provide essential transport infrastructure, namely the CWB and associated road connections and for reprovisioning the affected facilities. Other than meeting infrastructure needs, harbourfront enhancement will be the main use on the land formed for the construction of the CWB.

6. <u>POPULATION</u>

According to the 200611 Population By eCensus, the population of the Area was about 161,276159,500. It is estimated that the planned population of the Area would be about 177,928181,300.

7. <u>BUILDING HEIGHT RESTRICTIONS IN NORTH POINT PLANNING SCHEME</u> AREA

7.1 In order to provide better planning control on the development intensity and building height upon development/redevelopment and to meet public aspirations for greater certainty and transparency in the statutory planning system, a review of the North Point OZP has been taken with a view to incorporating appropriate development restrictions including building height restrictions in the Notes for various development zones to guide future development/redevelopment. In the absence of building height control, tall buildings may proliferate at random locations and the scale may be out-of-context in the locality, resulting in negative

impacts on the visual quality of the Area. In order to prevent excessively tall or out-of-context buildings, to preserve some key urban design attributes of the area (e.g. stepped building height from the waterfront) and to provide better control on building height profile of the Area, a review has been undertaken to ascertain the appropriate building height restrictions *are imposed* for the "Commercial" ("C"), "Commercial/Residential" ("C/R"), "Residential (Group A)" ("R(A)"), "Residential (Group E)" ("R(E)"), "G/IC" and "Other Specified Uses" ("OU") zones on the Plan.

- 7.2 The building height restrictions are to preserve the views to the ridgelines from public viewpoints and to maintain a stepped building height concept recommended in the Urban Design Guidelines Study with lower buildings along the waterfront, taking into account the local area context, the findings of an Expert Evaluation on Air Ventilation Assessment (AVA EE) of wind circulation in the area, and the need to maintain visually compatible building masses in the wider setting. There are four height bands in general 100 metres above Principal Datum (mPD), 110mPD, 120mPD and 130mPD in the Area for the "C", "C/R", "R(A)" and "R(E)" zones increasing progressively from the waterfront to the inland and foothill areas. The proposed building height bands help preserve views to the ridgelines, achieve a stepped height profile for visual permeability and wind penetration and circulation, reduce the solidness of the Area and maintain a more intertwined relationship with the Victoria Harbour edge.
- 7.3 Specific building height restrictions for the "G/IC" and "OU" zones in terms of mPD and/or number of storeys, which mainly reflects the existing building heights of developments, have been incorporated into the Plan to provide visual and spatial relief to the high-density environment of the Area.
- 7.4 An AVA EE has been undertaken to assess the likely impact of the proposed building heights of development sites within the Area on the pedestrian wind environment. The building height bands shown on the Plan have taken the findings of the AVA EE into consideration. In order to provide detailed site specific assessments for proposing measures to improve the ventilation condition, a consultancy study on Wind Tunnel Testing of AVA for the Area (the AVA WT) has also been undertaken to assess the air ventilation aspect quantitatively. As pointed out in the WT Report, the annual prevailing wind in the Area is mainly from the east, north and north-east directions. In general, the wind performance and ventilation condition is better in the eastern and northern portions of the Area where they are more receptive to the prevailing wind. The air ventilation is even better in the uphill area along Pak Fuk Road and Tin Hau Temple Road where developments are spaced out and cascaded uphill when compared with the more densely developed area along Java Road, Electric Road and King's Road on flat land.
- 7.5 Both the AVA EE and WT have concluded that the building height restrictions on the Plan would ensure no major problems on the overall air ventilation. The ventilation environment is generally maintained, except a few areas with planned or committed developments which would cause some reduction in the ventilation condition. This is mainly due to the development layout of buildings upon

redevelopment. In order to minimize negative air ventilation impact, future developments are encouraged to adopt suitable design measures to minimize any possible adverse impact. These include lower podium height, greater permeability of podium, wider gap between buildings, non-building area to create air path for better ventilation and minimizing the blocking of air flow through positioning of building towers and podiums to align with the prevailing wind directions, as appropriate.

- 7.6 A minor relaxation clause in respect of the building height restrictions is incorporated into the Notes of the Plan in order to provide incentive for developments/redevelopments with design merits/planning gains. Each application of minor relaxation of building height restrictions will be considered on its own merits and the relevant criteria for consideration of such relaxation are as follows:
 - (a) amalgamating smaller sites for achieving better urban design and local area improvements;
 - (b) accommodating the bonus plot ratio granted under the Buildings Ordinance in relation to surrender/dedication of land/area for use as a public passage/street widening;
 - (c) providing better streetscape/good quality street level public urban space;
 - (d) providing separation between buildings to enhance air and visual permeability;
 - (e) accommodating building design to address specific site constraints in achieving the permissible plot ratio under the Plan; and
 - (f) other factors, such as need for tree preservation, innovative building design and planning merits that would bring about improvements to townscape and amenity of the locality and would not cause adverse landscape and visual impacts.
- 7.7 However, for existing buildings with building heights already exceeding the building height restrictions in terms of mPD and/or number of storeys as shown on the Notes of the Plan and/or stipulated on the Plan, there is a general presumption against such application for minor relaxation unless under exceptional circumstances.

8. LAND USE ZONINGS

- 8.1 Commercial ("C"): Total Area 4.56 ha
 - 8.1.1 This zone is intended primarily for commercial developments, which may include uses such as office, shop, services, place of entertainment, eating place and hotel, functioning as regional or district

- commercial/shopping centre(s). These areas are usually major employment nodes.
- 8.1.2 This zone covers two major shopping centres at Cloud View Road and Braemar Hill Road to provide retail facilities for residents in the area south of the Tin Hau Temple Road. The commercial sites on Whitfield Road, Electric Road and King's Road to the east of Kam Hong Street are intended for retail shop and office purposes. City Garden Hotel at City Garden Road is also included in this zone.
- 8.1.3 Although some of the "C" sites (on King's Road/Java Road near Healthy Street East) and the "C(1)" site at Watson Road are currently occupied by industrial buildings, they are planned for commercial/office developments. The intention to include these sites in this zoning is to encourage their redevelopment to commercial/office uses.
- 8.1.4 Developments and redevelopments in the "C" sites and the "C(1)" sites are subject to a maximum building height in terms of mPD and/or number of storeys as stipulated on the Plan.
- 8.1.5 At the "C(1)" site on Watson Road, the development or redevelopment is subject to a maximum gross floor area (GFA) of 109,120m² to reflect the maximum GFA permitted under the existing leases and Building (Planning) Regulations.
- 8.1.6 In order to provide flexibility for innovative design adapted to the characteristics of particular sites, minor relaxation of the GFA and building height restrictions as mentioned above may be considered by the Board through the planning permission system. Each proposal will be considered on its individual planning merits.

8.2 Comprehensive Development Area ("CDA"): Total Area 1.19 ha

- 8.2.1 The "CDA" zone covers a site located at Oil Street which was previously occupied by the Government Supplies Department as headquarters and storage depot. This zone is intended for comprehensive redevelopment of the site for a mix of residential, office, hotel, retail uses with the provision of open space and other supporting facilities. The zoning is to facilitate appropriate planning control over the development mix, scale, design and layout of development, taking account of various environmental, traffic, infrastructure and other constraints.
- 8.2.2 Since the site is subject to development constraints, including the severe noise impact and the adverse air quality from the adjacent *Island Eastern Corridor (IEC)* and the proposed CWB, the capacities of the existing infrastructure provisions such as the local road network and the drainage and sewerage systems, the development of the site requires comprehensive planning to take into account such factors. The designation of a "CDA" zoning for this site can achieve such purpose.

- 8.2.3 A Master Layout Plan (MLP) submission for the Board's approval is required for developments in the "CDA" site. In the MLP submission, the development intensity, building heights and open space provision of the future development should be in line with those set out in the planning brief prepared for the "CDA" site.
- 8.3 <u>Comprehensive Development Area ("CDA(1)")</u>: Total Area 0.69 ha
 - 8.3.1 The "CDA(1)" zone covers two sites as demarcated by a chain-dotted line on the Plan. The one at the junction of Oil Street and King Wah Road is intended to facilitate a proposed hotel development with cultural, commercial, leisure and tourism related uses on the waterfront. The one adjacent to Harbour Heights at the junction of 14-30 King Wah Road—and—Fook—Yum—Road is intended to encourage comprehensive development with possible incorporation of residential element.
 - 8.3.2 To maintain a buffer between the IEC and the developments within the "CDA(1)" zone, the southern and northern parts of the zone, as demarcated by a thin pecked line on the Plan, are subject to different building height and/or plot ratio restrictions. Building(s) on the southern part is subject to a maximum building height of 165mPD and a maximum plot ratio of 15. For the site at 14-30 King Wah Road, the applicant should also submit a visual impact assessment, in addition to the assessments as required under the Notes of the "CDA(1)" zone, to demonstrate that the development intensity and building height of any proposed development is acceptable to the Board.
 - 8.3.3 To provide flexibility for innovative design adapted to the characteristics of particular sites, minor relaxation of the building height restriction for the southern part of the site may be considered by the Board through the planning permission system. Each proposal will be considered on its Building(s) on the northern part is subject to a individual merits. maximum building height of not exceeding the soffit level of the IEC. Since the northern part is close to the IEC and CWB, non air-sensitive uses should be placed or appropriate air mitigation measures should be provided. For any scheme involving development underneath andor abutting the IEC, due regard shall be given to the engineering and environmental constraints imposed by the IEC. Future The widening of this section of the IEC shall also be taken into account. The two sites within this zone demarcated by the chain-dotted line on the Plan are currently held under different ownership. In submitting a MLP to the Board for consideration, the MLP could cover the whole zone or either one of these two sites.
 - 8.3.4 Planning applications to the Board in the form of MLP submissions are required for any developments within the "CDA(1)" zone. In the MLP submission for the "CDA(1)" site at the junction of 14-30 King Wah Road-and Fook Yam Road, the development intensity, building height and non-building area restrictions of the future development should be in line with those set out in the planning brief prepared for the site.

8.4 Comprehensive Development Area ("CDA(2)"): Total Area 1.53 ha

- The "CDA(2)" zone covers the residential sites served by Kai Yuen 8.4.1 Street. A MLP submission for the Board's approval is required for developments within the "CDA(2)" zone. Since the area is subject to traffic constraints primarily due to the existing substandard conditions of the local street, development or redevelopment in the area could be allowed only if the required traffic/road improvement works, including road widening and provision of pedestrian facilities, are in place to address the possible increase in vehicular and pedestrian traffic arising from the redevelopment. In order to improve the traffic conditions and to ensure pedestrian safety for the area, comprehensive development of the sites is therefore encouraged to cater for realignment of the road and provision of pedestrian facilities to meet current standards. Subject to the implementation of relevant traffic and road improvement measures. no development/redevelopment within this zone shall result in a total development/redevelopment in excess of a maximum plot ratio of 8. Developments and redevelopments within this zone are subject to two building height restrictions, with a maximum building height of 120mPD and 130mPD for the areas located respectively to the east and west of Kai Yuen Street.
- 8.4.2 Within the "CDA(2)" zone, there are at least three major development sites or building platforms. These sites might be held under different ownership. In order not to jeopardize redevelopment of private lots readily acquired for amalgamation, future development within the "CDA(2)" zone may be implemented by phases. However, the development potential of different phases of the redevelopment would be taken into account on a pro-rata basis, such that redevelopment implemented at an earlier phase will not take up the development potential of the later phases.
- 8.4.3 In submitting a MLP to the Board for consideration, an air ventilation assessment will be required along with other relevant technical assessments to address any possible impacts for development proposals with a total gross floor area GFA exceeding 100,000m². In addition, the applicant(s) will be required to address the traffic issues and to demonstrate that the road conditions of Kai Yuen Street could be improved in order to support for a development intensity up to a maximum plot ratio of 8 upon redevelopment. Unless otherwise approved by the Government, the upper section of the existing Kai Yuen Street should be improved to the TPDM standards i.e. the provision of a 7.3m carriageway and 2.75m footpaths on both sides of the road. Notwithstanding that the alignment for road improvement / widening for the upper section of Kai Yuen Street is shown on the Plan, it is only tentative and subject to detailed design including its alignment, gradient, width and curvature. Subject to Government's approval, the applicant(s) may also propose in the MLP an alternative road alignment, demonstrating that the traffic concerns arising from the redevelopment proposal are properly addressed. Moreover, the Kai Yuen Street upon

improvement will continue to serve as a public road in the area as well as providing emergency access to the adjacent development of Bedford Gardens.

8.4.4 To facilitate the upgrading of Kai Yuen Street and to provide flexibility for innovative design adapted to the characteristics of particular sites, minor relaxation of the plot ratio and building height restrictions may be considered by the Board through the planning permission system. Each proposal will be considered on its individual merits.

8.5 <u>Comprehensive Development Area ("CDA(3)")</u>: Total Area 2.92 ha

- 8.5.1 The "CDA(3)" zone covers the major part of the ex-North Point Estate site. This zone is intended for comprehensive redevelopment of the site for residential and/or commercial uses with the provision of open space, GIC uses and other supporting facilities. The zoning is to facilitate appropriate planning control over the development mix, scale, design and layout of development, taking account of various environmental, traffic, infrastructure and other constraints.
- 8.5.2 The site is subject to a maximum domestic GFA of 53,680m² and a maximum non-domestic GFA of 29,995m² of which a GFA of not less than 5,155m² shall be provided for GIC facilities, a maximum site coverage of 60% (excluding basement(s)), and a maximum building height of 80mPD. A public open space of not less than 12,680m² including a 20m metre wide waterfront promenade shall be provided. Since the site is subject to development constraints, including the severe noise impact and the adverse air quality from the adjacent IEC, the capacities of the existing infrastructure provisions such as the local road network and the drainage and sewerage systems, the development of the site requires comprehensive planning to take into account such factors. The designation of a "CDA(3)" zoning for this site can achieve such purpose.
- 8.5.3 A MLP submission for the Board's approval is required for developments in the "CDA(3)" site. In the MLP submission, the future development should comply with the requirements set out in the planning brief prepared for the "CDA(3)" site.

8.6 <u>Commercial/Residential ("C/R")</u>: Total Area 19.25 ha

- 8.6.1 This zone is intended primarily for commercial and/or residential development. Commercial, residential and mixed commercial/residential uses are always permitted.
- 8.6.2 This zone comprises a mixture of shops, restaurants, banks, offices and residential developments. The majority of the built-up areas along King's Road, the southern parts of Electric Road and Java Road and the northern part of Fort Street have been zoned for this purpose to reflect the general character of the existing developments.

- 8.6.3 King's Road is heavily trafficked generating adverse traffic noise impacts on the developments along the road. Therefore, mitigation measures should be considered for new residential developments along King's Road to address the traffic noise impact and indirect mitigation measures, in the form of air-conditioning systems and insulation, should be considered as the last resort.
- 8.6.4 Three sites covering the comprehensive developments of Victoria Centre at Watson Road, Harbour Heights and Manulife Tower @Convoy at Fook Yum Road as well as Island Place and Island Place Tower at Tin Chiu Street are designated as "C/R(1)", "C/R(2)" and "C/R(3)" respectively. Maximum domestic and non-domestic GFA as well as requirements for GIC facilities and public open space in accordance with the existing developments are stipulated in the Notes. redevelopment, the building in the "C/R(2)" site should be set back from Electric Road. In order to ensure the provision of breathing space for this congested area, the extent of set-back should not be less than that of the existing building. These three sites were originally zoned "Other Specified Uses" annotated "Comprehensive Redevelopment Area" ("OU(CRA)") with a restriction of maximum domestic plot ratio of 6 having regard to the traffic and infrastructure capacities/constraints and the existing and planned provisions of GIC facilities in the North Point area. The current *GFA* restrictions/requirements stipulated in the Notes on these sites are to reflect the existing developments. It is the planning intention to restrict the existing residential buildings for residential use and existing commercial buildings or non-domestic part of the commercial/residential buildings for commercial uses.
- 8.6.5 Developments and redevelopments in the "C/R", "C/R(1)", "C/R(2)" and "C/R(3)" sites are subject to maximum building heights of 100mPD, 110mPD and 120mPD as stipulated on the Plan.
- 8.6.6 The AVA WT study identified that the wind performance in the area bounded by Electric Road, King's Road, North Point Road and Fuk Yuen Street as well as the area bounded by Electric Road, King's Road, Shell Street and Lau Sin Street is comparatively low. In order to improve the situation, future developments are strongly encouraged to adopt suitable design measures including lower podium height, greater permeability of podium, wider gap between buildings, and aligning building towers with the prevailing wind directions.
- 8.6.7 Specifically, a 10m wide strip of land with a maximum building height of 27mPD, after taking account of the site level, is demarcated in an east-west direction on the State Theatre site for better ventilation. Also, a 1.5m wide non-building area is imposed on an area designated as "C/R(4)" on the Plan fronting the southern side of Tsing Fung Street to improve air penetration, the streetscape and environmental conditions upon redevelopment. Under exceptional circumstances, for a development or redevelopment proposal, minor relaxation of the non-building area restriction on land designated "C/R(4)" may be considered

- by the Board through the planning permission system. Each proposal will be considered on its individual merits.
- 8.6.8 To provide flexibility for innovative design adapted to the characteristics of particular sites, minor relaxation of the GFA/building height restrictions may be considered by the Board through the planning permission system. Each proposal will be considered on its individual merits.

8.7 <u>Residential (Group A) ("R(A)")</u>: Total Area 31.85 31.97 ha

- 8.7.1 The "R(A)" zone is intended primarily for high-density residential development. Commercial uses are always permitted on the lowest three floors of a building or in the purpose-designed non-residential portion of an existing building, *except in the "R(A)4" zone*. This zone includes public housing estates, such as the Healthy Village Estate and Lai Tak Tsuen, as well as some private residential developments.
- 8.7.2 City Garden, Provident Centre and Tanner Garden are designated "R(A)1", "R(A)2" and "R(A)3" respectively. Developments within these sub-areas are restricted to *the* maximum domestic and non-domestic GFA as specified in the Notes. Requirements for public open space and/or GIC facilities are also stipulated in the Notes. These sites were originally zoned "OU(CRA)" with a restriction of maximum domestic plot ratio of 6. The current *GFA* restrictions/requirements stipulated under "R(A)1", "R(A)2" and "R(A)3" zones are to reflect the existing developments.
- 8.7.3 The "R(A)4" zone is intended primarily for high-density residential developments. As the zone is located at the end of Ming Yuen Western Street, which is a steep and narrow private street, uses that may cause traffic circulation problem are not permitted.
- 8.7.4 Developments and redevelopments in the "R(A)" sites are subject to a maximum building height of 100mPD, 110mPD, 120mPD and 130mPD as stipulated on the Plan. To provide flexibility for innovative design adapted to the characteristics of particular sites, minor relaxation of the GFA/building height restrictions may be considered by the Board through the planning permission system. Each application will be considered on its individual merits.
- 8.7.5 According to the AVA WT Study, a strip of land within the Model Housing Estate site is designated as a 10m wide non-building area to provide a east-west open corridor connecting the open space at Hoi Chak Street with Tsat Tsz Mui Road for better ventilation. Two strips of Government land of about 8m wide which are currently open corridors between the developments of Ruby Court, Elegance House and La Place de Victoria are also designated as non-building areas to maintain the existing north-south air flow.

- The AVA WT Study has also identified that the wind performance in the 8.7.6 area around Kam Ping Street, Ming Yuen Western Street, Fort Street and Kin Wah Street are affected by developments lying in a north-south direction blocking the prevailing easterly wind, especially those along Ming Yuen Western Street and Kam Ping Street. In order to improve the situation and to provide east-west air corridor, future developments are strongly encouraged to adopt suitable design measures including lower podium height, greater permeability of podium, wider gap between buildings, and aligning building towers with the prevailing wind Specifically, a 8m wide strip of land with a maximum directions. building height of 40mPD after taking account of the site level is demarcated in an east-west direction on The ex-Hong Kong Housing Society public rental housing Tanner Hill elderly housing site for better ventilation.
- 8.7.7 Besides, a 1.5m wide non-building area is imposed on area designated "R(A)5" fronting the southern side of Tsing Fung Street to improve air penetration, the streetscape and environmental conditions upon redevelopment.
- 8.7.8 An AVA EE (2016) has been carried out for the "R(A)" site at the junction of Java Road, Tin Chiu Street and Marble Road. It is found that design measures including corner splays design with setbacks from the site boundary and a ground floor empty bay would facilitate wind flow and alleviate the potential ventilation impact to the surrounding area. The requirement for these measures will be incorporated in the Planning Brief for implementation. Should the project proponent wish to make any changes to these measures, a quantitative AVA should be carried out to demonstrate that no unacceptable pedestrian level air ventilation impact in the vicinity would be resulted.
- **8.7.9** Under exceptional circumstances, for a development or redevelopment proposal, minor relaxation of the non-building area restrictions on land as stipulated on the Plan *and/or in the Notes* may be considered by the Board through the planning permission system. Each proposal will be considered on its individual merits.

8.8 Residential (Group B) ("R(B)"): Total Area 15.11 ha

- 8.8.1 This zone is intended primarily for medium-density residential developments where commercial uses serving the residential neighbourhood may be permitted on application to the Board. This zone includes residential developments at around Tin Hau Temple Road, Braemar Hill Road, Cloud View Road and Tai Hang Road.
- 8.8.2 For sites zoned "R(B)", developments are restricted to a maximum plot ratio of 5 and a maximum building height of 30 storeys including carports, or the plot ratio and the building height of the existing building, whichever is the greater.

- 8.8.3 Four "R(B)" sites comprising Braemar Hill Mansions, Oxford Court, 7 Wai Tsui Crescent Braemar Heights, and Lai Sang Court Serenade are designated as "R(B)1", "R(B)2", "R(B)3", and "R(B)4" respectively. Development within each sub-area will be subject to specific maximum GFA or plot ratio and building height restrictions as stipulated under the Notes of the Plan.
- 8.8.4 The planning intention of the restriction on development intensity is to preserve the local character of the long-established medium-density residential development along Tin Hau Temple Road, Braemar Hill Road and Cloud View Road. It also helps prevent the local roads from being overloaded. The building height restriction is intended to preserve the existing coherent stepping building profile.
- 8.8.5 To provide flexibility for innovative design adapted to the characteristics of particular sites, minor relaxation of the PR/*GFA*/building height restrictions may be considered by the Board through the planning permission system. Each application will be considered on its individual merits.

8.9 Residential (Group C) ("R(C)"): Total Area 0.80 ha

- 8.9.1 This zoning is intended primarily for low-density residential developments where commercial uses serving the residential neighbourhood may be permitted on application to the Board. This zone covers the Comfort Terrace area where residential developments are restricted to a maximum plot ratio of 3.3 for Class A sites and 3.75 for Class B sites because of inadequate vehicular access. Buildings are also restricted to a maximum height of 20 storeys including carports to preserve the local character.
- 8.9.2 To provide flexibility for innovative design adapted to the characteristics of particular sites, minor relaxation of the PR/building height restrictions may be considered by the Board through the planning permission system. Each application will be considered on its individual merits.

8.10 Residential (Group E) ("R(E)"): Total Area 0.43 ha

8.10.1 This zone covers fivefour industrial buildings at King's Road and Tsat Tsz Mui Road. This zoning is intended primarily for phasing out of the existing industrial uses through redevelopment (or conversion) for residential use on application to the Board. Residential development may be permitted with or without conditions on application to the Board. The developers will be required to submit adequate information to demonstrate that the new residential development will be environmentally acceptable, and suitable mitigation measures, if required, will be implemented to address the potential industrial/residential (I/R) interface problems.

- 8.10.2 Under this zoning, existing industrial uses will be tolerated. Yet, new industrial development will not be permitted upon redevelopment in order to avoid the perpetuation or aggravation of the I/R interface problems with the new residential development during the redevelopment process. In existing industrial buildings, new developments involving offensive trades will not be permitted. Any modification of use from non-industrial to industrial uses within existing industrial buildings will also require the permission of the Board.
- 8.10.3 All of the existing industrial buildings in this zone are under multiple ownership. It is expected that the "R(E)" zones would contribute to phasing out these residual industrial lots by expediting their redevelopment for residential use.
- 8.10.4 Developments and redevelopments in the "R(E)" sites are subject to a maximum building height of 110mPD and 120mPD as stipulated on the Plan. To provide flexibility for innovative design adapted to the characteristics of particular sites, minor relaxation of the building height restrictions may be considered by the Board through the planning permission system. Each application will be considered on its individual merits.

8.11 Government, Institution or Community ("G/IC"): Total Area 27.61 27.49 ha

- 8.11.1 This zone is intended primarily for the provision of various GIC facilities serving the needs of the local residents in the Area and, where appropriate, residents in the adjoining districts. It is also intended to provide land for uses directly related to or in support of the work of the Government, organizations providing social services to meet community needs, and other institutional establishments. This zone includes sites for Government facilities, bus terminus, clinic, markets, ferry concourse, community centres and schools. Uses such as temple, church, electricity substation and telephone exchange also fall within this zone.
- 8.11.2 Developments and redevelopments in the "G/IC" sites are subject to a maximum building height in terms of mPD and/or number of storeys as stipulated on the Plan. Building height restriction for most of the "G/IC" sites is stipulated in terms of number of storeys while office-type "G/IC" developments are controlled in terms of mPD. To provide flexibility for innovative design adapted to the characteristics of particular sites, minor relaxation of the building height restrictions may be considered by the Board through the planning permission system. Each application will be considered on its individual merits.
- 8.11.3 This zone covers the Hong Kong Shue Yan University site with four major developments. The building height restrictions of a maximum of 13 storeys and not exceeding 180mPD for the Lady Lily Shaw Hall and a maximum of 17 storeys and not exceeding 220mPD for the Library Complex are to reflect the existing height of the buildings. The proposed extension of Hong Kong Shue Yan University for the Research and

Hostel Complex is subject to a maximum building height restriction of 20 storeys and not exceeding 210mPD to ensure that the building height will be compatible with the surrounding developments.

- 8.11.4 The 31-storey Residential and Amenities Complex of the Hong Kong Shue Yan University is considered out-of-context and visually prominent with overwhelming and dwarfing effects on the surrounding developments which have a general building height of 20 storeys. It is zoned "G/IC(1)" with the intention to restrict the building height of the Complex to a maximum of 20 storeys and not exceeding 210mPD upon redevelopment to be in line with the surrounding buildings and to lessen the adverse visual impact on the ridgeline.
- 8.11.5 According to the AVA WT Study, the existing footpath between the Anne Black Health Centre and the North Point Market is recommended to be widened and designated as a 10m wide non-building area to improve the north-south air flow. A 10m wide strip of land lying in an east-west direction within the ex-Tanner Hill Police Married Quarters site is also designated as non-building area to maintain an open corridor connecting the open space at Pak Fuk Road to the Bedford Gardens area.
- 8.11.6 Under exceptional circumstances, for a development or redevelopment proposal, minor relaxation of the non-building area restrictions as stipulated on the Plan may be considered by the Board through the planning permission system. Each proposal will be considered on its individual merits.

8.12 Open Space ("O"): Total Area 34.36 ha

- 8.12.1 This zone is intended primarily for the provision of outdoor open-air space for both active and/or passive recreational uses serving the needs of local residents as well as the general public.
- 8.12.2 Victoria Park is the largest open space in the Area. It provides a wide range of active and passive recreational facilities for residents within and outside North Point. Choi Sai Woo Park, which is the second largest open space in North Point, is located in close proximity to the residential and educational developments in the North Point mid-level.
- 8.12.3 A major open space will be provided in the planned reclamation formed for the CWB project. The aAccess to the open space will be via Hing Fat Street, Watson Road, Fook Yum Road and Oil Street. Other open space sites, including sitting-out areas and rest gardens, are also provided to meet the recreational needs of the local population and to serve as breathing space among high-rise buildings in the area. Local open spaces are also reserved within existing and new comprehensive developments although they do not fall within this zoning.

8.13 Other Specified Uses ("OU"): Total Area 3.55 ha

- 8.13.1 This zone covers land reserved for purposes as specified on the Plan including ferry piers, an existing funeral parlour, a sewage treatment plant, the planned landscaped deck over the CWB tunnel portal, the planned CWB ventilation building, the planned CWB administration building, and the adjacent amenity areas providing access to the building and emergency access to the portal, and the planned landscaped elevated walkway extending from Victoria Park to Causeway Bay Typhoon Shelter.
- 8.13.2 Except for the "OU(Amenity Area)", "OU(Landscaped Deck over Central Wan Chai Bypass Tunnel Portal)" and "OU(1Landscaped Elevated Walkway)" sites, developments and redevelopments in the "OU" sites are subject to a maximum building height in terms of mPD and/or number of storeys as stipulated on the Plan and/or in the Notes.
- 8.13.3 To provide flexibility for innovative design, minor relaxation of the building height restriction for the "OU(Central Wan Chai Bypass Administration Building)" and "OU(Central Wan Chai Bypass Ventilation Building)" zones may be considered by the Board through the planning permission system. Each proposal will be considered on its individual planning merits.
- 8.13.4 The "OU(Central Wan Chai Bypass Administration Building)" and "OU(Central Wan Chai Bypass Ventilation Building)" zones are located at the waterfront. In addition to the building height restrictions, the exterior design of any new development or redevelopment, or any change to the exterior design of an existing structure/building, including that for a use specified in Columns 1 and 2 of the Notes, requires permission from the Board under section 16 of the Ordinance.

8.14 Green Belt ("GB"): Total Area 87.88 ha

- 8.14.1 This zone covers areas in Braemar Hill, Lin Fa Kung Hill and areas south of Braemar Hill Mansions. The planning intention of this zoning is primarily for conservation of the existing natural environment amid the built-up areas/at the urban fringe, to safeguard it from encroachment by urban type developments and to provide additional outlets for passive recreational uses.
- 8.14.2 These areas are generally well-wooded hill-slopes forming a green backdrop to North Point. Where appropriate, passive recreational facilities such as walking trails and sitting-out areas are provided. There is a general presumption against development within this zoning to promote conservation of the natural environment.

9. COMMUNICATIONS

9.1 Roads

- 9.1.1 King's Road and the IEC are the two major roads connecting North Point with the other parts of Hong Kong Island. Distributor road network for the northern coastal areas follows a grid pattern whilst that for the southern hilly areas follows the contour of the slopes.
- 9.1.2 The CWB is a dual three-lane road tunnel of approximately 3.7km in length between Central and North Point. The tunnel portal in North Point will be located near Oil Street and will be covered by a landscaped deck to enhance the visual amenity and provide noise mitigation. The CWB will be connected with the IEC and sections of the IEC will be realigned. The eastbound lanes immediately east of Hing Fat Street will be diverted to the north before merging with the eastbound lanes of the CWB. The westbound lanes of the IEC north of City Garden will be connected to the CWB and the existing section of IEC. In the northeastern part of Victoria Park, a westbound slip road will be built for connection to the submerged CWB.

9.2 Public Transport

- 9.2.1 The Area is served by various modes of public transport including Mass Transit Railway, buses, tram, public light buses, taxis and ferries.
- 9.2.2 Four Mass Transit Railway stations, namely Tin Hau, Fortress Hill, North Point and Quarry Bay in the vicinity provide easy access to the Area as well as to and from other districts. A significant portion of the Area is within reasonable walking distance from these stations. Passenger and vehicular ferry services are provided at the piers adjacent to the ex-North Point Estate site.

10. UTILITY SERVICES

- 10.1 The Area is well served with piped fresh water and salt water supply for potable and flushing purposes respectively.
- 10.2 The Area is served by two separate system drains and sewers. One is for the carriage and drainage of storm-water and the other for the collection of sewage from households and other premises. The Area is also adequately provided with other utilities such as electricity, gas and telephone services.

11. CULTURAL HERITAGE

There are currently *two declared monuments*, *namely* four historical buildings in the Area, including the declared monument of Tin Hau Temple at Tin Hau Temple Road *and Lin Fa Temple at Tai Hang*, and three *two graded*-historical buildings known as, *namely*

the former eClubhouse of Royal Hong Kong Yacht Club (Grade 2) at Oil Street which has been converted to an arts promotion venue (known as Oi!), Lin Fa Temple at Tai Hang and the Hong Kong Red Swastika Society Building (Grade 2) at Dragon Road. Prior consultation with the Antiquities and Monuments Office of the Leisure and Cultural Services Department should be made if any development or rezoning proposals may affect these declared monuments, graded historical buildings and their immediate environs.

12. <u>IMPLEMENTATION</u>

- 12.1 Although existing uses non-conforming to the statutory zonings are tolerated, any material change of use and any other development/redevelopment must be always permitted in terms of the Plan or, if permission is required, in accordance with the permission granted by the Board. The Board has published a set of guidelines for the interpretation of existing use in the urban and new town areas. Any person who intends to claim an "existing use right" should refer to the guidelines and will need to provide sufficient evidence to support his claim. The enforcement of the zonings mainly rests with the Buildings Department, the Lands Department and the various licensing authorities.
- The Plan provides a broad land use framework within which more detailed non-statutory plans for the Area are prepared by the Planning Department. These detailed plans are used as the basis for public works planning and site reservations within Government departments. Disposal of sites is undertaken by the Lands Department. Public works projects are co-ordinated by the Civil Engineering and Development Department in conjunction with the client departments and the works departments, such as the Highways Department and the Architectural Services Department. In the course of implementation of the Plan, the Eastern District Council and Wan Chai District Council would also be consulted as appropriate.
- 12.3 The reclamation works in the Area for the CWB are scheduled for commencement in late 2008. The CWB is scheduled for completion by 2015/2016.
- 12.43 Planning applications to the Board will be assessed on individual merits. In general, the Board's consideration of the planning applications will take into account all relevant planning considerations which may include the departmental outline development plans/layout plans and guidelines published by the Board. The outline development plans and layout plans are available for public inspection at the Planning Department. Guidelines published by the Board are available from the Board's website, the Secretariat of the Board and the Technical Services Division of the Planning Department. Application forms and Guidance Notes for planning applications can be downloaded from the Board's website and are available from the Secretariat of the Board, the Technical Services Division and the relevant District Planning Office of the Planning Department. Applications should be supported by such materials as the Board thinks appropriate to enable it to consider the applications.

TOWN PLANNING BOARD DECEMBER 2010- JULY 2016

Provision of Open Space and Major Community Facilities in North Point Area

	Hong Kong Planning	HKPSG Requirement	Provision		Surplus/Shortfall
Type of Facilities	Standards and Guidelines (HKPSG)	(based on planned population)	Existing Provision	Planned Provision	(against planned provision)
District Open Space	10 ha per 100,000 persons	15.81 ha	21.00 ha	25.96 ha	+10.15 ha
Local Open Space	10 ha per 100,000 persons	15.81 ha	9.90 ha	11.32 ha	-4.49 ha
Secondary School	1 whole-day classroom for 40 persons aged 12-17	160 classrooms	389 classrooms	389 classrooms	+229 Classrooms
Primary School	1 whole-day classroom for 25.5 persons aged 6-11	220 classrooms	260 classrooms	308 classrooms	+88 Classrooms
Kindergarten / Nursery	26 classrooms for 1,000 children aged 3 to under 6	60 classrooms	154 classrooms	154 classrooms	+94 Classrooms
District Police Station	1 per 200,000 to 500,000 persons	0	1	1	+1
Divisional Police Station	1 per 100,000 to 200,000 persons	0	0 .	0	0
Clinic/Health Centre	1 per 100,000 persons	1	1	1	0
Magistracy (with 8 courtrooms)	1 per 660,000 persons	0	0	0	0
Integrated Children and Youth Services Centre	1 for 12,000 persons aged 6-24	1	3	3	+2
Integrated Family Services Centre	1 per 100,000 to 150,000 persons	1	3	4	+3
Library	1 district library for every 200,000 persons	0	2	2	+2
Sports Centre	1 per 50,000 to 65,000 persons	2	1	1	-1
Sports Ground/Sports Complex	1 per 200,000 to 250,000 persons	0	0	0	0
Swimming Pool Complex – standard	1 complex per 287,000 persons	0	1	1	+1

Note: The planned population for the area is 181,300.

東區區議會轄下 規劃、工程及房屋委員會 第三次會議紀錄

日期:2016年4月19日(星期二)

時間:下午2時30分 地點:東區區議會會議室

出席委員	出席時間(下午)	離席時間(下午)
丁江浩議員	2時30分	會議結束
王志鍾議員	2時30分	會議結束
王振星議員	2時30分	會議結束
王國興議員,BBS,MH	4時30分	會議結束
古桂耀議員	2時30分	會議結束
李進秋議員	2時30分	5時15分
李鎮強議員	2時30分	會議結束
林心亷議員	2時30分	會議結束
林其東議員	2時30分	會議結束
林翠蓮議員,MH	2時30分	會議結束
邵家輝議員	2 時 42 分	會議結束
洪連杉議員	3 時 20 分	5 時 35 分
徐子見議員	2時30分	會議結束
張國昌議員	2時30分	會議結束
梁兆新議員	2 時 40 分	會議結束
梁國鴻議員 (主席)	2時30分	會議結束
梁穎敏議員	5 時 20 分	會議結束
許林慶議員	2時30分	會議結束
郭偉强議員	2時35分	4 時正
麥德正議員	2時30分	會議結束
黃建彬議員,MH,JP	2 時 45 分	會議結束
黃健興議員	2時30分	會議結束
楊斯竣議員	2時30分	會議結束
趙家賢議員	3 時正	會議結束
趙資強議員	2時30分	會議結束
劉慶揚議員	2 時 45 分	會議結束
鄭志成議員 (副主席)	2時30分	會議結束
鄭達鴻議員	2 時 30 分	會議結束
黎志強議員	2 時 50 分	會議結束
顔尊廉議員,MH	2時30分	會議結束

羅榮焜議員,MH	2時40分	會議結束
龔栢祥議員,MH	2時30分	會議結束
江玉歡女士(增選委員)	2時30分	5時35分
江澤濠先生,MH(增選委員)	2時30分	5 時 35 分

致歉未能出席者

何毅淦議員 蔡素玉議員, BBS, JP

定期列席的政府部門代表

鄧如欣太平紳士	E	東區民政事務處 東區民政事務專員
黎浩雋先生		東區民政事務處 東區民政事務助理專員(2)
黃思敏女士	_	東區民政事務處 高級聯絡主任(2)
梁娉瑶女士		土木工程拓展署 工程師 18(港島發展部 1)
黎惠珊女士		規劃署 高級城市規劃師/港島(2)
何敏儀女士		港島東區地政處 高級產業測量師/港島東(3)
黃偉良先生		食物環境衞生署 東區衞生總督察1
黄悅忠先生		房屋署 高級房屋事務經理/西九龍及港島 3
伍偉賢先生		房屋署 屋宇保養測量師(港島東)
黃德福先生		屋宇署 首席測量主任/B5-3
李淑嫺女士 (7	秘書)	東區民政事務處 一級行政主任(區議會)2

應邀出席的部門及機構代表

林敬智先生	房屋署 高級建築師(43)
林德強先生	房屋署 高級規劃師(4)
韋華基先生	房屋署 土木工程師(13)
駱美美女士	康樂及文化事務署 東區康樂事務經理
李淑嫻女士	康樂及文化事務署 東區副康樂事務經理 2
盧偉斌先生	康樂及文化事務署 高級行政主任(策劃事務)5
丘建輝先生	建築署 高級工程策劃經理 328
劉敏權先生	建築署 工程策劃經理 350
姜錦燕女士	規劃署 港島規劃專員
劉家榮先生	規劃署 城市規劃師/港島 4
陳建峰先生	運輸署 高級工程師/東區及一般事務
梁智華先生	運輸署 工程師/東區 1
陣	港島東區地政處 產業測量師/柴灣

李昌焕先生

通訊事務管理局辦公室 高級規管事務經理(規管 12)

陳穎欣女士

瑞峰工程顧問有限公司 副總監

汀穎敏女士

瑞峰工程顧問有限公司 見習工程師

Ms Susana Halliday

Superloop (Hong Kong) Limited 項目經理

歡迎辭

<u>梁國鴻</u>主席歡迎各委員及政府部門代表出席會議,並特別歡迎新任的東區民政事務處高級聯絡主任黃思敏女士接替已調職的劉偉倫先生列席會議。

I. 通過規劃、工程及房屋委員會第二次會議紀錄初稿

2. 委員會確認上述初稿毋須修改,並通過會議紀錄。

II. 工作小組報告

(規劃、工程及房屋委員會文件第13/16號)

3. 委員備悉海濱發展及房屋管理工作小組的報告。

III. 渣華道資助出售房屋發展計劃

(規劃、工程及房屋委員會文件第 14/16 號)

IV. 重置電照街休憩公園

(規劃、工程及房屋委員會文件第 15/16 號)

V. 擬議修訂《北角分區計劃大綱核准圖編號 S/H8/24》

(規劃、工程及房屋委員會文件第 16/16 號)

- 4. 由於上述三份文件均與渣華道的房屋發展計劃相關,<u>梁國鴻</u>主席建議而委員同意合併討論。
- 5. <u>梁國鴻</u>主席歡迎房屋署高級建築師(43)林敬智先生、高級規劃師(4)林德強先生、土木工程師(13)韋華基先生、康樂及文化事務署(下稱康文署)東區康樂事務經理駱美美女士、東區副康樂事務經理 2 李淑嫻女士、高級行政主任(策劃事務)5 盧偉斌先生、建築署高級工程策劃經理 328 丘建輝先生、工程策劃經理 350 劉敏權先生、規劃署港島規劃專員姜錦燕女士、高級城市規劃師/港島 2 黎惠珊女士、城市規劃師/港島 4 劉家榮先生、運輸署高級工程師

/東區及一般事務陳建峰先生及工程師/東區 1 梁智華先生出席會議。房屋署 <u>林敬智</u> 先生、康文署 <u>盧偉斌</u> 先生、建築署 <u>丘建輝</u> 先生及規劃署 <u>黎惠珊</u> 女 士分別介紹第 14/16、15/16 及 16/16 號文件。

6. 委員就題述議題申報利益如下:

委員

利益申報

林翠蓮委員

香港房屋委員會建築小組委員會成員

林心亷委員

與家人經常使用題述遊樂場設施

- 7. 23 位委員就議題發表意見及作出提問,內容摘錄如下:
 - (a) <u>丁江浩</u>委員理解香港市民的住屋需求,但由於題述用地毗鄰即將 有大型屋苑落成,他擔心渣華道未能承受相應增加的交通負荷,詢 問運輸署有否進行交通評估。此外,他指重置後的遊樂場較接近危 險品車輛使用的汽車渡輪碼頭,詢問有關環境評估的結果,以及對 使用者的影響;
 - (b) 王振星 委員詢問日後房屋售價與鄰近私人屋苑樓價的關係。他另 指廉政公署總部大樓現址亦由球場改建而成,但至今仍未有相應作 出補償,希望政府規劃區內休憩設施時作出一併考慮。他另詢問汽 車渡輪碼頭的用途會否改變,以及請部門交代渣華道的交通流量數 據;
 - (c) <u>古桂耀</u>委員請房屋署採取適當的措施,減輕施工期間的噪音對附 近學校的影響。他亦擔心工程車輛會影響渣華道的交通,請房屋署 留意工程用地的出人口位置的定位。他另請房屋署交代新建資助房 屋的休憩及兒童康樂設施的總面積及所佔比例,以及停車場所提供 的私家車及電單車泊位數量;
 - (d) <u>李鎮強</u>委員明白香港房屋短缺,政府有需要加快興建公營房屋。 不過,他建議政府一併補償因興建廉政公署總部大樓而損失的球場,亦希望部門採取適當措施減低危險品車輛渡輪碼頭對週邊環境的影響。此外,由於題述用地鄰近學校及地區組織,附近的大型屋苑及酒店亦即將落成,他請部門交代題述計劃對環境及交通的影響;
 - (e) <u>梁兆新</u>委員請部門再三考慮題述地皮是否合適。他解釋指題述用 地附近的大型屋苑即將落成,預計將會帶動該區樓價上升,而且資 助房屋屬單幢式樓宇,擔心日後售價及每戶平均管理費用高昂,令

市民難以承擔。此外,他認為項目所提供的停車位數量不足,擔心日後會引起更嚴重的違例泊車問題。他亦關注新建資助房屋對毗鄰社區組織的環境如日照及通風等所構成的影響;

- (f) 徐子見 委員表示英皇道及電照街交通繁忙,亦經常有大型車輛經過,加上新建樓字將引起更多交通流量,希望部門於規劃時仔細考慮交通情況。此外,由於新建資助房屋屬單幢式樓宇,他擔心日後售價昂貴,詢問房屋署會否提供更高的折扣率。他另詢問規劃署對「住宅(戊類)」第一欄用途內加入「藝術工作室」的詳情;
- (g) <u>邵家輝</u>委員反對題述計劃。他指區內現有的休息設施不足,渣華 道遊樂場屬區內僅餘的少數球場之一,加上毗鄰即將有大型屋苑落 成,對區內交通將構成進一步壓力;
- (h) <u>林翠蓮</u>委員基本上同意題述計劃,但擔心樓宇售價高昂,難以切合基層市民所需。為增加樓宇供應,她建議房屋署考慮與鄰近居民組織合併發展,以及預留部分單位作重建模範邨之用,在重建完成後再考慮將樓宇出售。她另建議房屋署參考日後居民的年齡分佈才落實所建議的休憩及兒童遊樂設施,以及希望康文署加快重置電照街遊樂場的工程,盡快將地戲轉交房屋署;
- (i) <u>林心廉</u>委員表示在房屋工程進行期間,球場使用者必須經過工程 地盤及橫過渣華道,才能抵達新的球場,請部門注意行人過路安 全,增加相關配套設施。他另建議康文署一併維修渣華道遊樂場設 施,配合重置後的新球場的發展;
- (j) <u>許林慶</u>委員表示馬寶道的路面較窄,亦經常有車輛停泊,希望部門注意交通安排。他另詢問題述計劃所提供的私家車及電單車的泊位數量;
- (k) <u>郭偉强</u>委員表示康文署的重置球場計劃清楚反映政府一直未有妥善善將區內的合適地點規劃為休憩用地。不過,由於市民對市區公營房屋的需求甚殷,因此他對計劃仍予以支持。他建議政府將停車場建於新球場的地底,以增建資助房屋單位,以及滿足區內市民對停車位的需求。此外,他擔心項目提供的休憩設施將會增加屋苑管理成本,質疑於項目提供休憩設施的必要性;
- (1) <u>麥德正</u>委員表示題述用地面積細小,提供的單位數量有限,擔心 房屋售價高昂,令市民難以負擔。他另詢問房屋署如何訂定樓宇所 建的樓層數目、擬建的單位面積,以及樓宇的售價;

- (m) <u>江澤濠</u>委員表示區議會一直要求政府增加東區的休憩及康樂設施,建議康文署藉此將五人足球場改為標準足球場,以滿足市民的需要。此外,他希望房屋署採取適當的措施,減輕工程對鄰近居民組織和學校的影響,確保不會影響通風及採光等;
- (n) <u>羅榮焜</u>委員贊成政府加建公營房屋。不過,他建議政府簡化整體計劃,直接在擬重置球場的土地上興建房屋,因其面積較大可提供更多的住宅單位,並保留電照街遊樂場,以縮短整個建屋計劃的過程;
- (o) 鄭達鴻 委員同意政府加建公營房屋,但質疑題述選址是否合適。 他指該處的人車流量甚高,而隨著公共運輸交匯處即將投入服務, 電照街的汽車流量必會再增加,加上該處樓宇密度高,整體環境擠 迫,如政府於該處興建樓高 110 米的住宅大樓,區內的交通及環境 將會受到影響。此外,由於廉政公署總部大樓現址由標準足球場改 建而成,他認為政府應先補償足球場的損失,然後才考慮重置遊樂 場的安排。他建議政府認真檢視選址附近的交通流量、資助房屋的 售價、停車位的數量,以及樓宇的高度;
- (p) 黃建彬 委員表示北角區的休憩用地稀少,政府應考慮長遠規劃及發展,興建標準足球場,取代擬建的五人足球場,以補償因改建廉政公署總部大樓所損失的足球場設施。此外,他擔心工程對附近的交通、居住和學習環境構成影響,加上用地附近的大型私人屋苑及交通交滙處即將落成,請部門採取相應的緩減措施。他另詢問規劃署題述地段的樓高限制;
- (q) <u>趙資強</u>委員支持政府增建公營房屋,以解決市民的住屋需要。不過,他指東區缺乏足夠的停車位,加上題述地段的違例泊車問題嚴重,希望部門於題述項目提供足夠的停車位,並研究在重置球場加建地庫停車場的可行性,以滿足市民的需求;
- (r) <u>趙家賢</u>委員以廉政公署總部大樓為例,指政府曾多次將區內休憩 設施改劃作其他用途,令市民的休憩空間相應減少。他建議政府全 盤考慮區內居民的需要,在規劃時作出相應的補償。他另指渣華道 的交通繁忙,擔心新建項目會進一步增加汽車流量,令交通擠塞問 題惡化,希望部門先進行確切評估,然後才落實計劃;
- (s) <u>王志鍾</u>委員支持政府加建公營房屋,但由於地皮面積細小,擔心 住宅供應數量不足以滿足市民的需求。他亦關注項目對交通及環境

的影響,希望政府採取適當緩減措施;

- (t) <u>江玉歡</u>委員詢問新建項目的住宅單位面積、社區設施的配套,以 及與海關總部大樓相關的保安安排。她另指重置後的足球場接近東 區走廊天橋、汽車渡輪碼頭及渠務工程用地,請部門注意道路及球 場使用者的安全;
- (u) <u>龔哲祥</u>委員同意直接於擬重置球場的用地興建資助房屋,以提供 更多的樓字單位,減低平均建築成本及管理費用。他另指現時公共 屋邨的管理服務優良,加上政府亦未有提供免息貸款等誘因,單靠 折扣優惠難以吸引市民購買資助房屋,請署方審慎預期公眾銷售反 應;
- (v) <u>楊斯峻</u>委員表示政府在面積細小的土地興建樓宇(俗稱「插針樓」) 的做法備受各界抨擊。他建議政府檢討計劃的必要、評估公眾對資 助房屋的需求,以及考慮發展其他更具規模的建屋計劃;以及
- (w) <u>鄭志成</u>副主席樂見康文署重置電照街球場的方案,為區內市民提供標準足球場設施。此外,由於日後巴士須經電照街駛入公共運輸交匯處,他請署方考慮題述地點的交通流量,以及重置馬寶道電單車泊位的安排。他另建議康文署於重置球場添置飲水設備。
- 8. 房屋署 <u>林敬智</u> 先生、<u>林德強</u> 先生、建築署 <u>丘建輝</u> 先生、康文署 <u>盧偉斌</u> 先生、<u>駱美美</u> 女士、運輸署 <u>陳建峰</u> 先生、規劃署 <u>姜錦燕</u> 女士、<u>黎惠珊</u> 女士 就委員的意見及提問,回應如下:

房屋署

- (a) 由於擬建單位數目較少,署方將於地下興建停車場,並提供 13 個 私家車及三個電單車泊位,供資助房屋的住戶使用,預計新增的交 通流量輕微;
- (b) 署方會按《香港規劃標準與準則》(下稱《規劃準則》)的要求,為 住戶提供足夠的休憩設施。按現行規定,每一名住戶應可享有一平 方米休憩設施。兒童遊樂設施擬於住宅平台設置供住戶使用;
- (c) 署方會採取適當的噪音緩解措施,以及在電照街旁預留通風空間, 亦會進行氣候及日照等評估。就地盤施工情況,署方會於工程合約 採取嚴格的環境控制條款,承建商須確保工程符合環境保護署及相 關法例的要求,減低工程對附近市民的影響;

- (d) 署方將會參考區內物業市場售價及當時的實際情況,考慮符合資格 家庭的負擔能力,從而訂定合適的折扣率,以制訂資助房屋的售 價。而日後的管理費用則視乎各項設施配套、設計及單位數量而 訂。按現行政策,署方將於項目完成興建前出售房屋(俗稱樓花), 由於現階段距離售樓期亦甚遠,署方無法預測樓宇售價及管理費 用。署方將於會後補充資料解釋資助房屋的定價準則;
- (e) 署方會與運輸署保持緊密聯繫,討論例如馬寶道的電單車泊位重置 安排;
- (f) 題述項目對海關大樓的保安安排沒有直接影響;

建築署

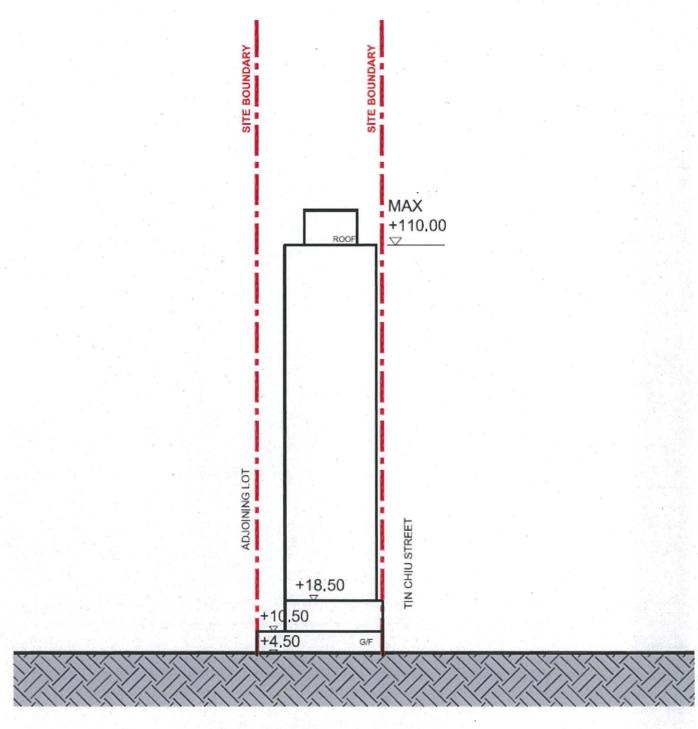
- (g) 署方已就有關危險品車輛渡輪碼頭諮詢相關部門及持份者,包括環境保護署(下稱環保署)、機電工程署、消防處、海事處,以及香港油麻地小輪船有限公司(下稱輪船公司)。其中環保署已表示根據《香港規劃標準與準則》第12章第4段,該危險品車輛渡輪碼頭不屬於「具有潛在危險的裝置」。此外,機電工程署、消防處及海事處已回覆沒有意見。輪船公司亦沒有異議;
- (h) 擬建的球場與海旁保持一定的距離·署方亦會按康文署要求於足球 場範圍提供不少於 6 米高的圍網,確保安全;
- (i) 按現行各部門的工作安排,現時的工程時間表是最理想的方案。署 方會仔細審視相關流程,希望可盡快開展及完成重置項目;
- (j) 受實際現場環境及財政預算所限,署方未能將擬建的標準五人足球 場進一步擴大為標準七人足球場;

康文署

- (k) 署方備悉委員就提供休憩及康樂設施的意見,並希望透過題述重置 球場計劃改善區內的康樂設施;
- (I) 受財政及用地面積所限,署方只可重置電照街休憩公園的現有籃球場及五人足球場。如需添加其他設施如停車場等,工程整體費用將超出上限,不能根據小型工程類別申請撥款,而須通過工務工程計劃按既定程序向立法會申請撥款,預計所需時間較長;

(m) 擬建項目並沒有設置飲水設備。如有需要,署方會要求建築署檢視 其可行性;

運輸署


- (n) 署方已於電照街近兒童遊樂場增設燈號行人過路處,方便市民從即 將落成的公共運輸交匯處前往重置的球場。由於渣華道交通繁忙, 為減少對上述路段的影響,署方認為於海關總部大樓外增設行人過 路處橫過渣華道的建議可行性不大;
- (o) 署方已諮詢電車公司的意見,電車公司認為容許巴士或其他車輛從 英皇道右轉入電照街的方案將影響電車的運作,因此署方暫不會落 實相關安排;
- (p) 署方已審視房屋署所提交的交通影響評估,由於題述資助房屋計劃 規模不大,預計所產生的交通流量不高,題述項目對附近交通沒有 太大的影響。署方會繼續與房屋署協調,討論各項交通及其他配套 設施,例如馬寶道的電單車泊位重置安排;

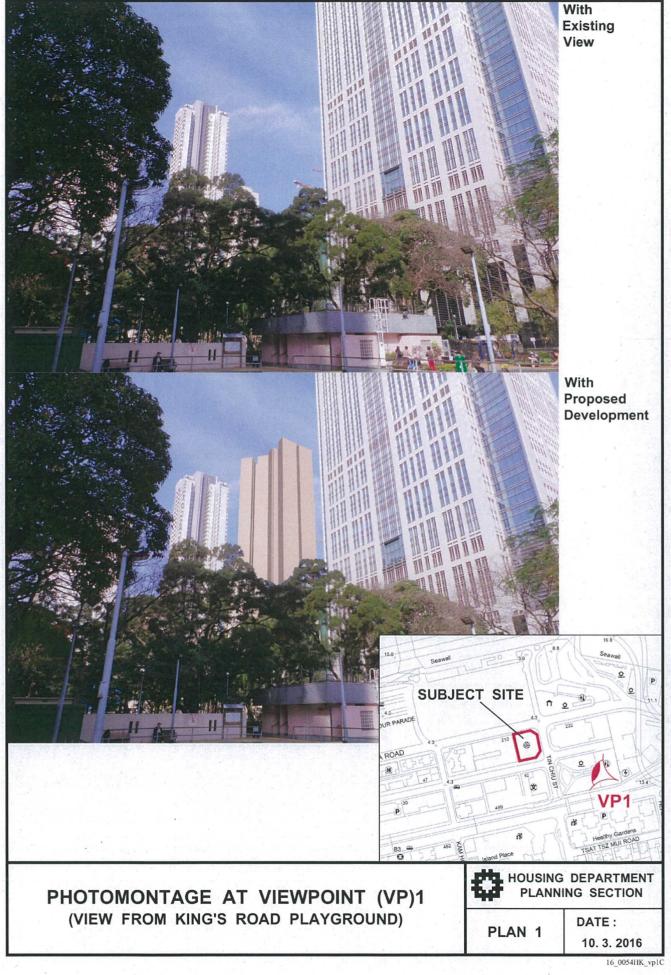
規劃署

- (q) 現行的《北角分區計劃大綱核准圖編號 S/H8/24》規定海旁一帶的建築物以主水平基準上 80 米為限,建築物高度按梯級式遞增至英皇道一帶所限的主水平基準上 120 米。署方考慮到有關房屋用地位於渣華道以南和英皇道以北,故建議把其高度限制設為主水平基準上 110 米,以配合整體的建築物高度輪廓。大綱圖旨在規定建築物高度的上限,至於有關資助出售房屋發展的實際高度,則視乎房屋署的設計;
- (r) 為提高土地使用的彈性,署方建議在「住宅(戊類)」地帶內適用 於現有工業樓宇或工業一辦公室樓宇的附表第一欄中,加入「藝術 工作室(直接提供服務或貨品者除外)」。此技術性修訂與渣華道的 資助出售房屋發展項目並無關係;
- (s) 署方現階段並未有接獲任何改變汽車渡輪碼頭用途的計劃;
- (t) 提升海濱的暢達性是署方的長遠規劃方向。擬重置電照街遊樂場的 政府土地位處海濱,在用地上提供休憩設施,有助建設暢達的海 濱,符合整體規劃方向。至於議員建議在新球場的地底設置公眾停 車場,則是其所屬「政府、機構或社區」地帶經常准許的用途,可 由相關部門研究其可行性;以及

参考編號 REFERENCE No. M/H8/16/7

> 資料來源:房屋署 SOURCE:HOUSING DEPARTMENT

SCHEMATIC SECTION


Sectional Plan of the Development (subject to detailed design)

資料來源:房屋署

SOURCE: HOUSING DEPARTMENT

參考編號 REFERENCE No. M/H8/16/7

繪 圖 DRAWING

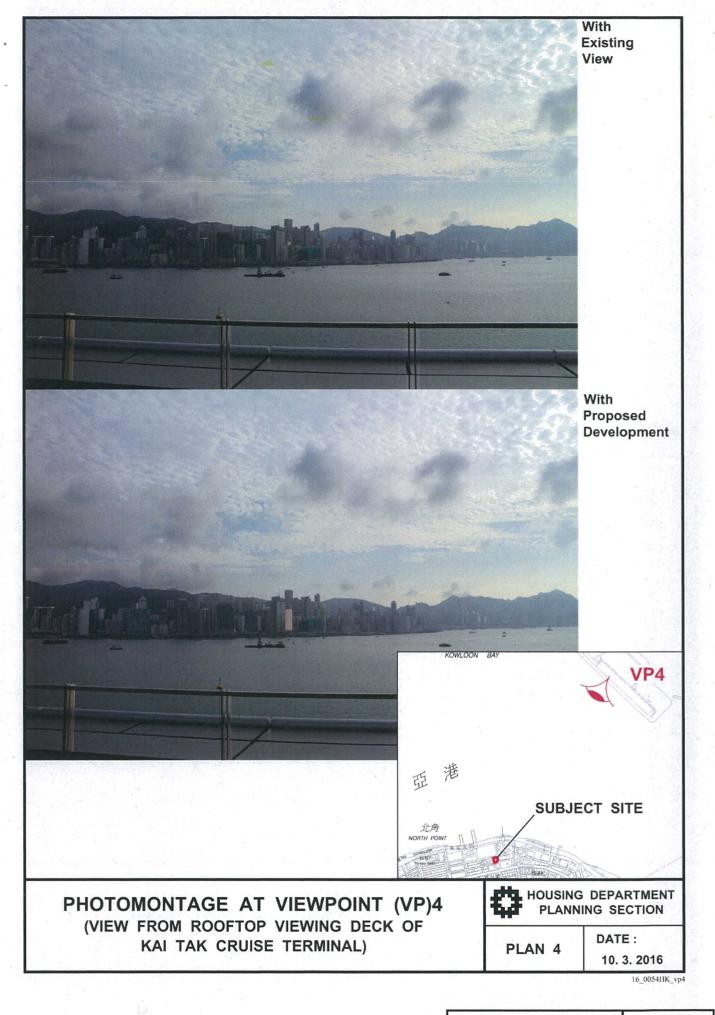
SOURCE: HOUSING DEPARTMENT

參考編號 REFERENCE No. M/H8/16/7

繪圖 DRAWING 3

SOURCE: HOUSING DEPARTMENT

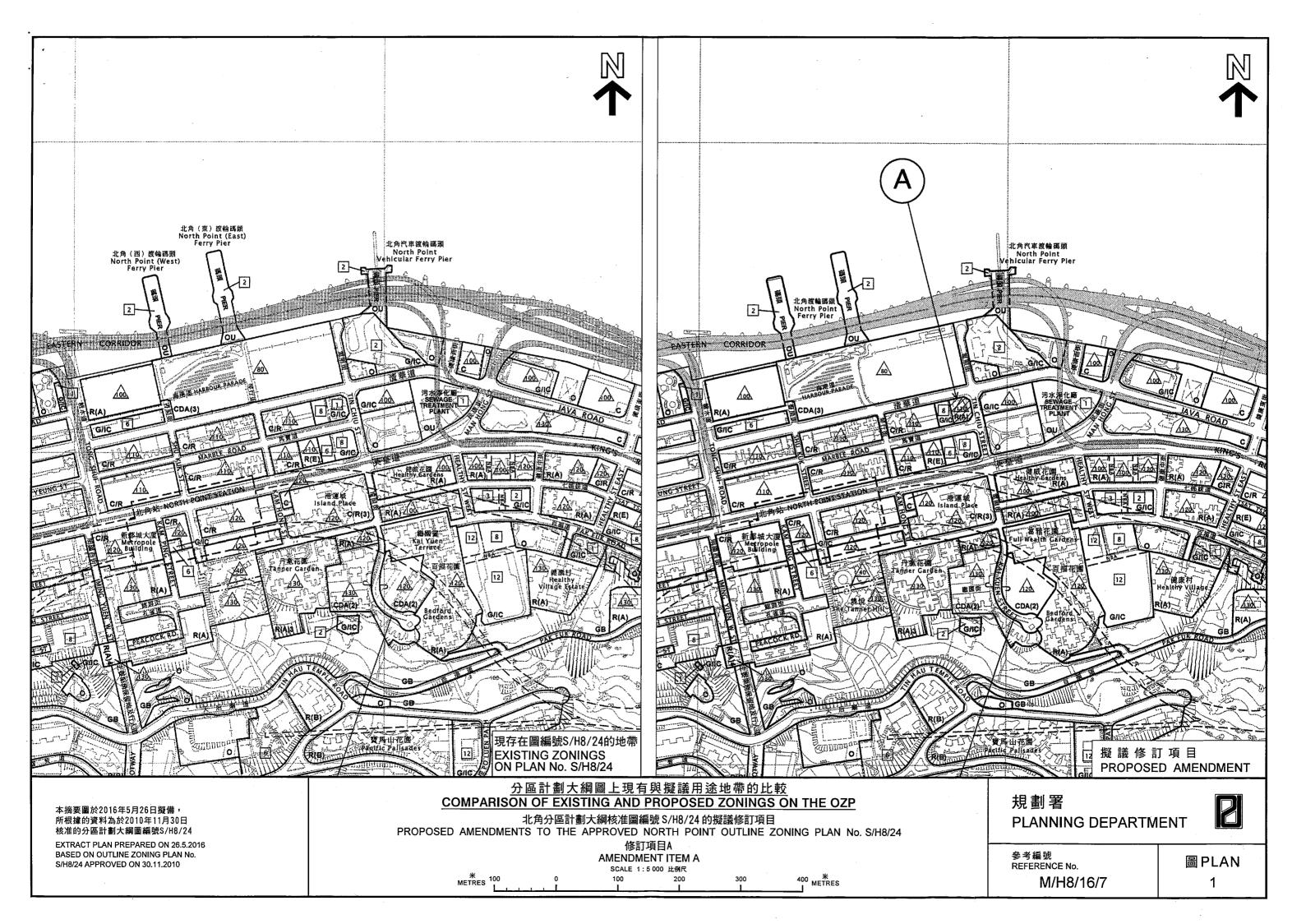
參考編號 REFERENCE No. M/H8/16/7

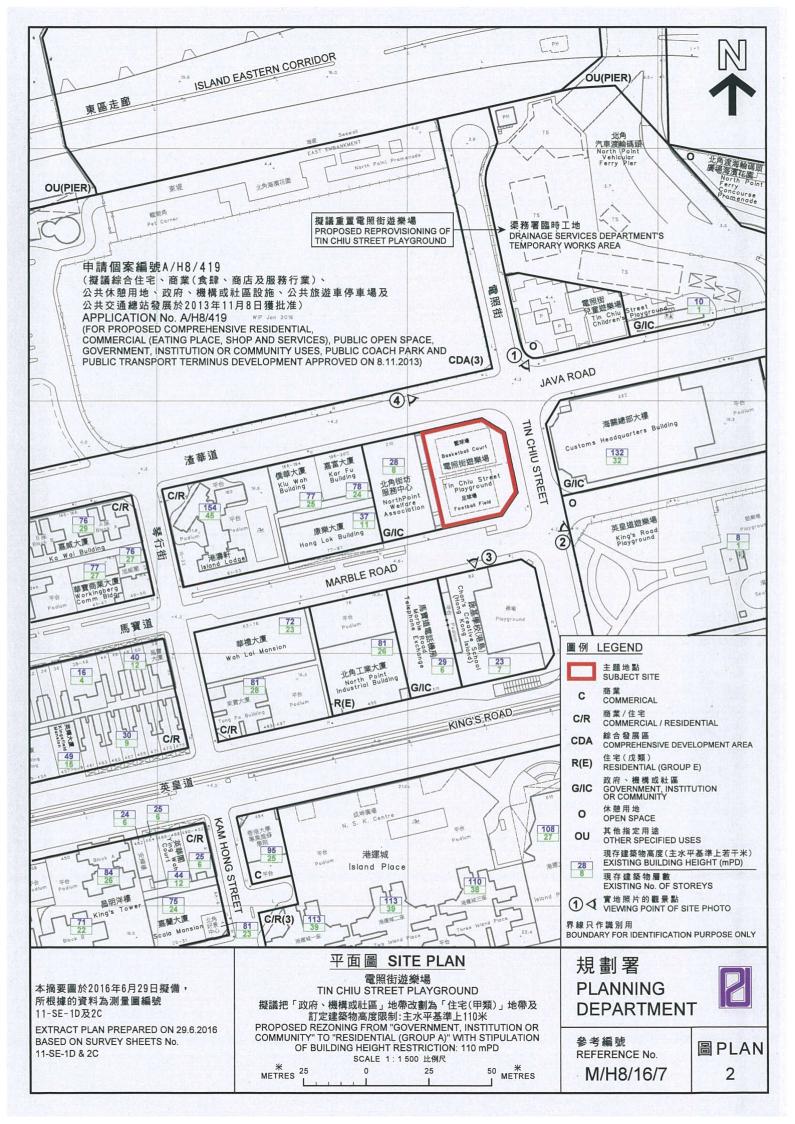

繪 圖 DRAWING ⊿

SOURCE: HOUSING DEPARTMENT

參考編號 REFERENCE No. M/H8/16/7

繪圖 DRAWING 5


SOURCE: HOUSING DEPARTMENT


參考編號 REFERENCE No.

M/H8/16/7

繪圖 DRAWING

6

本圖於2016年5月25日擬備, 所根據的資料為地政總署於 2016年1月1日拍得的 航攝照片編號CS62133

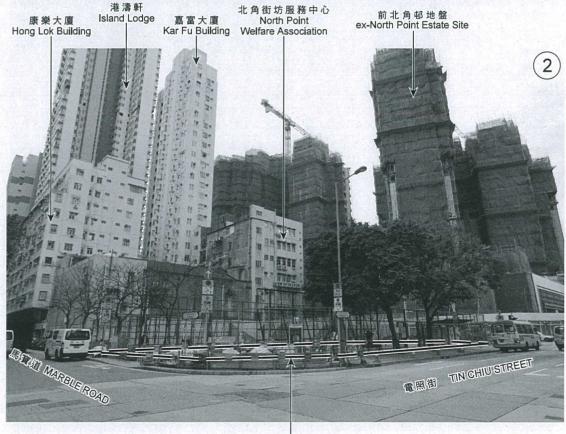
PLAN PREPARED ON 25.5.2016 BASED ON AERIAL PHOTO No. CS62133 TAKEN ON 1.1.2016 BY LANDS DEPARTMENT

航攝照片 AERIAL PHOTO

電照街遊樂場 TIN CHIU STREET PLAYGROUND

擬議把「政府、機構或社區」地帶改劃為「住宅(甲類)」地帶及 訂定建築物高度限制:主水平基準上110米 PROPOSED REZONING FROM "GOVERNMENT, INSTITUTION OR COMMUNITY" TO "RESIDENTIAL (GROUP A)" WITH STIPULATION OF BUILDING HEIGHT RESTRICTION: 110 mPD

規劃署 PLANNING DEPARTMENT


參考編號 REFERENCE No.

M/H8/16/7

圖PLAN

3

界線只作識別用 BOUNDARY FOR IDENTIFICATION PURPOSE ONLY

主題地點 SUBJECT SITE

實地照片 SITE PHOTOS

本圖於2016年5月10日擬備,所根據的 資料為2016年3月14日的實地照片

PLAN PREPARED ON 10.5.2016 BASED ON SITE PHOTOS TAKEN ON 14.3.2016

電照街遊樂場 TIN CHIU STREET PLAYGROUND

擬議把「政府、機構或社區」地帶改劃為「住宅(甲類)」地帶及 訂定建築物高度限制:主水平基準上110米 PROPOSED REZONING FROM "GOVERNMENT, INSTITUTION OR COMMUNITY" TO "RESIDENTIAL (GROUP A)" WITH STIPULATION OF BUILDING HEIGHT RESTRICTION: 110 mPD DEPARTMENT 參考編號

PLANNING

參考編號 REFERENCE No.

規劃署

M/H8/16/7

圖 PLAN 4

界線只作識別用 BOUNDARY FOR IDENTIFICATION PURPOSE ONLY

本圖於2016年5月10日擬備,所根據的 資料為2016年3月14日的實地照片 PLAN PREPARED ON 10.5.2016 BASED ON SITE PHOTOS TAKEN ON 14.3.2016

實地照片 SITE PHOTOS

電照街遊樂場 TIN CHIU STREET PLAYGROUND

擬議把「政府、機構或社區」地帶改劃為「住宅(甲類)」地帶及 訂定建築物高度限制:主水平基準上110米 PROPOSED REZONING FROM "GOVERNMENT, INSTITUTION OR COMMUNITY" TO "RESIDENTIAL (GROUP A)" WITH STIPULATION OF BUILDING HEIGHT RESTRICTION: 110 mPD

規劃署 PLANNING DEPARTMENT

參考編號 REFERENCE No.

M/H8/16/7

圖PLAN

5

Visual Appraisal

Proposed Public Housing Development at Java Road, North Point

1. Site Particulars and Proposed Development

- 1.1 The subject site (about 0.12 ha) is zoned "Government, Institution or Community" on the approved North Point Outline Zoning Plan (OZP) no. S/H8/24. It is currently occupied by Tin Chiu Street Playground (TCSP) on government land. The Tin Chiu Street Playground is proposed to be relocated to a site currently serve as a temporary works site by Drainage Services Department located adjacent to the Tin Chiu Street Children's Playground.
- 1.2 The subject site is located at the junction of Java Road and Tin Chiu Street in North Point. North Point Welfare Association (about 27 mPD) is located to the immediate west and high-rise residential clusters including Island Lodge (about 154 mPD) are located to the further west. Customs Headquarters Building (about 132 mPD) is found to the immediate east with North Point Preliminary Treatment Works (about 10 mPD to 13 mPD) to the further east. To the immediate north is a waterfront comprehensive development (with maximum building height of 80 mPD) currently under construction. Victoria Harbour is located to the further north. A primary school, namely, Chan's Creative School (about 24 mPD) is found to the immediate south with a mixed-use development, namely, Island Place (about 108 113 mPD) to the further south. Please refer to **Drawing A** for details.
- 1.3 In the visual context, the subject site is located in a built-up area in North Point abutting the Victoria Harbour, with high-rise residential buildings mingled with high-rise G/IC uses (e.g. Customs Headquarters Building) and low-rise G/IC uses (e.g. Chan's Creative School). Braemar Hill is located to the further south of the built-up area. As stipulated in the OZP, the building height restriction is imposed in the area in order to form a stepped building height profile from the waterfront towards the inland. Major visual detractor in the area includes the Island Eastern Corridor running in front of and parallel to the coastline and North Point Preliminary Treatment Works to the east of the subject site.
- 1.4 The subject site is proposed for public housing development, with a maximum building height of +110 mPD, and the GFA in accordance with the Building (Planning) Regulations (equivalent to plot ratio of about 10). The proposed public housing development will deliver about 240 flats to accommodate a design population of about 630 persons. The design of the development is constrained by the limited site area. The ground floor of the proposed development has to accommodate the required facilities such as the car park spaces, maneuvering space of large vehicle for loading/unloading,

space for refuse collection, essential plant rooms, green coverage area, and residential lobby. As such, a one-storey podium is proposed in providing the required local open space. In enhancing air ventilation, a setback of about 2m at northeastern and southeastern corner splay is tentatively proposed (subject to detailed design). An empty bay with dimension of about 3.5m (w) x 3.0m (h) is proposed at G/F along Tin Chiu Street (subject to detailed design). There are 12 nos. of trees adjoining the site on the pavements of Java Road, Tin Chiu Street and Marble Road. While these trees will be retained as far as practicable subject to detailed design, it can be assured that a green coverage of 20% will be provided for the proposed development which is in accordance with the Guiding Principles agreed by PlanD and HD in December 2010. Please refer to **Drawing B** for the tentative layout of the proposed development.

2. Viewpoints (VPs)

2.1 For the assessment of the visual impact of the proposed development, four VPs that are easily accessible and frequently used by the public for recreation and leisure are selected. They are:

VP 1	King's Road Playground
VP 2	Tin Chiu Street Children's Playground
VP 3	Tin Hau Temple Road Park
VP 4	Rooftop Viewing Deck of Kai Tak Cruise Terminal

3. Visual Appraisal

VP1 – King's Road Playground (**Plan 1** refers)

3.1 This close-range VP is at King's Road playground, which is about 120m to the southeast of the subject site. Apart from the King's Road Playground and its existing trees, the existing view from this VP mainly consists of the Island Lodge and the Customs Headquarters Building. As demonstrated in the photomontage in **Plan 1**, the proposed development will involve erecting a high-rise at the TCSP. With a maximum building height of 110 mPD, the proposed development will detract from the visual permeability in the locality. Nevertheless, the proposed development will be comparable in scale and height to the surrounding developments. Furthermore, part of the proposed development will be blocked by the existing trees in the midground within the playground. In view of the above, the visual impact brought by the proposed development from this VP is considered moderate on the surrounding area.

VP2 – Tin Chiu Street Children's Playground (**Plan 2** refers)

3.2 This close-range VP is at Tin Chiu Street Children's Playground, which is about 71m to the northeast of the subject site. Apart from the children playground facility and existing trees, the existing view from this VP mainly consists of the residential towers of the nearby comprehensive development to the north of the site, Island Lodge, North Point Industrial Building, and Customs Headquarter Building against the sky backdrop. As evident in the photomontage in **Plan 2**, the proposed development will involve erecting a high-rise at the TCSP. With the view towards the sky being partially blocked by the proposed development, certain loss in visual permeability in the locality will be resulted. Nevertheless, the proposed development will be comparable in scale and height to the surrounding developments. As such, the visual impact of the proposed development from this VP is considered moderate.

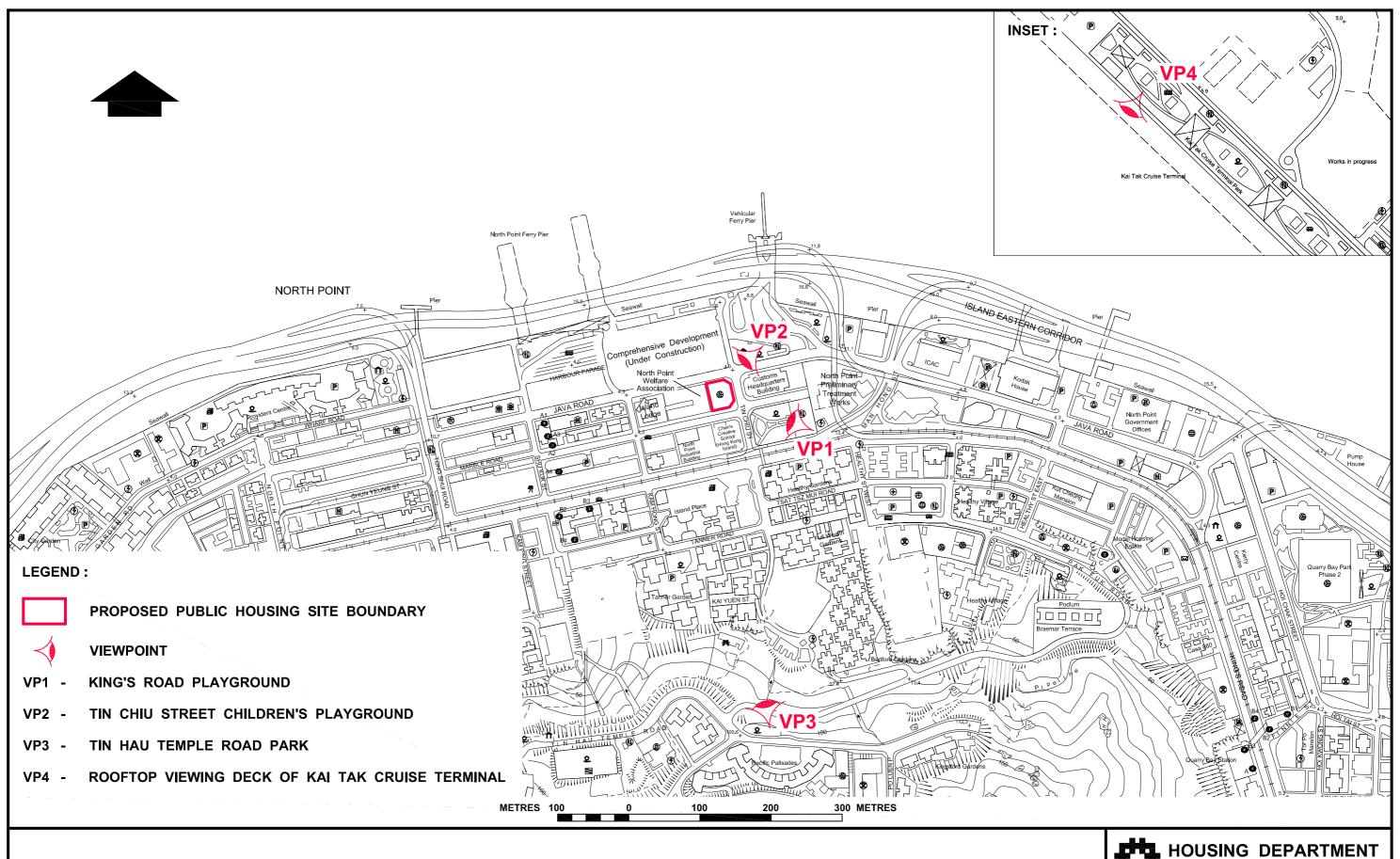
VP3 - Tin Hau Temple Road Park (**Plan 3** refers)

3.3 This VP is at the park at 102 mPD on the north-facing slope of Braemar Hill, which is about 480m to the south of the subject site. The existing view from this VP mainly consists of high-rise development cluster, including Island Place and Customs Headquarter Building against the open sky backdrop. There is also a glimpse of the Victoria Harbor from this VP. As demonstrated in the photomontage in **Plan 3**, the proposed development of 110 mPD will be blocked by the existing developments to its south and it can be barely seen through the narrow building gap between the Island Place Tower and residential development at Island Place. As such, the visual impact from this VP is considered negligible.

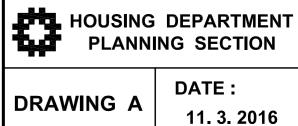
VP4 - Rooftop Viewing Deck of Kai Tak Cruise Terminal (**Plan 4** refers)

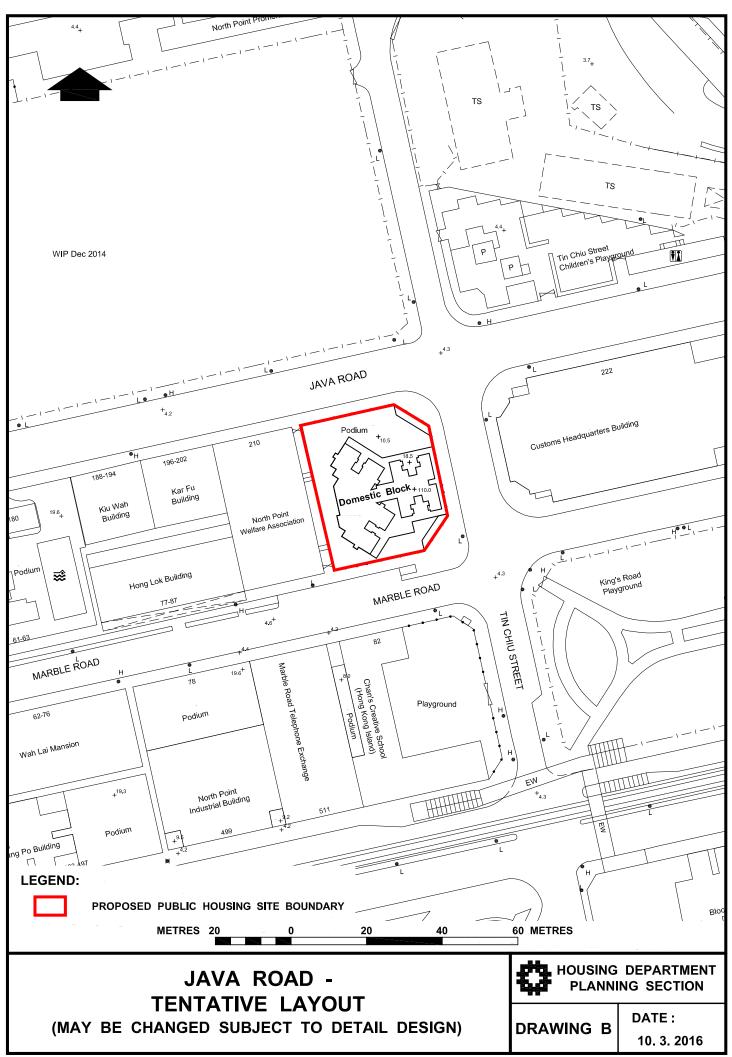
3.4 This distant VP is at Kai Tak Cruise Terminal, which is about 1,870m to the northeast of the subject site. The existing view from this VP consists of the Victoria Harbour and buildings along the northern shore of Hong Kong Island against the ridgelines and open sky backdrop. As evident in the photomontage in **Plan 4**, the proposed development is of appropriate scale and is considered visually compatible with the surrounding area. The views to the ridgelines or the Victoria Harbour will not be affected by the proposed development. In view of the above factors, the visual impact brought by the proposed development from this VP is considered negligible on the surrounding area.

4. Conclusion


4.1 Being located in an urban built-up area, the proposed development will involve erecting a high-rise at the TCSP, which will be comparable in scale and height to the surrounding developments. As evident in the photomontages, the proposed development will not affect views to the ridgelines or the Victoria Harbor. As such, the visual effect of the proposed development on the medium range VP3 and long-range VP4 is considered negligible. As for close-range VP1 and VP2, the proposed development will inevitably result in some loss of visual permeability. Efforts will be further made to provide suitable design measures at detailed design stage as far as practicable, such as setbacks, careful podium design, as well as the empty bay at G/F in order to reduce the bulk of the podium and enhance the permeability/amenity of the locality. In overall terms, the resultant visual impact of the proposed public housing development on the prominent pedestrian nodes/key open space of the subject vicinity is considered slightly adverse and the proposed development will not be incompatible with its surroundings.

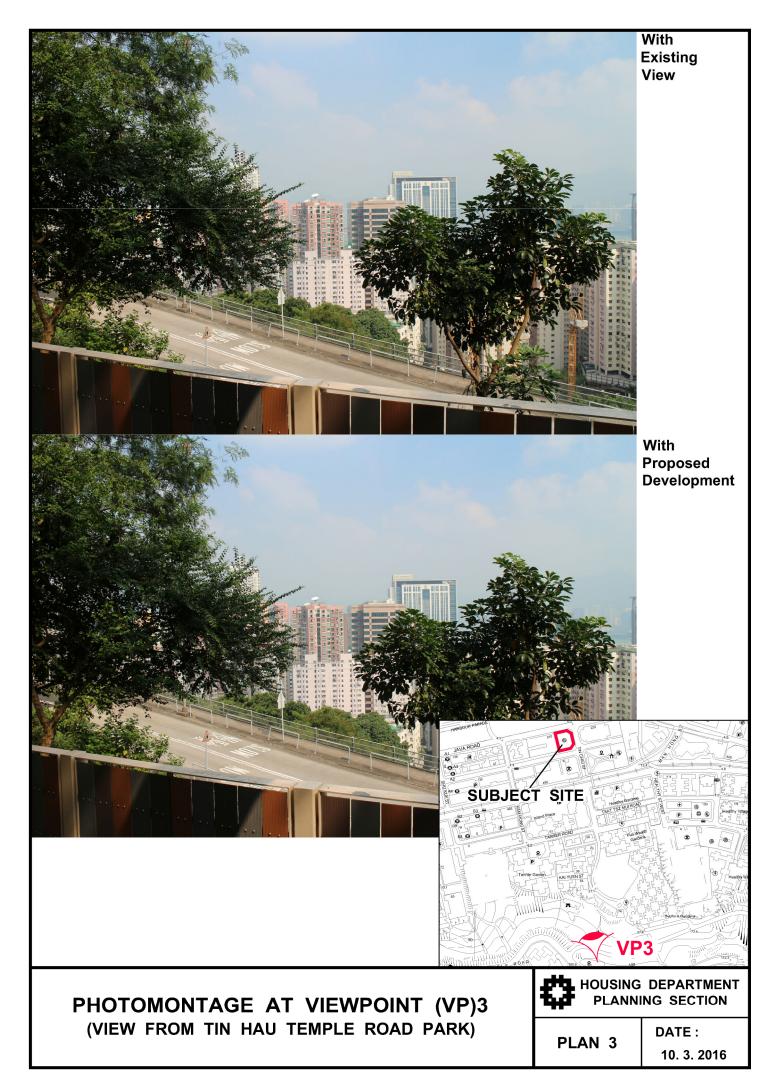
Attachments

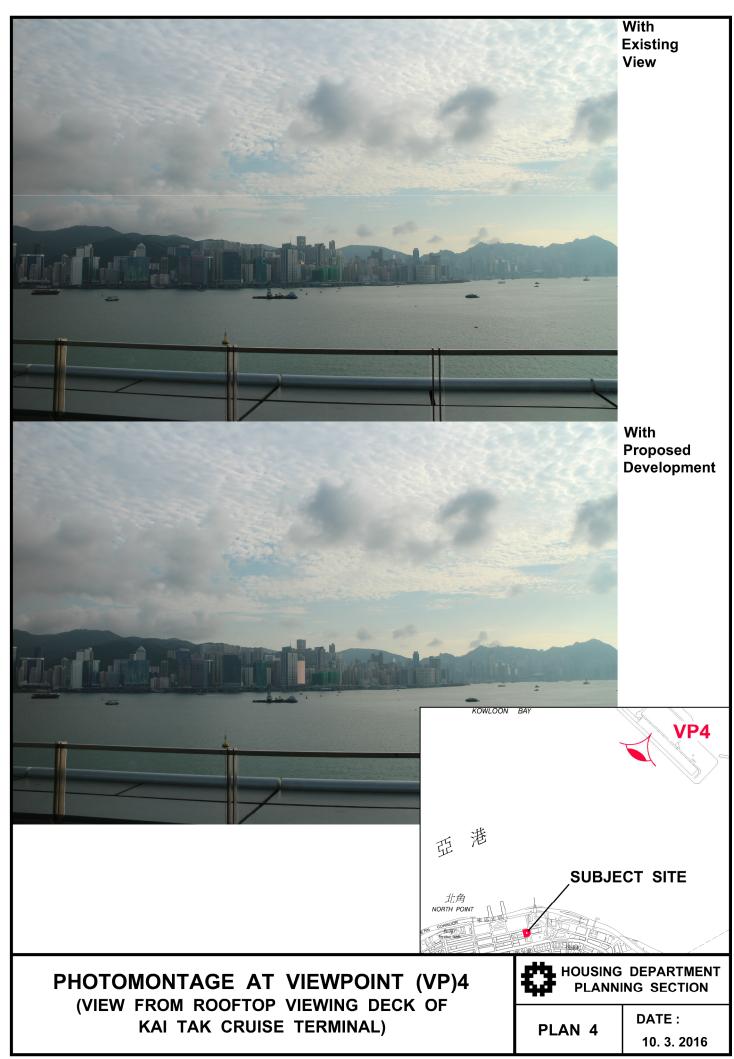

Drawing A	Proposed Viewpoints for Visual Appraisal
Drawing B	Tentative layout
Plan 1	Photomontage at VP 1 (View from King's Road Playground)
Plan 2	Photomontage at VP 2 (View from Tin Chiu Street Children's Playground)
Plan 3	Photomontage at VP 3 (View from Tin Hau Temple Road Park)
Plan 4	Photomontage at VP 4 (View from Rooftop Viewing Deck of Kai Tak Cruise
	Terminal)


HOUSING DEPARTMENT

May 2016




PUBLIC HOUSING SITE AT JAVA ROAD - PROPOSED VIEWPOINTS FOR VISUAL APPRAISAL



Hong Kong Housing Authority

Air Ventilation Assessment of Proposed Public Housing Development at Java Road, North Point

Expert Evaluation Report

Issue | 23 May 2016

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 226853-05

Ove Arup & Partners Hong Kong Ltd Level 5 Festival Walk 80 Tat Chee Avenue Kowloon Tong Kowloon Hong Kong www.arup.com

Document Verification

Housing De				f Proposed Public a Road, North Point	Job number 226853-05	
		uation Report		File reference		
Document r	ef					
Revision	Date	Filename	20160422_JavaRoad_EE_issuev2.docx			
Issue	22 Apr 2016	Description	Issue			
			Prepared by	Checked by	Approved by	
		Name	Agnes Chan	Henry Au	Sui-Hang Yan	
		Signature	A.	111		
-		Filename				
		Description				
			Prepared by	Checked by	Approved by	
		Name			*	
		Signature				
		Filename		1		
		Description				
			Prepared by	Checked by	Approved by	
		Name				
		Signature				
		Filename		•		
		Description				
			Prepared by	Checked by	Approved by	
		Name				
		Signature				
		•	Issue Doc	ument Verification with	Document	

Contents

			Page
1	Introd	luction	1
	1.1	Project Background	1
	1.2	Objective	1
	1.3	Study Tasks	1
2	Site C	haracteristics	2
3	Site W	Vind Availability	4
	3.1	Wind Tunnel Test	4
	3.2	RAMS Wind Data	6
	3.3	Hong Kong Observatory	7
	3.4	Summary of the Site Wind Availability	8
4	Quali	tative Assessment of Existing Condition of the Project Site	9
	4.1	Annual Prevailing Wind Condition	9
	4.2	Summer Prevailing Wind Condition	11
5	Quali	tative Assessments of OZP Compliant Scenario	13
6	Prelin	ninary Plan	14
7	Ventil	ation Performance of the Proposed Development	16
	7.1	Annual Prevailing Wind Condition	16
	7.2	Summer Prevailing Wind Condition	22
8	Wind	Enhancement Features and Recommendation	25
	8.1	Empty Bay at Ground Floor Level	25
9	Furth	er Quantitative Study	26
10	Concl	usion	27

1 Introduction

1.1 Project Background

Ove Arup & Partners Hong Kong Ltd (Arup) was commissioned by the Hong Kong Housing Authority (HKHA) to carry out an Air Ventilation Assessment (AVA) – Expert Evaluation for the proposed public housing development at Java Road, North Point (the Development).

1.2 Objective

The objective of this study is to evaluate the wind performance of the Project Site using the methodology of Air Ventilation Assessment, based on the "Housing Planning and Lands Bureau – Technical Circular No. 1/06, Environment, Transport and Works Bureau – Technical Circular No. 1/06" issued on 19th July 2006 (the Technical Circular) and "Technical Guide for Air Ventilation Assessment for Development in Hong Kong – Annex A" (the Technical Guide). This report presents the findings for the study of Stage 1 – Expert Evaluation.

1.3 Study Tasks

The major task of this study is to carry out an expert evaluation on the characteristics of the site wind availability data of the development area and assessment of the wind performance under existing development situation and the proposed building design option in a qualitative way. The expert evaluation will cover the following tasks:

- Identify the wind condition
- Identify problem areas
- Identify good design features
- Define methodologies of the Initial Study

2 Site Characteristics

The Project Site is situated at the northern part of Hong Kong Island within North Point area. The Area is a flat built-up urban areas from east to west with gradually sloped regions to the far south, while the north of the Project Site is exposed to the Victoria Harbour. The topography of North Point area is shown in Figure 1.

Figure 1 Topography of North Point Area (Source: Google Map)

The Project Site is located at junction of Java Road (Green line), Tin Chiu Street (Blue line) and Marble Road (Orange line). The location of the Project Site is shown in Figure 2.

An 8-storey GIC block (North Point Kai Fong Welfare Association) is at the west of the Project Site. The south side of the Project Site is the low-rise school site (Chan's Creative School (HK Island)) while the east side is the high-rise Custom Headquarters Building. A planned high-rise development at Java Road will be situated to the north of the Project Site, it is zoned as "Comprehensive Development Area (3)" ("CDA(3)") with a maximum building height of 80mPD.

Other significant surroundings around the Project Site includes high-rise residential buildings at Java Road and industrial building clusters such as North Point Industrial Building and Marble Road Telephone Exchange at south to southwest to the Project Site. Open spaces such as Tin Chiu Street Children's Playground and King's Road Playground are located at the northeast and the southeast sides of the Project Site respectively.

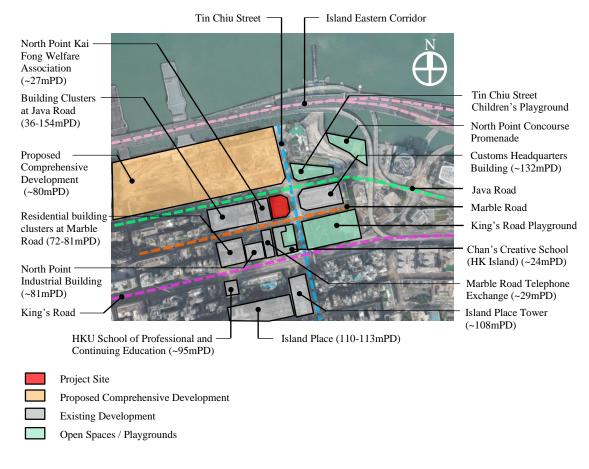


Figure 2 Location of Surrounding Major Roads and Surrounding Development (Source: Google Map)

3 Site Wind Availability

To investigate the wind performance of the Project Site, the characteristic of the natural wind availability of the site is essential. Site wind availability data presented in the wind rose could be used to assess the wind characteristics in terms of the magnitude and frequency of approaching wind from different wind directions. There are three sources of site wind data for this Development, including wind tunnel test, simulated RAMS and the nearby Hong Kong Observatory (HKO) Station – North Point Weather Station.

3.1 Wind Tunnel Test

The wind availability of this Study was referred to wind tunnel study report conducted for An Instructed Project at Ex-North Point Estate Site, North Point¹, Hong Kong. The Ex-North Point Estate Site is located just adjacent to the current project site of this study as shown in Figure 5. According to the Ex-North Point Estate Report, the site wind availability data was evaluated from a wind tunnel topographical model study previously conducted by others for a proposed development at the Oil Street site, North Point (CH2M Hill Hong Kong Limited, March 2008). The wind roses under annual and summer conditions are shown in Figure 3 and Figure 4 respectively.

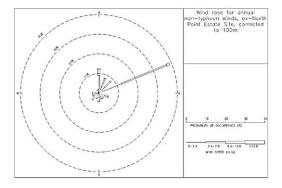


Figure 3 Wind Rose for the Project Site under Annual Wind Condition at 100m

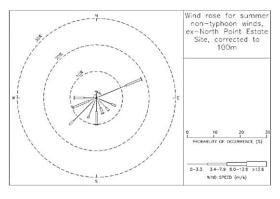


Figure 4 Wind Rose for the Project Site under Summer Wind Condition at 100m

¹ Final Report for An Instructed Project at Ex-North Point Estate Site, North Point, Hong Kong, Planning Department, HKSAR Government, December 2008

Project Site
Site Area of Ex-North Point Estate Site

Figure 5 Location of Data Extracted from Wind Tunnel Test

Table 1 Prevailing Wind Frequency by Wind Tunnel Test

Prevailing Wind	Annual	Summer
Wind Direction	ENE, N	ENE, SW, S, WSW

According to the wind data from the wind tunnel test, ENE and N winds are identified as the annual prevailing wind direction while ENE, SW, S and WSW winds are identified as the summer prevailing wind direction.

3.2 RAMS Wind Data

As stipulated in the Technical Guide, the site wind availability would be presented by using appropriate mathematical models (e.g. RAMS simulation). Planning Department (PlanD) has set up a set of wind availability data of the Territory for AVA study, which could be downloaded at Planning Department Website ².

The wind availability data at 200mPD obtained from the grid of (x: 86, y: 36) for the RAMS simulation is utilised for the Expert Evaluation, as shown in Figure 6.

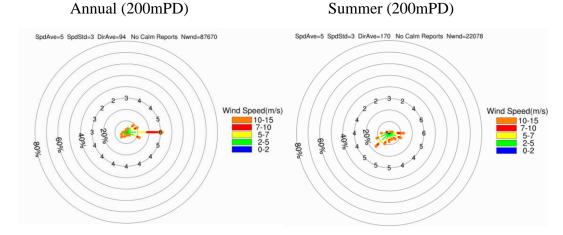


Figure 6 Wind Rose of North Point Area by RAMS Wind Data

Table 2 Prevailing Wind Frequency by RAMS Wind Data

Prevailing Wind	Annual				Summer	
Wind Direction	E	ESE	ENE	SW	E	WSW
Wind Frequency	31.6%	12.4%	10.6%	16.2%	12.7%	11.5%

According to the RAMS wind data, E, ESE and ENE winds contribute to 31.6%, 12.4% and 10.6% of the annual wind frequency respectively while the SW, E and WSW winds contribute to 16.2%, 12.7% and 11.5% of the summer wind frequency respectively. Hence, E, ESE and ENE winds are identified as the annual prevailing wind direction while SW, E and WSW winds are identified as the summer prevailing wind direction.

-

² http://www.pland.gov.hk/pland en/info serv/site wind/site wind/index.html

3.3 Hong Kong Observatory

On the other hand, the prevailing wind direction measured at the closest weather station - North Point Weather Station from the Hong Kong Observatory³ is tabulated in Table 3 for each month in 2014. The E wind is the annual prevailing wind direction while the SW and E winds are the summer prevailing wind directions.

Table 3 Monthly Wind Direction Recorded at North Point Weather Station (Source: Hong Kong Observatory)

Mo	nth	Prevailing Wind Direction
		()
Janı	ıary	90
Febr	ruary	90
Ma	rch	90
Ap	oril	90
M	ay	260
June		260
July	(Summer)	80
August		260
Septe	mber	80
Octo	ober	90
November		90
December		90
Anr	nual	90

-

³ Summary of Meteorological and Tidal Observations in Hong Kong (2014)

Project Site

Location of North Point HKO Station

Figure 7 Measurement Location of North Point HKO Station

3.4 Summary of the Site Wind Availability

These three sets of wind data have been studied. The wind data from adjacent wind tunnel report, RAMS and North Point Weather Station indicated prevailing winds directions are tabulated in Table 4.

The tabulated data reflects similar annual prevailing wind directions which are N, ENE, E and ESE, whereas the summer prevailing wind directions varies from ENE, E, S, SW and WSW. The evaluation of site wind performance would consider both site wind availability data and site characteristics.

Table 4 Prevailing wind directions for the Study Area

Prevailing Wind Direction	Wind Tunnel Test	RAMS	HKO (North Point Area)
Annual	N/ENE	E/ESE/ENE	Е
Summer	ENE/SW/S/WSW	E/SW/WSW	E/SW

4 Qualitative Assessment of Existing Condition of the Project Site

The Project Site is located in flat built-up area which exposes to the sea in the northern part and surrounded by building clusters in the east, west and south. With the consideration of the existing and committed developments near the Project Area, the wind environments under both annual and summer conditions are qualitatively assessed below based on the wind data presented in Section 3.

4.1 Annual Prevailing Wind Condition

Under annual wind condition, the prevailing winds are mainly from northeast quarter. The large elevated infrastructure namely, Island Eastern Corridor is situated at upstream of the wind entrance area. The infrastructure would induce wind blockage effect and slightly reduce the incoming wind speed.

Under N Wind

The incoming wind would mainly enter from the waterfront from the north. The presence of the Proposed Comprehensive Development at Java Road could divert the incoming wind to flow along Tin Chiu Street and deliver air to the further inland of North Point Area.

As the existing condition of the Project Site is a ball court with no major wind obstruction structure, a portion of incoming wind would be able to penetrate across the Project Site into Marble Road. The major portion of incoming wind would continue to flow along Tin Chiu Street and further ventilate Chan's Creative School (HK Island) and flow towards the southern North Point Area. A portion of N wind could able to skim over Chan's Creative School (HK Island) at high level and downwash to King's Road by the Island Place Tower.

Under ENE Wind

The ENE wind could enter the area from North Point Concourse Promenade through Tin Chiu Street Children's Playground. The presence of Customs Headquarters Building would divert the incoming wind to flow along Java Road. Due to no major wind obstruction structure at the existing site condition, a small portion of wind flow along Java Road could potentially penetrate across the site towards Marble Road. The prevailing wind could also penetrate from the east waterfront area and flow along Marble Road towards the center of North Point Area.

Under E Wind

The prevailing wind enters from the east waterfront area, the presence of Customs Headquarters Building would divide the wind to flow along both Java Road and Marble Road.

Under ESE Wind

The ESE wind would mainly flow along Java Road and King's Road from the ESE quarter direction. The presence of Customs Headquarters Building is expected to block the wind along Java Road towards the site, while the wind from King's Road could flow through King's Road Playground penetration into Marble Road and Java Road.

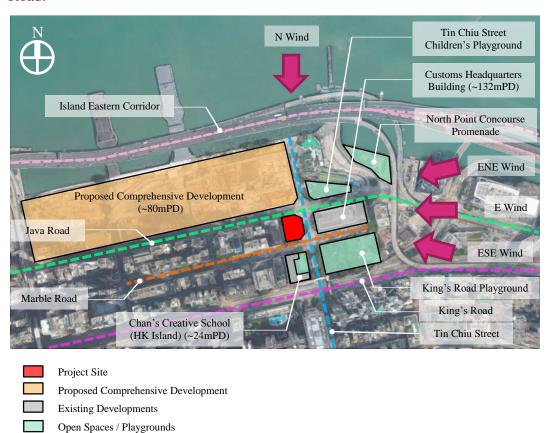


Figure 8 Wind Environment under Annual Wind Condition

4.2 Summer Prevailing Wind Condition

Under summer wind condition, the majority of the wind would come from easterly (E), east-north-easterly (ENE), southerly (S) and southwest quarter (SW and WSW).

Under ENE Wind

Similar to the Annual Wind Condition, the incoming wind would enters from North Point Concourse Promenade and then the Customs Headquarters Building would divert the incoming wind to flow along Java Road. A small portion of wind flow along Java Road could potentially penetrate across the site towards Marble Road. Marble Road could also act as a minor breezeway for the wind from the east waterfront area.

Under E Wind

Similar to the Annual Wind Condition, the prevailing wind enters from the east, the presence of Customs Headquarters Building would divide the wind to flow along both Java Road and Marble Road.

Under S Wind

The surroundings high-rise building clusters, such as Island Place Tower and Island Place building clusters at the south of the Project Site would potentially block the incoming wind to the Project Site and its leeward region. Furthermore, the presence of the Chan's Creative School (HK Island) at the upwind direction would further induce wind shadow to the Project Site. Thus, it is expected the wind environment would be relatively calm. A portion of incoming wind would mainly flow along the Tin Chiu Street toward the waterfront area and reach the Project Site.

Under SW and WSW Winds

Similar to the S wind condition, the surroundings high-rise buildings clusters at the south and southwest of the Project Site would potentially block the incoming wind to the Project Site and its leeward region. The incoming wind is expected to flow along Java Road and Marble Road from WSW to ENE and reach the Project Site and its leeward side (such as Tin Chiu Street Children's Playground).

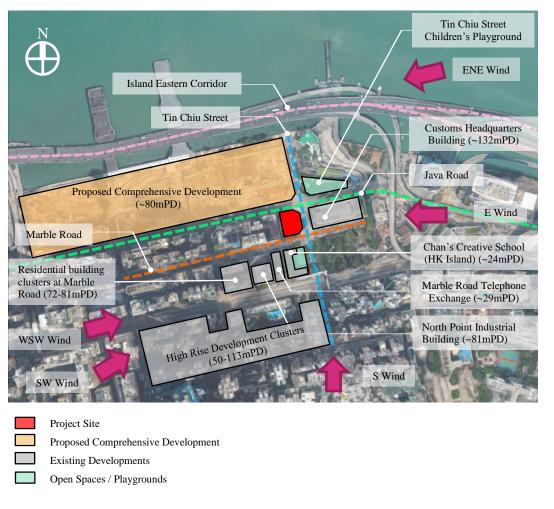


Figure 9 Wind Environment under Summer Wind Condition

5 Qualitative Assessments of OZP Compliant Scenario

While the existing use of the Project Site is a ball court, the planning intention of the Project Site is a one-storey GIC development as reflected on the OZP.

In the macroscopic point of view, the major flow pattern for the vicinity is mainly governed by the street pattern, such as Java Road, Marble Road and Tin Chiu Street, as discussed in Section 4. Even the GIC development is assumed to be full site coverage, it will not block the wind flow through any aforementioned road, and the overall flow pattern for current situation is expected similar to the existing condition.

Although the GIC development at the Project Site may alter the flow pattern under ENE wind, the impact is localized. The wind is expected to skim over the 1-storey development and able to reach Marble Road.

6 Preliminary Plan

The Development consists of a single domestic block with a maximum building height of 110mPD. The podium corners along Tin Chiu Street has truncated due to the project site boundary (hereafter "corner splay design"). This design feature could potentially help to direct wind flow between Tin Chiu Street and Java Road as well as Tin Chiu Street and Marble Road. Also, there is around 2m setbacks from the site boundary at both corner splay areas. Figure 10 and Figure 11 show the layout plan and the sectional plan of the Development respectively.

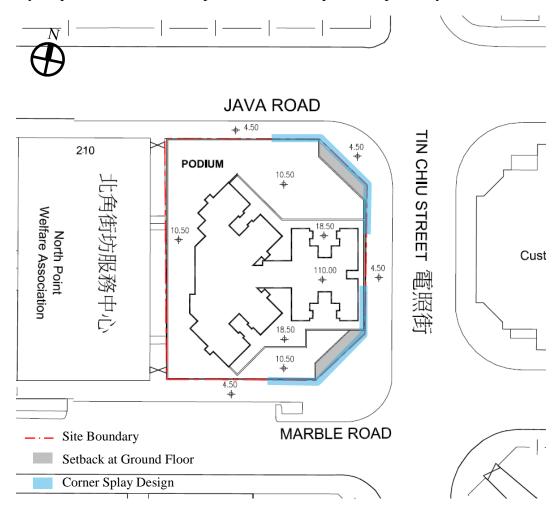


Figure 10 Site Layout Plan of the Development (site layout subject to detailed design)

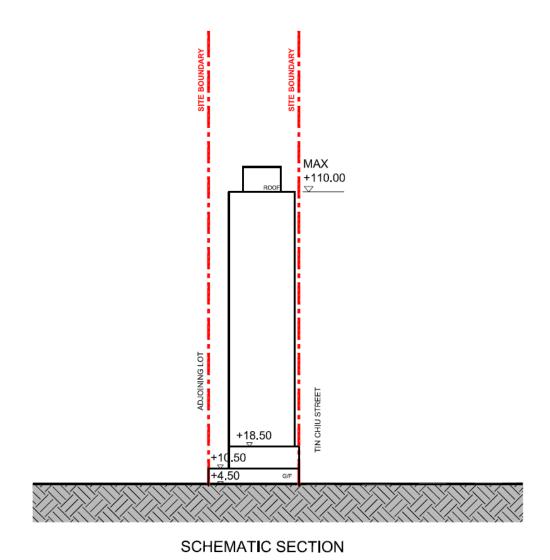


Figure 11 Sectional Plan of the Development

7 Ventilation Performance of the Proposed Development

7.1 Annual Prevailing Wind Condition

Under N Wind

The N wind would mainly enter from the north waterfront while the presence of the Proposed Comprehensive Development at Java Road could further divert the wind to flow along Tin Chiu Street and deliver air to the further inland of North Point Area.

The presence of the Development would inevitably induce wind shadow to the localized area of Marble Road and Chan's Creative School (HK Island). Nevertheless, the wind shadow is localized and would not induce significant impacts to the ventilation along Marble Road. Furthermore, the corner splay design of the current design scheme could facilitate the wind penetrate into the areas to minimize the ventilation impact.

Considering the 3m setback design along Tin Chiu Street at the Proposed Comprehensive Development (Highlighted with Purple Line and Blue area at Figure 12), the presence of the Development's building tower and podium would slightly narrow the air path along Tin Chiu Street and reduce the air volume flow across Tin Chiu Street and towards King's Road. The corner splay design of the current design scheme could facilitate the wind flow along Tin Chiu Street and minimize the ventilation impact.

On the other hand, the Development could block the high level wind penetration and reduce downwash effect of the Island Place Tower (location at the leeward side). Thus, the Development could lead to a slightly lower ventilation performance at the King's Road near Tin Chiu Street. Nevertheless, the impacts is localized and would not induce significant ventilation impacts along King's Road.

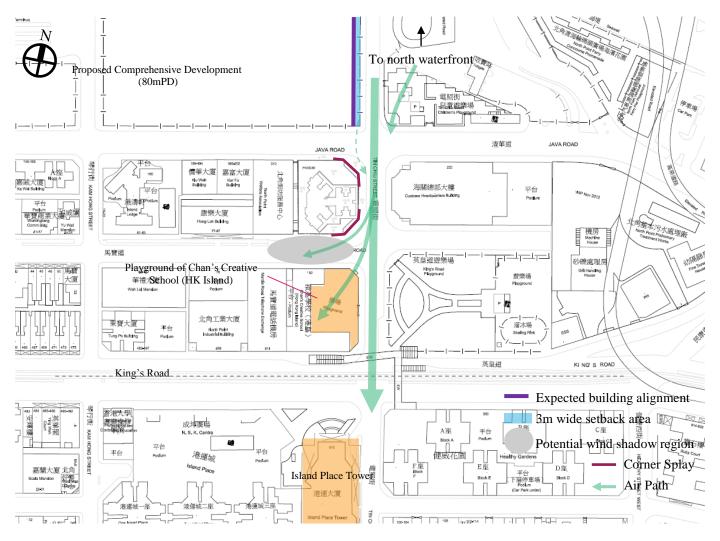


Figure 12 Wind Environment under N Winds (site layout subject to detailed design)

Under ENE Wind

Both Java Road and Marble Road are aligned to ENE direction, which encourage the ENE prevailing wind penetration. The ENE wind would also enter from North Point Concourse Promenade to Tin Chiu Street Children's Playground. The presence of Customs Headquarters Building would divert the incoming wind to flow along Java Road. The prevailing wind could also enters from the east waterfront area. Marble Road could act as a minor breezeway to deliver the wind towards the center of North Point Area.

The Development's building tower and podium is in alignment with the adjacent building blocks along the western part of Java Road including North Point Welfare Association, Kar Fu Building, Kiu Wah Building and Hong Lok Building (Highlighted with Purple Line at Figure 13). In this connection, it is expected that the presence of the Development would not induce significant impact to the wind flow along the western part of Java Road.

The presence of the Development would inevitably block the prevailing wind and prevent wind flow from Java Road to Marble Road directly. As a result, slightly lower ventilation performance is expected at the localized areas of Marble Road. The provision of the corner splay design of the Development could help to divert a small portion of wind from Java Road through Tin Chiu Street towards the Marble Road and thus to minimize the ventilation impact.

The Customs Headquarters Building (+132mPD) is situated at the ENE side of the Project Site. As the Customs Headquarters Building is at the upwind direction, it would shield the incoming wind to the Project Site, while the Development is expected to further shield the building clusters at the leeward zone, such as North Point Kai Fong Welfare Association, Kar Fu Building and Hong Lok Building.

Chan's Creative School (HK Island) is located at the south of the Project Site. As the Project Site is not located at the upwind of the school site, it is expected that the Development would not induce significant ventilation impact to the area.

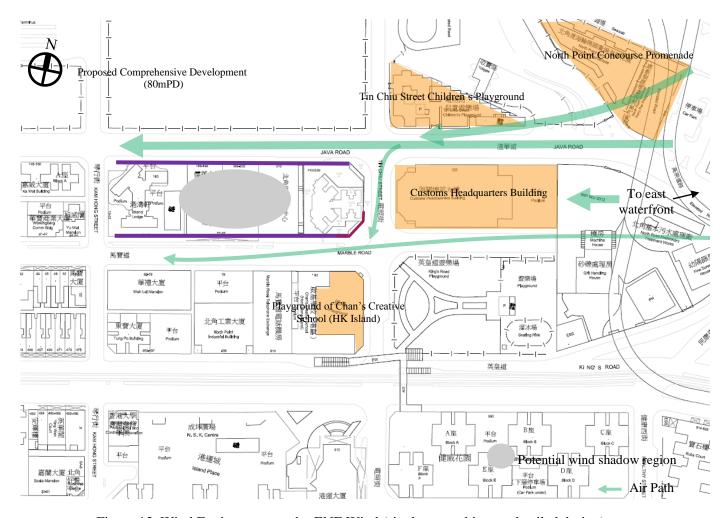


Figure 13 Wind Environment under ENE Wind (site layout subject to detailed design)

Under E Wind

The prevailing wind enters from the east waterfront. The presence of Customs Headquarters Building would divide the incoming wind to flow along both Java Road and Marble Road. The Development's building tower and podium is in alignment with the adjacent building blocks along Java Road and Marble Road including North Point Welfare Association, Kar Fu Building, Kiu Wah Building and Hong Lok Building (Highlighted with Purple Line at Figure 14). In this connection, it is expected that the presence of the Development would not induce significant disturbance to the air flow along Java Road and Marble Road, which shows a similar ventilation performance to the existing condition of the Project Site.

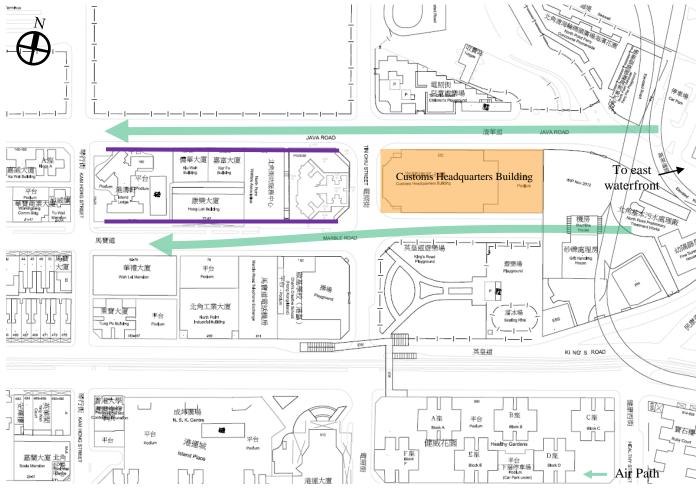


Figure 14 Wind Environment under E Wind (site layout subject to detailed design)

Under ESE Wind

The ESE wind would mainly flow along Java Road and King's Road from the ESE quarter direction. The presence of Customs Headquarters Building is expected to block the wind along Java Road towards the site and divert towards Tin Chiu Street Children's Playground. On the other hand, the wind from King's Road could flow through King's Road Playground and reach the project site. The Development could divide the incoming wind into two air streams. One air stream further flow along Marble Road and other would flow towards Tin Chiu Street and into the Java Road as well as Proposed Comprehensive Development.

The presence of the Development would inevitably induce wind shadow to the localized area of Java Road. Nevertheless, the wind shadow region is localized and would not induce significant impacts to the ventilation along Java Road. Also, the corner splay design of the Development could help to direct a portion of wind penetrate into the areas and thus to minimize the ventilation impact.

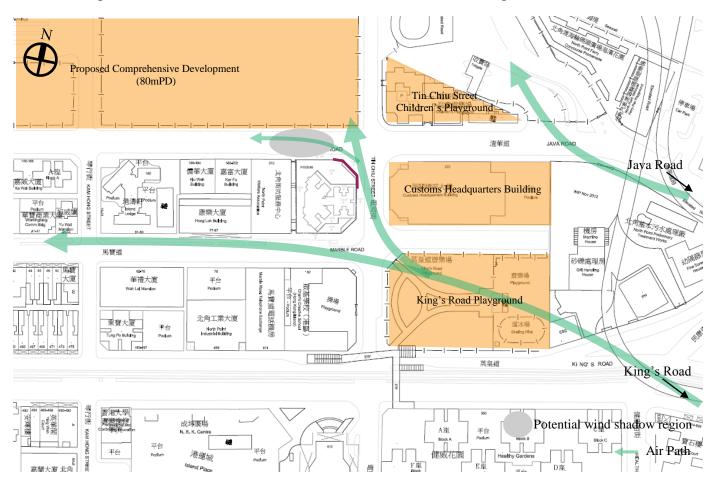


Figure 15 Wind Environment under ESE Wind (site layout subject to detailed design)

7.2 Summer Prevailing Wind Condition

Under ENE Wind

Similar to the ENE wind in previous section, both Java Road and Marble Road are aligned to ENE direction, which encourage the ENE prevailing wind penetration. The incoming wind would also enter from the waterfront. The presence of the Customs Headquarters building would divide the wind to flow along Java Road. It is expected the Development would not induce significant disturbance to the air flow along Java Road, as the Development's building bulk is in alignment with the adjacent building blocks.

While the presence of the Development would block the prevailing wind and prevent wind flow from Java Road to Marble Road directly. As a result, slightly lower ventilation performance is expected at the localized areas of Marble Road.

Under E Wind

Similar to the previous section, the prevailing wind enters from the east. The presence of Customs Headquarters Building would divide the incoming wind to flow along both Java Road and Marble Road. It is expected the Development would not induce significant disturbance to the air flow along Java Road, as the Development's building bulk is in alignment with the adjacent building blocks.

Under S Wind

The high-rise building clusters (Island Place Tower and Island Place Development) and the school site (Chan's Creative School (HK Island)) at the south of the Project Site would potentially block the incoming wind to the Project Site and its leeward region. Due to the upstream built environment, the S wind would mainly travel along Tin Chiu Street towards the waterfront area. Localized wind shadow effect would be induced by the Development to the Java Road. The provision of corner splay at the junction of Java Road and Tin Chiu Street could help to direct a portion of S wind penetrate into Java Road to reduce the ventilation impact of the area.

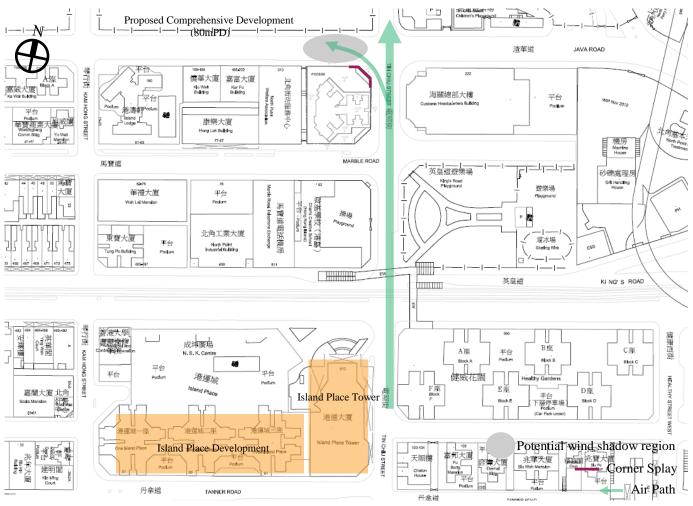


Figure 16 Wind Environment under S Wind (site layout subject to detailed design)

Under SW and WSW Winds

Similar to the S wind condition, the high-rise buildings cluster at the southern region would block the prevailing wind to the Project Site, while the street in this part of North Point is in grid pattern with Java Road and Marble Road aligned from WSW to ENE direction. It is expected that both streets are favourable for the prevailing wind, and it is expected that the wind would mainly flow along Java Road and Marble Road.

The Development's building tower and podium is in alignment with the adjacent building blocks along Java Road and Marble Road including North Point Welfare Association, Kar Fu Building, Kiu Wah Building and Hong Lok Building (Highlighted with Purple Line at Figure 17). Therefore, the presence of the Development would not induce significant disturbance to the air flow along Java Road and Marble Road.

With Tin Chiu Street being located at the immediate leeward side of the Development, it is still expected that the Development would induce localized wind shadow to the area.

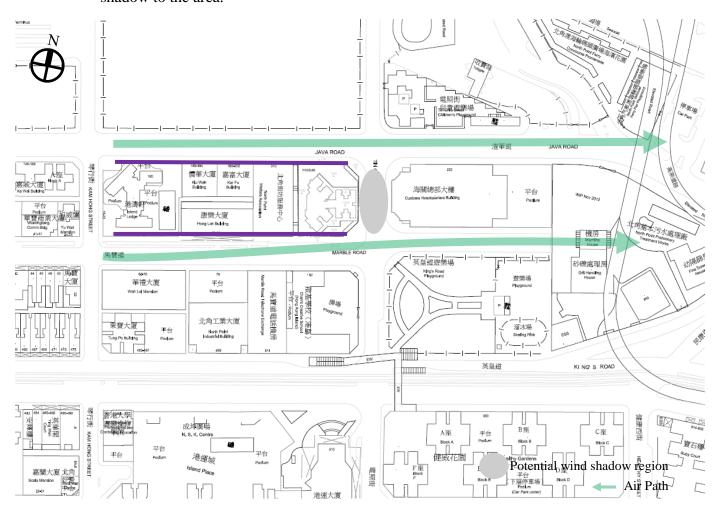


Figure 17 Wind Environment under SW and WSW Wind (site layout subject to detailed design)

8 Wind Enhancement Features and Recommendation

To further improve the wind performance of the Development and its surrounding areas and minimize localized ventilation impact on its downstream area, the following wind enhancement feature are recommended.

8.1 Empty Bay at Ground Floor Level

One storey ground floor empty bay of about 3.5m (width) x 3.0m (high) (subject to design change of building layout at detailed design) is suggested at the east wing of the Project Site to increase wind permeability area along Tin Chiu Street and to facilitate wind penetration to the leeward regions, such as Tin Chiu Street Children's Playground and Java Road under S wind and Chan's Creative School (HK Island) Playground and Marble Road under N wind.

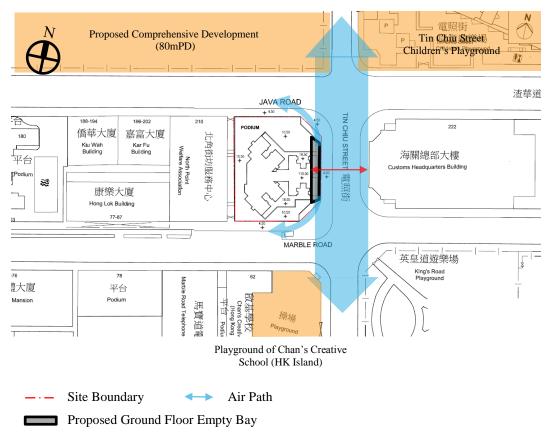


Figure 18 Recommended Location of Ground Floor Empty Bay (site layout subject to detailed design)

9 Further Quantitative Study

For scheme optimization in the detail design stage, it is recommended to proceed with the AVA Initial study to investigate the wind performance quantitatively with considerations of the proposed wind enhancement features, which shall follow the guideline given in "HOUSING, PLANNING AND LANDS BUREAU TECHNICAL CIRCULAR NO. 1/06 ENVIRONMENT, TRANSPORT AND WORKS BUREAU TECHNICAL CIRCULAR NO. 1/06, Technical Guide for Air Ventilation Assessment for Developments in Hong Kong".

10 Conclusion

Qualitative assessment of the wind environment of the Development at Java Road, North Point was conducted. The Development consists of a single domestic block on top of a one storey podium.

According to the analysis, the annual prevailing wind comes from N, ENE, E and ESE directions and the summer prevailing wind is from ENE, E, S, SW and WSW direction. The findings of the EE study is summarized in below:

For Annual Wind Condition

- N wind would mainly flow along Tin Chiu Street. The presence of the
 Development's building tower and podium is expected to slightly reduce
 the air volume flow across Tin Chiu Street and towards King's Road. The
 implement of the corner splay design could facilitate the wind flow along
 Tin Chiu Street and minimize the ventilation impact.
- Under ESE winds, the Development would not induce significant disturbance to the air flow along Marble Road. However, the Development is expected to cast wind shadow at the Java Road. Nevertheless, the wind shadow localized only and would not induce significant impacts to the ventilation along Java Road.

For Summer Wind Condition

- Due to the high-rise built environment at the upstream direction, the S wind would mainly travel along Tin Chiu Street towards the waterfront area. Localized wind shadow effect would be induced by the Development to the Java Road.
- Under SW and WSW winds, the wind path mainly flow along Java Road and Marble Road. As the Development is in alignment with the adjacent building blocks along wind path. Thus it is expected that the Development would not induce significant disturbance to the air flow. Although Tin Chiu Street is located at the immediate leeward side of the Development, it is still expected that the Development would induce localized wind shadow to the area.

For Both Annual and Summer Wind Condition

- E winds would enter the area from North Point Concourse Promenade and east waterfront area. The prevailing wind would flow along Java Road and Marble Road. It is expected that the presence of the Development would not induce significant disturbance to the air flow along Java Road and Marble Road, since the building alignment to the adjacent buildings is similar along both roads.
- Both Java Road and Marble Road are aligned to ENE direction, which
 encourage the ENE prevailing wind penetration. The ENE wind would also
 enter the Project Site from North Point Concourse Promenade to Tin Chiu
 Street Children's Playground. Similar to the E wind, it is expected that the

presence of the Development would not induce significant disturbance to the air flow along Java Road, since the building alignment to the adjacent buildings is similar along the road.

The presence of the Development would block the ENE prevailing wind and prevent wind flow from Java Road to Marble Road directly. As a result, slightly lower ventilation performance is expected at the localized areas of Marble Road.

The Development has incorporated corner splays design with around 2m setback from the site boundary. These design features could potentially help to direct wind flow between Tin Chiu Street and Java Road as well as Tin Chiu Street and Marble Road and help to minimize the ventilation impacts.

To further enhance the ventilation performance, it is recommended to adopt 1-storey podium level empty bay of about 3.5m (width) x 3.0m (high) to facilitate wind penetration across the Development and to enhance the ventilation of the surrounding, such as Tin Chiu Street Children's Playground, playground of Chan's Creative School (HK Island) as well as the localized area of Java Road and Marble Road.

This Expert Evaluation provides qualitative analysis of wind performance of the Development. For scheme optimization in the detailed design stage, AVA Initial study is recommended to further investigate the wind performance quantitatively.

04/07/2016

Reference number: CHK50019645

TERM TRAFFIC AND ENVIRONMENTAL CONSULTANCY
SERVICES 2014 - 2016
INSTRUCTION NO. M32
PUBLIC HOUSING DEVELOPMENT AT JAVA ROAD, NORTH
POINT
TRAFFIC IMPACT ASSESSMENT STUDY
FINAL REPORT

In association with
Mott MacDonald Hong Kong Ltd.
ENVIRON Hong Kong Ltd.
Cinotech Consultants Ltd.
Maurice Lee & Associates Ltd.

PUBLIC HOUSING DEVELOPMENT AT JAVA ROAD, NORTH POINT

TRAFFIC IMPACT ASSESSMENT STUDY

IDENTIFICATION TABLE			
Client/Project owner	Hong Kong Housing Authority		
Project	Public Housing Development at Java Road, North Point		
Study	Traffic Impact Assessment Study		
Type of document	Final Report		
Date	04/07/2016		
File name	g:\mva\hk500196\chk50019642 (m28)\report\final tia-rpt1 (m28).docx		
Reference number	CHK50019645		

APPRO\	APPROVAL					
Version	Name		Position	Date	Modifications	
	Author	George Lee	Associate	04/07/2016		
1	Checked by	Steven Ho	Divisional Director	04/07/2016		
	Approved by	Francis SooToo	Director	04/07/2016		

Final Report 04/07/2016 **Page** 2/24

TABLE OF CONTENTS

1.	INTRODUCTION	6
1.1	BACKGROUND	6
1.2	STUDY OBJECTIVES	6
1.3	STRUCTURE OF THE REPORT	6
2.	THE PROPOSED DEVELOPMENT	8
2.1	SITE LOCATION	8
2.2	PROPOSED DEVELOPMENT	8
2.3	VEHICULAR ACCESS OF PROPOSED DEVELOPMENT	8
2.4	PARKING AND SERVICING FACILITIES PROVISIONS OF PROPOSED DEVELOPMENT	8
3.	EXISTING TRAFFIC CONDITIONS	9
3.1	Existing Road Network	9
3.2	CRITICAL JUNCTIONS	9
4.	FUTURE TRAFFIC CONDITIONS	11
4.1	Design Year	11
4.2	FUTURE ROAD NETWORK	11
4.3	REFERENCE TRAFFIC FLOWS	11
4.4	DEVELOPMENT TRAFFIC GENERATION	15
4.5	DESIGN TRAFFIC FORECASTS	15
5.	TRAFFIC IMPACT ASSESSMENT	16
5.1	OPERATIONAL ASSESSMENT	16
5.2	CONSTRUCTION TRAFFIC IMPACT	16
6.	PUBLIC TRANSPORT PROVISIONS AND PEDESTRIAN FACILITIES	17
6.1	Public Transport Services	17
6.2	PEDESTRIAN FACILITIES	21
7.	SUMMARY AND CONCLUSION	23
7.1	SUMMARY	23
7.2	Conclusion	23

LIST OF DRAWINGS NO.

Drawing 1.1	Site Location
Drawing 2.1	Ground Floor Plan of Proposed Development
Drawing 3.1	Existing Road Network and Critical Junctions
Drawing 3.2	Existing Junction Layout of Java Road/Shu Kuk Street (A)
Drawing 3.3	Existing Junction Layout of Java Road/Kam Hong Street (B)
Drawing 3.4	Existing Junction Layout of Java Road/Tin Chiu Street (C)
Drawing 3.5	Existing Junction Layout of Marble Road/Shu Kuk Street (D)
Drawing 3.6	Existing Junction Layout of Marble Road/Kam Hong Street (E)
Drawing 3.7	Existing Junction Layout of Marble Road/Tin Chiu Street (F)
Drawing 3.8	Existing Junction Layout of King's Road/Shu Kuk Street (G)
Drawing 3.9	Existing Junction Layout of King's Road/Kam Hong Street (H)
Drawing 3.10	Existing Junction Layout of King's Road/Tin Chiu Street (I)
Drawing 3.11	2016 Observed Traffic Flows
Drawing 4.1	Planned / Committed Developments
Drawing 4.2	2025 Reference Traffic Flows (Without Development)
Drawing 4.3	2025 Design Traffic Flows (With Development)
Drawing 6.1	Existing Bus Services
Drawing 6.2	Existing GMB Services
Drawing 6.3	Existing Pedestrian Facilities

LIST OF TABLES

Table 2.1	Proposed Parking Provisions for the Proposed Development	8
Table 3.1	Critical Junctions for Assessment	9
Table 3.2	Operational Performance of Critical Junctions in 2016	10
Table 4.1	ATC Counting Station Records	11
Table 4.1	ATC Counting Station Records (Con't)	12
Table 4.2	Population Growth in the Local Area	13
Table 4.3	Planned/committed developments in the vicinity of the proposed Public Housing	
	Development at Java Road	13
Table 4.4	Adopted Trip Rate of Planned/Committed Development	14
Table 4.5	Traffic Generations of Planned/Committed Development (pcu/hr)	14
Table 4.6	Adopted Trip Rates	15
Table 4.7	Traffic Generations of Proposed Development (pcu/hr)	15
Table 5.1	Operational Performance of Critical Junctions in 2025	16
Table 6.1	Existing Public Transport Services in the Vicinity	17
Table 6.2	Reference Trip Rates	22
Table 6.3	Pedestrian Generations of Proposed Development	22

1. INTRODUCTION

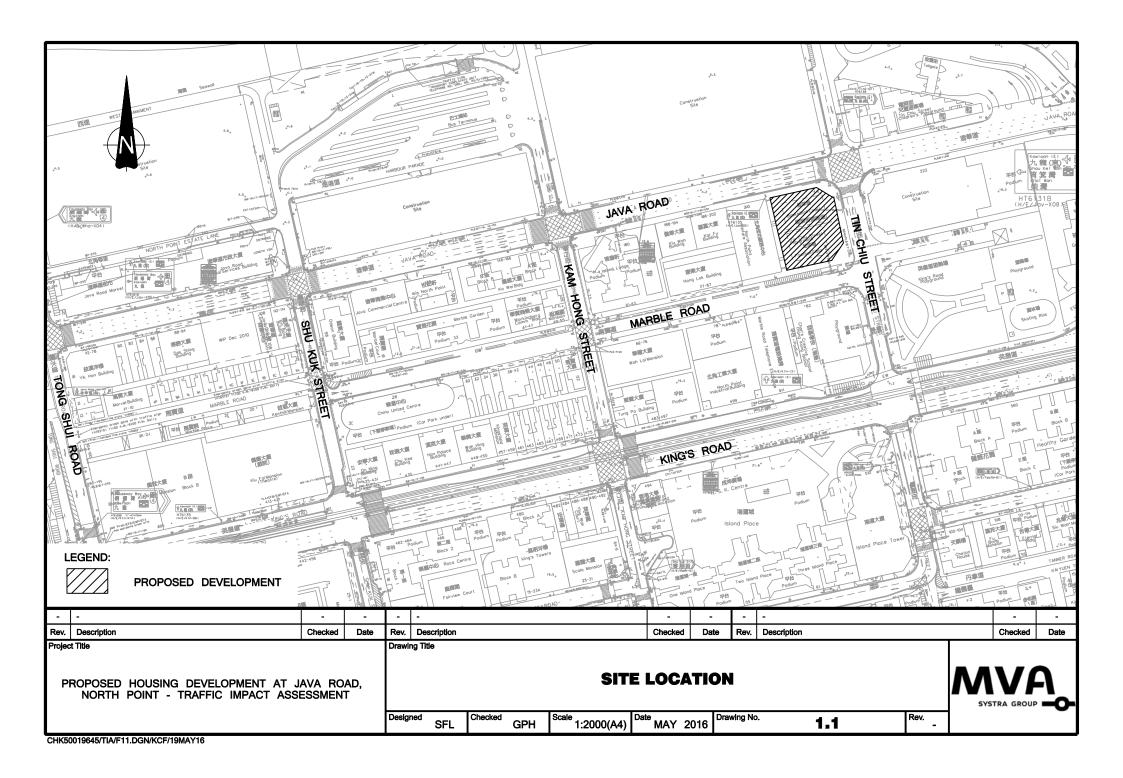
1.1 Background

- 1.1.1 MVA Hong Kong Limited (MVA) was commissioned by the Hong Kong Housing Authority (HKHA) in 2016 to conduct a Traffic Impact Assessment (TIA) study for the Public Housing Development at Java Road. **Drawing No. 1.1** shows the location of the development site.
- 1.1.2 This TIA study is to examine the impact of the traffic generated by the proposed development on the existing road networks in the near vicinity. Any deficiency would be identified and improvement proposals would be recommended if necessary to resolve any foreseeable problem.

1.2 Study Objectives

- 1.2.1 The main objectives of the study are as follows:
 - to assess the existing traffic conditions in the vicinity of the proposed development;
 - to forecast traffic demands on the adjacent road network in the design year 2025;
 - to estimate the likely traffic generated by the proposed development based on the updated planning parameters;
 - to assess the impacts of traffic generated by the proposed development on the adjacent road network;
 - to recommend improvement measures, if necessary, to alleviate any traffic problems on the road network; and
 - to investigate the provision of public transport services and pedestrian needs in the near vicinity.

1.3 Structure of the Report


- 1.3.1 Following this introductory chapter, there are six further chapters.
- 1.3.2 **Chapter 2 The Proposed Development**, which presents the planning parameters of the proposed development.
- 1.3.3 **Chapter 3 Existing Traffic Conditions**, which describes the existing road network in the vicinity of the proposed development, presents the summary of traffic count survey and assesses the existing traffic conditions.
- 1.3.4 **Chapter 4 Future Traffic Conditions**, which discusses the potential traffic generations and attractions of the proposed development under the updated development proposal. It also summarises the methodology for future traffic forecasts.

Public Housing Development	at Java Road,	North Point
----------------------------	---------------	-------------

Traffic Impact Assessment Study	g:\mva\hk500196\chk50019645 (m32)\report\final tia rpt3\final tia rpt3.docx		
Final Report	04/07/2016	Page	6/24

- 1.3.5 **Chapter 5 Traffic Impact Assessment**, which presents the findings of the traffic impact assessment in the future design year and recommends improvement measures, if necessary.
- 1.3.6 **Chapter 6 Public Transport Provisions Service and Pedestrian Facilities**, which provides an examination of the provisions of public transport and pedestrian facilities in the vicinity of the proposed development.
- 1.3.7 **Chapter 7 Summary and Conclusion**, which summarises the findings of the study and presents the conclusion regarding the traffic issues of the proposed development.

2. THE PROPOSED DEVELOPMENT

2.1 Site Location

2.1.1 As shown in **Drawing No. 1.1**, the development site is located at the existing Tin Chiu Street Playground, which is bounded by Java Road to the North, Tin Chiu Street to the East and Marble Road to the South.

2.2 Proposed Development

2.2.1 The proposed development is planned as public housing development consists of about 240 Subsidized Sales Flats (SSF). The proposed development is scheduled to be completed by year 2022.

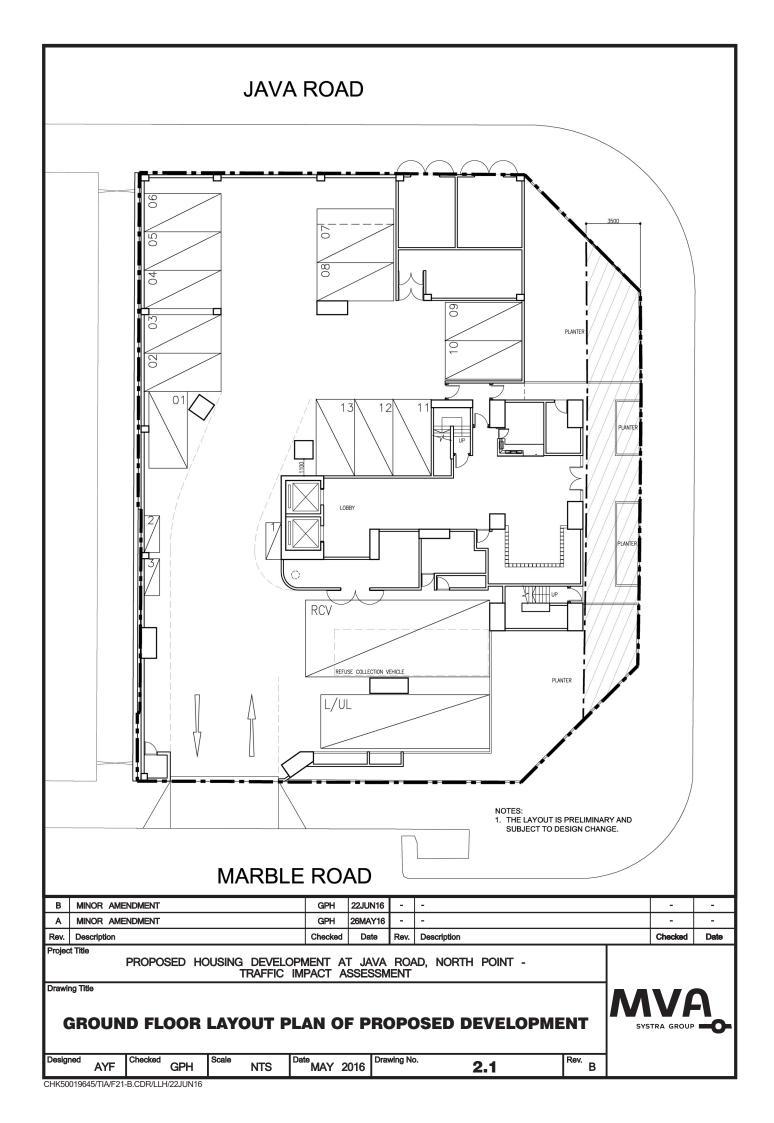
2.3 Vehicular Access of Proposed Development

- 2.3.1 As shown in **Drawing No. 2.1**, the vehicular access of the proposed development will be located at Marble Road near the junction with Java Road. At present Marble Road is a one-way carriageway running in eastbound direction.
- 2.3.2 Taken into account of the proposed vehicular access for the development, about 15 nos. of motorcycle parking spaces would be affected. Relocation proposal of the affected motorcycle parking spaces will be determined for TD's agreement in detail design stage.

2.4 Parking and Servicing Facilities Provisions of Proposed Development

2.4.1 Based on the Departmental Circular No.2/2012 - Interim Parking Standards, the proposed parking provisions for the proposed development are summarized in **Table 2.1**.

Table 2.1 Proposed Parking Provisions for the Proposed Development


Parking Facilities	Standard	Requirements	Proposed Provision					
Subsidized Sal	Subsidized Sales Flats (SSF) - 240 units							
Private Car	GPS ⁽¹⁾ X R1 ⁽²⁾ X R2 ⁽³⁾	11-16	11 ⁽⁴⁾					
Motorcycle	1 space per 110 flats	3	3					
Visitor Parking	2-3 visitor spaces per block	2-3	2					
Loading/ unloading	1 bay per block	1	1					

Remark:

- (1) GPS: Global Parking Standard = 1 car space per 6 9 flats
 - (2) R1: Demand Adjustment Ratio = 0.48
- (3) R2: Accessibility Adjustment Ratio = 0.85
- (4) According to HKPSG, the current proposal of 11 parking spaces includes 1 accessible parking spaces (HKPSG Requirement: 1 for 1-50 carparking space, 2 for 51-150 carparking space, 3 for 151-250 carparking space, 4 for 251-350 carparking space and 5 for 351-450 carparking space and 6 for above 450 carparking space)

Public Housing Development at Java Road, North Point

Traffic Impact Assessment Study	g:\mva\hk500196\chk50019645 (m32)\report\final tia rpt3\final tia rpt3.docx		
Final Report	04/07/2016	Page	e 8/24

3. EXISTING TRAFFIC CONDITIONS

3.1 Existing Road Network

- 3.1.1 **Drawing No. 3.1** shows the existing road network that serves the proposed development. The proposed development is mainly served by King's Road, Java Road, Marble Road and Tin Chiu Street.
- 3.1.2 King's Road is a primary distributor in form of a dual carriageway. It is a major public transport corridor with tram and bus routes running in the east-west direction. The eastbound of King's Road between North Point Road and Tin Chiu Street is restricted for franchised bus except with permit or local access. Within the study area, King's Road forms signalised junctions at its intersections with Tong Shui Road, Shu Kuk Street, Kam Hong Street, Tin Chiu Street and Man Hong Street.
- 3.1.3 Java Road is a district distributor running one way in eastbound direction. It connects with Electric Road in Fortress Hill at its western end and King's Road in Quarry Bay at its eastern end. Java Road forms signalised junctions at its intersections with Tong Shui Road, Shu Kuk Street, Kam Hong Street, Tin Chiu Street and Man Hong Street.
- 3.1.4 Marble Road is a local distributor running one way in eastbound direction between Tong Shui Road and Shu Kuk Street, while westbound direction between Tin Chiu Street and Shu Kuk Street. It also serves as the access for the proposed housing development.
- 3.1.5 In general, Tin Chiu Street is a two-way local distributor (except for the section between King's Road and Marble Road which operates in a one-way northbound direction) connecting Tanner Road at its southern end and forms a cul-de-sac at its northern end next to the Tin Chiu Street Children Playground.

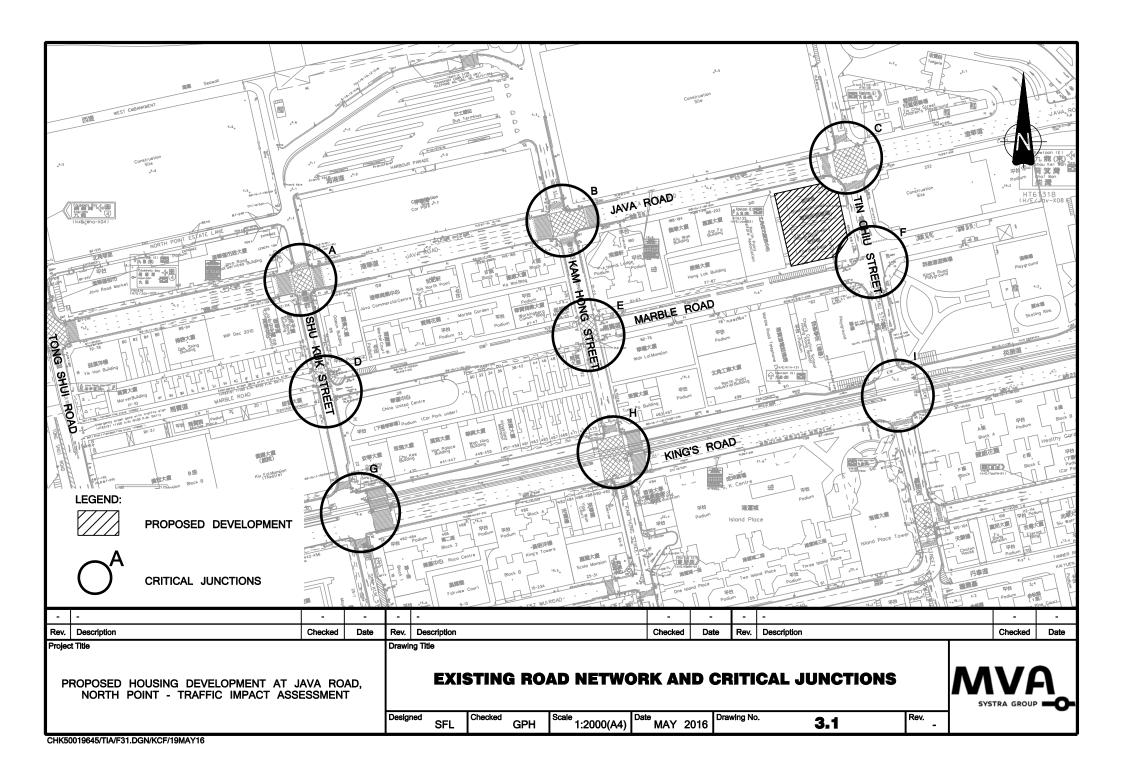
3.2 Critical Junctions

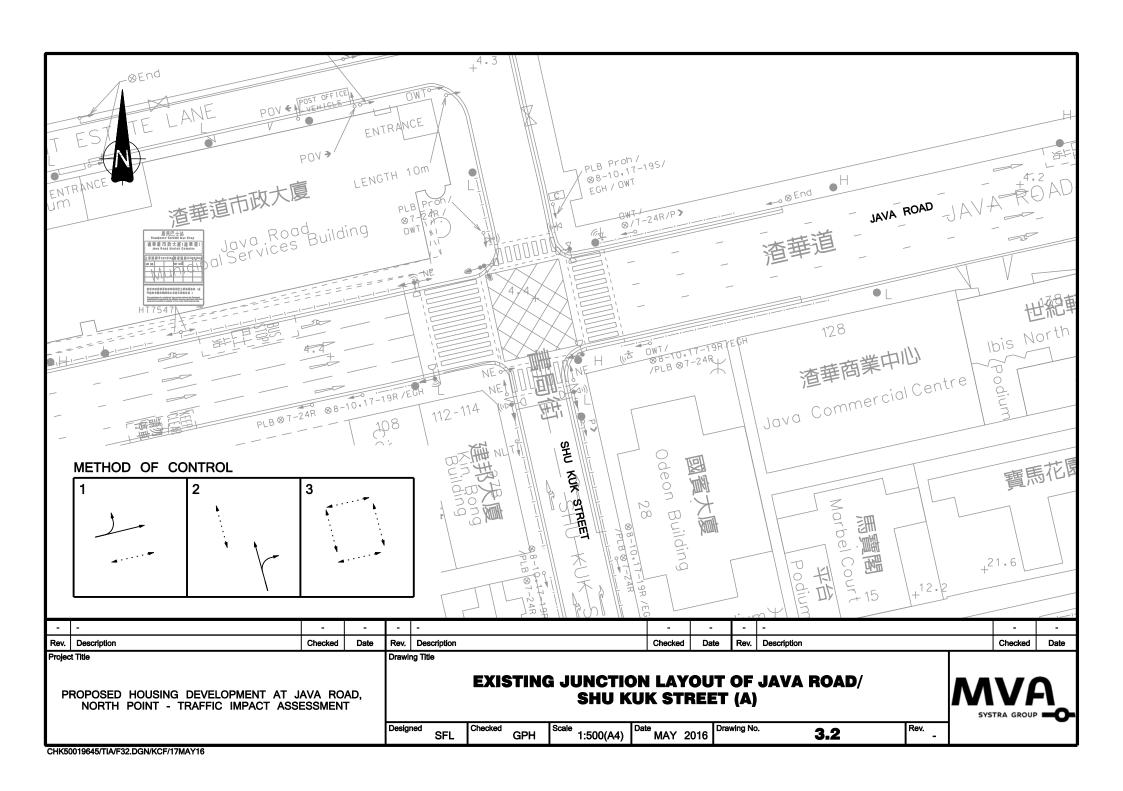
3.2.1 Nine junctions were identified to be critical for assessment of traffic impact due to the proposed development. They are listed in **Table 3.1** below.

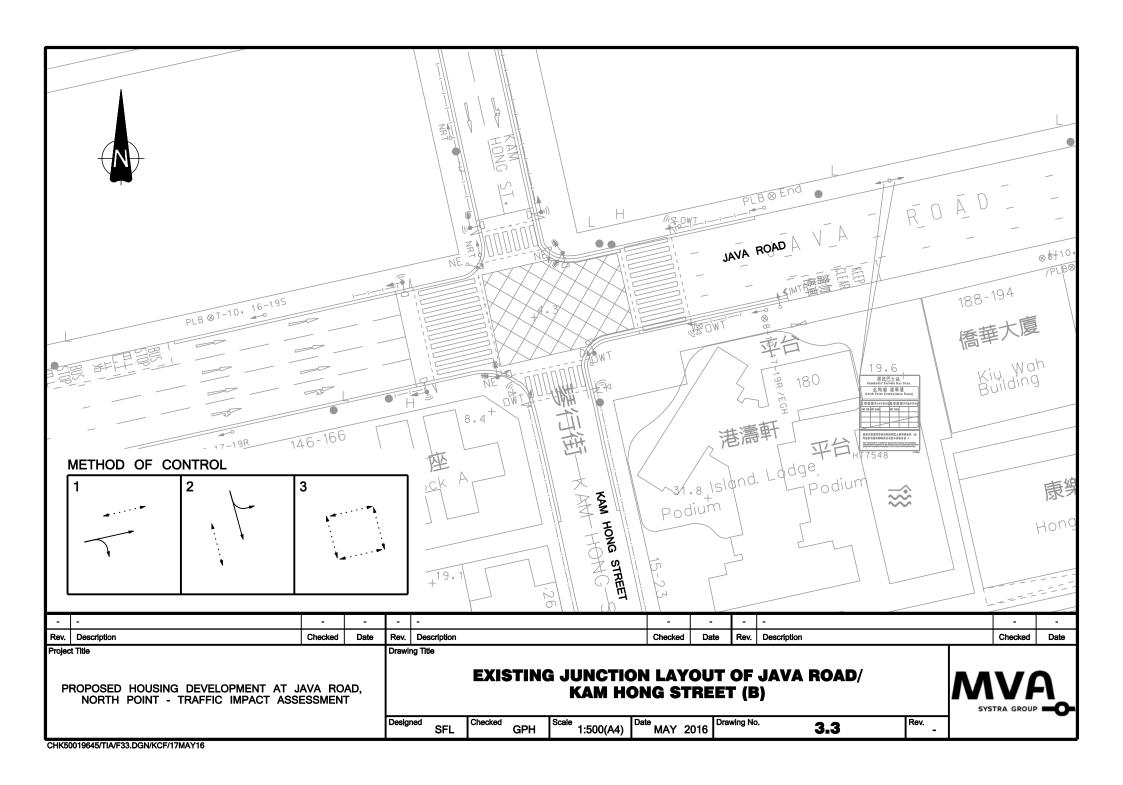
Table 3.1 Critical Junctions for Assessment

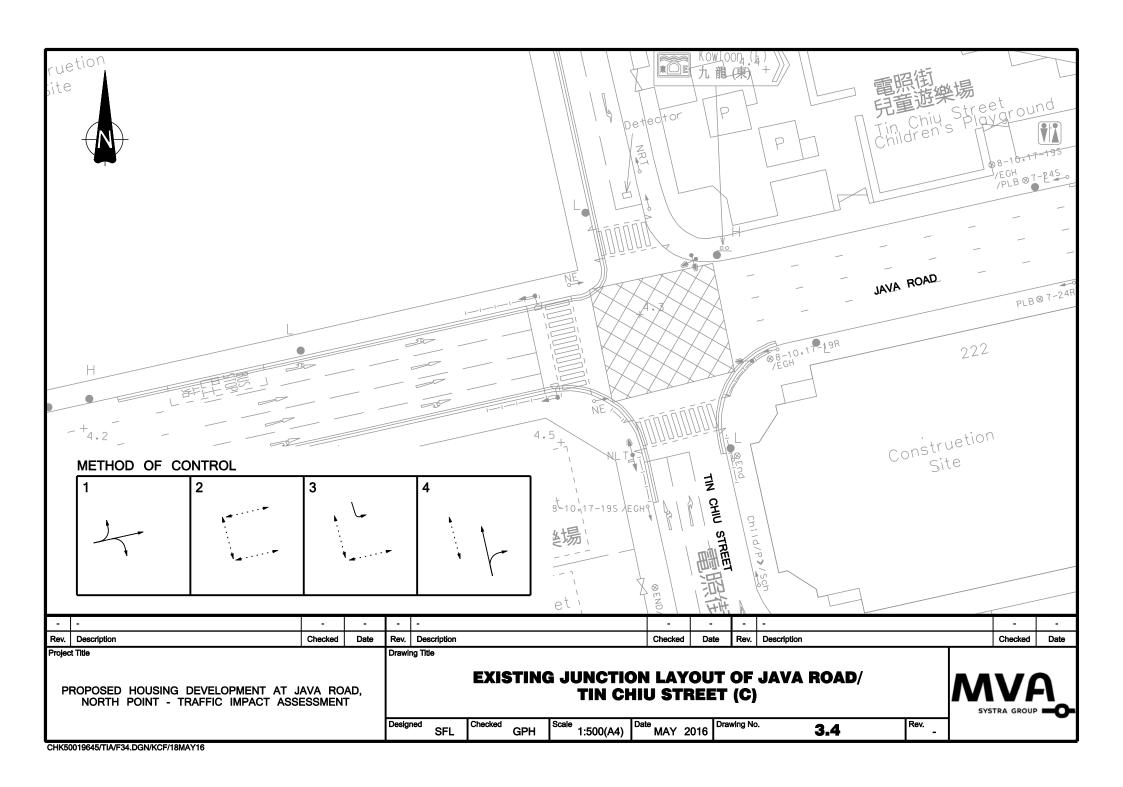
Ref.	Junction	Туре	Drawing No.
Α	Java Road / Shu Kuk Street	Signalized	3.2
В	Java Road / Kam Hong Street	Signalized	3.3
С	Java Road / Tin Chiu Street	Signalized	3.4
D	Marble Road / Shu Kuk Street	Priority	3.5
Е	Marble Road / Kam Hong Street	Priority	3.6
F	Marble Road / Tin Chiu Street	Priority	3.7
G	King's Road / Shu Kuk Street	Signalized	3.8
Н	King's Road / Kam Hong Street	Signalized	3.9
I	King's Road / Tin Chiu Street	Signalized	3.10

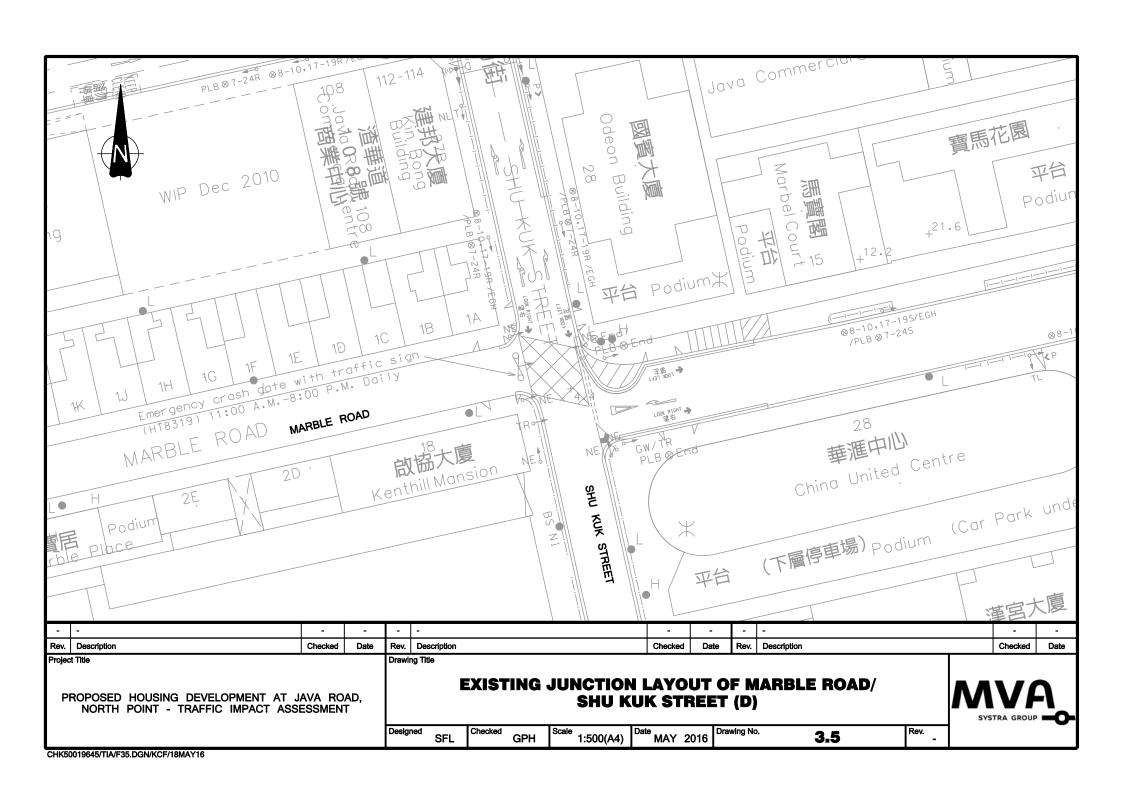
- 3.2.2 The locations of the above nine junctions are illustrated in **Drawing No. 3.1**. The existing junction layout arrangements and method of control for Junction A to Junction I are shown in **Drawings No. 3.2** to **3.10** respectively.
- In order to appraise the existing traffic conditions of these junctions, a traffic survey in the form of manual classified count was conducted at a typical weekday in April 2016. Analysis of the observed traffic data indicates that the AM and PM peak hour flows occurred from 8:30 to 9:30 and from 17:15 to 18:15 respectively. The results are shown in **Drawing No. 3.11**.
- 3.2.4 Existing operational performance of the critical junctions and the results are listed in **Table**3.2 below.

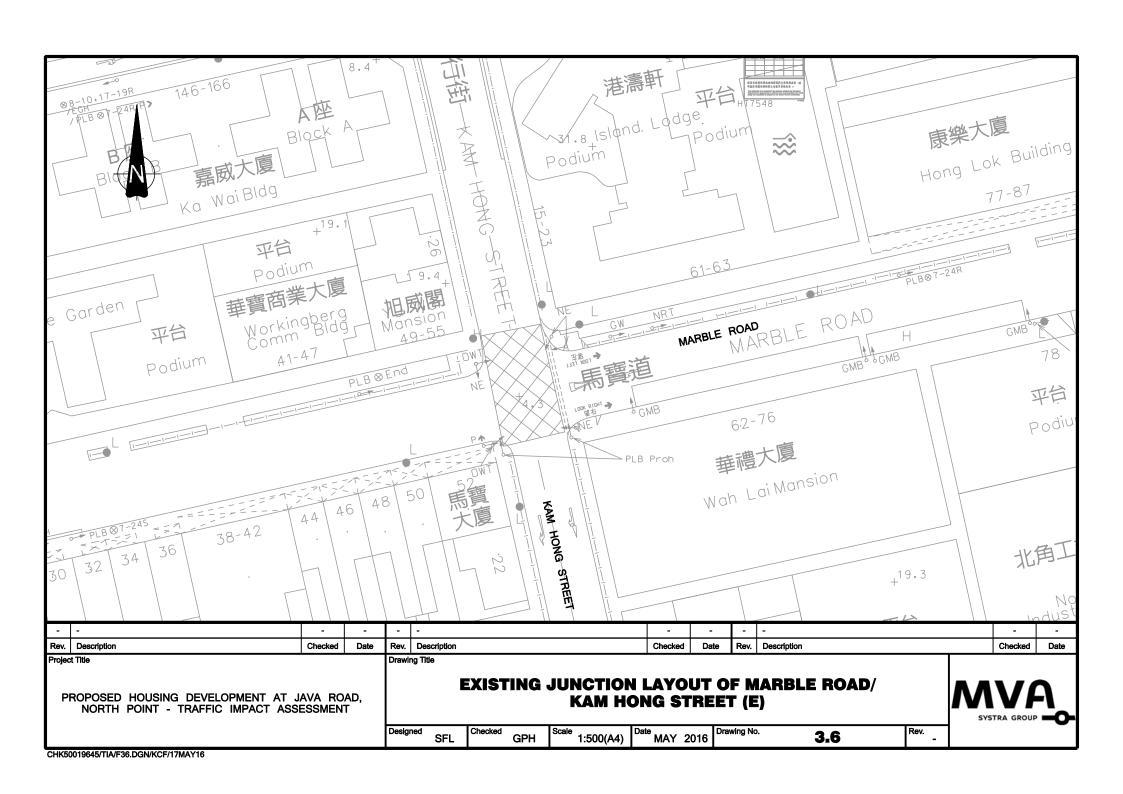

Table 3.2 Operational Performance of Critical Junctions in 2016

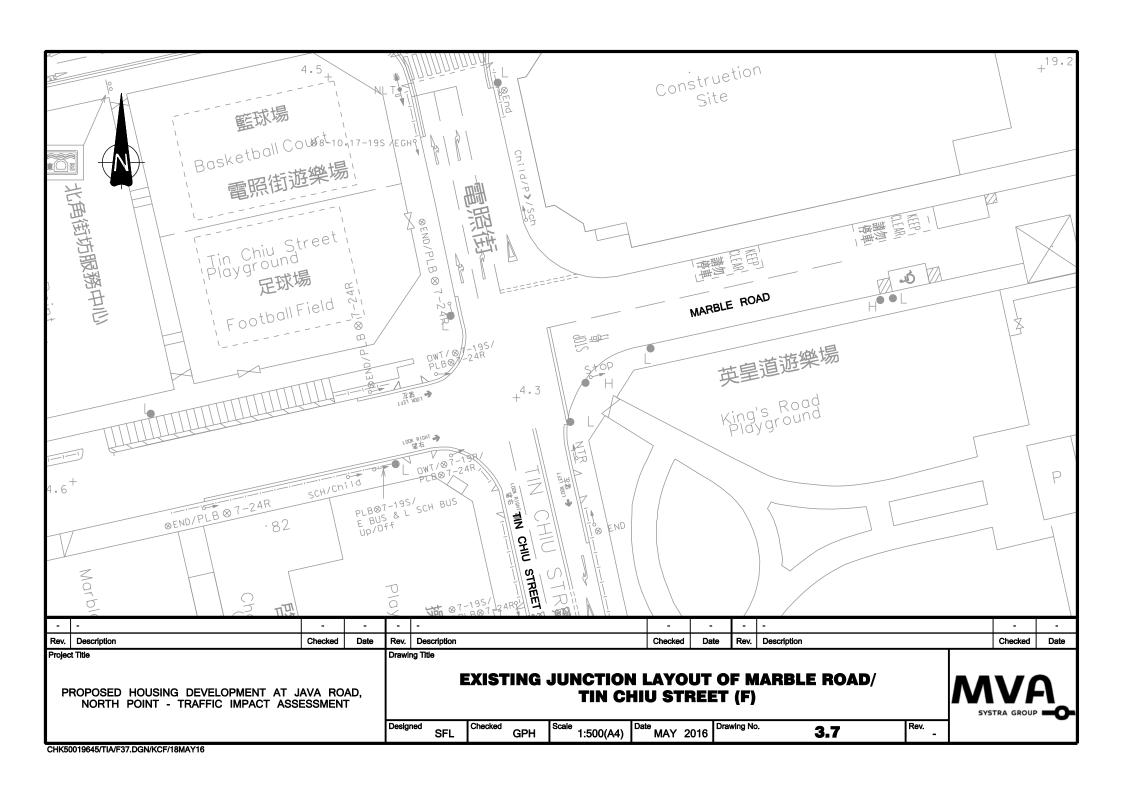

Det	Junction	Turno	2016 RC/RFC	
Ref.	Junction	Type	AM Peak	PM Peak
Α	Java Road / Shu Kuk Street	Signalized	>100%	85%
В	Java Road / Kam Hong Street	Signalized	>100%	>100%
С	Java Road / Tin Chiu Street	Signalized	>100%	100%
D	Marble Road / Shu Kuk Street	Priority	0.27	0.34
Е	Marble Road / Kam Hong Street	Priority	0.28	0.35
F	Marble Road / Tin Chiu Street	Priority	0.08	0.12
G	King's Road / Shu Kuk Street	Signalized	>100%	>100%
Н	King's Road / Kam Hong Street	Signalized	54%	68%
I	King's Road / Tin Chiu Street	Signalized	65%	>100%

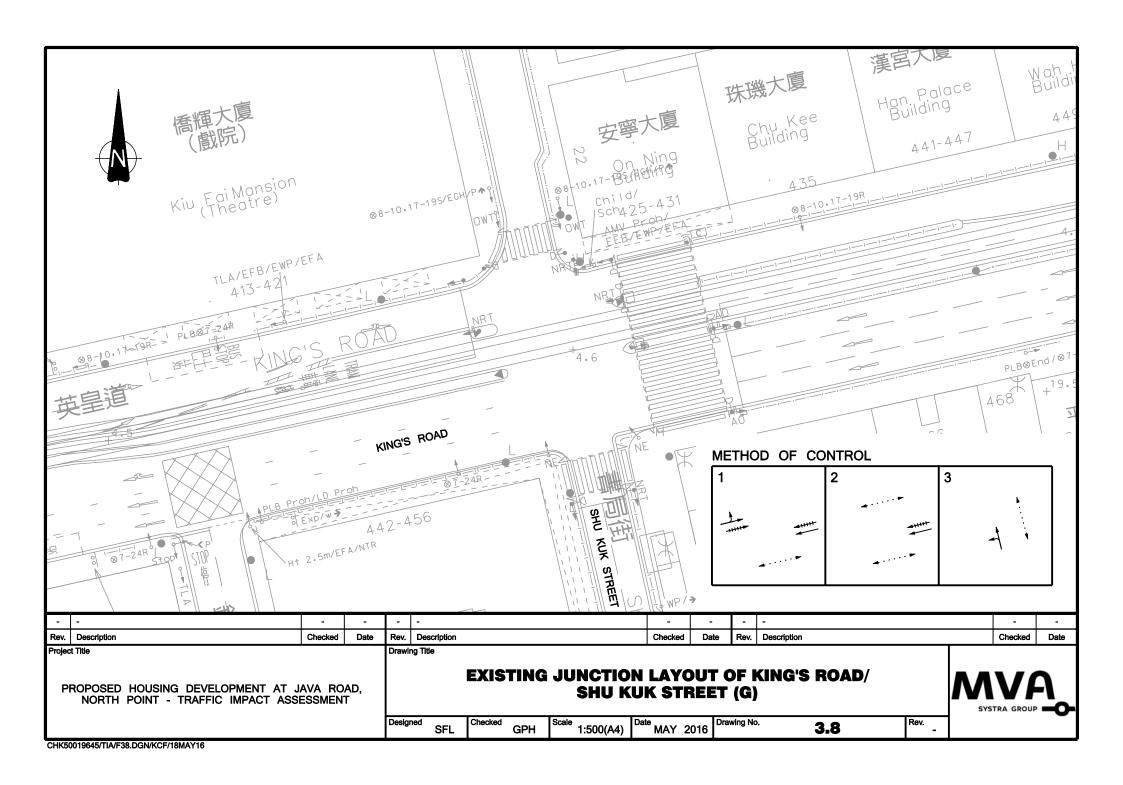

Remark: RC = Reserve Capacity, RFC = Ratio of Flow to Capacity

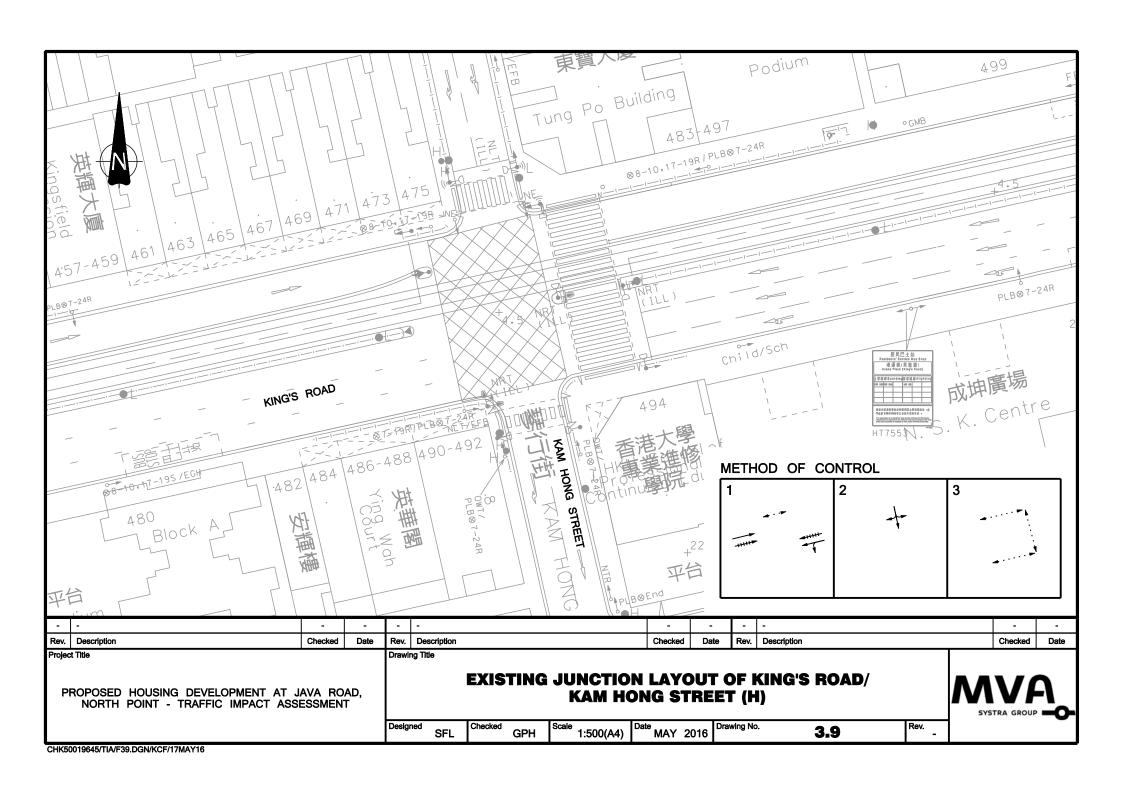

3.2.5 The assessment results in **Table 3.2** indicate that all critical junctions are at present operating within capacities.

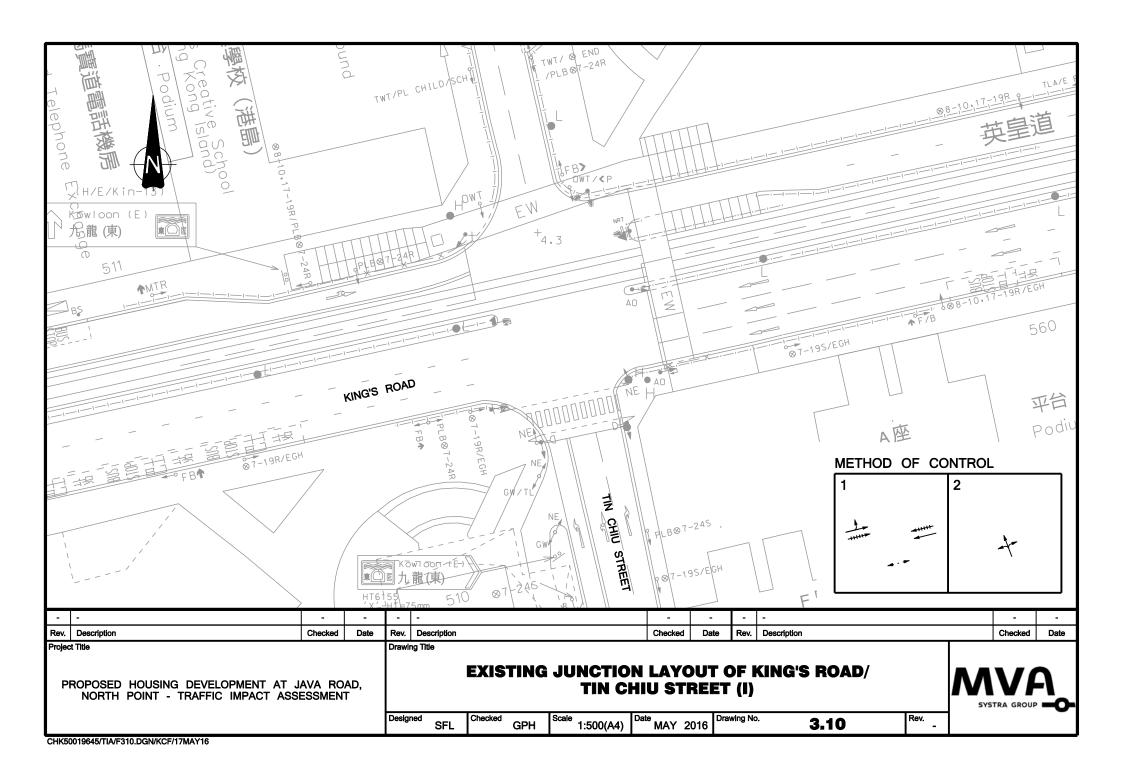

Final Report 04/07/2016 Page 10/24

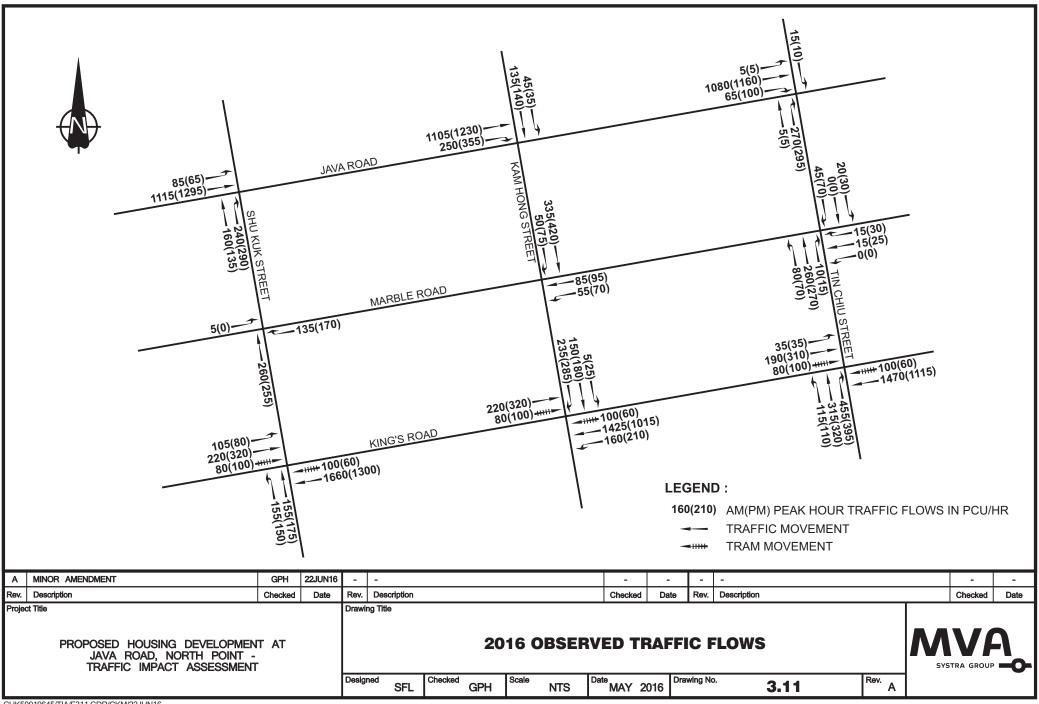












4. FUTURE TRAFFIC CONDITIONS

4.1 Design Year

4.1.1 It is anticipated that the proposed development will be completed by year 2022. In order to assess the impact of the development related traffic on the local road network, it is necessary to forecast the traffic flows for year 2025, the adopted design year, which is 3 years upon completion.

4.2 Future Road Network

- 4.2.1 In mid-May, 2016, the North Point Ferry Pier Bus Terminus has been relocated to the CDA site at Java Road/Tin Chiu Street. The new ingress and egress of the relocated terminus are provided at Tin Chiu Street and Kam Hong Street.
- 4.2.2 Apart from the above, the future local road network in the vicinity of the proposed development is anticipated to remain essentially the same as the existing network.

4.3 Reference Traffic Flows

- 4.3.1 The reference traffic forecast has been derived based on the review of the following information:
 - o Historical traffic data of the Annual Traffic Census (ATC) reports published annually by transport Department; and
 - o 2011-Based TPEDM land use/planning data published by Planning Department.

Historical Growth Trend

4.3.2 The Transport Department has traffic count stations in the vicinity of the proposed development. The traffic count at the concerned stations over a period of 5 years between 2010 and 2014 are summarised in **Table 4.1**.

Table 4.1 ATC Counting Station Records

Station No.	Road Name From		То	Annual Average Daily Traffic (AADT)				OT)	Growth Rate p.a. (%)
				2010	2011	2012	2013	2014	2010-2014
1202	IEC	Healthy St INT western end	Healthy St INT eastern end	91,350*	88,150*	87,950*	86,080	88,250	-0.86%
1203	IEC up-ramp W-B	King's Rd	Healthy St INT western end	13,340*	12,880*	12,850*	11,410	11,340	-3.98%
1217	Tong Shui Rd & FO	IEC	Chun Yeung St	8,960*	9,130*	9,270*	7,610	7,600	-4.03%
1218	IEC down-ramp E-B	Healthy St INT western end	Java Rd	10,380*	10,570*	10,730*	9,750	9,300	-2.71%
1242	Java Rd	Tin Chiu St	Healthy St W	20,780*	20,400*	20,350*	19,540	19,170	-2.00%

Table 4.1 ATC Counting Station Records (Con't)

Station No.	Road Name	From	То	An	nual Avera	age Daily T	raffic (AAI	OT)	Growth Rate p.a. (%)
				2010	2011	2012	2013	2014	2010-2014
1250	Tin Chiu St	Java Rd	King's Rd	4,920*	4,830*	4,820*	4,320	4,330	-3.14%
1402	IEC up-ramp E-B	Java Rd	Island Eastern Corridor	16,750	16,160*	16,130*	15,530*	14,060	-4.28%
1417	Tong Shui Rd (GL)	West Embankment	Java Rd	12,830	13,060*	13,260*	13,260*	13,150	0.62%
1418	King's Rd	Tong Shui Rd	Tin Chiu St	27,310	27,800*	28,230*	28,220*	23,030	-4.17%
1419	IEC down-ramp W- B	Island Eastern Corridor	Java Rd	15,670	15,950*	16,200*	16,200*	14,900	-1.25%
1441	Java Rd	Healthy St W	IEC down-ramp E- B	12,290	12,060*	12,030*	11,870*	11,820	-0.97%
1613	Man Hong St	Java Rd	King's Rd	21,210	24,040	24,410*	24,410*	24,300*	3.46%
1635	Java Rd	IEC down-ramp E- B	King's Rd	22,620	23,780	23,720*	23,410*	23,250*	0.69%
1805	IEC	Tong Shui Rd INT	Healthy St INT	112,270*	103,190	113,350	109,180*	111,480*	-0.18%
1824	IEC down-ramp E-B	IEC E-B	Tong Shui Rd FO northern end	9,840*	10,140	10,840	10,840*	10,790*	2.33%
1825	Tong Shui Rd	Chun Yeung St	King's Rd	10,440*	8,640	7,160	7,160*	7,130*	-9.09%
1826	King's Rd	Tin Chiu St	Healthy St W	21,720*	20,980	20,210	20,210*	20,120*	-1.89%
1856	Healthy St W & Pak Fuk Rd	King's Rd	Tin Hau Temple Rd	8,640*	9,260	9,990	9,860*	9,780*	3.15%
2020	King's Rd	Healthy St W	Java Rd	23,980*	24,410*	22,340	22,440	22,350*	-1.74%
2040	Java Rd	Tong Shui Rd	Tin Chiu St	18,180*	17,840*	17,930	18,110	17,980*	-0.28%
2047	Tong Shui Rd	Java Rd	Chun Yeung St	4,030*	3,950*	4,360	4,950	4,910*	5.06%
2643	Tsat Tsz Mui Rd	Tin Chiu St	Model Lane	6,830	6,480	5,300	5,310	4,870	-8.11%
									-1.05%

Note: (1) Number marked with "*" are estimated by growth rate.

4.3.3 From the above **Table 4.1**, it can be noted that over the past 5 years, 2010-2014, the average annual traffic growth pattern in the area shows a decreasing trend with rate of 1.05% per annum.

Planning Data

4.3.4 Reference has also been made to the latest 2011-Based Enhanced Territorial Population and Employment Data Matrices (TPEDM) planning data published by Planning Department for years 2016 and 2026 in the area. The average annual growth rate in terms of population from years 2016 to 2026 is illustrated in **Table 4.2**.

Final Report 04/07/2016 Page 12/24

Table 4.2 Population Growth in the Local Area

TPEDM Zone	Popul	lation
TPEDIVI Zone	2016	2026
22	44,800	40,350
23	26,650	27,550
24	13,050	13,700
Total	84,500	81,600
	Growth Rate per annum (%)	-0.35%

4.3.5 From **Table 4.2**, it can be seen that the average annual growth rate of population in the area from year 2016 to 2026 is -0.35% per annum, which also shows a slightly decreasing trend.

Growth Rate

4.3.6 The data from historical trend and planning data both indicate a decreasing trend in growth rate. For conservative, an annual growth rate of 0.5% p.a. was adopted to project the 2016 observed flows to 2025 traffic flows.

Committed Development Traffic

4.3.7 In the vicinity of the subject site, there are some planned/committed developments as summarised in **Table 4.3.** The location plan for the planned/committed developments is also shown in **Drawing No. 4.1.**

Table 4.3 Planned/committed developments in the vicinity of the proposed Public Housing Development at Java Road

Index	Planned / Committed Development	Component	Development Parameters
1	Western Part of the ex- North Point Estate	Hotel	643 Rooms
2	Inland Lot. No. 9027 and adjoining Government Land, Java Road and Tin Chiu	Residential	702 units
2	Street, North Point, Hong Kong	Commercial	13,500sqm GFA
3	2-4 Tanner Road, North Point	Residential	560 units
4	Upper Kai Yuen Lane, Lower Kai Yuen Lane and Kai Yuen Street, North Point	Residential	1,338 units
5	Ex- Tanner Road Police Married Quarters Site, Pak Fuk Road, North Point	School	2 no. 24- Classrooms

4.3.8 In order to estimate the traffic generation and attraction of the planned/committed development in the vicinity, reference has been made to the trip generation rates as stipulated in Volume 1 Chapter 3 Appendix D Table 1 of the latest T.P.D.M. The adopted trip rates are summarised in **Table 4.4**.

Final Report 04/07/2016 Page 13/24

Table 4.4 Adopted Trip Rate of Planned/Committed Development

Planned/Committed	Component	AM	Peak	PM I	Peak
Development		Generation	Attraction	Generation	Attraction
Western Part of the ex- North Point Estate	Hotel	0.1329	0.1457	0.1290	0.1546
Inland Lot. No. 9027 and adjoining Government Land, Java	Private Housing (Avg. Flat Size: 80 m²) (pcu/flat/hr)	0.1058	0.0605	0.0426	0.0590
Road and Tin Chiu Street, North Point, Hong Kong	Retail (pcu/hr/100m² GFA)	0.2296	0.2434	0.3100	0.3563
2-4 Tanner Road, North Point	Private Housing R(A) (Avg. Flat Size: 70 m²) (pcu/flat/hr)	0.0888	0.0515	0.0356	0.0480
Upper Kai Yuen Lane, Lower Kai Yuen Lane and Kai Yuen Street, North Point	Private Housing R(A) (Avg. Flat Size: 90 m²) ⁽¹⁾ (pcu/flat/hr)	0.1228	0.0695	0.0496	0.0700
Ex- Tanner Road Police Married Quarters Site, Pak Fuk Road, North Point	Primary School (pcu/hr/school) ⁽²⁾	7	30	1	1

Notes: (1) By Extrapolation of trip rates for flat Size 70 sq.m and 80 sq.m

(2) Reference to DR439 for a 30 classroom room primary school

4.3.9 Based on the planned/committed development parameters and the adopted trip rate shown in **Table 4.3** and **4.4**, **Table 4.5** summarises the volume of traffic generated by the Committed Development.

Table 4.5 Traffic Generations of Planned/Committed Development (pcu/hr)

Planned/Committed	AM	Peak	PM Peak		
Development	Generation	Attraction	Generation	Attraction	
Western Part of the ex- North Point Estate	85	94	83	99	
Inland Lot. No. 9027 and	74	42	30	41	
adjoining Government Land, Java Road and Tin Chiu Street, North Point, Hong Kong	31	33	42	48	
2-4 Tanner Road, North Point	50	29	20	27	
Upper Kai Yuen Lane, Lower Kai Yuen Lane and Kai Yuen Street, North Point	164	93	66	94	
Ex- Tanner Road Police Married Quarters Site, Pak Fuk Road, North Point(1)	11	48	2	2	

Notes: (1) By prorata of trip rates for 1 no. 30 classroom school and 2 nos. of 24 classroom school (i.e. Trip Generations or Attractions / 30 x 24 x 2)

4.3.10 Based on an annual growth rate of 0.5% p.a. and the traffic generation of planned/committed development shown in **Table 4.5**, the 2025 reference traffic flows have been projected from 2016 observed flows as shown in **Drawing No. 4.2**.

Public Housing Development at Java Road, North Point

Traffic Impact Assessment Study	g:\mva\hk500196\chk50019645 (m32)\report\final tia rpt3\final tia rpt3.docx		
Final Report	04/07/2016	Page	14/24

4.3.11 2025 Reference Flows = 2016 Observed Flows x Growth Factor (0.5% p.a. for 9 years) + Planned/Committed Development Traffic

4.4 Development Traffic Generation

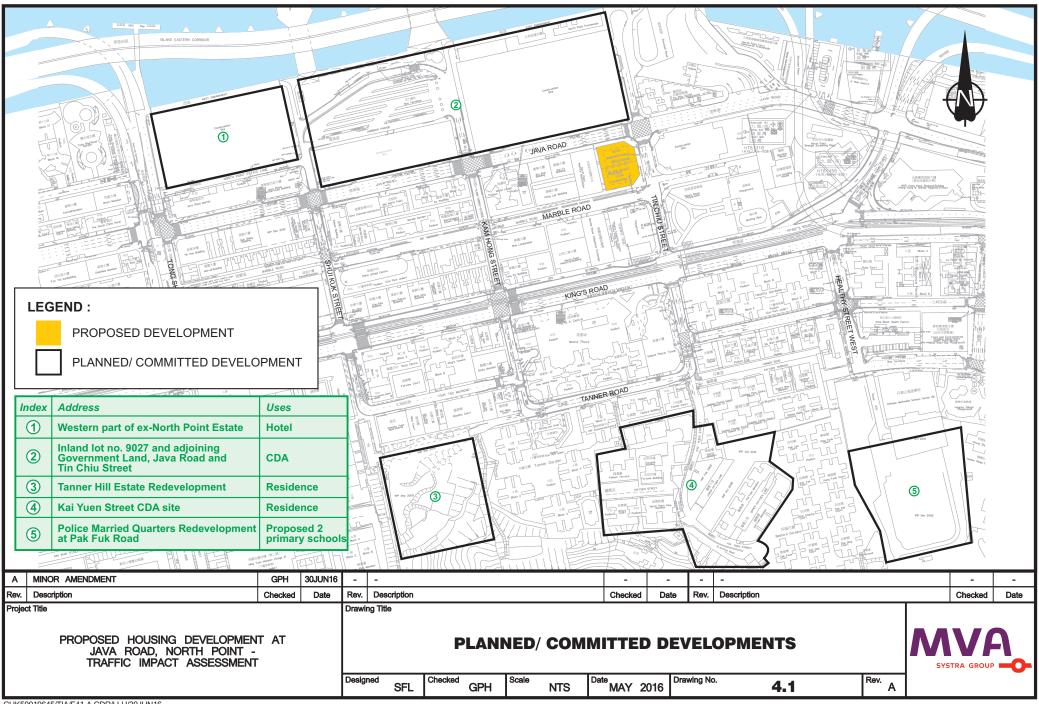
4.4.1 In order to estimate the traffic generation and attraction of the proposed housing development, reference has been made to the trip generation rates as stipulated in Volume 1 Chapter 3 Appendix D Table 1 of the latest T.P.D.M. The adopted trip rates are summarised in **Table 4.6**.

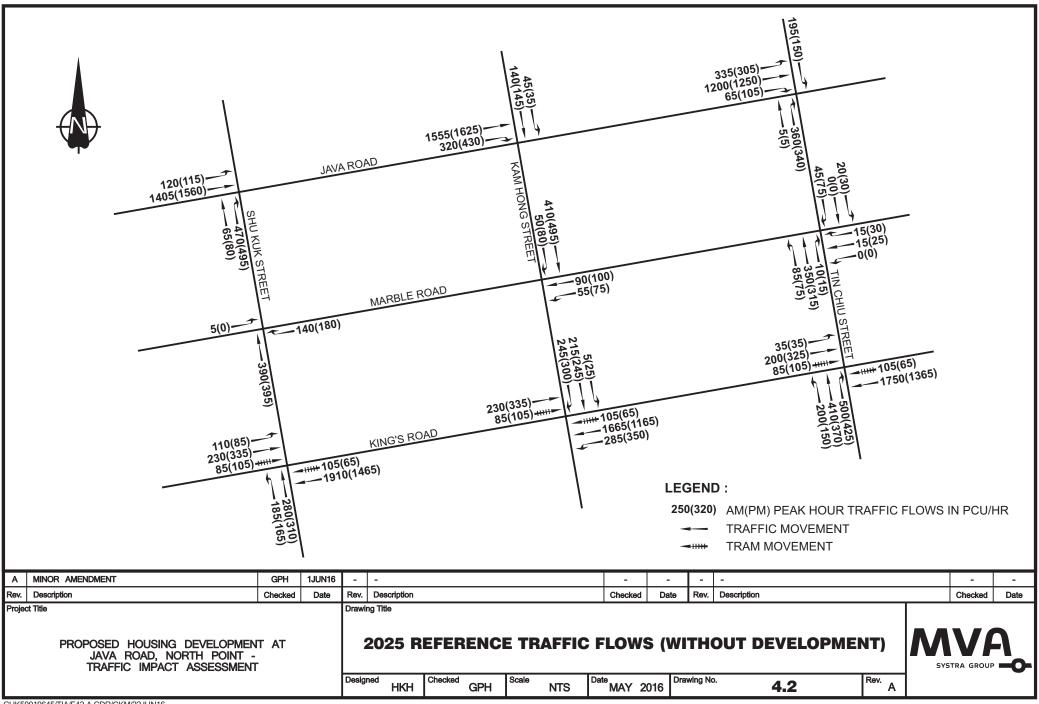
Table 4.6 Adopted Trip Rates

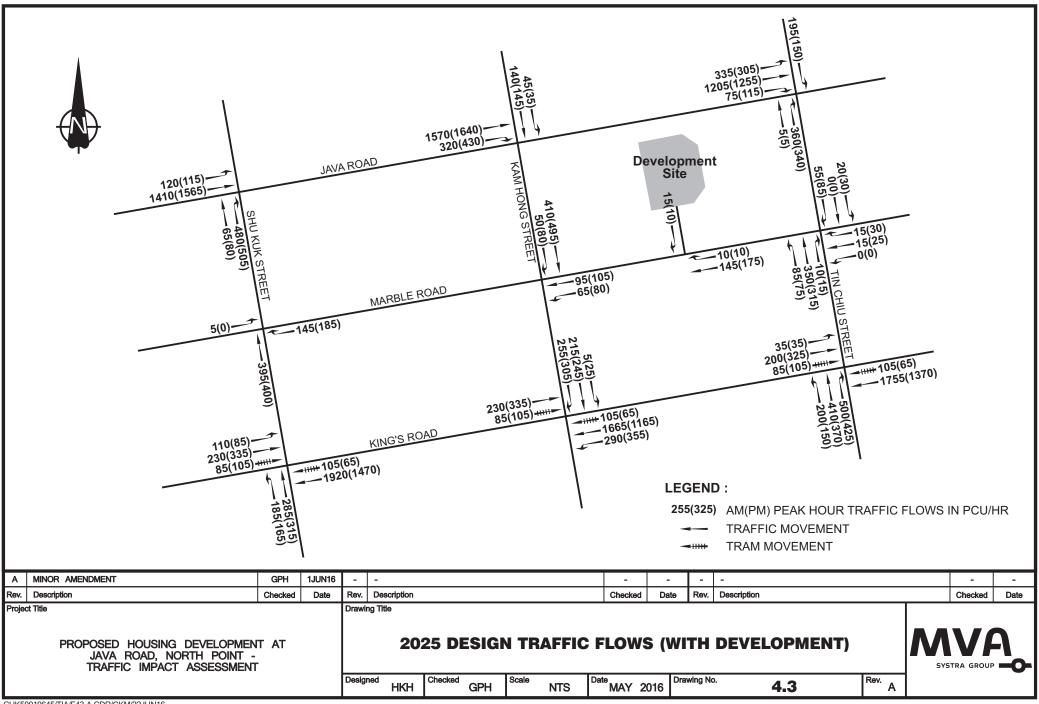
	AM Peak		PM Peak		
	Generation	Attraction	Generation	Attraction	
Subsidised Housing: HOS/PSPS (pcu/hr/flat)	0.0622	0.0426	0.0297	0.0401	

- 4.4.2 As a conservative approach, an additional 10% allowance had been allowed for the proposed development to cater for future design variation. The traffic impact assessment has been based on 264 SSF flats.
- 4.4.3 Based on the adopted trip rates given in **Table 4.6**, the total trips generated by the proposed development are computed and shown in **Table 4.7**.

Table 4.7 Traffic Generations of Proposed Development (pcu/hr)


Davalanment Darameters	AM I	Peak	PM Peak	
Development Parameters	Generation	Attraction	Generation	Attraction
264 SSF Flats	16	11	8	11
Total	16	11	8	11


4.4.4 It is estimated that the proposed development will generate and attract about 16pcu/hr and 11pcu/hr in the AM peak hour, and generate and attract about 8pcu/hr and 11pcu/hr in the PM peak hour respectively.


4.5 Design Traffic Forecasts

- 4.5.1 The development traffic flows were then superimposed onto the 2025 reference traffic flows (without development) as shown in **Drawing No. 4.2** to derive the 2025 design traffic flows (with development).
- 4.5.2 2025 Design Flows = 2025 Reference Flows + Proposed Development Traffic
- 4.5.3 The 2025 AM and PM peak design traffic flows (with development) are shown in **Drawing No. 4.3**.

Final Report 04/07/2016 Page 15/24

5. TRAFFIC IMPACT ASSESSMENT

5.1 Operational Assessment

- 5.1.1 The operational assessments of the critical junctions in design year 2025 were based on their existing layout arrangements and method of control.
- 5.1.2 To assess the traffic impact due to the proposed development, capacity analysis of the identified critical junctions in the study area for both reference and design scenarios in year 2025 has been carried out. The results are summarised and presented in **Table 5.1**.

Table 5.1 Operational Performance of Critical Junctions in 2025

			2025 RC/RFC				
	Junction		Reference Scenario Design S			Scenario	
Ref.	Junction	Type	(Wit	hout	(W	ith	
			Develo	pment)	Develo	pment)	
			AM Peak	PM Peak	AM Peak	PM Peak	
Α	Java Road / Shu Kuk Street	Signalized	57%	44%	55%	43%	
В	Java Road / Kam Hong Street	Signalized	80%	66%	79%	65%	
С	Java Road / Tin Chiu Street	Signalized	31%	37%	30%	36%	
D	Marble Road / Shu Kuk Street	Priority	0.29	0.38	0.30	0.39	
Ε	Marble Road / Kam Hong Street	Priority	0.31	0.39	0.34	0.41	
F	Marble Road / Tin Chiu Street	Priority	0.08	0.13	0.10	0.15	
G	King's Road / Shu Kuk Street	Signalized	79%	90%	78%	88%	
Н	King's Road / Kam Hong Street	Signalized	26%	39%	25%	38%	
I	King's Road / Tin Chiu Street	Signalized	45%	78%	44%	77%	

Remark: RC = Reserve Capacity, RFC = Ratio of Flow to Capacity

5.1.3 The assessment results in **Table 5.1** revealed that all critical junctions will still operate within their capacities in design year 2025.

5.2 Construction Traffic Impact

5.2.1 Based on the latest construction programme of the proposed development, it is estimated that the maximum volume of construction vehicles generated per hour from the construction sites will be about 6 nos. Considering the relatively low traffic volume, the traffic impact on the local road network is anticipated to be minimal during construction stage.

Final Report 04/07/2016 Page 16/24

6. PUBLIC TRANSPORT PROVISIONS AND PEDESTRIAN FACILITIES

6.1 Public Transport Services

- 6.1.1 The proposed development is well served by public transport services including Mass Transit Railway (MTR), franchised buses, minibuses and ferry.
- 6.1.2 The nearest rail station to the subject site would be North Point MTR Station. The future residents of the proposed development could walk along the Java Road footpath westward to the MTR entrance. Along this route, adequate at grade pedestrian facilities including footpath, crossing and drop kerbs are available. The approximate walking distance and time from the proposed development to North Point MTR Station exit A1 is about 300m and 5-7 minutes.
- 6.1.3 The existing North Point Ferry Pier provides ferry services between North Point and Hung Hom/Kowloon City/Kwun Tong. The future residents of the proposed development could walk along the Java Road footpath westward and Kam Hong Street northward to the North Point Ferry Pier. Along this route, adequate at grade pedestrian facilities including footpath, crossing and drop kerbs are available. The approximate walking distance and time from the proposed development to North Point Ferry Pier is about 350m and 6-8 minutes.
- 6.1.4 The North Point Ferry Pier Bus Terminus adjacent to the North Point Pier provides numerous Bus and GMB routes serving the district. In mid-May 2016, the bus terminus has been relocated to the CDA site at Java Road/Tin Chiu Street with new ingress and egress at Tin Chiu Street and Kam Hong Street. The New North Point Ferry Pier Public Transport Interchange is located just opposite to the development.
- 6.1.5 Details of the existing public transport services in the vicinity are summarised in **Table 6.1** and illustrated in **Drawings No. 6.1** and **6.2**.

Table 6.1 Existing Public Transport Services in the Vicinity

Route	Service	Destinations	Peak Hour Frequency (minutes)	Non Peak Hour Frequency (minutes)
North Point M	TR Station			
North Point Fe	rry Pier			
-	First Ferry	North Point – Hung Hom	30	30
-	First Ferry	North Point – Kowloon City	30	30
-	Fortune Ferry	North Point – Kwun Tong	30	30
Buses - North I	Point Ferry Pier PTI			
Day Time Route	es			
10	СТВ	Kennedy Town – North Point Ferry Pier	7-9	10-18
23	NWFB	North Point Ferry Pier – Pokfield Road	4-8	8-15

277 NWFB North Point Ferry Pier - Braemar Hill 8 10-20	П	Т		ı	Т
15-26	27	NWFB	North Point Ferry Pier — Braemar Hill	8	10-20
A2	38	NWFB	Chi Fu Fa Yuen – North Point Ferry Pier	7-8	9-15
1	41A	СТВ	Wah Fu (Central) – North Point Ferry Pier	10	15-26
Signature Sign	42	NWFB	Wah Fu (South) – North Point Ferry Pier	10	11-15
82	63	NWFB	North Point Ferry Pier – Stanley Prison	20	28-40
82	65	NWFB	North Point Ferry Pier – Stanley Market	15	20
A11	82	NWFB	, , , , , , , , , , , , , , , , , , , ,	6-9	10-15
Peak Only Routes / Special Departure Routes	85	СТВ	(Circular)	10-12	15-20
A1A	A11	СТВ	1 ' '	15	20-30
A1A	Peak Only Rout	tes / Special Departi	ure Routes		
Buses - Java Road Day Time Routes Shau Kei Wan - Kennedy Town (Belcher Bay) 20 20 20 21 20 21 20 20	41A	СТВ		-	-
Buses - Java Road	42C	NWFB	Cyberport – North Point Ferry Pier	-	-
18X	682C	NWFB	North Point Ferry Pier -> City One Shatin	-	-
18X	Buses - Java Ro	oad			
A1A	Day Time Route	es			
110	18X	NWFB	Shau Kei Wan – Kennedy Town (Belcher Bay)	20	20
A12	41A	СТВ	Wah Fu (Central) – North Point Ferry Pier	10	15-25
A12 CIB Transportation Centre) 20 25 Peak Only Routes / Special Departure Routes 8S CTB Happy Valley Racecourse -> Siu Sai Wan (Island Resort) -<	110	KMB/NWFB	, , , , , , , , , , , , , , , , , , , ,	15-20	-
At A CTB Happy Valley Racecourse -> Siu Sai Wan (Island Resort)	A12	СТВ	, , , , , , , , , , , , , , , , , , , ,	20	25
A1A	Peak Only Rout	tes / Special Depart	ure Routes		
Siu Sai Wan (Island Resort) - Wong Tai Sin	85	СТВ	1 '''	-	-
682C NWFB North Point Ferry Pier -> City One Shatin - - Overnight Routes N118 KMB/CTB Siu Sai Wan (Island Resort) - Sham Shui Po (Tonkin Street) - 15-20 Buses - King's Road Day Time Routes 2 NWFB Grand Promenade - Central (Macau Ferry) 15 20 2A NWFB Yiu Tung Estate - Wan Chai North 5-9 6-15 8X CTB Siu Sai Wan (Island Resort) - Happy Valley (Lower) 5-18 7-25 10 CTB Kennedy Town - North Point Ferry Pier 7-9 10-18 18P NWFB Kennedy Town (Belcher Bay) - North Point (Healthy Street Central) 5-12 10-20 18X NWFB Shau Kei Wan - Kennedy Town (Belcher Bay) 20 20 19 NWFB Siu Sai Wan (Island Resort) - Happy Valley (Upper) 8-20 15-30 23 NWFB North Point Ferry Pier - Pokfield Road 4-8 8-15	41A	СТВ	1 ' ' '	-	-
Overnight Routes N118 KMB/CTB Siu Sai Wan (Island Resort) – Sham Shui Po (Tonkin Street) - 15-20 Buses - King's Road Day Time Routes 2 NWFB Grand Promenade – Central (Macau Ferry) 15 20 2A NWFB Yiu Tung Estate – Wan Chai North 5-9 6-15 8X CTB Siu Sai Wan (Island Resort) – Happy Valley (Lower) 5-18 7-25 10 CTB Kennedy Town – North Point Ferry Pier 7-9 10-18 18P NWFB Kennedy Town (Belcher Bay) – North Point (Healthy Street Central) 5-12 10-20 18X NWFB Shau Kei Wan – Kennedy Town (Belcher Bay) 20 20 19 NWFB Siu Sai Wan (Island Resort) – Happy Valley (Upper) 8-20 15-30 23 NWFB North Point Ferry Pier – Pokfield Road 4-8 8-15	106P	KMB/NWFB	Siu Sai Wan (Island Resort) – Wong Tai Sin	-	-
N118 KMB/CTB Siu Sai Wan (Island Resort) – Sham Shui Po (Tonkin Street) - 15-20 Buses - King's Road Day Time Routes 2 NWFB Grand Promenade – Central (Macau Ferry) 15 20 2A NWFB Yiu Tung Estate – Wan Chai North 5-9 6-15 8X CTB Siu Sai Wan (Island Resort) – Happy Valley (Lower) 5-18 7-25 10 CTB Kennedy Town – North Point Ferry Pier 7-9 10-18 18P NWFB Kennedy Town (Belcher Bay) – North Point (Healthy Street Central) 5-12 10-20 18X NWFB Shau Kei Wan – Kennedy Town (Belcher Bay) 20 20 19 NWFB Siu Sai Wan (Island Resort) – Happy Valley (Upper) 8-20 15-30 23 NWFB North Point Ferry Pier – Pokfield Road 4-8 8-15	682C	NWFB	North Point Ferry Pier -> City One Shatin	-	-
North Point Ferry Pier – Pokfield Road Buses - King's Road Day Time Routes 2 NWFB Grand Promenade – Central (Macau Ferry) 15 20 2A NWFB Yiu Tung Estate – Wan Chai North 5-9 6-15 8X CTB Siu Sai Wan (Island Resort) – Happy Valley (Lower) 5-18 7-25 10 CTB Kennedy Town – North Point Ferry Pier 7-9 10-18 18P NWFB Kennedy Town (Belcher Bay) – North Point (Healthy Street Central) 5-12 10-20 18X NWFB Shau Kei Wan – Kennedy Town (Belcher Bay) 20 20 19 NWFB Siu Sai Wan (Island Resort) – Happy Valley (Upper) 8-20 15-30 23 NWFB North Point Ferry Pier – Pokfield Road 4-8 8-15	Overnight Rout	tes			
Day Time Routes 2 NWFB Grand Promenade – Central (Macau Ferry) 15 20 2A NWFB Yiu Tung Estate – Wan Chai North 5-9 6-15 8X CTB Siu Sai Wan (Island Resort) – Happy Valley (Lower) 5-18 7-25 10 CTB Kennedy Town – North Point Ferry Pier 7-9 10-18 18P NWFB Kennedy Town (Belcher Bay) – North Point (Healthy Street Central) 5-12 10-20 18X NWFB Shau Kei Wan – Kennedy Town (Belcher Bay) 20 20 19 NWFB Siu Sai Wan (Island Resort) – Happy Valley (Upper) 8-20 15-30 23 NWFB North Point Ferry Pier – Pokfield Road 4-8 8-15	N118	кмв/ств		-	15-20
2 NWFB Grand Promenade – Central (Macau Ferry) 15 20 2A NWFB Yiu Tung Estate – Wan Chai North 5-9 6-15 8X CTB Siu Sai Wan (Island Resort) – Happy Valley (Lower) 5-18 7-25 10 CTB Kennedy Town – North Point Ferry Pier 7-9 10-18 18P NWFB Kennedy Town (Belcher Bay) – North Point (Healthy Street Central) 5-12 10-20 18X NWFB Shau Kei Wan – Kennedy Town (Belcher Bay) 20 20 19 NWFB Siu Sai Wan (Island Resort) – Happy Valley (Upper) 8-20 15-30 23 NWFB North Point Ferry Pier – Pokfield Road 4-8 8-15	Buses - King's I	Road			
2A NWFB Yiu Tung Estate – Wan Chai North 5-9 6-15 8X CTB Siu Sai Wan (Island Resort) – Happy Valley (Lower) 5-18 7-25 10 CTB Kennedy Town – North Point Ferry Pier 7-9 10-18 18P NWFB Kennedy Town (Belcher Bay) – North Point (Healthy Street Central) 5-12 10-20 18X NWFB Shau Kei Wan – Kennedy Town (Belcher Bay) 20 20 19 NWFB Siu Sai Wan (Island Resort) – Happy Valley (Upper) 8-20 15-30 23 NWFB North Point Ferry Pier – Pokfield Road 4-8 8-15	Day Time Route	es			
8X CTB Siu Sai Wan (Island Resort) – Happy Valley (Lower) 5-18 7-25 10 CTB Kennedy Town – North Point Ferry Pier 7-9 10-18 18P NWFB Kennedy Town (Belcher Bay) – North Point (Healthy Street Central) 5-12 10-20 18X NWFB Shau Kei Wan – Kennedy Town (Belcher Bay) 20 20 19 NWFB Siu Sai Wan (Island Resort) – Happy Valley (Upper) 8-20 15-30 23 NWFB North Point Ferry Pier – Pokfield Road 4-8 8-15	2	NWFB	Grand Promenade – Central (Macau Ferry)	15	20
10 CTB Kennedy Town – North Point Ferry Pier 7-9 10-18 18P NWFB Kennedy Town (Belcher Bay) – North Point (Healthy Street Central) 5-12 10-20 18X NWFB Shau Kei Wan – Kennedy Town (Belcher Bay) 20 20 19 NWFB Siu Sai Wan (Island Resort) – Happy Valley (Upper) 8-20 15-30 23 NWFB North Point Ferry Pier – Pokfield Road 4-8 8-15	2A	NWFB	Yiu Tung Estate – Wan Chai North	5-9	6-15
18P NWFB Kennedy Town (Belcher Bay) – North Point (Healthy Street Central) 5-12 10-20 18X NWFB Shau Kei Wan – Kennedy Town (Belcher Bay) 20 20 19 NWFB Siu Sai Wan (Island Resort) – Happy Valley (Upper) 8-20 15-30 23 NWFB North Point Ferry Pier – Pokfield Road 4-8 8-15	8X	СТВ	Siu Sai Wan (Island Resort) – Happy Valley (Lower)	5-18	7-25
18P NWFB (Healthy Street Central) 5-12 10-20 18X NWFB Shau Kei Wan – Kennedy Town (Belcher Bay) 20 20 19 NWFB Siu Sai Wan (Island Resort) – Happy Valley (Upper) 8-20 15-30 23 NWFB North Point Ferry Pier – Pokfield Road 4-8 8-15	10	СТВ	Kennedy Town – North Point Ferry Pier	7-9	10-18
19 NWFB Siu Sai Wan (Island Resort) – Happy Valley (Upper) 8-20 15-30 23 NWFB North Point Ferry Pier – Pokfield Road 4-8 8-15	18P	NWFB		5-12	10-20
23 NWFB North Point Ferry Pier – Pokfield Road 4-8 8-15	18X	NWFB	 ` 	20	20
· · · · · · · · · · · · · · · · · · ·	19	NWFB	Siu Sai Wan (Island Resort) – Happy Valley (Upper)	8-20	15-30
27 NWFB North Point Ferry Pier – Braemar Hill 8 10-20	23	NWFB	North Point Ferry Pier – Pokfield Road	4-8	8-15
	27	NWFB	North Point Ferry Pier — Braemar Hill	8	10-20

Public Housing	Development at Java	Road, North Point
----------------	---------------------	-------------------

Traffic Impact Assessment Study	g:\mva\hk500196\chk50019645 (m32)\report\final tia rpt3\final tia rpt3.docx		
Final Report	04/07/2016	Page	18/24

A1A					
A2	38	NWFB	Chi Fu Fa Yuen – North Point Ferry Pier	7-8	9-15
63 NWFB North Point Ferry Pier – Stanley Prison 20 28-40	41A	СТВ	Wah Fu (Central) – North Point Ferry Pier	10	15-26
15	42	NWFB	Wah Fu (South) – North Point Ferry Pier	10	11-15
10-15 12-20	63	NWFB	North Point Ferry Pier – Stanley Prison	20	28-40
NWFB	65	NWFB	North Point Ferry Pier – Stanley Market	15	20
Siu Sai Wan (Island Resort) - North Point Ferry Ferry Pier Siu Sai Wan (Island Resort) - Braemar Hill 10-12 15-20 15-20 10-15	77	СТВ	Tin Wan – Shau Kei Wan	10-15	12-20
SZ	81	NWFB	Hing Wah Estate – Lai Tak Tsuen	15	15-20
10-12 15-20	82	NWFB	Pier	6-9	10-15
102	85	СТВ	,	10-12	15-20
106	99	СТВ	South Horizons – Shau Kei Wan	10	12-20
110	102	кмв/ств	Shau Kei Wan – Mei Foo	3-6	5-15
110	106	KMB/NWFB	Siu Sai Wan (Island Resort) – Wong Tai Sin	4-10	5-12
116	110	KMB/NWFB		15-20	15-20
116	112	KMB/NWFB	North Point (Pak Fuk Road) – So Uk Estate	2-6	3-10
619 KMB/CTB Central (Macau Ferry) – Shun Lee Estate 4-9 10-25 671 KMB/CTB Ap Lei Chau (Lee Lok Street) – Diamond Hill Station 12-20 20-30 680 KMB/NWFB Admiralty (East) – Ma On Shan (Lee On Estate) 8-13 10-20 690 KMB/CTB Central (Exchange Square) -> Tseung Kwan O (Hong Sing Garden) 12-15 15-25 A12 CTB Siu Sai Wan (Island Resort) – Airport (Ground Transportation Centre) 20 25 Peak Only Routes / Special Departure Routes Sheung Wan – North Point (Healthy Street Central) 12-15 - 18 NWFB Sheung Wan – North Point (Healthy Street Central) 12-15 - 19P CTB Shau Kei Wan -> Happy Valley (Upper) - - - 41A CTB Shau Kei Wan -> Honth Point Ferry Pier (via Braemar Hill) - - - 42C NWFB Cyberport – North Point Ferry Pier - - - 81A NWFB Hing Wah Estate – Lai Tak Tsuen - - - 85 CTB Siu Sai Wa	116	KMB/NWFB	, , , ,	3-10	4-10
Ap Lei Chau (Lee Lok Street) - Diamond Hill 12-20 20-30	601	KMB/NWFB	Admiralty (East) – Po Tat Estate	5-12	10-15
671 KMB/CIB Station 12-20 20-30 680 KMB/NWFB Admiralty (East) – Ma On Shan (Lee On Estate) 8-13 10-20 690 KMB/CTB Central (Exchange Square) -> Tseung Kwan O (Hong Sing Garden) 12-15 15-25 A12 CTB Siu Sai Wan (Island Resort) – Airport (Ground Transportation Centre) 20 25 Peak Only Routes / Special Departure Routes 18 NWFB Sheung Wan – North Point (Healthy Street Central) 12-15 - 19P CTB Shau Kei Wan -> Happy Valley (Upper) - - - 19P CTB Shau Kei Wan -> Happy Valley (Upper) - - - 41A CTB Wah Fu (Central) – North Point Ferry Pier (via Braemar Hill) - - - 42C NWFB Cyberport – North Point Ferry Pier - - - 81A NWFB Hing Wah Estate – Lai Tak Tsuen - - - 85 CTB Siu Sai Wan (Island Resort) – North Point Ferry Pier 20 - 85A CTB </td <td>619</td> <td>кмв/ств</td> <td>Central (Macau Ferry) – Shun Lee Estate</td> <td>4-9</td> <td>10-25</td>	619	кмв/ств	Central (Macau Ferry) – Shun Lee Estate	4-9	10-25
Central (Exchange Square) -> Tseung Kwan O (Hong Sing Garden) 12-15 15-2	671	кмв/ств		12-20	20-30
Sing Sain	680	KMB/NWFB	Admiralty (East) – Ma On Shan (Lee On Estate)	8-13	10-20
Peak Only Routes / Special Departure Routes Sheung Wan - North Point (Healthy Street Central) 12-15 -	690	кмв/ств		12-15	15-25
18	A12	СТВ		20	25
18	Peak Only Rou	tes / Special Depart	ure Routes		
A1A	18	NWFB		12-15	-
Shau Kei Wan - Mei Foo Shau Kei Wan - Mei	19P	СТВ	Shau Kei Wan -> Happy Valley (Upper)	-	-
Sin Sai Wan (Island Resort) - North Point Ferry 20 -	41A	СТВ	` '	-	-
Siu Sai Wan (Island Resort) - North Point Ferry Pier 20 -	42C	NWFB	Cyberport – North Point Ferry Pier	-	-
Shau Kei Wan – Braemar Hill 4-9 -	81A	NWFB	Hing Wah Estate – Lai Tak Tsuen	-	-
85A CTB Aldrich Bay -> Braemar Hill - - 85P CTB Siu Sai Wan (Island Resort) – Braemar Hill - - 102P KMB/CTB Shau Kei Wan – Mei Foo - - 307P KMB/CTB Tin Hau Station – Tai Po (Ting Tai Road - - 619X KMB/CTB Shun Lee Estate – Central (Macau Ferry) - - 678 KMB/CTB Sheung Shui – Causeway Bay (Eastern Hospital Road) - - 680 KMB/NWFB Ma On Shan (Chung On Estate) -> Admiralty (East) - -	85	СТВ	, , , , , , , , , , , , , , , , , , , ,	20	-
Aldrich Bay -> Braemar Hill - - - 85P CTB Siu Sai Wan (Island Resort) - Braemar Hill - - 102P KMB/CTB Shau Kei Wan - Mei Foo - - 307P KMB/CTB Tin Hau Station - Tai Po (Ting Tai Road - - 619X KMB/CTB Shun Lee Estate - Central (Macau Ferry) - - 678 KMB/CTB Sheung Shui - Causeway Bay (Eastern Hospital Road) - - 680 KMB/NWFB Ma On Shan (Chung On Estate) -> Admiralty - -	054	CTD	Shau Kei Wan – Braemar Hill	4-9	-
102P KMB/CTB Shau Kei Wan – Mei Foo - - - 307P KMB/CTB Tin Hau Station – Tai Po (Ting Tai Road - - - 619X KMB/CTB Shun Lee Estate – Central (Macau Ferry) - - - 678 KMB/CTB Sheung Shui – Causeway Bay (Eastern Hospital Road) - - - 680 KMB/NWFB Ma On Shan (Chung On Estate) -> Admiralty (East) - - -	85A	CIB	Aldrich Bay -> Braemar Hill	-	-
307P KMB/CTB Tin Hau Station – Tai Po (Ting Tai Road	85P	СТВ	Siu Sai Wan (Island Resort) – Braemar Hill	-	-
619X KMB/CTB Shun Lee Estate – Central (Macau Ferry) 678 KMB/CTB Sheung Shui – Causeway Bay (Eastern Hospital Road) 680 KMB/NWFB Ma On Shan (Chung On Estate) -> Admiralty (East)	102P	кмв/ств	Shau Kei Wan – Mei Foo	-	-
678 KMB/CTB Sheung Shui – Causeway Bay (Eastern Hospital Road)	307P	кмв/ств	Tin Hau Station – Tai Po (Ting Tai Road	-	-
Road) Road) 680 KMB/NWFB Ma On Shan (Chung On Estate) -> Admiralty (East)	619X	кмв/ств	Shun Lee Estate – Central (Macau Ferry)	-	-
680 KMB/NWFB Ma On Shan (Chung On Estate) -> Admiralty (East)	678	кмв/ств		-	-
680A KMB/NWFB Ma On Shan (Lee On Estate) -> Admiralty (East)	680	KMB/NWFB	Ma On Shan (Chung On Estate) -> Admiralty	-	-
	680A	KMB/NWFB	Ma On Shan (Lee On Estate) -> Admiralty (East)	-	-

Public Housing D	Development	at Java	Road,	North Point
------------------	-------------	---------	-------	-------------

Traffic Impact Assessment Study	g:\mva\hk500196\chk50019645 (m32)\report\final tia rpt3\final t rpt3.docx	ia	
Final Report	04/07/2016	Page	19/24

	T	The order to the control of the cont		T
680B	KMB/NWFB	Ma On Shan (Chevalier Garden) -> Admiralty (East)	-	-
680P	KMB/NWFB	Ma On Shan (Wu Kai Sha Station) -> Admiralty (East)	-	-
690	кмв/ств	Tseung Kwan O (Hong Sing Garden) (via Leighton Road) -> Central (Exchange Square)	12-15	-
962C	СТВ	Tuen Mun (Lung Mun Oasis) – Taikoo (Kornhill Plaza)	-	-
969C	СТВ	Quarry Bay -> Tin Shui Wai (Tin Chung Court)	-	-
A12	СТВ	Siu Sai Wan (Island Resort) – Airport (via Cathay City / CAD Headquarters)	20-25	-
X8	NWFB	Siu Sai Wan Sports Ground -> Causeway Bay	-	-
Recreation Ro	utes			
802	NWFB	Shatin Racecourse -> Siu Sai Wan (Island Resort)	-	-
Overnight Rou	ites			
N8	NWFB	Wan Chai North – Heng Fa Chuen	-	30
N8X	СТВ	Siu Sai Wan (Island Resort) – Central (Macau Ferry)	-	30
N72	СТВ	Wah Kwai Estate – Quarry Bay (Hoi Chak Street)	=	15-20
N122	KMB/NWFB	Shau Kei Wan – Mei Foo	-	15
N619	кмв/ств	Central (Macau Ferry) – Shun Lee Estate	-	20
N680	KMB/NWFB	Central (Macau Ferry) – Ma On Shan (Kam Ying Court)	-	20-30
N691	KMB/NWFB	Central (Macau Ferry) – Tiu Keng Leng (King Ling Road)	-	20-25
Buses - Shu Kı	uk Street / Tin Chiu	Street		
Day Time Rou	tes			
10	СТВ	Kennedy Town – North Point Ferry Pier	7-9	10-18
23	NWFB	North Point Ferry Pier – Pokfield Road	4-8	8-15
27	NWFB	North Point Ferry Pier — Braemar Hill	8	10-20
38	NWFB	Chi Fu Fa Yuen – North Point Ferry Pier	7-8	9-15
42	NWFB	Wah Fu (South) – North Point Ferry Pier	10	11-15
63	NWFB	North Point Ferry Pier – Stanley Prison	20	28-40
65	NWFB	North Point Ferry Pier – Stanley Market	15	20
82	NWFB	Siu Sai Wan (Island Resort) – North Point Ferry Pier	6-9	10-15
85	СТВ	Siu Sai Wan (Island Resort) – Braemar Hill (Circular)	10-12	15-20
606	кмв/ств	Siu Sai Wan (Island Resort) – Choi Wan (Fung Shing Street)	15	15-25
682	NWFB	Chai Wan (East) – Ma On Shan (Wu Kai Sha Station)	8-12	12-20
Peak Only Rou	ites / Special Depart	ure Routes		T
42C	NWFB	Cyberport – North Point Ferry Pier	-	-
81A	NWFB	Hing Wah Estate – Lai Tak Tsuen	-	-
85	СТВ	Siu Sai Wan (Island Resort) – North Point Ferry Pier	20	-
85A	СТВ	Shau Kei Wan – Braemar Hill	4-9	-
606A	кмв/ств	Choi Wan (Fung Shing Street) – Yiu Tung Estate	20	-

682	NWFB	Chai Wan (East) – Ma On Shan (Lee On Estate)	10-15	-
682A	NWFB	Ma On Shan Town Centre – Chai Wan (East)	-	-
682B	NWFB	Shui Chuen O Estate – Chai Wan (East)	-	-
Recreation Rou	ites			
85	СТВ	Happy Valley Racecourse -> Siu Sai Wan (Island Resort)	-	-
GMB				
198	GMB	Hang Hau (North) -> Causeway Bay (Circular)	-	15
33	GMB	Kornhill – North Point (Marble Road)	8-15	8-15
56	GMB	Mid-Levels (Robinson Road) – North Point (Marble Road)	6-12	8-15
65	GMB	Pamela Youde Nethersole Eastern Hospital – North Point (Fort Street)	5-8	5-8
69	GMB	Cyberport – Quarry Bay (Shipyard Lane) (Circular)	9-15	12-15

- As summarized in **Table 6.1,** there are 33 daytime bus routes, 27 peak only/special departure bus routes, 8 overnight bus routes, 2 recreation bus routes, 5 GMB routes. A taxi stand is also provided at Shu Kuk Street. Furthermore, the New North Point Ferry Public Transport Interchange and the North Point Ferry Pier are located in close proximity. Together with the MTR services, the proposed development is well served by public transport. The proposed development only consists of 264 flats and the additional pedestrian demand due to the proposed development would not be significant and therefore could be accommodated among the different transport modes.
- 6.1.7 In view of the comprehensive coverage of the public transport services and the available different choices on transport modes, the proposed development is considered to have good accessibility via the public transport.

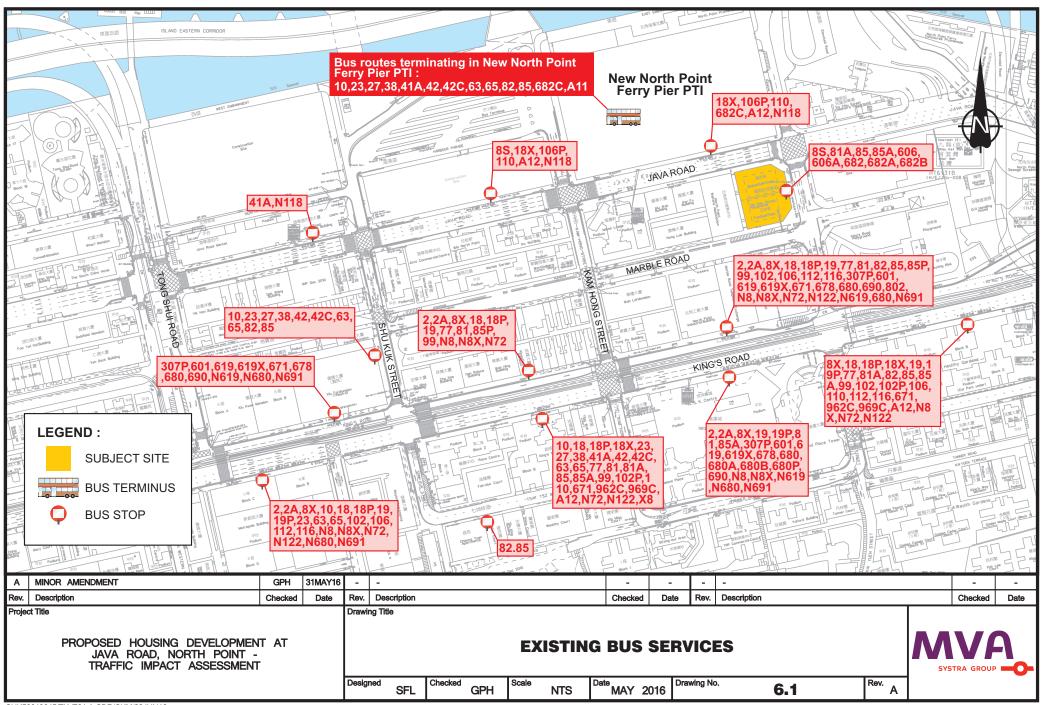
6.2 Pedestrian Facilities

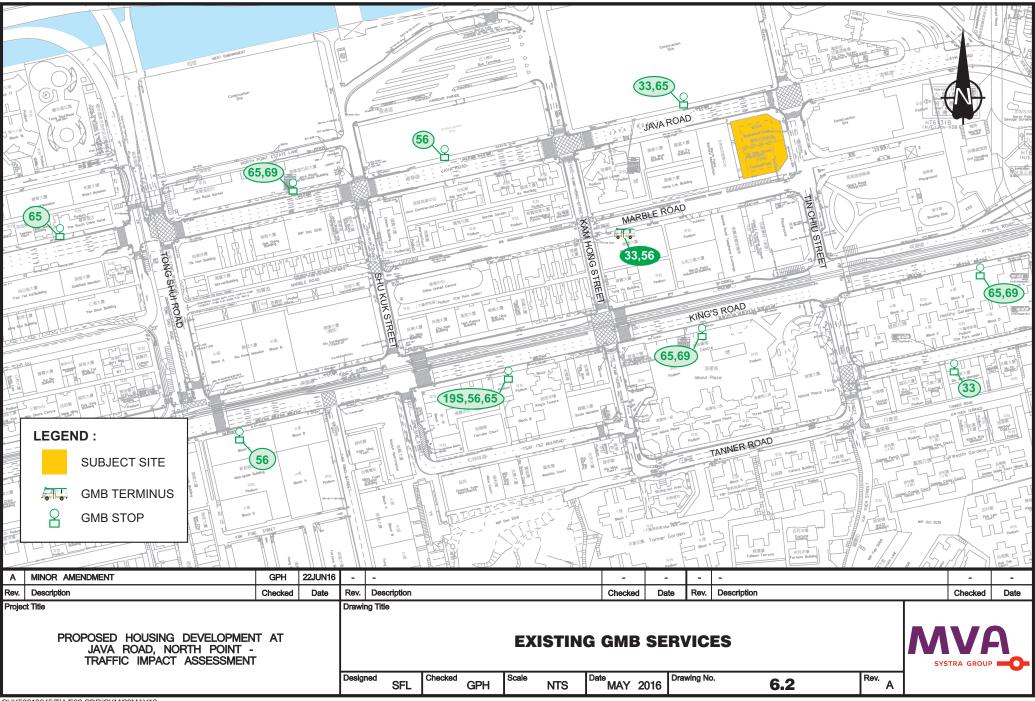
- 6.2.1 At present, a number of pedestrian crossings and footbridges are provided in the vicinity and at the nearby junctions to link up the proposed development and the existing housing developments and shopping centre. The locations of the pedestrian crossings and footbridges in the vicinity of the proposed development are shown in **Drawing 6.3.**
- 6.2.2 In order to estimate the potential pedestrian trip generations of the proposed development, trip generation rate of similar characteristics has been adopted for the different proposed development components. The reference surveyed trip rates are summarised in **Table 6.2**.

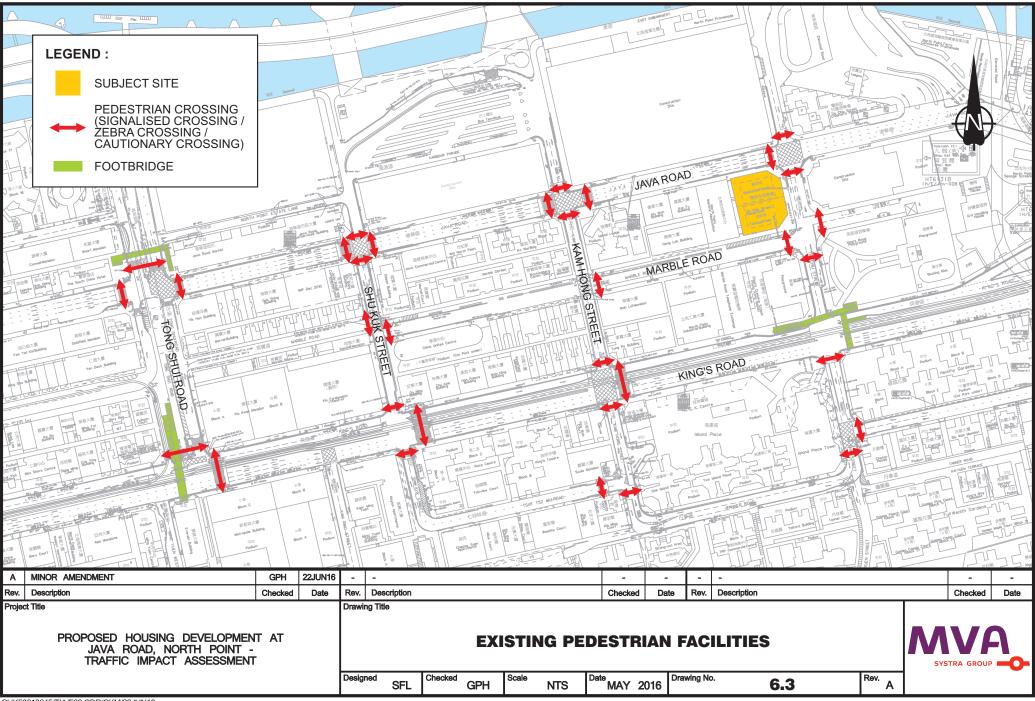
Table 6.2 Reference Trip Rates

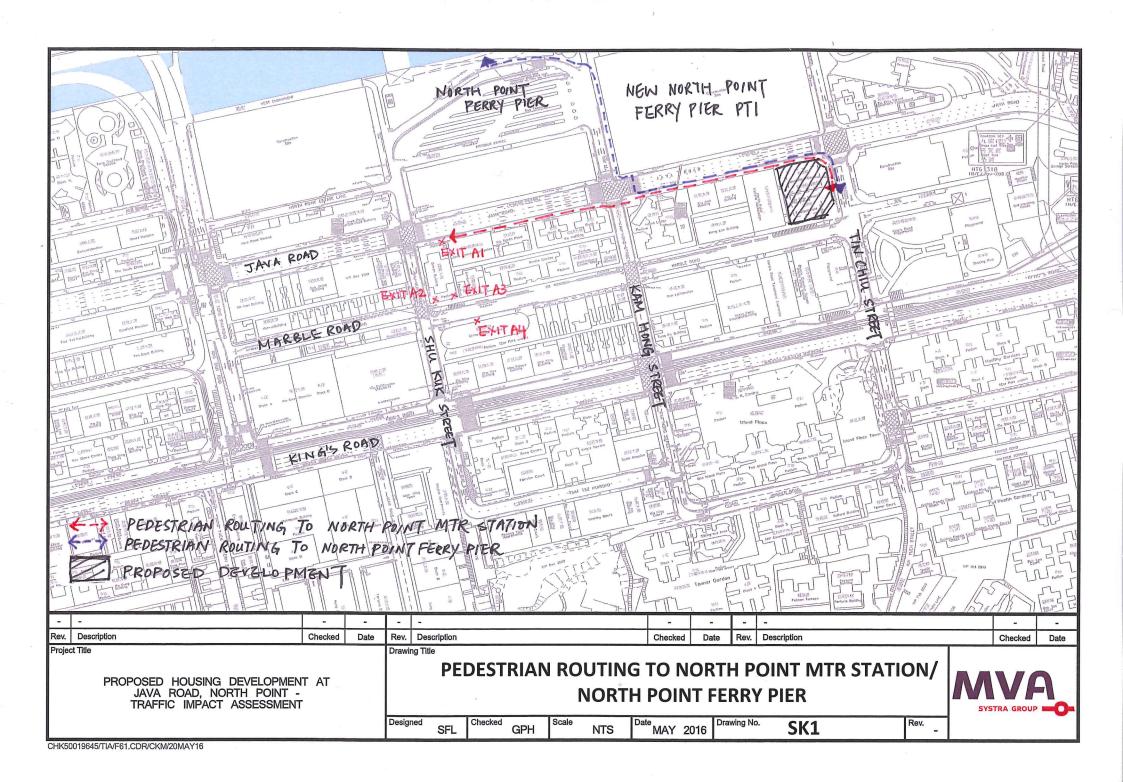
	Pedestrian Trip Rates (pedestrians/flat/hr)			
	AM Peak PM Peak		Peak	
	Generation	Attraction	Generation	Attraction
SSF flats(ped/hr/flat) ⁽¹⁾	0.99	0.21	0.33	0.57

Note: (1) Trip rate obtained from survey at Bauhinia Garden


6.2.3 Based on the proposed SSF development and the surveyed trip rates given in **Table 6.2**, the total pedestrian trips generated by the proposed development under the updated development proposals are computed and shown in **Table 6.3**.


Table 6.3 Pedestrian Generations of Proposed Development


	Pedestrian Trip Rates (pedestrians/flat/hr)			
	AM Peak		PM Peak	
	Generation	Attraction	Generation	Attraction
264 SSF Flats	261	55	87	150


- 6.2.4 The existing footpath at Java Road, Tin Chiu Street and Marble Road are about 3 meter wide which could cater for about 4,000 ped/hour at Level of Service C based on an effective width of 2.0 meter. According to **Table 6.3**, the pedestrian generation due to the proposed SSF development is relatively low and it is considered that the impact on the adjacent footpaths is insignificant.
- 6.2.5 In view of the pedestrian facilities provision and the scale of the proposed development, it is not expected that there will be significant impact on the existing pedestrian facilities.

Final Report 04/07/2016 Page 22/24

7. SUMMARY AND CONCLUSION

7.1 Summary

- 7.1.1 MVA Hong Kong Limited (MVA) was commissioned by the Hong Kong Housing Authority (HKHA) in 2016 to conduct a Traffic Impact Assessment (TIA) study for Public Housing Development at Java Road.
- 7.1.2 The public housing development comprise of about 240 Subsidized Sales Flats (SSF) which is anticipated to be completed by 2022. As a conservative approach, an additional 10% allowance had been allowed for the proposed development to cater for future design variation. The traffic impact assessment has been based on 264 SSF flats.
- 7.1.3 To appraise the existing traffic condition, traffic count surveys were conducted in the surrounding road network of the proposed development. Moreover, current operational performance of the critical junctions was assessed with the observed traffic flows. The operational assessment results revealed that all critical junctions are at present operating within capacities.
- 7.1.4 In order to assess the impact of the development related traffic on the local road network, it is necessary to forecast the traffic flows for 2025, the adopted design year, which is 3 years upon completion. The 2025 traffic flows have been projected with the basis on local area planning data published by government. The traffic generations due to the adjacent planned/committed developments have also been included in the future year traffic forecast.
- 7.1.5 Traffic generation and attraction from the proposed development has been assessed. It is estimated that the proposed development will generate and attract about 16pcu/hr and 11pcu/hr in the AM peak hour, and generate and attract about 8pcu/hr and 11pcu/hr in the PM peak hour respectively.
- 7.1.6 Assessment of operational performance of the critical junctions revealed that all critical junctions will still operate within their capacities in design year 2025.
- 7.1.7 In view of the comprehensive coverage of the public transport services and the available different choices on transport modes, the proposed development is considered to have good accessibility via the public transport. Taken into consideration of the pedestrian facilities provision and the scale of the proposed development, it is not expected that there will be significant impact on the existing pedestrian facilities.

7.2 Conclusion

7.2.1 In conclusion, the traffic impact assessment has demonstrated that the traffic generated by the proposed development can be absorbed by the nearby road network. Hence it can be concluded that the proposed development is acceptable in traffic terms.

2016 Observed Flows

TRAFFIC SIGNALS CALCULATION **MVA ASIA LIMITED** Job No.: CHK50019645 Junction: Java Road/ Shu Kuk Street (A) Design Year: _____2016 Description: Observe Flows Designed By: HKH Checked By: GPH Revised Saturation Flow Pro. Turning (%) A.M. Peak P.M. Peak Radius (m) (pcu/hr) Movement notation (%) uphill Gradient Flow Flow P.M. Approach Width (m) Left A.M. P.M. A.M. y Value Critical y y Value Critical y (pcu/hr) (pcu/hr) 3.000 22% 15% 1855 1875 382 0.206 436 0.233 Java Road EΒ 3 000 2055 2055 423 0.206 0.233 478 3.000 1915 1915 395 0.206 0.206 446 0.233 0.233 Shu Kuk Street 3.750 15 28% 43% 1935 1910 223 0.115 236 0.124 0.124 NB 3.750 10 1530 1530 177 0.116 0.116 189 0.124 LRT/Pedestrian 1,3 Min Dp Ep Fp 11 5 7 . 11 7 12 2,3 Min 22 3 Min 3 Min 12 Traffic Flow (pcu/hr) Notes: ABEp ABFp Group ABFp Group ABEp 0.322 0.322 0.356 0.356 у у L (sec) 25 32 L (sec) 25 32 85(65) 1115(1295) C (sec) 120 120 C (sec) 120 120 y pract. 0.713 0.660 y pract. 0.713 0.660 160(135) 240(290) R.C. (%) 121% 105% R.C. (%) 100% 85% Stage / Phase Diagrams Ср Ср I/G= 6 I/G= 6 I/G= 7 I/G= Junction: Date: Jun-16

TRAFFIC SIGNALS CALCULATION **MVA ASIA LIMITED** Job No.: CHK50019645 Junction: Java Road/ Kam Hong Street (B) Design Year: _____2016 Description: Observe Flows Designed By: HKH Checked By: GPH Revised Saturation Flow A.M. Peak Radius (m) Pro. Turning (%) P.M. Peak (pcu/hr) (%) uphill Gradient Flow Flow P.M. Approach Width (m) Left Right A.M. P.M. A.M. y Value Critical y y Value Critical y (pcu/hr) (pcu/hr) 1935 1935 453 0.234 533 0.275 Java Road 3.200 EΒ 3 200 2075 2075 486 0.234 0.276 572 0.276 3.200 10 60% 74% 1775 1740 416 0.234 0.234 480 0.276 Shu Kuk Street 4.000 10 52% 41% 1870 1900 87 0.047 0.047 85 0.045 0.045 SB 4.000 2015 2015 93 0.046 0.045 Cp Dp Ep Fp LRT/Pedestrian 1,3 Min 2,3 Min 11 20 3 Min 3 Min 8 10 18 Traffic Flow (pcu/hr) Notes: Group ABEp ABEp Group 135(140) 45(35) 0.281 0.321 у у L (sec) 31 L (sec) 31 1105(1230) 250(355) -C (sec) C (sec) 120 120 y pract. 0.668 y pract. 0.668 R.C. (%) R.C. (%) 138% 108% Stage / Phase Diagrams I/G= Junction: Date: Jun-16

TRAFFIC SIGNALS CALCULATION **MVA ASIA LIMITED** CHK50019645 Job No.: Junction: __Java Road/ Tin Chiu Street (C)_ Design Year: 2016 Description: ____ Observe Flows Designed By: HK<u>H</u> Checked By: ____GPH_ Revised Saturation Flow Pro. Turning (%) A.M. Peak P.M. Peak Radius (m) (pcu/hr) (%) uphill Gradient notation Phase Flow Flow Approach Width (m) Right y Value Critical y y Value Critical y (pcu/hr) (pcu/hr) 376 Java Road 3.000 1% 1% 1910 1910 0.197 0.197 414 0.217 0.217 EΒ 3.000 2055 2055 404 0.197 446 0.217 18% 25% 1880 370 405 0.217 3.000 15 1870 0.197 L) Tin Chiu Street В 3 3.500 15 1785 1785 15 0.008 10 0.006 SB 97% 97% 1785 1785 0.080 0.080 0.087 Tin Chiu Street 3.000 20 143 155 NB 3.000 1660 132 0.080 0.087 0.087 1660 LRT/Pedestrian 2 Min 13 Ep 2,3,4 Min 11 18 2,3 Min 18 Notes: Traffic Flow Group ADpBC Group ADpBC (pcu/hr) 15(10) 0.277 0.304 у 39 L (sec) 39 L (sec) 5(5) C (sec) C (sec) 1080(1160) 120 120 65(100) y pract. 0.608 y pract. 0.608 5(5) 270(295) R.C. (%) 119% R.C. (%) 100% Stage / Phase Diagrams Dp ----> Fp Fp I/G= 7 I/G= 7

I/G= 11

I/G= 11

I/G= 7

I/G=

I/G=

Jun-16

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\D E F flow\D AM 2016 OBS.vpi" at 10:41:13 on Monday, 30 May 2016

RUN TITLE

Marble Road / Shu Kuk Street AM (D) 2016 OBS

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

TNPUT DATA

MINOR ROAD (ARM D) MAJOR ROAD (ARM C) ----- MAJOR ROAD (ARM A) MINOR ROAD (ARM B)

ARM A IS Shu Kuk Street NB ARM B IS Marble Road EB ARM C IS Shu Kuk Street NB ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B

STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

ETC.

.GEOMETRIC DATA

I	DATA ITEM	I	MINOR	ROAD	В 1	Ι	MINOR	ROAD	D	Ι
I	TOTAL MAJOR ROAD CARRIAGEWAY WIDTH CENTRAL RESERVE WIDTH		. ,	7.50 0.00			(W) (WCR)	7.50 0.00		I
I		I			1	Ι				I
I	MAJOR ROAD RIGHT TURN - WIDTH	I	(WC-B)	2.20	м. 1	Ι	(WA-D)	2.20	Μ.	I
I	- VISIBILITY	I	(VC-B)	0.0	м. 1	Ι	(VA-D)	0.0	Μ.	I
I	- BLOCKS TRAFFIC	Ι		NO	1	Ι		NO		I
Ι		I]	Ι				I
Ι	MINOR ROAD - VISIBILITY TO LEFT	I	(VB-C)	15.0	м.	Ι	(VD-A)	30.0	Μ.	I
Ι	- VISIBILITY TO RIGHT	I	(VB-A)	15.0	м.	Ι	(VD-C)	20.0	Μ.	I
I	- LANE 1 WIDTH	I	(WB-C)	5.00	м. 1	Ι	(WD-A)	2.20	Μ.	I
I	- LANE 2 WIDTH	I	(WB-A)	0.00	м. 1	Ι	(WD-C)	5.00	Μ.	Ι

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 08.00 AND ENDS 09.30

Ι		Ι	NUMBER OF	M	NUTE	S FROM	ST	ART WHEN	Ι	RATE	OF	FLOW (VE	H/MIN)	Ι
Ι	ARM	Ι	FLOW STARTS	I	TOP	OF PEAK	Ι	FLOW STOPS	Ι	BEFORE	Ι	AT TOP	Ι	AFTER	Ι
Ι		Ι	TO RISE	Ι	IS	REACHED	Ι	FALLING	Ι	PEAK	Ι	OF PEAR	Ι	PEAK	Ι
I	ARM A	Ι	15.00	I		45.00	Ι	75.00	Ι	3.25	Ι	4.88	Ι	3.25	Ι
I	ARM E	Ι	15.00	Ι		45.00	Ι	75.00	Ι	0.06	Ι	0.09	I	0.06	Ι
I	ARM C	Ι	15.00	Ι		45.00	Ι	75.00	Ι	0.00	Ι	0.00	I	0.00	I
I	ARM D	I	15.00	Ι		45.00	Ι	75.00	Ι	1.69	Ι	2.53	Ι	1.69	Ι

I I I		I I I		ΤŲ	URNING PROPORTIONS I URNING COUNTS (VEH/HR) I ERCENTAGE OF H.V.S) I
I	TIME	Ι	FROM/TO	Ι	ARM A I ARM B I ARM C I ARM D I
I	08.00 - 09.30	Ι		Ι	I I I I
I		Ι	ARM A	Ι	0.000 I 0.000 I 1.000 I 0.000 I
I		Ι		Ι	0.0 I 0.0 I 260.0 I 0.0 I
I		Ι		Ι	(0.0)I (0.0)I (0.0)I (0.0)I
I		Ι		Ι	I I I
I		Ι	ARM B	Ι	0.000 I 0.000 I 1.000 I 0.000 I
I		Ι		Ι	0.0 I 0.0 I 5.0 I 0.0 I
I		Ι		Ι	(0.0) I (0.0) I (0.0) I (0.0) I
I		Ι		Ι	I I I
I		Ι	ARM C	Ι	0.000 I 0.000 I 0.000 I
I		Ι		Ι?	??????? I??????? I??????? I??????? I
I		Ι		Ι	(0.0) I (0.0) I (0.0) I (0.0) I
Ι		Ι		Ι	I I I I
Ι		Ι	ARM D	Ι	0.000 I 0.000 I 1.000 I 0.000 I
I		I		Ι	0.0 I 0.0 I 135.0 I 0.0 I
I		Ι		Ι	I(0.0) I(0.0) I(0.0) I(0.0) I
I		Ι		Ι	I I I

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA

 I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	CAPACITY	PEDESTRIAN FLOW	START QUEUE	END QUEUE	DELAY (VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
I				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	08.00-08	3.15							I
I	B-ACD	0.06	11.78	0.005		0.0	0.0	0.1	I
I	A-B	0.00							I
I	A-C	3.25							I
I	A-D	0.00	8.70	0.000		0.0	0.0	0.0	I
I	D-AB	0.00	8.47	0.000		0.0	0.0	0.0	I
I	D-BC	1.69	9.40	0.179		0.0	0.2	3.1	I
I	C-D	0.00							I
I	C-A	0.00							I
I	C-B	0.00	8.08	0.000		0.0	0.0	0.0	I
I									I
I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANGE	S IN:	I
I				MAJOR RD.	CENT RES	VIS TO) LEFT	VISIBILITY	I
I	MARG	GINAL LAN	NE WIDTH	WIDTH	WIDTH	(AHEAD	FOR MAJO	R) TO RIGHT	I
I	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
I									I
Ι	B-	-ACD	0.125	0.003	0.013	0.00)6	0.009	I
Ι	C-	-B	0.097	0.003		0.00	9		I
I	D-	AB	0.101	0.000	0.000	0.00	0.0	0.009	I
Ι	D-	-BC	0.078	0.003	0.022	0.00	06	0.009	I
I	A-	-D	0.104	0.000		0.01	L O		I

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)		PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ 'IME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	I I
Ι	08.15-08	.30								Ι
Ι	B-ACD	0.07	11.60	0.006		0.0	0.0	0.1		Ι
Ι	A-B	0.00								Ι
Ι	A-C	3.88								Ι
Ι	A-D	0.00	8.70	0.000		0.0	0.0	0.0		Ι
Ι	D-AB	0.00	8.39	0.000		0.0	0.0	0.0		Ι
Ι	D-BC	2.02	9.30	0.217		0.2	0.3	4.0		Ι
Ι	C-D	0.00								Ι
Ι	C-A	0.00								Ι
Ι	C-B	0.00	7.96	0.000		0.0	0.0	0.0		Ι
Ι										Ι
Ι			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANGES	IN:		Ι
Ι				MAJOR RD.	CENT RES	VIS TO		VISIBILITY		Ι
Ι	MARG		NE WIDTH	WIDTH	WIDTH		FOR MAJOR	R) TO RIGHT		Ι
Ι	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)		Ι
Ι										Ι
Ι		ACD	0.122	0.003	0.013	0.00		0.009		Ι
Ι	C-		0.095	0.004		0.00				Ι
Ι		AB	0.100	0.000	0.000	0.00		0.009		Ι
Ι	D-	BC	0.078	0.003	0.022	0.00)6	0.009		Ι

I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY	PEDESTRIAN FLOW	START QUEUE	END QUEUE	DELAY (VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
	08.30-0				(PEDS/MIN)				TIME SEGMENT) I
I	B-ACI A-B	0.09 0.00 4.75 0.00 0.00 2.47 0.00	11.36	0.008		0.0	0.0	0.1	I
I	A-C	4.75	0 70	0 000		0.0	0 0	0.0	I
I	A-D D-AB	0.00	8.70 8.27 9.15	0.000		0.0	0.0	0.0	I
I	D-BC C-D	2.47	9.15	0.270		0.3	0.4	5.3	I
I	C-A	0.00							I
I	C-B	0.00	7.80	0.000		0.0	0.0	0.0	I
I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANG	ES IN: VISIBILITY	I
I	MAF	RGINAL LA	NE WIDTH	WIDTH	WIDTH (.1M)	(AHEAD	FOR MAJ	OR) TO RIGHT	I
I								(M)	I
I	E	B-ACD '-B	0.118	0.004	0.013	0.00)5 19	0.008	I
I	I)-AB	0.099	0.000	0.000	0.00	00	0.008	I
I	I.	N-BC	0.076	0.004	0.013 0.000 0.022	0.00)6 10	0.009	I
	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
I	08.45-0	9.00			(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I		0.09				0.0	0.0	0.1	I
I	A-C	4.75							I
I	A-D D-AB	0.00	8.70 8.27	0.000		0.0	0.0	0.0	I
I	D-BC	2.47	9.15	0.270			0.4		I
I	C-A	4.75 0.00 0.00 2.47 0.00 0.00							I
I	C-B	0.00	7.80	0.000		0.0	0.0	0.0	I
I			EFFECT ON	CAPACITY MAJOR RD.	(PCU/MIN) OF CENT RES	MARGINA VIS TO	AL CHANG	ES IN: VISIBILITY	I
I	MAF CF	RGINAL LA HANGE:	NE WIDTH (.1M)	WIDTH (.1M)	WIDTH (.1M)	(AHEAD	FOR MAJ	OR) TO RIGHT (M)	I
I	E	B-ACD	0.118	0.004	0.013	0.00	05	0.008	I
I	Ι)-AB	0.099	0.000	0.000	0.00	0.0	0.008	I
I		D-BC A-D	0.076 0.104	0.004	0.022	0.00		0.009	I
	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
	09.00-0				(PEDS/MIN)				TIME SEGMENT) I
I	B-ACI	0.07	11.60	0.006		0.0	0.0	0.1	I
I	A-C	3.88							I
I	A-D D-AB	0.00 3.88 0.00 0.00	8.70 8.39	0.000			0.0	0.0	I
I	D DC	2.02				0.4	0.3	4.3	I
I	C-D C-A C-B	0.00							I
I	C-B	0.00	7.96	0.000		U.U	U.U	0.0	I
I			EFFECT ON	CAPACITY MAJOR RD	(PCU/MIN) OF CENT RES				I
I	MAF	RGINAL LA	NE WIDTH	WIDTH	WIDTH	(AHEAD	FOR MAJ	OR) TO RIGHT	I
I				(.1M)	(.1M)	(M))	(M)	I
I			0.122 0.095			0.00		0.009	I
I	I)-AB	0.100	0.000		0.00		0.009	I
I)-BC A-D	0.078	0.003	0.022	0.00		0.009	I
	TTMF	оидмап	CAPACTTV	DEMAND/	PEDESTRIAM	START	END	DET.AV	GEOMETRIC DELAYT
		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
I	09.15-0	9.30			(PEDS/MIN)				TIME SEGMENT) I
I	B-ACI A-B	0.06	11.78	0.005		0.0	0.0	0.1	I
I	A-C	0.00 3.25 0.00 0.00	Ω 70	0 000		0 0	0.0	0.0	I I
I	D-AB	0.00	8.70 8.47	0.000		0.0	0.0	0.0	I
Ι	D-BC	1.69	9.40	0.179		0.3	0.2	3.4	I

I	C-D	0.00							Ι
I	C-A	0.00							Ι
I	C-B	0.00	8.08	0.000		0.0	0.0	0.0	Ι
I									Ι
I		I	EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINAL	CHANGES	IN:	Ι
I				MAJOR RD.	CENT RES	VIS TO	LEFT	VISIBILITY	Ι
I	MARGINAI	LAN	E WIDTH	WIDTH	WIDTH	(AHEAD F	OR MAJOR)	TO RIGHT	Ι
I	CHANGE:	()	.1M)	(.1M)	(.1M)	(M)		(M)	Ι
I									Ι
I	B-ACD		0.125	0.003	0.013	0.006		0.009	Ι
I	C-B		0.097	0.003		0.009			Ι
I	D-AB		0.101	0.000	0.000	0.000		0.009	Ι
I	D-BC		0.078	0.003	0.022	0.006		0.009	Ι
I	A-D		0.104	0.000		0.010			Ι
QUE	JE FOR STRE	EAM B	-ACD						 -

TIME SEGMENT NO. OF VEHICLES ENDING IN QUEUE 08.15 0.0 0.0 0.0 0.0 08.30 08.45 09.15 09.30 0.0 QUEUE FOR STREAM A-D
TIME SEGMENT NO. OF
ENDING VEHICLES IN QUEUE 08.15 08.30 08.45 09.00 09.15 09.30 0.0 0.0 0.0 0.0

QUEUE FOR STREAM D-AB TIME SEGMENT NO. OF ENDING VEHICLES IN QUEUE 08.15 08.30 08.45 0.0 0.0 0.0 09.00 09.15 09.30 0.0

0.0

QUEUE FOR STREAM D-BC NO. OF VEHICLES TIME SEGMENT ENDING VEHICLES IN QUEUE 0.2 0.3 0.4 0.4 0.3 0.2 08.15 08.30 08.45 09.00 09.15 09.30

QUEUE FOR STREAM C-B

TIME SEGMENT NO. OF VEHICLES IN QUEUE 0.0 0.0 0.0 08.15 08.30 08.45 09.00 09.15 09.30 0.0

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

I	STREAM	I	TOTA	LI	DEMAND	I	* QUEU * DEI	LΑ		I	* INCLUSIV * DE			I I
I		I	(VEH)		(VEH/H)	Ι	(MIN)		(MIN/VEH)	I	(MIN)		(MIN/VEH)	I
I		I	6.9		4.6		0.6	Ι	0.09	I	0.6	I	0.09	I
Ι	A-B	Ι	0.0	Ι	0.0	Ι		Ι		Ι		I		Ι
Ι	A-C	Ι	356.5	Ι	237.7	Ι		Ι		I		Ι		Ι
Ι	A-D	Ι	0.0	Ι	0.0	I	0.0	Ι	0.00	Ι	0.0	I	0.00	Ι
Ι	D-AB	Ι	0.0	Ι	0.0	Ι	0.0	Ι	0.00	Ι	0.0	I	0.00	Ι
Ι	D-BC	Ι	185.1	Ι	123.4	Ι	25.6	Ι	0.14	Ι	25.6	I	0.14	Ι
Ι	C-D	Ι	0.0	Ι	0.0	Ι		Ι		I		I		Ι
Ι	C-A	Ι	0.0	Ι	0.0	Ι		Ι		I		I		Ι
Ι	C-B	Ι	0.0	Ι	0.0	Ι	0.0	Ι	0.00	I	0.0	Ι	0.00	Ι

- * DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

 * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

 * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

END OF JOB

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\D E F flow\D PM 2016 OBS.vpi" at 10:41:24 on Monday, 30 May 2016

RUN TITLE

Marble Road / Shu Kuk Street PM (D) 2016 OBS

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

INPUT DATA

ARM A IS Shu Kuk Street NB ARM B IS Marble Road EB ARM C IS Shu Kuk Street NB ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B

STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

ETC.

.GEOMETRIC DATA

I	DATA ITEM	Ι	MINOR	ROAD B	I	MINOR	ROAD	D	I
I I T	TOTAL MAJOR ROAD CARRIAGEWAY WIDTH CENTRAL RESERVE WIDTH		. ,	7.50 M. 0.00 M.		(WCR)	7.50 0.00		I I T
I	MAJOR ROAD RIGHT TURN - WIDTH - VISIBILITY		(WC-B)	2.20 M. 0.0 M.		(WA-D) (VA-D)	2.20		I
I	- BLOCKS TRAFFIC	I		NO	I		NO		I
I	MINOR ROAD - VISIBILITY TO LEFT - VISIBILITY TO RIGHT			15.0 M. 15.0 M.		(VD-A) (VD-C)	30.0		I
I I	- LANE 1 WIDTH - LANE 2 WIDTH		(WB-C) (WB-A)	5.00 M. 0.00 M.		(WD-A) (WD-C)	2.20 5.00		I

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 17.30 AND ENDS 19.00

Ι			Ι	NUMBER OF	M.	INUT	ES FROM	ST	ART WHEN	Ι	RATE	OF	FLOW	(VE	H/MIN)	Ι
Ι	ARM		Ι	FLOW STARTS	Ι	TOP	OF PEAK	I	FLOW STOPS	Ι	BEFORE	Ι	AT TOP	I	AFTER	Ι
Ι			Ι	TO RISE	Ι	IS	REACHED	I	FALLING	Ι	PEAK	Ι	OF PEAR	Ί	PEAK	Ι
Ι	ARM A	A	Ι	15.00	Ι		45.00	I	75.00	Ι	3.19	Ι	4.78	I	3.19	Ι
Ι	ARM I	3	Ι	15.00	Ι		45.00	Ι	75.00	Ι	0.00	Ι	0.00	I	0.00	Ι
Ι	ARM (2	Ι	15.00	Ι		45.00	Ι	75.00	Ι	0.00	Ι	0.00	I	0.00	Ι
Ι	ARM I)	Ι	15.00	Ι		45.00	Ι	75.00	Ι	2.13	Ι	3.19	I	2.13	Ι

I I I		I I I		TU	URNING PROPORTIONS I URNING COUNTS (VEH/HR) I ERCENTAGE OF H.V.S) I
Ī	TIME	Ι	FROM/TO	I	ARM A I ARM B I ARM C I ARM D I
I	17.30 - 19.00	Ι		Ι	I I I I
I		Ι	ARM A	Ι	0.000 I 0.000 I 1.000 I 0.000 I
I		Ι		I	0.0 I 0.0 I 255.0 I 0.0 I
I		Ι		I	(0.0)I (0.0)I (0.0)I (0.0)I
I		Ι		I	I I I
I		Ι	ARM B	I	0.000 I 0.000 I 0.000 I
I		Ι		I?	??????? I??????? I??????? I??????? I
I		Ι		I	(0.0)I (0.0)I (0.0)I (0.0)I
I		Ι		I	I I I
I		Ι	ARM C	I	0.000 I 0.000 I 0.000 I 0.000 I
I		Ι		I?	??????? I??????? I??????? I??????? I
I		Ι		I	(0.0)I (0.0)I (0.0)I (0.0)I
I		Ι		I	I I I
I		Ι	ARM D	I	0.000 I 0.000 I 1.000 I 0.000 I
I		Ι		I	0.0 I 0.0 I 170.0 I 0.0 I
I		Ι		Ι	(0.0) I (0.0) I (0.0) I (0.0) I
I		Ι		Ι	I I I

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA

T	 I	TIME	DEMAND	CAPACITY		PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I 17.30-17.45	_		(VEH/MIN)	(VEH/MIN)			~	~		
I	_				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	
	Ι		.45							I
I	I	B-ACD		9.12	0.000		0.0	0.0	0.0	I
I	I	A-B	0.00							I
I	I	A-C	3.19							I
I	I	A-D	0.00	8.70	0.000		0.0	0.0	0.0	I
I	I	D-AB	0.00	8.37	0.000		0.0	0.0	0.0	I
I	I	D-BC	2.13	9.43	0.225		0.0	0.3	4.1	I
I	I	C-D	0.00							I
I	I	C-A	0.00							I
I	I	C-B	0.00	8.09	0.000		0.0	0.0	0.0	I
I	I									I
MARGINAL LANE WIDTH WIDTH WIDTH (AHEAD FOR MAJOR) TO RIGHT I CHANGE: (.1M) (.1M) (.1M) (M) (M) (M) I I	I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANGE	S IN:	I
I CHANGE: (.1M) (.1M) (M) (M) I I I B-ACD 0.125 0.003 0.013 0.006 0.009 I I C-B 0.097 0.003 0.009 I I D-AB 0.100 0.000 0.000 0.009 I I D-BC 0.079 0.002 0.022 0.006 0.009 I	I				MAJOR RD.	CENT RES	VIS TO	LEFT	VISIBILITY	I
I I I B-ACD 0.125 0.003 0.013 0.006 0.009 I I C-B 0.007 0.003 0.000 0.000 I I D-AB 0.100 0.000 0.000 0.000 I I D-BC 0.079 0.002 0.022 0.006 0.009 I I	I	MARG	GINAL LA	NE WIDTH	WIDTH	WIDTH	(AHEAD	FOR MAJO	R) TO RIGHT	I
I B-ACD 0.125 0.003 0.013 0.006 0.009 I I C-B 0.097 0.003 0.000 0.009 I I D-AB 0.100 0.000 0.000 0.000 0.009 I I D-BC 0.079 0.002 0.022 0.006 0.009 I I	I	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
I C-B 0.097 0.003 0.009 I I D-AB 0.100 0.000 0.000 0.000 0.009 I I D-BC 0.079 0.002 0.022 0.006 0.009 I	I									I
I D-AB 0.100 0.000 0.000 0.000 0.009 I D-BC 0.079 0.002 0.022 0.006 0.009 I	I	B-	-ACD	0.125	0.003	0.013	0.00	06	0.009	I
I D-BC 0.079 0.002 0.022 0.006 0.009 I	I	C-	-В	0.097	0.003		0.00	9		I
	I	D-	-AB	0.100	0.000	0.000	0.00	0.0	0.009	I
T 7 D 0 104 0 000 0 010	I	D-	-BC	0.079	0.002	0.022	0.00) 6	0.009	I
T A-D 0.104 0.000 0.010	Ι	A-	-D	0.104	0.000		0.01	LO		I

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)		PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) T	DELAY (VEH.MIN/ IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
Ι	17.45-18	3.00							I
Ι	B-ACD	0.00	8.93	0.000		0.0	0.0	0.0	I
Ι	A-B	0.00							I
Ι	A-C	3.81							I
Ι	A-D	0.00	8.70	0.000		0.0	0.0	0.0	I
Ι	D-AB	0.00	8.26	0.000		0.0	0.0	0.0	I
Ι	D-BC	2.54	9.33	0.272		0.3	0.4	5.4	I
Ι	C-D	0.00							I
Ι	C-A	0.00							I
Ι	C-B	0.00	7.98	0.000		0.0	0.0	0.0	I
Ι									I
Ι			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	L CHANGES	IN:	I
Ι				MAJOR RD.	CENT RES	VIS TO		VISIBILITY	I
Ι	MARG		NE WIDTH	WIDTH	WIDTH		FOR MAJOR) TO RIGHT	I
Ι	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
Ι									I
Ι		ACD	0.122	0.003	0.013	0.00		0.008	I
Ι	C-		0.095	0.004		0.00			I
Ι		-AB	0.099	0.000	0.000	0.00		0.008	I
Ι	D-	-BC	0.078	0.003	0.022	0.00	16	0.009	I

_									
I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY	PEDESTRIAN FLOW	START QUEUE	END QUEUE	DELAY (VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
I	18.00-1 B-ACD	0.00	8.68	0 000			0.0		IIME SEGMENI) I
I	A-B	0.00 4.66 0.00 0.00 3.11 0.00							I
I	A-C A-D	0.00	8.70	0.000		0.0	0.0	0.0	I
I	D-AB	0.00	8.12	0.000		0.0	0.0 0.0 0.5	0.0 7.3	I
I	C-D	0.00	9.19	0.550		0.4	0.5	7.5	I
I	C-A C-B	0.00	7.82	0.000		0.0	0.0	0.0	I
Ι					(I
I			EFFECT ON	CAPACITY MAJOR RD.	(PCU/MIN) OF CENT RES	VIS TO) LEFT	VISIBILITY	I
I	MAR	GINAL LAI	NE WIDTH	WIDTH	WIDTH	(AHEAD	FOR MAJ	OR) TO RIGHT	I I
I)		I
I	В	-ACD -B	0.118	0.004	0.013	0.00)5 19	0.008	I
Ι	D	-AB	0.097	0.000	0.000	0.00	00	0.008	I
I	D A	-BC -D	0.077	0.004	0.013 0.000 0.022	0.00)6 10	0.009	I
-									
 T	TTME	DEMAND	CAPACTTV	DEMAND/	PEDESTRIAN	TRATE	END	DELAY	CEOMETRIC DELAYI
I	111111	(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
						(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	B-ACD	0.00	8.68	0.000		0.0	0.0	0.0	I
I	A-B A-C	0.00 4.66							I
I	A-D	0.00	8.70	0.000		0.0	0.0	0.0	I
I	D-AB	0.00	8.11	0.000		0.0	0.0	0.0 7.6	I
I	C-D	0.00	3.13	0.550		0.5	0.5	,.0	Ī
I	C-A C-B	0.00 4.66 0.00 0.00 3.11 0.00 0.00	7.82	0.000		0.0	0.0	0.0	I
1					(500 (473) 05				I
I				MAJOR RD.	(PCU/MIN) OF CENT RES	VIS TO	LEFT	VISTBILITY	I
I	MAR	GINAL LAI	NE WIDTH	WIDTH (1M)	WIDTH (.1M)	(AHEAD	FOR MAJ	OR) TO RIGHT (M)	I
I									I
I	В	-ACD -B	0.118	0.004	0.013 0.000 0.022	0.00)5 19	0.008	I
Ι	D	-AB	0.097	0.000	0.000	0.00	00	0.008	I
I	D A	-BC -D	0.077	0.004	0.022	0.00)6 I ()	0.009	I
-									
I	TIME	DEMAND (VEH/MIN)	(VEH/MIN)	DEMAND/ CAPACITY	PEDESTRIAN FLOW	START	END OUEUE	DELAY (VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
I			(,,	(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
т	18.30-1 B-ACD	0.00	8.93	0.000		0.0	0.0	0.0	I
Ι	A-B	0.00 3.81 0.00 0.00 2.54							I
I	A-C A-D	0.00	8.70	0.000		0.0	0.0	0.0	I
I	D-AB	0.00	8.26	0.000		0.0	0.0	0.0	I
I	C D	0.00				0.5	0.4	5.9	I
I	C-A	0.00	7 00	0 000		0 0	0 0	0.0	I
I		0.00	7.30	0.000		0.0	0.0	0.0	I
I					(PCU/MIN) OF				I
I		GINAL LAI						VISIBILITY OR) TO RIGHT	I
I	CH		(.1M)	(.1M)	(.1M)	(M))	(M)	I
Ι	В	-ACD	0.122	0.003		0.00		0.008	I
I				0.004	0 000	0.00		0.008	I
Ι	D	-AB -BC	0.078	0.003	0.000 0.022	0.00		0.008	I
I	A	-D	0.104	0.000		0.01	10 		I
Ī	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI (VEH.MIN/ I
		(VEH/MIN)	(VEH/MIN)	CAPACITY (RFC)	FLOW (PEDS/MTN)	QUEUE (VEHS)	QUEUE (VEHS)	(VEH.MIN/ TIME SEGMENT)	(VEH.MIN/ I TIME SEGMENT) I
I		9.00	2 45		//				I
I	18.45-1			0.000		0.0	0.0	0.0	I
I I I	B-ACD A-B	0.00							I
I I I	B-ACD A-B	0.00				0 0	0.0	0.0	I
I I I	B-ACD A-B	0.00 0.00 3.19 0.00 0.00 2.13				0.0	0.0 0.0 0.3	0.0	

-		0.00						I
I	C-A	0.00						I
I	C-B	0.00	8.09	0.000		0.0 0.0	0.0	I
I								I
I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINAL CHANGES	IN:	I
I				MAJOR RD.	CENT RES	VIS TO LEFT	VISIBILITY	I
I	MARGINAI	LAI	NE WIDTH	WIDTH	WIDTH	(AHEAD FOR MAJOR) TO RIGHT	I
I	CHANGE:		(.1M)	(.1M)	(.1M)	(M)	(M)	I
I								I
I	B-ACD		0.125	0.003	0.013	0.006	0.009	I
I	C-B		0.097	0.003		0.009		I
I	D-AB		0.100	0.000	0.000	0.000	0.009	I
I	D-BC		0.079	0.002	0.022	0.006	0.009	I
I	A-D		0.104	0.000		0.010		I

QUEUE FOR STR	EAM B-ACD
TIME SEGMENT	NO. OF
ENDING	
	IN QUEUE
17.45	0.0
18.00	0.0
18.15	0.0
18.30	0.0
18.45	0.0
19.00	0.0
QUEUE FOR STR	EAM A-D
TIME SEGMENT	NO. OF
ENDING	
	IN QUEUE
17.45	0.0
18.00	0.0
18.15	0.0
18.30	0.0
18.45	0.0
19.00	0.0
QUEUE FOR STR	EAM D-AB
TIME SEGMENT	NO OF

QUEUE FOR STR	EAM D-AB
TIME SEGMENT	NO. OF
17.45	IN QUEUE
18.00	0.0
18.15 18.30	0.0
18.45 19.00	0.0

QUEUE FOR	STREAM	D-BC	
TIME SEGME	INT I	10. OF	
ENDING	VEF	HICLES	
	IN	QUEUE	
17.45		0.3	
18.00		0.4	
18.15		0.5	*
18.30		0.5	*
18.45		0.4	
19.00		0.3	

QUEUE FOR S	STREAM C-B
TIME SEGMEN	NT NO. OF
	IN QUEUE
17.45 18.00	0.0
18.15 18.30	0.0
18.45 19.00	0.0

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

I	STREAM	I		L I	DEMAND	I I	* QUEU	LΑ		I *	INCLUSIVE QUEUEING * * DELAY *			
I	I		(VEH)		(VEH/H)	Ι	(MIN)		(MIN/VEH)	Ι	(MIN)		(MIN/VEH)	I
Ι	B-ACD	Ι	0.0	Ι	0.0	Ι	0.0	Ι	0.00	I	0.0	I	0.00	Ι
I	A-B	Ι	0.0	Ι	0.0	Ι		Ι		I		Ι		I
Ι	A-C	Ι	349.7	Ι	233.1	Ι		Ι		I		Ι		Ι
I	A-D	Ι	0.0	Ι	0.0	Ι	0.0	Ι	0.00	I	0.0	I	0.00	Ι
I	D-AB	Ι	0.0	Ι	0.0	Ι	0.0	Ι	0.00	I	0.0	I	0.00	Ι
I	D-BC	Ι	233.1	Ι	155.4	Ι	34.8	Ι	0.15	I	34.8	I	0.15	Ι
I	C-D	Ι	0.0	Ι	0.0	Ι		Ι		I		I		Ι
I	C-A	Ι	0.0	Ι	0.0	Ι		Ι		I		Ι		I
I	C-B	Ι	0.0	Ι	0.0	Ι	0.0	Ι	0.00	I	0.0	I	0.00	Ι

- * DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

 * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

 * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

END OF JOB

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\D E F flow\E AM 2016 OBS.vpi" at 10:41:43 on Monday, 30 May 2016

RUN TITLE

Marble Road / Kam Hong Street AM (E) 2016 OBS

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

INPUT DATA

MINOR ROAD (ARM D) MAJOR ROAD (ARM C) ----- MAJOR ROAD (ARM A) MINOR ROAD (ARM B)

ARM A IS Kam Hong Street SB

ARM B IS Marble Road WB ARM C IS Kam Hong Street SB

ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B

STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

ETC.

.GEOMETRIC DATA

T MINOR ROAD B T MINOR ROAD D T DATA ITEM I TOTAL MAJOR ROAD CARRIAGEWAY WIDTH I (W) 7.75 M. I (W) 7.75 M. I CENTRAL RESERVE WIDTH I (WCR) 0.00 M. I (WCR) 0.00 M. I (WA-D) 2.20 M. I (VA-D) 0.0 M. NO MINOR ROAD - VISIBILITY TO LEFT I (VB-C) 0.0 M.
- VISIBILITY TO RIGHT I (VB-A) 0.0 M.
- LANE 1 WIDTH I (WB-C) 2.20 M.
- LANE 2 WIDTH I (WB-A) 0.00 M. I (VD-A) 15.0 M. I (VD-C) 20.0 M. I (WD-A) 5.00 M.

I (WD-C) 0.00 M.

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 08.00 AND ENDS 09.30

I			Ι	NUI	MBER OF	MI	NUTE	ES FF	ROM S	STA	ART WHEN		RATE	OI	FI	LOW (VE	H/MIN)	I
Ι	ARM	1	Ι	FLOW	STARTS	Ι	TOP	OF E	PEAK	Ι	FLOW STOPS	Ι	BEFORE	Ι	ΑT	TOP	Ι	AFTER	Ι
Ι			Ι	TO	RISE	Ι	IS	REAC	CHED	Ι	FALLING	Ι	PEAK	Ι	OF	PEAK	Ι	PEAK	Ι
I	ARM	Α	Ι		L5.00	Ι		45.0	0.0	Ι	75.00	I	0.00	Ι	(0.00	I	0.00	Ι
Ι	ARM	В	Ι		15.00	Ι		45.0	0.0	Ι	75.00	Ι	0.00	Ι	(0.00	Ι	0.00	Ι
Ι	ARM	С	Ι	-	15.00	Ι		45.0	0.0	Ι	75.00	Ι	4.81	Ι	- 7	7.22	I	4.81	Ι
Ι	ARM	D	Ι	:	15.00	Ι		45.0	0.0	Ι	75.00	Ι	1.75	Ι	2	2.63	I	1.75	Ι

I I I		I I I		TUE	RNING F RNING C RCENTAG	COUNTS	(VEH	/HR)	I I I
I	TIME	Ι	FROM/TO	Ι	ARM A	I ARI	мві	ARM C I	ARM D I
	08.00 - 09.30		ARM B ARM C ARM D	I?? I I I I I I I I I I I	?????? (0.0) 0.000 ?????? (0.0) 0.870 335.0 (0.0) 0.393 55.0	I????? I () I I O.I I????? I () I I O.I I I O.I I I O.I I I I O.I	??? I 0.0) I I 0000 I ???? I 0.0) I I 130 I 0.0 I 0.0 I 607 I 5.0 I	0.000 I ??????? I (0.0) I 0.000 I ??????? I I 0.000 I 0.00 I (0.0) I	0.000 I
I 		I		I		I .	, 	I	I

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	CAPACITY	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
I	08.00-08	3.15		()	(,	(,	(/		I
Ι	B-ACD	0.00	6.93	0.000		0.0	0.0	0.0	I
I	A-B	0.00							I
Ι	A-C	0.00							I
I	A-D	0.00	7.75	0.000		0.0	0.0	0.0	I
I	D-ABC	1.75	9.60	0.182		0.0	0.2	3.2	I
I	C-D	0.00							I
I	C-A	4.19							I
I	C-B	0.63	12.59	0.050		0.0	0.1	0.8	I
I									I
I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANGE	ES IN:	I
I				MAJOR RD.	CENT RES	VIS TO	LEFT	VISIBILITY	I
I	MARG	GINAL LAN	NE WIDTH	WIDTH	WIDTH	(AHEAD	FOR MAJO	OR) TO RIGHT	I
I	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
I									I
I	B-	-ACD	0.091	0.004	0.012	0.00) 4	0.006	I
I	C-	-B	0.115	0.000		0.01	.2		I
I	D-	-ABC	0.124	0.004	0.013	0.00) 6	0.009	I
I	A-	-D	0.093	0.005		0.00	9		I

Ι	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
Ι		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
Ι				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	08.15-08	.30							I
Ι	B-ACD	0.00	6.80	0.000		0.0	0.0	0.0	I
I	A-B	0.00							I
Ι	A-C	0.00							I
I	A-D	0.00	7.56	0.000		0.0	0.0	0.0	I
Ι	D-ABC	2.09	9.36	0.223		0.2	0.3	4.2	I
I	C-D	0.00							I
I	C-A	5.00							I
Ι	C-B	0.75	12.59	0.059		0.1	0.1	0.9	I
Ι									I
Ι			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANGE	S IN:	I
Ι					CENT RES	VIS TO		VISIBILITY	I
I			NE WIDTH	WIDTH			FOR MAJO		I
I	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)	1	(M)	I
Ι									I
I				0.004	0.012	0.00		0.006	I
Ι	C-	_	0.115	0.000		0.01			I
Ι		ABC	0.120	0.004	0.013	0.00		0.008	I
Ι	A-	·D	0.090	0.006		0.00	08		I

.-----

I	00 20 00	4.5		(RFC)	(PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) T	DELAY (VEH.MIN/ IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
т	D-7CD	0 00	6.62	0.000		0.0	0.0	0.0	I
I	A-C A-D D-ABC C-D	0.00 0.00 2.56 0.00	7.31 9.03	0.000 0.283		0.0	0.0	0.0 5.7	I I
I	C-A C-B	0.91	12.59	0.073			0.1		I
I I I I			EFFECT ON	CAPACITY	(PCU/MIN) OF CENT RES WIDTH (.1M)	MARGINA VIS TO (AHEAD (M)	L CHANGES LEFT FOR MAJOR	IN: VISIBILITY) TO RIGHT (M)	I I I I
I I I					0.012				I I I
I	A-	D	0.087	0.007		0.00	18		I
I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) T	DELAY (VEH.MIN/ IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I I
						0.0	0.0	0.0	I I
I I	A-D D-ABC C-D	0.00 2.56 0.00	7.31 9.03	0.000 0.283		0.0	0.0	0.0 5.9	I I I
I T	C-A C-B	6.12 0.91	12.59	0.073		0.1	0.1	1.2	I
Ι			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	L CHANGES	IN:	I I
I I I	MARG CHA		NE WIDTH (.1M)	WIDTH (.1M)	CENT RES WIDTH (.1M)	(AHEAD (M)	FOR MAJOR) TO RIGHT (M)	I I
I	B	ACD B	0.084 0.115	0.005	0.012	0.00	.2	0.006	I
I	D A-	ABC D	0.116 0.087	0.005 0.007	0.013	0.00	15 18	0.008	I I
						C TT A D TT			
Ι			(VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	QUEUE (VEHS)	QUEUE (VEHS) T	DELAY (VEH.MIN/ IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
I I	09.00-09 B-ACD	.15	6.80	(RFC)	(PEDS/MIN)	(VEHS)	QUEUE (VEHS) T:	IME SEGMENT)	TIME SEGMENT) I I I I
I	09.00-09 B-ACD	.15	6.80	(RFC)	(PEDS/MIN)	(VEHS)	(VEHS) T	O.0	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	09.00-09 B-ACD	.15		(RFC)	(PEDS/MIN)	0.0 0.0 0.0 0.4	(VEHS) T	0.0 0.0 4.5	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09 B-ACD A-B A-C A-D D-ABC C-D C-A C-B	.15 0.00 0.00 0.00 0.00 2.09 0.00 5.00 0.75	6.80 7.56 9.36 12.59 EFFECT ON	(RFC) 0.000 0.000 0.223 0.059 CAPACITY MAJOR RD	(PCU/MIN) OF CENT RES WIDTH	(VEHS) 0.0 0.0 0.4 0.1 MARGINA VIS TO (AHEAD	0.0 0.0 0.3 0.1 CHANGES	O.0 0.0 4.5 1.0 IN: VISIBILITY	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I I I	09.00-09 B-ACD A-B A-C A-D D-ABC C-D C-A C-B	.15 0.00 0.00 0.00 2.09 0.00 5.00 0.75 INAL LAI	6.80 7.56 9.36 12.59 EFFECT ON NE WIDTH (.1M)	(RFC) 0.000 0.000 0.223 0.059 CAPACITY MAJOR RD. WIDTH (.1M)	(PEUS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M)	0.0 0.0 0.4 0.1 MARGINA VIS TO (AHEAD (M)	0.0 0.0 0.3 0.1 LI CHANGES	O.0 O.0 4.5 1.0 IN: VISIBILITY ORIGHT (M)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09 B-ACD A-B A-C A-D D-ABC C-D C-A C-B	.15 0.00 0.00 0.00 2.09 0.00 5.00 0.75 INAL LAI	6.80 7.56 9.36 12.59 EFFECT ON NE WIDTH (.1M)	(RFC) 0.000 0.000 0.223 0.059 CAPACITY MAJOR RD. WIDTH (.1M)	(PEUS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M)	0.0 0.0 0.4 0.1 MARGINA VIS TO (AHEAD (M)	0.0 0.0 0.3 0.1 LI CHANGES	O.0 O.0 4.5 1.0 IN: VISIBILITY ORIGHT (M)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B C D A A	0.00 0.00 0.00 0.00 2.09 0.00 5.00 0.75 INAL LAI NGE: ACD B BABC	6.80 7.56 9.36 12.59 EFFECT ON NE WIDTH (.1M) 0.088 0.115 0.120 0.090	(RFC) 0.000 0.000 0.223 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.004 0.000 0.004 0.006	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013	0.0 0.0 0.4 0.1 MARGINA VIS TO (AHEAD (M) 0.00 0.01	0.0 0.0 0.3 0.1 LEFT FOR MAJOR;	0.0 0.0 4.5 1.0 IN: VISIBILITY O.006 0.006	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA'	0.00 0.00 0.00 0.00 2.09 0.00 5.00 0.75 INAL LAI NGE: ACD B ABC D	6.80 7.56 9.36 12.59 EFFECT ON NE WIDTH (.1M) 0.088 0.115 0.120 0.090	(RFC) 0.000 0.000 0.223 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.004 0.000 0.004 0.006	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW	0.0 0.0 0.4 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01	(VEHS) T: 0.0 0.0 0.3 0.1 LEFT FOR MAJOR: 42 55 88 END QUEUE	0.0 0.0 4.5 1.0 IN: VISIBILITY O.006 0.008	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.15-09	0.00 0.00 0.00 0.00 2.09 0.00 5.00 0.75 INAL LAI NGE: ACD B ABC D D DEMAND (VEH/MIN)	6.80 7.56 9.36 12.59 EFFECT ON NE WIDTH (.1M) 0.088 0.115 0.120 0.090 ———————————————————————————————————	(RFC) 0.000 0.000 0.223 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.004 0.000 0.004 0.000 0.004 0.000 CAPACITY (RFC)	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.4 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.00 0.00 0.00	(VEHS) T: 0.0 0.0 0.3 0.1 LEFT FOR MAJOR: 42 55 88 END QUEUE	O.0 O.0 4.5 1.0 IN: VISIBILITY O.006 O.008 DELAY (VEH.MIN/ IME SEGMENT)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.15-09	0.00 0.00 0.00 0.00 2.09 0.00 5.00 0.75 INAL LAI NGE: ACD B ABC D D DEMAND (VEH/MIN)	6.80 7.56 9.36 12.59 EFFECT ON NE WIDTH (.1M) 0.088 0.115 0.120 0.090 ———————————————————————————————————	(RFC) 0.000 0.000 0.223 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.004 0.000 0.004 0.000 0.004 0.000 CAPACITY (RFC)	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.4 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 0.00 START QUEUE (VEHS)	(VEHS) T: 0.0 0.0 0.3 0.1 LL CHANGES LEFT FOR MAJOR 42 55 88 END QUEUE (VEHS) T:	IME SEGMENT) 0.0 0.0 4.5 1.0 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09 B-ACD A-B A-C A-D D-ABC C-A C-B MARG CHA B C TIME 09.15-09 B-ACD A-B A-C A-D D-ABC C-D C-A C-B	0.00 0.00 0.00 0.00 2.09 0.00 5.00 0.75 INAL LAI NGE: ACD B ABC D D DEMAND (VEH/MIN)	6.80 7.56 9.36 12.59 EFFECT ON NE WIDTH (.1M) 0.088 0.115 0.120 0.090 CAPACITY (VEH/MIN) 6.93	(RFC) 0.000 0.000 0.223 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.004 0.000 0.004 0.000 0.004 0.000 CAPACITY (RFC)	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.4 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.0	(VEHS) T: 0.0 0.0 0.3 0.1 LL CHANGES LEFT FOR MAJOR 42 25 88 END QUEUE (VEHS) T:	IME SEGMENT) 0.0 0.0 4.5 1.0 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0 0.0 3.5	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG C+A C-B TIME 09.15-09 B-ACD A-B A-C A-D D-ABC C-D C-A C-B C-C-C C-C C-C C-C C-C C-C C-C C-C	.15 0.00 0.00 0.00 0.00 2.09 0.00 5.00 0.75 INAL LAI NGE: ACD B ABC D DEMAND (VEH/MIN) .30 0.00 0.00 0.00 0.00 1.75 0.00 4.19 0.63	6.80 7.56 9.36 12.59 EFFECT ON NE WIDTH (.1M) 0.088 0.115 0.120 0.090	(RFC) 0.000 0.000 0.223 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.004 0.000 0.004 0.000 CAPACITY (RFC) 0.000 0.182 0.050 CAPACITY	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.4 0.1 MARGINAVIS TC (AHEAD OO 0.0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	(VEHS) T: 0.0 0.0 0.3 0.1 L CHANGES D LEFT FOR MAJOR; 42 25 88 CUEUS 0.0 0.0 0.0 0.2 0.1	IME SEGMENT) 0.0 0.0 4.5 1.0 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0 0.0 3.5 0.8 IN:	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B C TIME 09.15-09 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG C-C-D C-A C-B	.15 0.00 0.00 0.00 0.00 2.09 0.00 5.00 0.75 INAL LAI NGE: ACD B ABC D DEMAND (VEH/MIN) .30 0.00 0.00 0.00 1.75 0.00 4.19 0.63 INAL LAI	6.80 7.56 9.36 12.59 EFFECT ON NE WIDTH (.1M) 0.088 0.115 0.120 0.090	(RFC) 0.000 0.000 0.223 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.004 0.000 0.004 0.006	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.1 MARGINA VIS TC (AHEAD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(VEHS) T: 0.0 0.0 0.3 0.1 LI CHANGES LEFT FOR MAJOR 4 2 5 8 END QUEUE (VEHS) T: 0.0 0.0 0.2 0.1 LI CHANGES	IME SEGMENT) 0.0 0.0 4.5 1.0 IN: VISIBILITY O.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0 0.0 3.5 0.8 IN: VISIBILITY TO RIGHT (M)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I

	D-ABC A-D	0.093		0.013	0.009	0.009	I
QUEUE FOR		B-ACD					
TIME SEGM		NO. OF					
ENDING	VE.	HICLES					
		QUEUE					
08.15		0.0					
08.30		0.0					
08.45		0.0					
09.00 09.15		0.0					
09.13		0.0					
QUEUE FOR	R STREAM	A-D					
TIME SEGM							
ENDING	VE.						
00 15		QUEUE					
08.15 08.30		0.0					
08.45		0.0					
09.00		0.0					
09.15		0.0					
09.30		0.0					
QUEUE FOR		D-ABC					
TIME SEGM							
	VE.						
	IN	QUEUE					
08.15		0.2					
08.30		0.3					
08.45		0.4					
09.00		0.4					
09.15		0.3					
09.30		0.2					
QUEUE FOR		C-B					
TIME SEGM	MENT I	NO. OF					
ENDING	VE:	HICLES					
	IN	QUEUE					
08.15		0.1					
08.30		0.1					
08.45		0.1					
09.00		0.1					
09.15		0.1					
09.30		0.1					
		QUEUEING DEL	AY INFORMATIO	ON OVER WHOL	E PERIOD		

I	STREAM	I	TOTAI	G :	DEMAND	I	* QUET	LA:		I *	INCLUSIV * DE		QUEUEING *	I
I		I	(VEH)		(VEH/H)	I			(MIN/VEH)	I	(MIN)		(MIN/VEH)	I
Ι	B-ACD	Ι	0.0	Ι	0.0	Ι	0.0	Ι	0.00	I	0.0	Ι	0.00	Ι
I	A-B	Ι	0.0	Ι	0.0	Ι		Ι		I		I		Ι
Ι	A-C	Ι	0.0	Ι	0.0	Ι		Ι		I		Ι		Ι
I	A-D	Ι	0.0	Ι	0.0	Ι	0.0	I	0.00	I	0.0	Ι	0.00	I
I	D-ABC	Ι	192.0	Ι	128.0	Ι	26.8	I	0.14	I	26.8	Ι	0.14	I
Ι	C-D	Ι	0.0	Ι	0.0	Ι		Ι		I		Ι		Ι
I	C-A	Ι	459.4	Ι	306.2	Ι		Ι		I		Ι		Ι
Ι	C-B	Ι	68.6	Ι	45.7	Ι	5.8	Ι	0.08	Ι	5.8	Ι	0.08	Ι
I	ALL	I	719.9	I	479.9	I	32.6	I	0.05	I	32.6	I	0.05	

- * DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

 * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

 * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\D E F flow\E PM 2016 OBS.vpi" at 10:41:59 on Monday, 30 May 2016

RUN TITLE

Marble Road / Kam Hong Street PM (E) 2016 OBS

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

INPUT DATA

MINOR ROAD (ARM D) MAJOR ROAD (ARM C) ----- MAJOR ROAD (ARM A) MINOR ROAD (ARM B)

ARM A IS Kam Hong Street SB

ARM B IS Marble Road WB ARM C IS Kam Hong Street SB

ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B

STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

ETC.

.GEOMETRIC DATA

T MINOR ROAD B T MINOR ROAD D T DATA ITEM I TOTAL MAJOR ROAD CARRIAGEWAY WIDTH I (W) 7.75 M. I (W) 7.75 M. I CENTRAL RESERVE WIDTH I (WCR) 0.00 M. I (WCR) 0.00 M. I (WA-D) 2.20 M. I (VA-D) 0.0 M. NO MINOR ROAD - VISIBILITY TO LEFT I (VB-C) 0.0 M.
- VISIBILITY TO RIGHT I (VB-A) 0.0 M.
- LANE 1 WIDTH I (WB-C) 2.20 M.
- LANE 2 WIDTH I (WB-A) 0.00 M. I (VD-A) 15.0 M. I (VD-C) 20.0 M. I (WD-A) 5.00 M.

I (WD-C) 0.00 M.

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 17.30 AND ENDS 19.00

I	ARM		NUMBER OF FLOW STARTS											
I		Ι	TO RISE	Ι	IS REA	CHED I	FALLING	Ι	PEAK	I	OF PEAR	I	PEAK	I
I	ARM A ARM B ARM C ARM D	I	15.00 15.00	I I I	45. 45. 45.	00 I	75.00 75.00	I		I	0.00 9.28	I	0.00 0.00 6.19 2.06	I

I I I		I I I		TURNING PROPORTIONS I TURNING COUNTS (VEH/HR) I (PERCENTAGE OF H.V.S) I
Ī	TIME	Ι	FROM/TO	I ARM A I ARM B I ARM C I ARM D I
	17.30 - 19.00		ARM B ARM C ARM D	I??????? I??????? I??????? I??????? I I (0.0)I (0.0)I (0.0)I (0.0)I (0.0)I I U I I I I I I 0.848 I 0.152 I 0.000 I 0.000 I I (0.0)I (0.0)I (0.0)I (0.0)I I (0.0)I (0.0)I (0.0)I (0.0)I I I I I I I 0.424 I 0.576 I 0.000 I 0.000 I I 70.0 I 95.0 I 0.0 I 0.0 I I (0.0)I (0.0)I (0.0)I (0.0)I
				I I I I I

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA

I	TIME	DEMA	ND CAPA	CITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I		(VEH/MI	N) (VEH/	MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
I					(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	17.30-17	7.45								I
I	B-ACD	0.0	0 6	.75	0.000		0.0	0.0	0.0	I
I	A-B	0.0	0							I
Ι	A-C	0.0	0							I
Ι	A-D	0.0	0 7	.47	0.000		0.0	0.0	0.0	I
I	D-ABC	2.0	6 9	.35	0.221		0.0	0.3	4.0	I
Ι	C-D	0.0	0							I
I	C-A	5.2	5							I
Ι	C-B	0.9	4 12	.59	0.074		0.0	0.1	1.2	I
Ι										I
Ι			EFFEC	T ON	CAPACITY	(PCU/MIN) OF	MARGINA	L CHANGE	S IN:	I
Ι					MAJOR RD.	CENT RES	VIS TO	LEFT	VISIBILITY	I
Ι	MARG	SINAL	LANE WID	TH	WIDTH	WIDTH	(AHEAD	FOR MAJO	R) TO RIGHT	I
Ι	CHA	ANGE:	(.1M)		(.1M)	(.1M)	(M)		(M)	I
Ι										I
Ι	B-	-ACD	0.08	7	0.004	0.012	0.00	14	0.006	I
I	C-	-В	0.11	5	0.000		0.01	.2		I
I		-ABC	0.11		0.005	0.013	0.00		0.008	Ī
I	A-	-D	0.08		0.006		0.00			Ī
								-		_

Ι	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
Ι				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
Ι	17.45-18	3.00							I
Ι	B-ACD	0.00	6.58	0.000		0.0	0.0	0.0	I
Ι	A-B	0.00							I
Ι	A-C	0.00							I
Ι	A-D	0.00		0.000			0.0	0.0	I
Ι	D-ABC	2.46	9.04	0.272		0.3	0.4	5.4	I
Ι	C-D	0.00							I
I	C-A	6.27							I
Ι	C-B	1.12	12.59	0.089		0.1	0.1	1.4	I
Ι									I
Ι			EFFECT ON		(PCU/MIN) OF				I
Ι					CENT RES	VIS TO		VISIBILITY	I
Ι			NE WIDTH	WIDTH			FOR MAJO		I
Ι	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
Ι									I
Ι				0.005	0.012	0.00		0.006	I
Ι	C-	_	0.115	0.000		0.01			I
I		-ABC	0.114	0.006	0.013	0.00		0.008	I
Ι	A-	-D	0.086	0.008		0.00	18		I

I	10 00 10	1.5		(RFC)	(PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) T	DELAY (VEH.MIN/ IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
т	D-7CD	0 00	6.34	0.000		0.0	0.0	0.0	I I I
I	A-D D-ABC C-D	0.00 3.02 0.00	6.89 8.63	0.000 0.350		0.0	0.0	0.0 7.6	I I I
I	C-A C-B	1.37	12.59	0.109			0.1		I I
I I I I			EFFECT ON	CAPACITY	(PCU/MIN) OF CENT RES WIDTH (.1M)	MARGINA VIS TO (AHEAD (M)	AL CHANGES) LEFT FOR MAJOR	IN: VISIBILITY) TO RIGHT (M)	I I I I
I									I
I I	C- D- A-	·B ·ABC ·D	0.115 0.108 0.082	0.000 0.007 0.009	0.012	0.01 0.00 0.00	.2)5)8 	0.007	I I I
I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) T	DELAY (VEH.MIN/ IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I I
						0.0	0.0	0.0	I I
I I I	A-D D-ABC C-D	0.00 3.02 0.00	6.89 8.63	0.000 0.350		0.0	0.0 0.5	0.0 8.0	I I I
I	C-A C-B	7.68 1.37	12.59	0.109		0.1	0.1	1.8	I
Ι			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANGES	IN:	I I
I I I	MARG CHA		NE WIDTH	WIDTH (.1M)	CENT RES WIDTH (.1M)	(AHEAD (M)	FOR MAJOR)) TO RIGHT (M)	I I I
I	B- C-	ACD B	0.078 0.115	0.007	0.012	0.00)4 .2	0.006	I
I I	D- A-	ABC D	0.108 0.082	0.007 0.009	0.013	0.00)5)8	0.007	I
		DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY	PEDESTRIAN FLOW	QUEUE	END QUEUE	DELAY (VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
I	18 30-18	45		(RFC)	(PEDS/MIN)	(VEHS)	(VEHS) T	IME SEGMENT)	TIME SEGMENT) I
I I I	18.30-18 B-ACD	0.00	6.58	(RFC)	(PEDS/MIN)	(VEHS)	END QUEUE (VEHS) T:	IME SEGMENT)	TIME SEGMENT) I I I I
I	18.30-18 B-ACD	0.00	6.58	(RFC)	(PEDS/MIN)	(VEHS)	(VEHS) T	O.0	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	18.30-18 B-ACD	0.00		(RFC)	(PEDS/MIN)	0.0 0.0 0.0 0.5	(VEHS) T	0.0 0.0 5.9	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA	0.00 0.00 0.00 0.00 0.00 2.46 0.00 6.27 1.12	6.58 7.22 9.04 12.59 EFFECT ON	(RFC) 0.000 0.000 0.272 0.089 CAPACITY	(PCU/MIN) OF CENT RES WIDTH	(VEHS) 0.0 0.0 0.5 0.1 MARGINA VIS TO (AHEAD	0.0 0.0 0.4 0.1 LCHANGES	O.0 0.0 5.9 1.5 IN: VISIBILITY	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B	0.00 0.00 0.00 0.00 2.46 0.00 6.27 1.12	6.58 7.22 9.04 12.59 EFFECT ON NE WIDTH (.1M)	(RFC) 0.000 0.000 0.272 0.089 CAPACITY MAJOR RD. WIDTH (.1M)	(PEUS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M)	0.0 0.0 0.5 0.1 MARGINA VIS TO (AHEAD (M)	0.0 0.0 0.4 0.1 AL CHANGES D LEFT FOR MAJOR	O.0 O.0 5.9 1.5 IN: VISIBILITY ORIGHT (M)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B	0.00 0.00 0.00 0.00 2.46 0.00 6.27 1.12	6.58 7.22 9.04 12.59 EFFECT ON NE WIDTH (.1M)	(RFC) 0.000 0.000 0.272 0.089 CAPACITY MAJOR RD. WIDTH (.1M)	(PEUS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M)	0.0 0.0 0.5 0.1 MARGINA VIS TO (AHEAD (M)	0.0 0.0 0.4 0.1 AL CHANGES D LEFT FOR MAJOR	O.0 O.0 5.9 1.5 IN: VISIBILITY ORIGHT (M)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B-C-D A-C-B	0.00 0.00 0.00 0.00 2.46 0.00 6.27 1.12 SINAL LAI	6.58 7.22 9.04 12.59 EFFECT ON NE WIDTH (.1M) 0.083 0.115 0.114 0.086	(RFC) 0.000 0.000 0.272 0.089 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.006 0.008	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013	0.0 0.0 0.5 0.1 MARGINA VIS TO (AHEAD (M) 0.00 0.01	0.0 0.0 0.4 0.1 AL CHANGES LEFT FOR MAJOR;	0.0 0.0 5.9 1.5 IN: VISIBILITY 0.006 0.006	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B-C- D- A- TIME	0.00 0.00 0.00 0.00 2.46 0.00 6.27 1.12 SINAL LAI NGE: ACD BABC	6.58 7.22 9.04 12.59 EFFECT ON NE WIDTH (.1M) 0.083 0.115 0.114 0.086	(RFC) 0.000 0.000 0.272 0.089 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.006 0.008	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01	(VEHS) T: 0.0 0.0 0.4 0.1 AL CHANGES) LEFT FOR MAJOR; 0.4 2.5 8.8 END QUEUE	0.0 0.0 5.9 1.5 IN: VISIBILITY 0.006 0.008	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B- C- D- A- TIME	0.00 0.00 0.00 0.00 2.46 6.27 1.12 SINAL LAI NGE: ACD BABC DD	6.58 7.22 9.04 12.59 EFFECT ON NE WIDTH (.1M) 0.083 0.115 0.114 0.086 CAPACITY (VEH/MIN)	(RFC) 0.000 0.000 0.272 0.089 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.006 0.008	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.00 0.00 0.00	(VEHS) T: 0.0 0.0 0.4 0.1 AL CHANGES) LEFT FOR MAJOR; 0.4 2.5 8.8 END QUEUE	O.0 O.0 5.9 1.5 IN: VISIBILITY O.006 O.008 DELAY (VEH.MIN/ IME SEGMENT)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B- C- D- A- TIME	0.00 0.00 0.00 0.00 2.46 6.27 1.12 SINAL LAI NGE: ACD BABC DD	6.58 7.22 9.04 12.59 EFFECT ON NE WIDTH (.1M) 0.083 0.115 0.114 0.086 CAPACITY (VEH/MIN)	(RFC) 0.000 0.000 0.272 0.089 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.006 0.008	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 0.00 START QUEUE (VEHS)	O.O O.O O.4 O.1 AL CHANGES D LEFT FOR MAJOR S S END QUEUE (VEHS) T:	IME SEGMENT) 0.0 0.0 5.9 1.5 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B-C- D- A- TIME 18.45-19 B-ACD A-B A-C A-D D-ABC C-D C-C A-C B-C C-C C-B MARG C-D C-A C-B C-B C-B C-B C-B C-B C-C D-A-C C-B C-B C-C C-C C-C C-B C-B C-C C-B	0.00 0.00 0.00 0.00 2.46 6.27 1.12 SINAL LAI NGE: ACD BABC DD	6.58 7.22 9.04 12.59 EFFECT ON NE WIDTH (.1M) 0.083 0.115 0.114 0.086 CAPACITY (VEH/MIN)	(RFC) 0.000 0.000 0.272 0.089 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.006 0.008	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 0.00 0.00 0.00	O.O O.O O.4 O.1 AL CHANGES D LEFT FOR MAJOR O.1 END QUEUE (VEHS) T:	IME SEGMENT) 0.0 0.0 5.9 1.5 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0 0.0 4.4	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B-C- D-A- TIME 18.45-19 B-ACD A-B A-C A-D D-ABC C-D C-C C-A C-B TIME	0.00 0.00 0.00 0.00 0.00 6.27 1.12 SINAL LAI INGE: ACD BABC D DEMAND (VEH/MIN) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	6.58 7.22 9.04 12.59 EFFECT ON NE WIDTH (.1M) 0.083 0.115 0.114 0.086 CAPACITY (VEH/MIN) 6.75 7.46 9.35 12.59 EFFECT ON	(RFC) 0.000 0.000 0.272 0.089 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.006 0.008	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.5 0.1 MARGINAVIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.0	(VEHS) T: 0.0 0.0 0.1 AL CHANGES D LEFT FOR MAJOR; 04 2 25 88 CUEUE (VEHS) T: 0.0 0.0 0.3 0.1	IME SEGMENT) 0.0 0.0 5.9 1.5 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0 0.0 4.4 1.2 IN:	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA 18.45-19 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA	0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.27 1.12 SINAL LAI NGE: ACD B ABC D DEMAND (VEH/MIN) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	6.58 7.22 9.04 12.59 EFFECT ON NE WIDTH (.1M) 0.083 0.115 0.114 0.086	(RFC) 0.000 0.000 0.272 0.089 CAPACITY MAJOR RD. 0.005 0.000 0.006 0.008 0.008 0.000	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(VEHS) T: 0.0 0.0 0.1 AL CHANGES LEFT FOR MAJOR; 04 22 58 END QUEUE (VEHS) T: 0.0 0.3 0.1 AL CHANGES LEFT FOR MAJOR;	IME SEGMENT) 0.0 0.0 5.9 1.5 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0 4.4 1.2 IN: VISIBILITY) TO RIGHT (M)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I

I	A-D		0.089		0.006	0.0		0.008		0.0	08
QUEUE I	FOR ST	'REAM	B-ACD								
TIME SE). OF								
		VEHI	CLES								
		IN Ç									
17.45			0.0								
18.00			0.0								
18.15			0.0								
18.30			0.0								
18.45			0.0								
19.00	U		0.0								
QUEUE E			A-D								
TIME SE											
ENDIN	NG	VEHI									
	_	IN Ç									
17.45			0.0								
18.00			0.0								
18.15 18.30			0.0								
18.45			0.0								
19.00			0.0								
QUEUE E	FOR ST	'REAM	D-ABC								
TIME SE		VEHI									
FINDII	NG	IN Q									
17.45	5										
18.00			0.3								
18.15			0.5 *								
18.30			0.5 *								
18.45	5		0.4								
19.00	0		0.3								
QUEUE I	FOR ST	'REAM	C-B								
TIME SE		' NC									
		VEHI									
		IN C	UEUE								
17.45			0.1								
18.00			0.1								
18.15			0.1								
18.30			0.1								
18.45			0.1								
19.UU	U										
		QU 	EUEING D	ELAY	: INFORMA	ATION OVER	WHOI	LE PERIOD			
I STREA	AM I	TOTAL	DEMAND	I	* QUEUF	EING *	I,	INCLUSIV	VE QUE	EUEING *	r I
I	I			I	* DELA	4Y *	I	* DE	ELAY *	k	I
I											
I						(MIN/VEH				MIN/VEH)	
I B-AC	CD I	0.0	I 0.0	I	0.0	0.00 0.00 0.00 0.16	I	0.0	I	0.00	I
I A-B	I	0.0	I 0.0	I	3	Ī	I		I		I
I A-C	I	0.0	I 0.0	I]	Ī	I		I		I
I A-D	I	0.0	I 0.0	I	0.0	0.00	I	0.0	I	0.00	I
	BC I	226.2	I 150.8	I	35.3 1	0.16	I	35.3	I	0.16	I
I D-AE		0 0	T 0 0	T	7		I		I		I
I D-AE	1		_ 0.0	_	-	_			_		_
I C-A	1	5/5.9	1 383.9	1		r r 0.09	1		1		1

I ALL I 905.0 I 603.3 I 44.3 I

0.05 I

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

* INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

* THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

44.3 I

0.05 I

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\D E F flow\F AM 2016 OBS.vpi" at 10:42:15 on Monday, 30 May 2016

RUN TITLE

Marble Road / Tin Chiu Street AM (F) 2016 OBS

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

INPUT DATA

ARM A IS Tin Chiu Street NB ARM B IS Marble Road WB ARM C IS Tin Chiu Street SB ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B

STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

ETC.

.GEOMETRIC DATA

I	DATA ITEM	I	MINO	R ROAD	В	I	MINO	R ROAD	D	I
I	TOTAL MAJOR ROAD CARRIAGEWAY WIDTH CENTRAL RESERVE WIDTH		(WCR)				(WCR)			I
Ι		I				Ι				I
I	MAJOR ROAD RIGHT TURN - WIDTH	I	(WC-B)	5.00	Μ.	Ι	(WA-D)	3.30	Μ.	I
I	- VISIBILITY	I	(VC-B)	0.0	Μ.	Ι	(VA-D)	100.0	Μ.	I
I	- BLOCKS TRAFFIC	I		YES		Ι		NO		I
I		I				Ι				I
I	MINOR ROAD - VISIBILITY TO LEFT	I	(VB-C)	0.0	Μ.	Ι	(VD-A)	30.0	Μ.	I
I	- VISIBILITY TO RIGHT	I	(VB-A)	0.0	Μ.	Ι	(VD-C)	100.0	Μ.	I
I	- LANE 1 WIDTH	I	(WB-C)	2.20	Μ.	Ι	(WD-A)	3.40	Μ.	I
Ι	- LANE 2 WIDTH	I	(WB-A)	0.00	М.	I	(WD-C)	3.40	М.	I

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 08.00 AND ENDS 09.30

	I FLOW STAF	RTS I TOP O	F PEAK I FI	WHEN I LOW STOPS I I FALLING I	BEFORE I	I AT TOP	I AFTER I	
ARM A ARM B ARM C	I 15.00 I 15.00 I 15.00) I 4) I 4	5.00 I 5.00 I	75.00 I 75.00 I 75.00 I 75.00 I	4.38 3 0.00 3	I 6.56 I 0.00	I 4.38 I I 0.00 I	
ARM D	I 15.00) I 4	5.00 I	75.00 I	0.38 1	0.56	I 0.38 I	
		I I	TURNING (PROPORTIONS			I I	
	TIME			GE OF H.V.S) I ARM B I		 T ARM D	I T	
	0 - 09.30	I		I I			 I	
		I ARM A I I	I 0.000 I 0.0 I (0.0)	I 0.229 I I 80.0 I I (0.0)I	0.743 I 260.0 I (0.0)I	I 0.029 I 10.0 I (0.0	I) I	
		I I ARM B I I	I 0.000 I???????	I (0.0) I I (0.000 I I I I I	0.000 1	0.000 [???????	I I	
		I I ARM C I I	I 0.0	I I I I I I I I I I I I I I I I I I I	0.000 1	20.0	I I	
		I I ARM D	I I 0.000	I 0.500 I	0.500 1	I I 0.000	I I	
		I I I	I (0.0)	I 15.0 I I (0.0)I I I	(0.0)	0.0) I	
	DEMANI (VEH/MIN)	CAPACITY (VEH/MIN)						GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
	D 0.00 1.00 3.25		0.000			0.0	0.0	
A-D D-AB	0.13	11.56 8.50	0.011 0.011			0.0	0.2	
	0 00		0.032		0 0	0.0	0.5	
C-AB	0.57 0.24	8.66	0.050			0.1	0.8	
C-AB C-D C-A	DEMANI (VEH/MIN)	8.66 11.60	0.050 DEMAND/ CAPACITY	FLOW	0.0	0.1 END QUEUE	0.8 DELAY (VEH.MIN/	(VEH.MIN/
C-AB C-D C-A TIME 08.15- B-AC A-B	DEMANI (VEH/MIN)	8.66 11.60	0.050 DEMAND/ CAPACITY (RFC)	FLOW	0.0 START QUEUE (VEHS)	0.1 END QUEUE (VEHS)	0.8 DELAY (VEH.MIN/	(VEH.MIN/
C-AB C-D C-A TIME 08.15- B-AC A-B A-C A-D	DEMANI (VEH/MIN) 0.00 0.00 0.00 0.00 0.119 3.88 0.15	8.66 11.60 CAPACITY (VEH/MIN) 6.72	DEMAND/ CAPACITY (RFC) 0.000	FLOW	0.0 START QUEUE (VEHS) 0.0	END QUEUE (VEHS)	DELAY (VEH.MIN/TIME SEGMENT)	(VEH.MIN/
C-AB C-D C-A TIME 08.15- B-AC A-B A-C A-D D-AB D-BC	DEMANI (VEH/MIN) 0.00 0.15 0.15 0.15 0.15 0.11	8.66 11.60 11.60 CAPACITY (VEH/MIN) 6.72 11.51 8.35 8.54	0.050 DEMAND/ CAPACITY (RFC) 0.000 0.013 0.014 0.039	FLOW	0.0 START QUEUE (VEHS) 0.0	END QUEUE (VEHS) 0.0 0.0	0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.2 0.6	(VEH.MIN/
C-AB C-D C-A TIME 08.15- B-AC A-B A-C A-D D-AB D-BC	DEMANI (VEH/MIN) 0.00 0.00 0.00 0.00 1.19 3.88 0.15 0.11 0.03 0.11 0.03 0.11	8.66 11.60 CAPACITY (VEH/MIN) 6.72	0.050 DEMAND/ CAPACITY (RFC) 0.000 0.013 0.014 0.039	FLOW	0.0 START QUEUE (VEHS) 0.0	0.1 END QUEUE (VEHS) 0.0	0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.2 0.6	(VEH.MIN/
C-AB C-D C-A TIME 08.15- B-AC A-B A-C A-D D-AB D-BC	DEMANI (VEH/MIN) 0.00 0.00 0.00 0.00 1.19 3.88 0.15 0.11 0.03 0.11 0.03 0.11	8.66 11.60 11.60 CAPACITY (VEH/MIN) 6.72 11.51 8.35 8.54	0.050 DEMAND/ CAPACITY (RFC) 0.000 0.013 0.014 0.039	FLOW	0.0 START QUEUE (VEHS) 0.0	END QUEUE (VEHS) 0.0 0.0	0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.2 0.6	(VEH.MIN/
C-AB C-D C-A TIME 08.15- B-AC A-B A-C A-D D-AB D-BC C-AB C-D C-A	DEMANI (VEH/MIN) 08.30 D	8.66 11.60 CAPACITY (VEH/MIN) 6.72 11.51 8.35 8.54 11.43	0.050 DEMAND/ CAPACITY (RFC) 0.000 0.013 0.014 0.039 0.060	FLOW (PEDS/MIN)	0.0 START QUEUE (VEHS) 0.0 0.0 0.0 0.0	0.1 END QUEUE (VEHS) 0.0 0.0 0.0 0.0	0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.2 1.0	(VEH.MIN/ TIME SEGMENT)
C-AB C-D C-A TIME 08.15- B-AC A-B A-C D-AB C-D C-A TIME	DEMANI (VEH/MIN) 08.30 D	8.66 11.60 CAPACITY (VEH/MIN) 6.72 11.51 8.35 8.54 11.43	DEMAND/ CAPACITY (RFC) 0.000 0.013 0.014 0.039 0.060	FLOW (PEDS/MIN)	START QUEUE (VEHS) 0.0 0.0 0.0 0.1 START QUEUE	0.1 END QUEUE (VEHS) 0.0 0.0 0.0 0.1	DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.6 1.0	(VEH.MIN/ TIME SEGMENT)
C-AB C-D C-A TIME 08.15- B-AC A-B A-C A-D D-AB C-D C-A TIME	DEMANI (VEH/MIN) 08.30 D 0.00 1.19 3.88 0.15 0.11 0.33 D 0.69 0.28 0.00 DEMANI (VEH/MIN) 08.45 D 0.00 1.46	8.66 11.60 11.60 CAPACITY (VEH/MIN) 6.72 11.51 8.35 8.54 11.43	DEMAND/ CAPACITY (RFC) 0.000 0.013 0.014 0.039 0.060 DEMAND/ CAPACITY (RFC)	FLOW (PEDS/MIN)	START QUEUE (VEHS) 0.0 0.0 0.0 0.1 START QUEUE	0.1 END QUEUE (VEHS) 0.0 0.0 0.0 0.1	DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.6 1.0 DELAY (VEH.MIN/	(VEH.MIN/ TIME SEGMENT)
C-AB C-D C-A TIME 08.15- B-AC A-B A-C A-D D-AB D-BC C-AB C-D C-A TIME 08.30- B-AC A-B A-C A-B A-C A-B A-C A-B C-D C-A	DEMANI (VEH/MIN) 0.830 D 0.00 1.19 3.88 0.15 6 0.11 6 0.33 D 0.69 0.28 0.00 DEMANI (VEH/MIN) 0.845 D 0.00 1.46 4.75 0.18	8.66 11.60 11.60 CAPACITY (VEH/MIN) 6.72 11.51 8.35 8.54 11.43 CAPACITY (VEH/MIN) 6.54	DEMAND/ CAPACITY (RFC) 0.000 0.013 0.014 0.039 0.060 DEMAND/ CAPACITY (RFC) 0.000	FLOW (PEDS/MIN)	START QUEUE (VEHS) 0.0 0.0 0.0 0.1 START QUEUE (VEHS) 0.0 0.1	END QUEUE (VEHS) 0.0 0.0 0.0 0.1 END QUEUE (VEHS) 0.0 0.0 0.1	DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.6 1.0 DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2	(VEH.MIN/ TIME SEGMENT)
TIME 08.15- B-AC A-B A-C D-AB C-AB C-AB C-AB C-AB C-AB C-AB C-AB A-C A-B C-AB C-A	DEMANI (VEH/MIN) DEMANI (VEH/MIN) 08.30 D 0.00 1.19 3.88 0.15 0.11 0.03 D 0.69 0.28 0.00 DEMANI (VEH/MIN) 08.45 D 0.00 1.46 4.75 0.18 0.14 1.46	8.66 11.60 11.60 CAPACITY (VEH/MIN) 6.72 11.51 8.35 8.54 11.43 CAPACITY (VEH/MIN) 6.54	DEMAND/ CAPACITY (RFC) 0.000 0.013 0.014 0.039 0.060 DEMAND/ CAPACITY (RFC) 0.000	FLOW (PEDS/MIN)	START QUEUE (VEHS) 0.0 0.0 0.0 0.0 0.1 START QUEUE (VEHS) 0.0 0.0 0.0 0.0 0.0	END QUEUE (VEHS) 0.0 0.0 0.0 0.1	DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.6 1.0 DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.3 0.7	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT) GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)

I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)		PEDESTRIAN FLOW	START	END QUEUE	DELAY (VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
1	00 45 00	0.00		(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
Τ.	08.45-09		6 54	0.000		0.0	0 0	0.0	1
Τ.	B-ACD	0.00	6.54	0.000		0.0	0.0	0.0	1
Ι	A-B	1.46							1
Ι	A-C	4.75							I
Ι	A-D	0.18	11.45	0.016		0.0	0.0	0.2	I
Ι	D-AB	0.14	8.14	0.017		0.0	0.0	0.3	I
Ι	D-BC	0.41	8.36	0.049		0.1	0.1	0.8	I
Ι	C-ABD	0.85	11.20	0.076		0.1	0.1	1.3	I
Ι	C-D	0.34							I
Ι	C-A	0.00							I
Ι									I
I	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
Ι		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)		PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
Ι	09.00-09	.15							I
Ι	B-ACD	0.00	6.72	0.000		0.0	0.0	0.0	I
Ι	A-B	1.19							I
Ι	A-C	3.88							I
Ι	A-D	0.15	11.51	0.013		0.0	0.0	0.2	I
Ι	D-AB	0.11	8.35	0.014		0.0	0.0	0.2	I
Ι	D-BC	0.33	8.53	0.039		0.1	0.0	0.6	I
Ι	C-ABD	0.69	11.43	0.060		0.1	0.1	1.0	I
Ι	C-D	0.28							I
Ι	C-A	0.00							I
Ι									I

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
Ι	09.15-09	30							I
Ι	B-ACD	0.00	6.86	0.000		0.0	0.0	0.0	I
Ι	A-B	1.00							I
Ι	A-C	3.25							I
Ι	A-D	0.13	11.56	0.011		0.0	0.0	0.2	I
Ι	D-AB	0.10	8.50	0.011		0.0	0.0	0.2	I
Ι	D-BC	0.28	8.66	0.032		0.0	0.0	0.5	I
Ι	C-ABD	0.57	11.60	0.050		0.1	0.1	0.8	I
Ι	C-D	0.24							I
Ι	C-A	0.00							I
Ι									I

^{*}WARNING* NO MARGINAL ANALYSIS OF CAPACITIES AS MAJOR ROAD BLOCKING MAY OCCUR

QUEUE FOR STR	EAM B-ACD
TIME SEGMENT	NO. OF
	VEHICLES
	IN QUEUE
08.15	0.0
08.30	0.0
08.45	0.0
09.00	0.0
09.15	0.0
09.30	0.0
QUEUE FOR STR	EAM A-D
TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
08.15	0.0
08.30	0.0
08.45	0.0
09.00	0.0
09.15	0.0
09.30	0.0
QUEUE FOR STR	EAM D-AB

QUEUE FOR STR	EAM D-AB
TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
08.15	0.0
08.30	0.0
08.45	0.0
09.00	0.0
09.15	0.0
09.30	0.0

QUEUE	FOR	STRE	AM		D-BC
TIME S	EGME	ENT	N	10.	OF
ENDI	NG		VEH	IIC	LES
			IN	QU	EUE
08.1	. 5			0	.0

08.30	0.0
08.45	0.1
09.00	0.1
09.15	0.0
09.30	0.0
QUEUE FOR STR	EAM C-ABD
TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
08.15	0.1
08.30	0.1
08.45	0.1
09.00	0.1
09.15	0.1
09.30	0.1

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

I	STREAM	I I	TOTA	LI	DEMAND	I	* DELAY	ING *	I	* DE		QUEUEING *	I
I		I	(VEH)		(VEH/H)	Ι	(MIN)			(MIN)		(MIN/VEH)	I
Ι	B-ACD	Ι	0.0	Ι	0.0	Ι	0.0 I	0.00	I	0.0	I	0.00	Ι
Ι	A-B	Ι	109.7	Ι	73.1	Ι	I		I		Ι		I
Ι	A-C	Ι	356.5	Ι	237.7	Ι	I		I		Ι		I
Ι	A-D	Ι	13.7	Ι	9.1	Ι	1.2 I	0.09	I	1.2	Ι	0.09	I
Ι	D-AB	Ι	10.6	Ι	7.0	Ι	1.3 I	0.12	I	1.3	Ι	0.12	I
Ι	D-BC	Ι	30.6	Ι	20.4	Ι	3.7 I	0.12	Ι	3.7	Ι	0.12	Ι
I	C-ABD	Ι	63.5	I	42.3	Ι	6.2 I	0.10	I	6.2	I	0.10	Ι
Ι	C-D	Ι	25.7	Ι	17.1	Ι	I		I		Ι		I
Ι	C-A	Ι	0.0	Ι	0.0	Ι	I		I		Ι		Ι
I	ALL	I	610.2	Ι	406.8	I	12.4 I	0.02	I	12.4	Ι	0.02	I

- * DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

 * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

 * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

END OF JOB

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\D E F flow\F PM 2016 OBS.vpi" at 10:42:35 on Monday, 30 May 2016

RUN TITLE

Marble Road / Tin Chiu Street PM (F) 2016 OBS

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

TNPUT DATA

MINOR ROAD (ARM D) MAJOR ROAD (ARM C) ----- MAJOR ROAD (ARM A) MINOR ROAD (ARM B)

ARM A IS Tin Chiu Street NB ARM B IS Marble Road WB ARM C IS Tin Chiu Street SB ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

.GEOMETRIC DATA

I	DATA ITEM	I	MINO	R ROAD	В	I	MINO	R ROAD	D	I
I	TOTAL MAJOR ROAD CARRIAGEWAY WIDTH CENTRAL RESERVE WIDTH		(WCR)				(WCR)			I
Ι		I				Ι				I
I	MAJOR ROAD RIGHT TURN - WIDTH	I	(WC-B)	5.00	Μ.	Ι	(WA-D)	3.30	Μ.	I
I	- VISIBILITY	I	(VC-B)	0.0	Μ.	Ι	(VA-D)	100.0	Μ.	I
I	- BLOCKS TRAFFIC	I		YES		Ι		NO		I
I		I				Ι				I
I	MINOR ROAD - VISIBILITY TO LEFT	I	(VB-C)	0.0	Μ.	Ι	(VD-A)	30.0	Μ.	I
I	- VISIBILITY TO RIGHT	I	(VB-A)	0.0	Μ.	Ι	(VD-C)	100.0	Μ.	I
I	- LANE 1 WIDTH	I	(WB-C)	2.20	Μ.	Ι	(WD-A)	3.40	Μ.	I
Ι	- LANE 2 WIDTH	I	(WB-A)	0.00	М.	I	(WD-C)	3.40	М.	I

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 17.30 AND ENDS 19.00

ARM	I	FLOW START	S I TOP		I WHEN I LOW STOPS I I FALLING I	BEFORE :	I AT TOP	I A	AFTER :	Ι	
										-	
ARM B	I	15.00	I .	45.00 I	75.00 I 75.00 I	0.00	I 0.00	I	0.00	I	
ARM C ARM D	Ι	15.00	I ·	45.00 I 45.00 I	75.00 I 75.00 I	1.25	I 1.88	I	1.25	Ι	
			I I	TURNING	PROPORTIONS COUNTS (VEH/1 GE OF H.V.S)			I I			
				ro i arm a	I ARM B I	ARM C	I ARM D	I			
			I		I I			I			
			I ARM I I I	I 0.0 I (0.0	I 0.197 I I 70.0 I)I (0.0)I I I	270.0	I 15.0 I (0.0)	I) I			
			I ARM I I I	I??????? I (0.0	I 0.000 I I??????? I?'	???????	I???????? I (0.0)	I) I			
			I ARM (I I I	I 0.0 I (0.0	I 0.700 I I 70.0 I)I (0.0)I I I	0.0	I 30.0 I (0.0)	I) I			
			I ARM I	D I 0.000 I 0.0 I (0.0	I 0.455 I I 25.0 I)I (0.0)I I	0.545 30.0 (0.0)	I 0.000 I 0.0 I (0.0)	I I) I			
				(550)	/	(TTD110)	(17EHC)	TT T MT	SECME	CDIA:	GEOMETRIC DELA (VEH.MIN/
B-AC	CD	0.00	6.77		(PEDS/MIN)		0.0		0.0	2N I)	TIME SEGMENT)
B-AC A-B A-C	CD	0.00 0.88 3.38		0.000	(PEDS/MIN)	0.0	0.0		0.0	SN1)	TIME SEGMENT)
B-AC A-B A-C A-D	CD B	0.00 0.88 3.38 0.19 0.16	11.43 8.35	0.000 0.016 0.020	(PEDS/MIN)	0.0	0.0		0.0	SN1)	TIME SEGMENT)
B-AC A-B A-C A-D D-AB D-BC	CD 3	0.00 0.88 3.38 0.19 0.16	11.43 8.35	0.000 0.016 0.020	(PEDS/MIN)	0.0 0.0 0.0	0.0 0.0 0.0 0.1		0.0 0.2 0.3 0.9	SN1)	IIME SEGMENI)
B-AC A-B A-C A-D D-AE D-BC C-AE C-D	CD 3 C 3D	0.00 0.88 3.38 0.19 0.16 0.52 0.90	11.43	0.000 0.016 0.020	(PEDS/MIN)	0.0 0.0 0.0	0.0		0.0		TIME SEGMENT)
A-B A-C A-D D-AE D-BC C-AE C-D C-A	3 3 3 3 5	0.00 0.88 3.38 0.19 0.16 0.52 0.90 0.35 0.00	11.43 8.35 8.56 11.66	0.000 0.016 0.020 0.061 0.078		0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.1 0.1		0.0 0.2 0.3 0.9 1.3		
B-AC A-B A-C A-D D-AF D-BC C-AF C-D C-A	33 C 33D	0.00 0.88 3.38 0.19 0.16 0.52 0.90 0.35 0.00	11.43 8.35 8.56 11.66	0.000 0.016 0.020 0.061 0.078	PEDESTRIAN FLOW	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.1 0.1	7	0.0 0.2 0.3 0.9 1.3	u/	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
B-AC A-B A-C A-D D-AF D-BC C-AF C-D C-A TIME	33 33 33 33 33 30 33 30 30 30 30 30 30 3	0.00 0.88 3.38 0.19 0.16 0.52 0.90 0.35 0.00 	11.43 8.35 8.56 11.66	0.000 0.016 0.020 0.061 0.078 Y DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.1 0.1	/\ /\ HMIT	0.0 0.2 0.3 0.9 1.3	u/	GEOMETRIC DELA (VEH.MIN/
B-AC A-B A-C A-D D-AE C-D C-AE C-D C-A TIME	33 C 33 D	0.00 0.88 3.38 0.19 0.16 0.52 0.90 0.35 0.00 	11.43 8.35 8.56 11.66	0.000 0.016 0.020 0.061 0.078 Y DEMAND/ (CAPACITY (RFC) 0.000	PEDESTRIAN FLOW	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.1 0.1 0.1	/V	0.0 0.2 0.3 0.9 1.3 DELAY VEH.MIN 5 SEGMH 0.0	u/	GEOMETRIC DELA (VEH.MIN/
B-AC A-B A-C A-D D-AE C-D C-AE C-D TIME 17.45- B-AC A-B A-C A-D D-AE	33 C 33 D	0.00 0.88 3.38 0.19 0.16 0.52 0.90 0.35 0.00 	11.43 8.35 8.56 11.66	0.000 0.016 0.020 0.061 0.078 Y DEMAND/ (CAPACITY (RFC) 0.000	PEDESTRIAN FLOW	0.0 0.0 0.0 0.0 0.0 0.0 START QUEUE (VEHS) 0.0	0.0 0.0 0.0 0.1 0.1 0.1 END QUEUE (VEHS)	(V	0.0 0.2 0.3 0.9 1.3 DELAY VEH.MIN 0.0 0.3 0.4	u/	GEOMETRIC DELA (VEH.MIN/
B-AC A-B A-C A-D D-AE C-AE C-D C-A TIME 17.45- B-AC A-B A-C A-D D-AE D-AE C-AE C-D	-18.	0.00 0.88 3.38 0.19 0.16 0.52 0.90 0.35 0.00 (VEH/MIN) .00 0.00 1.04 4.03 0.22 0.20 0.62 1.09 0.41	11.43 8.35 8.56 11.66 	0.000 0.016 0.020 0.061 0.078 Y DEMAND/ CAPACITY (RFC) 0.000 0.020 0.024 0.074 0.095	PEDESTRIAN FLOW	0.0 0.0 0.0 0.0 0.0 0.0 0.0 START QUEUE (VEHS) 0.0 0.0 0.0	0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.0 0.1 0.1	7) AMIT	0.0 0.2 0.3 0.9 1.3 DELAY VEH.MIN 0.0 0.3 0.4 1.2 1.6	 N/ ENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
B-A(A-B A-C A-D D-AIR A-B B-A(A-B A-C A-B A-C C-D C-A C-D C-A C-C-D C-A C-C-D C-A C-C-D C-A C-D	-18.	0.00 0.88 3.38 0.19 0.16 0.52 0.90 0.35 0.00 DEMAND (VEH/MIN) .00 0.00 1.04 4.03 0.22 0.20 0.62 1.09 0.41 0.00 DEMAND (VEH/MIN)	11.43 8.35 8.56 11.66 	0.000 0.016 0.020 0.061 0.078 Y DEMAND/ CAPACITY (RFC) 0.000 0.020 0.024 0.074 0.095	PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.0 0.1 0.1	(\)(TIME	0.0 0.2 0.3 0.9 1.3 DELAY //EH.MIN 0.0 0.3 0.4 1.2 1.6	N/ ENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
B-A(A-B A-C A-D D-AIR D-B(C-AIR C-D C-A A-B A-C A-D D-AIR D-B(C-AIR C-D C-A A-D D-AIR D-B(C-AIR C-D C-AIR C-D C-AIR C-D C-AIR C-D C-AIR C-D C-AIR C-D B-AIR	33	0.00 0.88 3.38 0.19 0.16 0.52 0.90 0.35 0.00 DEMAND (VEH/MIN) .00 0.00 1.04 4.03 0.22 0.20 0.62 1.09 0.41 0.00 DEMAND (VEH/MIN) .15	11.43 8.35 8.56 11.66 CAPACIT (VEH/MIN 6.62 11.36 8.16 8.42 11.50	0.000 0.016 0.020 0.061 0.078 Y DEMAND/ CAPACITY (RFC) 0.000 0.020 0.024 0.074 0.095 Y DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 0.0 0.0 START QUEUE (VEHS) 0.0 0.1 0.1	0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.0 0.1 0.1	(V)	0.0 0.2 0.3 0.9 1.3 DELAY //EH.MIN 0.0 0.3 0.4 1.2 1.6	N/ ENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
B-A(A-B A-C A-B B-A(C-A-C-A-C-A-B-A-C-A-B-A-C-A-C-A-C-A-B-A-C-A-A-B-A-C-A-A-B-A-C-A-A-B-A-C-A-A-B-A-C-A-B-A-C-A-B-A-C-A-B-A-C-A-B-A-C-A-B-A-C-A-B-A-C-A-B-A-B	-18.	0.00 0.88 3.38 0.19 0.16 0.52 0.90 0.35 0.00 DEMAND (VEH/MIN) .00 0.00 1.04 4.03 0.22 0.20 0.62 1.09 0.41 0.00 DEMAND (VEH/MIN) .15 0.00 1.28	11.43 8.35 8.56 11.66 CAPACIT (VEH/MIN 6.62 11.36 8.16 8.42 11.50	0.000 0.016 0.020 0.061 0.078 Y DEMAND/ CAPACITY (RFC) 0.000 0.020 0.024 0.074 0.095 Y DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 0.0 0.0 START QUEUE (VEHS) 0.0 0.1 0.1	0.0 0.0 0.1 0.1 0.1 END QUEUE (VEHS) 0.0 0.0 0.1 0.1	(V)	0.0 0.2 0.3 0.9 1.3 DELAY VEH MII 0.0 0.0	N/ ENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
B-AC A-B A-C C-A B-AC C-A TIME 17.45- B-AC A-B A-C A-B D-BC C-A TIME	-18.	0.00 0.88 3.38 0.19 0.16 0.52 0.90 0.35 0.00 DEMAND (VEH/MIN) .00 0.00 1.04 4.03 0.22 0.20 0.62 1.09 0.41 0.00	11.43 8.35 8.56 11.66 11.66 CAPACIT (VEH/MIN 6.62 11.36 8.16 8.42 11.50	0.000 0.016 0.020 0.061 0.078 Y DEMAND/ CAPACITY (RFC) 0.000 0.020 0.024 0.074 0.095 Y DEMAND/ CAPACITY (RFC) 0.000	PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1	0.0 0.0 0.1 0.1 0.1 END QUEUE (VEHS) 0.0 0.0 0.1 0.1	(\)(\)(\)(\)(\)(\)(\)(\)(\)(\)(\)(\)(\)(0.0 0.2 0.3 0.9 1.3 DELAY VEH.MII 0.0 0.0 0.3 0.4 1.2 1.6	N/ ENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
B-AC A-B A-C C-A TIME 17.45- B-AC A-B A-C A-D D-AE C-D C-A TIME 18.00- B-AC A-B A-C A-D D-AE C-D C-A	-18. -200 -18. -300 -18.	0.00 0.88 3.38 0.19 0.16 0.52 0.90 0.35 0.00 DEMAND (VEH/MIN) .00 1.04 4.03 0.22 0.20 0.62 1.09 0.41 0.00 DEMAND (VEH/MIN) .15 0.00 1.28 4.94 0.27 0.24	11.43 8.35 8.56 11.66 CAPACIT' (VEH/MIN) 6.62 11.36 8.16 8.42 11.50 CAPACIT' (VEH/MIN) 6.41	0.000 0.016 0.020 0.061 0.078 Y DEMAND/ CAPACITY (RFC) 0.000 0.020 0.024 0.074 0.095 Y DEMAND/ CAPACITY (RFC) 0.000 0.020 0.024 0.074 0.095	PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 0.0 0.0 START QUEUE (VEHS) 0.0 0.1 0.1 START QUEUE (VEHS) 0.0	0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.0 0.1 0.1 END QUEUE (VEHS)	//) TIME // // // // // // // // // // // // //	0.0 0.2 0.3 0.9 1.3 DELAY FEH. MIN 1.2 1.6 0.0 0.3 0.4 1.2 1.6	N/ ENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
B-AG A-B A-C A-D D-AE C-AE C-D C-A TIME 17.45- B-AG A-B A-C A-D D-AE C-AE C-A TIME 18.00- B-AG A-B A-C A-D D-AE D-BG A-C A-D D-AE D-BG C-AE C-AE C-D C-D C-AE C-D C-D C-AE C-D	-18. CD 33. CD 33. CD 33.	0.00 0.88 3.38 0.19 0.16 0.52 0.90 0.35 0.00 DEMAND (VEH/MIN) .00 1.04 4.03 0.22 0.20 0.62 1.09 0.41 0.00 DEMAND (VEH/MIN) .15 0.00 1.28 4.94 0.27 0.24 0.27 0.24 0.76	11.43 8.35 8.56 11.66 CAPACIT' (VEH/MIN) 6.62 11.36 8.16 8.42 11.50 CAPACIT' (VEH/MIN) 6.41	0.000 0.016 0.020 0.061 0.078 Y DEMAND/ CAPACITY (RFC) 0.000 0.020 0.024 0.074 0.095 Y DEMAND/ CAPACITY (RFC) 0.000 0.020 0.024 0.074 0.095	PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.1 0.1 0.1 END QUEUE (VEHS) 0.0 0.0 0.1 0.1	(V	0.0 0.2 0.3 0.9 1.3 DELAY VEH.MIN 0.0 0.3 0.4 1.2 1.6	N/ ENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
B-AG A-B A-C A-D D-AE C-AE C-D C-A TIME 17.45- B-AG A-B A-C A-D D-AE C-AE C-A TIME 18.00- B-AG A-B A-C A-D D-AE D-BG A-C A-D D-AE D-BG C-AE C-AE C-D C-D C-AE C-D C-D C-AE C-D	-18. -2D 33D	0.00 0.88 3.38 0.19 0.16 0.52 0.90 0.35 0.00 DEMAND (VEH/MIN) .00 1.04 4.03 0.22 0.20 0.62 1.09 0.41 0.00 DEMAND (VEH/MIN) .15 0.00 1.28 4.94 0.27 0.24	11.43 8.35 8.56 11.66 CAPACIT' (VEH/MIN) 6.62 11.36 8.16 8.42 11.50 CAPACIT' (VEH/MIN) 6.41	0.000 0.016 0.020 0.061 0.078 Y DEMAND/ CAPACITY (RFC) 0.000 0.024 0.074 0.095 Y DEMAND/ CAPACITY (RFC) 0.000 0.024 0.074 0.095	PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.0 0.1 0.1 END QUEUE (VEHS)	(V	0.0 0.2 0.3 0.9 1.3 DELAY VEH.MII 0.0 0.3 0.4 1.2 1.6	N/ ENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)

I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
I	18.15-18	3.30							I
I	B-ACD	0.00	6.41	0.000		0.0	0.0	0.0	I
I	A-B	1.28							I
I	A-C	4.94							I
I	A-D	0.27	11.27	0.024		0.0	0.0	0.4	I
I	D-AB	0.24	7.91	0.031		0.0	0.0	0.5	I
I	D-BC	0.76	8.22	0.093		0.1	0.1	1.5	I
I	C-ABD	1.34	11.29	0.119		0.1	0.1	2.1	I
I	C-D	0.48							I
I	C-A	0.00							I
I									I

I I I		DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
Ι	18.30-18	3.45							I
Ι	B-ACD	0.00	6.62	0.000		0.0	0.0	0.0	I
Ι	A-B	1.04							I
Ι	A-C	4.03							I
Ι	A-D	0.22	11.36	0.020		0.0	0.0	0.3	I
Ι	D-AB	0.20	8.16	0.024		0.0	0.0	0.4	I
Ι	D-BC	0.62	8.42	0.074		0.1	0.1	1.2	I
Ι	C-ABD	1.09	11.50	0.095		0.1	0.1	1.6	I
Ι	C-D	0.41							I
Ι	C-A	0.00							I
Ι									I

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	Ι
Ι	18.45-19	9.00								Ι
Ι	B-ACD	0.00	6.77	0.000		0.0	0.0	0.0		Ι
Ι	A-B	0.88								Ι
Ι	A-C	3.38								Ι
Ι	A-D	0.19	11.43	0.016		0.0	0.0	0.3		Ι
Ι	D-AB	0.16	8.35	0.020		0.0	0.0	0.3		Ι
Ι	D-BC	0.52	8.56	0.061		0.1	0.1	1.0		Ι
Ι	C-ABD	0.90	11.66	0.078		0.1	0.1	1.3		Ι
Ι	C-D	0.35								Ι
Ι	C-A	0.00								Ι
Ι										Ι
										-

WARNING NO MARGINAL ANALYSIS OF CAPACITIES AS MAJOR ROAD BLOCKING MAY OCCUR

QUEUE FOR STR	EAM B-ACD
17.45 18.00 18.15 18.30 18.45	VEHICLES IN QUEUE 0.0 0.0 0.0 0.0 0.0
19.00 QUEUE FOR STR	0.0 EAM A-D
TIME SEGMENT ENDING 17.45 18.00 18.15 18.30 18.45 19.00	NO. OF VEHICLES IN QUEUE 0.0 0.0 0.0 0.0 0.0

QUEUE FOR STR	EAM D-AB
TIME SEGMENT	NO. OF
ENDING	VEHICLES IN QUEUE
17.45	0.0
18.00	0.0
18.15 18.30	0.0
18.45	0.0
19.00	0.0

QUEUE FOR S	TREAM D-BC
TIME SEGMEN	T NO. OF
ENDING	VEHICLES
	IN QUEUE
17.45	0.1

18.00	0.1
18.15	0.1
18.30	0.1
18.45	0.1
19.00	0.1
QUEUE FOR STR	REAM C-ABD
TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
17.45	0.1
18.00	0.1
18.15	0.1
18.30	0.1
18.45	0.1
19.00	0.1

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

I	STREAM	I I	TOTAI	3	DEMAND	I I	* QUEUE1	*	I	QUEUEING *	I I		
I		I I-	(VEH)		(VEH/H)	I	(MIN)	(MIN/VEH)		(MIN)		(MIN/VEH)	-1
Ι	B-ACD	Ι	0.0	Ι	0.0	Ι	0.0 I	0.00	Ι	0.0	I	0.00	I
Ι	A-B	Ι	96.0	Ι	64.0	Ι	I		I		Ι		Ι
Ι	A-C	Ι	370.2	Ι	246.8	Ι	I		Ι		Ι		Ι
Ι	A-D	Ι	20.6	Ι	13.7	Ι	1.8 I	0.09	Ι	1.8	Ι	0.09	Ι
Ι	D-AB	Ι	18.1	Ι	12.1	Ι	2.3 I	0.13	Ι	2.3	Ι	0.13	Ι
Ι	D-BC	Ι	57.3	Ι	38.2	Ι	7.4 I	0.13	I	7.4	Ι	0.13	Ι
Ι	C-ABD	Ι	100.1	Ι	66.7	Ι	10.1 I	0.10	I	10.1	Ι	0.10	Ι
Ι	C-D	Ι	37.0	Ι	24.7	Ι	I		Ι		Ι		Ι
Ι	C-A	Ι	0.0	Ι	0.0	Ι	I		Ι		I		I
I	ALL	I	699.3	I	466.2	I	21.6 I	0.03	I	21.6	I	0.03	I

- * DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

 * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

 * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

END OF JOB

TRAFFIC SIGNALS C	ALC	ULA	ATIC	N							Job No.:	CHK5001	<u>9645 </u>		MVA	A ASIA L	IMITED
Junction: King's Road/ Shu Kuk St	reet (G)	1													Design Ye	ar:20	16
Description: Observe Flows								-			Designed By:	Н <u>КН</u>			Checked E	By: <u>GP</u>	<u>'H</u>
					Radio	us (m)		Pro. Tur	ning (%)		Saturation Flow (pcu/hr)	,	A.M. Pea	k	ı	P.M. Pea	k
Approach	Movement notation	Phase	Stage	Width (m)	Left	Right	(%) uphill Gradient	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
King's Road	1,	Α	1	5.500	10			32%	20%	2065	2100	325	0.157	ı	400	0.190	0.190
EB	+++▶	Α	1	3.000						2055	2055	80	0.039		100	0.049	
King's Road WB	← ← ← ← ← ← ← ← ← ←	В В В	1,2 1,2 1,2 1,2	3.300 3.300 3.300 3.000						1945 2085 1945 2055	1945 2085 1945 2055	540 580 540 100	0.278 0.278 0.278 0.049	0.278	423 454 423 60	0.217 0.218 0.217 0.029	
Shu Kuk Street NB	√ ↑	C	3	3.250 3.250	10 15			6%	0%	1685 1930	1685 1940	145 165	0.086 0.085		150 175	0.089 0.090	0.090
LRT/Pedestrian		Dp Ep Fp	1,2 3 2	Min Min Min	10 9 7	+ + + +	9 20 8			= = =	19 29 15			*			*
Notes:							ic Flow cu/hr)					Group	ВС	BEp	Group	ВС	AFpC
												у	0.364	0.278	у	0.308	0.281
							105(80)			-	166 0(1300)	L (sec)	9	37	L (sec)	9	29
						2	20(320)		_	†		C (sec)	120	120	C (sec)	120	120
									1			y pract.	0.833	0.623	y pract.	0.833	0.683
									155(150)	155(175)		R.C. (%)	129%	124%	R.C. (%)	170%	143%
Stage / Phase Diagrams 1.				2.		!			3.			4.	l .		5.		l .
A ++++ ++++>	B Dp		1		Fp.	Dp	> f — B >			C	Ep V						
I/G= 24 I/G= 7			I/G=			7		I/G= 5 I/G= 10		9	I/G= I/G=			I/G	-		
											Date:	Jur	า-16	Jun	ction:		G

TRAFFIC SIGNALS CALCULATION **MVA ASIA LIMITED** Job No.: CHK50019645 Junction: King's Road/ Kam Hong Street (H) Design Year: 2016 Designed By: Checked By: ____GPH_ Description: ____ Observe Flows HKH Revised Saturation Flow Radius (m) Pro. Turning (%) A.M. Peak P.M. Peak (pcu/hr) (%) uphill Gradient notation Phase Flow y Value Right P.M. P.M. y Value Critical v Critical v Approach Width (m) Left А М ΑМ (pcu/hr) (pcu/hr) King's Road 4.000 2015 2015 220 0.109 320 0.159 3.000 2055 2055 0.039 King's Road 3.300 32% 1835 1760 496 0.270 372 0.211 56% 2085 2085 0.270 WB 3.300 563 441 0.212 0.212 3.300 1945 1945 526 0.270 0.270 412 0.212 2055 0.049 0.029 3.000 2055 100 60 \Rightarrow Kam Hong Street В 3 750 2% / 23% 10% / 19% 1945 1925 202 0 104 253 0 131 0 131 20 0.104 0.104 SB 3.750 15 1810 1810 188 237 0.131 LRT/Pedestrian Ср 3 Min 28 Dp 1,3 Min 17 10 Εp 3 Min Notes: Traffic Flow ABEp ABCp ABEp ABCp Group Group (pcu/hr) 235(285) 150(180) 5(25) 0.343 0.343 у 0.374 0.374 L (sec) 43 35 43 L (sec) 35 220(320) -1425(1015) C (sec) 120 120 C (sec) 120 120 160(210) 0.578 y pract. 0.638 0.578 y pract. 0.638 70% R.C. (%) 86% 68% R.C. (%) 54% Stage / Phase Diagrams <----<u>D</u>p-> Еp I/G= I/G= 22 I/G= 5 I/G= 8 10 I/G= I/G= Date: Junction:

Jun-16

TRAFFIC SIGNALS CALCULATION **MVA ASIA LIMITED** Job No.: CHK50019645 Junction: King's Road/ Tin Chiu Street (I) Design Year: 2016 Designed By: Checked By: GPH Description: ____ Observe Flows HKH Revised Saturation Flow Radius (m) Pro. Turning (%) A.M. Peak P.M. Peak (pcu/hr) (%) uphill Gradient notation Phase Flow Flow y Value Critical y Width (m) A.M. P.M. A.M. P.M. y Value Critical v Approach Left Right (pcu/hr) (pcu/hr) King's Road 3.000 10 16% 10% 1870 1885 225 0.120 345 0.183 0.183 +++ 3.000 2055 2055 80 0.039 100 0.049 1945 479 0.246 0.187 King's Road В 3.300 1945 0.246 363 2085 0.187 WB В 3.300 2085 512 0.246 389 В 3.300 1945 1945 0.246 363 0.187 479 1 0.049 0.029 3.000 2055 2055 100 60 Tin Chiu Street 1690 0.068 0.065 3.300 1690 115 110 10 С 0% 2085 2085 NB 2 3.300 15 0% 315 0.151 320 0.153 2 15 0.257 0.223 3.300 1770 1770 455 0.257 395 0.223 LRT/Pedestrian Dp 1 Min 20 Traffic Flow Notes: AC вс вс AC Group Group (pcu/hr) 0.503 0.377 0.406 у 0.410 35(35) _ 10 9 10 L (sec) 9 L (sec) 190(310) -1470(1115) C (sec) 120 120 C (sec) 120 120 0.825 0.825 y pract. 0.833 y pract. 0.833 115(110) 315(320) 455(395) 119% 65% R.C. (%) 103% 103% R.C. (%) Stage / Phase Diagrams 2. 5. I/G= 6 I/G= 5 I/G= I/G= I/G= I/G= I/G= Junction: Date:

Jun-16

Reference Flows

TRAFFIC SIGNALS CALCULATION **MVA ASIA LIMITED** Job No.: CHK50019645 Junction: Java Road/ Shu Kuk Street (A) Design Year: _____2025 Description: Reference Flows Designed By: HKH Checked By: GPH Revised Saturation Flow A.M. Peak Pro. Turning (%) P.M. Peak Radius (m) (pcu/hr) (%) uphill Gradient Flow Flow P.M. Approach Width (m) Left Right A.M. P.M. A.M. y Value Critical y y Value Critical y (pcu/hr) (pcu/hr) 3.000 25% 22% 1845 1855 484 0.262 0.262 533 0.287 Java Road EΒ 3 000 2055 2055 539 0.262 0.288 591 502 3.000 1915 1915 0.262 551 0.288 0.288 Shu Kuk Street 3.750 15 78% 75% 1845 1850 293 0.159 0.159 315 0.170 0.170 NB 3.750 10 1530 1530 242 0.158 260 0.170 Cp Dp Ep Fp LRT/Pedestrian 1,3 Min . 11 7 12 2,3 Min 22 3 Min 3 Min 5 12 Traffic Flow (pcu/hr) Notes: ABEp ABFp ABFp Group Group ABEp 0.421 0.421 0.458 0.458 у у L (sec) 25 32 L (sec) 25 32 120(115) 1405(1560) -C (sec) 120 120 C (sec) 120 120 y pract. 0.713 0.660 y pract. 0.713 0.660 65(80) 470(495) R.C. (%) 69% 57% R.C. (%) 56% 44% Stage / Phase Diagrams Ср I/G= Junction: Date: Jun-16

TRAFFIC SIGNALS CALCULATION **MVA ASIA LIMITED** Job No.: CHK50019645 Junction: Java Road/ Kam Hong Street (B) Design Year: _____2025 Description: Reference Flows Designed By: HKH Checked By: GPH Revised Saturation Flow A.M. Peak Radius (m) Pro. Turning (%) P.M. Peak (pcu/hr) (%) uphill Gradient Flow Flow P.M. Approach Width (m) Left Right A.M. P.M. A.M. y Value Critical y y Value Critical y (pcu/hr) (pcu/hr) 3.200 1935 1935 626 0.324 690 0.357 Java Road EΒ 3 200 2075 2075 671 0.323 740 0.357 0.357 578 0.324 0.324 3.200 10 55% 69% 1785 1755 625 0.356 Shu Kuk Street 4.000 10 51% 40% 1875 1900 89 0.047 0.046 SB 4.000 2015 2015 0.048 0.048 0.046 0.046 Cp Dp Ep Fp LRT/Pedestrian 1,3 Min 2,3 Min 11 20 3 Min 3 Min 8 10 18 Traffic Flow (pcu/hr) Notes: ABEp ABEp Group Group 140(145) 45(35) 0.371 0.403 у у L (sec) 31 L (sec) 31 1555(1625) 320(430) -C (sec) C (sec) 120 120 y pract. 0.668 y pract. 0.668 R.C. (%) R.C. (%) 80% 66% Stage / Phase Diagrams I/G= Junction: Date: Jun-16

TRAFFIC SIGNALS CALCULATION **MVA ASIA LIMITED** CHK50019645 Job No.: Junction: Java Road/ Tin Chiu Street (C) Design Year: 2025 Checked By: GPH Description: Reference Flows Designed By: HK<u>H</u> Revised Saturation Flow Pro. Turning (%) A.M. Peak P.M. Peak Radius (m) (pcu/hr) Movement notation (%) uphill Gradient Phase Flow Flow Approach Width (m) Right y Value Critical y y Value Critical y (pcu/hr) (pcu/hr) 0.283 1695 480 Java Road 3.000 70% 60% 1720 505 0.294 0.284 EΒ 3.000 2055 2055 583 603 0.293 12% 1890 1880 537 0.284 0.294 3.000 15 19% 0.284 552 0.294 L Tin Chiu Street В 3 3.500 15 1785 1785 195 0.109 0.109 150 0.084 0.084 SB Tin Chiu Street 97% 97% 1785 1785 0.106 0.100 0.100 3.000 20 189 179 NB 3.000 1660 176 0.106 0.106 1660 166 0.100 LRT/Pedestrian 2 Min 13 Ep 2,3,4 Min 11 18 2,3 Min 18 Traffic Flow Notes: Group ADpBC Group ADpBC 195(150) 0.499 0.478 33 L (sec) 33 L (sec) 335(305) 1200(1250) C (sec) C (sec) 120 120 65(105) y pract. 0.653 y pract. 0.653 5(5) 360(340) R.C. (%) 31% R.C. (%) 37% Stage / Phase Diagrams Dp ----> Fp Fp I/G=

I/G= 6

I/G=

Jun-16

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\D AM 2025 REF.vpi" at 15:11:36 on Wednesday, 1 June 2016

RUN TITLE

Marble Road / Shu Kuk Street AM (D) 2025 REF

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

INPUT DATA

MINOR ROAD (ARM D) MAJOR ROAD (ARM C) ----- MAJOR ROAD (ARM A) MINOR ROAD (ARM B)

ARM A IS Shu Kuk Street NB ARM B IS Marble Road EB ARM C IS Shu Kuk Street NB ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B

STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

ETC.

.GEOMETRIC DATA

I	DATA ITEM	I	MINOR	ROAD	В	Ι	MINOR	ROAD	D	I
I I	TOTAL MAJOR ROAD CARRIAGEWAY WIDTH CENTRAL RESERVE WIDTH		(WCR)				(WCR)			I I I
I I I	MAJOR ROAD RIGHT TURN - WIDTH - VISIBILITY - BLOCKS TRAFFIC		(WC-B) (VC-B)	2.20 0.0 NO			(WA-D) (VA-D)	2.20 0.0 NO		I I I
I I I	MINOR ROAD - VISIBILITY TO LEFT - VISIBILITY TO RIGHT - LANE 1 WIDTH - LANE 2 WIDTH	I	(VB-C) (VB-A) (WB-C) (WB-A)	15.0	M. M.	I I	(VD-A) (VD-C) (WD-A) (WD-C)		М.	I I I

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 08.00 AND ENDS 09.30

I I	ARM	I						ART WHEN FLOW STOPS							
Ι		Ι	TO RISE	Ι	IS	REACHED	I	FALLING	Ι	PEAK	Ι	OF PEAR	(I	PEAK	Ι
I	ARM A ARM B ARM C ARM D	I		I I I			I I I		_		_	0.09	I		I

٠								
I I I		I I		TU		PORTIONS JNTS (VEH/ OF H.V.S)	HR)	I I I
I	TIME	Ι	FROM/TO	Ι	ARM A I	ARM B I	ARM C I	ARM D I
	08.00 - 09.30	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ARM B ARM C ARM D		0.00 I 0.000 I 0.000 I 0.00 I 0.000 I 0.000 I 0.000 I 0.000 I 0.000 I	0.000 I 0.00 I 0.00 I 0.00 I 0.00 I 0.00 I 0.000 I 0.000 I 0.000 I 0.000 I 0.000 I	390.0 I (0.0)I I 1.000 I 5.0 I (0.0)I I 0.000 I ?????? I? (0.0)I I 1.000 I 140.0 I	0.00 I 0.000 I 0.00 I 0.00 I 0.000 I 0.000 I ?????? I 0.000 I 0.000 I
I I		I		I I	(0.0)I I	(0.0)I I	I(0.0)	(0.0)I I

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA

TIME										
T	I	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
1 08.00-08.15	I		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
B-ACD	I				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS) T	'IME SEGMENT)	TIME SEGMENT) I
A-B	I	08.00-08	3.15							I
I A-C	I	B-ACD	0.06	11.33	0.006		0.0	0.0	0.1	I
I A-D	I	A-B	0.00							I
D-AB	I	A-C	4.88							I
D-BC	I	A-D	0.00	8.70	0.000		0.0	0.0	0.0	I
C-D	I	D-AB	0.00	8.45	0.000		0.0	0.0	0.0	I
C-A	I	D-BC	1.75	9.14	0.191		0.0	0.2	3.4	I
C-B	I	C-D	0.00							I
I	I	C-A	0.00							I
I	I	C-B	0.00	7.78	0.000		0.0	0.0	0.0	I
MAJOR RD. CENT RES VIS TO LEFT VISIBILITY I	I									I
MARGINAL LANE WIDTH WIDTH WIDTH (AHEAD FOR MAJOR) TO RIGHT I CHANGE: (.1M) (.1M) (.1M) (M) (M) (M) I I I I I I I I I	I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANGES	IN:	I
I CHANGE: (.1M) (.1M) (M) (M) I I I B-ACD 0.119 0.004 0.013 0.005 0.008 I I C-B 0.093 0.005 0.009 I I D-AB 0.101 0.000 0.000 0.009 I I D-BC 0.076 0.004 0.022 0.006 0.009 I	I				MAJOR RD.	CENT RES	VIS TO) LEFT	VISIBILITY	I
I B-ACD 0.119 0.004 0.013 0.005 0.008 II I C-B 0.093 0.005 0.009 I I D-AB 0.101 0.000 0.000 0.000 0.009 I I D-BC 0.076 0.004 0.022 0.006 0.009 I	I	MARG	GINAL LA	NE WIDTH	WIDTH	WIDTH	(AHEAD	FOR MAJOR	R) TO RIGHT	I
I B-ACD 0.119 0.004 0.013 0.005 0.008 I I C-B 0.093 0.005 0.009 I I D-AB 0.101 0.000 0.000 0.000 0.009 I I D-BC 0.076 0.004 0.022 0.006 0.009 I	I	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
I C-B 0.093 0.005 0.009 I I D-AB 0.101 0.000 0.000 0.000 0.009 I I D-BC 0.076 0.004 0.022 0.006 0.009 I	I									I
I D-AB 0.101 0.000 0.000 0.000 0.009 I I D-BC 0.076 0.004 0.022 0.006 0.009 I	I	B-	-ACD	0.119	0.004	0.013	0.00)5	0.008	I
I D-BC 0.076 0.004 0.022 0.006 0.009 I	I	C-	-B	0.093	0.005		0.00	9		I
	I	D-	-AB	0.101	0.000	0.000	0.00	0.0	0.009	I
I A-D 0.104 0.000 0.010 I	I	D-	-BC	0.076	0.004	0.022	0.00)6	0.009	I
	I	A-	-D	0.104	0.000		0.01	LO		I

										_
I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) I	DELAY (VEH.MIN/ 'IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT)	Ι
Ι	08.15-08	.30]	Ι
Ι	B-ACD	0.07	11.07	0.007		0.0	0.0	0.1	1	Ι
Ι	A-B	0.00								Ι
Ι	A-C	5.82							1	Ι
Ι	A-D	0.00	8.70	0.000		0.0	0.0	0.0	1	Ι
Ι	D-AB	0.00	8.35	0.000		0.0	0.0	0.0]	Ι
Ι	D-BC	2.09	8.99	0.233		0.2	0.3	4.4		Ι
Ι	C-D	0.00]	
Ι	C-A	0.00								Ι
Ι	C-B	0.00	7.60	0.000		0.0	0.0	0.0]	
Ι										Ι
Ι			EFFECT ON		(PCU/MIN) OF					Ι
Ι				MAJOR RD.		VIS TO		VISIBILITY		Ι
Ι			NE WIDTH	WIDTH	WIDTH		FOR MAJOR	,		Ι
Ι	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	1	
Ι										Ι
Ι		ACD	0.115	0.005	0.013	0.00		0.008		Ι
Ι	C-		0.091	0.006		0.00				Ι
Ι		AB	0.100	0.000	0.000	0.00		0.009	1	
Ι	D-	·BC	0.075	0.004	0.022	0.00	16	0.009	1	Ι

_									
 I	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI (VEH.MIN/ I
I		(VEH/MIN)	(VEH/MIN)	CAPACITY (RFC)	FLOW (PEDS/MIN)	QUEUE (VEHS)	QUEUE (VEHS)	(VEH.MIN/ TIME SEGMENT)	(VEH.MIN/ I TIME SEGMENT) I
Ι	08.30-0								I
I	B-ACD A-B	0.09	8.70 8.22 8.77	0.009		0.0	0.0	0.1	I
I	A-C	7.13							Ī
I	A-D	0.00	8.70	0.000		0.0	0.0	0.0	I
	D-BC	2.56	8.77	0.292		0.3	0.4	5.9	I
I	C-D	0.00							I
I	C-A C-B	0.00	7.35	0.000		0.0	0.0	0.0	I
Ι									I
I			EFFECT ON	CAPACITY MAJOR RD.	(PCU/MIN) OF CENT RES	MARGINA VIS TO	AL CHANG) LEFT	ES IN: VISIBILITY	I
Ι	MAR	GINAL LA	NE WIDTH	WIDTH	WIDTH	(AHEAD	FOR MAJ	OR) TO RIGHT (M)	I
I		ANGE:	(.1M)	(.1M)	(.1M)	(M))	(M)	I
Ι	В	-ACD -B	0.110	0.006	0.013	0.00	05	0.008	Ī
I	C-	-B	0.088	0.007	0.000	0.00	08	0.008	I
I	D.	-AD -BC	0.038	0.005	0.022	0.00	06	0.009	I
Ι	A	-D	0.104	0.000	0.013 0.000 0.022	0.01	10		I
-									
I	TIME	(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	OUEUE	OUEUE	(VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
Ι			. , ,,	(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	08.45-0 B-ACD	9.00 n na	10.71	0 009		0 0	0 0	0.1	I
-	74 173	0 00				0.0	5.0	V.1	I
I	A-C	7.13	0.70	0 000		0 0	0 0	0.0	I
I	D-AB	0.00	8.22	0.000		0.0	0.0	0.0	I
Ι	D-BC	2.56	8.77	0.292			0.4	6.1	I
I	C-D C-A	0.00							I
I	C-B	0.00	8.70 8.22 8.77	0.000		0.0	0.0	0.0	I
I					(PCU/MIN) OF	MARGINA	AT. CHANG	ES IN:	I
Ι				MAJOR RD.	CENT RES	VIS TO	LEFT	VISIBILITY	I
I	MAR	GINAL LA	NE WIDTH	WIDTH	WIDTH (.1M)	(AHEAD	FOR MAJ	OR) TO RIGHT (M)	I
I									I
I	В-	-ACD	0.110	0.006	0.013	0.00	05	0.008	I
I	D.	-в -ав	0.088	0.007	0.000	0.00	00	0.008	I
Ι	D-	-BC	0.098 0.073 0.104	0.005	0.022	0.00	06	0.009	I
Ι	A:	-D 	0.104	0.000		0.01	10 		I
 т	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I	111111	(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
I	09.00-0	Q 15		(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
-	D 30D	0.07	11.07	0.007		0.0	0.0	0.1	Ī
Ι	A-B	0.00							I
I	A-C A-D	0.00	8.70 8.35 8.99	0.000		0.0	0.0	0.0	I
Ι	D-AB	0.00	8.35	0.000		0.0	0.0	0.0	I
I	D-BC C-D	2.09 0.00	8.99	U.233		0.4	0.3	4.7	I
Ι	C-2	0 00		_		_		_	I
I		0.00	7.60	0.000		0.0	0.0	0.0	I
I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANG	ES IN:	I
I		GINAT: TA	NE WIDTH	MAJOR RD.	CENT RES	VIS TO	LEFT	VISIBILITY OR) TO RIGHT	I
I			(.1M)	(.1M)	(.1M)	(AHEAD (M)		(M)	I
I		-ACD	0.115	0.005	0.013	0.00	15	0.008	I
I	C-	-B	0.091	0.006		0.00	08	0.000	I
I			0.100	0.000	0.000 0.022	0.00	00	0.009	I
I			0.075 0.104	0.004		0.00		0.009	I
-									
. –									
Ι	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI (VEH.MIN/ I
I		(VEH/MIN)	(VEH/MIN)	(RFC)	rLOW (PEDS/MIN)	(VEHS)	(VEHS)	(VEH.MIN/ TIME SEGMENT)	(VEH.MIN/ I TIME SEGMENT) I
Ι	09.15-0		4						I
I		0.06	11.33	U.U06		0.0	0.0	0.1	I
Ι	A-C	4.88	_			_			I
Ι		0.00	8.70 8.44	0.000		0.0	0.0	0.0	I
Т	D-AR					0.0			
I	D-AB D-BC	0.00 1.75	9.14	0.191		0.0			I

I	C-D	0.00							I
I	C-A	0.00							I
I	C-B	0.00	7.78	0.000		0.0 0	.0	0.0	I
I									I
I			EFFECT O	N CAPACITY	(PCU/MIN) OF	MARGINAL C	HANGES :	IN:	Ι
I				MAJOR RD.	CENT RES	VIS TO LE	FT	VISIBILITY	Ι
I	MARGINA	L LA	NE WIDTH	WIDTH	WIDTH	(AHEAD FOR	MAJOR)	TO RIGHT	I
I	CHANGE	:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
I									Ι
I	B-ACD		0.119	0.004	0.013	0.005		0.008	Ι
I	C-B		0.093	0.005		0.009			Ι
I	D-AB		0.101	0.000	0.000	0.000		0.009	Ι
I	D-BC		0.076	0.004	0.022	0.006		0.009	Ι
I	A-D		0.104	0.000		0.010			I
•									
QUE	UE FOR STR	EAM	B-ACD						
	E SEGMENT	NO.							

QUEUE FOR SIKE	LAM B-ACD
TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
08.15	0.0
08.30	0.0
08.45	0.0
09.00	0.0
09.15	0.0
09.30	0.0
QUEUE FOR STRI	EAM A-D
TIME SEGMENT	
ENDING	VEHICLES
	IN QUEUE
08.15	0.0
08.30	0.0

08.45 09.00 09.15 09.30 0.0 0.0 0.0 QUEUE FOR STREAM D-AB

TIME SEGMENT NO. OF ENDING VEHICLES VEHICLES IN QUEUE 0.0 0.0 0.0 0.0 0.0 08.15 08.30 08.45 09.00 09.15 09.30

QUEUE FOR STREAM D-BC TIME SEGMENT NO. OF ENDING VEHICLES VEHICLES IN QUEUE 0.2 0.3 0.4 0.4 0.3 0.2 08.15 08.30 08.45 09.00 09.15 09.30

QUEUE FOR STREAM C-B
TIME SEGMENT NO. OF NO. OF VEHICLES VEHICLES
IN QUEUE
0.0
0.0
0.0
0.0
0.0
0.0 08.15 08.30 08.45 09.00 09.15 09.30

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

I	STREAM	I I	TOTA	L :	DEMAND	I	* DEI	LA:	ING *	I *	INCLUSIV			I I
I		I	(VEH)		(VEH/H)	Ι	(MIN)		(MIN/VEH)	Ι	(MIN)		(MIN/VEH)	I
I	B-ACD	I	6.9	I	4.6	I	0.6	I	0.09	I	0.6	I	0.09	I
Ι	A-B	Ι	0.0	Ι	0.0	Ι		Ι		I		I		Ι
Ι	A-C	Ι	534.8	Ι	356.5	Ι		Ι		I		I		Ι
I	A-D	Ι	0.0	Ι	0.0	Ι	0.0	Ι	0.00	I	0.0	I	0.00	Ι
I	D-AB	Ι	0.0	Ι	0.0	Ι	0.0	Ι	0.00	I	0.0	I	0.00	Ι
Ι	D-BC	Ι	192.0	Ι	128.0	Ι	28.2	Ι	0.15	I	28.2	I	0.15	Ι
Ι	C-D	Ι	0.0	Ι	0.0	Ι		Ι		I		I		Ι
I	C-A	Ι	0.0	Ι	0.0	Ι		Ι		I		I		Ι
I	C-B	Ι	0.0	Ι	0.0	Ι	0.0	Ι	0.00	Ι	0.0	I	0.00	Ι

- * DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

 * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

 * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

END OF JOB

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\D PM 2025 REF.vpi" at 15:11:43 on Wednesday, 1 June 2016

RUN TITLE

Marble Road / Shu Kuk Street PM (D) 2025 REF

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

INPUT DATA

MINOR ROAD (ARM D) MAJOR ROAD (ARM C) ----- MAJOR ROAD (ARM A)

MINOR ROAD (ARM B)

ARM A IS Shu Kuk Street NB ARM B IS Marble Road EB ARM C IS Shu Kuk Street NB ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

.GEOMETRIC DATA

T MINOR ROAD B T MINOR ROAD D T DATA ITEM I TOTAL MAJOR ROAD CARRIAGEWAY WIDTH I (W) 7.50 M. I (W) 7.50 M. I CENTRAL RESERVE WIDTH I (WCR) 0.00 M. I (WCR) 0.00 M. I (WA-D) 2.20 M. I (VA-D) 0.0 M. NO MINOR ROAD - VISIBILITY TO LEFT I (VB-C) 15.0 M.
- VISIBILITY TO RIGHT I (VB-A) 15.0 M.
- LANE 1 WIDTH I (WB-C) 5.00 M.
- LANE 2 WIDTH I (WB-A) 0.00 M. I (VD-A) 30.0 M. I (VD-C) 20.0 M.

I (WD-A) 2.20 M. I (WD-C) 5.00 M.

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 17.30 AND ENDS 19.00

	WHEN I RATE OF FLOW (VEH/MIN) I DW STOPS I BEFORE I AT TOP I AFTER I
	ALLING I PEAK I OF PEAK I PEAK I
I ARM A I 15.00 I 45.00 I	75.00 I 4.94 I 7.41 I 4.94 I
I ARM B I 15.00 I 45.00 I	75.00 I 0.00 I 0.00 I 0.00 I
I ARM C I 15.00 I 45.00 I	75.00 I 0.00 I 0.00 I 0.00 I
I ARM D I 15.00 I 45.00 I	75.00 I 2.25 I 3.38 I 2.25 I

I I I		I I		TU	JRNING I	COL	JNTS	(VE	H/		I I I
Ī	TIME	Ι	FROM/TO	I	ARM A	Ι	AR	МВ	Ι	ARM C I	ARM D I
I	17.30 - 19.00	Ι		Ι		Ι			Ι	I	I
I		Ι	ARM A	I	0.000	Ι	0.	000	Ι	1.000 I	0.000 I
I		Ι		Ι	0.0	Ι		0.0	Ι	395.0 I	0.0 I
I		Ι		I	(0.0)	I	(0.0)	Ι	(0.0)I	(0.0)I
I		Ι		I		Ι			Ι	I	I
I		Ι	ARM B	I	0.000	Ι	0.	000	Ι	0.000 I	0.000 I
I		Ι		I?	??????	I?	????	???	Ι?	??????? I	??????? I
I		Ι		I	(0.0)	I	(0.0)	Ι	(0.0)I	(0.0)I
I		Ι		I		Ι			Ι	I	I
I		Ι	ARM C	I	0.000	Ι	0.	000	Ι	0.000 I	0.000 I
I		Ι		I?	??????	I?	????	???	Ι?	??????? I	??????? I
I		Ι		I	(0.0)	I	(0.0)	Ι	(0.0)I	(0.0)I
I		Ι		I		Ι			Ι	I	I
I		Ι	ARM D	I	0.000	Ι	0.	000	Ι	1.000 I	0.000 I
I		Ι		I	0.0	Ι		0.0	Ι	180.0 I	0.0 I
I		Ι		Ι	(0.0	Ι	(0.0)	Ι	(0.0)I	(0.0)I
I		I		Ι		Ι			Ι	I	I

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA

I	TIME	DEMAN	D CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
Ι		(VEH/MIN) (VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
I				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	17.30-17	7.45							I
I	B-ACD	0.00	8.68	0.000		0.0	0.0	0.0	I
I	A-B	0.00							I
I	A-C	4.94							I
I	A-D	0.00	8.70	0.000		0.0	0.0	0.0	I
I	D-AB	0.00	8.33	0.000		0.0	0.0	0.0	I
I	D-BC	2.25	9.15	0.246		0.0	0.3	4.6	I
I	C-D	0.00							I
I	C-A	0.00							I
I	C-B	0.00	7.76	0.000		0.0	0.0	0.0	I
I									I
I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	L CHANGES	S IN:	I
I				MAJOR RD.	CENT RES	VIS TO	LEFT	VISIBILITY	I
I	MARG	GINAL L	ANE WIDTH	WIDTH	WIDTH	(AHEAD	FOR MAJO	R) TO RIGHT	I
I	CHA	ANGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
I									I
I	B-	-ACD	0.118	0.004	0.013	0.00)5	0.008	I
I	C-	-B	0.093	0.005		0.00	9		I
I	D-	-AB	0.100	0.000	0.000	0.00	0	0.008	I
I	D-	-BC	0.076	0.004	0.022	0.00) 6	0.009	I
I	A-	-D	0.104	0.000		0.01	. 0		I

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)		PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
Ι	17.45-18	.00							I
Ι	B-ACD	0.00	8.41	0.000		0.0	0.0	0.0	I
Ι	A-B	0.00							I
Ι	A-C	5.90							I
Ι	A-D	0.00	8.70	0.000		0.0	0.0	0.0	I
Ι	D-AB	0.00	8.20	0.000		0.0	0.0	0.0	I
Ι	D-BC	2.69	8.99	0.299		0.3	0.4	6.1	I
Ι	C-D	0.00							I
Ι	C-A	0.00							I
Ι	C-B	0.00	7.58	0.000		0.0	0.0	0.0	I
Ι									I
Ι			EFFECT ON				AL CHANGES		I
Ι				MAJOR RD.		VIS TO		VISIBILITY	I
Ι	MARG		NE WIDTH	WIDTH	WIDTH		FOR MAJOR		I
Ι	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
Ι									I
Ι		ACD	0.114	0.005	0.013	0.00		0.008	I
Ι	C-		0.091	0.006		0.00			I
Ι		AB	0.098	0.000	0.000	0.00		0.008	I
Ι	D-	BC	0.075	0.004	0.022	0.00	16	0.009	I

 I	TIME	DEMAND	CAPACITY (VEH/MIN)	DEMAND/	PEDESTRIAN FLOW	START	END	DELAY	GEOMETRIC DELAY
Ι			(VEII/PIIN)	(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT)
I	18.00-1 B-ACD	0.00	8.04	0.000		0.0	0.0	0.0	-
I	A-B A-C	0.00	8.70 8.03 8.78						=
Ι	A-D	0.00	8.70	0.000		0.0	0.0	0.0	
I	D-AB D-BC	0.00 3.29	8.03 8.78	0.000 0.375		0.0	0.0 0.0 0.6	0.0 8.5	
Ι	C-D	0.00							
I	C-A C-B	0.00	7.33	0.000		0.0	0.0	0.0	-
I					(PCU/MIN) OF	MADCINA	AT CHANCE	C TN.	:
Ι			EFFECT ON	MAJOR RD.	CENT RES	VIS TO) LEFT	VISIBILITY	
I	MAR)	GINAL LA ANGE:	NE WIDTH	WIDTH (.1M)	CENT RES WIDTH (.1M)	(AHEAD	FOR MAJO	R) TO RIGHT	=
Ι									
I	C-	-ACD -B	0.108	0.006	0.013	0.00)8	0.008	-
I	D-	-AB	0.096	0.000	0.000	0.00	00	0.008	-
I	A.	-DC	0.104	0.000	0.013 0.000 0.022	0.01	10	0.009	
-									
 T	TTME	DEMAND.	CADACTTV	DEMAND /	DEDECTRIAN	CTADT	END	יייייייייייייייייייייייייייייייייייייי	CEOMETRIC DELAY
I	111111111111111111111111111111111111111	(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	GEOMETRIC DELAY: (VEH.MIN/ TIME SEGMENT)
I	18 15-1:	3 30				(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT)
Ι	B-ACD	0.00	8.04			0.0	0.0	0.0	
I	A-B A-C	0.00 7.22							
I	A-D	0.00	8.70	0.000		0.0	0.0	0.0	-
I	D-BC	3.29	8.78	0.375		0.6	0.6	8.9	-
I	C-D	0.00							
I	C-B	0.00	8.70 8.03 8.78	0.000		0.0	0.0	0.0	
I					(PCU/MIN) OF	MARGINA	AL CHANGE	S IN:	
I		STNAT. T.A	NE WIDTH	MAJOR RD.	CENT RES	VIS TO) LEFT FOR MAJO	VISIBILITY	
Ι		ANGE:	(.1M)	(.1M)	WIDTH (.1M)	(M)	1010 11100	(M)	-
I	В	-ACD	0.108	0.006	0.013	0.00)5	0.008	
I	C-	-B -AB	0.088	0.007 0.000	0.000	0.00	08	0.008	
I		-AB -BC	0.096 0.073 0.104	0.005	0.000	0.00		0.009	-
I	A-	-D	0.104	0.000		0.01	LO		:
 I	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAY
I		(VEH/MIN)	(VEH/MIN)	CAPACITY (RFC)	FLOW (PEDS/MIN)	QUEUE (VEHS)	QUEUE (VEHS)	(VEH.MIN/ TIME SEGMENT)	(VEH.MIN/ TIME SEGMENT)
т	18 30-1	8.45			(1220/11111)				
I	B-ACD A-B	0.00	8.41	0.000		0.0	0.0	0.0	
I	A-C	5.90	0.70	0.000		0 0	0 0	0.0	
I	D-AB	0.00	8.70 8.20	0.000				0.0	-
I	D-BC	2.69 0.00	8.99	0.299		0.6	0.4	6.7	<u> </u>
Ι	C-A	0.00	2 50	0.000		0 0	0.0	0.0	
I		0.00	7.58	0.000		0.0	0.0	0.0	
I					(PCU/MIN) OF			S IN: VISIBILITY	=
I	MAR		NE WIDTH	WIDTH	WIDTH			OR) TO RIGHT	-
I		ANGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	<u> </u>
Ι	В	-ACD	0.114	0.005		0.00		0.008	
I		-B -AB	0.091 0.098	0.006	0.000	0.00		0.008	-
I		-BC -D	0.075	0.004	0.000 0.022	0.00		0.009	-
_	A		0.104	0.000		0.01			-
. –									
I	TIME	DEMAND (VEH/MTN)	CAPACITY (VEH/MTN)	DEMAND/ CAPACITY	PEDESTRIAN FT.OW	START	END OUEUE	DELAY (VEH.MTN/	GEOMETRIC DELAY: (VEH.MIN/
Ι			. ,,	(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT)
I	18.45-1 B-ACD	0.00	8.68	0.000		0.0	0.0	0.0	
I	A-B	0.00 4.94							-
Ι	A-D	0.00	8.70 8.32	0.000			0.0		=
I	D-AB D-BC	0.00 2.25	8.32 9.15	0.000 0.246			0.0	0.0 5.1	

т	C-D	0.00						Т
Ť		0.00						- T
T		0.00	7.76	0 000		0.0 0.0	0.0	I
± T	СБ	0.00	7.70	0.000		0.0 0.0	0.0	± T
± T			PPPPCT ON	CADACTEV (DCII/MTNI) OF	MARGINAL CHA	NCPS IN.	I
± +			EFFECT ON				VISIBILITY	I
I	MADCINA	т тя	NE MIDEL				AJOR) TO RIGHT	I
I						(M)		I
	CHANGE	:	(.IM)	(.IM)	(.IM)	(14)	(M)	
I	D 30D		0 110	0 004	0.010	0.005	0.000	_
Ι					0.013	0.005	0.008	I
Ι	C-B			0.005		0.009		I
I			0.100			0.000		I
I			0.076		0.022	0.006	0.009	I
I	A-D		0.104	0.000		0.010		I
QUE	UE FOR STR	EAM	B-ACD					
	E SEGMENT							
E		VEHIC						
		IN QU						
	7.45							
1	8 00	(١					

18.00 18.15 18.30 0.0 0.0 0.0 18.45 19.00 0.0 QUEUE FOR STREAM A-D
TIME SEGMENT NO. OF
ENDING VEHICLES IN QUEUE 17.45 18.00 18.15 18.30 18.45 19.00 0.0 0.0 0.0 0.0 0.0

QUEUE FOR STREAM D-AB TIME SEGMENT ENDING NO. OF VEHICLES IN QUEUE 17.45 18.00 18.15 18.30 18.45 19.00 0.0 0.0 0.0 0.0 0.0 0.0

QUEUE FOR STREAM D-BC TIME SEGMENT
ENDING V NO. OF VEHICLES VEHICLES IN QUEUE 0.3 0.4 0.6 0.6 0.4 0.3 17.45 18.00 18.15 18.30 18.45 19.00

QUEUE FOR STREAM C-B

TIME SEGMENT NO. OF NO. OF VEHICLES ENDING IN QUEUE 0.0 0.0 0.0 18.00 18.15 18.30 18.45 19.00 0.0

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

_														
I	STREAM	I	TOTAL	i	DEMAND	I I	* QUEU * DEI	ΔA	<i>(</i> *	Ι	* INCLUSIV * DE	LA:	· *	I
I		I	(VEH)		(VEH/H)	Ι			(MIN/VEH)				(MIN/VEH)	-
Ι	B-ACD	Ι	0.0	Ι	0.0	Ι	0.0	I	0.00	Ι	0.0	I	0.00	Ι
Ι	A-B	Ι	0.0	Ι	0.0	Ι		Ι		Ι		Ι		Ι
Ι	A-C	Ι	541.6	Ι	361.1	Ι		Ι		Ι		Ι		Ι
I	A-D	Ι	0.0	Ι	0.0	Ι	0.0	I	0.00	Ι	0.0	Ι	0.00	Ι
I	D-AB	Ι	0.0	Ι	0.0	Ι	0.0	Ι	0.00	Ι	0.0	I	0.00	I
Ι	D-BC	Ι	246.8	Ι	164.5	Ι	39.9	Ι	0.16	Ι	39.9	Ι	0.16	Ι
Ι	C-D	Ι	0.0	Ι	0.0	Ι		Ι		Ι		Ι		Ι
Ι	C-A	Ι	0.0	Ι	0.0	Ι		Ι		Ι		Ι		Ι
Ι	C-B	Ι	0.0	Ι	0.0	Ι	0.0	Ι	0.00	Ι	0.0	Ι	0.00	Ι

- * DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

 * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

 * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

END OF JOB

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\D E F flow\E AM 2025 REF.vpi" at 10:41:54 on Monday, 30 May 2016

RUN TITLE

Marble Road / Kam Hong Street AM (E) 2025 REF

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

INPUT DATA

ARM A IS Kam Hong Street SB ARM B IS Marble Road WB ARM C IS Kam Hong Street SB ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B

STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM $\ensuremath{\text{C}}$

ETC.

.GEOMETRIC DATA

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 08.00 AND ENDS 09.30

(VEH/MIN) I
I AFTER I
K I PEAK I
I 0.00 I
I 0.00 I
I 5.75 I
I 1.81 I
K

٠					
I I I		I I I		T	URNING PROPORTIONS I PURNING COUNTS (VEH/HR) I PERCENTAGE OF H.V.S) I
I	TIME	Ι	FROM/TO	Ι	ARM A I ARM B I ARM C I ARM D I
I	08.00 - 09.30	I		I	
I		Ι	ARM A	Ι	0.000 I 0.000 I 0.000 I 0.000 I
I		Ι		ľ	???????? I??????? I??????? I??????? I
I		Ι		Ι	I(0.0) I(0.0) I(0.0) I(0.0) I
I		Ι		Ι	I I I
I		Ι	ARM B	Ι	0.000 I 0.000 I 0.000 I 0.000 I
I		Ι		I,	???????? I???????? I??????? I???????? I
I		Ι		Ι	I(0.0) I(0.0) I(0.0) I(0.0) I
I		Ι		Ι	I I I
I		Ι	ARM C	Ι	0.891 I 0.109 I 0.000 I 0.000 I
I		Ι		Ι	410.0 I 50.0 I 0.0 I 0.0 I
I		Ι		Ι	I(0.0) I(0.0) I(0.0) I(0.0) I
I		Ι		Ι	I I I
I		Ι	ARM D	Ι	0.379 I 0.621 I 0.000 I 0.000 I
I		Ι		Ι	55.0 I 90.0 I 0.0 I 0.0 I
I		Ι		Ι	I(0.0) I(0.0) I(0.0) I(0.0) I
I		Ι		Ι	I I I

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA

 I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	CAPACITY	PEDESTRIAN FLOW	START QUEUE	END QUEUE	DELAY (VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
I	00 00 00	1.5		(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
Τ.	08.00-08 B-ACD	0.00	6.85	0.000		0.0	0.0	0.0	1
T	A-B	0.00	0.00	0.000		0.0	0.0	0.0	
Ť	A-C	0.00							T T
I	A-D	0.00	7.57	0.000		0.0	0.0	0.0	Ī
Ι	D-ABC	1.81	9.32	0.195		0.0	0.2	3.4	I
I	C-D	0.00							I
Ι	C-A	5.13							I
Ι	C-B	0.63	12.59	0.050		0.0	0.1	0.8	I
I				03 D3 07 mir	(5011/14711) 05			0 717	I
Τ.			EFFECT ON	MAJOR RD.	(PCU/MIN) OF CENT RES	VIS TO		S IN: VISIBILITY	I
T	млрс	INAL LAN	NE WIDTH	WIDTH	WIDTH		FOR MAJO		T T
I			(.1M)	(.1M)	(.1M)	(M)		(M)	T T
Ī	01111		(• ===)	(• ===)	(• ====)	(/		(/	Ī
Ι	B-	-ACD	0.089	0.004	0.012	0.00) 4	0.006	I
Ι	C-	-B	0.115	0.000		0.01	.2		I
Ι	D-	-ABC	0.120	0.004	0.013	0.00		0.008	I
Ι	A-	-D	0.091	0.006		0.00	8		I

Ι	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
Ι				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
Ι	08.15-08	.30							I
Ι	B-ACD	0.00	6.70	0.000		0.0	0.0	0.0	I
Ι	A-B	0.00							I
Ι	A-C	0.00							I
Ι	A-D	0.00	7.35	0.000			0.0	0.0	I
Ι	D-ABC	2.16	9.03	0.240		0.2	0.3	4.5	I
Ι	C-D	0.00							I
I	C-A	6.12							I
Ι	C-B	0.75	12.59	0.059		0.1	0.1	0.9	I
Ι									I
Ι			EFFECT ON		(PCU/MIN) OF				I
Ι					CENT RES	VIS TO		VISIBILITY	I
Ι			NE WIDTH	WIDTH			FOR MAJO		I
Ι	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
Ι									I
Ι				0.005	0.012	0.00		0.006	I
Ι	C-	_	0.115	0.000		0.01			I
I		ABC	0.116	0.005	0.013	0.00		0.008	I
Ι	A-	·D	0.088	0.007		0.00	18		I

.-----

I	TIME (DEMAND VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) T	DELAY (VEH.MIN/ IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
I	08.30-08. B-ACD A-B	0.00	6.49	0.000		0.0	0.0	0.0	I
I	A-C A-D	0.00	7.05 8.64	0.000		0.0	0.0	0.0	I
I I I	C-D C-A	0.00	8.64	0.307		0.3	0.4	6.3	I I
I			12.59				0.1		I
I			EFFECT ON	CAPACITY MAJOR RD.	(PCU/MIN) OF CENT RES	MARGINA VIS TO	L CHANGES	IN: VISIBILITY	I
I		NAL LAI	NE WIDTH (.1M)	WIDTH (.1M)	CENT RES WIDTH (.1M)	(AHEAD (M)	FOR MAJOR) TO RIGHT (M)	I
I	B-A	CD	0.082	0.006	0.012	0.00	4	0.006	I I
I	D-A A-D	BC	0.111	0.006	0.012	0.00	5	0.008	I
-									
I I I	TIME (DEMAND VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) T	DELAY (VEH.MIN/ IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
I	08.45-09. B-ACD	0.00	6.49	0.000			0.0		I
I	A-C A-D D-ABC	0.00 0.00 2.65	7.05 8.64	0.000		0.0	0.0	0.0 6.6	I I
I	C-D C-A	0.00 7.50							I
I					(PCU/MIN) OF				I I
I				MAJOR RD.	CENT RES	VIS TO	LEFT	VISIBILITY	I
I					WIDTH (.1M)				I
	B-A C-E	CD 3	0.081 0.115	0.006	0.012	0.00	2	0.006	I
I	D-A A-E	 .BC	0.084	0.006	0.013	0.00	8	0.008	I
 I I	TIME (DEMAND VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) T	DELAY (VEH.MIN/ IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
 I I I I I	09.00-09. B-ACD	0.00	6.70	0.000			END QUEUE (VEHS) T		GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I I I
I	09.00-09. B-ACD	0.00	6.70	0.000		0.0	0.0		I I I
I I I I I	09.00-09. B-ACD	0.00	6.70	0.000		0.0	0.0	0.0	I I I I
I I I I I I I	09.00-09. B-ACD	0.00		0.000		0.0	0.0	0.0	I I I I I I I I I I I I I I I I I I I
I I I I I I I	09.00-09. B-ACD A-B A-C A-D D-ABC C-D C-A C-B	0.00 0.00 0.00 0.00 2.16 0.00 6.12 0.75	6.70 7.35 9.03 12.59 EFFECT ON	0.000 0.000 0.240 0.059 CAPACITY	(PCU/MIN) OF	0.0 0.0 0.4 0.1 MARGINA	0.0 0.0 0.3 0.1	0.0 0.0 4.9 1.0 IN:	I I I I I I I I
I I I I I I I I	09.00-09. B-ACD A-B A-C A-D D-ABC C-D C-A C-B	0.00 0.00 0.00 0.00 2.16 0.00 6.12 0.75	6.70 7.35 9.03 12.59 EFFECT ON	0.000 0.000 0.240 0.059 CAPACITY	(PCU/MIN) OF	0.0 0.4 0.1 MARGINA VIS TO	0.0 0.0 0.3 0.1 L CHANGES	0.0 0.0 4.9 1.0 IN: VISIBILITY	I I I I I I I I I I I I I I I I I I I
	MARGI	0.00 0.00 0.00 0.00 0.00 2.16 0.00 6.12 0.75	6.70 7.35 9.03 12.59 EFFECT ON NE WIDTH (.1M)	0.000 0.000 0.240 0.059 CAPACITY MAJOR RD. WIDTH (.1M)	(PCU/MIN) OF CENT RES WIDTH (.1M)	0.0 0.4 0.1 MARGINA VIS TO (AHEAD (M)	0.0 0.3 0.1 LCHANGES LEFT FOR MAJOR	0.0 0.0 4.9 1.0 IN: VISIBILITY) TO RIGHT (M)	I I I I I I I I I I I I I I I I I I I
	09.00-09. B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGI CHAN B-A C-E D-A	0.00 0.00 0.00 0.00 2.16 0.00 6.12 0.75	6.70 7.35 9.03 12.59 EFFECT ON NE WIDTH (.1M) 0.086 0.115 0.116	0.000 0.000 0.240 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.005	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013	0.0 0.0 0.4 0.1 MARGINA VIS TC (AHEAD (M) 0.00	0.0 0.3 0.1 L CHANGES LEFT FOR MAJOR	0.0 0.0 4.9 1.0 IN: VISIBILITY) TO RIGHT (M)	I I I I I I I I I I I I I I I I I I I
	09.00-09. B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGI CHAN B-A C-E D-A	0.00 0.00 0.00 0.00 2.16 0.00 6.12 0.75	6.70 7.35 9.03 12.59 EFFECT ON NE WIDTH (.1M)	0.000 0.000 0.240 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.005	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013	0.0 0.4 0.1 MARGINA VIS TO (AHEAD (M)	0.0 0.3 0.1 L CHANGES LEFT FOR MAJOR	0.0 0.0 4.9 1.0 IN: VISIBILITY) TO RIGHT (M)	I I I I I I I I I I I I I I I I I I I
	09.00-09. B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGI CHAN B-A C-E D-A A-I	0.00 0.00 0.00 0.00 2.16 0.00 6.12 0.75	6.70 7.35 9.03 12.59 EFFECT ON NE WIDTH (.1M) 0.086 0.115 0.116 0.088	0.000 0.000 0.240 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.005 0.007	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013	0.0 0.4 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01	0.0 0.3 0.1 L CHANGES LEFT FOR MAJOR 4 2 5	0.0 0.0 4.9 1.0 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008	
	09.00-09, B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGII CHAN B-A C-E D-A A-I	15 0.00 0.00 0.00 0.00 0.00 6.12 0.75 INAL LAI IGE: (CD) DEMAND VEH/MIN)	6.70 7.35 9.03 12.59 EFFECT ON NE WIDTH (.1M) 0.086 0.115 0.116 0.088	0.000 0.000 0.240 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.005 0.007 DEMAND/ CAPACITY (RFC)	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.4 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01	0.0 0.3 0.1 L CHANGES LEFT FOR MAJOR 4 2 5	0.0 0.0 4.9 1.0 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008	I I I I I I I I I I I I I I I I I I I
	09.00-09. B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGI CHAN B-A-C D-A C-E D-A TIME 09.15-09.	15 0.00 0.00 0.00 0.00 0.00 6.12 0.75 INAL LAI IGE: CD 3.BC	6.70 7.35 9.03 12.59 EFFECT ON NE WIDTH (.1M) 0.086 0.115 0.116 0.088	0.000 0.000 0.240 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.005 0.007 DEMAND/ CAPACITY (RFC)	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.4 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 START QUEUE (VEHS)	0.0 0.3 0.1 L CHANGES LEFT FOR MAJOR 4 2 5	0.0 0.0 4.9 1.0 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT)	I I I I I I I I I I I I I I I I I I I
	09.00-09. B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGI CHAN B-A-C D-A C-E D-A TIME 09.15-09.	15 0.00 0.00 0.00 0.00 0.00 6.12 0.75 INAL LAI IGE: CD 3.BC	6.70 7.35 9.03 12.59 EFFECT ON NE WIDTH (.1M) 0.086 0.115 0.116 0.088	0.000 0.000 0.240 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.005 0.007 DEMAND/ CAPACITY (RFC)	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.4 0.1 MARGINA VIS TO (AHEAD (M) 0.00 0.01 0.00 0.00 START QUEUE (VEHS)	0.0 0.0 0.3 0.1 LCHANGES LEFT FOR MAJOR 4 2 5 8 END QUEUE (VEHS) T	0.0 0.0 4.9 1.0 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09. B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGI CHAN B-A-C D-A C-E D-A TIME 09.15-09.	15 0.00 0.00 0.00 0.00 0.00 6.12 0.75 INAL LAI IGE: CD 3.BC	6.70 7.35 9.03 12.59 EFFECT ON NE WIDTH (.1M) 0.086 0.115 0.116 0.088	0.000 0.000 0.240 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.005 0.007 DEMAND/ CAPACITY (RFC)	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.4 0.1 MARGINA VIS TO (AHEAD (M) 0.00 0.01 0.00 0.00 START QUEUE (VEHS)	0.0 0.0 0.3 0.1 LCHANGES LEFT FOR MAJOR 4 2 5 8 END QUEUE (VEHS) T	0.0 0.0 4.9 1.0 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09. B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGI CHAN B-A-C D-A A-D D-ABC C-F D-A A-D D-ABC C-C-C C-B TIME 09.15-09. B-ACD A-B A-C A-D D-ABC C-D C-A C-B	15 0.00 0.00 0.00 0.00 0.00 6.12 0.75 INAL LAI IGE: CCD 3 BBC 0.00 0.0	6.70 7.35 9.03 12.59 EFFECT ON NE WIDTH (.1M) 0.086 0.115 0.116 0.088	0.000 0.000 0.240 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.005 0.007 DEMAND/ CAPACITY (RFC) 0.000 0.005	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.4 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 START QUEUE (VEHS) 0.0	0.0 0.0 0.3 0.1 LCHANGES LEFT FOR MAJOR 4 2 5 8 END QUEUE (VEHS) T	0.0 0.0 4.9 1.0 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0 0.0 3.8	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09. B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGI CHAN B-A C-E D-A A-E TIME 09.15-09. B-ACD A-B A-C A-D D-ABC C-D C-A C-B	15 0.00 0.00 0.00 0.00 2.16 0.00 6.12 0.75 INAL LAI IGE: CCD 3 BEC DEMAND VEH/MIN) 30 0.00 0.00 0.00 1.81 0.00 1.81 0.00 1.81 0.00 1.81 0.00 1.81 0.00 1.81 0.00 1.81 0.00 1.81 0.00	6.70 7.35 9.03 12.59 EFFECT ON NE WIDTH (.1M) 0.086 0.115 0.116 0.088 CAPACITY (VEH/MIN) 6.85 7.57 9.32 12.59 EFFECT ON	0.000 0.000 0.240 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.007 DEMAND/ CAPACITY (RFC) 0.000 0.195 0.050 CAPACITY MAJOR RD.	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013	0.0 0.4 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.0 0.0 0.3 0.1 L CHANGES LEFT FOR MAJOR 4 2 5 8 END QUEUE (VEHS) T 0.0 0.2 0.1	0.0 0.0 4.9 1.0 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	MARGI O9.15-09. B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGI CHAN 09.15-09. B-ACD A-B A-C A-D D-ABC C-D A-B A-C A-C A-C A-C A-C A-C A-C	15 0.00 0.00 0.00 0.00 2.16 0.00 6.12 0.75 INAL LAI IGE: CCD 3 BEC DEMAND VEH/MIN) 30 0.00 0.00 0.00 1.81 0.00 1.81 0.00 1.81 0.00 1.81 0.00 1.81 0.00 1.81 0.00 1.81 0.00 1.81 0.00	6.70 7.35 9.03 12.59 EFFECT ON NE WIDTH (.1M) 0.086 0.115 0.116 0.088 CAPACITY (VEH/MIN) 6.85 7.57 9.32 12.59 EFFECT ON	0.000 0.000 0.240 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.007 DEMAND/ CAPACITY (RFC) 0.000 0.195 0.050 CAPACITY MAJOR RD.	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH	0.0 0.4 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.0 0.0 0.3 0.1 LCHANGES LEFT FOR MAJOR 4 2 5 8 END QUEUE (VEHS) T 0.0 0.2 0.1 LCHANGES LEFT FOR MAJOR	0.0 0.0 4.9 1.0 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I I I I I I I I I I I I I I I I I I I

		0.0	91			0.008	0.008	I
		EAM B-ACI						
		NO. OF VEHICLES						
END		IN QUEUE						
08.	15	0.0						
	30	0.0						
08.	45	0.0						
	00	0.0						
09.		0.0						
09.	30	0.0						
-		EAM A-D						
		NO. OF	-					
END	ING	VEHICLES						
		IN QUEUE						
	15	0.0						
	30	0.0						
	45 00	0.0						
09.		0.0						
09.		0.0						
		EAM D-ABC						
		NO. OF						
		VEHICLES						
		IN QUEUE						
08.	15	0.2						
08.	30	0.3						
08.		0.4						
	0.0	0.4						
	15	0.3						
09.	30	0.2						
QUEUE		EAM C-B	_					
TIME		NO. OF						
	ING	VEHICLES						
		IN QUEUE						
	15	0.1						
	30	0.1						
08.	45	0.1						
09.		0.1						
09.		0.1						
		QUEUEING	DELAY	INFORMATION	OVER WHOLE	PERIOD		

I	STREAM	I I T-	TOTA	L I	DEMAND	I	* DEI	LA:		I	* DE	LAY	QUEUEING *	Ι
Ī		I	(VEH)		(VEH/H)	Ι	(MIN)		(MIN/VEH)	I	(MIN)		(MIN/VEH)	I
I	B-ACD	I	0.0	I	0.0	I	0.0	I	0.00	I	0.0	I	0.00	I
Ι	A-B	Ι	0.0	Ι	0.0	Ι		Ι		I		I		Ι
Ι	A-C	Ι	0.0	Ι	0.0	Ι		Ι		I		I		Ι
Ι	A-D	Ι	0.0	Ι	0.0	Ι	0.0	Ι	0.00	I	0.0	Ι	0.00	Ι
Ι	D-ABC	Ι	198.8	Ι	132.6	Ι	29.6	Ι	0.15	I	29.6	I	0.15	Ι
Ι	C-D	Ι	0.0	Ι	0.0	Ι		Ι		I		I		Ι
Ι	C-A	Ι	562.2	Ι	374.8	Ι		Ι		I		I		Ι
Ι	C-B	Ι	68.6	Ι	45.7	Ι	5.8	Ι	0.08	Ι	5.8	Ι	0.08	Ι
I	ALL	Ι	829.6	I	553.1	I	35.4	I	0.04	I	35.4	I	0.04	I

- * DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

 * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

 * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\D E F flow\E PM 2025 REF.vpi" at 10:42:09 on Monday, 30 May 2016

RUN TITLE

Marble Road / Kam Hong Street PM (E) 2025 REF

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

INPUT DATA

MINOR ROAD (ARM D) MAJOR ROAD (ARM C) ----- MAJOR ROAD (ARM A) MINOR ROAD (ARM B)

ARM A IS Kam Hong Street SB

ARM B IS Marble Road WB ARM C IS Kam Hong Street SB

ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B

STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

ETC.

.GEOMETRIC DATA

T MINOR ROAD B T MINOR ROAD D T DATA ITEM I TOTAL MAJOR ROAD CARRIAGEWAY WIDTH I (W) 7.75 M. I (W) 7.75 M. I CENTRAL RESERVE WIDTH I (WCR) 0.00 M. I (WCR) 0.00 M. I (WA-D) 2.20 M. I (VA-D) 0.0 M. NO MINOR ROAD - VISIBILITY TO LEFT I (VB-C) 0.0 M.
- VISIBILITY TO RIGHT I (VB-A) 0.0 M.
- LANE 1 WIDTH I (WB-C) 2.20 M.
- LANE 2 WIDTH I (WB-A) 0.00 M. I (VD-A) 15.0 M. I (VD-C) 20.0 M. I (WD-A) 5.00 M.

I (WD-C) 0.00 M.

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 17.30 AND ENDS 19.00

I	ARM						ART WHEN						. ,	
I							FALLING							
I	ARM A ARM B ARM C ARM D	I	15.00 15.00	I I I	45.00 45.00 45.00 45.00	I I I	75.00 75.00 75.00 75.00	I I	7.19	Ι	0.00 10.78	I	0.00 7.19	I

·									
I		I					OPORTION		I
Τ		Ι					UNTS (VE		1
I		Ι		(PE	RCENT	AGE	OF H.V.	.S)	I
I	TIME	I	FROM/TO	I	ARM	ΑI	ARM B	I ARM C	I ARM D I
Ι	17.30 - 19.00	I		I		Ι		I	I I
Ι		Ι	ARM A	Ι	0.00	0 I	0.000	I 0.000	I 0.000 I
I		Ι		I?	?????	? I:	???????	I???????	I??????? I
I		Ι		Ι	(0.	0)I	(0.0)	I (0.0)I(0.0)I
Ι		Ι		Ι		I		I	I I
Ι		Ι	ARM B	Ι	0.00	0 I	0.000	I 0.000	I 0.000 I
I		Ι		I?	?????	? I	???????	I???????	I??????? I
I		Ι		Ι	(0.	0)I	(0.0)	I (0.0)I (0.0)I
I		Ι		I		I		I	I I
I		Ι	ARM C	Ι	0.86	1 I	0.139	I 0.000	I 0.000 I
I		Ι		I	495.	0 I	80.0	I 0.0	I 0.0 I
I		Ι		Ι	(0.	0)I	(0.0)	I (0.0)I (0.0)I
Ι		Ι		Ι		I		I	I I
Ι		Ι	ARM D	Ι	0.42	9 I	0.571	I 0.000	I 0.000 I
Ι		Ι		Ι	75.	0 I	100.0	I 0.0	I 0.0 I
I		Ι		Ι	(0.	0)I	(0.0)	I (0.0)I (0.0)I
I		Ι		Ι		I		I	I I

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	CAPACITY	PEDESTRIAN FLOW	START	END QUEUE	DELAY (VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
_	17.30-17	45		(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	B-ACD	0.00	6.65	0.000		0.0	0.0	0.0	Ī
Ι	A-B	0.00							I
I	A-C	0.00							I
Ι	A-D	0.00	7.27	0.000		0.0	0.0	0.0	I
Ι	D-ABC	2.19	9.10	0.240		0.0	0.3	4.5	I
Ι	C-D	0.00							I
Ι	C-A	6.19							I
I	C-B	1.00	12.59	0.079		0.0	0.1	1.3	I
I									I
I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANGE	S IN:	I
I				MAJOR RD.	CENT RES	VIS TO) LEFT	VISIBILITY	I
I	MARG	INAL LAN	NE WIDTH	WIDTH	WIDTH	(AHEAD	FOR MAJO	R) TO RIGHT	I
I	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
I									I
I	B-	ACD	0.085	0.005	0.012	0.00) 4	0.006	I
Ι	C-	В	0.115	0.000		0.01	L2		I
Ι	D-	ABC	0.115	0.005	0.013	0.00)5	0.008	I
I	A-	-D	0.087	0.007		0.00	8		I

Ι	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
Ι				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
Ι	17.45-18	3.00							I
I	B-ACD	0.00	6.45	0.000		0.0	0.0	0.0	I
Ι	A-B	0.00							I
I	A-C	0.00							I
I	A-D	0.00	7.00	0.000		0.0	0.0	0.0	I
Ι	D-ABC	2.61	8.75	0.299		0.3	0.4	6.1	I
Ι	C-D	0.00							I
Ι	C-A	7.39							I
Ι	C-B	1.19	12.59	0.095		0.1	0.1	1.5	I
Ι									I
Ι			EFFECT ON		(PCU/MIN) OF				I
I					CENT RES	VIS TO		VISIBILITY	I
I			NE WIDTH	WIDTH			FOR MAJO		I
Ι	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)	1	(M)	I
Ι									I
I				0.006	0.012	0.00		0.006	I
Ι	C-	_	0.115	0.000		0.01			I
Ι		-ABC	0.110	0.006	0.013	0.00		0.008	I
Ι	A-	-D	0.084	0.009		0.00	08		I

.-----

I				(RFC)	(PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) T	DELAY (VEH.MIN/ IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
I	B-ACD A-B	0.00	6.18	0.000		0.0	0.0	0.0	I I I
I	A-D D-ABC C-D	0.00 0.00 3.20 0.00	6.18 6.61 8.26	0.000 0.387		0.0	0.0	0.0 8.9	I I
I	C-A C-B	1.46	12.59	0.116			0.1		I I
I I I I			EFFECT ON	CAPACITY	(PCU/MIN) OF CENT RES WIDTH (.1M)	MARGINA VIS TO (AHEAD (M)	AL CHANGES) LEFT FOR MAJOR	IN: VISIBILITY) TO RIGHT (M)	I I I I
I I I									I I I
I I	D- A-	ABC D	0.103 0.079	0.008 0.011	0.012	0.00)5)7 	0.007	
 I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) T	DELAY (VEH.MIN/ IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
						0.0	0.0	0.0	I I
I I I	A-C A-D D-ABC C-D	0.00 0.00 3.20 0.00	6.17 6.61 8.26	0.000 0.387		0.0	0.0	0.0	I I
I I	C-A C-B	9.05 1.46	12.59	0.116		0.1	0.1	2.0	I I I
I			EFFECT ON	CAPACTTY	(PCU/MIN) OF CENT RES	MARGINA VIS TO	AL CHANGES	IN: VISTRILITY	T
	MARG CHA		NE WIDTH (.1M)	WIDTH (.1M)	WIDTH (.1M)	(AHEAD (M)	FOR MAJOR) TO RIGHT (M)	I I
I	B- C-	ACD B	0.075 0.115	0.007	0.012	0.00)3 .2	0.005	I
I	D- A-	·ABC ·D	0.103 0.079	0.008 0.011	0.013	0.00)5)7	0.007	I
Ι			CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) T	DELAY (VEH.MIN/ IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
I	18.30-18 B-ACD	0.00	6.45	(RFC)	(PEDS/MIN)	(VEHS)	END QUEUE (VEHS) T:	IME SEGMENT)	TIME SEGMENT) I I I I
I I	18.30-18 B-ACD	0.00	6.45	(RFC)	(PEDS/MIN)	0.0 0.0	(VEHS) T	0.0	TIME SEGMENT) I I I I I I I I I I
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	18.30-18 B-ACD	0.00		(RFC)	(PEDS/MIN)	0.0 0.0 0.0 0.6	0.0 0.0	0.0 0.0 0.7	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I I I	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B	0.00 0.00 0.00 0.00 0.00 2.61 0.00 7.39 1.19	6.45 7.00 8.75 12.59 EFFECT ON	(RFC) 0.000 0.000 0.299 0.095 CAPACITY	(PCU/MIN) OF CENT RES WIDTH	(VEHS) 0.0 0.0 0.6 0.1 MARGINA VIS TO (AHEAD	0.0 0.0 0.4 0.1 LCHANGES	O.0 0.0 6.7 1.6 IN: VISIBILITY	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B	0.00 0.00 0.00 0.00 2.61 0.00 7.39 1.19	6.45 7.00 8.75 12.59 EFFECT ON NE WIDTH (.1M)	(RFC) 0.000 0.000 0.299 0.095 CAPACITY MAJOR RD. WIDTH (.1M)	(PEUS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M)	0.0 0.0 0.6 0.1 MARGINA VIS TO (AHEAD	0.0 0.0 0.4 0.1 AL CHANGES D LEFT FOR MAJOR	0.0 0.0 6.7 1.6 IN: VISIBILITY TO RIGHT (M)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B	0.00 0.00 0.00 0.00 2.61 0.00 7.39 1.19	6.45 7.00 8.75 12.59 EFFECT ON NE WIDTH (.1M)	(RFC) 0.000 0.000 0.299 0.095 CAPACITY MAJOR RD. WIDTH (.1M)	(PEUS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M)	0.0 0.0 0.6 0.1 MARGINA VIS TO (AHEAD	0.0 0.0 0.4 0.1 AL CHANGES D LEFT FOR MAJOR	0.0 0.0 6.7 1.6 IN: VISIBILITY TO RIGHT (M)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B-C-D A-A	0.00 0.00 0.00 0.00 2.61 0.00 7.39 1.19	6.45 7.00 8.75 12.59 EFFECT ON NE WIDTH (.1M) 0.081 0.115 0.110 0.084	(RFC) 0.000 0.000 0.299 0.095 CAPACITY MAJOR RD. WIDTH (.1M) 0.006 0.000 0.006 0.009	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013	0.0 0.0 0.6 0.1 MARGINA VIS TO (AHEAD (M) 0.00 0.01	0.0 0.0 0.4 0.1 AL CHANGES LEFT FOR MAJOR;	0.0 0.0 6.7 1.6 IN: VISIBILITY 0.006 0.006	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B-C- D- A- TIME	0.00 0.00 0.00 0.00 2.61 0.00 7.39 1.19 SINAL LAI NGE: ACD BABC	6.45 7.00 8.75 12.59 EFFECT ON NE WIDTH (.1M) 0.081 0.115 0.110 0.084	(RFC) 0.000 0.000 0.299 0.095 CAPACITY MAJOR RD. WIDTH (.1M) 0.006 0.000 0.006 0.009	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW	0.0 0.0 0.6 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00	(VEHS) T: 0.0 0.0 0.4 0.1 AL CHANGES) LEFT FOR MAJOR; 0.4 2.5 8.8 END QUEUE	0.0 0.0 6.7 1.6 IN: VISIBILITY 0.006 0.006 0.008	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B- C- D- A- TIME 18.45-19	0.00 0.00 0.00 0.00 2.61 0.00 7.39 1.19 SINAL LAI NGE: ACD BABC DD	6.45 7.00 8.75 12.59 EFFECT ON NE WIDTH (.1M) 0.081 0.115 0.110 0.084 	(RFC) 0.000 0.000 0.299 0.095 CAPACITY MAJOR RD. WIDTH (.1M) 0.006 0.000 0.006 0.000 DEMAND/ CAPACITY (RFC)	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.6 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(VEHS) T: 0.0 0.0 0.4 0.1 AL CHANGES) LEFT FOR MAJOR; 0.4 2.5 8.8 END QUEUE	O.0 O.0 6.7 1.6 IN: VISIBILITY O.006 O.008 DELAY (VEH.MIN/ IME SEGMENT)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B- C- D- A- TIME 18.45-19	0.00 0.00 0.00 0.00 2.61 0.00 7.39 1.19 SINAL LAI NGE: ACD BABC DD	6.45 7.00 8.75 12.59 EFFECT ON NE WIDTH (.1M) 0.081 0.115 0.110 0.084 	(RFC) 0.000 0.000 0.299 0.095 CAPACITY MAJOR RD. WIDTH (.1M) 0.006 0.000 0.006 0.000 DEMAND/ CAPACITY (RFC)	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.6 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	O.O O.O O.4 O.1 AL CHANGES D LEFT FOR MAJOR 14 22 15 18 END QUEUE (VEHS) T:	IME SEGMENT) 0.0 0.0 6.7 1.6 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B-C- D- A- TIME 18.45-19 B-ACD A-B A-C A-D D-ABC C-D C-C C-C C-C C-C C-C C-C C-C C-C C-	0.00 0.00 0.00 0.00 2.61 0.00 7.39 1.19 SINAL LAI NGE: ACD BABC DD	6.45 7.00 8.75 12.59 EFFECT ON NE WIDTH (.1M) 0.081 0.115 0.110 0.084 	(RFC) 0.000 0.000 0.299 0.095 CAPACITY MAJOR RD. WIDTH (.1M) 0.006 0.000 0.006 0.000 DEMAND/ CAPACITY (RFC)	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.6 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	O.O O.O O.4 O.1 AL CHANGES D LEFT FOR MAJOR O.1 END QUEUE (VEHS) T:	IME SEGMENT) 0.0 0.0 6.7 1.6 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0 0.0 5.0	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B C- D- A TIME 18.45-19 B-ACD A-B A-C A-D D-ABC C-D C-A C-B	0.00 0.00 0.00 0.00 2.61 0.00 7.39 1.19 SINAL LAI NGE: ACD BABC D DEMAND (VEH/MIN) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	6.45 7.00 8.75 12.59 EFFECT ON NE WIDTH (.1M) 0.081 0.115 0.110 0.084	(RFC) 0.000 0.000 0.299 0.095 CAPACITY MAJOR RD. WIDTH (.1M) 0.006 0.000 0.006 0.009 DEMANDA/ CAPACITY (RFC) 0.000 0.240 0.079 CAPACITY	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.1 MARGINF VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.0	(VEHS) T: 0.0 0.0 0.1 AL CHANGES D LEFT FOR MAJOR; 04 2 25 88 CUEUE (VEHS) T: 0.0 0.0 0.3 0.1	IME SEGMENT) 0.0 0.0 6.7 1.6 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0 1.3 IN:	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA 18.45-19 B-ACD A-C A-D D-ABC C-D C-A C-B MARG CHA	0.00 0.00 0.00 0.00 2.61 0.00 7.39 1.19 SINAL LAI NGE: DEMAND (VEH/MIN) 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 6.19 1.00 SINAL LAI NGE:	6.45 7.00 8.75 12.59 EFFECT ON NE WIDTH (.1M) 0.081 0.115 0.110 0.084	(RFC) 0.000 0.000 0.299 0.095 CAPACITY MAJOR RD. 0.006 0.000 0.006 0.000 0.006 0.009	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.1 MARGINF VIS TC (AHEAD (M) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(VEHS) T: 0.0 0.0 0.1 AL CHANGES LEFT FOR MAJOR; 04 22 58 END QUEUE (VEHS) T: 0.0 0.3 0.1 AL CHANGES LEFT FOR MAJOR;	IME SEGMENT) 0.0 0.0 6.7 1.6 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0 1.3 IN: VISIBILITY) TO RIGHT (M)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I

I A-D	0.						0.008		
UEUE FOR STE		D.							
TIME SEGMENT	NO OF								
ENDING									
	IN QUEUE								
17.45	0.0								
18.00	0.0								
18.15	0.0								
18.30	0.0								
18.45	0.0								
19.00	0.0								
EUE FOR STE	REAM A-D								
IME SEGMENT									
ENDING									
	IN QUEUE								
17.45	0.0								
18.00 18.15	0.0								
18.30	0.0								
18.45	0.0								
19.00	0.0								
	REAM D-AB								
E SEGMENT	NO. OF								
ENDING	VEHICLES								
	IN QUEUE								
17.45	0.3								
18.00	0.4								
8.15	0.6	*							
18.30	0.6	*							
18.45	0.4								
9.00	0.3								
UE FOR STF	REAM C-B								
ME SEGMENT	NO. OF								
NDING									
	IN QUEUE								
17.45	0.1								
18.00	0.1								
18.15 18.30	0.1								
18.30	0.1								
19.00	0.1								
	QUEUEIN	IG DE	LAY	INFORMAT	TION OVER	WHOL	E PERIOD		
OMDERN T									
STREAM I	TOTAL DEMA	TIAD	± T	* DELY/	/ *	Τ ^	TWCTO9IA	ر ند ۲.Δ.۲	^ * NETING .
I	VEH) (VEH	I/H)	I	(MIN)	(MIN/VEH)	I	(MIN)		(MIN/VEH)
B-ACD I A-B I A-C I A-D I D-ABC I 2	0.0 I	0.0	Ι	0.0 I	0.00	I	0.0	Ι	0.00
A-B I	0.0 I	0.0	Ι	I		I		Ι	
A-C I	0.0 I	0.0	Ι	I		I		Ι	
A-D I	0.0 I	0.0	Ι	0.0 I	0.00	I	0.0	Ι	0.00
D-ABC I 2	240.0 I 16	0.0	Ι	40.5 I	0.17	I	40.5	I	0.17

D-ABC 0.115 0.005 0.013 0.005 0.008

160.0 I 0.0 I 452.5 I

73.1 I

I ALL I 1028.4 I 685.6 I 50.1 I

40.5 I

9.6 I

0.09

0.05 I

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

* INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

* THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

40.5 9.6 I

50.1 I

0.09

I 0.05

I D-ABC I I C-D I I C-A I I C-B I

2 1 240.0 I I 0.0 I I 678.7 I I 109.7 I

I

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\D E F flow\F AM 2025 REF.vpi" at 10:42:28 on Monday, 30 May 2016

RUN TITLE

Marble Road / Tin Chiu Street AM (F) 2025 REF

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

INPUT DATA

ARM A IS Tin Chiu Street NB ARM B IS Marble Road WB ARM C IS Tin Chiu Street SB ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B

STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

ETC.

.GEOMETRIC DATA

I	DATA ITEM	I	MINOR R	ROAD B	3 I	MINO	R ROAD	D	I
I I	TOTAL MAJOR ROAD CARRIAGEWAY WIDTH CENTRAL RESERVE WIDTH		(WCR) 10			(WCR)			I I I
I I I	MAJOR ROAD RIGHT TURN - WIDTH - VISIBILITY - BLOCKS TRAFFIC		(WC-B) 5 (VC-B) Y			(WA-D) (VA-D)			I I I
I I I	MINOR ROAD - VISIBILITY TO LEFT - VISIBILITY TO RIGHT - LANE 1 WIDTH - LANE 2 WIDTH	I			i. I	(VD-A) (VD-C) (WD-A) (WD-C)	100.0	М.	I I I

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 08.00 AND ENDS 09.30

		I	TO RISE	I IS	REACHED I	LOW STOPS I FALLING I				
ARI					45.00 I		5.56	 I 8.34	I 5.56 I	
ARI	1 B	Ι	15.00	I	45.00 I	75.00 I	0.00	0.00	0.00 I	
ARI	1 C	T	15.00	T .	45.00 I 45.00 T	75.00 I 75.00 I 75.00 I 75.00 I	0.81	I 1.22	2 1 0.81 1 5 T 0.38 T	
				I I I	TURNING TURNING	PROPORTIONS COUNTS (VEH/I	HR)		I I I	
		Т	IME			. I ARM B I				
()8.C) ()	- 09.30			I I I I I I I I I I I I I I I I I I I			I 2 I	
				I	I 0.0	I 85.0 I	350.0	10.0) I	
				I)I (0.0)I				
				I T ARM		I 0.000 I				
				I		I??????? I?				
				I) I (0.0) I				
				I I ARM		I I 0.692 I				
				I	I 0.0	I 45.0 I	0.0	1 20.0) I	
				I I	I (0.0	I(0.0)I I I				
						I 0.500 I				
				I	I 0.0	I 15.0 I	15.0	0.0) I	
				I T		I(0.0)I I I				
JRN:	ING	PR	OPORTIONS	ARE CALC	ULATED FROM	TURNING COUN	NT DATA			
т:	ME		DEMAND	CAPACIT	Y DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELA
			(VEH/MIN)	(VEH/MIN						TIME SEGMENT)
08			.15			, ,	, -,		,	,
				6.68	0.000		0.0	0.0	0.0	
			1.06							
1			4.38							
2	7-D		4.38	11.56	0.011		0.0	0.0	0.2	
2 2	A-C A-D D-AE	3	4.38 0.13 0.10		0.011		0.0	0.0	0.2	
2 2 1 1	A-C A-D O-AE O-BC	3	4.38 0.13 0.10 0.28	8.51	0.033		0.0	0.0	0.2	
2 I I (A-C A-D O-AE O-BC C-AE C-D	3 C 3D	4.38 0.13 0.10 0.28 0.58 0.24	8.51			0.0	0.0	0.2	
2 I I (A-C A-D O-AE O-BC C-AE	3 C 3D	4.38 0.13 0.10 0.28	8.51	0.033		0.0	0.0	0.2	
1 I ((A-C A-D D-AE D-BC C-AE C-D C-A	3 2 3D	4.38 0.13 0.10 0.28 0.58 0.24 0.00	8.51 11.33	0.033 0.051		0.0 0.0 0.0	0.0 0.0 0.1	0.2 0.5 0.8	
7 1 1 (((A-C A-D O-AE O-BC C-AE C-D C-A	3 3 3 3 5 3 5 5 5 7 7 7	4.38 0.13 0.10 0.28 0.58 0.24 0.00	8.51 11.33	0.033 0.051	PEDESTRIAN FLOW	0.0 0.0 0.0 START QUEUE	0.0 0.0 0.1	0.2 0.5 0.8	GEOMETRIC DELAY
1 I I I I I I I I I I I I I I I I I I I	A-C A-D D-AE D)-BC C-AE C-AE C-A C-A IME	3 C 33D	4.38 0.13 0.10 0.28 0.58 0.24 0.00 	8.51 11.33	0.033 0.051	PEDESTRIAN FLOW	0.0 0.0 0.0 START QUEUE (VEHS)	0.0 0.0 0.1	0.2 0.5 0.8	GEOMETRIC DELAY
11 II I	A-C A-D D-AE D)-BC C-AE C-D C-AE C-D IME	3 C 33D	4.38 0.13 0.10 0.28 0.58 0.24 0.00 	8.51 11.33	0.033 0.051	PEDESTRIAN FLOW	0.0 0.0 0.0 START QUEUE (VEHS)	0.0 0.0 0.1	0.2 0.5 0.8 0.8 DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY
11 II I	A-C A-D D-AE D)-BC C-AE C-AE C-A C-A IME	3 C 33D	4.38 0.13 0.10 0.28 0.58 0.24 0.00 	8.51 11.33	0.033 0.051 Y DEMAND/) CAPACITY (RFC) 0.000	PEDESTRIAN FLOW	0.0 0.0 0.0 START QUEUE (VEHS)	0.0 0.0 0.1	0.2 0.5 0.8 0.8 DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A-C A-D A-D A-B C-AE C-A C-A ME A-B A-C A-B A-C A-D A-C A-D A-D A-C A-D A-D A-D A-D A-D A-D A-D A-B A-C	33D 	4.38 0.13 0.10 0.28 0.58 0.24 0.00 	8.51 11.33 CAPACIT (VEH/MIN 6.51	0.033 0.051 Y DEMAND/) CAPACITY (RFC) 0.000	PEDESTRIAN FLOW	0.0 0.0 0.0 0.0 START QUEUE (VEHS) 0.0	0.0 0.0 0.1	0.2 0.5 0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0	GEOMETRIC DELA
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A-C A-D D-AE D-BC C-AE C-D C-A C-A ME	33D	4.38 0.13 0.10 0.28 0.58 0.24 0.00 	8.51 11.33 CAPACIT (VEH/MIN 6.51	0.033 0.051 Y DEMAND/) CAPACITY (RFC) 0.000	PEDESTRIAN FLOW	0.0 0.0 0.0 0.0 START QUEUE (VEHS) 0.0	0.0 0.0 0.1	0.2 0.5 0.8 0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0	GEOMETRIC DELA: (VEH.MIN/ TIME SEGMENT)
1	A-C A-D A-D A-B C-AE C-AE C-AE IME .15- 3-AC A-D A-C	-08 CD	4.38 0.13 0.10 0.28 0.58 0.24 0.00 	8.51 11.33 CAPACIT (VEH/MIN 6.51	0.033 0.051 Y DEMAND/) CAPACITY (RFC) 0.000	PEDESTRIAN FLOW	0.0 0.0 0.0 0.0 START QUEUE (VEHS) 0.0	0.0 0.0 0.1	0.2 0.5 0.8 0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0	GEOMETRIC DELA
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A-C A-D D-AE D-BC C-AE C-D C-A C-A ME	-08 CD	4.38 0.13 0.10 0.28 0.58 0.24 0.00 	8.51 11.33 CAPACIT (VEH/MIN 6.51	0.033 0.051 Y DEMAND/) CAPACITY (RFC) 0.000	PEDESTRIAN FLOW	0.0 0.0 0.0 0.0 START QUEUE (VEHS) 0.0	0.0 0.0 0.1	0.2 0.5 0.8 0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0	GEOMETRIC DELA
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A-C A-D D-AE D-BC C-AE C-D C-AE ME . 15- 3-AC A-D D-AE A-D D-AE C-AE C-AE C-AE C-AE C-AE C-AE C-AE	-08 -08 	4.38 0.13 0.10 0.28 0.58 0.24 0.00 	8.51 11.33 CAPACIT (VEH/MIN 6.51 11.51 8.16 8.36 11.11	0.033 0.051 Y DEMAND/) CAPACITY (RFC) 0.000 0.013 0.014 0.040 0.062	PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 START QUEUE (VEHS) 0.0 0.0 0.0 0.1	0.0 0.0 0.1 END QUEUE (VEHS) 0.0	0.2 0.5 0.8 0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
7	A-C A-D D-AE D-BC C-AE C-D C-A IME A-B A-C A-D D-AE D-BC C-AE C-D	-08 -08 	4.38 0.13 0.10 0.28 0.58 0.24 0.00 	8.51 11.33 CAPACIT (VEH/MIN 6.51 11.51 8.16 8.36 11.11	0.033 0.051 Y DEMAND/) CAPACITY (RFC) 0.000 0.013 0.014 0.040 0.062	PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 0.0 START QUEUE (VEHS) 0.0 0.0 0.0	0.0 0.0 0.1	0.2 0.5 0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.2 0.6 1.0	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A-C A-C A-D D-AE D-BC C-D C-A	-08 -08 -08 	4.38 0.13 0.10 0.28 0.58 0.24 0.00 DEMAND (VEH/MIN) .30 0.00 1.27 5.22 0.15 0.11 0.33 0.69 0.28 0.00 DEMAND (VEH/MIN)	8.51 11.33 CAPACIT (VEH/MIN 6.51 11.51 8.16 8.36 11.11	0.033 0.051 Y DEMAND/) CAPACITY (RFC) 0.000 0.013 0.014 0.040 0.062	PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 START QUEUE (VEHS) 0.0 0.0 0.0 0.1	0.0 0.0 0.1 END QUEUE (VEHS) 0.0 0.0 0.0 0.1	0.2 0.5 0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.6 1.0	GEOMETRIC DELA: (VEH.MIN/ TIME SEGMENT)
72 II	A-C A-D O-AE C-AE C-AE C-A IME .15- 3-AC A-D O-AE C-AE C-A IME	-08 -08 	4.38 0.13 0.10 0.28 0.58 0.24 0.00 	8.51 11.33 CAPACIT (VEH/MIN 6.51 11.51 8.16 8.36 11.11	0.033 0.051 Y DEMAND/) CAPACITY (RFC) 0.000 0.013 0.014 0.040 0.062 Y DEMAND/) CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 START QUEUE (VEHS) 0.0 0.0 0.0 0.1	0.0 0.0 0.1 END QUEUE (VEHS) 0.0 0.0 0.0 0.1	0.2 0.5 0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.6 1.0	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
22 11 11 (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	A-C A-D O-AE C-A C-A IME 15- IME 15- IME A-C A-D O-AE C-A IME	-08 33 2 33D 	4.38 0.13 0.10 0.28 0.58 0.24 0.00 DEMAND (VEH/MIN) .30 0.00 1.27 5.22 0.15 0.11 0.33 0.69 0.28 0.00 DEMAND (VEH/MIN) .45 0.00 1.55	8.51 11.33 CAPACIT (VEH/MIN 6.51 11.51 8.16 8.36 11.11	0.033 0.051 Y DEMAND/) CAPACITY (RFC) 0.000 0.013 0.014 0.040 0.062	PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 START QUEUE (VEHS) 0.0 0.0 0.0 0.1	0.0 0.0 0.1 END QUEUE (VEHS) 0.0 0.0 0.0 0.1	0.2 0.5 0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.6 1.0	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A-C A-C A-D D-AE C-AE IME .153030303030303030	-08 -08 -08 -08	4.38 0.13 0.10 0.28 0.58 0.24 0.00 	8.51 11.33 CAPACIT (VEH/MIN 6.51 11.51 8.16 8.36 11.11 CAPACIT (VEH/MIN 6.27	0.033 0.051 Y DEMAND/) CAPACITY (RFC) 0.000 0.013 0.014 0.040 0.062 Y DEMAND/) CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 START QUEUE (VEHS)	0.0 0.0 0.1 END QUEUE (VEHS) 0.0 0.0 0.0 0.1	0.2 0.5 0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.6 1.0	GEOMETRIC DELA: (VEH.MIN/ TIME SEGMENT) GEOMETRIC DELA: (VEH.MIN/
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A-C A-C A-D D-AE C-AE IME .153030303030303030	-08 -08 -08 -08	4.38 0.13 0.10 0.28 0.58 0.24 0.00 	8.51 11.33 CAPACIT (VEH/MIN 6.51 11.51 8.16 8.36 11.11 CAPACIT (VEH/MIN 6.27	0.033 0.051 Y DEMAND/) CAPACITY (RFC) 0.000 0.013 0.014 0.040 0.062 Y DEMAND/) CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN) PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 START QUEUE (VEHS)	0.0 0.0 0.1 END QUEUE (VEHS) 0.0 0.0 0.0 0.1	0.2 0.5 0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.6 1.0	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A-C A-C A-D D-AE C-AE IME .153030303030303030	-08 -08 -08 -08	4.38 0.13 0.10 0.28 0.58 0.24 0.00 	8.51 11.33 CAPACIT (VEH/MIN 6.51 11.51 8.16 8.36 11.11 CAPACIT (VEH/MIN 6.27	0.033 0.051 Y DEMAND/) CAPACITY (RFC) 0.000 0.013 0.014 0.040 0.062 Y DEMAND/) CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN) PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 START QUEUE (VEHS) 0.0	END QUEUE (VEHS) O.0 O.1 END QUEUE (VEHS) O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.	0.2 0.5 0.8 0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.6 1.0 DELAY (VEH.MIN/ TIME SEGMENT) 0.0	GEOMETRIC DELA: (VEH.MIN/ TIME SEGMENT) GEOMETRIC DELA: (VEH.MIN/
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A-C A-C A-D D-AE C-AE IME .153030303030303030	-08 -08 -08 -08	4.38 0.13 0.10 0.28 0.58 0.24 0.00 	8.51 11.33 CAPACIT (VEH/MIN 6.51 11.51 8.16 8.36 11.11 CAPACIT (VEH/MIN 6.27	0.033 0.051 Y DEMAND/) CAPACITY (RFC) 0.000 0.013 0.014 0.040 0.062 Y DEMAND/) CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN) PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 START QUEUE (VEHS) 0.0	0.0 0.0 0.1 END QUEUE (VEHS) 0.0 0.0 0.0 0.1	0.2 0.5 0.8 0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.6 1.0 DELAY (VEH.MIN/ TIME SEGMENT) 0.0	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15-26-26-26-26-26-26-26-26-26-26-26-26-26-	-08 CD 33 CD 34 CD	4.38 0.13 0.10 0.28 0.58 0.24 0.00 	8.51 11.33 CAPACIT (VEH/MIN 6.51 11.51 8.16 8.36 11.11 CAPACIT (VEH/MIN 6.27	0.033 0.051 Y DEMAND/) CAPACITY (RFC) 0.000 0.013 0.014 0.040 0.062 Y DEMAND/) CAPACITY (RFC) 0.000	PEDESTRIAN FLOW (PEDS/MIN) PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 START QUEUE (VEHS) 0.0	END QUEUE (VEHS) O.0 O.1 END QUEUE (VEHS) O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.	0.2 0.5 0.8 0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.6 1.0 DELAY (VEH.MIN/ TIME SEGMENT) 0.0	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A-C A-C A-D D-AE C-AE IME .153030303030303030	-08 CD 33 CD 34 CD	4.38 0.13 0.10 0.28 0.58 0.24 0.00 	8.51 11.33 CAPACIT (VEH/MIN 6.51 11.51 8.16 8.36 11.11 CAPACIT (VEH/MIN 6.27	0.033 0.051 Y DEMAND/) CAPACITY (RFC) 0.000 0.013 0.014 0.040 0.062 Y DEMAND/) CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 START QUEUE (VEHS) 0.0	END QUEUE (VEHS) O.0 O.1 END QUEUE (VEHS) O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.	0.2 0.5 0.8 0.8 DELAY (VEH.MIN/ TIME SEGMENT) 0.0 0.2 0.2 0.6 1.0 DELAY (VEH.MIN/ TIME SEGMENT) 0.0	GEOMETRIC DELA: (VEH.MIN/ TIME SEGMENT) GEOMETRIC DELA: (VEH.MIN/

 I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/	PEDESTRIAN FLOW	START	END OUEUE	DELAY (VEH.MIN/	GEOMETRIC DELAYI
		(VEH/MIN)	(APU/MIN)	(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
T	08.45-0	9 00		(INFC)	(FEDS/MIN)	(VEIIO)	(A TITO)	TIME SEGMENT)	TIME SEGMENT) T
T	B-ACD	0.00	6.27	0.000		0.0	0.0	0.0	T
I	A-B	1.55							I
I	A-C	6.40							I
I	A-D	0.18	11.45	0.016		0.0	0.0	0.2	I
I	D-AB	0.14	7.91	0.018		0.0	0.0	0.3	I
I	D-BC	0.41	8.15	0.050		0.1	0.1	0.8	I
I	C-ABD	0.85	10.80	0.079		0.1	0.1	1.3	I
Ι	C-D	0.34							I
I	C-A	0.00							I
I									I
I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY	PEDESTRIAN FLOW	START	END QUEUE	DELAY (VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
Ι	09.00-09	9.15							I
Ι	B-ACD	0.00	6.51	0.000		0.0	0.0	0.0	I
Ι	A-B	1.27							I
Ι	A-C	5.22							I
Ι	A-D	0.15	11.51	0.013		0.0	0.0	0.2	I
Ι	D-AB	0.11	8.16	0.014		0.0	0.0	0.2	I
Ι	D-BC	0.33	8.36	0.040		0.1	0.0	0.6	I
Ι	C-ABD	0.69	11.11	0.062		0.1	0.1	1.0	I
Ι	C-D	0.28							I
Ι	C-A	0.00							I
Ι									I

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
Ι	09.15-09	9.30							I
Ι	B-ACD	0.00	6.68	0.000		0.0	0.0	0.0	I
Ι	A-B	1.06							I
Ι	A-C	4.38							I
Ι	A-D	0.13	11.56	0.011		0.0	0.0	0.2	I
Ι	D-AB	0.10	8.35	0.011		0.0	0.0	0.2	I
Ι	D-BC	0.28	8.51	0.033		0.0	0.0	0.5	I
Ι	C-ABD	0.58	11.33	0.051		0.1	0.1	0.8	I
Ι	C-D	0.24							I
Ι	C-A	0.00							I
Ι									I

^{*}WARNING* NO MARGINAL ANALYSIS OF CAPACITIES AS MAJOR ROAD BLOCKING MAY OCCUR

. OUEUE FOR ST	DEAM DACD
TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
08.15	0.0
08.30	0.0
08.45	0.0
09.00	0.0
09.15	0.0
09.30	0.0
QUEUE FOR ST	REAM A-D
TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
08.15	0.0
08.30	0.0
08.45	0.0
09.00	0.0
09.15	0.0
09.30	0.0
QUEUE FOR ST	REAM D-AB
TIME SEGMENT	NO. OF

TIME	SEGMI	ENT 1	10.	OF
ENI	DING	VEI	HICI	LES
		IN	QUE	EUE
08.	.15		0.	. 0
08.	.30		0.	. 0
08.	.45		0.	. 0
09.	.00		0.	. 0
09.	.15		0.	. 0
09.	.30		0.	. 0
QUEUE	E FOR	STREAM	Ι	D-BC

QUEUE	FOR	STR	EAM	Ι	D-B0	;
TIME S	SEGMI	ENT	N	0.	OF	
END:	ING		VEH	ICI	LES	
			IN	QUE	EUE	
08.1	15			0.	. 0	

08.30	0.0
08.45	0.1
09.00	0.1
09.15	0.0
09.30	0.0
09.30	0.0
QUEUE FOR ST	REAM C-ABD
TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
08.15	0.1
08.30	0.1
08.45	0.1
09.00	0.1
09.15	0.1
09.30	0.1

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

I	STREAM	Ι	TOTAL	. 1	DEMAND	Ι	* QUEUE			Ι,			QUEUEING *	I
1		I				Ι	* DELA		′ * 	Ι	* DE	LA:	(*	1
		T-	(*******)		(****** /**)						(1/737)		(1471)	_T
Τ		Ι	(VEH)		(VEH/H)	Τ	(MIN)		(MIN/VEH)	Τ	(MIN)		(MIN/VEH)	Τ
I	B-ACD	I	0.0	I	0.0	I	0.0	Ε	0.00	I	0.0	I	0.00	I
Ι	A-B	Ι	116.6	Ι	77.7	Ι	3	Ε		I		Ι		Ι
Ι	A-C	Ι	479.9	Ι	319.9	Ι	3	Ε		I		Ι		Ι
Ι	A-D	Ι	13.7	Ι	9.1	Ι	1.2 1	Ε	0.09	I	1.2	Ι	0.09	Ι
Ι	D-AB	Ι	10.6	Ι	7.0	Ι	1.3 1	Ε	0.12	I	1.3	Ι	0.12	Ι
Ι	D-BC	Ι	30.6	Ι	20.4	Ι	3.8 1	Ε	0.12	I	3.8	Ι	0.12	Ι
Ι	C-ABD	Ι	63.5	Ι	42.3	Ι	6.4 1	Ε	0.10	I	6.4	Ι	0.10	Ι
Ι	C-D	Ι	25.6	Ι	17.1	Ι	3	Ε		I		Ι		Ι
Ι	C-A	Ι	0.0	Ι	0.0	Ι	3	Ε		Ι		Ι		Ι
т	ALL	т	740.5	т	493.6	т	12.7 1	 r	0.02	т	12.7	 Т	0.02	 T
_	71111	_	740.5	_	455.0	_	12.7	-	0.02	_	12.7	_	0.02	_

- * DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

 * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

 * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

END OF JOB

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\ayf\North point tia\F PM 2025 REF.vpi" at 14:45:46 on Monday, 30 May 2016

RUN TITLE

Marble Road / Tin Chiu Street PM (F) 2025 REF

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

INPUT DATA

MINOR ROAD (ARM B)

ARM A IS Tin Chiu Street NB ARM B IS Marble Road WB ARM C IS Tin Chiu Street SB

ARM C IS Tin Chiu Street S ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B

STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

ETC.

.GEOMETRIC DATA

Ι	DATA ITEM	I	MINO	R ROAD	В	I	MINO	R ROAD	D	I
I	TOTAL MAJOR ROAD CARRIAGEWAY WIDTH CENTRAL RESERVE WIDTH		(W) (WCR)				(WCR)			I
Ι		I				I				I
I	MAJOR ROAD RIGHT TURN - WIDTH	I	(WC-B)	5.00	Μ.	I	(WA-D)	3.30	Μ.	I
I	- VISIBILITY	I	(VC-B)	0.0	Μ.	I	(VA-D)	100.0	Μ.	I
I	- BLOCKS TRAFFIC	I		YES		I		NO		I
Ι		I				I				I
Ι	MINOR ROAD - VISIBILITY TO LEFT	Ι	(VB-C)	0.0	Μ.	I	(VD-A)	30.0	Μ.	I
I	- VISIBILITY TO RIGHT	I	(VB-A)	0.0	Μ.	I	(VD-C)	100.0	Μ.	I
I	- LANE 1 WIDTH	I	(WB-C)	2.20	Μ.	I	(WD-A)	3.40	Μ.	I
Ι	- LANE 2 WIDTH	Ι	(WB-A)	0.00	Μ.	I	(WD-C)	3.40	Μ.	I

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 17.30 AND ENDS 19.00

ARM	I F	FLOW START	S I TOP (LOW STOPS I I	BEFORE I	I AT TOP	I	AFTER	I	
										-	
ARM B	I	15.00	I 4	15.00 I	75.00 I 75.00 I	0.00	I 0.00	I	0.00	I	
ARM C ARM D	I	15.00	Ι .	15.00 I 15.00 I	75.00 I	1.31	I 1.97	I	1.31	I	
										-	
			I I	TURNING	PROPORTIONS COUNTS (VEH/I GE OF H.V.S)			I I I			
		ME		ro i arm a	I ARM B I	ARM C I	I ARM D	I			
		19.00	I		I I			I			
			I I	I 0.0 I (0.0 I	I 0.185 I I 75.0 I)I (0.0)I I I	315.0 1	I 15.0 I (0.0 I	I) I I			
			I ARM I I I	I??????? I (0.0	I 0.000 I I??????? I?)I (0.0)I I I I	??????? I (0.0)I	I???????? I (0.0	I) I			
				I 0.000 I 0.0 I (0.0	I 0.714 I I 75.0 I)I (0.0)I I I	0.000 1	I 0.286 I 30.0 I (0.0	I I) I			
			I ARM I	0.000 I 0.00 I (0.0	1 0.455 I I 25.0 I)I (0.0)I I I	0.545 I 30.0 I (0.0)I	0.000 0.0 1 (0.0	I I) I			
	(VEH/MIN)	(VEH/MIN	CAPACITY	F.TOM	QUEUE	QUEUE	()	VEH.MI	N/	GEOMETRIC DELA (VEH.MIN/
17.30- B-AC	-17. CD	45		(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIM	E SEGM	ENT)	TIME SEGMENT)
17.30- B-AC A-B A-C	-17. CD	0.00 0.94 3.94	6.67	(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIM	0.0	ENT)	TIME SEGMENT)
17.30- B-AC A-B A-C A-D D-AB	-17. CD	0.00 0.94 3.94 0.19 0.16	6.67 11.41 8.26	(RFC)	(PEDS/MIN)	0.0 0.0	0.0 0.0	TIM		ENT)	TIME SEGMENT)
17.30- B-AC A-B A-C A-D D-AE D-BC	-17. CD	0.00 0.94 3.94 0.19 0.16	6.67 11.41 8.26	0.000 0.016 0.020	(PEDS/MIN)	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.1	TIM	0.0 0.2 0.3 0.9	ENT)	TIME SEGMENT)
17.30- B-AC A-B A-C A-D D-AB D-BC C-AB C-D	-17. CD	0.00 0.94 3.94 0.19 0.16 0.52 0.97	6.67 11.41 8.26	(RFC) 0.000 0.016 0.020	(PEDS/MIN)	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	TIM	0.0	ENT)	TIME SEGMENT)
17.30- B-AC A-B A-C A-D D-AB D-BC C-AB C-D C-A	-17. CD	0.00 0.94 3.94 0.19 0.16 0.52 0.97 0.34 0.00	6.67 11.41 8.26 8.47 11.52	(RFC) 0.000 0.016 0.020 0.062 0.084	(PEDS/MIN)	(VEHS) 0.0 0.0 0.0 0.0 0.0	(VEHS) 0.0 0.0 0.0 0.1 0.1	TIM	0.0 0.2 0.3 0.9 1.4		
17.30- B-AC A-B A-C A-D D-AE D-BC C-AE C-D C-A	-17.	0.00 0.94 3.94 0.19 0.16 0.52 0.97 0.34 0.00	6.67 11.41 8.26 8.47 11.52	(RFC) 0.000 0.016 0.020 0.062 0.084	(PEDS/MIN) PEDESTRIAN FLOW	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.1 0.1	TIMI	0.0 0.2 0.3 0.9 1.4	 N/	TIME SEGMENT) GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
17.30- B-AC A-B A-C A-D D-AE C-D C-AE C-D TIME	-17. CD 33 C BBD (0.00 0.94 3.94 0.19 0.16 0.52 0.97 0.34 0.00 DEMAND VEH/MIN)	6.67 11.41 8.26 8.47 11.52 CAPACIT: (VEH/MIN)	(RFC) 0.000 0.016 0.020 0.062 0.084	(PEDS/MIN) PEDESTRIAN FLOW	0.0 0.0 0.0 0.0 0.0 0.0 0.0 START QUEUE (VEHS)	0.0 0.0 0.0 0.1 0.1	TIMI	0.0 0.2 0.3 0.9 1.4	 N/	GEOMETRIC DELA (VEH.MIN/
17.30- B-AC A-B A-C A-D D-AE D-BC C-AE C-D C-A TIME	-17. -2D 33 33 53 BBD (18.	0.00 0.94 3.94 0.19 0.16 0.52 0.97 0.34 0.00 	6.67 11.41 8.26 8.47 11.52 CAPACIT: (VEH/MIN)	(RFC) 0.000 0.016 0.020 0.062 0.084 C DEMAND/ CAPACITY (RFC) 0.000	(PEDS/MIN) PEDESTRIAN FLOW	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.1 0.1 0.1	TIM	0.0 0.2 0.3 0.9 1.4	 N/	GEOMETRIC DELA (VEH.MIN/
17.30- B-AC A-B A-C A-D D-AE D-BC C-D C-A TIME 17.45- B-AC A-B A-C A-B	-17.	0.00 0.94 3.94 0.19 0.16 0.52 0.97 0.34 0.00 	6.67 11.41 8.26 8.47 11.52 CAPACIT: (VEH/MIN)	(RFC) 0.000 0.016 0.020 0.062 0.084 C DEMAND/ CAPACITY (RFC) 0.000	(PEDS/MIN) PEDESTRIAN FLOW	0.0 0.0 0.0 0.0 0.0 0.0 START QUEUE (VEHS) 0.0	0.0 0.0 0.0 0.1 0.1 0.1	TIM	0.0 0.2 0.3 0.9 1.4 DELAY VEH.MI E SEGM 0.0	 N/	GEOMETRIC DELA (VEH.MIN/
17.30- B-AC A-B A-C A-D D-AE C-AE C-D C-A TIME 17.45- B-AC A-B A-C A-D D-AE D-BC A-D D-AE D-BC	-17CD	0.00 0.94 3.94 0.19 0.16 0.52 0.97 0.34 0.00 	6.67 11.41 8.26 8.47 11.52 CAPACITY (VEH/MIN) 6.50 11.34 8.05 8.31	(RFC) 0.000 0.016 0.020 0.062 0.084 CDEMAND/CAPACITY (RFC) 0.000 0.020 0.024 0.075	(PEDS/MIN) PEDESTRIAN FLOW	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(VEHS) 0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.0 0.0 0.1	TIM	0.0 0.2 0.3 0.9 1.4 DELAY VEH.MI E SEGM 0.0	 N/	GEOMETRIC DELA (VEH.MIN/
17.30- B-AC A-B A-C C-AE C-D C-A TIME 17.45- B-AC A-B A-C A-B A-C D D-AE D-BC C-AE C-D C-A	-17. CD	0.00 0.94 3.94 0.19 0.16 0.52 0.97 0.34 0.00 	6.67 11.41 8.26 8.47 11.52 CAPACIT: (VEH/MIN) 6.50 11.34 8.05 8.31 11.33	(RFC) 0.000 0.016 0.020 0.062 0.084 DEMAND/ CAPACITY (RFC) 0.000 0.020 0.024 0.075 0.103	(PEDS/MIN) PEDESTRIAN FLOW	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(VEHS) 0.0 0.0 0.0 0.1 0.1 0.1 END QUEUE (VEHS) 0.0 0.0 0.1 0.1	TIM	0.0 0.2 0.3 0.9 1.4 DELAY VEH.MI 0.0 0.3 0.4 1.2	 N/ MENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
17.30- B-AC A-B A-C A-D D-AE C-AE C-D C-A TIME 17.45- B-AC A-B A-C A-D D-AE C-D C-A TIME	-17. CD	0.00 0.94 3.94 0.19 0.16 0.52 0.97 0.34 0.00 DEMAND (VEH/MIN) 00 0.00 1.12 4.70 0.22 0.20 0.62 1.17 0.40 0.00	6.67 11.41 8.26 8.47 11.52 CAPACITY (VEH/MIN) 6.50 11.34 8.05 8.31 11.33	(RFC) 0.000 0.016 0.020 0.062 0.084 CAPACITY (RFC) 0.000 0.024 0.075 0.103	PEDESTRIAN PEDESTRIAN FLOW PEDS/MIN)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(VEHS) 0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.1 0.1	TIM	0.0 0.2 0.3 0.9 1.4 DELAY VEH.MI 0.0 0.3 0.4 1.2 1.8	N/ IENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
17.30- B-AC A-B A-C A-D D-AE C-D C-A TIME 17.45- B-AC A-B A-C A-B D-AE C-D C-A TIME 18.00-	-17 CD 33 CD (CD 33 CD 33 CD 33	0.00 0.94 3.94 0.19 0.16 0.52 0.97 0.34 0.00 DEMAND (VEH/MIN) 00 0.00 1.12 4.70 0.22 0.20 0.62 1.17 0.40 0.00	6.67 11.41 8.26 8.47 11.52 CAPACITY (VEH/MIN) 6.50 11.34 8.05 8.31 11.33	(RFC) 0.000 0.016 0.020 0.062 0.084 CDEMAND/ CAPACITY (RFC) 0.000 0.020 0.024 0.075 0.103	PEDESTRIAN PEDESTRIAN FLOW PEDS/MIN)	(VEHS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(VEHS) 0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.1 0.1	TIM	0.0 0.2 0.3 0.9 1.4 DELAY VEH.MI 0.0 0.3 0.4 1.2 1.8	N/ IENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT) GEOMETRIC DELA (VEH.MIN/
17.30- B-AC A-B A-C A-D D-AE C-D C-A TIME 17.45- B-AC A-B A-C A-D D-AE C-D C-A TIME 17.45- B-AC A-B A-C TIME 18.00- B-AC A-B	-17. CD	0.00 0.94 3.94 0.19 0.16 0.52 0.97 0.34 0.00 0.00 1.12 4.70 0.22 0.20 0.62 1.17 0.40 0.00	6.67 11.41 8.26 8.47 11.52 CAPACITY (VEH/MIN) 6.50 11.34 8.05 8.31 11.33 CAPACITY (VEH/MIN) 6.26	(RFC) 0.000 0.016 0.020 0.062 0.084 CAPACITY (RFC) 0.000 0.024 0.075 0.103	PEDESTRIAN FLOW (PEDS/MIN) PEDESTRIAN FLOW (PEDS/MIN)	(VEHS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(VEHS) 0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.1 0.1 END QUEUE (VEHS)	TIM	0.0 0.2 0.3 0.9 1.4 DELAY VEH.MI 0.0 0.3 0.4 1.2 1.8	N/ IENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT) GEOMETRIC DELA (VEH.MIN/
17.30- B-AC A-B A-C A-D D-AE C-D C-A TIME 17.45- B-AC A-B A-C A-B D-BC C-A D-AE D-BC C-A TIME 18.00- B-AC A-B A-C A	-17	0.00 0.94 3.94 0.19 0.16 0.52 0.97 0.34 0.00 0.00 1.12 4.70 0.22 0.20 0.62 1.17 0.40 0.00	6.67 11.41 8.26 8.47 11.52 CAPACITY (VEH/MIN) 6.50 11.34 8.05 8.31 11.33 CAPACITY (VEH/MIN) 6.26	(RFC) 0.000 0.016 0.020 0.062 0.084 CAPACITY (RFC) 0.000 0.024 0.075 0.103	PEDESTRIAN FLOW (PEDS/MIN) PEDESTRIAN FLOW (PEDS/MIN)	(VEHS) 0.0 0.0 0.0 0.0 0.0 0.0 START QUEUE (VEHS) 0.0 0.1 0.1 START QUEUE (VEHS) 0.0	(VEHS) 0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.1 0.1 END QUEUE (VEHS)	TIMI ('TIMI	0.0 0.2 0.3 0.9 1.4 DELAY WEH.MI 0.0 0.3 0.4 1.2 1.8	N/ IENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT) GEOMETRIC DELA (VEH.MIN/
17.30- B-AC A-B A-C A-D D-AE C-D C-A TIME 17.45- B-AC A-B A-C A-D D-AE C-D C-A TIME 18.00- B-AC A-B A-C A-D D-AE C-D C-A	-17. CD 33. CBD (18. CD) (18. CD) (18. CD)	0.00 0.94 3.94 0.19 0.16 0.52 0.97 0.34 0.00 DEMAND (VEH/MIN) 00 0.00 1.12 4.70 0.22 0.20 0.62 1.17 0.40 0.00 DEMAND (VEH/MIN) 15 0.00 1.37 5.76 0.27 0.24	6.67 11.41 8.26 8.47 11.52 CAPACITY (VEH/MIN) 6.50 11.34 8.05 8.31 11.33 CAPACITY (VEH/MIN) 6.26	(RFC) 0.000 0.016 0.020 0.062 0.084 (DEMAND/ CAPACITY (RFC) 0.000 0.024 0.075 0.103	PEDESTRIAN FLOW (PEDS/MIN) PEDESTRIAN FLOW (PEDS/MIN)	(VEHS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(VEHS) 0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.0 0.1 0.1	TIMI ('TIMI	0.0 0.2 0.3 0.9 1.4 DELAY WEH. MI 0.0 0.3 0.4 1.2 1.8 DELAY WEH. MI E SEGM 0.0	N/ IENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT) GEOMETRIC DELA (VEH.MIN/
17.30- B-AC A-B A-C A-D D-AE C-D C-A TIME 17.45- B-AC A-B A-C A-B C-D C-A TIME 18.00- B-AC A-B A-C A-B A-C A-B A-C A-D D-AE D-BC C-A TIME	-17. CD 33. CD 3	0.00 0.94 3.94 0.19 0.16 0.52 0.97 0.34 0.00 DEMAND (VEH/MIN) 00 0.00 1.12 4.70 0.22 0.20 0.62 1.17 0.40 0.00 DEMAND (VEH/MIN) 15 0.00 1.37 5.76 0.27 0.24 0.76	6.67 11.41 8.26 8.47 11.52 CAPACITY (VEH/MIN) 6.50 11.34 8.05 8.31 11.33 CAPACITY (VEH/MIN) 6.26	(RFC) 0.000 0.016 0.020 0.062 0.084 (DEMAND/ CAPACITY (RFC) 0.000 0.024 0.075 0.103	PEDESTRIAN FLOW (PEDS/MIN) PEDESTRIAN FLOW (PEDS/MIN)	(VEHS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(VEHS) 0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.0 0.1 0.1	TIM	0.0 0.2 0.3 0.9 1.4 DELAYVEH.MI 0.0 0.3 0.4 1.2 1.8 DELAYVEH.MI 0.0	N/ IENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT) GEOMETRIC DELA (VEH.MIN/
17.30- B-AC A-B A-C A-D D-AE C-D C-A TIME 17.45- B-AC A-B A-C A-B C-D C-A TIME 18.00- B-AC A-B A-C A-B A-C A-B A-C A-D D-AE D-BC C-A TIME	-17. CD 33 C BBD (0.00 0.94 3.94 0.19 0.16 0.52 0.97 0.34 0.00 DEMAND (VEH/MIN) 00 0.00 1.12 4.70 0.22 0.20 0.62 1.17 0.40 0.00 DEMAND (VEH/MIN) 15 0.00 1.37 5.76 0.27 0.24	6.67 11.41 8.26 8.47 11.52 CAPACITY (VEH/MIN) 6.50 11.34 8.05 8.31 11.33 CAPACITY (VEH/MIN) 6.26	(RFC) 0.000 0.016 0.020 0.062 0.084 CAPACITY (RFC) 0.000 0.024 0.075 0.103	PEDESTRIAN FLOW (PEDS/MIN) PEDESTRIAN FLOW (PEDS/MIN)	(VEHS) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	(VEHS) 0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.0 0.1 0.1	TIM	0.0 0.2 0.3 0.9 1.4 DELAY WEH. MI 0.0 0.3 0.4 1.2 1.8 DELAY WEH. MI E SEGM 0.0	N/ IENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT) GEOMETRIC DELA (VEH.MIN/

I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
Ι	18.15-18	3.30							I
I	B-ACD	0.00	6.26	0.000		0.0	0.0	0.0	I
Ι	A-B	1.37							I
Ι	A-C	5.76							I
I	A-D	0.27	11.24	0.024		0.0	0.0	0.4	I
I	D-AB	0.24	7.77	0.031		0.0	0.0	0.5	I
Ι	D-BC	0.76	8.09	0.094		0.1	0.1	1.5	I
Ι	C-ABD	1.44	11.08	0.130		0.2	0.2	2.4	I
I	C-D	0.48							I
Ι	C-A	0.00							I
Ι									I

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
Ι	18.30-18	3.45							I
Ι	B-ACD	0.00	6.50	0.000		0.0	0.0	0.0	I
Ι	A-B	1.12							I
Ι	A-C	4.70							I
Ι	A-D	0.22	11.34	0.020		0.0	0.0	0.3	I
Ι	D-AB	0.20	8.05	0.024		0.0	0.0	0.4	I
Ι	D-BC	0.62	8.31	0.075		0.1	0.1	1.3	I
Ι	C-ABD	1.17	11.33	0.103		0.2	0.1	1.8	I
Ι	C-D	0.40							I
Ι	C-A	0.00							I
Ι									I

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
Ι	18.45-19	9.00							I
Ι	B-ACD	0.00	6.67	0.000		0.0	0.0	0.0	I
Ι	A-B	0.94							I
Ι	A-C	3.94							I
Ι	A-D	0.19	11.41	0.016		0.0	0.0	0.3	I
Ι	D-AB	0.16	8.25	0.020		0.0	0.0	0.3	I
Ι	D-BC	0.52	8.47	0.062		0.1	0.1	1.0	I
Ι	C-ABD	0.97	11.51	0.084		0.1	0.1	1.4	I
Ι	C-D	0.34							I
Ι	C-A	0.00							I
Ι									I

WARNING NO MARGINAL ANALYSIS OF CAPACITIES AS MAJOR ROAD BLOCKING MAY OCCUR

QUEUE FOR STR	EAM B-ACD
TIME SEGMENT	NO. OF
ENDING	
	IN QUEUE
17.45	0.0
18.00	0.0
18.15	0.0
18.30	0.0
18.45	0.0
19.00	0.0
QUEUE FOR STR	EAM A-D
TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
17.45	0.0
18.00	0.0
18.15	0.0
18.30	0.0
18.45	0.0
19.00	0.0
QUEUE FOR STR	EAM D-AB
TIME SEGMENT	

TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
17.45	0.0
18.00	0.0
18.15	0.0
18.30	0.0
18.45	0.0
19.00	0.0

QUEUE FOR	STREAM	D-BC
TIME SEGME	NT N	10. OF
ENDING	VEH	HICLES
	IN	QUEUE
17.45		0.1

18.00	0.1
18.15	0.1
18.30	0.1
18.45	0.1
19.00	0.1
QUEUE FOR STE	REAM C-ABD
TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
17.45	0.1
18.00	0.1
18.15	0.2
18.30	0.2
18.45	0.1
19.00	0.1

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

I I						I I	* QUEUE:		I * INCLUSIVE QUEUEING * I * DELAY *					
I		I-	(VEH)		(VEH/H)	I	(MIN)	(MIN/VEH)		(MIN)		(MIN/VEH)	-I I	
Ι	B-ACD	Ι	0.0	Ι	0.0	Ι	0.0 I	0.00	Ι	0.0	I	0.00	I	
I	A-B	Ι	102.8	Ι	68.6	Ι	I		I		I		Ι	
Ι	A-C	Ι	431.9	Ι	288.0	Ι	I		I		Ι		Ι	
Ι	A-D	Ι	20.6	Ι	13.7	Ι	1.8 I	0.09	I	1.8	Ι	0.09	Ι	
Ι	D-AB	Ι	18.1	Ι	12.1	Ι	2.3 I	0.13	I	2.3	Ι	0.13	Ι	
I	D-BC	Ι	57.3	Ι	38.2	Ι	7.5 I	0.13	I	7.5	I	0.13	Ι	
Ι	C-ABD	Ι	107.3	Ι	71.5	Ι	11.2 I	0.10	I	11.2	Ι	0.10	Ι	
Ι	C-D	Ι	36.7	Ι	24.4	Ι	I		I		Ι		Ι	
Ι	C-A	Ι	0.0	Ι	0.0	Ι	I		Ι		Ι		Ι	
I	ALL	I	774.7	Ι	516.5	I	22.8 I	0.03	I	22.8	I	0.03	I	

- * DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

 * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

 * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

END OF JOB

TRAFFIC SIGNALS C	ALC	ULA	ATIC	N							Job No.:	CHK5001	9645_		MVA	ASIA L	IMITED
Junction: King's Road/ Shu Kuk S	treet (G))													Design Ye	ar: <u>20</u>	25
Description: Reference Flows	i										Designed By:	H <u>KH</u>			Checked E	By: <u>GP</u>	<u>H</u>
					Radio	us (m)		Pro. Turi	ning (%)		Saturation Flow (pcu/hr)		A.M. Pea	k	F	P.M. Pea	k
Approach	Movement notation	Phase	Stage	Width (m)	Left	Right	(%) uphill Gradient	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
King's Road EB	1-	Α	1	5.500	10			32%	20%	2065	2100	340	0.165	ı	420	0.200	0.200
EB	+++▶	Α	1	3.000						2055	2055	85	0.041		105	0.051	
King's Road WB	← ← ← ← ← ← ← ← ← ←	B B B	1,2 1,2 1,2 1,2	3.300 3.300 3.300 3.000						1945 2085 1945 2055	1945 2085 1945 2055	622 666 622 105	0.320 0.319 0.320 0.051	0.320	477 511 477 65	0.245 0.245 0.245 0.032	
Shu Kuk Street NB	√ ↑	C C	3	3.250 3.250	10 15			0%	0%	1685 1940	1685 1940	185 280	0.110 0.144	0.144	165 310	0.098 0.160	0.160
LRT/Pedestrian		Dp Ep Fp	1,2 3 2	Min Min Min	10 9 7	+ + + +	9 20 8			= = =	19 29 15						*
Notes:							ic Flow cu/hr)					Group	BEp	BC	Group	BC	AFpC
							440(05)					у	0.320	0.464	у	0.405	0.360
							30(335)				19 10(1465)	L (sec)		9	L (sec)	9	29
						2	30(335)		•	†		C (sec)		120	C (sec)	120	120
									185(165)	280(310)		y pract.		0.833	y pract.	0.833	0.683
Stage / Phase Diagrams												R.C. (%)	95%	79%	R.C. (%)	106%	90%
A	B > Dp			2.	Fp.	Dp	> T — B >		3.	C	Ep Ep	4.			5.		
I/G= 5 I/G= 7	•		I/G=			7		I/G= 6 I/G= 10			I/G= I/G=			I/G=			
,									•		Date:	Jur	n-16		ction:		G

TRAFFIC SIGNALS CALCULATION **MVA ASIA LIMITED** Job No.: CHK50019645 Junction: King's Road/ Kam Hong Street (H) Design Year: 2016 Designed By: Checked By: ____GPH_ Description: ____ Observe Flows HKH Revised Saturation Flow Radius (m) Pro. Turning (%) A.M. Peak P.M. Peak (pcu/hr) (%) uphill Gradient notation Phase Flow y Value Right A.M. P.M. P.M. y Value Critical v Critical v Approach Width (m) Left ΑМ (pcu/hr) (pcu/hr) King's Road 4.000 2015 2015 230 0.114 335 0.166 3.000 2055 2055 85 0.041 King's Road 3.300 48% 78% 1785 1695 599 0.336 0.336 449 0.265 0.265 3.300 2085 2085 699 0.335 0.265 WB 552 3.300 1945 1945 652 0.335 514 0.264 2055 105 0.051 0.032 3.000 2055 65 \forall Kam Hong Street В 3 750 2% / 9% 8% / 8% 1970 1945 242 0.123 295 0 152 20 1810 0.123 275 0.152 SB 3.750 15 1810 223 0.123 0.152 LRT/Pedestrian Ср 3 Min 28 Dp 1,3 Min 17 10 Εp 3 Min Notes: Traffic Flow ABEp ABCp ABEp ABCp Group Group (pcu/hr) 245(300) 215(245) 5(25) 0.417 0.417 у 0.459 0.459 L (sec) 43 35 43 L (sec) 35 230(335) -1665(1165) C (sec) 120 120 C (sec) 120 120 285(350) 0.578 y pract. 0.638 0.578 y pract. 0.638 39% R.C. (%) 53% 39% R.C. (%) 26% Stage / Phase Diagrams <----<u>D</u>p-> Еp I/G= I/G= 22 I/G= 5 I/G= 8 10 I/G= I/G= Date: Junction:

Jun-16

TRAFFIC SIGNALS CALCULATION **MVA ASIA LIMITED** Job No.: CHK50019645 Junction: King's Road/ Tin Chiu Street (I) Design Year: 2025 Designed By: HKH Checked By: GPH Description: ____ Reference Flows Revised Saturation Flow Radius (m) Pro. Turning (%) A.M. Peak P.M. Peak (pcu/hr) (%) uphill Gradient notation Phase Flow Flow y Value Critical y y Value Width (m) A.M. P.M. A.M. P.M. Critical v Approach Left Right (pcu/hr) (pcu/hr) King's Road 3.000 10 15% 10% 1875 1885 235 0.125 360 0.191 +++ 3.000 2055 2055 85 0.041 105 0.051 1945 570 0.293 0.293 0.228 King's Road В 3.300 1945 444 2085 0.293 0.229 WB В 3.300 2085 610 477 0.229 В 3.300 1945 1945 570 0.293 0.228 444 0.032 3.000 2055 2055 105 0.051 65 1690 1690 200 0.118 0.089 Tin Chiu Street 3.300 150 10 С 0% 2085 2085 0 177 NB 2 3.300 15 0% 410 0 197 370 15 0.282 3.300 1770 1770 500 0.282 425 0.240 0.240 LRT/Pedestrian Dp 1 Min 20 Traffic Flow Notes: AC вс AC Group Group (pcu/hr) 0.408 у 0.576 0.431 0.469 35(35) _ 10 9 10 9 L (sec) L (sec) 200(325) - 1750(1365) C (sec) 120 120 C (sec) 120 120 0.825 0.833 0.833 y pract. y pract. 0.825 200(150) 410(370) 500(425) 102% 45% R.C. (%) 91% 78% R.C. (%) Stage / Phase Diagrams 2. 3. 5. I/G= 6 I/G= 5 I/G= I/G= I/G= I/G= I/G= Junction: Date:

Jun-16

2025 Design Flows

TRAFFIC SIGNALS CALCULATION **MVA ASIA LIMITED** Job No.: CHK50019645 Junction: Java Road/ Shu Kuk Street (A) Design Year: _____2025 Design Flows Designed By: HKH Checked By: GPH Revised Saturation Flow Pro. Turning (%) A.M. Peak Radius (m) P.M. Peak (pcu/hr) / Movement notation (%) uphill Gradient Flow Flow Approach Width (m) Left Right A.M. P.M. A.M. P.M. y Value Critical y y Value Critical y (pcu/hr) (pcu/hr) 3.000 25% 21% 1845 1855 486 0.263 0.263 535 0.288 Java Road 3 000 2055 2055 540 0.263 0.289 0.289 EB 593 504 3.000 1915 1915 0.263 552 0.288 Shu Kuk Street 3.750 15 78% 75% 1845 1850 298 0.162 0.162 320 0.173 NB 3.750 10 1530 1530 247 0.161 265 0.173 0.173 Cp Dp Ep Fp LRT/Pedestrian 11 5 7 11 7 12 2,3 Min 22 3 Min 3 Min 12 Traffic Flow (pcu/hr) Notes: ABEp ABFp Group ABFp Group ABEp 0.425 0.425 0.462 0.462 у 25 L (sec) 32 L (sec) 25 32 120(115) 1410(1565) C (sec) 120 120 C (sec) 120 120 y pract. 0.713 0.660 y pract. 0.713 0.660 65(80) 480(505) R.C. (%) 68% 55% R.C. (%) 54% 43% Stage / Phase Diagrams Dp Ср I/G= 14 Junction: Date: Jun-16

TRAFFIC SIGNALS CALCULATION **MVA ASIA LIMITED** Job No.: CHK50019645 Junction: Java Road/ Kam Hong Street (B) Design Year: 2025 Description: Design Flows Designed By: HKH Checked By: GPH Revised Saturation Flow Radius (m) Pro. Turning (%) A.M. Peak P.M. Peak (pcu/hr) Movement notation (%) uphill Gradient Flow Flow P.M. Approach Width (m) Left Right A.M. P.M. A.M. y Value Critical y y Value Critical y (pcu/hr) (pcu/hr) 1935 1935 0.326 0.326 695 0.359 0.359 Java Road 3.200 631 EΒ 3.200 2075 2075 676 0.326 745 0.359 3.200 10 55% 68% 1790 1755 583 0.326 630 0.359 Shu Kuk Street 4.000 10 51% 40% 1875 1900 89 0.047 87 0.046 SB 4.000 2015 2015 0.048 0.048 93 0.046 0.046 LRT/Pedestrian Dp Ep Fp 9 2,3 Min 11 20 3 Min 3 Min 10 18 Notes: Traffic Flov ABEp Group ABEp Group (pcu/hr) 140(145) 45(35) 0.374 0.405 У У L (sec) 31 L (sec) 31 1570(1640) 320(430) -C (sec) 120 C (sec) 120 y pract. 0.668 y pract. 0.668 R.C. (%) R.C. (%) 79% 65% Stage / Phase Diagrams I/G= 6 I/G= Junction: Jun-16

TRAFFIC SIGNALS CALCULATION **MVA ASIA LIMITED** CHK50019645 Job No.: Junction: __Java Road/ Tin Chiu Street (C) Design Year: 2025 Description: ____ Design Flows Designed By: HK<u>H</u> Checked By: ____GPH_ Revised Saturation Flow Pro. Turning (%) A.M. Peak P.M. Peak Radius (m) (pcu/hr) Movement notation (%) uphill Gradient Phase Flow Flow Approach Width (m) Right y Value Critical y Critical y y Value (pcu/hr) (pcu/hr) 0.287 1695 486 Java Road 3.000 69% 60% 1720 0.287 510 0.297 A A EΒ 3.000 2055 2055 588 0.286 609 0.296 14% 541 0.286 0.297 0.297 3.000 15 21% 1890 1875 556 L) Tin Chiu Street В 3 3.500 15 1785 1785 195 0.109 0.109 150 0.084 0.084 SB Tin Chiu Street 3.000 97% 1785 1785 0.106 0.100 0.100 20 97% 189 179 NB 15 176 0.106 0.106 0.100 3.000 1660 1660 166 LRT/Pedestrian 2 Min 13 Ep 2,3,4 Min 11 18 Fp 2,3 Min 18 Traffic Flow Notes: Group Group ADpBC ADpBC (pcu/hr) 195(150) 0.502 0.481 33 L (sec) 33 L (sec) 335(305) 1205(1255) C (sec) C (sec) 120 120 75(115) y pract. 0.653 y pract. 0.653 5(5) 360(340) R.C. (%) 30% R.C. (%) 36% Stage / Phase Diagrams Dp ____> Fp Fp I/G= 11 Jun-16

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\D AM 2025 DES.vpi" at 15:11:28 on Wednesday, 1 June 2016

RUN TITLE

Marble Road / Shu Kuk Street AM (D) 2025 DES

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

INPUT DATA

ARM A IS Shu Kuk Street NB ARM B IS Marble Road EB ARM C IS Shu Kuk Street NB ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B

STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

ETC.

.GEOMETRIC DATA

I	DATA ITEM	I	MINOR	ROAD B	I	MINOR	ROAD	D	I
I	TOTAL MAJOR ROAD CARRIAGEWAY WIDTH CENTRAL RESERVE WIDTH		(WCR)	7.50 M. 0.00 M.		(WCR)	7.50 0.00		I
I	MAJOR ROAD RIGHT TURN - WIDTH - VISIBILITY		(WC-B)	2.20 M. 0.0 M.		(WA-D)	2.20		I
I	- BLOCKS TRAFFIC	I	(/	NO	I	(/	NO		I
I I	MINOR ROAD - VISIBILITY TO LEFT - VISIBILITY TO RIGHT			15.0 M. 15.0 M.		(VD-A) (VD-C)	30.0		I
I	- LANE 1 WIDTH - LANE 2 WIDTH		(WB-C) (WB-A)	5.00 M. 0.00 M.		(WD-A) (WD-C)	2.20		I

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 08.00 AND ENDS 09.30

I		I	NUMBER OF	М.	INUTES	FROM	STA	ART WHEN	I	RATE	OI	FLOW	(VE	H/MIN)	I
Ι	ARM	Ι	FLOW STARTS	Ι	TOP OF	PEAR	Ι	FLOW STOPS	Ι	BEFORE	Ι	AT TOP	I	AFTER	Ι
I		Ι	TO RISE	Ι	IS RE	ACHEI) I	FALLING	Ι	PEAK	Ι	OF PEA	ΚI	PEAK	Ι
 I	ARM A	 I	15.00	 I	45	.00	I	75.00	I	4.94	I	7.41	I	4.94	 I
Ι	ARM B	I	15.00	Ι	4.5	.00	I	75.00	Ι	0.06	Ι	0.09	I	0.06	Ι
Ι	ARM C	Ι	15.00	Ι	45	.00	I	75.00	Ι	0.00	Ι	0.00	I	0.00	Ι
Ι	ARM D	Ι	15.00	Ι	4.5	.00	I	75.00	Ι	1.81	Ι	2.72	I	1.81	Ι

I I I		I I		T	JRNING PROPORTIONS I JRNING COUNTS (VEH/HR) I ERCENTAGE OF H.V.S) I
I	TIME	Ι	FROM/TO	Ι	ARM A I ARM B I ARM C I ARM D I
I I I I I I I I I I I I I I I I I I I	08.00 - 09.30	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ARM A	I I I I I	0.0 I 0.0 I 395.0 I 0.0 I (0.0) I (0.0) I I I I I
I I I		I I I I	ARM D	I I I I I	(0.0)I (0.0)I (0.0)I (0.0)I I I I I I I I I I I I I I I I I I I

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA

Ι	TIME	DEMAND	CAPACITY		PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
Ι		(VEH/MIN)	(VEH/MIN)		FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
Ι				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS) T	'IME SEGMENT)	TIME SEGMENT) I
Ι	08.00-08								I
Ι	B-ACD	0.06	11.31	0.006		0.0	0.0	0.1	I
Ι	A-B	0.00							I
Ι	A-C	4.94							I
Ι	A-D	0.00	8.70	0.000		0.0	0.0	0.0	I
Ι	D-AB	0.00	8.43	0.000		0.0	0.0	0.0	I
Ι	D-BC	1.81	9.13	0.198		0.0	0.2	3.5	I
Ι	C-D	0.00							I
Ι	C-A	0.00							I
Ι	C-B	0.00	7.76	0.000		0.0	0.0	0.0	I
Ι									I
Ι			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANGES	IN:	I
Ι				MAJOR RD.	CENT RES	VIS TO	LEFT	VISIBILITY	I
Ι	MARG	GINAL LA	NE WIDTH	WIDTH	WIDTH	(AHEAD	FOR MAJOR) TO RIGHT	I
Ι	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
Ι									I
Ι	B-	ACD	0.119	0.004	0.013	0.00)5	0.008	I
Ι	C-	-B	0.093	0.005		0.00	9		I
Ι	D-	-AB	0.101	0.000	0.000	0.00	0	0.009	I
Ι	D-	-BC	0.076	0.004	0.022	0.00) 6	0.009	I
Ι	A-	-D	0.104	0.000		0.01	.0		I

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) T	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
Ι	08.15-08	3.30							I
Ι	B-ACD	0.07	11.05	0.007		0.0	0.0	0.1	I
Ι	A-B	0.00							I
Ι	A-C	5.90							I
Ι	A-D	0.00	8.70	0.000		0.0	0.0	0.0	I
Ι	D-AB	0.00	8.33	0.000		0.0	0.0	0.0	I
Ι	D-BC	2.16	8.97	0.241		0.2	0.3	4.6	I
Ι	C-D	0.00							I
Ι	C-A	0.00							I
Ι	C-B	0.00	7.58	0.000		0.0	0.0	0.0	I
Ι									I
Ι			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	L CHANGES	IN:	I
Ι				MAJOR RD.	CENT RES	VIS TO	LEFT	VISIBILITY	I
Ι	MARG		NE WIDTH	WIDTH	WIDTH	•	FOR MAJOR	,	I
Ι	CHA	ANGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
Ι									I
Ι		-ACD	0.115	0.005	0.013	0.00		0.008	I
Ι	C-		0.091	0.006		0.00			I
Ι		-AB	0.100	0.000	0.000	0.00		0.009	I
Ι	D-	-BC	0.075	0.005	0.022	0.00	16	0.009	I

Ī									
Ι	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI (VEH.MIN/ I
I		(VEH/MIN)	(VEH/MIN)	CAPACITY (RFC)	FLOW (PEDS/MIN)	QUEUE (VEHS)	QUEUE (VEHS)	(VEH.MIN/ TIME SEGMENT)	(VEH.MIN/ I TIME SEGMENT) I
Ι	08.30-0								I
I	B-ACD	0.09	8.70 8.20 8.75	0.009		0.0	0.0	0.1	I
I	A-C	7.22							Ī
I	A-D	0.00	8.70	0.000		0.0	0.0	0.0	I
I	D-BC	2.65	8.75	0.303		0.3	0.4	6.2	I
I	C-D	0.00							I
I	C-A C-B	0.00	7.33	0.000		0.0	0.0	0.0	I
Ι									I
I			EFFECT ON	CAPACITY MAJOR RD	(PCU/MIN) OF CENT RES	MARGINA VIS TO	AL CHANGE	S IN: VISIBILITY	I
Ι	MAR	GINAL LA	NE WIDTH	WIDTH	WIDTH	(AHEAD	FOR MAJO	OR) TO RIGHT (M)	I
I		ANGE:	(.1M)	(.1M)	(.1M)	(M))	(M)	I
I	В	-ACD	0.109	0.006	0.013	0.00	05	0.008	Ī
I	C	-B	0.088	0.007	0.000	0.00	08	0.000	I
I	D D	-AB -BC	0.098	0.000	0.000	0.00	06	0.008	I
Ι	A	-D	0.104	0.000	0.013 0.000 0.022	0.01	10		I
-									
I	TIME	(VEH/MIN)	(VEH/MIN)	CAPACITY	PEDESTRIAN FLOW	START	OHEHE	DELAY (VEH MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
Ι			(/ -	(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	08.45-0	9.00	10.68					0.1	I
-	70 70	0 00				0.0	0.0	0.1	I
I	A-C	7.22	0.70	0.000		0.0	0.0	0.0	I
I	A-D D-AB	0.00	8.70	0.000		0.0	0.0	0.0	I
Ι	D-BC	2.65	8.75	0.303			0.4	6.4	I
I	C-D	0.00							I
I	C-B	0.00	8.70 8.19 8.75	0.000		0.0	0.0	0.0	Ī
I					(PCU/MIN) OF	MADCTNI7	AT CUANCE	C TN.	I
I				MAJOR RD.	CENT RES	VIS TO	LEFT	VISIBILITY	I
I	MAR	GINAL LA	NE WIDTH	WIDTH	WIDTH (.1M)	(AHEAD	FOR MAJO	R) TO RIGHT	I
I								(M)	I
Ι	В	-ACD	0.109	0.006	0.013	0.00	0.5	0.008	I
I	C	-B -AB	0.088	0.007	0.000	0.00)8)0	0.008	I
I	D	-BC	0.098 0.073 0.104	0.006	0.022	0.00	06	0.009	I
I	A	-D	0.104	0.000		0.01	LO 		I
 +	TTMP	DEMYND	CADACTEV	DEMAND /	DEDEGEDIAN	CTADT	EMD	DELVA	CEOMETRIC DELAYI
I	TIPE	(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
I		0 1 5		(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
-	09.00-0 B-ACD	0.07	11.05	0.007		0.0	0.0	0.1	I
Ι	A-B	0.00	8.70 8.33 8.97						I
I	A-C A-D	0.00	8.70	0.000		0.0	0.0	0.0	I
I	D-AB	0.00	8.33	0.000		0.0	0.0	0.0	I
I	D-BC C-D	2.16 0.00	8.97	0.241		0.4	0.3	5.0	I
I	C-2	0 00							Ī
I		0.00	7.58	0.000		0.0	0.0	0.0	I
I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANGE	S IN:	I
Ι				MAJOR RD.	CENT RES	VIS TO	LEFT	VISIBILITY	I
I			NE WIDTH (.1M)	WIDTH (.1M)	WIDTH (.1M)	(AHEAD (M)		OR) TO RIGHT (M)	I
Ι									I
I			0.115 0.091	0.005 0.006		0.00		0.008	I
Ι	D	-AB	0.100	0.000	0.000	0.00		0.009	I
I			0.075 0.104					0.009	I
_	A		0.104	0.000		0.01			
_									
 I	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI (VEH.MIN/ I
		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I TIME SEGMENT) I
I	09.15-0	9.30		(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	11ME SEGMENT)	TIME SEGMENT) I
Ι	B-ACD	0.06	11.31	0.006		0.0	0.0	0.1	I
I	A-C	0.00 4.94							I
		0.00	8.70	0.000			0.0		I
I	D-AB D-RC	0.00 1.81	8.70 8.43 9.13	0.000 0.199		0.0	0.0	0.0 3.9	I
		T . U T	J . ± J	U • ± J J			U . U	J.J	

I	C-D	0.00						I
I	C-A	0.00						I
I	C-B	0.00	7.76	0.000		0.0 0.	0 0.0	I
I								I
I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINAL CH	HANGES IN:	I
I				MAJOR RD.	CENT RES	VIS TO LEE	T VISIBILITY	I
I	MARGINA	L LAI	NE WIDTH	WIDTH	WIDTH	(AHEAD FOR	MAJOR) TO RIGHT	I
I	CHANGE	:	(.1M)	(.1M)	(.1M)	(M)	(M)	I
I								I
I	B-ACD		0.119	0.004	0.013	0.005	0.008	I
I	C-B			0.005		0.009		I
I	D-AB				0.000	0.000	0.009	I
I	D-BC		0.076	0.004	0.022	0.006	0.009	I
I	A-D		0.104	0.000		0.010		I
	UE FOR STR							
		NO. VEHICI	LES					

QUEUE FOR SIKE	SAM D-ACD
TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
08.15	0.0
08.30	0.0
08.45	0.0
09.00	0.0
09.15	0.0
09.30	0.0
QUEUE FOR STRE	EAM A-D
TIME SEGMENT	NO. OF
	VEHICLES
	IN OUEUE
08.15	0.0
08.30	0.0

IN QUEUE
08.15 0.0
08.30 0.0
08.45 0.0
09.00 0.0
09.15 0.0
09.30 0.0
QUEUE FOR STREAM D-AI

QUEUE FOR STREAM D-BC

TIME SEGMENT NO. OF VEHICLES IN QUEUE

08.15 0.2

08.30 0.3

08.45 0.4

09.00 0.4

09.15 0.3

09.30 0.3

QUEUE FOR STREAM C-B

20000 101 011	
TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
08.15	0.0
08.30	0.0
08.45	0.0
09.00	0.0
09.15	0.0
09.30	0.0

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

I	STREAM	I I I	TOTAI	. I	DEMAND	I	* QUEU * DEI	Αì		I	* DE		QUEUEING *	I I
I		I	(VEH)		(VEH/H)	Ι	(MIN)		(MIN/VEH)	Ι	(MIN)		(MIN/VEH)	I
I	B-ACD A-B		6.9		4.6		0.6	I	0.09	I	0.6	I	0.09	I
I	A-B A-C	I	0.0 541.6		0.0 361.1			I		I		I		I
I	A-D D-AB	I	0.0		0.0	_	0.0	_	0.00	I	0.0	I	0.00	I
I	D-BC C-D	I	198.8		132.6	_	29.6	I I	0.15	I I	29.6	I	0.15	I
I	C-A C-B	I I	0.0		0.0		0.0	I	0.00	I I	0.0	I	0.00	I

- * DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

 * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

 * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

END OF JOB

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\D PM 2025 DES.vpi" at 15:11:39 on Wednesday, 1 June 2016

RUN TITLE

Marble Road / Shu Kuk Street PM (D) 2025 DES

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

INPUT DATA

ARM A IS Shu Kuk Street NB ARM B IS Marble Road EB ARM C IS Shu Kuk Street NB ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

.GEOMETRIC DATA

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 17.30 AND ENDS 19.00

I		I	NUMBER OF	M	INUTES FROM S	STA	ART WHEN	Ι	RATE	OF	FLOW (ÆΕ	H/MIN)	Ι
I	ARM	I	FLOW STARTS	I	TOP OF PEAK	Ι	FLOW STOPS	Ι	BEFORE	Ι	AT TOP	Ι	AFTER	Ι
Ι		Ι	TO RISE	Ι	IS REACHED	Ι	FALLING	Ι	PEAK	Ι	OF PEAK	Ι	PEAK	Ι
I	ARM A	. I	15.00	Ι	45.00	Ι	75.00	Ι	5.00	Ι	7.50	Ι	5.00	Ι
I	ARM E	I	15.00	Ι	45.00	Ι	75.00	Ι	0.00	Ι	0.00	Ι	0.00	Ι
I	ARM C	I	15.00	Ι	45.00	Ι	75.00	Ι	0.00	Ι	0.00	Ι	0.00	Ι
I	ARM I	I	15.00	Ι	45.00	Ι	75.00	Ι	2.31	Ι	3.47	Ι	2.31	Ι

·			
I I I	I I		TURNING PROPORTIONS I TURNING COUNTS (VEH/HR) I (PERCENTAGE OF H.V.S) I
I TIME	I	FROM/TO	I ARM A I ARM B I ARM C I ARM D I
I 17.30 - 19.00	I		I I I I
I	I	ARM A	I 0.000 I 0.000 I 1.000 I 0.000 I
I	I		I 0.0 I 0.0 I 400.0 I 0.0 I
I	I		I (0.0)I (0.0)I (0.0)I (0.0)I
I	I		I I I I
I	I	ARM B	I 0.000 I 0.000 I 0.000 I
I	I		I??????? I??????? I??????? I??????? I
I	I		I (0.0)I (0.0)I (0.0)I (0.0)I
I	I		I I I I
I	I	ARM C	I 0.000 I 0.000 I 0.000 I
I	I		I??????? I??????? I??????? I??????? I
I	I		I (0.0)I (0.0)I (0.0)I (0.0)I
I	I		I I I I
I	I	ARM D	I 0.000 I 0.000 I 1.000 I 0.000 I
I	I		I 0.0 I 0.0 I 185.0 I 0.0 I
I	I		I (0.0)I (0.0)I (0.0)I (0.0)I
I	I		I I I I

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA

I	TIME	DEMAN			PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
Ι		(VEH/MIN) (VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
Ι				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
Ι	17.30-17	7.45							I
I	B-ACD	0.00	8.66	0.000		0.0	0.0	0.0	I
I	A-B	0.00							I
I	A-C	5.00							I
I	A-D	0.00	8.70	0.000		0.0	0.0	0.0	I
I	D-AB	0.00	8.31	0.000		0.0	0.0	0.0	I
I	D-BC	2.31	9.14	0.253		0.0	0.3	4.8	I
I	C-D	0.00							I
I	C-A	0.00							I
I	C-B	0.00	7.75	0.000		0.0	0.0	0.0	I
I									I
I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANGES	IN:	I
I				MAJOR RD.	CENT RES	VIS TO) LEFT	VISIBILITY	I
I	MARG	GINAL L	ANE WIDTH	WIDTH	WIDTH	(AHEAD	FOR MAJO	R) TO RIGHT	I
I	CHA	ANGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
I									I
I	B-	-ACD	0.118	0.004	0.013	0.00)5	0.008	I
I	C-	-B	0.093	0.005		0.00	9		I
I	D-	-AB	0.099	0.000	0.000	0.00	0	0.008	I
I	D-	-BC	0.076	0.004	0.022	0.00)6	0.009	I
I	A-	-D	0.104	0.000		0.01	. 0		I

I I I	TIME	DEMAND (VEH/MIN)		DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ FIME SEGMENT)	(,	I I I
Ι	17.45-18	.00								Ι
Ι	B-ACD	0.00	8.39	0.000		0.0	0.0	0.0		Ι
Ι	A-B	0.00								Ι
Ι	A-C	5.97								Ι
Ι	A-D	0.00	8.70	0.000		0.0	0.0	0.0		Ι
Ι	D-AB	0.00	8.18	0.000		0.0	0.0	0.0		Ι
Ι	D-BC	2.76	8.98	0.307		0.3	0.4	6.4		Ι
Ι	C-D	0.00								Ι
Ι	C-A	0.00								Ι
Ι	C-B	0.00	7.57	0.000		0.0	0.0	0.0		Ι
Ι										Ι
Ι			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANGES	S IN:		Ι
Ι				MAJOR RD.		VIS TO		VISIBILITY		Ι
Ι			NE WIDTH	WIDTH	WIDTH		FOR MAJO	,		Ι
Ι	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)		Ι
Ι										Ι
Ι		ACD	0.114	0.005	0.013	0.00		0.008		Ι
Ι	C-		0.091	0.006		0.00				Ι
Ι		AB	0.098	0.000	0.000	0.00		0.008		Ι
Ι	D-	·BC	0.075	0.004	0.022	0.00)6	0.009		Ι

Ι	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI (VEH.MIN/ I
I		(VEH/MIN)	(VEH/MIN)	(RFC)	FLOW (PEDS/MIN)	QUEUE (VEHS)	QUEUE (VEHS)	(VEH.MIN/ TIME SEGMENT)	(VEH.MIN/ I TIME SEGMENT) I
	18.00-1		8.01						I
I	B-ACD A-B	0.00	8.70 8.01 8.76	0.000		0.0	0.0	0.0	I
I	A-C	7.31						0.0	I
I	A-D D-AB	0.00	8.70	0.000		0.0	0.0	0.0	I
Ι	D-BC	3.38	8.76	0.386		0.4	0.6	8.9	I
I	C-D	0.00							I
Τ	C-B	0.00	7.31	0.000		0.0	0.0	0.0	I
I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANGE	S IN:	I
Ι				MAJOR RD.	. CENT RES	VIS TO	LEFT	VISIBILITY	I
I	MAR CH	GINAL LAI ANGE:	NE WIDTH	WIDTH (.1M)	WIDTH (.1M)	(AHEAD (M)	FOR MAJO	OR) TO RIGHT	I
Ι									I
I	B C	-ACD -B	0.108	0.006	0.013	0.00)5)8	0.007	I
I	D	-AB	0.096	0.000	0.000	0.00	00	0.008	I
I	D A	-BC -D	0.073	0.005	0.013 0.000 0.022	0.00)6 10	0.009	I
-									
I	TIME	DEMAND (VEH/MTN)	(VEH/MTN)	DEMAND/ CAPACTTY	PEDESTRIAN FLOW	START	END QUEUE	DELAY (VEH.MTN/	GEOMETRIC DELAYI (VEH.MIN/ I
I				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	18.15-1 B-ACD	0,00	8.01	0.000		0.0	0.0	0.0	I
-	70 70	0 00				0.0	0.0	0.0	I
I	A-C A-D	7.31	8 70	0 000		0 0	0 0	0.0	I
I	D-AB	0.00	8.01	0.000		0.0	0.0	0.0	Ī
I	D-BC	3.38	8.70 8.01 8.76	0.386		0.6	0.6	9.3	I
I	C-A	0.00							I
I	C-B	0.00	7.31	0.000		0.0	0.0	0.0	I
I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANGE	ES IN:	I
I		CTNIAT TAI	מב מדרשם	MAJOR RD.	. CENT RES	VIS TO	D LEFT	VISIBILITY OR) TO RIGHT	I
I	CH.	ANGE:	(.1M)	(.1M)	WIDTH (.1M)	(M))	(M)	Ī
I								0.007	I
I	C	-ACD -B	0.107	0.006	0.013	0.00	08	0.007	I
I	D	-AB	0.096	0.000	0.000	0.00	00	0.008	I
I		-BC -D	0.096 0.073 0.104	0.005	0.022	0.00	16 10	0.009	I
-									
		DEMAND	CADACIEN	DEMAND /	DEDECEDIAN				CROMPEDIO DEL AVI
I	TIME	(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
I				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
-	18.30-1 B-ACD	0.00	8.39	0.000		0.0	0.0	0.0	I
I	A-B	0.00 0.00 5.97 0.00 0.00							I
I	A-C A-D	0.00	8.70	0.000		0.0	0.0	0.0	I
Ι	D-AB	0.00	8.70 8.18	0.000		0.0	0.0	0.0	I
I		2.76 0.00	8.98	U.307		0.6	0.5	7.0	I
Ι	C-2	0 00						0	I
I		0.00	7.57	0.000		0.0	0.0	0.0	I
Ι					(PCU/MIN) OF				I
I		CINAT. T.AI	NE WIDTH	MAJOR RD.	CENT RES	VIS TO	D LEFT	VISIBILITY OR) TO RIGHT	I
Ι	CH.		(.1M)	(.1M)	(.1M)	(M)		(M)	I
I		-ACD	0.113	0.005	0.013	0.00	0.5	0.008	I
I	C	-B	0.091	0.006		0.00	08	0.000	I
I			0.098 0.075	0.000	0.000 0.022	0.00	00	0.008	I
I			0.104	0.004		0.01		0.009	I
-									
 T	TTME	омдил	CAPACTTV	DEMAND/	PEDESTRIAM	START	END	DET-AV	GEOMETRIC DELAYT
I	2 21111	(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
Ι				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
	B-ACD	0.00	8.66	0.000		0.0	0.0	0.0	I
I	A-B	0.00 5.00							I
Ι	A-D	0.00	8.70 8.30	0.000			0.0		I
I	D-AB	0.00 2.31		0.000 0.253		0.0	0.0	0.0 5.3	I
_	טם ט	2.01	J. 14	0.200		0.5	0.0	٠.٠	1

I	C-D	0.00						I
I	C-A	0.00						I
I	C-B	0.00	7.75	0.000		0.0 0.0	0.0	I
Ī								Ī
I		1	EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINAL CHANGES	IN:	I
I					CENT RES		VISIBILITY	I
I	MARGINA	L LAN	E WIDTH	WIDTH	WIDTH	(AHEAD FOR MAJOR) TO RIGHT	I
I	CHANGE	: (.1M)	(.1M)	(.1M)	(M)	(M)	I
I								I
I	B-ACD)	0.118	0.004	0.013	0.005	0.008	I
I	C-B		0.093	0.005		0.009		I
I	D-AB		0.099	0.000	0.000	0.000	0.008	I
I	D-BC		0.076	0.004	0.022	0.006	0.009	I
I	A-D		0.104	0.000		0.010		I
TI		NO. (VEHICLI IN QUEI	OF ES UE					

THEFTING	VIIIICIIIO
	IN QUEUE
17.45	0.0
18.00	0.0
18.15	0.0
18.30	0.0
18.45	0.0
19.00	0.0
QUEUE FOR STRE	EAM A-D
TIME SEGMENT	NO. OF
	VEHICLES
	IN QUEUE
17.45	0.0
18.00	0.0
18.15	0.0
18.30	0.0
18.45	0.0
19.00	0.0
13.00	0.0

QUEUE FOR STREAM D-BC
TIME SEGMENT NO. OF

TIME SEGMENT	NO. OF	
ENDING	VEHICLES	
	IN QUEUE	
17.45	0.3	
18.00	0.4	
18.15	0.6	*
18.30	0.6	*
18.45	0.5	
19.00	0.3	

QUEUE FOR STR	EAM C-B
TIME SEGMENT ENDING	NO. OF VEHICLES
17.45	IN QUEUE
18.00	0.0
18.15 18.30	0.0
18.45 19.00	0.0

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

I	STREAM	I I I			DEMAND	I	* QUEU * DEI	Αì		I	* INCLUSIV * DE	LAY	7 *	I I
I		I	(VEH)						(MIN/VEH)				(MIN/VEH)	I
I	B-ACD	I	0.0		0.0		0.0		0.00	I		I	0.00	I
Ι	A-B	Ι	0.0	Ι	0.0	Ι		Ι		Ι		Ι		Ι
I	A-C	Ι	548.5	Ι	365.7	Ι		Ι		Ι		I		I
Ι	A-D	Ι	0.0	Ι	0.0	Ι	0.0	Ι	0.00	I	0.0	Ι	0.00	Ι
Ι	D-AB	Ι	0.0	Ι	0.0	Ι	0.0	Ι	0.00	I	0.0	Ι	0.00	Ι
Ι	D-BC	Ι	253.7	Ι	169.1	Ι	41.7	Ι	0.16	Ι	41.7	Ι	0.16	Ι
Ι	C-D	Ι	0.0	Ι	0.0	Ι		Ι		Ι		Ι		Ι
I	C-A	Ι	0.0	Ι	0.0	Ι		Ι		Ι		Ι		Ι
Ι	C-B	Ι	0.0	Ι	0.0	Ι	0.0	Ι	0.00	Ι	0.0	Ι	0.00	Ι

- * DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

 * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

 * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

END OF JOB

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\E AM 2025 DES.vpi" at 11:37:48 on Monday, 30 May 2016

RUN TITLE

Marble Road / Kam Hong Street AM (E) 2025 DES

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

TNPUT DATA

MINOR ROAD (ARM D) MAJOR ROAD (ARM C) ----- MAJOR ROAD (ARM A)

MINOR ROAD (ARM B)

ARM A IS Kam Hong Street SB ARM B IS Marble Road WB ARM C IS Kam Hong Street SB

ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B

STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

ETC.

.GEOMETRIC DATA

I	DATA ITEM	I	MINO	R ROAD	В	I	MINOR	ROAD	D	I
I I I	TOTAL MAJOR ROAD CARRIAGEWAY WIDTH CENTRAL RESERVE WIDTH		(WCR)				(WCR)	7.75 0.00		I I
I	MAJOR ROAD RIGHT TURN - WIDTH - VISIBILITY - BLOCKS TRAFFIC		(WC-B)				(WA-D) (VA-D)	2.20 0.0 NO		I
I	MINOR ROAD - VISIBILITY TO LEFT - VISIBILITY TO RIGHT		(VB-C)				(VD-A)	15.0		I
I	- LANE 1 WIDTH - LANE 2 WIDTH	Ι	(WB-C) (WB-A)		Μ.	I	(WD-C) (WD-C)	5.00	Μ.	I

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 08.00 AND ENDS 09.30

Ι			Ι	NUN	NUMBER OF MINUTES FROM START WHEN FLOW STARTS I TOP OF PEAK I FLOW STOPS								OI	F FLOW	(VE	H/MIN)	Ι
Ι	ARN	1	Ι	FLOW	STARTS	I	TOP	OF PEAK	Ι	FLOW STOPS	Ι	BEFORE	Ι	AT TOP	I	AFTER	I
Ι			Ι	TO	RISE	Ι	IS	REACHED	Ι	FALLING	Ι	PEAK	Ι	OF PEAR	I	PEAK	I
Ι	ARM	Α	Ι		L5.00	Ι		45.00	Ι	75.00	Ι	0.00	Ι	0.00	Ι	0.00	I
Ι	ARM	В	Ι	1	L5.00	Ι		45.00	Ι	75.00	Ι	0.00	Ι	0.00	I	0.00	Ι
Ι	ARM	С	Ι	1	L5.00	Ι		45.00	Ι	75.00	Ι	5.75	Ι	8.63	I	5.75	I
Ι	ARM	D	Ι	- 1	15.00	Ι		45.00	Ι	75.00	Ι	2.00	Ι	3.00	I	2.00	I

٠				
I I I		I I I		TURNING PROPORTIONS I TURNING COUNTS (VEH/HR) I (PERCENTAGE OF H.V.S) I
I	TIME	Ι	FROM/TO	I ARM A I ARM B I ARM C I ARM D I
I I I I I I I I I	08.00 - 09.30	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ARM A	I I I I I I I I I I I I I I I I I I I
I I I		I I I I	ARM D	I 0.406 I 0.594 I 0.000 I 0.000 I I 65.0 I 95.0 I 0.0 I 0.00 I I (0.0) I (0.0) I I I I I I I I I I I I I I I I I I I

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA

 I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	CAPACITY	PEDESTRIAN FLOW	START	END QUEUE	DELAY (VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
I	08.00-08	15		(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
T	B-ACD	0.00	6.83	0.000		0.0	0.0	0.0	T T
I	A-B	0.00						***	Ī
Ι	A-C	0.00							I
I	A-D	0.00	7.57	0.000		0.0	0.0	0.0	I
Ι	D-ABC	2.00	9.39	0.213		0.0	0.3	3.9	I
Ι	C-D	0.00							I
I	C-A C-B	5.13 0.63	12.59	0.050		0.0	0.1	0.0	I
I	C-B	0.63	12.59	0.050		0.0	0.1	0.8	I
T			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	I CHANGE	S IN:	I
I				MAJOR RD.		VIS TO		VISIBILITY	Ī
Ι	MARG	GINAL LA	NE WIDTH	WIDTH	WIDTH	(AHEAD	FOR MAJO	R) TO RIGHT	I
I	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
Ι									I
I		-ACD	0.088	0.004	0.012	0.00		0.006	I
I	C-		0.115 0.120	0.000	0.013	0.01		0.008	I
	D-	-ABC	0.120	0.004	0.013	0.00		0.008	
		D	0.031			0.00			

I	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
Ι		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
I				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	08.15-08	3.30							I
I	B-ACD	0.00	6.67	0.000		0.0	0.0	0.0	I
I	A-B	0.00							I
I	A-C	0.00							I
I	A-D	0.00	7.35	0.000		0.0	0.0	0.0	I
I	D-ABC	2.39	9.10	0.262		0.3	0.4	5.1	I
I	C-D	0.00							I
I	C-A	6.12							I
Ι	C-B	0.75	12.59	0.059		0.1	0.1	0.9	I
I									I
I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANGES	S IN:	I
I				MAJOR RD.	CENT RES	VIS TO	LEFT	VISIBILITY	I
I	MARG	GINAL LA	NE WIDTH	WIDTH	WIDTH	(AHEAD	FOR MAJOR	R) TO RIGHT	I
I	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
I									I
Ι	B-	-ACD	0.085	0.005	0.012	0.00) 4	0.006	I
Ι	C-	-B	0.115	0.000		0.01	L2		I
Ι	D-	ABC	0.116	0.005	0.013	0.00)5	0.008	I
Ι	A-	-D	0.088	0.007		0.00	8		I

.-----

I I	TIME (V. 08.30-08.4	DEMAND EH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) T	DELAY (VEH.MIN/ IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
I	B-ACD	0.00	6.46			0.0	0.0	0.0	I I
I I I	A-D D-ABC C-D	0.00 2.92 0.00	7.05 8.71	0.000 0.336			0.0 0.5	0.0 7.2	I
I I	C-A C-B	7.50 0.91	12.59	0.073		0.1	0.1	1.1	I
I			EFFECT ON	CAPACITY	(PCU/MIN) OF CENT RES WIDTH (.1M)	MARGINA VIS TO (AHEAD	AL CHANGES) LEFT FOR MAJOR	IN: VISIBILITY O RIGHT	I I I
I									I
I I	B-AC C-B	D	0.081 0.115	0.006	0.012	0.00)4 .2	0.006	I
I	D-AB A-D	0	0.111	0.006 0.009	0.013	0.00)5)8	0.008	I
I I I	TIME (V	DEMAND EH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) T	DELAY (VEH.MIN/ 'IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
т	D-7CD	0 00	6 16	0 000		0.0	0.0	0.0	I I
I I	A-D D-ABC C-D	0.00 2.92 0.00	7.05 8.71	0.000 0.336			0.0 0.5		I I
: [C-A C-B	7.50 0.91	12.59	0.073		0.1	0.1	1.2	I
I I I			EFFECT ON	CAPACITY	(PCU/MIN) OF CENT RES	MARGINA	AL CHANGES	IN:	I I
			NE WIDTH (.1M)	WIDTH (.1M)	WIDTH (.1M)	(AHEAD (M)	FOR MAJOR	(M)	I I
I I	B-AC C-B	D	0.081 0.115	0.006	0.012	0.00) 4 . 2	0.006	I
I T	D-AB	2	0.111	0.006	0.013	0.00)5)8	0.008	I
Ι	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
Ι		_		(RFC)	(PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) T	DELAY (VEH.MIN/ IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
Ι		_		(RFC)	(PEDS/MIN)	(VEHS)	END QUEUE (VEHS) T	'IME SEGMENT)	TIME SEGMENT) I I I I
Ι		_		(RFC)	(PEDS/MIN)	(VEHS) 0.0	(VEHS) T	O.O	TIME SEGMENT) I I I I I I I I
		_		(RFC)	(PEDS/MIN)	(VEHS) 0.0	(VEHS) T	O.O	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
		_	CAPACITY (VEH/MIN) 6.67 7.35 9.10	(RFC)	(PEDS/MIN)	0.0 0.0 0.0 0.5	(VEHS) T	0.0 0.0 0.0 5.6	TIME SEGMENT) I I I I I I I I I I I I I I I I I
	09.00-09.1 B-ACD A-B A-C A-D D-ABC C-D C-A C-B	0.00 0.00 0.00 0.00 2.39 0.00 6.12 0.75	6.67 7.35 9.10 12.59 EFFECT ON	(RFC) 0.000 0.000 0.262 0.059 CAPACITY MAJOR RD. WIDTH	(PEUS/MIN) (PCU/MIN) OF CENT RES WIDTH	(VEHS) 0.0 0.0 0.5 0.1 MARGINA	(VEHS) T 0.0 0.0 0.4 0.1 AL CHANGES D LEFT FOR MAJOR	0.0 0.0 5.6 1.0 VISIBILITY	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09.1 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGIN CHANG	0.00 0.00 0.00 0.00 0.00 2.39 0.00 6.12 0.75	6.67 7.35 9.10 12.59 EFFECT ON NE WIDTH (.1M) 0.085	(RFC) 0.000 0.000 0.262 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005	(PCU/MIN) OF CENT RES WIDTH (.1M)	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD (M)	0.0 0.0 0.4 0.1 AL CHANGES D LEFT FOR MAJOR	0.0 0.0 5.6 1.0 VISIBILITY TO RIGHT	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09.1 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGIN CHANG	0.00 0.00 0.00 0.00 0.00 2.39 0.00 6.12 0.75	6.67 7.35 9.10 12.59 EFFECT ON NE WIDTH (.1M) 0.085	(RFC) 0.000 0.000 0.262 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005	(PCU/MIN) OF CENT RES WIDTH (.1M)	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD (M)	0.0 0.0 0.4 0.1 AL CHANGES D LEFT FOR MAJOR	0.0 0.0 5.6 1.0 VISIBILITY (M)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09.1 B-ACD A-B A-C A-D D-ABC C-A C-B MARGIN. CHANG B-AC C-B D-AB	0.00 0.00 0.00 0.00 0.00 2.39 0.00 6.12 0.75	6.67 7.35 9.10 12.59 EFFECT ON NE WIDTH (.1M) 0.085 0.115 0.116 0.088	(RFC) 0.000 0.000 0.262 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.005 0.007	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00	0.0 0.0 0.4 0.1 AL CHANGES D LEFT FOR MAJOR 0.4 2 105 18	0.0 0.0 5.6 1.0 1.0 VISIBILITY (M) 0.006	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09.1 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGIN CHANG B-AC C-B D-AB	0.00 0.00 0.00 0.00 0.00 2.39 0.00 6.12 0.75	6.67 7.35 9.10 12.59 EFFECT ON NE WIDTH (.1M) 0.085 0.115 0.116 0.088	(RFC) 0.000 0.000 0.262 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.005	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00	0.0 0.0 0.4 0.1 AL CHANGES LEFT FOR MAJOR 4 2 5 8	0.0 0.0 5.6 1.0 * IN: VISIBILITY (M) 0.006 0.008	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09.1 B-ACD A-B A-C A-D D-ABC C-A C-B MARGIN. CHANG B-AC C-B D-AB: A-D D-AB: CTB	0.00 0.00 0.00 0.00 0.00 2.39 0.00 6.12 0.75	6.67 7.35 9.10 12.59 EFFECT ON NE WIDTH (.1M) 0.085 0.115 0.116 0.088	(RFC) 0.000 0.000 0.262 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.005	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00	0.0 0.0 0.4 0.1 AL CHANGES LEFT FOR MAJOR 4 2 5 8	0.0 0.0 5.6 1.0 * IN: VISIBILITY (M) 0.006 0.008	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09.1 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGIN. CHANG B-AC C-B D-AB: A-D TIME (V. 09.15-09.3 B-ACD	0.00 0.00 0.00 0.00 2.39 0.00 6.12 0.75	6.67 7.35 9.10 12.59 EFFECT ON NE WIDTH (.1M) 0.085 0.115 0.116 0.088	(RFC) 0.000 0.000 0.262 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.005 0.007 DEMAND/ CAPACITY (RFC)	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00	0.0 0.0 0.4 0.1 AL CHANGES LEFT FOR MAJOR 4 2 5 8	O.0 O.0 S.6 1.0 IN: VISIBILITY O.006 O.008 DELAY (VEH.MIN/ VIME SEGMENT)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09.1 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGIN CHANG B-AC C-B D-AB A-D TIME (V. 09.15-09.3 B-ACD A-B A-D	0.00 0.00 0.00 0.00 0.00 2.39 0.00 6.12 0.75	6.67 7.35 9.10 12.59 EFFECT ON NE WIDTH (.1M) 0.085 0.115 0.116 0.088	(RFC) 0.000 0.000 0.262 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.005 0.007 DEMAND/ CAPACITY (RFC) 0.000	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 0.00 START QUEUE (VEHS)	O.O O.O O.4 O.1 AL CHANGES D LEFT FOR MAJOR O.1 2 2 5 5 8 END QUEUE (VEHS) T	O.0 O.0 S.6 1.0 IN: VISIBILITY O.006 O.008 DELAY (VEH.MIN/ VIME SEGMENT) O.0	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09.1 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGIN CHANG B-AC C-B D-AB A-D TIME (V. 09.15-09.3 B-ACD A-B A-D	0.00 0.00 0.00 0.00 0.00 2.39 0.00 6.12 0.75	6.67 7.35 9.10 12.59 EFFECT ON NE WIDTH (.1M) 0.085 0.115 0.116 0.088	(RFC) 0.000 0.000 0.262 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.005 0.007 DEMAND/ CAPACITY (RFC) 0.000	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.5 0.1 MARGINA VIS TO (AHEAD (M) 0.00 0.01 0.00 0.00	O.O O.O O.A O.1 AL CHANGES D LEFT FOR MAJOR O.1 2 2 5 5 8 END QUEUE (VEHS) T	O.0 O.0 S.6 1.0 IN: VISIBILITY O.006 O.008 DELAY (VEH.MIN/ VIME SEGMENT) O.0	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09.1 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGIN CHANG B-AC C-B D-AB A-D TIME (V. 09.15-09.3 B-ACD A-B A-D	0.00 0.00 0.00 0.00 0.00 2.39 0.00 6.12 0.75	6.67 7.35 9.10 12.59 EFFECT ON NE WIDTH (.1M) 0.085 0.115 0.116 0.088	(RFC) 0.000 0.000 0.262 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.005 0.007 DEMAND/ CAPACITY (RFC) 0.000	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 0.00 0.00 0.00	(VEHS) T 0.0 0.0 0.4 0.1 AL CHANGES LEFT FOR MAJOR 0.4 2.2 3.5 8.8 END QUEUE (VEHS) T 0.0 0.0 0.3	0.0 0.0 5.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09.1 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGIN CHANG B-AC C-B D-AB A-D TIME (V. 09.15-09.3 B-ACD A-B A-D	0.00 0.00 0.00 0.00 0.00 2.39 0.00 6.12 0.75	6.67 7.35 9.10 12.59 EFFECT ON NE WIDTH (.1M) 0.085 0.115 0.116 0.088	(RFC) 0.000 0.000 0.262 0.059 CAPACITY MAJOR RD. WIDTH (.1M) 0.005 0.000 0.005 0.007 DEMAND/CAPACITY (RFC) 0.000 0.213	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.0	(VEHS) T 0.0 0.0 0.4 0.1 AL CHANGES LEFT FOR MAJOR 0.4 2.5 1.8 END QUEUE (VEHS) T 0.0 0.3 0.1	0.0 0.0 5.6 1.0 1.0 1.1 1.0 1.1 1.0 1.0 1.0 1.0 1.0	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09.1 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGIN CHANG B-AC C-B D-AB A-D TIME (V. 09.15-09.3 B-ACD A-B A-C A-D D-ABC C-D C-A C-B	0.00 0.00 0.00 0.00 0.00 2.39 0.00 6.12 0.75 AL LA' E: DEMAND EH/MIN) 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	6.67 7.35 9.10 12.59 EFFECT ON NE WIDTH (.1M) 0.085 0.115 0.116 0.088	(RFC) 0.000 0.000 0.262 0.059 CAPACITY MAJOR RD WIDTH (.1M) 0.005 0.000 0.005 0.007	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN) (PCU/MIN) OF CENT RES	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(VEHS) T 0.0 0.0 0.4 0.1 AL CHANGES LEFT FOR MAJOR 0.4 2.2 5.8 END QUEUE (VEHS) T 0.0 0.0 0.3 0.1 AL CHANGES	O.0 O.0 S.6 1.0 IN: VISIBILITY O.006 O.008 DELAY (VEH.MIN/ IME SEGMENT) O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09.1 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGIN CHANG B-AC C-B D-AB A-D TIME (V. 09.15-09.3 B-ACD A-B A-C A-D D-ABC C-D C-A C-B	0.00 0.00 0.00 0.00 0.00 2.39 0.00 6.12 0.75 AL LA' E: DEMAND EH/MIN) 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	6.67 7.35 9.10 12.59 EFFECT ON NE WIDTH (.1M) 0.085 0.115 0.116 0.088	(RFC) 0.000 0.000 0.262 0.059 CAPACITY MAJOR RD WIDTH (.1M) 0.005 0.000 0.005 0.007	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(VEHS) T 0.0 0.0 0.4 0.1 AL CHANGES LEFT FOR MAJOR 0.4 2.2 5.8 END QUEUE (VEHS) T 0.0 0.0 0.3 0.1 AL CHANGES	O.0 O.0 S.6 1.0 IN: VISIBILITY O.006 O.008 DELAY (VEH.MIN/ IME SEGMENT) O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I
	09.00-09.1 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGIN CHANG B-AC C-B TIME (V. 09.15-09.3 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARGIN CHANG MARGIN CHANG	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.75 AL LA' E: D DEMAND EH/MIN) 0 0.00 0.00 0.00 0.00 0.00 0.00 5.13 0.63	6.67 7.35 9.10 12.59 EFFECT ON NE WIDTH (.1M) 0.085 0.115 0.116 0.088	(RFC) 0.000 0.000 0.262 0.059 CAPACITY MAJOR RD. 0.005 0.000 0.005 0.007	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN) (PCU/MIN) OF CENT RES	0.0 0.0 0.5 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.0	(VEHS) T 0.0 0.0 0.4 0.1 AL CHANGES D LEFT FOR MAJOR 0.4 2.2 5.5 8.8 END QUEUE (VEHS) T 0.0 0.3 0.1 AL CHANGES D LEFT FOR MAJOR	O.0 O.0 S.6 1.0 IN: VISIBILITY O.006 O.008 DELAY (VEH.MIN/ IME SEGMENT) O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I

I A-D		0.004		0.008		
QUEUE FOR ST						
TIME SEGMENT						
ENDING						
	IN QUEUE					
08.15	0.0					
08.30	0.0					
08.45	0.0					
09.00 09.15	0.0					
09.13	0.0					
QUEUE FOR ST	REAM A-D					
TIME SEGMENT						
ENDING						
08.15	IN QUEUE 0.0					
08.30	0.0					
08.45	0.0					
09.00	0.0					
09.15	0.0					
09.30	0.0					
QUEUE FOR ST	REAM D-ABC					
TIME SEGMENT	NO OF					
ENDING	VEHICLES					
DINDING	IN QUEUE					
08.15	0.3					
08.30	0.4					
08.45	0.5					
09.00	0.5					
09.15	0.4					
09.30	0.3					
QUEUE FOR ST	REAM C-B					
TIME SEGMENT						
ENDING	IN QUEUE					
08.15	0.1					
08.30	0.1					
08.45	0.1					
09.00	0.1					
09.15	0.1					
09.30	0.1					
	QUEUEING I	ELAY INFORM	ATION OVER	WHOLE PERIOR)	
					-	
I STREAM I		I * OUEII	 EING *	I * INCLUSI	VE QUEUEING *	 I
I I		I * DEL	AY *	I * I	IVE QUEUEING * DELAY *	Ī
I I						-I
I I					(MIN/VEH)	I
	0 О Т О О				0.00	 T
T A-B T	0.0 I 0.0) T	_ 0.00	I 0.0	I 0.00	T
			I			Ī
I A-D I	0.0 I 0.0 0.0 I 0.0 219.4 I 146.3) I 0.0	I 0.00	I 0.0	0.00	
I D-ABC I	219.4 I 146.3	33.5	I 0.15	I 33.5	5 I 0.15	Ī
I C-D I	0.0 I 0.0) I	I	I	I 0.10	Ī
I C-A I	562.2 I 374.8	B I	I	I	I	Ī
I C-B I	68.6 I 45.7	7 I 5.8	I 0.08		3 I 0.08	

I D-ABC 0.120 0.004 0.013 0.005 0.008

68.6 I I ALL I 850.2 I 566.8 I 39.2 I

0.05 I

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

* INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

* THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

39.2 I

I 0.05

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\E PM 2025 DES.vpi" at 11:37:51 on Monday, 30 May 2016

RUN TITLE

Marble Road / Kam Hong Street PM (E) 2025 DES

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

INPUT DATA

MINOR ROAD (ARM D) MAJOR ROAD (ARM C) ----- MAJOR ROAD (ARM A) MINOR ROAD (ARM B)

ARM A IS Kam Hong Street SB ARM B IS Marble Road WB ARM C IS Kam Hong Street SB

ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B

STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

ETC.

.GEOMETRIC DATA

I	DATA ITEM	I	MINOF	R ROAD	В :	I	MINOR	ROAD	D	I
I I I	TOTAL MAJOR ROAD CARRIAGEWAY WIDTH CENTRAL RESERVE WIDTH		(WCR)				(WCR)	7.75 0.00		I I
I I I	MAJOR ROAD RIGHT TURN - WIDTH - VISIBILITY - BLOCKS TRAFFIC		(WC-B)				(WA-D) (VA-D)	2.20 0.0 NO		I I I
I I I	MINOR ROAD - VISIBILITY TO LEFT - VISIBILITY TO RIGHT - LANE 1 WIDTH - LANE 2 WIDTH	I	(VB-C) (VB-A) (WB-C) (WB-A)		M	I I	(VD-C) (WD-A)	15.0 20.0 5.00 0.00	M. M.	I I I

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 17.30 AND ENDS 19.00

Ι			Ι	NUN	NUMBER OF MINUTES FROM START WHEN FLOW STARTS I TOP OF PEAK I FLOW STOP								OI	F FLOW (VE	H/MIN)	Ι
Ι	ARN	1	Ι	FLOW	STARTS	I	TOP	OF PEAK	Ι	FLOW STOPS	Ι	BEFORE	Ι	AT TOP	I	AFTER	I
Ι			Ι	TO	RISE	Ι	IS	REACHED	Ι	FALLING	Ι	PEAK	Ι	OF PEAK	Ι	PEAK	I
Ι	ARM	Α	Ι		L5.00	Ι		45.00	Ι	75.00	Ι	0.00	Ι	0.00	Ι	0.00	I
Ι	ARM	В	Ι	1	L5.00	Ι		45.00	Ι	75.00	Ι	0.00	Ι	0.00	Ι	0.00	Ι
Ι	ARM	С	Ι	1	L5.00	Ι		45.00	Ι	75.00	Ι	7.19	Ι	10.78	Ι	7.19	I
Ι	ARM	D	Ι	- 1	15.00	Ι		45.00	Ι	75.00	Ι	2.31	Ι	3.47	I	2.31	I

•				
I I I		I		TURNING PROPORTIONS I TURNING COUNTS (VEH/HR) I (PERCENTAGE OF H.V.S) I
Ī	TIME	Ι	FROM/TO	I ARM A I ARM B I ARM C I ARM D I
I I I I I I I I I I I I I I I I I I I	17.30 - 19.00	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ARM B ARM C ARM D	I??????? I??????? I??????? I I (0.0)I (0.0)I (0.0)I (0.0)I I I I I I I

TURNING PROPORTIONS ARE CALCULATED FROM TURNING COUNT DATA

I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)		PEDESTRIAN FLOW	START QUEUE	END QUEUE	DELAY (VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I
Ι				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	17.30-17	.45							I
Ι	B-ACD	0.00	6.63	0.000		0.0	0.0	0.0	I
I	A-B	0.00							I
I	A-C	0.00							I
I	A-D	0.00	7.27	0.000		0.0	0.0	0.0	I
I	D-ABC	2.31	9.11	0.254		0.0	0.3	4.8	I
Ι	C-D	0.00							I
Ι	C-A	6.19							I
Ι	C-B	1.00	12.59	0.079		0.0	0.1	1.3	I
I									I
I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANG	ES IN:	I
Ι				MAJOR RD.	CENT RES	VIS TO	LEFT	VISIBILITY	I
I	MARG	GINAL LAN	NE WIDTH	WIDTH	WIDTH	(AHEAD	FOR MAJO	OR) TO RIGHT	I
I	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
I									I
I	B-	-ACD	0.084	0.005	0.012	0.00) 4	0.006	I
Ι	C-	-B	0.115	0.000		0.01	.2		I
Ι	D-	ABC	0.115	0.005	0.013	0.00)5	0.008	I
I	A-	-D	0.087	0.007		0.00	8		I

I			CAPACITY (VEH/MIN)	CAPACITY	PEDESTRIAN FLOW (PEDS/MIN)	QUEUE	-	(VEH.MIN/	
I	17.45-18	3.00							I
Ι	B-ACD	0.00	6.43	0.000		0.0	0.0	0.0	I
I	A-B	0.00							I
I	A-C	0.00							I
I	A-D	0.00	7.00	0.000		0.0	0.0	0.0	I
I	D-ABC	2.76	8.76	0.315		0.3	0.5	6.6	I
I	C-D	0.00							I
I	C-A	7.39							I
I	C-B	1.19	12.59	0.095		0.1	0.1	1.5	I
Ι									I
I			EFFECT ON	CAPACITY	(PCU/MIN) OF	MARGINA	AL CHANGE	S IN:	I
I				MAJOR RD.	CENT RES	VIS TO) LEFT	VISIBILITY	I
I	MARG	GINAL LA	NE WIDTH	WIDTH	WIDTH	(AHEAD	FOR MAJO	R) TO RIGHT	I
I	CHA	NGE:	(.1M)	(.1M)	(.1M)	(M)		(M)	I
I									I
I	B-	-ACD	0.080	0.006	0.012	0.00) 4	0.006	I
I	C-	-B	0.115	0.000		0.01	L2		I
Ι	D-	-ABC	0.110	0.006	0.013	0.00)5	0.008	I
Ι	A-	-D	0.084	0.009		0.00	8		I

I	10 00 10	1.5		(RFC)	(PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS) T	DELAY (VEH.MIN/ IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I	
т	D-7CD	0 00	6.15	0.000		0.0	0.0	0.0	I I I	
I I I	A-D D-ABC C-D	0.00 3.38 0.00	6.61 8.27	0.000 0.409		0.0 0.5	0.0 0.7	0.0 9.7	I I	
I	C-B	1.46	12.59	0.116			0.1		I	
I I I I			EFFECT ON	CAPACITY	(PCU/MIN) OF CENT RES WIDTH (.1M)	MARGINA VIS TO (AHEAD (M)	L CHANGES LEFT FOR MAJOR	IN: VISIBILITY) TO RIGHT (M)	I I I I	
I I I									I I I	
I	D- A-	ABC ·D	0.103 0.079	0.008 0.011	0.012	0.00	.2 15 17	0.007		
 I	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI	
I	18.15-18	(VEH/MIN)	(VEH/MIN)	(RFC)	(PEDS/MIN)	(VEHS)	(VEHS) T	(VEH.MIN/ IME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I I	
						0.0	0.0	0.0	I I I	
I	A-D D-ABC C-D	0.00 3.38 0.00	6.15 6.61 8.27	0.000 0.409		0.0	0.0 0.7	0.0 10.2	I I I	
I	C-B	1.46	12.59	0.116		0.1	0.1	2.0	I I I	
I			EFFECT ON	CAPACTTY	(PCU/MIN) OF CENT RES	MARGINA VIS TO	L CHANGES	IN: VISIBILITY	T	
I I I			NE WIDTH (.1M)	WIDTH (.1M)	WIDTH (.1M)	(AHEAD (M)	FOR MAJOR) TO RIGHT (M)	I I I	
	B- C-	ACD B	0.075 0.115	0.008	0.012	0.00	.2	0.005	I	
I	D- A-	ABC D	0.103 0.079	0.008 0.011	0.013	0.00	15 17	0.007	I	
		DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY	PEDESTRIAN FLOW	QUEUE	END QUEUE	DELAY (VEH.MIN/	GEOMETRIC DELAYI (VEH.MIN/ I	
I I I	18.30-18 B-ACD	0.00	6.43	(RFC)	(PEDS/MIN)	(VEHS)	END QUEUE (VEHS) T:	IME SEGMENT)	TIME SEGMENT) I I I	
I I I	18.30-18 B-ACD	0.00	6.43	(RFC)	(PEDS/MIN)	0.0 0.0	0.0 0.0	O.0	TIME SEGMENT) I I I I I	
I I	18.30-18 B-ACD	0.00	6.43	(RFC)	(PEDS/MIN)	0.0 0.0	(VEHS) T	O.0	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I	
I	18.30-18 B-ACD	0.00	7.00 8.76	(RFC) 0.000 0.000 0.315	(PEDS/MIN)	0.0 0.0 0.7	0.0 0.0 0.5 0.1	0.0 0.0 7.3	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I	
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA	0.00 0.00 0.00 0.00 0.00 2.76 0.00 7.39 1.19	6.43 7.00 8.76 12.59 EFFECT ON	(RFC) 0.000 0.000 0.315 0.095 CAPACITY	(PCU/MIN) OF CENT RES WIDTH	(VEHS) 0.0 0.0 0.7 0.1 MARGINA VIS TO (AHEAD	0.0 0.0 0.5 0.1 LCHANGES	O.0 0.0 7.3 1.6 IN: VISIBILITY	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I	
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B	0.00 0.00 0.00 0.00 2.76 0.00 7.39 1.19	6.43 7.00 8.76 12.59 EFFECT ON NE WIDTH (.1M)	(RFC) 0.000 0.000 0.315 0.095 CAPACITY MAJOR RD. WIDTH (.1M)	(PCU/MIN) OF CENT RES WIDTH (.1M)	0.0 0.0 0.7 0.1 MARGINA VIS TO (AHEAD (M)	0.0 0.0 0.5 0.1 LI CHANGES	0.0 0.0 7.3 1.6 IN: VISIBILITY TO RIGHT (M)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I	
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B	0.00 0.00 0.00 0.00 2.76 0.00 7.39 1.19	6.43 7.00 8.76 12.59 EFFECT ON NE WIDTH (.1M)	(RFC) 0.000 0.000 0.315 0.095 CAPACITY MAJOR RD. WIDTH (.1M)	(PCU/MIN) OF CENT RES WIDTH (.1M)	0.0 0.0 0.7 0.1 MARGINA VIS TO (AHEAD (M)	0.0 0.0 0.5 0.1 LI CHANGES	0.0 0.0 7.3 1.6 IN: VISIBILITY TO RIGHT (M)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I	
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B-C-D A-C-B	0.00 0.00 0.00 0.00 2.76 0.00 7.39 1.19	6.43 7.00 8.76 12.59 EFFECT ON NE WIDTH (.1M) 0.080 0.115 0.110 0.084	(RFC) 0.000 0.000 0.315 0.095 CAPACITY MAJOR RD. WIDTH (.1M) 0.006 0.000 0.006 0.009	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013	0.0 0.0 0.7 0.1 MARGINA VIS TO (AHEAD (M) 0.00 0.01	0.0 0.0 0.5 0.1 LEFT FOR MAJOR;	0.0 0.0 7.3 1.6 IN: VISIBILITY 0.006 0.006	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I	
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B-C- D- A- TIME	0.00 0.00 0.00 0.00 2.76 0.00 7.39 1.19 SINAL LAI NGE: ACD BABC	6.43 7.00 8.76 12.59 EFFECT ON NE WIDTH (.1M) 0.080 0.115 0.110 0.084	(RFC) 0.000 0.000 0.315 0.095 CAPACITY MAJOR RD. WIDTH (.1M) 0.006 0.000 0.006 0.009	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW	0.0 0.0 0.7 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01	(VEHS) T: 0.0 0.0 0.5 0.1 LEFT FOR MAJOR: 42 55 8 END QUEUE	0.0 0.0 7.3 1.6 IN: VISIBILITY 0.006 0.008	TIME SEGMENT) I I I I I I I I I I I I I	
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B- C- D- A- TIME	0.00 0.00 0.00 0.00 2.76 0.00 7.39 1.19 SINAL LAI NGE: ACD BABC DD	6.43 7.00 8.76 12.59 EFFECT ON NE WIDTH (.1M) 0.080 0.115 0.110 0.084 	(RFC) 0.000 0.000 0.315 0.095 CAPACITY MAJOR RD. WIDTH (.1M) 0.006 0.000 0.006 0.000 DEMAND/ CAPACITY (RFC)	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.7 0.1 MARGINA VIS TC (AHEAD 0.00 0.01 0.00 0.00	(VEHS) T: 0.0 0.0 0.5 0.1 LEFT FOR MAJOR: 42 55 8 END QUEUE	O.0 O.0 7.3 1.6 IN: VISIBILITY O.006 O.008 DELAY (VEH.MIN/ IME SEGMENT)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I	
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B- C- D- A- TIME	0.00 0.00 0.00 0.00 2.76 0.00 7.39 1.19 SINAL LAI NGE: ACD BABC DD	6.43 7.00 8.76 12.59 EFFECT ON NE WIDTH (.1M) 0.080 0.115 0.110 0.084 	(RFC) 0.000 0.000 0.315 0.095 CAPACITY MAJOR RD. WIDTH (.1M) 0.006 0.000 0.006 0.000 DEMAND/ CAPACITY (RFC)	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.7 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.0	(VEHS) T: 0.0 0.0 0.5 0.1 LL CHANGES LEFT FOR MAJOR 4 2 5 8 END QUEUE (VEHS) T:	IME SEGMENT) 0.0 0.0 7.3 1.6 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I	
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B- C- D- A- TIME	0.00 0.00 0.00 0.00 2.76 0.00 7.39 1.19 SINAL LAI NGE: ACD BABC DD	6.43 7.00 8.76 12.59 EFFECT ON NE WIDTH (.1M) 0.080 0.115 0.110 0.084 	(RFC) 0.000 0.000 0.315 0.095 CAPACITY MAJOR RD. WIDTH (.1M) 0.006 0.000 0.006 0.000 DEMAND/ CAPACITY (RFC)	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.7 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 START QUEUE (VEHS) 0.0 0.0	(VEHS) T: 0.0 0.0 0.5 0.1 LI CHANGES LEFT FOR MAJOR 4 2 5 8 END QUEUE (VEHS) T:	IME SEGMENT) 0.0 0.0 7.3 1.6 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0 0.0 5.3	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I	
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B C- D- A TIME 18.45-19 B-ACD A-B A-C A-D D-ABC C-D C-A C-B	0.00 0.00 0.00 0.00 2.76 0.00 7.39 1.19 SINAL LAI NGE: ACD BABC D DEMAND (VEH/MIN) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	6.43 7.00 8.76 12.59 EFFECT ON NE WIDTH (.1M) 0.080 0.115 0.110 0.084	(RFC) 0.000 0.000 0.315 0.095 CAPACITY MAJOR RD. WIDTH (.1M) 0.006 0.000 0.006 0.009	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.7 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.0	(VEHS) T: 0.0 0.0 0.5 0.1 L CHANGES D LEFT FOR MAJOR; 42 25 88 CUEUS 0.0 0.0 0.0 0.3 0.1	IME SEGMENT) 0.0 0.0 7.3 1.6 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/) IME SEGMENT) 0.0 0.0 1.3 IN:	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I	
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B C- D- A TIME 18.45-19 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA MARG C-C-C D-C-C C-C-C C-C C-C C-C C-C C-C C	0.00 0.00 0.00 0.00 2.76 0.00 7.39 1.19 SINAL LAI NGE: ACD BABC D DEMAND (VEH/MIN) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	6.43 7.00 8.76 12.59 EFFECT ON NE WIDTH (.1M) 0.080 0.115 0.110 0.084	(RFC) 0.000 0.000 0.315 0.095 CAPACITY MAJOR RD. WIDTH (.1M) 0.006 0.000 0.006 0.009	(PEDS/MIN) (PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	0.0 0.0 0.7 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.0	(VEHS) T: 0.0 0.0 0.5 0.1 L CHANGES D LEFT FOR MAJOR; 42 25 88 CUEUS 0.0 0.0 0.0 0.3 0.1	IME SEGMENT) 0.0 0.0 7.3 1.6 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/) IME SEGMENT) 0.0 0.0 1.3 IN:	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I	
	18.30-18 B-ACD A-B A-C A-D D-ABC C-D C-A C-B MARG CHA B-C- TIME 18.45-19 B-ACD A-B A-C A-D D-ABC C-C A-D MARG CHA B-C-C D-C A-B MARG CHA B-C-C B-C B-C B-C B-C B-C B-C B-C B-C B	0.00 0.00 0.00 0.00 2.76 0.00 7.39 1.19 SINAL LAI NGE: DEMAND (VEH/MIN) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	6.43 7.00 8.76 12.59 EFFECT ON NE WIDTH (.1M) 0.080 0.115 0.110 0.084	(RFC) 0.000 0.000 0.315 0.095 CAPACITY MAJOR RD. 0.006 0.000 0.006 0.000 0.006 0.009	(PCU/MIN) OF CENT RES WIDTH (.1M) 0.012 0.013 PEDESTRIAN FLOW (PEDS/MIN)	(VEHS) 0.0 0.0 0.7 0.1 MARGINA VIS TC (AHEAD (M) 0.00 0.01 0.00 0.00 START QUEUE (VEHS) 0.0 0.0 0.0 0.1 MARGINA VIS TC (AHEAD (M)	(VEHS) T: 0.0 0.0 0.5 0.1 LI CHANGES LEFT FOR MAJOR 4 2 5 8 END QUEUE (VEHS) T: 0.0 0.3 0.1 LI CHANGES	IME SEGMENT) 0.0 0.0 7.3 1.6 IN: VISIBILITY) TO RIGHT (M) 0.006 0.008 DELAY (VEH.MIN/ IME SEGMENT) 0.0 0.0 5.3 1.3 IN: VISIBILITY) TO RIGHT (M)	TIME SEGMENT) I I I I I I I I I I I I I I I I I I I	

						0.0			0	.008	3
QUEUE	FOR ST	TREAM	B-ACD								
	SEGMENT		 O. OF								
	ING	VEH	ICLES								
		IN	QUEUE								
17.4	45		0.0								
18.0	0.0		0.0								
18.1	15		0.0								
18.3	30		0.0								
18.4	45		0.0								
19.0	00		0.0								
	FOR ST		A-D								
	SEGMENT										
ENDI	ING	VEH	ICLES								
		IN	QUEUE								
17.4			0.0								
18.0			0.0								
18.1			0.0								
18.3	30		0.0								
18.4	45		0.0								
19.0	00		0.0								
			D-ABC								
	SEGMENT										
	ING										
		IN	QUEUE								
17.4	45		0.3								
18.0			0.5								
18.1			0.7	*							
18.3	30		0.7	*							
18.4	45		0.5								
19.0			0.3								
	FOR ST										
	SEGMENT										
	ING										
		IN	QUEUE								
17.4	45		0.1								
18.0	0.0		0.1								
18.1	15		0.1								
18.3	30		0.1								
18.4	45		0.1								
19.0	0.0		0.1								
		Q.	UEUEING 1	DELA	Y INFORMA	TION OVER	WHOI	LE PERIOD			
											_
		TOTA	L DEMAND	I	* QUEUE	ING *			E QUEUEING		
I	I			I	* DELA	Y *	Ι	* DE	LAY *	I	[
I	I									I	1
Ι									(MIN/VE		
I B- <i>F</i>	ACD I	0.0	I 0.	0 I	0.0 I	0.00	I	0.0	I 0.00 I I I 0.00 I 0.17	I	[
I A-E	в І	0.0	I 0.	0 I	I		I		I	I	Ε
I A-0	c ī	0.0	I 0.	0 I	I		Ī		I	I	Į.
I Α-Γ	D I	0.0	I 0.	0 I	0.0 T	0.00	I	0.0	I 0.00	T	Į.
T D-7	ABC T	253.7	T 169	1 T	44.0 T	0.17	Ť	44.0	T 0.17	T	[
I C-F	D T	0.0	I 0	0 T	- 1.0 T	J	Ţ		I J.I.	T	ī
	ВТ	109 7	T 73	1 T	9 6 T	0 09	T	9 6	I 0.09	т	r

0.05 I

I ALL I 1042.1 I 694.7 I 53.6 I

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

* INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

* THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

53.6 I

0.05 I

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\F AM 2025 DES.vpi" at 11:37:56 on Monday, 30 May 2016

RUN TITLE

Marble Road / Tin Chiu Street AM (F) 2025 DES

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

TNPUT DATA

MINOR ROAD (ARM D) MAJOR ROAD (ARM C) ----- MAJOR ROAD (ARM A)

MINOR ROAD (ARM B)

ARM A IS Tin Chiu Street NB ARM B IS Marble Road WB ARM C IS Tin Chiu Street SB ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B

STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

ETC.

.GEOMETRIC DATA

I	DATA ITEM	I	MINO	R ROAD	В	I	MINO	R ROAD	D	_ I
I	TOTAL MAJOR ROAD CARRIAGEWAY WIDTH		(WCR)				(WCR)			I
I	CENTRAL RESERVE WIDTH	I	(WCIX)	0.00	r1.	I	(WCIX)	0.00	11.	I
I	MAJOR ROAD RIGHT TURN - WIDTH	I	(WC-B)	5.00	Μ.	Ι	(WA-D)	3.30	Μ.	I
I	- VISIBILITY	I	(VC-B)	0.0	Μ.	Ι	(VA-D)	100.0	Μ.	I
I	- BLOCKS TRAFFIC	I		YES		Ι		NO		I
I		I				Ι				I
I	MINOR ROAD - VISIBILITY TO LEFT	I	(VB-C)	0.0	Μ.	Ι	(VD-A)	30.0	Μ.	I
I	- VISIBILITY TO RIGHT	I	(VB-A)	0.0	Μ.	Ι	(VD-C)	100.0	Μ.	I
I	- LANE 1 WIDTH	I	(WB-C)	2.20	Μ.	Ι	(WD-A)	3.40	Μ.	I
Ι	- LANE 2 WIDTH	Ι	(WB-A)	0.00	Μ.	Ι	(WD-C)	3.40	Μ.	I

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 08.00 AND ENDS 09.30

		I TO I	RISE	I IS F	REACHED I	LOW STOPS I : FALLING I				
- A				I 4		75.00 I	5.56	I 8.34	I 5.56 I	
Α	RM B	I 15	5.00	I 4	45.00 I	75.00 I 75.00 I 75.00 I	0.00	I 0.00	I 0.00 I	
A	ARM C . ARM D :	I 1:	5.00	I 4	45.00 I	75.00 I 75.00 I	0.94 1	I 1.41 I 0.56	I 0.94 I I 0.38 I	
-										
-				I I		PROPORTIONS COUNTS (VEH/	HR)		I I	
				I		GE OF H.V.S)			I -	
_						I ARM B I				
	08.00	09.3		I DDM 7	I				I	
				I I	I 0.0 I (0.0	I 0.191 I I 85.0 I)I (0.0)I	350.0 1	I 10.0 I (0.0)	I I	
				I ARM E		I 0.000 I				
				I I I	I???????	I??????? I?	?????? I	I??????? I (0.0)	I I	
					C I 0.000	I 0.733 I	0.000 1	I 0.267	I	
				I I		I 55.0 I)I (0.0)I				
				I T ARM I	I	I I I I I I I I I I I I I I I I I I I	1	I	I	
				I	I 0.0	I 15.0 I	15.0 1	0.0	I	
				I		I(0.0) I(I	
-									-	
						TURNING COU				
	TIME	DEI	MΔND	CAPACTES	v nemann/	PEDESTRIAN	CTART	FND	DET.AV	GEOMETRIC DELA
			1111)	(* 1111 / PI I N)	(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT)
		08.15	.00	6.66	0.000		0.0	0.0	0.0	
	A-B	1	.06	3.00	2.000					
	A-C A-D	0	.38 .13		0.011		0.0	0.0	0.2	
	D-AB D-BC				0.012		0.0	0.0	0.2	
	D-BC C-ABI	0.	.28 .70	8.49 11.33	0.012 0.033 0.062			0.0	0.5 1.0	
		0.	.23							
_	U-A									
-					v DEMAND/	DEDEGERTAN			DELAY	CEOMERDIC DELL
			MIN)	(VEH/MIN)	CAPACITY (RFC)	FLOW (PEDS/MIN)	QUEUE (VEHS)	QUEUE (VEHS)	(VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELA (VEH.MIN/ TIME SEGMENT)
		0 0	.00	6.48	0.000		0.0	0.0	0.0	
	A-B	1.	.27							
	A-D	0	.15	11.47	0.013		0.0	0.0	0.2	
	D-AB	0	.11	8.13	0.014			0.0	0.2	
	C-ABI	0.	.84	11.11	0.013 0.014 0.040 0.076			0.0		
	C-D C-A	0	.28							
	0 11									
_										
	TIME	DEN	MAND (MTN)	CAPACITY	Y DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELA (VEH.MIN/
			1/	(, (,)	(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT)
	B-ACI	08.45	.00	6.24	0.000		0.0	0.0	0.0	
0	A-B	1.	.55	5.24	0.000			0.0	0.0	
0	A-C	0	18	11.39	0.016		0.0	0.0	0.2	
0	A-D	0	.14	7.87	0.018 0.050		0.0	0.0	0.3	
0	A-D D-AB	0.	.41	8.11	0.050 0.096			0.1	0.8 1.7	
0	A-D D-AB D-BC C-ABI) 1			0.000		0.1	· · ·		
0	D-AB D-BC C-ABI C-D	0.	.33							
0	D-AB D-BC C-ABI C-D C-A	0	.33							

Ī	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I		(VEH/MIN)	(VEH/MIN)	CAPACITY	FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
I				(RFC)	(PEDS/MIN)	(VEHS)	(VEHS)	TIME SEGMENT)	TIME SEGMENT) I
I	08.45-09	9.00							I
I	B-ACD	0.00	6.24	0.000		0.0	0.0	0.0	I
I	A-B	1.55							I
I	A-C	6.40							I
I	A-D	0.18	11.39	0.016		0.0	0.0	0.2	I
Ι	D-AB	0.14	7.87	0.018		0.0	0.0	0.3	I
I	D-BC	0.41	8.11	0.050		0.1	0.1	0.8	I
I	C-ABD	1.04	10.80	0.096		0.1	0.1	1.7	I
I	C-D	0.33							I
I	C-A	0.00							I
I									I
Ι	TIME	DEMAND	CAPACITY	DEMAND/	PEDESTRIAN	START	END	DELAY	GEOMETRIC DELAYI
I		(VEH/MIN)	(VEH/MIN)		FLOW	QUEUE	QUEUE	(VEH.MIN/	(VEH.MIN/ I
T				(REC)	(PEDS/MIN)	(MEHS)	(VEHS)	TIME SECMENT)	TIME SECMENT) I

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
Ι	09.00-09	9.15							I
Ι	B-ACD	0.00	6.48	0.000		0.0	0.0	0.0	I
Ι	A-B	1.27							I
Ι	A-C	5.22							I
Ι	A-D	0.15	11.47	0.013		0.0	0.0	0.2	I
Ι	D-AB	0.11	8.13	0.014		0.0	0.0	0.2	I
Ι	D-BC	0.33	8.33	0.040		0.1	0.0	0.6	I
Ι	C-ABD	0.84	11.11	0.076		0.1	0.1	1.3	I
Ι	C-D	0.28							I
Ι	C-A	0.00							I
Ι									I

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
Ι	09.15-09	9.30							I
Ι	B-ACD	0.00	6.66	0.000		0.0	0.0	0.0	I
Ι	A-B	1.06							I
Ι	A-C	4.38							I
Ι	A-D	0.13	11.52	0.011		0.0	0.0	0.2	I
Ι	D-AB	0.10	8.32	0.012		0.0	0.0	0.2	I
Ι	D-BC	0.28	8.48	0.033		0.0	0.0	0.5	I
Ι	C-ABD	0.70	11.33	0.062		0.1	0.1	1.0	I
Ι	C-D	0.23							I
Ι	C-A	0.00							I
Ι									I

^{*}WARNING* NO MARGINAL ANALYSIS OF CAPACITIES AS MAJOR ROAD BLOCKING MAY OCCUR

QUEUE FOR ST	REAM B-ACD
TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
08.15	0.0
08.30	0.0
08.45	0.0
09.00	0.0
09.15	0.0
09.30	0.0
QUEUE FOR ST	REAM A-D
TIME SEGMENT	NO. OF

ZOROR FOR SIN	EAM A D
TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
08.15	0.0
08.30	0.0
08.45	0.0
09.00	0.0
09.15	0.0
09.30	0.0

QUEUE FOR S	TREAM D-AB
TIME SEGMEN ENDING	T NO. OF VEHICLES IN OUEUE
08.15	0.0
08.30	0.0
08.45	0.0
09.00	0.0
09.15	0.0
09.30	0.0

QUEUE	FOR	STRE	AM		D-BC
TIME S	EGME	ENT	N	10.	OF
ENDI	NG		VEH	IIC	LES
			IN	QU	EUE
08.1	. 5			0	.0

08.30	0.0
08.45	0.1
09.00	0.1
09.15	0.0
09.30	0.0
QUEUE FOR STF	REAM C-ABD
TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
08.15	0.1
08.30	0.1
08.45	0.1
09.00	0.1
09.15	0.1
09.30	0.1

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

I	STREAM	I I	TOTA	L :	DEMAND	I	* QUEUE:		Ι			QUEUEING *	I I
I		I	(VEH)		(VEH/H)	I	(MIN)			(MIN)		(MIN/VEH)	I
Ι	B-ACD	I	0.0	I	0.0	Ι	0.0 I	0.00	I	0.0	I	0.00	I
Ι	A-B	Ι	116.6	Ι	77.7	Ι	I		I		Ι		Ι
Ι	A-C	Ι	479.9	Ι	319.9	Ι	I		I		Ι		Ι
Ι	A-D	Ι	13.7	Ι	9.1	Ι	1.2 I	0.09	I	1.2	Ι	0.09	Ι
Ι	D-AB	Ι	10.6	Ι	7.1	Ι	1.3 I	0.12	I	1.3	Ι	0.12	Ι
Ι	D-BC	Ι	30.6	Ι	20.4	Ι	3.8 I	0.13	Ι	3.8	Ι	0.13	Ι
Ι	C-ABD	Ι	77.6	Ι	51.7	Ι	7.9 I	0.10	Ι	7.9	Ι	0.10	Ι
Ι	C-D	Ι	25.2	Ι	16.8	Ι	I		I		I		Ι
Ι	C-A	Ι	0.0	Ι	0.0	Ι	I		I		Ι		Ι
I	ALL	I	754.2	I	502.8	I	14.2 I	0.02	I	14.2	I	0.02	I

- * DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

 * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

 * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

END OF JOB

(C) COPYRIGHT 1998

CAPACITIES, QUEUES, AND DELAYS AT 3 OR 4-ARM MAJOR/MINOR PRIORITY JUNCTIONS

Visual PICADY 4 ANALYSIS PROGRAM RELEASE 2.1 (DEC 1998)

ADAPTED FROM PICADY/3 WHICH IS CROWN COPYRIGHT BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:- "O:\hkh\F PM 2025 DES.vpi" at 11:38:00 on Monday, 30 May 2016

RUN TITLE

Marble Road / Tin Chiu Street PM (F) 2025 DES

.MAJOR/MINOR JUNCTION CAPACITY AND DELAY

TNPUT DATA

MINOR ROAD (ARM D) MAJOR ROAD (ARM C) ----- MAJOR ROAD (ARM A) MINOR ROAD (ARM B)

ARM A IS Tin Chiu Street NB ARM B IS Marble Road WB ARM C IS Tin Chiu Street SB ARM D IS Marble Road WB

STREAM LABELLING CONVENTION

STREAM A-B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B

STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

.GEOMETRIC DATA

I	DATA ITEM	Ι	MINOF	R ROAD	В	I	MINO	R ROAD	D	Ι
I	TOTAL MAJOR ROAD CARRIAGEWAY WIDTH CENTRAL RESERVE WIDTH		(WCR)				(WCR)			I
I	MAJOR ROAD RIGHT TURN - WIDTH - VISIBILITY		(WC-B) (VC-B)				(WA-D) (VA-D)			I
I	- BLOCKS TRAFFIC	I		YES		I		NO		I
I	MINOR ROAD - VISIBILITY TO LEFT - VISIBILITY TO RIGHT	Ι	(VB-C) (VB-A)	0.0	Μ.	Ι	(VD-A) (VD-C)	100.0	Μ.	I
I	- LANE 1 WIDTH - LANE 2 WIDTH		(WB-C) (WB-A)	0.00			(WD-A)			I

.TRAFFIC DEMAND DATA

TIME PERIOD BEGINS 17.30 AND ENDS 19.00

	I FLOW					FLOW STOPS I FALLING I					I		
ARM B	I	15.00	I	45.0	0 I	75.00 I 75.00 I	0.00	I 0.00	I	0.00	Ī		
ARM C ARM D	I	15.00 15.00	I	45.0	0 I 0 I	75.00 I	1.44	I 2.16	I	1.44	I		
			I I	T	URNING	PROPORTIONS COUNTS (VEH AGE OF H.V.S	I/HR)		I I				
	TIME			/TO I	ARM A	A I ARM B I	ARM C	I ARM D	I				
			I			I I			I				
			I ARM I I	I	0.0	0 I 0.185 I 0 I 75.0 I 0)I (0.0)I I I	315.0	I 15.0 I (0.0	I)I				
			I ARM I I	I	???????	0 I 0.000 I ? I??????? I D)I (0.0)I I I	???????	I??????? I (0.0	I)I				
				C I	0.000	0 I 0.739 I 0 I 85.0 I 0)I (0.0)I	0.000	I 0.261 I 30.0 I (0.0	I I) I				
			I ARM	D I I I	0.000	0 I 0.455 I 0 I 25.0 I 0)I (0.0)I	0.545 30.0 (0.0)	0.000 I 0.0 I (0.0	I I) I				
TIME	D	EMAND	CAPACI	11 D.	DACTEN	LEDESIKIA	OTTELLE	OTTELLE			T 3.T /	/IZELL MEN	. /
17.30- B-AC	17.45 D	0.00	CAPACI (VEH/MI:		(RFC)	PEDESTRIA FLOW (PEDS/MIN	I) (VEHS)	QUEUE (VEHS)	TIM	(VEH.M: ME SEGN	IN/ MENT)	(VEH.MIN TIME SEGME	NT)
17.30- B-AC	17.45 D	0.00 0.94 3.94	6.6	5	(RFC)	FLOW (PEDS/MIN	0.0	(VEHS)	TIM	4E SEGN	IN/ MENT)	(VEH.MIN TIME SEGME	NT)
17.30- B-AC A-B A-C A-D	17.45 D	0.00 0.94 3.94	6.6	5	(RFC)	(PEDS/MIN	0.0 0.0	0.0 0.0	TIM	0.0 0.2	IN/ MENT)	(VEH.MIN TIME SEGME	i/ NT)
17.30- B-AC A-B A-C A-D	17.45 D	0.00 0.94 3.94 0.19 0.16	6.6 11.3 8.2	5 7 3	(RFC) 0.000 0.016 0.020	(PEDS/MIN	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.1	TIM	4E SEGN	IN/ MENT)	(VEH.MIN TIME SEGME	I/ INT)
17.30- B-AC A-B A-C A-D D-AB D-BC C-AB	17.45 D	0.00 0.94 3.94 0.19 0.16 0.52	6.6 11.3 8.2	5 7 3	(RFC) 0.000 0.016 0.020	(PEDS/MIN	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	TIM	0.0 0.2 0.3	IN/ MENT)	(VEH.MIN TIME SEGME	NT)
17.30- B-AC A-B A-C A-D D-AB D-BC C-AB C-D	17.45 D	0.00 0.94 3.94 0.19 0.16	6.6 11.3 8.2	5 7 3	(RFC) 0.000 0.016 0.020	(PEDS/MIN	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.1	TIM	0.0 0.2 0.3 1.0	IN/ MENT)	(VEH.MIN TIME SEGME	INT)
17.30- B-AC A-B A-C A-D D-AB D-BC C-AB C-D C-A	17.45 D	0.00 0.94 3.94 0.19 0.16 0.52 1.10 0.34 0.00	6.6 11.3 8.2 8.4 11.5	5 7 3 5 2	0.016 0.020 0.062 0.095	(PEDS/MIN	0.0 0.0 0.0 0.0 0.0 0.0	(VEHS) 0.0 0.0 0.0 0.1 0.1	TIM	0.0 0.2 0.3 1.0	MENT)	TIME SEGME	NT)
17.30- B-AC A-B A-C A-D D-AB D-BC C-AB C-D C-A	17.45 DD	0.00 0.94 3.94 0.19 0.16 0.52 1.10 0.34 0.00	6.6 11.3 8.2 8.4 11.5	5 7 3 5 2 IY D: N) CA	(RFC) 0.000 0.016 0.020 0.062 0.095	(PEDS/MIN	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.1 0.1	TIM	0.0 0.2 0.3 1.0 1.6	 Y IN/	(VEH.MIN TIME SEGME GEOMETRIC D (VEH.MIN TIME SEGME	NT)
17.30- B-AC A-B A-C A-D D-AB D-BC C-AB C-D C-A	17.45 ED CONTRACTOR OF THE PROPERTY OF THE PRO	0.00 0.94 3.94 0.19 0.16 0.52 1.10 0.34 0.00	6.6 11.3 8.2 8.4 11.5 CAPACI	5 7 3 5 2 2 IY D.	(RFC) 0.000 0.016 0.020 0.062 0.095	(PEDS/MIN	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.1 0.1	TIM	0.0 0.2 0.3 1.0 1.6 DELA: (VEH.M:	MENT)	TIME SEGME	NT)
17.30- B-AC A-B A-C A-D D-AB D-BC C-AB C-D TIME 17.45- B-AC A-B	17.45 D SD (VEH	0.00 0.94 3.94 0.19 0.16 0.52 1.10 0.34 0.00	6.6 11.3 8.2 8.4 11.5	5 7 3 5 2 2 IY D.	(RFC) 0.000 0.016 0.020 0.062 0.095	(PEDS/MIN	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.1 0.1	TIM	0.0 0.2 0.3 1.0 1.6 DELA: (VEH.M:	MENT)	TIME SEGME	NT)
17.30- B-AC A-B A-C A-D D-AB D-BC C-AB C-D C-A	17.45 ED SED SED SED SED SED SED SED SED SED S	0.00 0.94 3.94 0.19 0.16 0.52 1.10 0.34 0.00	6.6 11.3 8.2 8.4 11.5 CAPACI (VEH/MI)	5 7 3 5 2 2 IY DN) CA	(RFC) 0.000 0.016 0.020 0.062 0.095 EMAND/PACITY (RFC)	(PEDS/MIN	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.1 0.1	TIM	0.0 0.2 0.3 1.0 1.6 DELA: (VEH.M:	MENT)	TIME SEGME	NT)
17.30- B-AC A-B A-C A-D D-AB C-C-AB C-D C-A TIME 17.45- B-AC A-B A-C A-D D-AB	17.45 ED SED SED SED SED SED SED SED SED SED S	0.00 0.94 3.94 0.19 0.16 0.52 1.10 0.34 0.00	6.6 11.3 8.2 8.4 11.5 CAPACI (VEH/MI)	5 7 3 5 2 2 IY DN) CA	(RFC) 0.000 0.016 0.020 0.062 0.095 EMAND/ PACITY (RFC) 0.000 0.020 0.025	(PEDS/MIN	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0	TIM	ME SEGN 0.0 0.2 0.3 1.0 1.6 DELAN (VEH.M. ME SEGN 0.0 0.3 0.4	MENT)	TIME SEGME	NT)
17.30- B-AC A-B A-C A-D D-AB D-BC C-AB C-A TIME	17.45 D (VEH	0.00 0.94 3.94 0.19 0.16 0.52 1.10 0.34 0.00	6.6 11.3 8.2 8.4 11.5 CAPACI (VEH/MI: 6.4 11.2 8.0 8.2	55 7 7 3 3 5 5 2 2 TY D. CA	(RFC) 0.000 0.016 0.020 0.062 0.095 	(PEDS/MIN	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.1 0.1 0.1 END QUEUE (VEHS) 0.0	TIM	0.0 0.2 0.3 1.0 1.6 DELA: (VEH M: 4E SEGN 0.0	MENT)	TIME SEGME	NT)
17.30- B-AC A-B A-C C-AB C-D C-A TIME 17.45- B-AC A-B A-C A-D D-AB D-BC C-AB C-D C-A	17.45 D (VEH	0.00 0.94 0.19 0.16 0.52 1.10 0.34 0.00 	6.6 11.3 8.2 8.4 11.5 CAPACI (VEH/MI) 6.4 11.2 8.0 8.2 11.3	55 7 7 3 5 5 2 TY D CA 8 8 9 9 2 8 8 3	0.016 0.002 0.062 0.095 	(PEDS/MIN	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(VEHS) 0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.0 0.1 0.1	TIM	ME SEGN 0.0 0.2 0.3 1.0 0.1.6 DELA: (VEH.M. 4E SEGN 0.0 0.3 0.4 1.2 2.1	 Y IN/ MENT)	TIME SEGME GEOMETRIC D (VEH.MIN TIME SEGME	NT)
17.30- B-AC A-B A-C A-D D-AB C-D C-A TIME 17.45- B-AC A-B A-C A-D D-AB D-BC C-AB C-D C-A	17.45 D (VEH	0.00 0.94 0.19 0.16 0.52 1.10 0.34 0.00 	6.6 11.3 8.2 8.4 11.5 CAPACT (VEH/MI) 6.4 11.2 8.0 8.2 11.3	5 7 3 5 5 2 2 TY D.N) CA 8 9 9 2 8 3 3	(RFC) 0.000 0.016 0.020 0.062 0.095 EMAND/ 0.020 0.020 0.020 0.025 0.075 0.117	PEDESTRIA PLOW (PEDS/MIN PEDESTRIA PEDESTRIA PEDESTRIA	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(VEHS) 0.0 0.0 0.0 0.1 END QUEUE (VEHS) 0.0 0.1 END QUEUE	TIM	ME SEGRE 0.0 0.2 0.3 1.0 1.6 DELAM (VEH M. 4E SEGRE 0.0 0.3 0.4 1.2 2.1	MENT) Y IN/ MENT)	TIME SEGME GEOMETRIC D (VEH.MIN TIME SEGME	NT) ELA / NT)
17.30- B-AC A-B A-C A-D D-AB C-D C-A TIME 17.45- B-AC A-B A-C A-D D-AB D-BC C-AB C-D T-AB D-BC C-AB C-D T-AB D-BC C-AB T-BC C-AB T-BC T-BC T-BC T-BC T-BC T-BC T-BC T-B	17.45 D (VEH	0.00 0.94 3.94 0.19 0.16 0.52 1.10 0.34 0.00 	6.6 11.3 8.2 8.4 11.5 CAPACI (VEH/MI) 6.4 11.2 8.0 8.2 11.3	5 7 3 5 5 2 2 TY D CA 8 8 9 9 2 8 3 3 TY D CA	(RFC) 0.000 0.016 0.020 0.062 0.095 EMAND/ PACITY (RFC) 0.000 0.025 0.075 0.117	PEDESTRIA PLOW (PEDS/MIN PEDESTRIA PEDESTRIA PEDESTRIA	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(VEHS) 0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.1 0.1 END QUEUE (VEHS)	TIM	ME SEGIO 0.0 0.2 0.3 1.0 1.6 DELA: (VEH.M: 4E SEGIO 0.0 0.3 0.4 1.2 2.1 DELA: (VEH.M: 4E SEGIO 0.0	MENT) Y IN/ MENT)	TIME SEGME GEOMETRIC D (VEH.MIN TIME SEGME	NT) ELA / NT)
17.30- B-AC A-B A-C A-D D-AB D-BC C-AB C-D C-A TIME 17.45- B-AC A-B A-C C-AB C-D C-AB C-D TIME 17.45- B-AC TIME 18.00- B-AC	17.45 D (VEH	0.00 0.94 0.19 0.16 0.52 1.10 0.34 0.00 	6.6 11.3 8.2 8.4 11.5 CAPACI' (VEH/MI) 6.4 11.2 8.0 8.2 11.3 CAPACI' (VEH/MI) 6.2	5 7 3 3 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(RFC) 0.000 0.016 0.020 0.062 0.095 EMAND/ PACITY (RFC) 0.000 0.025 0.075 0.117	PEDESTRIA PLOW (PEDS/MIN PEDESTRIA PEDESTRIA PEDESTRIA	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(VEHS) 0.0 0.0 0.0 0.1 END QUEUE (VEHS) 0.0 0.1 END QUEUE	TIM	ME SEGRE 0.0 0.2 0.3 1.0 1.6 DELAM (VEH M. 4E SEGRE 0.0 0.3 0.4 1.2 2.1	MENT) Y IN/ MENT)	TIME SEGME GEOMETRIC D (VEH.MIN TIME SEGME	NT) ELA / NT)
17.30- B-AC A-B A-C A-D D-AB C-D C-A TIME 17.45- B-AC A-B D-BC C-AB D-BC C-BC D-BC C-BC D-BC D-BC D-BC D-B	17.45 D (VEH	0.00 0.94 0.19 0.16 0.52 1.10 0.34 0.00 	6.6 11.3 8.2 8.4 11.5 CAPACI' (VEH/MI) 6.4 11.2 8.0 8.2 11.3 CAPACI' (VEH/MI) 6.2	5 7 3 3 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(RFC) 0.000 0.016 0.020 0.062 0.095 EMAND/ PACITY (RFC) 0.000 0.025 0.075 0.117	PEDESTRIA PLOW (PEDS/MIN PEDESTRIA PEDESTRIA PEDESTRIA	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(VEHS) 0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.1 END QUEUE (VEHS) 0.0	TIM	ME SEGIO 0.0 0.2 0.3 1.0 1.6 DELA: (VEH.M: 4E SEGIO 0.0 0.3 0.4 1.2 2.1 DELA: (VEH.M: 4E SEGIO 0.0	MENT) Y IN/ MENT) Y Y IN/ MENT)	TIME SEGME GEOMETRIC D (VEH.MIN TIME SEGME	NT) ELA / NT)
17.30- B-AC A-B A-C A-D D-AB D-BC C-AB C-D C-A TIME 17.45- B-AC A-B A-C C-AB C-D C-A TIME 18.00- B-AC A-B A-C A-B	17.45 D (VEH	0.00 0.94 0.19 0.16 0.52 1.10 0.34 0.00 	6.6 11.3 8.2 8.4 11.5 CAPACI (VEH/MI) 6.4 11.2 8.0 8.2 11.3 CAPACI (VEH/MI) 6.2 11.1	5 7 7 3 5 5 2 2 TTY D. NN) CA 8 8 9 2 8 8 8 7 TTY D. CA 3 3	(RFC) 0.000 0.016 0.020 0.095 EMAND/PACITY (RFC) 0.000 0.025 0.117 EMAND/PACITY 0.000 0.025 0.075 0.117	PEDESTRIA FLOW (PEDS/MIN PEDESTRIA FLOW (PEDS/MIN PEDESTRIA FLOW (PEDS/MIN	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(VEHS) 0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.1 END QUEUE (VEHS) 0.0 0.1 0.1	TIM	ME SEGIO 0.0 0.2 0.3 1.0 1.6 DELAN (VEH.M. 4E SEGIO 0.0 0.3 0.4 1.2 2.1 DELAN (VEH.M. (VEH.M. 0.0 0.3 0.4 0.4 0.4 0.0 0.3 0.4 0.4 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.6 0.6 0.6 0.6	MENT) Y IN/ MENT) Y Y IN/ MENT)	TIME SEGME GEOMETRIC D (VEH.MIN TIME SEGME	NT) ELA / NT)
17.30- B-AC A-B A-C A-D D-AB C-D C-A TIME 17.45- B-AC A-B A-C A-D D-AB D-BC C-AB C-D C-A TIME	17.45 D (VEH 18.00 D (VEH 18.15	0.00 0.94 3.94 0.19 0.16 0.52 1.10 0.34 0.00 	6.6 11.3 8.2 8.4 11.5 CAPACI' (VEH/MI' 6.4 11.2 8.0 8.2 11.3 CAPACI' (VEH/MI' 6.2	5 7 3 5 5 2 2 TY DA N) CA 8 8 9 9 2 8 8 3 3 3 3 4 4	(RFC) 0.000 0.016 0.020 0.062 0.095 EMAND/ PACITY (RFC) 0.000 0.025 0.017 EMAND/ PACITY (RFC) 0.000	PEDESTRIA FLOW (PEDS/MIN PEDESTRIA FLOW (PEDS/MIN PEDESTRIA FLOW (PEDS/MIN	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(VEHS) 0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.1 END QUEUE (VEHS) 0.0 0.1 0.1	TIM	#E SEGI 0.0 0.2 0.3 1.0 1.6	MENT)	TIME SEGME GEOMETRIC D (VEH.MIN TIME SEGME	NT) ELA / NT)
17.30- B-AC A-B A-C A-D D-AB C-D C-A TIME 17.45- B-AC A-B A-C A-D D-AB D-BC C-AB C-D C-A TIME	17.45 D (VEH 18.00 D (VEH 18.15	0.00 0.94 3.94 0.19 0.16 0.52 1.10 0.34 0.00 	6.6 11.3 8.2 8.4 11.5 CAPACI' (VEH/MI' 6.4 11.2 8.0 8.2 11.3 CAPACI' (VEH/MI' 6.2	5 7 3 5 5 2 2 TY DA N) CA 8 8 9 9 2 8 8 3 3 3 3 4 4	(RFC) 0.000 0.016 0.020 0.062 0.095 EMAND/ PACITY (RFC) 0.000 0.025 0.017 EMAND/ PACITY (RFC) 0.000	PEDESTRIA FLOW (PEDS/MIN PEDESTRIA FLOW (PEDS/MIN PEDESTRIA FLOW (PEDS/MIN	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(VEHS) 0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.0 0.1 0.1	TIM	ME SEGIO 0.0 0.2 0.3 1.0 1.6 DELAN (VEH.M. 4E SEGIO 0.0 DELAN (VEH.M. 4E SEGIO 0.0 0.3 0.4 1.2 2.1	MENT)	TIME SEGME GEOMETRIC D (VEH.MIN TIME SEGME	NT) ELA / NT)
17.30- B-AC A-B A-C C-AB C-D C-A TIME 17.45- B-AC A-B A-C A-B A-C A-B C-AB C-D C-A TIME 18.00- B-AC A-B A-C A-B A-C A-D TIME	17.45 D	0.00 0.94 3.94 0.19 0.16 0.52 1.10 0.34 0.00 	6.6 11.3 8.2 8.4 11.5 CAPACI' (VEH/MI' 6.4 11.2 8.0 8.2 11.3 CAPACI' (VEH/MI' 6.2	5 7 3 5 5 2 2 TY DA N) CA 8 8 9 9 2 8 8 3 3 3 3 4 4	(RFC) 0.000 0.016 0.020 0.062 0.095 EMAND/ PACITY (RFC) 0.000 0.025 0.017 EMAND/ PACITY (RFC) 0.000	PEDESTRIA FLOW (PEDS/MIN PEDESTRIA FLOW (PEDS/MIN PEDESTRIA FLOW (PEDS/MIN	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(VEHS) 0.0 0.0 0.0 0.1 0.1 END QUEUE (VEHS) 0.0 0.1 END QUEUE (VEHS) 0.0 0.1 0.1	TIM	#E SEGI 0.0 0.2 0.3 1.0 1.6	MENT)	TIME SEGME GEOMETRIC D (VEH.MIN TIME SEGME	NT) ELA / NT)

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
Ι	18.15-18	3.30							I
Ι	B-ACD	0.00	6.23	0.000		0.0	0.0	0.0	I
Ι	A-B	1.37							I
Ι	A-C	5.76							I
Ι	A-D	0.27	11.18	0.025		0.0	0.0	0.4	I
Ι	D-AB	0.24	7.73	0.032		0.0	0.0	0.5	I
Ι	D-BC	0.76	8.05	0.095		0.1	0.1	1.6	I
Ι	C-ABD	1.63	11.08	0.148		0.2	0.2	2.7	I
Ι	C-D	0.47							I
Ι	C-A	0.00							I
Ι									I

I I I		DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAYI (VEH.MIN/ I TIME SEGMENT) I
I	18.30-18	3.45							I
I	B-ACD	0.00	6.48	0.000		0.0	0.0	0.0	I
I	A-B	1.12							I
I	A-C	4.70							I
Ι	A-D	0.22	11.29	0.020		0.0	0.0	0.3	I
I	D-AB	0.20	8.02	0.025		0.0	0.0	0.4	I
I	D-BC	0.62	8.28	0.075		0.1	0.1	1.3	I
I	C-ABD	1.32	11.33	0.117		0.2	0.1	2.1	I
I	C-D	0.40							I
Ι	C-A	0.00							I
Ι									I

I I I	TIME	DEMAND (VEH/MIN)	CAPACITY (VEH/MIN)	DEMAND/ CAPACITY (RFC)	PEDESTRIAN FLOW (PEDS/MIN)	START QUEUE (VEHS)	END QUEUE (VEHS)	DELAY (VEH.MIN/ TIME SEGMENT)	GEOMETRIC DELAY (VEH.MIN/ TIME SEGMENT)	Ι
Ι	18.45-19	9.00								Ι
Ι	B-ACD	0.00	6.65	0.000		0.0	0.0	0.0		Ι
Ι	A-B	0.94								Ι
Ι	A-C	3.94								Ι
Ι	A-D	0.19	11.37	0.016		0.0	0.0	0.3		Ι
Ι	D-AB	0.16	8.23	0.020		0.0	0.0	0.3		Ι
Ι	D-BC	0.52	8.44	0.062		0.1	0.1	1.0		Ι
Ι	C-ABD	1.10	11.51	0.095		0.1	0.1	1.6		Ι
Ι	C-D	0.34								Ι
Ι	C-A	0.00								Ι
Ι										Ι
										-

WARNING NO MARGINAL ANALYSIS OF CAPACITIES AS MAJOR ROAD BLOCKING MAY OCCUR

QUEUE FOR STR	EAM B-ACD
TIME SEGMENT	NO. OF
ENDING	VEHICLES
	IN QUEUE
17.45	0.0
18.00	0.0
18.15	0.0
18.30	0.0
18.45	0.0
19.00	0.0
QUEUE FOR STR	EAM A-D
TIME SEGMENT	NO. OF
ENDING	VEHICLES

NO. OF
VEHICLES
IN QUEUE
0.0
0.0
0.0
0.0
0.0
0.0

QUEUE FOR S	TREAM D-AB
TIME SEGMEN ENDING	T NO. OF VEHICLES
	IN QUEUE
17.45	0.0
18.00	0.0
18.15	0.0
18.30 18.45	0.0
19.00	0.0
19.00	0.0

QUEUE	FOR	STR	EAM	Ι	D-BC
TIME S	EGME	ENT	N	ο.	OF
END	ING		VEH	ICI	LES
			IN	QUI	EUE
17.4	15			0.	. 1

18.00 18.15 18.30 18.45 19.00	0.1 0.1 0.1 0.1 0.1
QUEUE FOR STR	REAM C-ABD
TIME SEGMENT	NO. OF
ENDING	VEHICLES IN OUEUE
17.45	0.1
18.00	0.1
18.15	0.2
18.30	0.2
18.45	0.1
19.00	0.1

QUEUEING DELAY INFORMATION OVER WHOLE PERIOD

I	STREAM	I I	TOTAL DEMAND				* DELAY		I	QUEUEING *	I I			
I		I	(VEH)	(VEH) (VEH/H)		Ι	(MIN)			(MIN)		(MIN/VEH)		
Ι	B-ACD	Ι	0.0	Ι	0.0	Ι	0.0 I	0.00	I	0.0	I	0.00	Ι	
Ι	A-B	Ι	102.8	Ι	68.6	Ι	I		I		Ι		I	
Ι	A-C	Ι	431.9	Ι	288.0	Ι	I		I		Ι		I	
Ι	A-D	Ι	20.6	Ι	13.7	Ι	1.9 I	0.09	I	1.9	Ι	0.09	I	
Ι	D-AB	Ι	18.1	Ι	12.1	Ι	2.3 I	0.13	I	2.3	Ι	0.13	I	
I	D-BC	Ι	57.3	I	38.2	Ι	7.5 I	0.13	I	7.5	I	0.13	Ι	
I	C-ABD	Ι	121.6	I	81.1	Ι	12.8 I	0.11	I	12.8	I	0.11	Ι	
Ι	C-D	Ι	36.1	Ι	24.0	Ι	I		I		Ι		I	
Ι	C-A	Ι	0.0	Ι	0.0	Ι	I		I		Ι		Ι	
I	ALL	I	788.4	I	525.6	I	24.5 I	0.03	I	24.5	I	0.03	I	

- * DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD .

 * INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEUEING AFTER THE END OF THE TIME PERIOD.

 * THESE WILL ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

END OF JOB

TRAFFIC SIGNALS C	ALC	ULA	TIC	ON							Job No.:	CHK5001	9645_		MVA	ASIA L	IMITED
Junction: King's Road/ Shu Kuk St	reet (G)														Design Yea	ar: <u>20</u> 2	25
Description: Design Flows							Designed By			HK <u>H</u>			Checked By:GPH				
Radius (m)				Pro. Turning (%)			Saturation Flow (pcu/hr)	A.M. Peak			P.M. Peak						
Approach	Movement notation	Phase	Stage	Width (m)	Left	Right	(%) uphill Gradient	A.M.	P.M.	A.M.	P.M.	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
King's Road EB	1>	Α	1	5.500	10			32%	20%	2065	2100	340	0.165	•	420	0.200	0.200
LD	+++>	Α	1	3.000						2055	2055	85	0.041		105	0.051	
King's Road WB	← ← ←	В В В	1,2 1,2 1,2 1,2	3.300 3.300 3.300 3.000						1945 2085 1945 2055	1945 2085 1945 2055	625 670 625 105	0.321 0.321 0.321 0.051	0.321	479 512 479 65	0.246 0.246 0.246 0.032	
Shu Kuk Street NB	√ ↑	C C	3 3	3.250 3.250	10 15			0%	0%	1685 1940	1685 1940	185 285	0.110 0.147	0.147	165 315	0.098 0.162	0.162
LRT/Pedestrian		Dp Ep Fp	1,2 3 2	Min Min Min	10 9 7	+ + + +	9 20 8			= = =	19 29 15						*
Notes:							cu/hr)					Group	BEp	BC	Group	ВС	AFpC
							440/05	+				у	0.321	0.468	у	0.409	0.362
							110(85)			•	19 20(1470)	L (sec)		9	L (sec)	9	29
						2	30(335)		•	1		C (sec)		120	C (sec)	120	120
									185(165)	285(315)		y pract.	0.623	0.833	y pract.	0.833	0.683
Stage / Phase Diagrams									100(100)	200(010)		R.C. (%)	94%	78%	R.C. (%)	104%	88%
1. A ++++ ++++++++++++++++++++++++++++++	B Dp			2.	Fp ←	Dp	> T — B >		3.	C	Ep	4.			5.		
I/G= 5 I/G= 7			I/G:			7		I/G= 6 I/G= 10			I/G= I/G=			I/G= I/G=	-		
											Date:	Jur	n-16	Jun	ction:		G

TRAFFIC SIGNALS CALCULATION **MVA ASIA LIMITED** Job No.: CHK50019645 Junction: King's Road/ Kam Hong Street (H) Design Year: _____2025_ Designed By: Checked By: GPH Description: ____ Design Flows HKH Revised Saturation Flow Radius (m) Pro. Turning (%) A.M. Peak P.M. Peak (pcu/hr) (%) uphill Gradient Movement notation Phase Flow y Value Right A.M. P.M. P.M. y Value Critical v Critical v Approach Width (m) Left ΑМ (pcu/hr) (pcu/hr) King's Road 4.000 2015 2015 230 0.114 335 0.166 3.000 2055 2055 85 0.041 King's Road 3.300 48% 79% 1785 1695 600 0.336 0.265 450 3.300 2085 2085 701 0.336 0.266 0.266 WB 554 3.300 1945 1945 654 0.336 0.336 516 0.265 2055 105 0.051 0.032 3.000 2055 65 \Rightarrow Kam Hong Street 3 750 2% / 11% 8% / 9% 1965 1945 247 0.126 298 0.153 0.153 20 277 1810 0.126 SB 3.750 15 1810 228 0.126 0.153 LRT/Pedestrian Ср 3 Min 28 Dp 1,3 Min 17 10 Εp 3 Min Notes: Traffic Flow ABEp ABCp ABEp ABCp Group Group (pcu/hr) 255(305) 215(245) 5(25) 0.419 0.419 у 0.462 0.462 L (sec) 43 35 43 L (sec) 35 230(335) -1665(1165) C (sec) 120 120 C (sec) 120 120 290(355) 0.578 y pract. 0.638 0.578 y pract. 0.638 38% R.C. (%) 38% R.C. (%) 25% 52% Stage / Phase Diagrams <----<u>D</u>p-> Еp I/G= I/G= 22 I/G= 5 I/G= 8 10 I/G= I/G= Date: Junction:

Jun-16

TRAFFIC SIGNALS CALCULATION **MVA ASIA LIMITED** Job No.: CHK50019645 Junction: King's Road/ Tin Chiu Street (I) Design Year: 2025 Designed By: Checked By: GPH Description: ____ Design Flows HKH Revised Saturation Flow Radius (m) Pro. Turning (%) A.M. Peak P.M. Peak (pcu/hr) (%) uphill Gradient notation Phase Flow Flow y Value Critical y y Value Width (m) A.M. P.M. A.M. P.M. Critical v Approach Left Right (pcu/hr) (pcu/hr) King's Road 3.000 10 15% 10% 1875 1885 235 0.125 360 0.191 +++ 3.000 2055 2055 85 0.041 105 0.051 1945 571 0.294 446 0.229 0.229 King's Road В 3.300 1945 2085 0.294 0.294 0.229 WB В 3.300 2085 613 478 В 3.300 1945 1945 0.294 0.229 571 446 0.032 3.000 2055 2055 105 0.051 65 1690 200 0.118 0.089 Tin Chiu Street 3.300 1690 150 10 С 0% 2085 2085 0 177 NB 2 3.300 15 0% 410 0 197 370 15 0.282 3.300 1770 1770 500 0.282 425 0.240 0.240 LRT/Pedestrian Dp 1 Min 20 Traffic Flow Notes: AC вс AC Group Group (pcu/hr) 0.408 у 0.576 0.431 0.469 35(35) _ 10 9 10 9 L (sec) L (sec) 200(325) 1755(1370) C (sec) 120 120 C (sec) 120 120 0.825 0.833 0.833 y pract. y pract. 0.825 200(150) 410(370) 500(425) 102% R.C. (%) 91% 77% R.C. (%) 44% Stage / Phase Diagrams 2. 3. 5. I/G= 6 I/G= 5 I/G= I/G= I/G= I/G= I/G= Junction: Date:

Jun-16

MVA provides advice on transport, to central, regional and local government, agencies, developers, operators and financiers.

A diverse group of results-oriented people, we are part of a strong team of professionals worldwide. Through client business planning, customer research and strategy development we create solutions that work for real people in the real world.

For more information visit www.mvaasia.com

Abu Dhabi

AS Business Centre, First Floor, Suites 201-213, Al Ain Road, Umm al Nar, P.O. Box 129865, Abu Dhabi, UAE T: +971 2 558 3809 F: +971 2 558 9961

Birmingham

Second Floor, 37a Waterloo Street Birmingham B2 5TJ United Kingdom T: +44 (0)121 233 7680 F: +44 (0)121 233 7681

Dublin

1st Floor, 12/13 Exchange Place, Custom House Docks, IFSC, Dublin 1 Ireland T: +353 (0)1 542 6000 F: +353 (0)1 542 6001

Edinburgh

Prospect House, 5 Thistle Street, Edinburgh EH2 1DF United Kingdom T: +44 (0)131 220 6966

Glasgow

Seventh Floor, 78 St Vincent Street Glasgow G2 5UB United Kingdom T: +44 (0)141 225 4400

Lille

86 Boulevard Carnot, 59000 Lille, France T: +33 (0)3 74 07 00 F: +33 (0)1 53 17 36 01

London

Seventh Floor, 15 Old Bailey London EC4M 7EF United Kingdom T: +44 (0)20 7529 6500 F: +44 (0)20 3427 6274

Lyon

11, rue de la République, 69001 Lyon, France T: +33 (0)4 72 10 29 29 F: +33 (0)4 72 10 29 28

Manchester

25th Floor, City Tower, Piccadilly Plaza Manchester M1 4BT United Kingdom T: +44 (0)161 236 0282 F: +44 (0)161 236 0095

Marseille

76, rue de la République, 13002 Marseille, France T: +33 (0)4 91 37 35 15 F: +33 (0)4 91 91 90 14

Newcastle

PO Box 438, Newcastle upon Tyne, NE3 9BT United Kingdom T: +44 (0)191 2136157

Paris

72 rue Henry Farman, 75015 Paris, France T: +33 (0)1 53 17 36 00 F: +33 (0)1 53 17 36 01

Woking

Dukes Court, Duke Street Woking, Surrey GU21 5BH United Kingdom T: +44 (0)1483 728051 F: +44 (0)1483 755207

Hong Kong

14th Floor West, Warwick House, TaiKoo Place, 979 King's Road, Island East, Hong Kong T: +852 2529 7037 F: +852 2527 8490

Shenzhen

Room 905, Excellence Mansion, No.98, No.1 Fuhua Road, Futian Central Zone, Shenzhen, PRC, Post Code: 518048 T: +86 755 3336 1898 F: +86 755 3336 2060

Shenzhen - Beijing Branch Office

Room 1503, Block C, He Qiao Mansion, No. 8 Guanghua Road, Chaoyang District, Beijing, PRC, Post Code: 100026 T: +86 10 8557 0116 F: +86 10 8557 0126

Beijing Joint Venture

No. 60, Nan Li Shi Road, Xi Cheng District, Beijing, PRC, Post Code: 100045

T: +86 10 8807 6320 F: +86 10 6804 3744

Singapor

25 Seah Street #04-01 Singapore 188381 T: +65 6227 3252 F: +65 6423 0178

Thailand

37th Floor, Unit F, Payatai Plaza Building,128/404-405 Payathai Road, Rajthewee, Bangkok 10400, Thailand T: +662 216 6652 F: +662 216 6651

Vietnam

5/F Perfect Building, Le Thi Hong Gam St, District 1, Ho Chi Minh City, Vietnam T: +84 8 3821 7183 F: +84 8 3821 6967

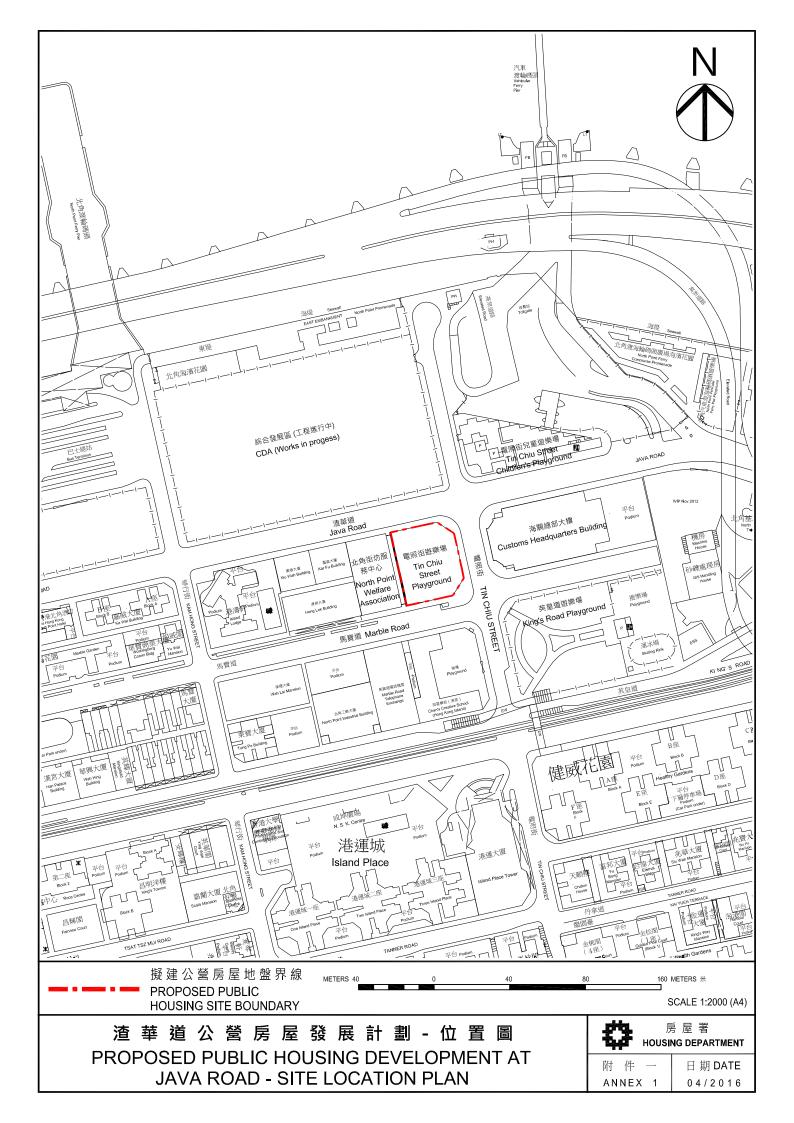
Attachment Vd of MPC Paper No. 9/16

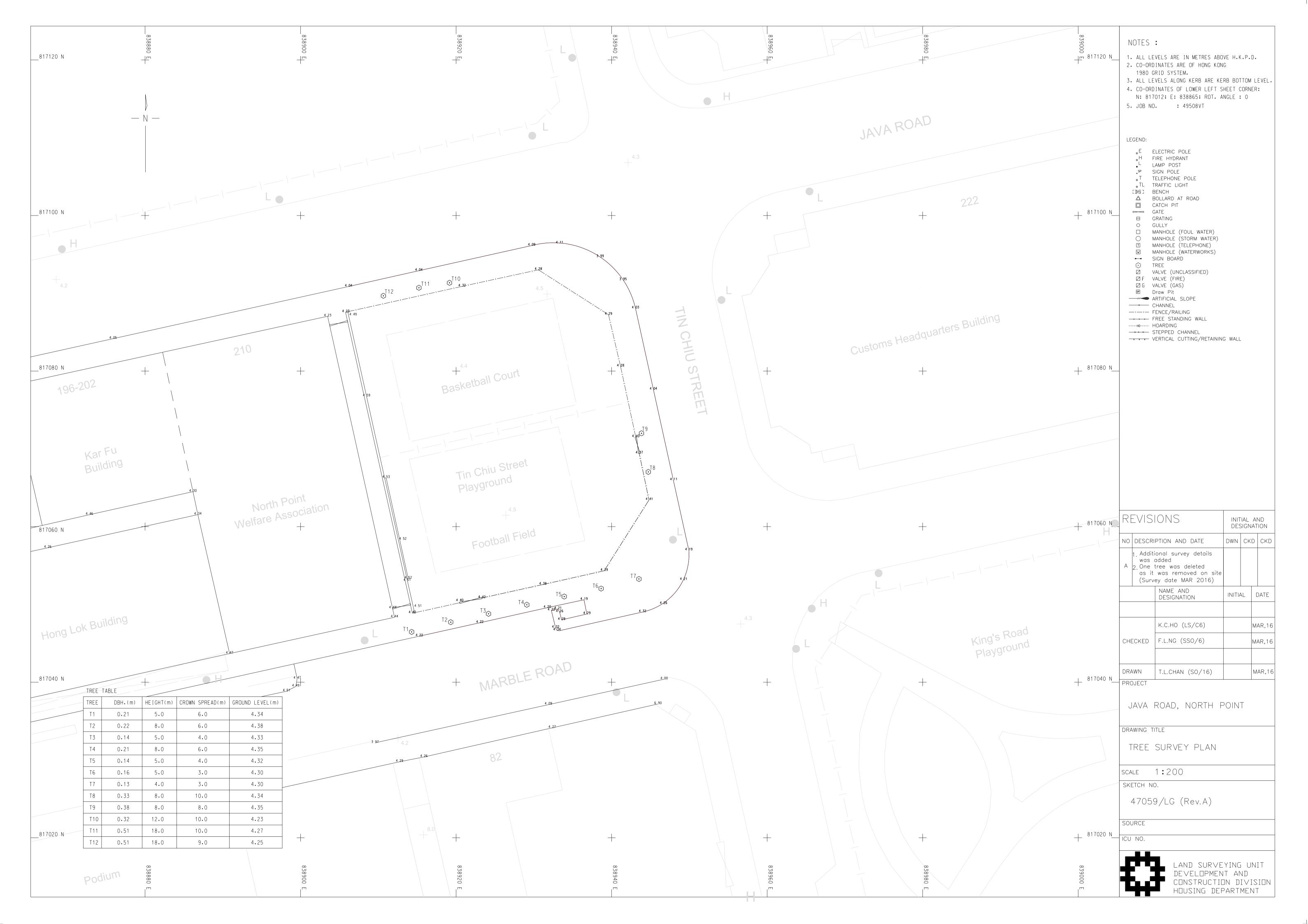
Preliminary Tree Survey Report

Proposed Public Housing Development at Java Road, North Point

Content

- 1.0 Introduction
- 2.0 Assessment of Existing Trees


1.0 Introduction


- 1.1 This Preliminary tree survey report is prepared to facilitate the public housing development at Java Road, North Point (the Subject Site).
- 1.2 The Subject Site is located at the junction of Java Road and Tin Chiu Street (see Annex 1 Site Location). It is currently occupied by Tin Chiu Street Playground on government land.
- 1.3 The Subject Site is required to rezone from "Government, Institution or Community" zone to "Residential (Group A)" zone for public housing development.

2.0 Assessment of Existing Trees

- 2.1 Preliminary tree survey was carried out in March 2016.
- 2.2 **No** existing tree has been identified **within** the Subject Site.
- 2.3 Outside the site boundary, there are 12 nos. roadside trees on Java Road, Tin Chiu Street and Marble Road. Locations of the trees refer to Tree Survey Plan (Dwg. 47059/LG (Rev. A)). These trees will be retained as far as practicable subject to detailed investigation of underground utilities, detailed building design and construction method, which is yet to be confirmed at this stage.
- 2.4 No Champion trees, registered Old and Valuable Trees (OVTs), or potentially registration is recorded. The existing trees are ALL common species.
- 2.5 Upon possession of site, tree inventory survey will be carried out again by the HD to update and verify the accuracy of the preliminary tree survey.

HOUSING DEPARTMENT May 2016

