

2025年 7月 8日

此文件在
收到。城市規劃委員會
日期為申請人將所有資料及文件後才正式確認收到
申請的日期。

This document is received on 2025-07-08.
The Town Planning Board will formally acknowledge
the date of receipt of the application only upon receipt
of all the required information and documents.

e-form No. S16-III
電子表格第 S16-III 號

APPLICATION FOR PERMISSION

UNDER SECTION 16 OF

THE TOWN PLANNING ORDINANCE

(CAP. 131)

根據《城市規劃條例》(第131章)
第16條遞交的許可申請

Applicable to Proposal Only Involving Temporary Use/Development of Land and/or Building Not Exceeding 3 Years in Rural Areas or Regulated Areas, or Renewal of Permission for such Temporary Use or Development*

適用於祇涉及位於鄉郊地區或受規管地區土地上及/或建築物內進行
為期不超過三年的臨時用途/發展或該等臨時用途/發展的許可續期的建議*

**Form No. S16-I should be used for other Temporary Use/Development of Land and/or Building (e.g. temporary use/developments in the Urban Area) and Renewal of Permission for such Temporary Use or Development.*

**其他土地上及/或建築物內的臨時用途/發展 (例如位於市區內的臨時用途或發展) 及有關該等臨時用途/發展的許可續期，應使用表格第 S16-I 號。*

Applicant who would like to publish the notice of application in local newspapers to meet one of the Town Planning Board's requirements of taking reasonable steps to obtain consent of or give notification to the current land owner, please refer to the following link regarding publishing the notice in the designated newspapers:
https://www.tpb.gov.hk/en/plan_application/apply.html

申請人如欲在本地報章刊登申請通知，以採取城市規劃委員會就取得現行土地擁有人的同意或通知現行土地擁有人所指定的其中一項合理步驟，請瀏覽以下網址有關在指定的報章刊登通知：
https://www.tpb.gov.hk/tc/plan_application/apply.html

General Note and Annotation for the Form

填寫表格的一般指引及註解

“Current land owner” means any person whose name is registered in the Land Registry as that of an owner of the land to which the application relates, as at 6 weeks before the application is made

「現行土地擁有人」指在提出申請前六星期，其姓名或名稱已在土地註冊處註冊為該申請所關乎的土地的擁有人的人

& Please attach documentary proof 請夾附證明文件

^ Please insert number where appropriate 請在適當地方註明編號

Please fill “NA” for inapplicable item 請在不適用的項目填寫「不適用」

Please use separate sheets if the space provided is insufficient 如所提供的空間不足，請另頁說明

Please insert a ‘✓’ at the appropriate box 請在適當的方格內上加上‘✓’號

For Official Use Only 請勿填寫此欄	Application No. 申請編號	A/YC-PH/1077
	Date Received 收到日期	2025-07-08

1. The completed form and supporting documents (if any) should be sent to the Secretary, Town Planning Board (the Board), 15/F, North Point Government Offices, 333 Java Road, North Point, Hong Kong.
申請人須把填妥的申請表格及其他支持申請的文件 (倘有)，送交香港北角渣華道 333 號北角政府合署 15 樓城市規劃委員會(下稱「委員會」)秘書處。
2. Please read the "Guidance Notes" carefully before you fill in this form. The document can be downloaded from the Board's website at <http://www.tpb.gov.hk/>. It can also be obtained from the Secretariat of the Board at 15/F, North Point Government Offices, 333 Java Road, North Point, Hong Kong (Tel: 2231 4810 or 2231 4835), and the Planning Enquiry Counters of the Planning Department (Hotline: 2231 5000) (17/F, North Point Government Offices, 333 Java Road, North Point, Hong Kong and 14/F, Sha Tin Government Offices, 1 Sheung Wo Che Road, Sha Tin, New Territories).
請先細閱《申請須知》的資料單張，然後填寫此表格。該份文件可從委員會的網頁下載（網址：<http://www.tpb.gov.hk/>），亦可向委員會秘書處（香港北角渣華道 333 號北角政府合署 15 樓 – 電話：2231 4810 或 2231 4835）及規劃署的規劃資料查詢處(熱線：2231 5000)（香港北角渣華道 333 號北角政府合署 17 樓及新界沙田上禾輦路 1 號沙田政府合署 14 樓）索取。
3. This form can be downloaded from the Board's website, and obtained from the Secretariat of the Board and the Planning Enquiry Counters of the Planning Department. The form should be typed or completed in block letters. The processing of the application may be refused if the required information or the required copies are incomplete.
此表格可從委員會的網頁下載，亦可向委員會秘書處及規劃署的規劃資料查詢處索取。申請人須以打印方式或以正楷填寫表格。如果申請人所提交的資料或文件副本不齊全，委員會可拒絕處理有關申請。

1. Name of Applicant 申請人姓名/名稱

YIK King Kung Philip (易景功) (Mr. 先生)

2. Name of Authorised Agent (if applicable) 獲授權代理人姓名/名稱 (如適用)

Goldrich Planners and Surveyors Limited (金潤規劃測量師行有限公司) (Company 公司)

3. Application Site 申請地點

(a) Full address / location / demarcation district and lot number (if applicable) 詳細地址／地點／丈量約份及地段號碼 (如適用)	Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long
(b) Site area and/or gross floor area involved 涉及的地盤面積及／或總樓面面積	<input checked="" type="checkbox"/> Site area 地盤面積 4861 sq.m 平方米 <input type="checkbox"/> About 約 <input checked="" type="checkbox"/> Gross floor area 總樓面面積 3137 sq.m 平方米 <input type="checkbox"/> About 約
(c) Area of Government land included (if any) 所包括的政府土地面積 (倘有)	424 sq.m 平方米 <input checked="" type="checkbox"/> About 約

(d) Name and number of the related statutory plan(s) 有關法定圖則的名稱及編號	Approved Pat Heung Outline Zoning Plan No. S/YL-PH/11
(e) Land use zone(s) involved 涉及的土地用途地帶	Residential (Group D)
(f) Current use(s) 現時用途	<p>Vacant</p> <p>(If there are any Government, institution or community facilities, please illustrate on plan and specify the use and gross floor area) (如有任何政府、機構或社區設施，請在圖則上顯示，並註明用途及總樓面面積)</p>
(g) Additional Information (if applicable) 附加資料 (如適用)	

4. “Current Land Owner” of Application Site 申請地點的「現行土地擁有人」

The applicant 申請人 –

- is the sole “current land owner”^{#&} (please proceed to Part 6 and attach documentary proof of ownership).
是唯一的「現行土地擁有人」^{#&} (請繼續填寫第 6 部分，並夾附業權證明文件)。
- is one of the “current land owners”^{# &} (please attach documentary proof of ownership).
是其中一名「現行土地擁有人」^{# &} (請夾附業權證明文件)。
- is not a “current land owner”[#].
並不是「現行土地擁有人」[#]。
- The application site is entirely on Government land (please proceed to Part 6).
申請地點完全位於政府土地上 (請繼續填寫第 6 部分)。

5. Statement on Owner's Consent/Notification

就土地擁有人的同意/通知土地擁有人的陳述

(a) According to the record(s) of the Land Registry as at 23/06/2025 (DD/MM/YYYY), this application involves a total of 1 "current land owner(s)"#.

根據土地註冊處截至 23/06/2025 (日/月/年) 的記錄，這宗申請共牽涉 1 名「現行土地擁有人」#。

(b) The applicant 申請人 –

has obtained consent(s) of 1 "current land owner(s)"#.

已取得 1 名「現行土地擁有人」#的同意。

Details of consent of "current land owner(s)"# obtained 取得「現行土地擁有人」#同意的詳情

No. of 'Current Land Owner(s)' 「現行土地擁有人」數目	Lot number/address of premises as shown in the record of the Land Registry where consent(s) has/have been obtained 根據土地註冊處記錄已獲得同意的地段號碼／處所地址	Date of consent obtained (DD/MM/YYYY) 取得同意的日期 (日/月/年)
1	Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long	15/05/2025

(Please use separate sheets if the space of any box above is insufficient. 如上列任何方格的空間不足，請另頁說明)

has notified "current land owner(s)"#

已通知 名「現行土地擁有人」#。

Details of the "current land owner(s)"# notified 已獲通知「現行土地擁有人」#的詳細資料

No. of 'Current Land Owner(s)' 「現行土地擁有人」數目	Lot number/address of premises as shown in the record of the Land Registry where notification(s) has/have been given 根據土地註冊處記錄已發出通知的地段號碼／處所地址	Date of notification given (DD/MM/YYYY) 通知日期(日/月/年)

(Please use separate sheets if the space of any box above is insufficient. 如上列任何方格的空間不足，請另頁說明)

has taken reasonable steps to obtain consent of or give notification to owner(s):

已採取合理步驟以取得土地擁有人的同意或向該人發給通知。詳情如下：

Reasonable Steps to Obtain Consent of Owner(s) 取得土地擁有人的同意所採取的合理步驟

sent request for consent to the "current land owner(s)"[#] on _____ (DD/MM/YYYY)
於 _____ (日/月/年)向每一名「現行土地擁有人」[#]郵遞要求同意書&

Reasonable Steps to Give Notification to Owner(s) 向土地擁有人發出通知所採取的合理步驟

published notices in local newspapers[&] on _____ (DD/MM/YYYY)
於 _____ (日/月/年)在指定報章就申請刊登一次通知&

posted notice in a prominent position on or near application site/premises[&] on
_____ (DD/MM/YYYY)
於 _____ (日/月/年)在申請地點／申請處所或附近的顯明位置貼出關於該申請的通知&

sent notice to relevant owners' corporation(s)/owners' committee(s)/mutual aid committee(s)/management office(s) or rural committee[&] on _____ (DD/MM/YYYY)
於 _____ (日/月/年)把通知寄往相關的業主立案法團/業主委員會/互助委員會或管理處，或有關的鄉事委員會&

Others 其他

others (please specify)
其他（請指明）

Note: May insert more than one 「✓」.

Information should be provided on the basis of each and every lot (if applicable) and premises (if any) in respect of the application.

註：可在多於一個方格內加上「✓」號
申請人須就申請涉及的每一地段（倘適用）及處所（倘有）分別提供資料

6. Type(s) of Application 申請類別

(A) Temporary Use/Development of Land and/or Building Not Exceeding 3 Years in Rural Areas or Regulated Areas

位於鄉郊地區或受規管地區土地上及/或建築物內進行為期不超過三年的臨時用途/發展

(For Renewal of Permission for Temporary Use or Development in Rural Areas or Regulated Areas, please proceed to Part (B))

(如屬於鄉郊地區或受規管地區臨時用途/發展的規劃許可續期，請填寫(B)部分)

<p>(a) Proposed use(s)/development 擬議用途/發展</p>	<p>Proposed Temporary Warehouse (excluding Dangerous Goods Godown) with Ancillary Office and associated Filling of Land (Please illustrate the details of the proposal on a layout plan) (請用平面圖說明擬議詳情)</p>
<p>(b) Effective period of permission applied for 申請的許可有效期</p>	<p><input checked="" type="checkbox"/> year(s) 年 3 _____</p> <p><input type="checkbox"/> month(s) 個月 _____</p>

(c) Development Schedule 發展細節表

Proposed uncovered land area 擬議露天土地面積	1724	sq.m	<input checked="" type="checkbox"/> About 約
Proposed covered land area 擬議有上蓋土地面積	3137	sq.m	<input checked="" type="checkbox"/> About 約
Proposed number of buildings/structures 擬議建築物／構築物數目	6		
Proposed domestic floor area 擬議住用樓面面積		sq.m	<input type="checkbox"/> About 約
Proposed non-domestic floor area 擬議非住用樓面面積	3137	sq.m	<input checked="" type="checkbox"/> About 約
Proposed gross floor area 擬議總樓面面積	3137	sq.m	<input checked="" type="checkbox"/> About 約

Proposed height and use(s) of different floors of buildings/structures (if applicable) 建築物/構築物的擬議高度及不同樓層的擬議用途 (如適用) (Please use separate sheets if the space below is insufficient) (如以下空間不足, 請另頁說明)

Please refer to Planning Statement (Appendix I) and Layout Plan (Plan 3) for details.

Proposed number of car parking spaces by types 不同種類停車位的擬議數目

Private Car Parking Spaces 私家車車位	_____
Motorcycle Parking Spaces 電單車車位	_____
Light Goods Vehicle Parking Spaces 輕型貨車泊車位	_____
Medium Goods Vehicle Parking Spaces 中型貨車泊車位	_____
Heavy Goods Vehicle Parking Spaces 重型貨車泊車位	2
Others (Please Specify) 其他 (請列明)	_____
Container Vehicle	3

Proposed number of loading/unloading spaces 上落貨車位的擬議數目

Taxi Spaces 的士車位	_____
Coach Spaces 旅遊巴車位	_____
Light Goods Vehicle Spaces 輕型貨車車位	_____
Medium Goods Vehicle Spaces 中型貨車車位	_____
Heavy Goods Vehicle Spaces 重型貨車車位	_____
Others (Please Specify) 其他 (請列明)	_____

Proposed operating hours 擬議營運時間

8 a.m. to 7 p.m. daily from Mondays to Saturdays. No operations on Sundays and public holidays

(d) Any vehicular access to the site/subject building? 是否有車路通往地盤／有關建築物？	Yes 是	<input checked="" type="checkbox"/> There is an existing access. (please indicate the street name, where appropriate) 有一條現有車路。(請註明車路名稱(如適用)) <input type="checkbox"/> Fan Kum Road connecting to a local track Fan Kum Road connecting to a local track
		<input type="checkbox"/> There is a proposed access. (please illustrate on plan and specify the width) 有一條擬議車路。(請在圖則顯示, 並註明車路的闊度)

<p>(e) Impacts of Development Proposal 擬議發展計劃的影響 (If necessary, please use separate sheets to indicate the proposed measures to minimise possible adverse impacts or give justifications/reasons for not providing such measures. 如需要的話, 請另頁註明可盡量減少可能出現不良影響的措施, 否則請提供理據/理由。)</p>																																		
<p>(i) Does the development proposal involve alteration of existing building? 擬議發展計劃是否包括現有建築物的改動?</p>		<p>Yes 是 <input type="checkbox"/> Please provide details 請提供詳情 No 否 <input checked="" type="checkbox"/></p>																																
<p>(ii) Does the development proposal involve the operation on the right? 擬議發展是否涉及右列的工程?</p>		<p>Yes 是 <input checked="" type="checkbox"/> (Please indicate on site plan the boundary of concerned land/pond(s), and particulars of stream diversion, the extent of filling of land/pond(s) and/or excavation of land) (請用地盤平面圖顯示有關土地/池塘界線, 以及河道改道、填塘、填土及/或挖土的細節及/或範圍) <input type="checkbox"/> Diversion of stream 河道改道 <input type="checkbox"/> Filling of pond 填塘 Area of filling 填塘面積 sq.m 平方米 <input type="checkbox"/> About 約 Depth of filling 填塘深度 m 米 <input type="checkbox"/> About 約 <input checked="" type="checkbox"/> Filling of land 填土 Area of filling 填土面積 4861 sq.m 平方米 <input checked="" type="checkbox"/> About 約 Depth of filling 填土厚度 1.2 m 米 <input checked="" type="checkbox"/> About 約 <input type="checkbox"/> Excavation of land 挖土 Area of excavation 挖土面積 sq.m 平方米 <input type="checkbox"/> About 約 Depth of excavation 挖土深度 m 米 <input type="checkbox"/> About 約 No 否 <input type="checkbox"/></p>																																
<p>(iii) Would the development proposal cause any adverse impacts? 擬議發展計劃會否造成不良影響?</p>		<table> <tbody> <tr> <td>On environment 對環境</td> <td>Yes 會 <input type="checkbox"/></td> <td>No 不會 <input checked="" type="checkbox"/></td> </tr> <tr> <td>On traffic 對交通</td> <td>Yes 會 <input type="checkbox"/></td> <td>No 不會 <input checked="" type="checkbox"/></td> </tr> <tr> <td>On water supply 對供水</td> <td>Yes 會 <input type="checkbox"/></td> <td>No 不會 <input checked="" type="checkbox"/></td> </tr> <tr> <td>On drainage 對排水</td> <td>Yes 會 <input type="checkbox"/></td> <td>No 不會 <input checked="" type="checkbox"/></td> </tr> <tr> <td>On slopes 對斜坡</td> <td>Yes 會 <input type="checkbox"/></td> <td>No 不會 <input checked="" type="checkbox"/></td> </tr> <tr> <td>Affected by slopes 受斜坡影響</td> <td>Yes 會 <input type="checkbox"/></td> <td>No 不會 <input checked="" type="checkbox"/></td> </tr> <tr> <td>Landscape Impact 構成景觀影響</td> <td>Yes 會 <input type="checkbox"/></td> <td>No 不會 <input checked="" type="checkbox"/></td> </tr> <tr> <td>Tree Felling 砍伐樹木</td> <td>Yes 會 <input type="checkbox"/></td> <td>No 不會 <input checked="" type="checkbox"/></td> </tr> <tr> <td>Visual Impact 構成視覺影響</td> <td>Yes 會 <input type="checkbox"/></td> <td>No 不會 <input checked="" type="checkbox"/></td> </tr> <tr> <td>Others (Please Specify) 其他 (請列明)</td> <td>Yes 會 <input type="checkbox"/></td> <td>No 不會 <input type="checkbox"/></td> </tr> </tbody> </table>			On environment 對環境	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>	On traffic 對交通	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>	On water supply 對供水	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>	On drainage 對排水	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>	On slopes 對斜坡	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>	Affected by slopes 受斜坡影響	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>	Landscape Impact 構成景觀影響	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>	Tree Felling 砍伐樹木	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>	Visual Impact 構成視覺影響	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>	Others (Please Specify) 其他 (請列明)	Yes 會 <input type="checkbox"/>	No 不會 <input type="checkbox"/>
On environment 對環境	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>																																
On traffic 對交通	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>																																
On water supply 對供水	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>																																
On drainage 對排水	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>																																
On slopes 對斜坡	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>																																
Affected by slopes 受斜坡影響	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>																																
Landscape Impact 構成景觀影響	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>																																
Tree Felling 砍伐樹木	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>																																
Visual Impact 構成視覺影響	Yes 會 <input type="checkbox"/>	No 不會 <input checked="" type="checkbox"/>																																
Others (Please Specify) 其他 (請列明)	Yes 會 <input type="checkbox"/>	No 不會 <input type="checkbox"/>																																

	<p>Please state measure(s) to minimise the impact(s). For tree felling, please state the number, diameter at breast height and species of the affected trees (if possible)</p> <p>請註明盡量減少影響的措施。如涉及砍伐樹木，請說明受影響樹木的數目、及胸高度的樹幹直徑及品種(倘可)</p> <hr/>
--	---

<p>(B) Renewal of Permission for Temporary Use or Development in Rural Areas or Regulated Areas 位於鄉郊地區或受規管地區臨時用途/發展的許可續期</p>	
(a) Application number to which the permission relates 與許可有關的申請編號	A/ /
(b) Date of approval 獲批給許可的日期 (DD 日/MM 月/YYYY 年)
(c) Date of expiry 許可屆滿日期 (DD 日/MM 月/YYYY 年)
(d) Approved use/development 已批給許可的用途／發展	

	<p><input type="checkbox"/> The permission does not have any approval condition 許可並沒有任何附帶條件</p> <p><input type="checkbox"/> Applicant has complied with all the approval conditions 申請人已履行全部附帶條件</p> <p><input type="checkbox"/> Applicant has not yet complied with the following approval condition(s): 申請人仍未履行下列附帶條件：</p> <hr/>
<p>(e) Approval conditions 附帶條件</p>	<p>Reason(s) for non-compliance: 仍未履行的原因：</p> <hr/> <p>(Please use separate sheets if the space above is insufficient) (如以上空間不足，請另頁說明)</p>
<p>(f) Renewal period sought 要求的續期期間</p>	<p><input type="checkbox"/> year(s) 年</p>
	<p><input type="checkbox"/> month(s) 個月</p>

7. Justifications 理由

The applicant is invited to provide justifications in support of the application. Use separate sheets if necessary.
現請申請人提供申請理由及支持其申請的資料。如有需要，請另頁說明）。

Please refer to Planning Statement (Appendix I) for details.

8. Declaration 聲明

I hereby declare that the particulars given in this application are correct and true to the best of my knowledge and belief.
本人謹此聲明，本人就這宗申請提交的資料，據本人所知及所信，均屬真實無誤。

I hereby grant a permission to the Board to copy all the materials submitted in this application and/or to upload such materials to the Board's website for browsing and downloading by the public free-of-charge at the Board's discretion. 本人現准許委員會酌情將本人就此申請所提交的所有資料複製及/或上載至委員會網站，供公眾免費瀏覽或下載。

Signature Signed with recognised
簽署 e-signature
Signer: POON Chi Him Alan

Applicant 申請人 / Authorised Agent 獲授權代理人
Surveyor

Name
姓名

Position (if applicable)
職位 (如適用)

Professional Qualification(s) Member 會員 / Fellow of 資深會員
專業資格

HKIP 香港規劃師學會 / HKIA 香港建築師學會 /
 HKIS 香港測量師學會 / HKIE 香港工程師學會 /
 HKILA 香港園境師學會 / HKIUD 香港城市設計學會 /
 RPP 註冊專業規劃師

Others 其他

Goldrich Planners and Surveyors Limited (金潤規劃測量師行有限公司)

On behalf of 代表

Remark 備註

The materials submitted in this application and the Board's decision on the application would be disclosed to the public. Such materials would also be uploaded to the Board's website for browsing and free downloading by the public where the Board considers appropriate.

委員會會向公眾披露申請人所遞交的申請資料和委員會對申請所作的決定。在委員會認為合適的情況下，有關申請資料亦會上載至委員會網頁供公眾免費瀏覽及下載。

Warning 警告

Any person who knowingly or wilfully makes any statement or furnish any information in connection with this application, which is false in any material particular, shall be liable to an offence under the Crimes Ordinance.

任何人在明知或故意的情況下，就這宗申請提出在任何要項上是虛假的陳述或資料，即屬違反《刑事罪行條例》。

Statement on Personal Data 個人資料的聲明

1. The personal data submitted to the Board in this application will be used by the Secretary of the Board and Government departments for the following purposes:
委員會就這宗申請所收到的個人資料會交給委員會秘書及政府部門，以根據《城市規劃條例》及相關的城市規劃委員會規劃指引的規定作以下用途：
 - (a) the processing of this application which includes making available the name of the applicant for public inspection when making available this application for public inspection; and
處理這宗申請，包括公布這宗申請供公眾查閱，同時公布申請人的姓名供公眾查閱；以及
 - (b) facilitating communication between the applicant and the Secretary of the Board/Government departments.
方便申請人與委員會秘書及政府部門之間進行聯絡。
2. The personal data provided by the applicant in this application may also be disclosed to other persons for the purposes mentioned in paragraph 1 above.
申請人就這宗申請提供的個人資料，或亦會向其他人士披露，以作上述第1段提及的用途。
3. An applicant has a right of access and correction with respect to his/her personal data as provided under the Personal Data (Privacy) Ordinance (Cap. 486). Request for personal data access and correction should be addressed to the Secretary of the Board at 15/F, North Point Government Offices, 333 Java Road, North Point, Hong Kong.
根據《個人資料(私隱)條例》(第486章)的規定，申請人有權查閱及更正其個人資料。如欲查閱及更正個人資料，應向委員會秘書提出有關要求，其地址為香港北角渣華道333號北角政府合署15樓。

Gist of Application 申請摘要

(Please provide details in both English and Chinese as far as possible. This part will also be circulated to relevant consultees, uploaded to the Town Planning Board's Website for browsing and free downloading by the public and available at the Planning Enquiry Counters of the Planning Department for general information.)

(請盡量以英文及中文填寫。此部分會發送予相關諮詢人士、上載至城市規劃委員會網頁供公眾免費瀏覽及下載及於規劃署規劃資料查詢處供一般參閱。)

Application No. 申請編號	(For Official Use Only) (請勿填寫此欄)		
Location/address 位置／地址	Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long		
Site area 地盤面積	4861 sq. m 平方米 <input checked="" type="checkbox"/> About 約 (includes Government land of 包括政府土地 424 sq. m 平方米 <input checked="" type="checkbox"/> About 約)		
Plan 圖則	Approved Pat Heung Outline Zoning Plan No. S/YL-PH/11		
Zoning 地帶	Residential (Group D)		
Type of Application 申請類別	<input checked="" type="checkbox"/> Temporary Use/Development in Rural Areas or Regulated Areas for a Period of 位於鄉郊地區或受規管地區的臨時用途/發展為期 <input checked="" type="checkbox"/> Year(s) 年 3 _____ <input type="checkbox"/> Month(s) 月 _____ <input type="checkbox"/> Renewal of Planning Approval for Temporary Use/Development in Rural Areas or Regulated Areas for a Period of 位於鄉郊地區或受規管地區臨時用途/發展的規劃許可續期為期 <input type="checkbox"/> Year(s) 年 _____ <input type="checkbox"/> Month(s) 月 _____		
Applied use/ development 申請用途/發展	Proposed Temporary Warehouse (excluding Dangerous Goods Godown) with Ancillary Office and associated Filling of Land		
(i) Gross floor area and/or plot ratio 總樓面面積及／或 地積比率		sq.m 平方米	Plot Ratio 地積比率
	Domestic 住用	<input type="checkbox"/> About 約 <input type="checkbox"/> Not more than 不多於	<input type="checkbox"/> About 約 <input type="checkbox"/> Not more than 不多於
Non-domestic 非住用	<input checked="" type="checkbox"/> About 約 3137 <input type="checkbox"/> Not more than 不多於	0.645 <input type="checkbox"/> Not more than 不多於	

(ii) No. of blocks 幢數	Domestic 住用	
	Non-domestic 非住用	6
(iii) Building height/No. of storeys 建築物高度／層數	Domestic 住用	m 米 <input type="checkbox"/> (Not more than 不多於)
		Storeys(s) 層 <input type="checkbox"/> (Not more than 不多於)
	Non-domestic 非住用	m 米 <input checked="" type="checkbox"/> (Not more than 不多於)
		Storeys(s) 層 <input type="checkbox"/> (Not more than 不多於)
(iv) Site coverage 上蓋面積		64.5 % <input checked="" type="checkbox"/> About 約
(v) No. of parking spaces and loading / unloading spaces 停車位及上落客貨 車位數目	Total no. of vehicle parking spaces 停車位總數	5 _____
	Private Car Parking Spaces 私家車車位	_____
	Motorcycle Parking Spaces 電單車車位	_____
	Light Goods Vehicle Parking Spaces 輕型貨車泊車位	_____
	Medium Goods Vehicle Parking Spaces 中型貨車泊車位	_____
	Heavy Goods Vehicle Parking Spaces 重型貨車泊車位	2 _____
	Others (Please Specify) 其他 (請列明)	_____
	Container Vehicle	3 _____
	Total no. of vehicle loading/unloading bays/lay-bys 上落客貨車位／停車處總數	_____
	Taxi Spaces 的士車位	_____

Submitted Plans, Drawings and Documents 提交的圖則、繪圖及文件

	<u>Chinese</u> 中文	<u>English</u> 英文
<u>Plans and Drawings 圖則及繪圖</u>		
Master layout plan(s)/Layout plan(s) 總綱發展藍圖／布局設計圖	<input type="checkbox"/>	<input checked="" type="checkbox"/>
Block plan(s) 樓宇位置圖	<input type="checkbox"/>	<input type="checkbox"/>
Floor plan(s) 樓宇平面圖	<input type="checkbox"/>	<input type="checkbox"/>
Sectional plan(s) 截視圖	<input type="checkbox"/>	<input type="checkbox"/>
Elevation(s) 立視圖	<input type="checkbox"/>	<input type="checkbox"/>
Photomontage(s) showing the proposed development 顯示擬議發展的合成照片	<input type="checkbox"/>	<input type="checkbox"/>
Master landscape plan(s)/Landscape plan(s) 園境設計總圖／園境設計圖	<input type="checkbox"/>	<input type="checkbox"/>
Others (please specify) 其他（請註明）	<input type="checkbox"/>	
<u>Location Plan (Plan 1)</u>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
<u>Lot Index Plan (Plan 2)</u>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
<u>Swept Path Analysis (Plan 4)</u>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
<u>Plan showing proposed Filling of Land (Plan 5)</u>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
<u>Reports 報告書</u>		
Planning Statement/Justifications 規劃綱領/理據	<input type="checkbox"/>	<input checked="" type="checkbox"/>
Environmental assessment (noise, air and/or water pollutions) 環境評估（噪音、空氣及／或水的污染）	<input type="checkbox"/>	<input type="checkbox"/>
Traffic impact assessment (on vehicles) 就車輛的交通影響評估	<input type="checkbox"/>	<input type="checkbox"/>
Traffic impact assessment (on pedestrians) 就行人的交通影響評估	<input type="checkbox"/>	<input type="checkbox"/>
Visual impact assessment 視覺影響評估	<input type="checkbox"/>	<input type="checkbox"/>
Landscape impact assessment 景觀影響評估	<input type="checkbox"/>	<input type="checkbox"/>
Tree Survey 樹木調查	<input type="checkbox"/>	<input type="checkbox"/>
Geotechnical impact assessment 土力影響評估	<input type="checkbox"/>	<input type="checkbox"/>
Drainage impact assessment 排水影響評估	<input type="checkbox"/>	<input type="checkbox"/>
Sewerage impact assessment 排污影響評估	<input type="checkbox"/>	<input type="checkbox"/>
Risk Assessment 風險評估	<input type="checkbox"/>	<input type="checkbox"/>
Air Ventilation Assessment 空氣流通評估	<input type="checkbox"/>	<input type="checkbox"/>
Management Plan 管理計劃	<input type="checkbox"/>	<input type="checkbox"/>
Social Impact Assessment 社會影響評估	<input type="checkbox"/>	<input type="checkbox"/>
Heritage Impact Assessment	<input type="checkbox"/>	<input type="checkbox"/>
Ecological Impact Assessment 生態影響評估	<input type="checkbox"/>	<input type="checkbox"/>
Conservation Management Plan 保育管理計劃	<input type="checkbox"/>	<input type="checkbox"/>
Others (please specify) 其他（請註明）	<input type="checkbox"/>	
<u>Executive Summary</u>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>

Note: The information in the Gist of Application above is provided by the applicant for easy reference of the general public. Under no circumstances will the Town Planning Board accept any liabilities for the use of the information nor any inaccuracies or discrepancies of the information provided. In case of doubt, reference should always be made to the submission of the applicant.

註： 上述申請摘要的資料是由申請人提供以方便市民大眾參考。對於所載資料在使用上的問題及文義上的歧異，城市規劃委員會概不負責。若有任何疑問，應查閱申請人提交的文件。

Executive Summary

1. The application site (the Site) is on Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long.
2. The site area is about 4,861m² which includes 424m² of Government Land.
3. The Site falls within an area zoned “Residential (Group D)” (“R(D)”) on the Approved Pat Heung Outline Zoning Plan No. S/YL-PH/11.
4. The applied use is ‘Proposed Temporary Warehouse (excluding Dangerous Goods Godown) with Ancillary Office’ and associated Filling of Land for a Period of 3 Years. According to the covering Notes of the OZP, temporary use or development of any land or building not exceeding a period of 3 years requires planning permission from the Board, notwithstanding that the use or development is not provided for in terms of the OZP.
5. A total of 6 nos. of single-storey temporary structures are proposed for warehouses with ancillary office, toilet, pump room and meter room uses. The gross floor area is about 3,137m².
6. Operation hours are from 8 a.m. to 7 p.m. from Mondays to Saturdays. No operations on Sundays and public holidays.
7. Potential adverse impacts on drainage, traffic, fire safety and environment to the surrounding area arising from the applied use are not anticipated.

行政摘要

1. 申請地點位於元朗八鄉丈量約份第 111 約地段第 29 號 (部分)、第 33 號 (部分)及第 35 號 (部分)和毗連政府土地。
2. 申請地點的面積約 4,861 平方米，當中包括政府土地 424 平方米。
3. 申請地點在《八鄉分區計劃大綱核准圖編號 S/YL-PH/11》上劃為「住宅(丁類)」地帶。
4. 申請用途為「擬議臨時貨倉（危險品倉庫除外）連附屬辦公室及相關填土工程（為期 3 年）」。根據有關分區計劃大綱圖的《注釋》，在「住宅(丁類)」地帶的任何土地或建築物進行為期不超過 3 年的臨時用途或發展，即使該大綱圖對該用途沒有作出規定，也須向城市規劃委員會申請規劃許可。
5. 申請地點擬議提供 6 個臨時單層構築物作貨倉連附屬辦公室、洗手間、泵房及電錶房，總樓面面積約 3,137 平方米。
6. 營運時間為星期一至六上午 8 時至下午 7 時（星期日及公眾假期休息）。
7. 申請用途預期不會對鄰近地區的排水、交通、消防及環境方面帶來潛在負面影響。

Planning Statement

Introduction

1. This Planning Statement is submitted to the Town Planning Board (“the Board”) on behalf of Mr. YIK King Kung Philip (“the Applicant”) in support of the planning application for ‘Proposed Temporary Warehouse (excluding Dangerous Goods Godown) with Ancillary Office and associated Filling of Land for a Period of 3 Years’ (“the Proposed Development”) on Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long (“the Site”) under Section 16 of the Town Planning Ordinance.

Application Site (Plans 1 and 2)

2. The Site comprises Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long. The Site is accessible from Fan Kum Road connecting to a local track.
3. The site area is about 4,861m² which includes 424m² of Government Land.

Planning Context

4. The Site falls within an area zoned “Residential (Group D)” (“R(D)”) on the Approved Pat Heung Outline Zoning Plan No. S/YL-PH/11.
5. The planning intention of the “R(D)” zone is primarily for improvement and upgrading of existing temporary structures within the rural areas through redevelopment of existing temporary structures into permanent buildings. It is also intended for low-rise, low-density residential developments subject to planning permission from the Town Planning Board.
6. According to the covering Notes of the OZP, temporary use or development of any land or building not exceeding a period of 3 years requires planning permission from the Board, notwithstanding that the use or development is not provided for in terms of the OZP. Besides, any filling of land within the “R(D)” zone shall not be undertaken without the permission from the Board.
7. Provided that the structures of the Proposed Development are temporary in nature, approval of the application on a temporary basis for a period of 3 years would not frustrate the long-term planning intention of the “R(D)” zone.

Development Parameters

8. The following table summarises the details of the structures on site (**Plan 3**):

No.	Use	Floor Area (ab.) (m ²)	Covered Area (ab.) (m ²)	Height (ab.) (m)	No. of Storey
1	Warehouse with Ancillary Office	214	214	9	1
2	Warehouse with Ancillary Office	743	743	9	
3	Warehouse with Ancillary Office	2,137	2,137	14	
4	Toilet	18	18	3	
5	Pump Room	20	20	3	
6	Meter Room	5	5	3	
Total		<u>3,137</u>	<u>3,137</u>		
		Plot Ratio	Site Coverage		
		0.645	64.5%		

9. The Proposed Development serves to meet the strong demand for warehouses in Yuen Long area. Construction materials such as bamboo, scaffoldings, bricks, metals, sand, etc. will be stored in the warehouses.

10. Operation hours are from 8 a.m. to 7 p.m. daily from Mondays to Saturdays. No operations on Sundays and public holidays.

11. 2 nos. of parking spaces for heavy goods vehicles (HGV) and 3 nos. of parking spaces for container vehicles are proposed at the Site for the daily operation of the Proposed Development. The Site is accessible by vehicles from Fan Kam Road connecting to a local track. Sufficient space is allowed for vehicle manoeuvring within, entering and leaving the Site.

12. The site is at various ground levels. The Site is proposed hard-paved with concrete at a depth of about 0.2m to 1.2m to provide a suitable solid ground for the erection of temporary structures and vehicle manoeuvring. Western side of the site has been paved with concrete which serves regularization of filling of land. Please refer to plan showing the proposed filling of land for details (**Plan 5**).

Similar Applications

13. There are 2 similar applications approved by the Rural and New Town Planning Committee (“the Committee”) within the “R(D)” zone on the OZP in the past 4 years in vicinity (Planning Application No. A/YL-PH/908 and A/YL-PH/967).

No Adverse Impacts to the Surroundings

Visual

16. The Proposed Development involves the erection of single-storey temporary structures. The applied use is considered not incompatible with surrounding land uses intermixed with warehouses,

temporary structures, open storage and residential structures. Adverse visual impact to the surrounding areas is not anticipated.

Drainage

17. The Applicant will submit a drainage proposal, with the provision of u-channels and catchpits to mitigate any potential adverse drainage impacts generated by the Proposed Development after the planning approval has been granted from the Board. The Applicant will proceed to implement the drainage facilities at the Site once the drainage proposal is accepted by the Drainage Services Department.

Fire Safety

18. The Applicant will submit a layout plan incorporated with the proposed fire service installations (FSI) after the planning approval has been granted from the Board. The Applicant will proceed to implement the FSI proposal at the Site once it is accepted by the Director of Fire Services.

Traffic

19. The trip attraction and generation rates are expected as follows:

	Mondays to Saturdays	
	Attractions (HGV or Container Vehicle)	Generations (HGV or Container Vehicle)
08:00 – 09:00	1	0
09:00 – 10:00	1	0
10:00 – 11:00	1	1
11:00 – 12:00	0	1
12:00 – 13:00	0	1
13:00 – 14:00	0	0
14:00 – 15:00	1	0
15:00 – 16:00	1	0
16:00 – 17:00	1	1
17:00 – 18:00	0	1
18:00 – 19:00	0	1
Total Trips	<u>6</u>	<u>6</u>

20. In view of the low trip attraction and generation rates, it is expected that the Proposed Development should not cause adverse traffic impacts to the adjacent areas and road network.

21. 2 nos. of parking spaces for heavy goods vehicles (HGV) and 3 nos. of parking spaces for container vehicles are proposed at the Site for the daily operation of the Proposed Development. Sufficient space is allowed for car manoeuvring within, entering and leaving the Site (**Plan 4**).

22. The Proposed Development is for warehouse only. Given that no visitors will be accepted at the Site, no visitor parking space will be provided. Staff are residents living in the vicinity. They will come to the Site by public transports or on foot.

Environment

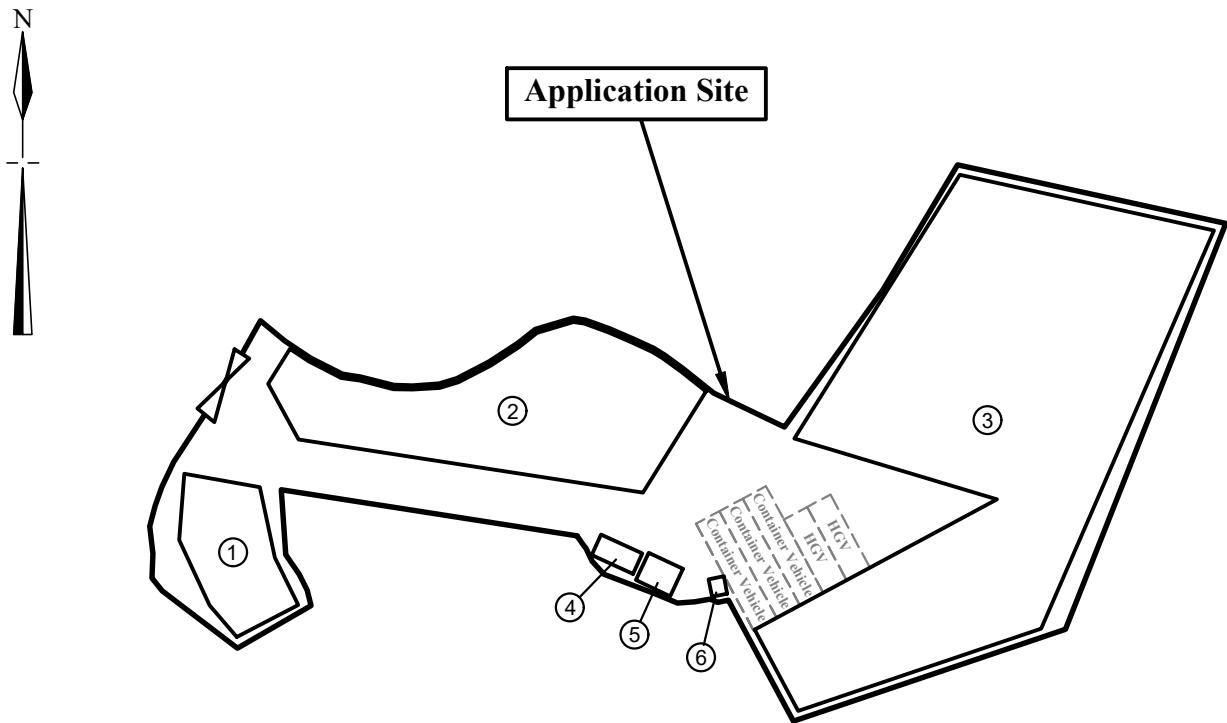
23. The Applicant undertakes to follow the measures as set out in the ‘Code of Practice on Handling the Environmental Aspects of Temporary Uses and Open Storage Sites’ issued by the Environmental Protection Department to minimise any possible environmental nuisances, and to comply with all environmental protection/pollution control ordinances.
24. The Proposed Development is intended for warehouse use only. Loading and unloading activities will only be conducted from 8 a.m. to 7 p.m. from Mondays to Saturdays. No workshop activities will be allowed at the Site. No public announcement systems, whistle blowing or portable loudspeaker will be allowed within the Site. As such, potential adverse noise impacts to the surrounding areas are not anticipated.

- End -

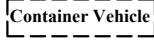
Application Site

	Private Land(about) :	4,437m²	(91%)
	Government Land (about) :	424m²	(9%)
	Site Area (about) :	4,861m²	(100%)

1:1000


May 2025

Lot Index Plan


Lot 29(part), 33(part) and 35(part) in DD.111
and adjoining government land
Yuen Long, N.T.

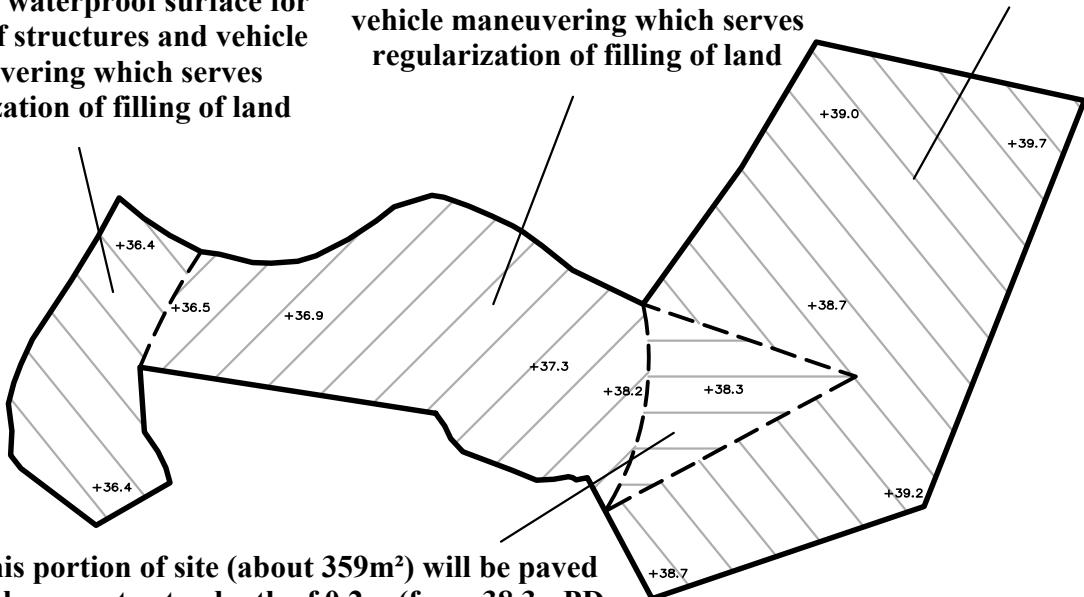
Goldrich Planners &
Surveyors Ltd.

Plan 2
(P 25025)

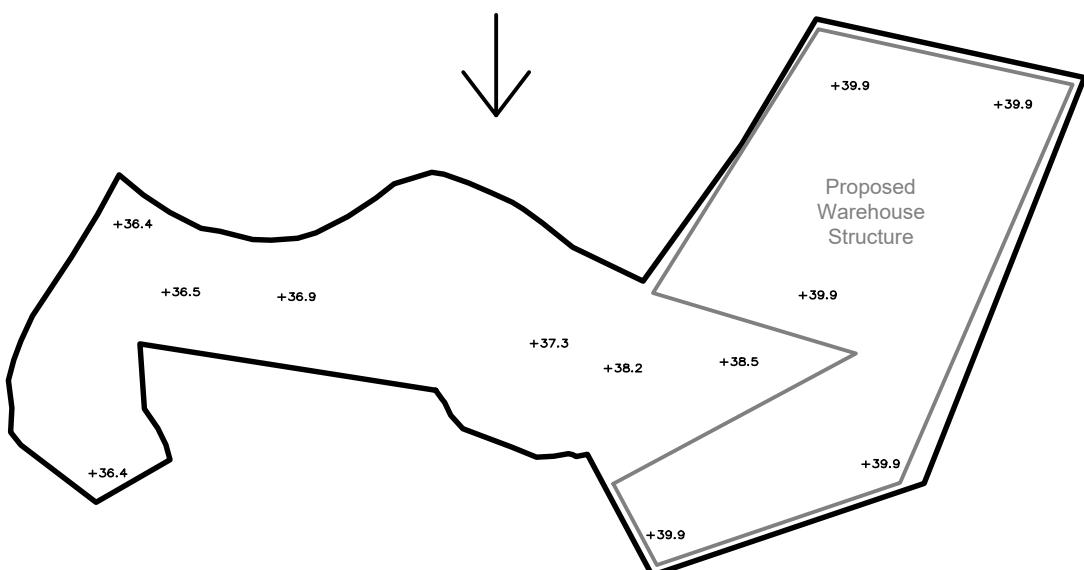
Legend

- Vehicular Ingress / Egress
- Parking space for container vehicle
(16m (L) x 3.5m (W))
- Parking space for heavy goods vehicle
(11m (L) x 3.5m (W))

No.	Uses	Floor Area (about)	Covered Area (about)	Storeys	Height
1	Warehouse with Ancillary Office	214 m ²	214 m ²	1	9m
2	Warehouse with Ancillary Office	743 m ²	743 m ²	1	9m
3	Warehouse with Ancillary Office	2,137 m ²	2,137 m ²	1	14m
4	Toilet	18 m ²	18 m ²	1	3m
5	Pump Room	20 m ²	20 m ²	1	3m
6	Meter room	5 m ²	5 m ²	1	3m
Total		<u><u>3,137 m²</u></u>	<u><u>3,137 m²</u></u>		


1:1000	Proposed Layout Plan	Goldrich Planners & Surveyors Ltd.
May 2025	Lot 29(part), 33(part) and 35(part) in DD.111 and adjoining government land Yuen Long, N.T.	Plan 3 (P 25025)

This portion of site (about 604m²) has been paved with concrete at a depth of 0.7m (from 35.7mPD to 36.4mPD) to provide waterproof surface for erection of structures and vehicle maneuvering which serves regularization of filling of land


This portion of land is slightly sloping from the lowest in the west to highest to the east. This portion of site (about 1,519m²) has been paved with concrete at a depth of 1m to provide waterproof surface for erection of structures and vehicle maneuvering which serves regularization of filling of land

This portion of site (about 2,380m²) will be paved with concrete at a maximum depth of about 1.2m (highest to 39.9mPD) to provide flat waterproof surface for erection of warehouse structure

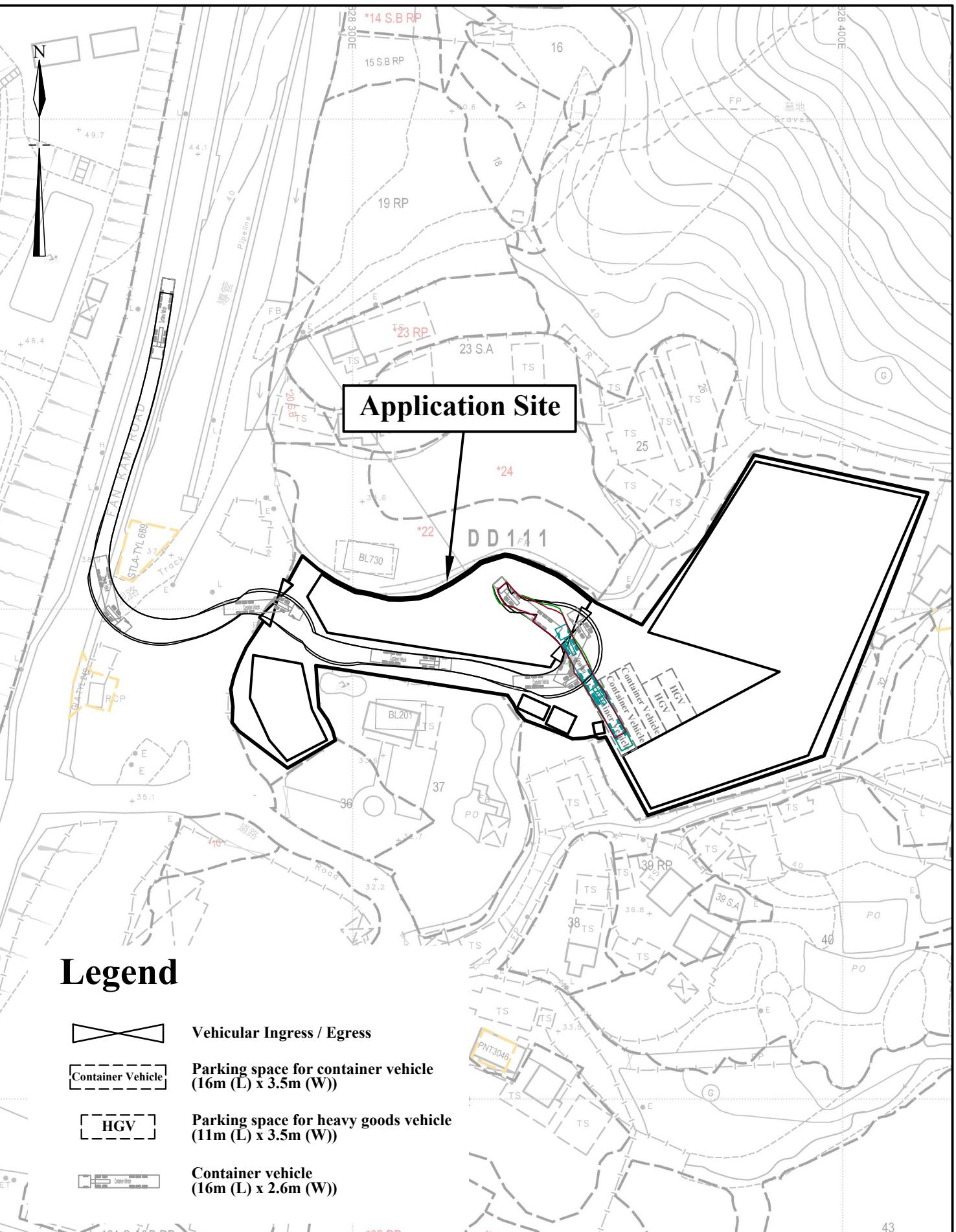
This portion of site (about 359m²) will be paved with concrete at a depth of 0.2m (from 38.3mPD to 38.5mPD) for vehicle maneuvering

Existing Ground Level

Ground Level After Filling of Land

Note: The western side of the site is naturally at a lower ground level and the eastern side is naturally at a higher ground level. Thus the ground level in the west is lower than the east. There is a sloping road in the middle that connects the land between the west and the east.

1:1000


Plan Showing Existing Ground Level and Ground Level After Filling of Land

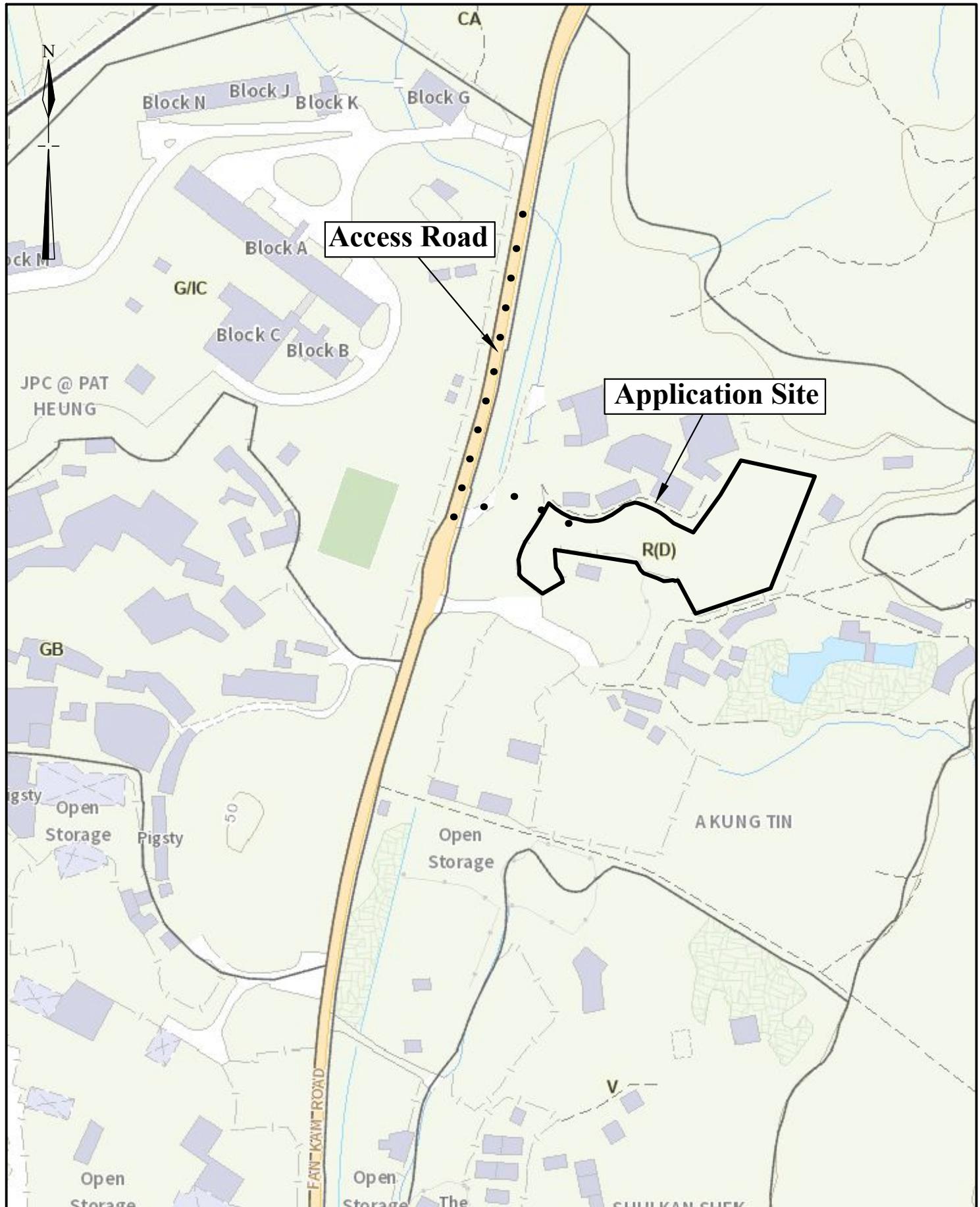
June 2025

Lot 29(part), 33(part) and 35(part) in DD.111
and adjoining government land
Yuen Long, N.T.

Goldrich Planners & Surveyors Ltd.

**Plan 5
(P 25025)**

1:1000


May 2025

Swept Path Analysis

Lot 29(part), 33(part) and 35(part) in DD.111
and adjoining government land
Yuen Long, N.T.

Goldrich Planners &
Surveyors Ltd.

Plan 4
(P 25025)

Extracted from Approved Pat Heung Outline Zoning Plan No. S/YL-PH/11

1:1000

Location Plan

Goldrich Planners & Surveyors Ltd.

May 2025

Lot 29(part), 33(part) and 35(part) in DD.111
and adjoining government land
Yuen Long, N.T.

**Plan 1
(P 25025)**

From: Rich Gold [REDACTED]
Sent: 2025-07-14 星期一 10:24:52
To: tpbpd/PLAND <tpbpd@pland.gov.hk>
Cc: [REDACTED]
Subject: Planning Application No. A/YL-PH/1077 - Submission of Supplementary Information
Attachment: A_YL-PH_1077_Appendix II_vehicular access.pdf

Dear Sir/Madam,

Attached please find our supplementary information for the captioned application. Thank you.

Regards,
Alan Poon

--

[Goldrich Planners and Surveyors Ltd.](#)

[REDACTED]

[REDACTED]

[REDACTED]

[REDACTED]

[REDACTED]

Notice to recipient: This e-mail is meant for only the intended recipient of the transmission, and may contain information of Goldrich Planners and Surveyors Ltd. that is confidential and/or privileged. If you received this e-mail in error, any review, use, dissemination, distribution, or copying of this e-mail is strictly prohibited. Please notify us immediately of the error by return e-mail and please delete this message from your system. Thank you in advance for your cooperation.

Photographs showing vehicular access to the application site

Urgent Return receipt Expand Group Restricted Prevent Copy Confidential

From: Rich Gold [REDACTED]
Sent: Monday, July 14, 2025 10:25 AM
To: tpbpd/PLAND <tpbpd@pland.gov.hk>
Cc: [REDACTED]
Subject: Planning Application No. A/YL-PH/1077 - Submission of Supplementary Information

Dear Sir/Madam,

Attached please find our supplementary information for the captioned application. Thank you.

Regards,
Alan Poon

--
[REDACTED]

Notice to recipient: This e-mail is meant for only the intended recipient of the transmission, and may contain information of Goldrich Planners and Surveyors Ltd. that is confidential and/or privileged. If you received this e-mail in error, any review, use, dissemination, distribution, or copying of this e-mail is strictly prohibited. Please notify us immediately of the error by return e-mail and please delete this message from your system. Thank you in advance for your cooperation.

GoldRich PLANNERS & SURVEYORS LTD.

金潤規劃測量師有限公司

Your Ref.: A/YL-PH/1077

Our Ref.: P25025/TL25274

17 October 2025

The Secretary
Town Planning Board
15/F., North Point Government Offices
333 Java Road, North Point, Hong Kong

By Post and E-mail
tpbpd@pland.gov.hk

Dear Sir,

Submission of Further Information

**Proposed Temporary Warehouse (excluding Dangerous Goods Godown) with
Ancillary Office and associated Filling of Land for a Period of 3 Years
Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111
and Adjoining Government Land, Pat Heung, Yuen Long
(Application No.: A/YL-PH/1077)**

We would like to submit a response-to-comment, drainage proposal (Plans 6.1 and 6.2) and hydraulic calculations to respond to the comments from Transport Department, Drainage Services Department and Lands Department.

An updated executive summary, planning statement and plans (Plans 1a – 5a) are submitted for the captioned application.

Yours faithfully,
For and on behalf of
Goldrich Planners & Surveyors Ltd.

Francis Lau

Encl.

Comments from Transport Department dated 4.8.2025

Comment	Response
<p>It is noted that container vehicles would access the site. Based on the swept path analysis, it requires a wide run-in/out so as to accommodate the turning movement. Please provide details of modification of run-in/out at footpath of Fan Kam Road accordingly.</p>	<p>The operator will inform container vehicle drivers that they must come to the site from northbound of Fan Kam Road and leave the site through southbound of Fan Kam Road.</p> <p>The operator will manage the traffic flow of the container vehicles. Container vehicles must make an appointment before they come. No two container vehicles will enter or leave the site at the same time.</p> <p>Please refer to updated Swept Path Analysis (Plan 4a) for details.</p>

Comments from Drainage Services Department dated 19.8.2025

	Comments	Responses
2.	According to our record, there are existing streamcourse/channel on government land within the application site that may also serve the adjacent land. There is a potential increase flooding risk to the area if the government land and the streamcourse/channel are disturbed or affected by the operation of the applicant.	<p>The existing streamcourse/channel on government land within the application site will be preserved and maintained. The operation of the applicant will not disturb the existing streamcourse/channel.</p> <p>As the existing streamcourse/channel on government land has all the time been receiving surface runoff from the subject site, there will not be any increase or change in the waterflow.</p>
3.	We are unable to provide comment on drainage aspect of the application at this stage. Comment on drainage aspect will be provided when the drainage proposal as mentioned in paragraph 17 of the planning statement is received.	Please refer to attached drainage proposal for details.

Comment from Lands Department dated 17.10.2025

Comment	Response
<p><u>Unauthorised structure(s) within the said private lot(s) covered by the planning application</u></p> <p>There is/are unauthorized structure(s) and/or uses on the Lot No. 29 in D.D. 111. The lot owner(s) should immediately rectify/apply for regularization on the lease breaches and this office reserves the rights to take necessary lease enforcement action against the breaches without further notice.</p> <p>LandsD has reservation on the planning application since there is/are unauthorized structure(s) and uses on the Lot No. 35 in D.D. 111 which is/are already subject to lease enforcement actions according to case priority. The lot owner(s) should rectify/apply for regularization on the lease breaches as demanded by LandsD.</p> <p>No permission is given for occupation of Government Land (about 424 m² subject to verification) included in the application site. Any occupation of GL without Government's prior approval is an offence under Cap. 28.</p> <p>If the planning application is approved, the lot owner(s) shall apply to this office for a Short Term Waiver (STW) and/or Short Term Tenancy (STT) to permit the structure(s) erected within the said private lot(s) and the occupation of the Government land. The application(s) for STW and/or STT will be considered by the Government in its capacity as a landlord and there is no guarantee that they will be approved. The STW and/or STT, if approved, will be subject to such terms and conditions including the payment of waiver fee/rent and administrative fee as considered appropriate by LandsD. Besides, given the proposed use is temporary in nature, only erection of temporary structure(s) will be considered.</p>	<p>The applicant will apply for Short Term Waiver and Short Term Tenancy to Lands Department when the application is approved.</p>

Executive Summary

1. The application site (the Site) is on Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long.
2. The site area is about 5,285m² which includes 523m² of Government Land.
3. The Site falls within an area zoned “Residential (Group D)” (“R(D)”) on the Approved Pat Heung Outline Zoning Plan No. S/YL-PH/11.
4. The applied use is ‘Proposed Temporary Warehouse (excluding Dangerous Goods Godown) with Ancillary Office’ and associated Filling of Land for a Period of 3 Years. According to the covering Notes of the OZP, temporary use or development of any land or building not exceeding a period of 3 years requires planning permission from the Board, notwithstanding that the use or development is not provided for in terms of the OZP.
5. A total of 7 nos. of single-storey temporary structures are proposed for warehouses with ancillary office, toilet, pump room and meter room uses. The gross floor area is about 3,145m².
6. Operation hours are from 8 a.m. to 7 p.m. from Mondays to Saturdays. No operations on Sundays and public holidays.
7. Potential adverse impacts on drainage, traffic, fire safety and environment to the surrounding area arising from the applied use are not anticipated.

行政摘要

1. 申請地點位於元朗八鄉丈量約份第 111 約地段第 29 號 (部分)、第 33 號 (部分)及第 35 號 (部分)和毗連政府土地。
2. 申請地點的面積約 5,285 平方米，當中包括政府土地 523 平方米。
3. 申請地點在《八鄉分區計劃大綱核准圖編號 S/YL-PH/11》上劃為「住宅(丁類)」地帶。
4. 申請用途為「擬議臨時貨倉（危險品倉庫除外）連附屬辦公室及相關填土工程（為期 3 年）」。根據有關分區計劃大綱圖的《注釋》，在「住宅(丁類)」地帶的任何土地或建築物進行為期不超過 3 年的臨時用途或發展，即使該大綱圖對該用途沒有作出規定，也須向城市規劃委員會申請規劃許可。
5. 申請地點擬議提供 7 個臨時單層構築物作貨倉連附屬辦公室、洗手間、泵房及電錶房，總樓面面積約 3,145 平方米。
6. 營運時間為星期一至六上午 8 時至下午 7 時（星期日及公眾假期休息）。
7. 申請用途預期不會對鄰近地區的排水、交通、消防及環境方面帶來潛在負面影響。

Planning Statement

Introduction

1. This Planning Statement is submitted to the Town Planning Board (“the Board”) on behalf of Mr. YIK King Kung Philip (“the Applicant”) in support of the planning application for ‘Proposed Temporary Warehouse (excluding Dangerous Goods Godown) with Ancillary Office and associated Filling of Land for a Period of 3 Years’ (“the Proposed Development”) on Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long (“the Site”) under Section 16 of the Town Planning Ordinance.

Application Site (Plans 1a and 2a)

2. The Site is on Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long. The Site is accessible from Fan Kum Road connecting to a local track.
3. The site area is about 5,285m² which includes 523m² of Government Land.

Planning Context

4. The Site falls within an area zoned “Residential (Group D)” (“R(D)”) on the Approved Pat Heung Outline Zoning Plan No. S/YL-PH/11.
5. The planning intention of the “R(D)” zone is primarily for improvement and upgrading of existing temporary structures within the rural areas through redevelopment of existing temporary structures into permanent buildings. It is also intended for low-rise, low-density residential developments subject to planning permission from the Town Planning Board.
6. According to the covering Notes of the OZP, temporary use or development of any land or building not exceeding a period of 3 years requires planning permission from the Board, notwithstanding that the use or development is not provided for in terms of the OZP. Besides, any filling of land within the “R(D)” zone shall not be undertaken without the permission from the Board.
7. Provided that the structures of the Proposed Development are temporary in nature, approval of the application on a temporary basis for a period of 3 years would not frustrate the long-term planning intention of the “R(D)” zone.

Development Parameters

8. The following table summarises the details of the structures on site (**Plan 3a**):

No.	Use	Floor Area (ab.) (m ²)	Covered Area (ab.) (m ²)	Height (ab.) (m)	No. of Storey
1	Warehouse with Ancillary Office	214	214	9	1
2	Warehouse with Ancillary Office	743	743	9	
3	Warehouse with Ancillary Office	2,137	2,137	14	
4	Toilet	18	18	3	
5	Pump Room	20	20	3	
6	Meter Room	5	5	3	
7	Meter Room	8	8	3	
Total		<u>3,145</u>	<u>3,145</u>		
		Plot Ratio	Site Coverage		
		0.595	59.5%		

9. The Proposed Development serves to meet the strong demand for warehouses in Yuen Long area. Construction materials such as bamboo, scaffoldings, bricks, metals, sand, etc. will be stored in the warehouses.

10. Operation hours are from 8 a.m. to 7 p.m. daily from Mondays to Saturdays. No operations on Sundays and public holidays.

11. 2 nos. of parking spaces for heavy goods vehicles (HGV) and 3 nos. of parking spaces for container vehicles are proposed at the Site for the daily operation of the Proposed Development. The Site is accessible by vehicles from Fan Kam Road connecting to a local track. Sufficient space is allowed for vehicle manoeuvring within, entering and leaving the Site.

12. The meter room in the east (structure no. 6) supports structure 3. The meter room in the west (structure 7) supports structures 1 and 2. Positioning each meter room closer to its respective structures minimizes the consumption of electrical cable.

13. The site is at various ground levels. The Site is proposed hard-paved with concrete at a depth of about 0.2m to 1.2m to provide a suitable solid ground for the erection of temporary structures and vehicle manoeuvring. Portion of the site has been paved with concrete which serves regularization of filling of land. Please refer to plan showing the proposed filling of land for details (**Plan 5a**).

Similar Applications

14. There are 2 similar applications approved by the Rural and New Town Planning Committee (“the Committee”) within the “R(D)” zone on the OZP in the past 4 years in vicinity (Planning Application No. A/YL-PH/908 and A/YL-PH/967).

No Adverse Impacts to the Surroundings

Visual

15. The Proposed Development involves the erection of single-storey temporary structures. The applied use is considered not incompatible with surrounding land uses intermixed with warehouses, temporary structures, open storage and residential structures. Adverse visual impact to the surrounding areas is not anticipated.

Drainage

16. The Applicant will submit a drainage proposal, with the provision of u-channels and catchpits to mitigate any potential adverse drainage impacts generated by the Proposed Development after the planning approval has been granted from the Board. The Applicant will proceed to implement the drainage facilities at the Site once the drainage proposal is accepted by the Drainage Services Department.

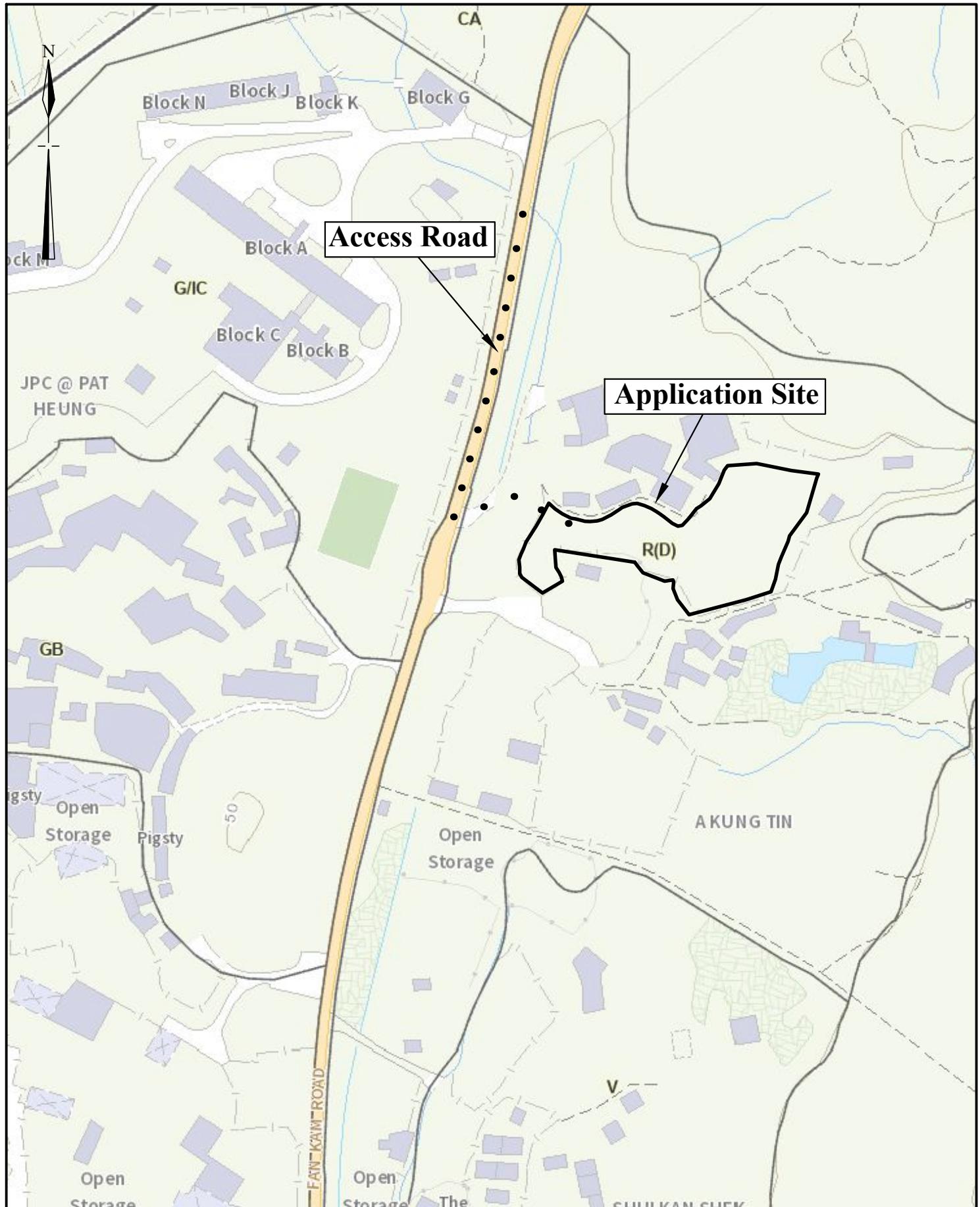
Fire Safety

17. The Applicant will submit a layout plan incorporated with the proposed fire service installations (FSI) after the planning approval has been granted from the Board. The Applicant will proceed to implement the FSI proposal at the Site once it is accepted by the Director of Fire Services.

Traffic

18. The trip attraction and generation rates are expected as follows:

	Mondays to Saturdays	
	Attractions (HGV or Container Vehicle)	Generations (HGV or Container Vehicle)
08:00 – 09:00	1	0
09:00 – 10:00	1	0
10:00 – 11:00	1	1
11:00 – 12:00	0	1
12:00 – 13:00	0	1
13:00 – 14:00	0	0
14:00 – 15:00	1	0
15:00 – 16:00	1	0
16:00 – 17:00	1	1
17:00 – 18:00	0	1
18:00 – 19:00	0	1
Total Trips	<u>6</u>	<u>6</u>


19. In view of the low trip attraction and generation rates, it is expected that the Proposed Development should not cause adverse traffic impacts to the adjacent areas and road network.

20. 2 nos. of parking spaces for heavy goods vehicles (HGV) and 3 nos. of parking spaces for container vehicles are proposed at the Site for the daily operation of the Proposed Development. Sufficient space is allowed for car manoeuvring within, entering and leaving the Site (**Plan 4a**).
21. The Proposed Development is for warehouse only. Given that no visitors will be accepted at the Site, no visitor parking space will be provided. Staff are residents living in the vicinity. They will come to the Site by public transports or on foot.

Environment

22. The Applicant undertakes to follow the measures as set out in the ‘Code of Practice on Handling the Environmental Aspects of Temporary Uses and Open Storage Sites’ issued by the Environmental Protection Department to minimise any possible environmental nuisances, and to comply with all environmental protection/pollution control ordinances.
23. The Proposed Development is intended for warehouse use only. Loading and unloading activities will only be conducted from 8 a.m. to 7 p.m. from Mondays to Saturdays. No workshop activities will be allowed at the Site. No public announcement systems, whistle blowing or portable loudspeaker will be allowed within the Site. As such, potential adverse noise impacts to the surrounding areas are not anticipated.

- End -

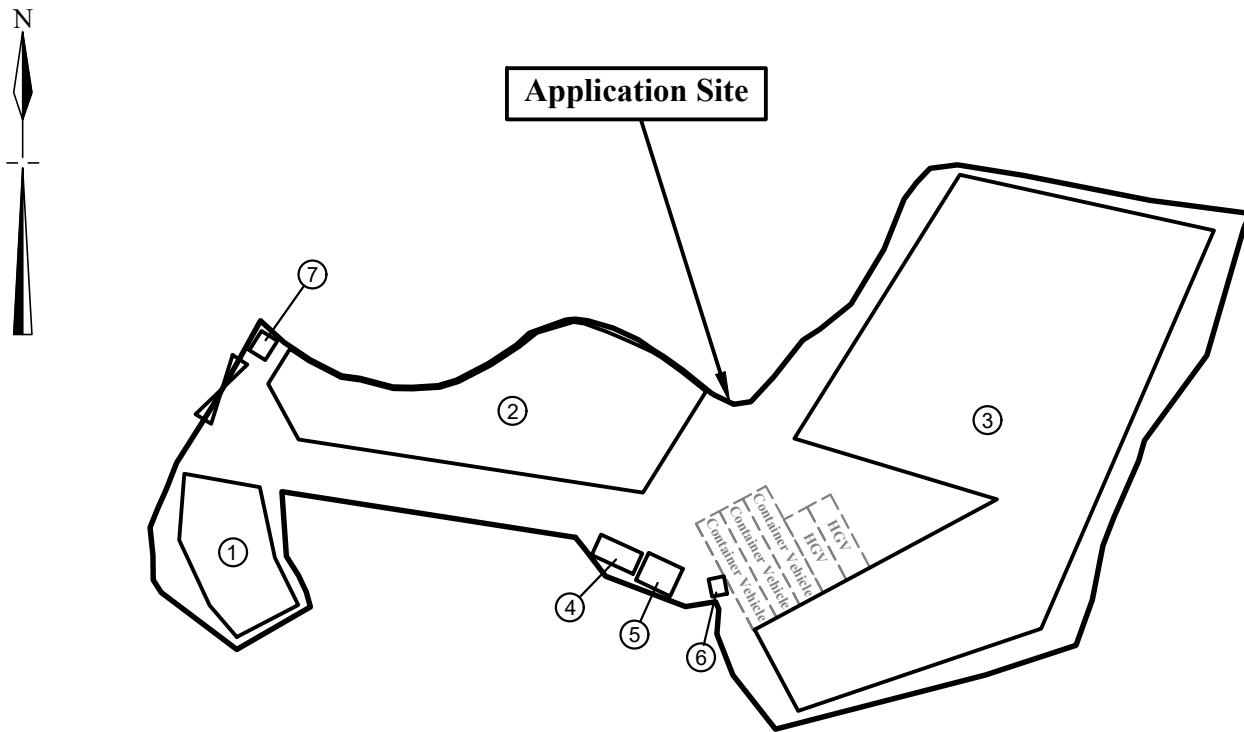
Extracted from Approved Pat Heung Outline Zoning Plan No. S/YL-PH/11

1:1000	Location Plan	Goldrich Planners & Surveyors Ltd.
August 2025	Lot 29(part), 33(part) and 35(part) in DD.111 and adjoining government land Yuen Long, N.T.	Plan 1a (P 25025)

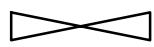
Application Site

	Private Land(about) :	4,762m²	(90%)
	Government Land (about) :	523m²	(10%)
	Site Area (about) :	5,285m²	(100%)

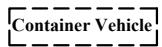
1:1000


August 2025

Lot Index Plan


Lot 29(part), 33(part) and 35(part) in DD.111
and adjoining government land
Yuen Long, N.T.

Goldrich Planners &
Surveyors Ltd.


Plan 2a
(P 25025)

Legend

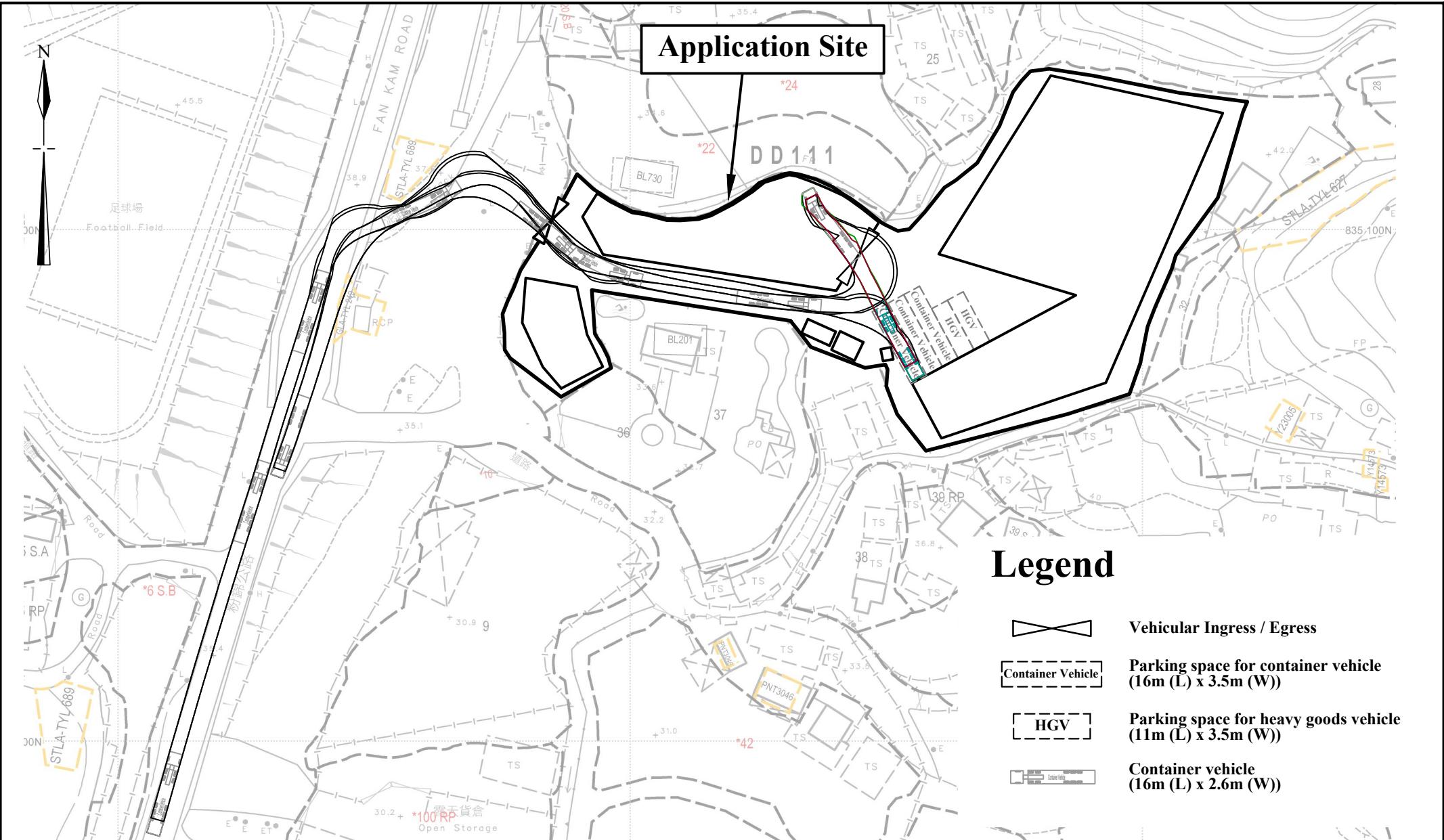
Vehicular Ingress / Egress

Parking space for container vehicle
(16m (L) x 3.5m (W))

Parking space for heavy goods vehicle
(11m (L) x 3.5m (W))

No.	Uses	Floor Area (about)	Covered Area (about)	Storeys	Height
1	Warehouse with Ancillary Office	214 m ²	214 m ²	1	9m
2	Warehouse with Ancillary Office	743 m ²	743 m ²	1	9m
3	Warehouse with Ancillary Office	2,137 m ²	2,137 m ²	1	14m
4	Toilet	18 m ²	18 m ²	1	3m
5	Pump Room	20 m ²	20 m ²	1	3m
6	Meter room	5 m ²	5 m ²	1	3m
7	Meter room	8 m ²	8 m ²	1	3m
Total		<u>3,145 m²</u>	<u>3,145 m²</u>		

1:1000


Proposed Layout Plan

Goldrich Planners & Surveyors Ltd.

August 2025

Lot 29(part), 33(part) and 35(part) in DD.111
and adjoining government land
Yuen Long, N.T.

Plan 3a
(P 25025)

1:1000

August 2025

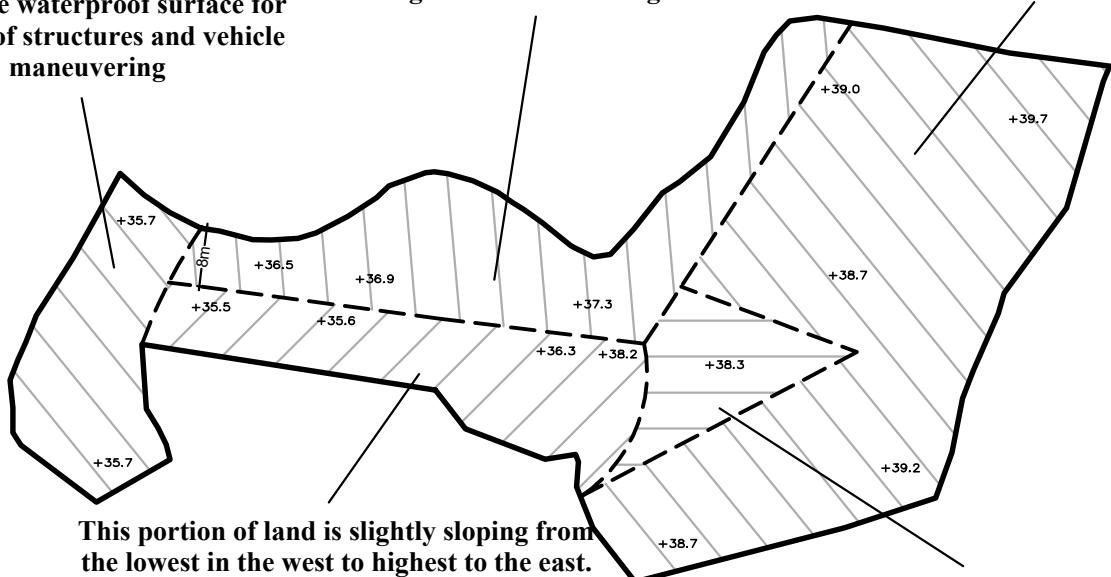
Swept Path Analysis

Lot 29(part), 33(part) and 35(part) in DD.111
and adjoining government land
Yuen Long, N.T.

Goldrich Planners & Surveyors Ltd.

Plan 4a
(P 25025)

N

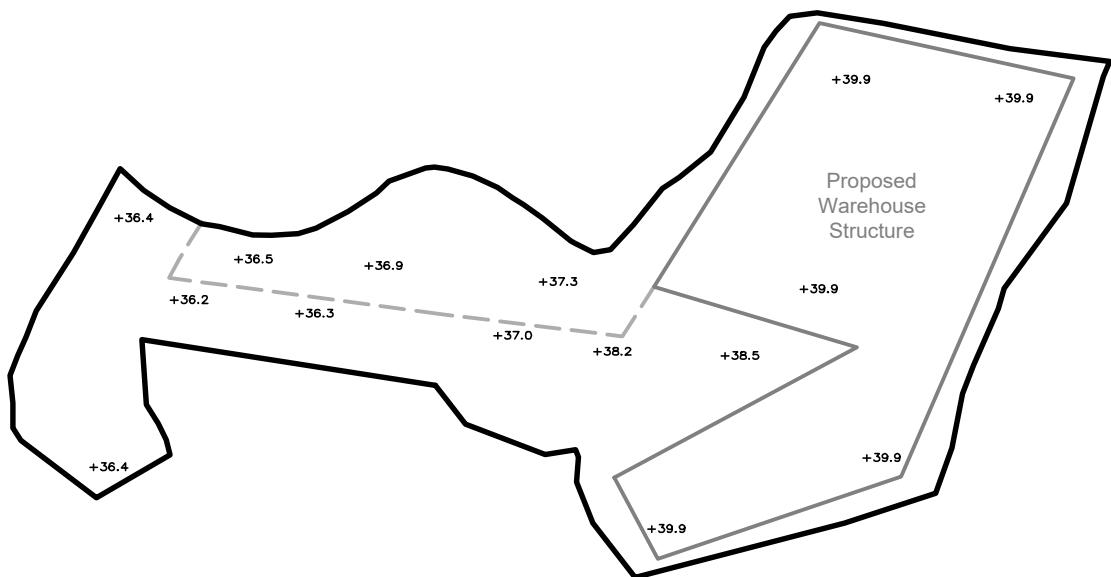


This portion of site (about 597m²) will be paved with concrete at a depth of 0.7m (from 35.7mPD to 36.4mPD) to provide waterproof surface for erection of structures and vehicle maneuvering

This portion of land is slightly sloping from the lowest in the west to highest to the east.

This portion of site (about 1,098m²) has been paved with concrete at a depth of 1m to provide waterproof surface for erection of structures and vehicle maneuvering which serves regularization of filling of land

This portion of site (about 2,474m²) will be paved with concrete at a maximum depth of about 1.2m (highest to 39.9mPD) to provide flat waterproof surface for erection of warehouse structure



This portion of land is slightly sloping from the lowest in the west to highest to the east.

This portion of site (about 767m²) will be paved with concrete at a depth of 0.7m to provide waterproof surface for erection of structures and vehicle maneuvering

This portion of site (about 349m²) will be paved with concrete at a depth of 0.2m (from 38.3mPD to 38.5mPD) for vehicle maneuvering

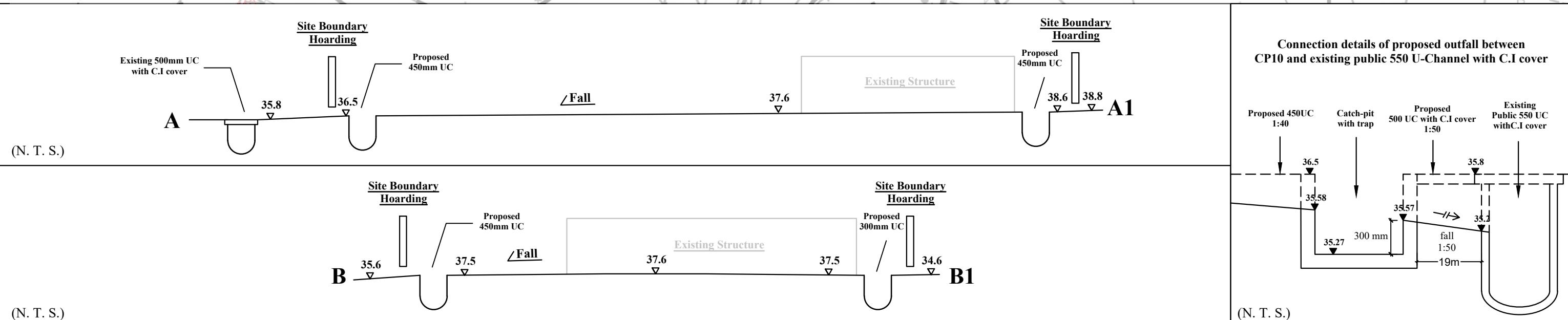
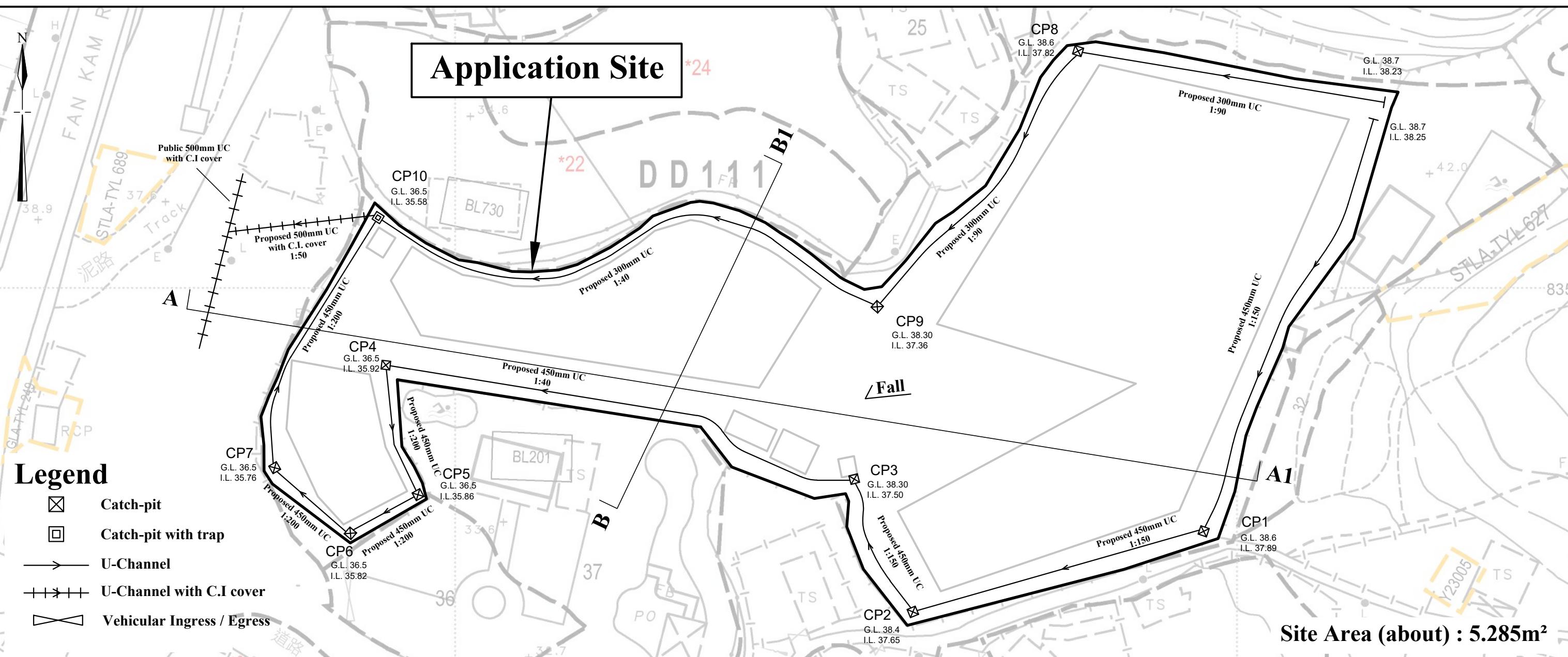
Existing Ground Level

Ground Level After Filling of Land

Note: The western side of the site is naturally at a lower ground level and the eastern side is naturally at a higher ground level. Thus the ground level in the west is lower than the east. There is a sloping road in the middle that connects the land between the west and the east.

1:1000

Plan Showing Existing Ground Level and Ground Level After Filling of Land



August 2025

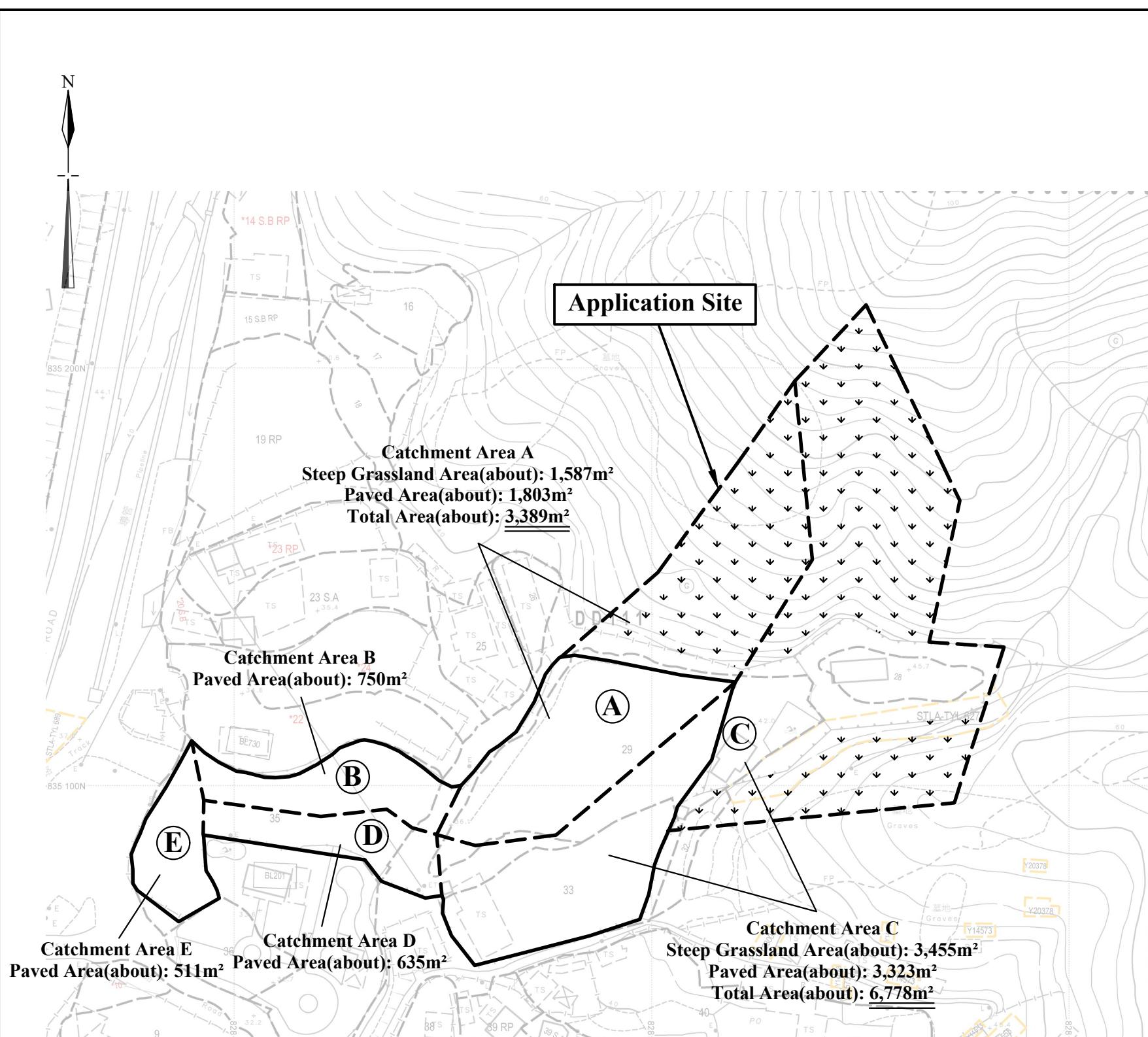
Lot 29(part), 33(part) and 35(part) in DD.111 and adjoining government land
Yuen Long, N.T.

Goldrich Planners & Surveyors Ltd.

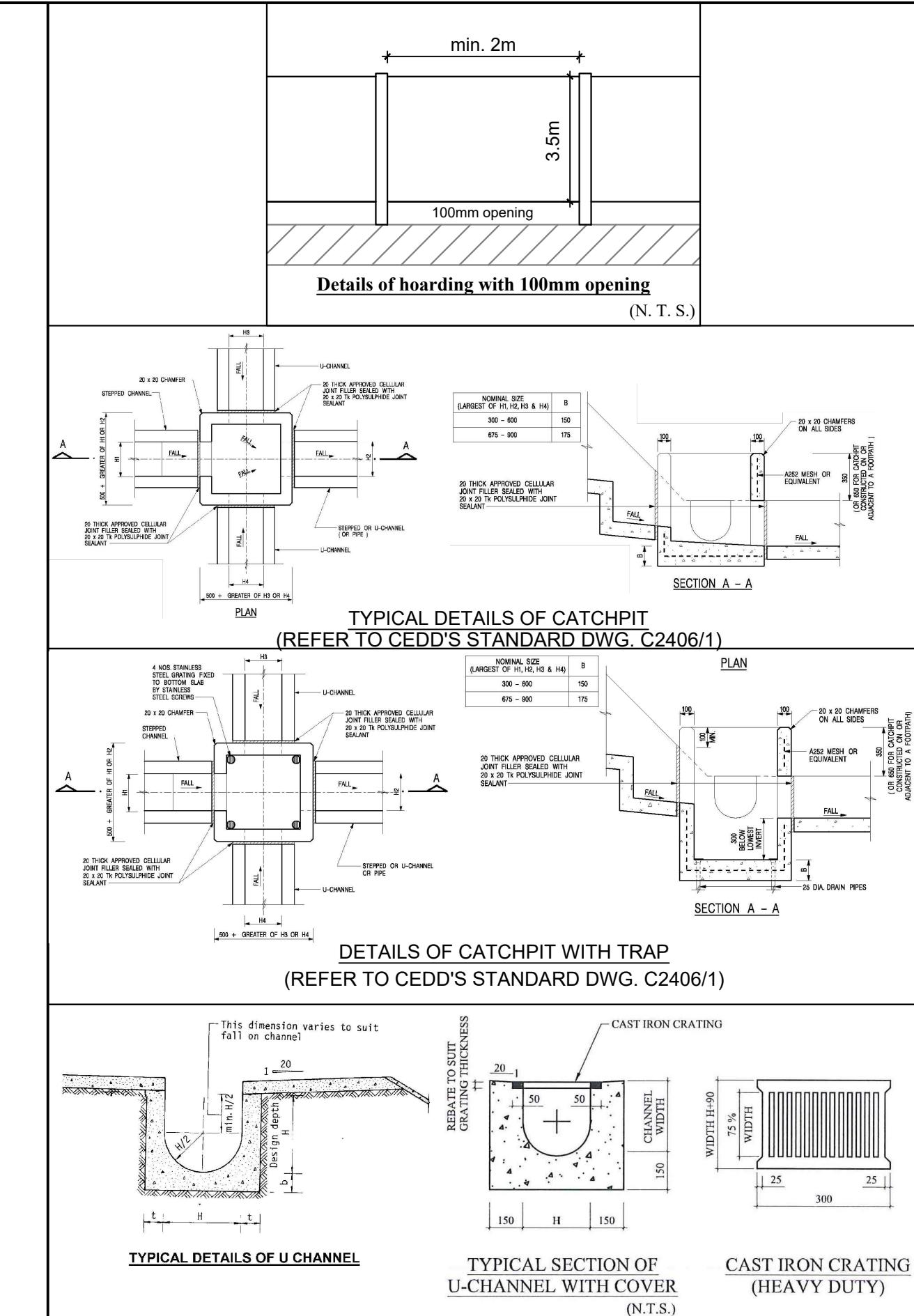
Plan 5a
(P 25025)

Application Site

Drainage Proposal


Lot 29(part), 33(part) and 35(part) in DD.111
and adjoining government land
Yuen Long, N.T.

1:500


August 2025

Goldrich Planners & Surveyors Ltd.

Plan 6.1
(P 25025)

AREA OF CATCHMENT
(N.T.S)

N.T.S

August 2025

Drainage Proposal
Lot 29(part), 33(part) and 35(part) in DD.111
and adjoining government land
Yuen Long, N.T.

Goldrich Planners &
Surveyors Ltd.

Plan 6.2
(P 25025)

<p>1 For Catchment Area A</p> <table> <tbody> <tr> <td>Area, A =</td> <td>3389 m²</td> </tr> <tr> <td>Average slope, H =</td> <td>47.5 m per 100m</td> </tr> <tr> <td>Distance on the line of natural flow, L =</td> <td>77 m</td> </tr> <tr> <td>Time of concentration, t_o =</td> <td>$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (77) / (47.5^{0.2} \cdot 3389^{0.1})$ = 2.3 min</td> </tr> </tbody> </table> <p>2 For Proposed UC in Catchment Area A</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.70</td> <td>38.30</td> </tr> <tr> <td>Invert level (mPD)</td> <td>38.23</td> <td>37.36</td> </tr> </tbody> </table> <p>Width of u-channel, w = 300 mm Length of u-channel, L_c = 78.3 m Depth of vertical part of u-channel, d = 790 mm Gradient of u-channel, S_f = $(38.23 - 37.36) / 78.3 = 0.0111$</p> <p>Cross-Section Area, a = $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 790$ = 0.272 m² Wetted Perimeter, p = $\pi r + 2 d = 3.14 \times 150 + 2 \times 790$ = 2.051 m Hydraulic radius, R = $a / p = 0.272 / 2.051 = 0.133$ m</p> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n =</td> <td>0.016</td> <td>for concrete lined channels:-</td> <td>SDM Table 13</td> </tr> <tr> <td>Allowable velocity, v =</td> <td>$R^{1/6} \times (RS_f)^{1/2} / n = (0.133)^{1/6} \times (0.133 \times 0.011)^{1/2} / 0.016$</td> <td>SDM Table 12</td> </tr> <tr> <td></td> <td>= 1.71 m/s</td> <td></td> </tr> <tr> <td>Time of flow, t_f =</td> <td>0.8 min</td> <td></td> </tr> </tbody> </table> <p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i =</td> <td>$a / (t_o + t_f + b)^c$ = $0.272 / (2.3 + 0.8 + 3.29)^{0.355}$ for return period T = 50 years = 262</td> <td>SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</td> </tr> <tr> <td>Type of surface</td> <td>Runoff Coefficient C</td> <td>Catchment Area A (m²)</td> <td>SDM 7.5.2 (b)</td> </tr> <tr> <td>Steep Glassland(heavy soil)</td> <td>0.35</td> <td>1587.0</td> <td>555.5</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>1803.0</td> <td>1712.9</td> </tr> <tr> <td></td> <td></td> <td>SUM = 2268.3</td> <td></td> </tr> </tbody> </table> <p>Upstream flow, Q_u = 0 m³/s</p> <p>Design flow, Q_d = $0.278i \sum C_j A_j + Q_u$ where A_j is in km² = $0.278 \times 262 \times 2268.3 / 1000000 + 0$ = 0.166 m³/s</p> <p>Allowable flow, Q_a = $a \times v$ = 0.272×1.71 = 0.467 m³/s > Q_d (O.K.)</p> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>	Area, A =	3389 m ²	Average slope, H =	47.5 m per 100m	Distance on the line of natural flow, L =	77 m	Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (77) / (47.5^{0.2} \cdot 3389^{0.1})$ = 2.3 min		From	To	Ground level (mPD)	38.70	38.30	Invert level (mPD)	38.23	37.36	Take n =	0.016	for concrete lined channels:-	SDM Table 13	Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.133)^{1/6} \times (0.133 \times 0.011)^{1/2} / 0.016$	SDM Table 12		= 1.71 m/s		Time of flow, t_f =	0.8 min		Design intensity, i =	$a / (t_o + t_f + b)^c$ = $0.272 / (2.3 + 0.8 + 3.29)^{0.355}$ for return period T = 50 years = 262	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	SDM 7.5.2 (b)	Steep Glassland(heavy soil)	0.35	1587.0	555.5	Concrete Paving	0.95	1803.0	1712.9			SUM = 2268.3		<p>Ref.</p> <p>SDM 7.5.2 (d)</p> <p>SDM 8.2.1</p> <p>SDM Table 13 SDM Table 12</p> <p>SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</p> <p>SDM 7.5.2 (b)</p> <p>SDM 7.5.2 (a)</p>
Area, A =	3389 m ²																																																	
Average slope, H =	47.5 m per 100m																																																	
Distance on the line of natural flow, L =	77 m																																																	
Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (77) / (47.5^{0.2} \cdot 3389^{0.1})$ = 2.3 min																																																	
	From	To																																																
Ground level (mPD)	38.70	38.30																																																
Invert level (mPD)	38.23	37.36																																																
Take n =	0.016	for concrete lined channels:-	SDM Table 13																																															
Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.133)^{1/6} \times (0.133 \times 0.011)^{1/2} / 0.016$	SDM Table 12																																																
	= 1.71 m/s																																																	
Time of flow, t_f =	0.8 min																																																	
Design intensity, i =	$a / (t_o + t_f + b)^c$ = $0.272 / (2.3 + 0.8 + 3.29)^{0.355}$ for return period T = 50 years = 262	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a																																																
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	SDM 7.5.2 (b)																																															
Steep Glassland(heavy soil)	0.35	1587.0	555.5																																															
Concrete Paving	0.95	1803.0	1712.9																																															
		SUM = 2268.3																																																
<p>Scale: NA</p> <p>August 2025</p>	<p>Hydraulic Calculation</p> <p>Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long</p>	<p>Goldrich Planners & Surveyors Ltd.</p> <p>Page 1 (P25025)</p>																																																

<p>1 For Catchment Area B</p> <table> <tbody> <tr> <td>Area, A =</td> <td>750 m²</td> </tr> <tr> <td>Average slope, H =</td> <td>0.1 m per 100m</td> </tr> <tr> <td>Distance on the line of natural flow, L =</td> <td>15 m</td> </tr> <tr> <td>Time of concentration, t_o =</td> <td>$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (15) / (0.1^{0.2} \cdot 750^{0.1})$ = 1.8 min</td> </tr> </tbody> </table> <p>2 For Proposed UC in Catchment Area B</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.30</td> <td>36.50</td> </tr> <tr> <td>Invert level (mPD)</td> <td>37.36</td> <td>35.58</td> </tr> </tbody> </table> <table> <tbody> <tr> <td>Width of u-channel, w =</td> <td>300 mm</td> </tr> <tr> <td>Length of u-channel, L_c =</td> <td>71.5 m</td> </tr> <tr> <td>Depth of vertical part of u-channel, d =</td> <td>770 mm</td> </tr> <tr> <td>Gradient of u-channel, S_f =</td> <td>$(37.36 - 35.58) / 71.5 = 0.025$</td> </tr> <tr> <td>Cross-Section Area, a =</td> <td>$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 770$ = 0.266 m²</td> </tr> <tr> <td>Wetted Perimeter, p =</td> <td>$\pi r + 2 d = 3.14 \times 150 + 2 \times 770$ = 2.011 m</td> </tr> <tr> <td>Hydraulic radius, R =</td> <td>$a / p = 0.132$ m</td> </tr> </tbody> </table> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n =</td> <td>0.016 for concrete lined channels:-</td> </tr> <tr> <td>Allowable velocity, v =</td> <td>$R^{1/6} x (RS_f)^{1/2} / n = (0.132)^{1/6} x (0.132 \times 0.025)^{1/2} / 0.016$ = 2.56 m/s</td> </tr> <tr> <td>Time of flow, t_f =</td> <td>0.5 min</td> </tr> </tbody> </table> <p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i =</td> <td>$a / (t_o + t_f + b)^c$ = $275 / (1.8 + 0.5 + 3.29)^{0.355}$ for return period T = 50 years = 275</td> </tr> <tr> <td>Type of surface</td> <td>Runoff Coefficient C</td> <td>Catchment Area A (m²)</td> <td>C x A</td> </tr> <tr> <td>Steep Glassland(heavy soil)</td> <td>0.35</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>750.0</td> <td>712.5</td> </tr> <tr> <td></td> <td></td> <td>SUM =</td> <td>712.5</td> </tr> </tbody> </table> <p>Upstream flow, Q_u = 0.166 m³/s</p> <p>Design flow, Q_d = $0.278i \sum C_j A_j + Q_u$ where A_j is in km² = $0.278 \times 275 \times 712.5 / 1000000 + 0.166$ = 0.221 m³/s</p> <p>Allowable flow, Q_a = $a \times v$ = 0.266×2.56 = 0.682 m³/s > Q_d (O.K.)</p> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>	Area, A =	750 m ²	Average slope, H =	0.1 m per 100m	Distance on the line of natural flow, L =	15 m	Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (15) / (0.1^{0.2} \cdot 750^{0.1})$ = 1.8 min		From	To	Ground level (mPD)	38.30	36.50	Invert level (mPD)	37.36	35.58	Width of u-channel, w =	300 mm	Length of u-channel, L_c =	71.5 m	Depth of vertical part of u-channel, d =	770 mm	Gradient of u-channel, S_f =	$(37.36 - 35.58) / 71.5 = 0.025$	Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 770$ = 0.266 m ²	Wetted Perimeter, p =	$\pi r + 2 d = 3.14 \times 150 + 2 \times 770$ = 2.011 m	Hydraulic radius, R =	$a / p = 0.132$ m	Take n =	0.016 for concrete lined channels:-	Allowable velocity, v =	$R^{1/6} x (RS_f)^{1/2} / n = (0.132)^{1/6} x (0.132 \times 0.025)^{1/2} / 0.016$ = 2.56 m/s	Time of flow, t_f =	0.5 min	Design intensity, i =	$a / (t_o + t_f + b)^c$ = $275 / (1.8 + 0.5 + 3.29)^{0.355}$ for return period T = 50 years = 275	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Steep Glassland(heavy soil)	0.35	0.0	0.0	Concrete Paving	0.95	750.0	712.5			SUM =	712.5	<p>Ref.</p> <p>SDM 7.5.2 (d)</p> <p>SDM 8.2.1</p> <p>SDM Table 13 SDM Table 12</p> <p>SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</p> <p>SDM 7.5.2 (b)</p> <p>SDM 7.5.2 (a)</p>
Area, A =	750 m ²																																																							
Average slope, H =	0.1 m per 100m																																																							
Distance on the line of natural flow, L =	15 m																																																							
Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (15) / (0.1^{0.2} \cdot 750^{0.1})$ = 1.8 min																																																							
	From	To																																																						
Ground level (mPD)	38.30	36.50																																																						
Invert level (mPD)	37.36	35.58																																																						
Width of u-channel, w =	300 mm																																																							
Length of u-channel, L_c =	71.5 m																																																							
Depth of vertical part of u-channel, d =	770 mm																																																							
Gradient of u-channel, S_f =	$(37.36 - 35.58) / 71.5 = 0.025$																																																							
Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 770$ = 0.266 m ²																																																							
Wetted Perimeter, p =	$\pi r + 2 d = 3.14 \times 150 + 2 \times 770$ = 2.011 m																																																							
Hydraulic radius, R =	$a / p = 0.132$ m																																																							
Take n =	0.016 for concrete lined channels:-																																																							
Allowable velocity, v =	$R^{1/6} x (RS_f)^{1/2} / n = (0.132)^{1/6} x (0.132 \times 0.025)^{1/2} / 0.016$ = 2.56 m/s																																																							
Time of flow, t_f =	0.5 min																																																							
Design intensity, i =	$a / (t_o + t_f + b)^c$ = $275 / (1.8 + 0.5 + 3.29)^{0.355}$ for return period T = 50 years = 275																																																							
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																																																					
Steep Glassland(heavy soil)	0.35	0.0	0.0																																																					
Concrete Paving	0.95	750.0	712.5																																																					
		SUM =	712.5																																																					
<p>Scale: NA</p> <p>August 2025</p>	<p>Goldrich Planners & Surveyors Ltd.</p> <p>Page 2 (P25025)</p>																																																							

<p>1 For Catchment Area C</p> <table> <tbody> <tr> <td>Area, A =</td><td>6778 m²</td></tr> <tr> <td>Average slope, H =</td><td>48.1 m per 100m</td></tr> <tr> <td>Distance on the line of natural flow, L =</td><td>100 m</td></tr> <tr> <td>Time of concentration, t_o =</td><td>$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (100) / (48.1^{0.2} \cdot 6778^{0.1})$ = 2.8 min</td></tr> </tbody> </table>	Area, A =	6778 m²	Average slope, H =	48.1 m per 100m	Distance on the line of natural flow, L =	100 m	Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (100) / (48.1^{0.2} \cdot 6778^{0.1})$ = 2.8 min	<p>Ref.</p> <p>SDM 7.5.2 (d)</p>								
Area, A =	6778 m²																
Average slope, H =	48.1 m per 100m																
Distance on the line of natural flow, L =	100 m																
Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (100) / (48.1^{0.2} \cdot 6778^{0.1})$ = 2.8 min																
<p>2 For Proposed UC in Catchment Area C</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.70</td> <td>38.30</td> </tr> <tr> <td>Invert level (mPD)</td> <td>38.25</td> <td>37.50</td> </tr> </tbody> </table>		From	To	Ground level (mPD)	38.70	38.30	Invert level (mPD)	38.25	37.50								
	From	To															
Ground level (mPD)	38.70	38.30															
Invert level (mPD)	38.25	37.50															
<table> <tbody> <tr> <td>Width of u-channel, w =</td> <td>450 mm</td> </tr> <tr> <td>Length of u-channel, L_c =</td> <td>112.4 m</td> </tr> <tr> <td>Depth of vertical part of u-channel, d =</td> <td>575 mm</td> </tr> <tr> <td>Gradient of u-channel, S_f =</td> <td>$(38.25 - 37.5) / 112.4 = 0.00667$</td> </tr> <tr> <td>Cross-Section Area, a =</td> <td>$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 575$ = 0.338 m²</td> </tr> <tr> <td>Wetted Perimeter, p =</td> <td>$\pi r + 2d = 3.14 \times 225 + 2 \times 575$ = 1.857 m</td> </tr> <tr> <td>Hydraulic radius, R =</td> <td>$a / p = 0.338 / 1.857 = 0.182 m$</td> </tr> </tbody> </table>	Width of u-channel, w =	450 mm	Length of u-channel, L_c =	112.4 m	Depth of vertical part of u-channel, d =	575 mm	Gradient of u-channel, S_f =	$(38.25 - 37.5) / 112.4 = 0.00667$	Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 575$ = 0.338 m²	Wetted Perimeter, p =	$\pi r + 2d = 3.14 \times 225 + 2 \times 575$ = 1.857 m	Hydraulic radius, R =	$a / p = 0.338 / 1.857 = 0.182 m$	<p>SDM 8.2.1</p>		
Width of u-channel, w =	450 mm																
Length of u-channel, L_c =	112.4 m																
Depth of vertical part of u-channel, d =	575 mm																
Gradient of u-channel, S_f =	$(38.25 - 37.5) / 112.4 = 0.00667$																
Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 575$ = 0.338 m²																
Wetted Perimeter, p =	$\pi r + 2d = 3.14 \times 225 + 2 \times 575$ = 1.857 m																
Hydraulic radius, R =	$a / p = 0.338 / 1.857 = 0.182 m$																
<p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n =</td> <td>0.016</td> <td>for concrete lined channels:-</td> </tr> <tr> <td>Allowable velocity, v =</td> <td>$R^{1/6} \times (RS_f)^{1/2} / n = (0.182)^{1/6} \times (0.182 \times 0.007)^{1/2} / 0.016$</td> <td>SDM Table 13</td> </tr> <tr> <td></td> <td>= 1.64 m/s</td> <td>SDM Table 12</td> </tr> <tr> <td>Time of flow, t_f =</td> <td>1.1 min</td> <td></td> </tr> </tbody> </table>	Take n =	0.016	for concrete lined channels:-	Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.182)^{1/6} \times (0.182 \times 0.007)^{1/2} / 0.016$	SDM Table 13		= 1.64 m/s	SDM Table 12	Time of flow, t_f =	1.1 min						
Take n =	0.016	for concrete lined channels:-															
Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.182)^{1/6} \times (0.182 \times 0.007)^{1/2} / 0.016$	SDM Table 13															
	= 1.64 m/s	SDM Table 12															
Time of flow, t_f =	1.1 min																
<p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i =</td> <td>$a / (t_o + t_f + b)^c$</td> <td>SDM 4.3.2</td> </tr> <tr> <td></td> <td>= $0.338 / (2.8 + 1.1 + 3.29)^{0.355}$ for return period T = 50 years</td> <td>Corrigendum 1/2024</td> </tr> <tr> <td></td> <td>= 251</td> <td>SDM Table 3a</td> </tr> </tbody> </table>	Design intensity, i =	$a / (t_o + t_f + b)^c$	SDM 4.3.2		= $0.338 / (2.8 + 1.1 + 3.29)^{0.355}$ for return period T = 50 years	Corrigendum 1/2024		= 251	SDM Table 3a								
Design intensity, i =	$a / (t_o + t_f + b)^c$	SDM 4.3.2															
	= $0.338 / (2.8 + 1.1 + 3.29)^{0.355}$ for return period T = 50 years	Corrigendum 1/2024															
	= 251	SDM Table 3a															
<table> <thead> <tr> <th>Type of surface</th> <th>Runoff Coefficient C</th> <th>Catchment Area A (m²)</th> <th>C x A</th> </tr> </thead> <tbody> <tr> <td>Steep Glassland(heavy soil)</td> <td>0.35</td> <td>3455.0</td> <td>1209.3</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>3323.0</td> <td>3156.9</td> </tr> <tr> <td></td> <td></td> <td>SUM = 4366.1</td> <td></td> </tr> </tbody> </table>	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Steep Glassland(heavy soil)	0.35	3455.0	1209.3	Concrete Paving	0.95	3323.0	3156.9			SUM = 4366.1		<p>SDM 7.5.2 (b)</p>
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A														
Steep Glassland(heavy soil)	0.35	3455.0	1209.3														
Concrete Paving	0.95	3323.0	3156.9														
		SUM = 4366.1															
<p>Upstream flow, Q_u = 0 m³/s</p> <p>Design flow, Q_d = $0.278i \sum C_j A_j + Q_u$ where A_j is in km² = $0.278 \times 251 \times 4366.1 / 1000000 + 0$ = 0.305 m³/s</p>	<p>SDM 7.5.2 (a)</p>																
<p>Allowable flow, Q_a = $a \times v$ = 0.338×1.64 = 0.555 m³/s $> Q_d$ (O.K.)</p>																	
<p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>																	
<p>Scale: NA</p> <p>August 2025</p>	<p>Goldrich Planners & Surveyors Ltd.</p> <p>Page 3 (P25025)</p>																

<p>1 For Catchment Area D</p> <table> <tbody> <tr> <td>Area, A =</td> <td>635 m²</td> <td rowspan="3">Ref.</td> </tr> <tr> <td>Average slope, H =</td> <td>0.1 m per 100m</td> </tr> <tr> <td>Distance on the line of natural flow, L =</td> <td>16 m</td> </tr> <tr> <td>Time of concentration, t_o =</td> <td>$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (16) / (0.1^{0.2} \cdot 635^{0.1})$</td> </tr> <tr> <td></td> <td>= 1.9 min</td> </tr> </tbody> </table> <p>2 For Proposed UC in Catchment Area D</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.30</td> <td>36.50</td> </tr> <tr> <td>Invert level (mPD)</td> <td>37.50</td> <td>35.92</td> </tr> </tbody> </table> <table> <tbody> <tr> <td>Width of u-channel, w =</td> <td>450 mm</td> <td rowspan="4">SDM 7.5.2 (d)</td> </tr> <tr> <td>Length of u-channel, L_c =</td> <td>64.1 m</td> </tr> <tr> <td>Depth of vertical part of u-channel, d =</td> <td>355 mm</td> </tr> <tr> <td>Gradient of u-channel, S_f =</td> <td>$(37.5 - 35.92) / 64.1 = 0.025$</td> </tr> <tr> <td>Cross-Section Area, a =</td> <td>$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 355$</td> </tr> <tr> <td></td> <td>= 0.239 m²</td> </tr> <tr> <td>Wetted Perimeter, p =</td> <td>$\pi r + 2d = 3.14 \times 225 + 2 \times 355$</td> </tr> <tr> <td></td> <td>= 1.417 m</td> </tr> <tr> <td>Hydraulic radius, R =</td> <td>a / p</td> </tr> <tr> <td></td> <td>= 0.169 m</td> </tr> </tbody> </table> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n =</td> <td>0.016</td> <td>for concrete lined channels:-</td> <td rowspan="3">SDM Table 13</td> </tr> <tr> <td>Allowable velocity, v =</td> <td>$R^{1/6} x (RS_f)^{1/2} / n = (0.169)^{1/6} x (0.169 \times 0.025)^{1/2} / 0.016$</td> </tr> <tr> <td></td> <td>= 3.00 m/s</td> </tr> <tr> <td>Time of flow, t_f =</td> <td>0.4 min</td> <td>SDM Table 12</td> </tr> </tbody> </table> <p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i =</td> <td>$a / (t_o + t_f + b)^c$</td> <td rowspan="3">SDM 4.3.2</td> </tr> <tr> <td></td> <td>$= 505.5 / (1.9 + 0.4 + 3.29)^{0.355}$ for return period T = 50 years</td> </tr> <tr> <td></td> <td>= 275</td> </tr> <tr> <td>Corrigendum 1/2024</td> <td></td> </tr> <tr> <td>SDM Table 3a</td> <td></td> </tr> </tbody> </table> <table> <thead> <tr> <th>Type of surface</th> <th>Runoff Coefficient C</th> <th>Catchment Area A (m²)</th> <th>C x A</th> </tr> </thead> <tbody> <tr> <td>Steep Glassland(heavy soil)</td> <td>0.35</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>635.0</td> <td>603.3</td> </tr> <tr> <td></td> <td></td> <td>SUM =</td> <td>603.3</td> </tr> </tbody> </table> <p>Upstream flow, Q_u = 0.305 m³/s</p> <table> <tbody> <tr> <td>Design flow, Q_d = $0.278i \sum C_j A_j + Q_u$ where A_j is in km²</td> <td rowspan="3">SDM 7.5.2 (a)</td> </tr> <tr> <td>= $0.278 \times 275 \times 603.25 / 1000000 + 0.305$</td> </tr> <tr> <td>= 0.351 m³/s</td> </tr> </tbody> </table> <p>Allowable flow, Q_a = $a \times v$</p> <table> <tbody> <tr> <td>= 0.239 \times 3</td> <td rowspan="3">SDM 7.5.2 (b)</td> </tr> <tr> <td>= 0.717 m³/s</td> </tr> <tr> <td>> Q_d (O.K.)</td> </tr> </tbody> </table> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>	Area, A =	635 m²	Ref.	Average slope, H =	0.1 m per 100m	Distance on the line of natural flow, L =	16 m	Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (16) / (0.1^{0.2} \cdot 635^{0.1})$		= 1.9 min		From	To	Ground level (mPD)	38.30	36.50	Invert level (mPD)	37.50	35.92	Width of u-channel, w =	450 mm	SDM 7.5.2 (d)	Length of u-channel, L_c =	64.1 m	Depth of vertical part of u-channel, d =	355 mm	Gradient of u-channel, S_f =	$(37.5 - 35.92) / 64.1 = 0.025$	Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 355$		= 0.239 m²	Wetted Perimeter, p =	$\pi r + 2d = 3.14 \times 225 + 2 \times 355$		= 1.417 m	Hydraulic radius, R =	a / p		= 0.169 m	Take n =	0.016	for concrete lined channels:-	SDM Table 13	Allowable velocity, v =	$R^{1/6} x (RS_f)^{1/2} / n = (0.169)^{1/6} x (0.169 \times 0.025)^{1/2} / 0.016$		= 3.00 m/s	Time of flow, t_f =	0.4 min	SDM Table 12	Design intensity, i =	$a / (t_o + t_f + b)^c$	SDM 4.3.2		$= 505.5 / (1.9 + 0.4 + 3.29)^{0.355}$ for return period T = 50 years		= 275	Corrigendum 1/2024		SDM Table 3a		Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Steep Glassland(heavy soil)	0.35	0.0	0.0	Concrete Paving	0.95	635.0	603.3			SUM =	603.3	Design flow, Q_d = $0.278i \sum C_j A_j + Q_u$ where A_j is in km ²	SDM 7.5.2 (a)	= $0.278 \times 275 \times 603.25 / 1000000 + 0.305$	= 0.351 m³/s	= 0.239 \times 3	SDM 7.5.2 (b)	= 0.717 m³/s	> Q_d (O.K.)	Ref.
Area, A =	635 m²	Ref.																																																																																						
Average slope, H =	0.1 m per 100m																																																																																							
Distance on the line of natural flow, L =	16 m																																																																																							
Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (16) / (0.1^{0.2} \cdot 635^{0.1})$																																																																																							
	= 1.9 min																																																																																							
	From	To																																																																																						
Ground level (mPD)	38.30	36.50																																																																																						
Invert level (mPD)	37.50	35.92																																																																																						
Width of u-channel, w =	450 mm	SDM 7.5.2 (d)																																																																																						
Length of u-channel, L_c =	64.1 m																																																																																							
Depth of vertical part of u-channel, d =	355 mm																																																																																							
Gradient of u-channel, S_f =	$(37.5 - 35.92) / 64.1 = 0.025$																																																																																							
Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 355$																																																																																							
	= 0.239 m²																																																																																							
Wetted Perimeter, p =	$\pi r + 2d = 3.14 \times 225 + 2 \times 355$																																																																																							
	= 1.417 m																																																																																							
Hydraulic radius, R =	a / p																																																																																							
	= 0.169 m																																																																																							
Take n =	0.016	for concrete lined channels:-	SDM Table 13																																																																																					
Allowable velocity, v =	$R^{1/6} x (RS_f)^{1/2} / n = (0.169)^{1/6} x (0.169 \times 0.025)^{1/2} / 0.016$																																																																																							
	= 3.00 m/s																																																																																							
Time of flow, t_f =	0.4 min	SDM Table 12																																																																																						
Design intensity, i =	$a / (t_o + t_f + b)^c$	SDM 4.3.2																																																																																						
	$= 505.5 / (1.9 + 0.4 + 3.29)^{0.355}$ for return period T = 50 years																																																																																							
	= 275																																																																																							
Corrigendum 1/2024																																																																																								
SDM Table 3a																																																																																								
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																																																																																					
Steep Glassland(heavy soil)	0.35	0.0	0.0																																																																																					
Concrete Paving	0.95	635.0	603.3																																																																																					
		SUM =	603.3																																																																																					
Design flow, Q_d = $0.278i \sum C_j A_j + Q_u$ where A_j is in km ²	SDM 7.5.2 (a)																																																																																							
= $0.278 \times 275 \times 603.25 / 1000000 + 0.305$																																																																																								
= 0.351 m³/s																																																																																								
= 0.239 \times 3	SDM 7.5.2 (b)																																																																																							
= 0.717 m³/s																																																																																								
> Q_d (O.K.)																																																																																								

<p>1 For Catchment Area E</p> <table> <tbody> <tr> <td>Area, A =</td> <td>511 m²</td> </tr> <tr> <td>Average slope, H =</td> <td>0.1 m per 100m</td> </tr> <tr> <td>Distance on the line of natural flow, L =</td> <td>10 m</td> </tr> <tr> <td>Time of concentration, t_o =</td> <td>$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (10) / (0.1^{0.2} \cdot 511^{0.1})$ = 1.2 min</td> </tr> </tbody> </table> <p>2 For Proposed UC in Catchment Area E</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>36.50</td> <td>36.50</td> </tr> <tr> <td>Invert level (mPD)</td> <td>35.92</td> <td>35.58</td> </tr> </tbody> </table> <table> <tbody> <tr> <td>Width of u-channel, w =</td> <td>450 mm</td> </tr> <tr> <td>Length of u-channel, L_c =</td> <td>71.5 m</td> </tr> <tr> <td>Depth of vertical part of u-channel, d =</td> <td>695 mm</td> </tr> <tr> <td>Gradient of u-channel, S_f =</td> <td>$(35.92 - 35.58) / 71.5 = 0.005$</td> </tr> <tr> <td>Cross-Section Area, a =</td> <td>$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 695$ = 0.392 m²</td> </tr> <tr> <td>Wetted Perimeter, p =</td> <td>$\pi r + 2 d = 3.14 \times 225 + 2 \times 695$ = 2.097 m</td> </tr> <tr> <td>Hydraulic radius, R =</td> <td>$a / p = 0.187$ m</td> </tr> </tbody> </table> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n =</td> <td>0.016 for concrete lined channels:-</td> </tr> <tr> <td>Allowable velocity, v =</td> <td>$R^{1/6} \times (RS_f)^{1/2} / n = (0.187)^{1/6} \times (0.187 \times 0.005)^{1/2} / 0.016$ = 1.41 m/s</td> </tr> <tr> <td>Time of flow, t_f =</td> <td>0.8 min</td> </tr> </tbody> </table> <p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i =</td> <td>$a / (t_o + t_f + b)^c$ = $505.5 / (1.2 + 0.8 + 3.29)^{0.355}$ for return period T = 50 years = 278</td> </tr> <tr> <td>Type of surface</td> <td>Runoff Coefficient C</td> <td>Catchment Area A (m²)</td> <td>C x A</td> </tr> <tr> <td>Steep Glassland(heavy soil)</td> <td>0.35</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>511.0</td> <td>485.5</td> </tr> <tr> <td></td> <td></td> <td>SUM =</td> <td>485.5</td> </tr> </tbody> </table> <p>Upstream flow, Q_u = 0.351 m³/s</p> <p>Design flow, Q_d = $0.278i \sum C_j A_j + Q_u$ where A_j is in km² = $0.278 \times 278 \times 485.45 / 1000000 + 0.351$ = 0.389 m³/s</p> <p>Allowable flow, Q_a = $a \times v$ = 0.392×1.41 = 0.553 m³/s > Q_d (O.K.)</p> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>	Area, A =	511 m ²	Average slope, H =	0.1 m per 100m	Distance on the line of natural flow, L =	10 m	Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (10) / (0.1^{0.2} \cdot 511^{0.1})$ = 1.2 min		From	To	Ground level (mPD)	36.50	36.50	Invert level (mPD)	35.92	35.58	Width of u-channel, w =	450 mm	Length of u-channel, L_c =	71.5 m	Depth of vertical part of u-channel, d =	695 mm	Gradient of u-channel, S_f =	$(35.92 - 35.58) / 71.5 = 0.005$	Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 695$ = 0.392 m ²	Wetted Perimeter, p =	$\pi r + 2 d = 3.14 \times 225 + 2 \times 695$ = 2.097 m	Hydraulic radius, R =	$a / p = 0.187$ m	Take n =	0.016 for concrete lined channels:-	Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.187)^{1/6} \times (0.187 \times 0.005)^{1/2} / 0.016$ = 1.41 m/s	Time of flow, t_f =	0.8 min	Design intensity, i =	$a / (t_o + t_f + b)^c$ = $505.5 / (1.2 + 0.8 + 3.29)^{0.355}$ for return period T = 50 years = 278	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Steep Glassland(heavy soil)	0.35	0.0	0.0	Concrete Paving	0.95	511.0	485.5			SUM =	485.5	<p>Ref.</p> <p>SDM 7.5.2 (d)</p> <p>SDM 8.2.1</p> <p>SDM Table 13 SDM Table 12</p> <p>SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</p> <p>SDM 7.5.2 (b)</p> <p>SDM 7.5.2 (a)</p>
Area, A =	511 m ²																																																							
Average slope, H =	0.1 m per 100m																																																							
Distance on the line of natural flow, L =	10 m																																																							
Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (10) / (0.1^{0.2} \cdot 511^{0.1})$ = 1.2 min																																																							
	From	To																																																						
Ground level (mPD)	36.50	36.50																																																						
Invert level (mPD)	35.92	35.58																																																						
Width of u-channel, w =	450 mm																																																							
Length of u-channel, L_c =	71.5 m																																																							
Depth of vertical part of u-channel, d =	695 mm																																																							
Gradient of u-channel, S_f =	$(35.92 - 35.58) / 71.5 = 0.005$																																																							
Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 695$ = 0.392 m ²																																																							
Wetted Perimeter, p =	$\pi r + 2 d = 3.14 \times 225 + 2 \times 695$ = 2.097 m																																																							
Hydraulic radius, R =	$a / p = 0.187$ m																																																							
Take n =	0.016 for concrete lined channels:-																																																							
Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.187)^{1/6} \times (0.187 \times 0.005)^{1/2} / 0.016$ = 1.41 m/s																																																							
Time of flow, t_f =	0.8 min																																																							
Design intensity, i =	$a / (t_o + t_f + b)^c$ = $505.5 / (1.2 + 0.8 + 3.29)^{0.355}$ for return period T = 50 years = 278																																																							
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																																																					
Steep Glassland(heavy soil)	0.35	0.0	0.0																																																					
Concrete Paving	0.95	511.0	485.5																																																					
		SUM =	485.5																																																					
<p>Scale: NA</p> <p>August 2025</p>	<p>Goldrich Planners & Surveyors Ltd.</p> <p>Page 5 (P25025)</p>																																																							

<p>1 For Connection between CP10 and Existing Public 500 UC</p> <p>Area, A = 0 m² Average slope, H = 0.1 m per 100m Distance on the line of natural flow, L = 0 m</p> <p>Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (0) / (0.1^{0.2} \cdot 0^{0.1})$ = 0.0 min</p> <p>2 For Proposed UC in between CP10 and Existing Public 500 UC</p> <table border="1" data-bbox="179 422 783 506"> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>36.50</td> <td>35.80</td> </tr> <tr> <td>Invert level (mPD)</td> <td>35.58</td> <td>35.20</td> </tr> </tbody> </table> <p>Width of u-channel, w = 500 mm Length of u-channel, L_c = 19 m Depth of vertical part of u-channel, d = 350 mm Gradient of u-channel, S_f = $(35.58 - 35.2) / 18.8 = 0.020$</p> <p>Cross-Section Area, a = $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 250^2 + 500 \times 350$ = 0.273 m² Wetted Perimeter, p = $\pi r + 2 d = 3.14 \times 250 + 2 \times 350$ = 1.485 m Hydraulic radius, R = a / p = 0.184 m</p> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <p>Take n = 0.016 for concrete lined channels:- Allowable velocity, v = $R^{1/6} \times (RS_f)^{1/2} / n = (0.184)^{1/6} \times (0.184 \times 0.02)^{1/2} / 0.016$ = 2.87 m/s Time of flow, t_f = 0.1 min</p> <p>4 Use "Rational Method" for calculation of design flow</p> <p>Design intensity, i = $a / (t_o + t_f + b)^c$ = $505.5 / (0 + 0.1 + 3.29)^{0.355}$ for return period T = 50 years = 327</p> <table border="1" data-bbox="179 1267 1224 1393"> <thead> <tr> <th>Type of surface</th> <th>Runoff Coefficient C</th> <th>Catchment Area A (m²)</th> <th>C x A</th> </tr> </thead> <tbody> <tr> <td>Steep Glassland(heavy soil)</td> <td>0.35</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td></td> <td></td> <td>SUM =</td> <td>0.0</td> </tr> </tbody> </table> <p>Upstream flow, Q_u = 0.610 m³/s</p> <p>Design flow, Q_d = $0.278i \sum C_j A_j + Q_u$ where A_j is in km² = $0.278 \times 327 \times 0 / 1000000 + 0.61$ = 0.610 m³/s</p> <p>Allowable flow, Q_a = $a \times v$ = 0.273×2.87 = 0.785 m³/s</p> <p>> Q_d (O.K.)</p> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>		From	To	Ground level (mPD)	36.50	35.80	Invert level (mPD)	35.58	35.20	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Steep Glassland(heavy soil)	0.35	0.0	0.0	Concrete Paving	0.95	0.0	0.0			SUM =	0.0	<p>Ref.</p> <p>SDM 7.5.2 (d)</p> <p>SDM 8.2.1</p> <p>SDM Table 13 SDM Table 12</p> <p>SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</p> <p>SDM 7.5.2 (b)</p> <p>SDM 7.5.2 (a)</p>
	From	To																								
Ground level (mPD)	36.50	35.80																								
Invert level (mPD)	35.58	35.20																								
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																							
Steep Glassland(heavy soil)	0.35	0.0	0.0																							
Concrete Paving	0.95	0.0	0.0																							
		SUM =	0.0																							
<p>Scale: NA</p> <p>August 2025</p>	<p>Goldrich Planners & Surveyors Ltd.</p> <p>Page 6 (P25025)</p>																									

GoldRich PLANNERS & SURVEYORS LTD.

金潤規劃測量師行有限公司

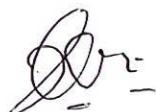
Your Ref.: A/YL-PH/1077

Our Ref.: P25025/TL25433

19 December 2025

The Secretary
Town Planning Board
15/F., North Point Government Offices
333 Java Road, North Point, Hong Kong

By Post and E-mail
tpbpd@pland.gov.hk


Dear Sir,

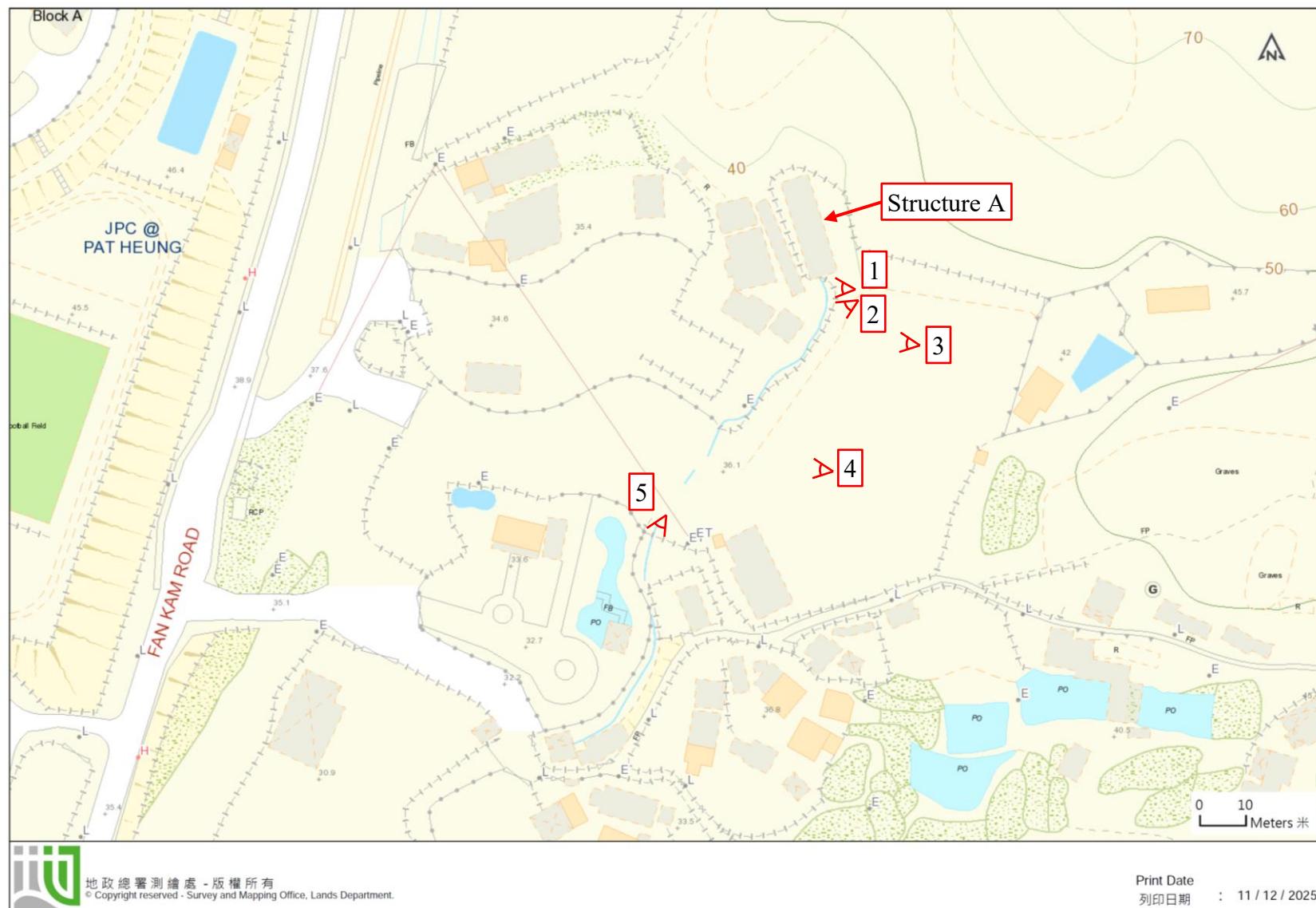
Submission of Further Information

**Proposed Temporary Warehouse (excluding Dangerous Goods Godown) with
Ancillary Office and associated Filling of Land for a Period of 3 Years
Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111
and Adjoining Government Land, Pat Heung, Yuen Long
(Application No.: A/YL-PH/1077)**

We would like to submit further information to respond to the comments from Drainage Services Department and Public.

Yours faithfully,
For and on behalf of
Goldrich Planners & Surveyors Ltd.

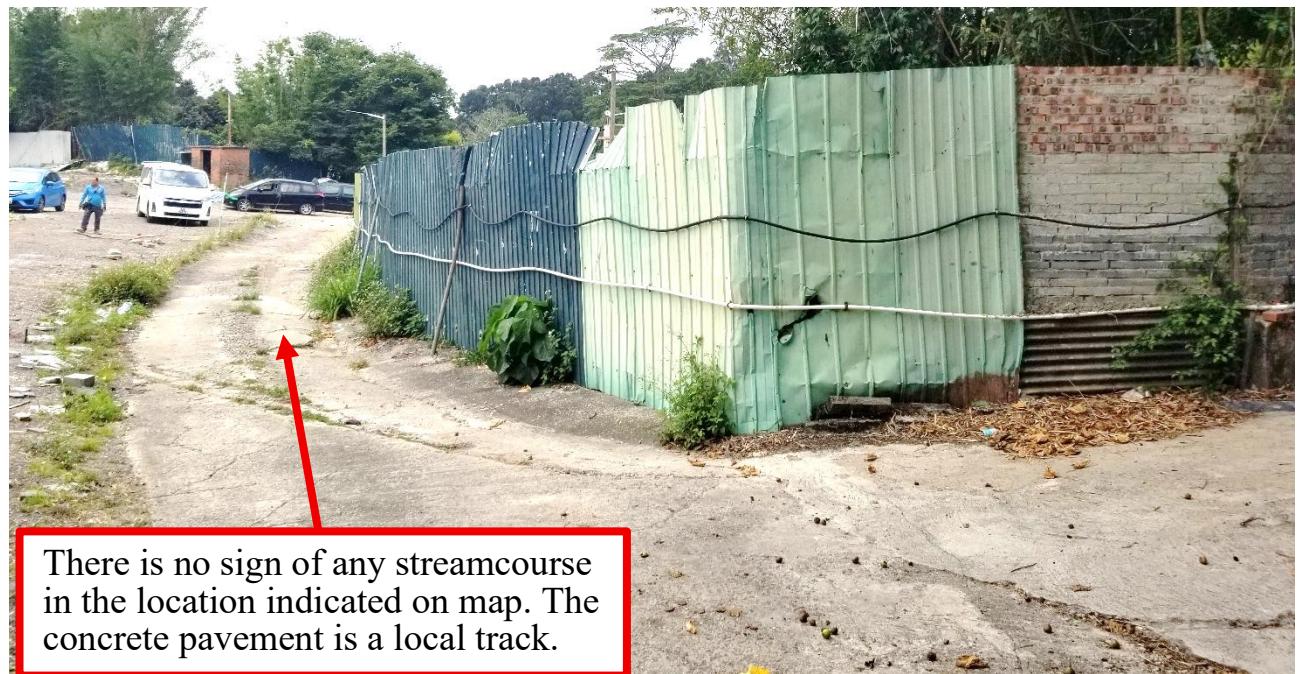
Francis Lau


Encl.

Comments from Drainage Services Department dated 12.11.2025

	Comments	Responses
2 (a)	<p>The application site is in the vicinity of an existing streamcourse. The applicant shall be required to place all the proposed works 3m away from the top of the bank of the streamcourse. Please show the details in the layout plan. All the proposed works in the vicinity of the streamcourse should not create any adverse drainage impacts, both during and after construction. Proposed flooding mitigation measures if necessary shall be provided at the resources of the applicant to my satisfaction.</p>	<p>We have visited the site. We have not observed the “existing streamcourse” indicated in the plan provided by you. Please refer to photographs showing viewpoints 1.</p> <p>The piece of government land is a local track to structure A and other houses in the north-east of the site.</p> <p>We have not observed any streamcourse in the middle of the piece of land. Please refer to photographs showing viewpoints 2-4.</p> <p>However, to the south side of the site at viewpoint 5, we observe a local ditch about 2m wide.</p> <p>We confirm that all the proposed works will be placed 3m away from the top of the bank of the existing local ditch outside the site at the south.</p> <p>All the proposed works in the vicinity of the existing local ditch would not create any adverse drainage impacts, both during and after construction.</p> <p>Proposed flooding mitigation measures, if necessary, will be provided at the resources of the applicant.</p>
2 (b)	<p>According to the RtC 2, the existing streamcourse/channel on government land within the application site will be preserved and maintained. Please elaborate the details, in particular, the crossing details above the existing streamcourse/channel should be included in the submission for our comment and consideration. Please note that proposal for concealing of the existing streamcourse/channel will not be considered.</p>	<p>Please refer to comment 2(a) above.</p> <p>We would like to clarify that the applicant has not concealed any existing streamcourse/channel on government land. No existing streamcourse/channel is observed on government land within the site.</p>

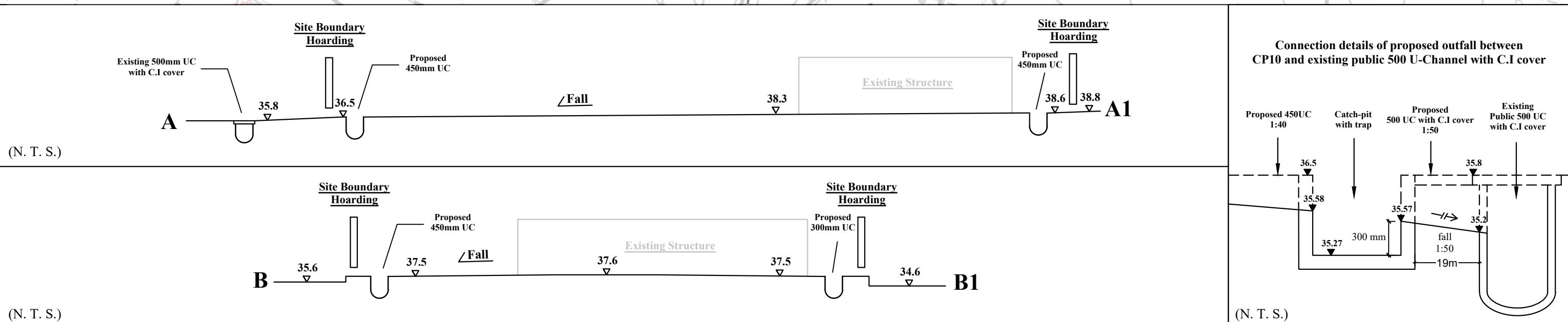
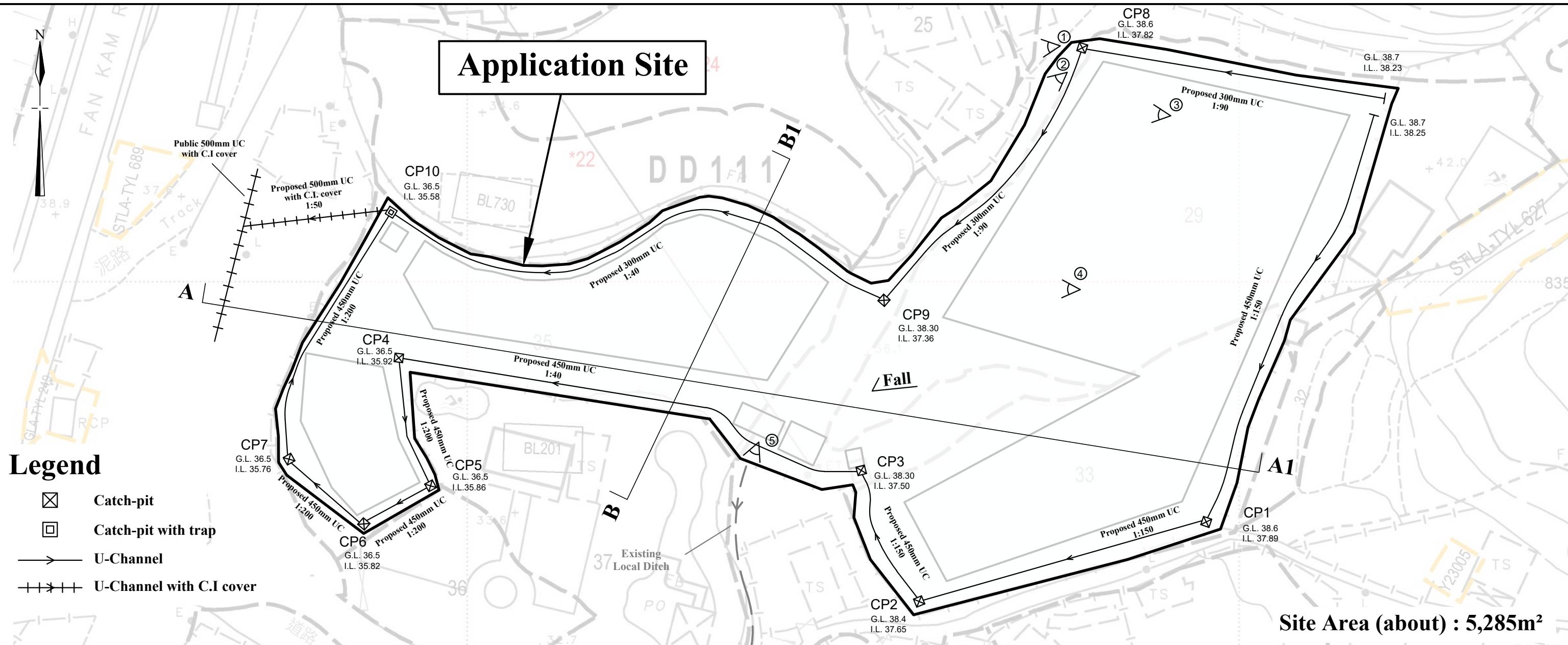
	Comments	Responses
2 (c)	Please make reference to paragraph 6 of DSD Technical Note No.1 for sizing of the drainage channel.	The calculations are worked according to DSD Stormwater Drainage Manual. The sizing of the drainage channels is adequate to collect the surface runoff from the catchment area.
2 (d)	Length of u-channel L_c of 78.3m is adopted for calculating the u-channel size for Area A ($3,389 \text{ m}^2$). Please revise the calculation by dividing the u-channel length in two sections, with section one at the northern side and the section two at the North-western for calculation of the u-channel size for Area A.	Please refer to updated hydraulic calculations. The calculation of the u-channel size for Area A is divided into two sections.
2 (e)	Please refer to (d) above to revise the calculation of u-channel size for Area C ($6,778 \text{ m}^2$).	Please refer to updated hydraulic calculations. The calculation of the u-channel size for Area C is divided into two sections.

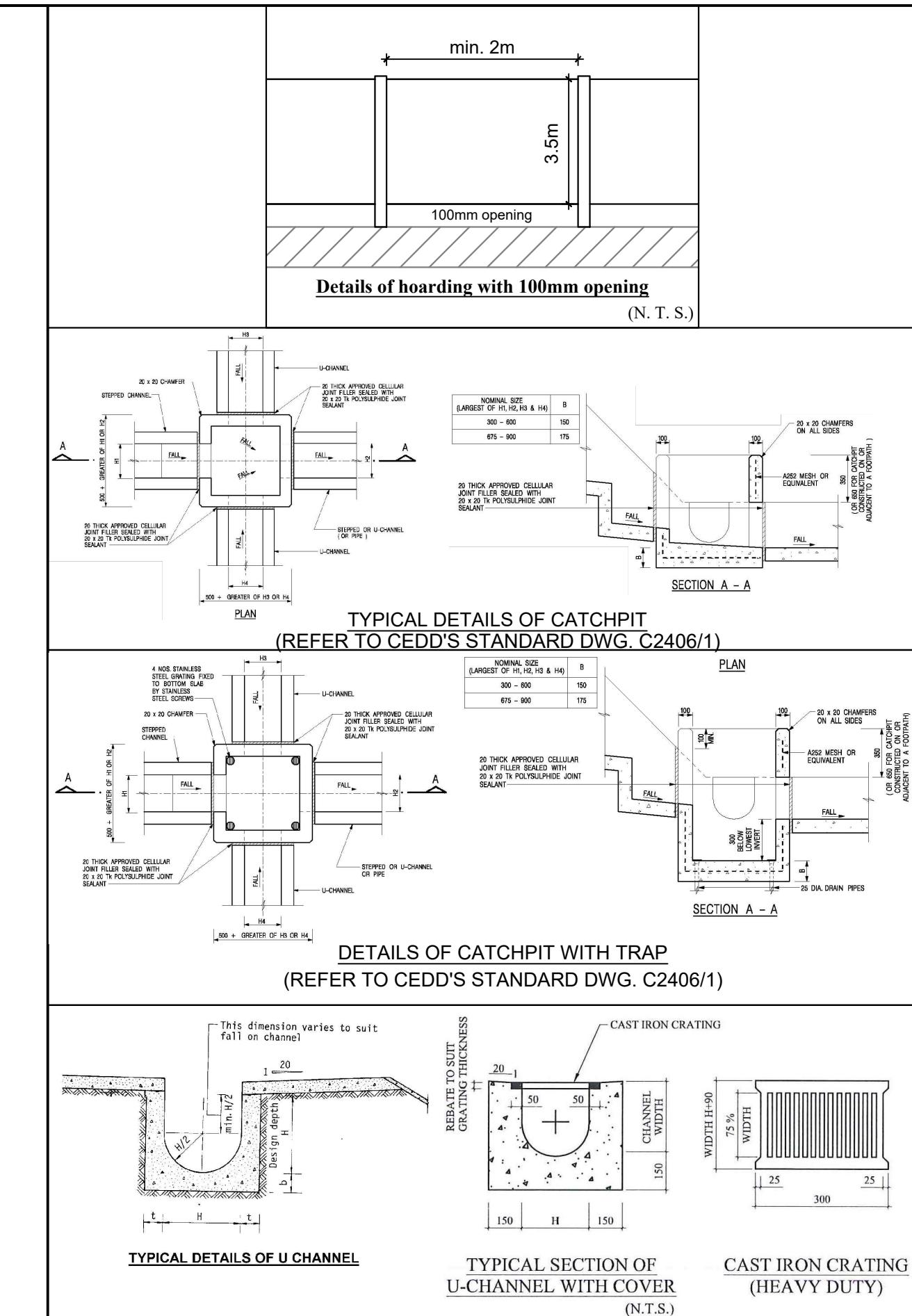
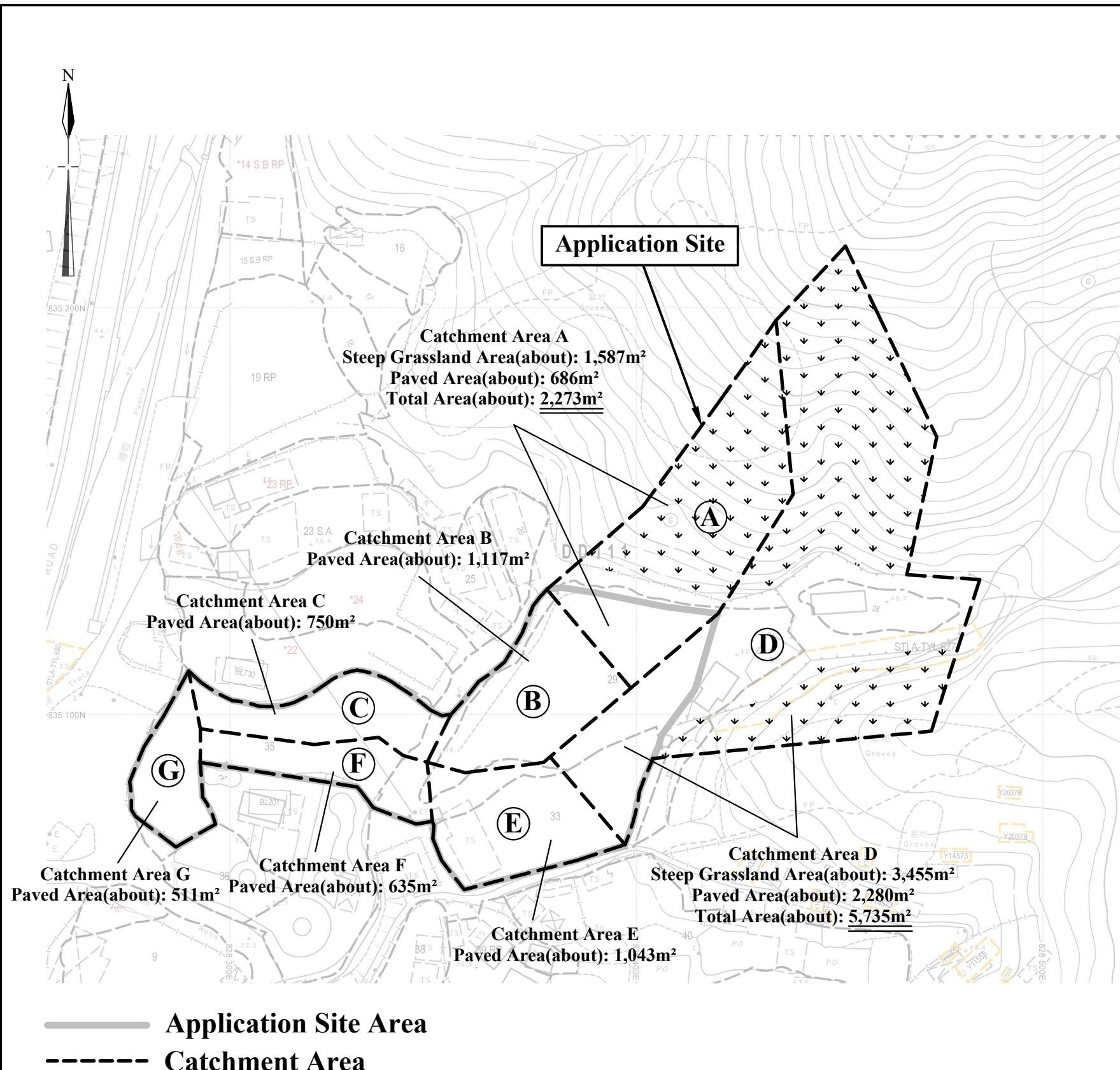

Map A

Viewpoint 1

Viewpoint 2

Viewpoint 3



Viewpoint 4



Viewpoint 5

Application Site

1:500	Drainage Proposal Lot 29(part), 33(part) and 35(part) in DD.111 and adjoining government land Yuen Long, N.T.	Goldrich Planners & Surveyors Ltd.
December 2025		Plan 6.1a (P 25025)

N.T.S

December 2025

Drainage Proposal
Lot 29(part), 33(part) and 35(part) in DD.111
and adjoining government land
Yuen Long, N.T.

Goldrich Planners &
Surveyors Ltd.

Plan 6.2a
(P 25025)

<p>1 For Catchment Area A</p> <table> <tbody> <tr> <td>Area, A =</td><td>1587 m²</td><td></td></tr> <tr> <td>Average slope, H =</td><td>47.5 m per 100m</td><td></td></tr> <tr> <td>Distance on the line of natural flow, L =</td><td>77 m</td><td></td></tr> <tr> <td>Time of concentration, t_o =</td><td>$0.14465L / (H^{0.2}A^{0.1})$</td><td>$= 0.14465 (77) / (47.5^{0.2} \cdot 1587^{0.1})$</td></tr> <tr> <td></td><td>=</td><td>2.5 min</td></tr> </tbody> </table>	Area, A =	1587 m²		Average slope, H =	47.5 m per 100m		Distance on the line of natural flow, L =	77 m		Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$	$= 0.14465 (77) / (47.5^{0.2} \cdot 1587^{0.1})$		=	2.5 min	<p>Ref.</p> <p>SDM 7.5.2 (d)</p>																								
Area, A =	1587 m²																																							
Average slope, H =	47.5 m per 100m																																							
Distance on the line of natural flow, L =	77 m																																							
Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$	$= 0.14465 (77) / (47.5^{0.2} \cdot 1587^{0.1})$																																						
	=	2.5 min																																						
<p>2 For Proposed UC in Catchment Area A</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.70</td> <td>38.60</td> </tr> <tr> <td>Invert level (mPD)</td> <td>38.23</td> <td>37.82</td> </tr> </tbody> </table> <table> <tbody> <tr> <td>Width of u-channel, w =</td> <td>300 mm</td> <td></td> </tr> <tr> <td>Length of u-channel, L_c =</td> <td>37.1 m</td> <td></td> </tr> <tr> <td>Depth of vertical part of u-channel, d =</td> <td>630 mm</td> <td></td> </tr> <tr> <td>Gradient of u-channel, S_f =</td> <td>$(38.23 - 37.82) / 37.1 = 0.0111$</td> <td></td> </tr> <tr> <td>Cross-Section Area, a =</td> <td>$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 630$</td> <td></td> </tr> <tr> <td></td> <td>0.224 m²</td> <td></td> </tr> <tr> <td>Wetted Perimeter, p =</td> <td>$\pi r + 2d = 3.14 \times 150 + 2 \times 630$</td> <td></td> </tr> <tr> <td></td> <td>1.731 m</td> <td></td> </tr> <tr> <td>Hydraulic radius, R =</td> <td>a / p</td> <td></td> </tr> <tr> <td></td> <td>0.130 m</td> <td></td> </tr> </tbody> </table>		From	To	Ground level (mPD)	38.70	38.60	Invert level (mPD)	38.23	37.82	Width of u-channel, w =	300 mm		Length of u-channel, L_c =	37.1 m		Depth of vertical part of u-channel, d =	630 mm		Gradient of u-channel, S_f =	$(38.23 - 37.82) / 37.1 = 0.0111$		Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 630$			0.224 m²		Wetted Perimeter, p =	$\pi r + 2d = 3.14 \times 150 + 2 \times 630$			1.731 m		Hydraulic radius, R =	a / p			0.130 m		<p>SDM 8.2.1</p>
	From	To																																						
Ground level (mPD)	38.70	38.60																																						
Invert level (mPD)	38.23	37.82																																						
Width of u-channel, w =	300 mm																																							
Length of u-channel, L_c =	37.1 m																																							
Depth of vertical part of u-channel, d =	630 mm																																							
Gradient of u-channel, S_f =	$(38.23 - 37.82) / 37.1 = 0.0111$																																							
Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 630$																																							
	0.224 m²																																							
Wetted Perimeter, p =	$\pi r + 2d = 3.14 \times 150 + 2 \times 630$																																							
	1.731 m																																							
Hydraulic radius, R =	a / p																																							
	0.130 m																																							
<p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n =</td> <td>0.016</td> <td>for concrete lined channels:-</td> <td></td> </tr> <tr> <td>Allowable velocity, v =</td> <td>$R^{1/6} \times (RS_f)^{1/2} / n = (0.13)^{1/6} \times (0.13 \times 0.011)^{1/2} / 0.016$</td> <td></td> <td>SDM Table 13</td> </tr> <tr> <td></td> <td>1.68 m/s</td> <td></td> <td>SDM Table 12</td> </tr> <tr> <td>Time of flow, t_f =</td> <td>0.4 min</td> <td></td> <td></td> </tr> </tbody> </table>	Take n =	0.016	for concrete lined channels:-		Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.13)^{1/6} \times (0.13 \times 0.011)^{1/2} / 0.016$		SDM Table 13		1.68 m/s		SDM Table 12	Time of flow, t_f =	0.4 min																										
Take n =	0.016	for concrete lined channels:-																																						
Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.13)^{1/6} \times (0.13 \times 0.011)^{1/2} / 0.016$		SDM Table 13																																					
	1.68 m/s		SDM Table 12																																					
Time of flow, t_f =	0.4 min																																							
<p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i =</td> <td>$a / (t_o + t_f + b)^c$</td> <td></td> <td></td> </tr> <tr> <td></td> <td>$= 505.5 / (2.5 + 0.4 + 3.29)^{0.355}$ for return period T = 50 years</td> <td></td> <td>SDM 4.3.2</td> </tr> <tr> <td></td> <td>266</td> <td></td> <td>Corrigendum 1/2024</td> </tr> <tr> <td></td> <td></td> <td></td> <td>SDM Table 3a</td> </tr> </tbody> </table>	Design intensity, i =	$a / (t_o + t_f + b)^c$				$= 505.5 / (2.5 + 0.4 + 3.29)^{0.355}$ for return period T = 50 years		SDM 4.3.2		266		Corrigendum 1/2024				SDM Table 3a																								
Design intensity, i =	$a / (t_o + t_f + b)^c$																																							
	$= 505.5 / (2.5 + 0.4 + 3.29)^{0.355}$ for return period T = 50 years		SDM 4.3.2																																					
	266		Corrigendum 1/2024																																					
			SDM Table 3a																																					
<table> <thead> <tr> <th>Type of surface</th> <th>Runoff Coefficient C</th> <th>Catchment Area A (m²)</th> <th>C x A</th> </tr> </thead> <tbody> <tr> <td>Steep Glassland(heavy soil)</td> <td>0.35</td> <td>1587.0</td> <td>555.5</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>686.0</td> <td>651.7</td> </tr> <tr> <td></td> <td></td> <td>SUM =</td> <td>1207.2</td> </tr> </tbody> </table>	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Steep Glassland(heavy soil)	0.35	1587.0	555.5	Concrete Paving	0.95	686.0	651.7			SUM =	1207.2	<p>SDM 7.5.2 (b)</p>																							
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																																					
Steep Glassland(heavy soil)	0.35	1587.0	555.5																																					
Concrete Paving	0.95	686.0	651.7																																					
		SUM =	1207.2																																					
<p>Upstream flow, Q_u = 0 m³/s</p> <p>Design flow, Q_d = $0.278i \sum C_j A_j + Q_u$ where A_j is in km²</p> $= 0.278 \times 266 \times 1207.15 / 1000000 + 0$ $= 0.089 m^3/s$ <p>Allowable flow, Q_a = $a \times v$</p> $= 0.224 \times 1.68$ $= 0.377 m^3/s$ <p>> Q_d (O.K.)</p>	<p>SDM 7.5.2 (a)</p>																																							
<p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>																																								
<p>Scale: NA</p>	<p>Hydraulic Calculation</p>	<p>Goldrich Planners & Surveyors Ltd.</p>																																						
<p>December 2025</p>	<p>Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long</p>	<p>Page 1 (P25025)</p>																																						

<p>1 For Catchment Area B</p> <p>Area, A = 1117 m² Average slope, H = 0.1 m per 100m Distance on the line of natural flow, L = 22.5 m</p> <p>Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (22.5) / (0.1^{0.2} \cdot 1117^{0.1})$ = 2.6 min</p> <p>2 For Proposed UC in Catchment Area B</p> <table border="1" data-bbox="176 432 783 506"> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.60</td> <td>38.30</td> </tr> <tr> <td>Invert level (mPD)</td> <td>37.82</td> <td>37.36</td> </tr> </tbody> </table> <p>Width of u-channel, w = 300 mm Length of u-channel, L_c = 41.6 m Depth of vertical part of u-channel, d = 790 mm Gradient of u-channel, S_f = $(37.82 - 37.36) / 41.6$ = 0.0111</p> <p>Cross-Section Area, a = $0.5 \pi r^2 + w d$ = $0.5 \times 3.14 \times 150^2 + 300 \times 790$ = 0.272 m² Wetted Perimeter, p = $\pi r + 2 d$ = $3.14 \times 150 + 2 \times 790$ = 2.051 m Hydraulic radius, R = a / p = 0.133 m</p> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <p>Take n = 0.016 for concrete lined channels:- Allowable velocity, v = $R^{1/6} \times (RS_f)^{1/2} / n$ = $(0.133)^{1/6} \times (0.133 \times 0.011)^{1/2} / 0.016$ = 1.71 m/s Time of flow, t_f = 0.4 min</p> <p>4 Use "Rational Method" for calculation of design flow</p> <p>Design intensity, i = $a / (t_o + t_f + b)^c$ = $505.5 / (2.6 + 0.4 + 3.29)^{0.355}$ for return period T = 50 years = 264</p> <table border="1" data-bbox="176 1277 1232 1393"> <thead> <tr> <th>Type of surface</th> <th>Runoff Coefficient C</th> <th>Catchment Area A (m²)</th> <th>C x A</th> </tr> </thead> <tbody> <tr> <td>Steep Glassland(heavy soil)</td> <td>0.35</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>1117.0</td> <td>1061.2</td> </tr> <tr> <td></td> <td></td> <td>SUM =</td> <td>1061.2</td> </tr> </tbody> </table> <p>Upstream flow, Q_u = 0.089 m³/s</p> <p>Design flow, Q_d = $0.278i \sum C_j A_j + Q_u$ where A_j is in km² = $0.278 \times 264 \times 1061.15 / 1000000 + 0.089$ = 0.167 m³/s</p> <p>Allowable flow, Q_a = $a \times v$ = 0.272×1.71 = 0.466 m³/s > Q_d (O.K.)</p> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>		From	To	Ground level (mPD)	38.60	38.30	Invert level (mPD)	37.82	37.36	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Steep Glassland(heavy soil)	0.35	0.0	0.0	Concrete Paving	0.95	1117.0	1061.2			SUM =	1061.2	<p>Ref.</p> <p>SDM 7.5.2 (d)</p> <p>SDM 8.2.1</p> <p>SDM Table 13 SDM Table 12</p> <p>SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</p> <p>SDM 7.5.2 (b)</p> <p>SDM 7.5.2 (a)</p>
	From	To																								
Ground level (mPD)	38.60	38.30																								
Invert level (mPD)	37.82	37.36																								
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																							
Steep Glassland(heavy soil)	0.35	0.0	0.0																							
Concrete Paving	0.95	1117.0	1061.2																							
		SUM =	1061.2																							
<p>Scale: NA</p> <p>December 2025</p>	<p>Goldrich Planners & Surveyors Ltd.</p> <p>Page 2 (P25025)</p>																									

<p>1 For Catchment Area C</p> <table> <tbody> <tr> <td>Area, A</td> <td>=</td> <td>750 m²</td> <td rowspan="3">Ref.</td> </tr> <tr> <td>Average slope, H</td> <td>=</td> <td>0.1 m per 100m</td> </tr> <tr> <td>Distance on the line of natural flow, L</td> <td>=</td> <td>15 m</td> </tr> </tbody> </table> <p>Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (15) / (0.1^{0.2} \cdot 750^{0.1})$ = 1.8 min</p> <p>2 For Proposed UC in Catchment Area B</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.30</td> <td>36.50</td> </tr> <tr> <td>Invert level (mPD)</td> <td>37.36</td> <td>35.58</td> </tr> </tbody> </table> <table> <tbody> <tr> <td>Width of u-channel, w</td> <td>=</td> <td>300 mm</td> </tr> <tr> <td>Length of u-channel, L_c</td> <td>=</td> <td>71.5 m</td> </tr> <tr> <td>Depth of vertical part of u-channel, d</td> <td>=</td> <td>770 mm</td> </tr> <tr> <td>Gradient of u-channel, S_f</td> <td>=</td> <td>$(37.36 - 35.58) / 71.5 = 0.025$</td> </tr> </tbody> </table> <p>Cross-Section Area, a = $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 770$ = 0.266 m²</p> <p>Wetted Perimeter, p = $\pi r + 2 d = 3.14 \times 150 + 2 \times 770$ = 2.011 m</p> <p>Hydraulic radius, R = $a / p = 0.132$ m</p> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n</td> <td>=</td> <td>0.016 for concrete lined channels:-</td> <td rowspan="3">SDM Table 13</td> </tr> <tr> <td>Allowable velocity, v</td> <td>=</td> <td>$R^{1/6} \times (RS_f)^{1/2} / n = (0.132)^{1/6} \times (0.132 \times 0.025)^{1/2} / 0.016$</td> </tr> <tr> <td></td> <td>=</td> <td>2.56 m/s</td> </tr> <tr> <td>Time of flow, t_f</td> <td>=</td> <td>0.5 min</td> <td>SDM Table 12</td> </tr> </tbody> </table> <p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i</td> <td>=</td> <td>$a / (t_o + t_f + b)^c$</td> <td rowspan="3">SDM 4.3.2</td> </tr> <tr> <td></td> <td>=</td> <td>$505.5 / (1.8 + 0.5 + 3.29)^{0.355}$ for return period T = 50 years</td> </tr> <tr> <td></td> <td>=</td> <td>275</td> </tr> </tbody> </table> <table> <thead> <tr> <th>Type of surface</th> <th>Runoff Coefficient C</th> <th>Catchment Area A (m²)</th> <th>C x A</th> </tr> </thead> <tbody> <tr> <td>Steep Glassland(heavy soil)</td> <td>0.35</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>750.0</td> <td>712.5</td> </tr> <tr> <td></td> <td></td> <td>SUM =</td> <td>712.5</td> </tr> </tbody> </table> <p>Upstream flow, Q_u = 0.167 m³/s</p> <p>Design flow, Q_d = $0.278i \sum C_j A_j + Q_u$ where A_j is in km² = $0.278 \times 275 \times 712.5 / 1000000 + 0.167$ = 0.222 m³/s</p> <p>Allowable flow, Q_a = $a \times v$ = 0.266×2.56 = 0.682 m³/s > Q_d (O.K.)</p> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>	Area, A	=	750 m ²	Ref.	Average slope, H	=	0.1 m per 100m	Distance on the line of natural flow, L	=	15 m		From	To	Ground level (mPD)	38.30	36.50	Invert level (mPD)	37.36	35.58	Width of u-channel, w	=	300 mm	Length of u-channel, L_c	=	71.5 m	Depth of vertical part of u-channel, d	=	770 mm	Gradient of u-channel, S_f	=	$(37.36 - 35.58) / 71.5 = 0.025$	Take n	=	0.016 for concrete lined channels:-	SDM Table 13	Allowable velocity, v	=	$R^{1/6} \times (RS_f)^{1/2} / n = (0.132)^{1/6} \times (0.132 \times 0.025)^{1/2} / 0.016$		=	2.56 m/s	Time of flow, t_f	=	0.5 min	SDM Table 12	Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2		=	$505.5 / (1.8 + 0.5 + 3.29)^{0.355}$ for return period T = 50 years		=	275	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Steep Glassland(heavy soil)	0.35	0.0	0.0	Concrete Paving	0.95	750.0	712.5			SUM =	712.5	Ref.
Area, A	=	750 m ²	Ref.																																																																					
Average slope, H	=	0.1 m per 100m																																																																						
Distance on the line of natural flow, L	=	15 m																																																																						
	From	To																																																																						
Ground level (mPD)	38.30	36.50																																																																						
Invert level (mPD)	37.36	35.58																																																																						
Width of u-channel, w	=	300 mm																																																																						
Length of u-channel, L_c	=	71.5 m																																																																						
Depth of vertical part of u-channel, d	=	770 mm																																																																						
Gradient of u-channel, S_f	=	$(37.36 - 35.58) / 71.5 = 0.025$																																																																						
Take n	=	0.016 for concrete lined channels:-	SDM Table 13																																																																					
Allowable velocity, v	=	$R^{1/6} \times (RS_f)^{1/2} / n = (0.132)^{1/6} \times (0.132 \times 0.025)^{1/2} / 0.016$																																																																						
	=	2.56 m/s																																																																						
Time of flow, t_f	=	0.5 min	SDM Table 12																																																																					
Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2																																																																					
	=	$505.5 / (1.8 + 0.5 + 3.29)^{0.355}$ for return period T = 50 years																																																																						
	=	275																																																																						
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																																																																					
Steep Glassland(heavy soil)	0.35	0.0	0.0																																																																					
Concrete Paving	0.95	750.0	712.5																																																																					
		SUM =	712.5																																																																					
Scale: NA	Hydraulic Calculation	Goldrich Planners & Surveyors Ltd.																																																																						
December 2025	Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long	Page 3 (P25025)																																																																						

<p>1 For Catchment Area D</p> <table> <tbody> <tr> <td>Area, A =</td><td>5735 m²</td><td></td></tr> <tr> <td>Average slope, H =</td><td>48.1 m per 100m</td><td></td></tr> <tr> <td>Distance on the line of natural flow, L =</td><td>100 m</td><td></td></tr> <tr> <td>Time of concentration, t_o =</td><td>$0.14465L / (H^{0.2}A^{0.1})$</td><td>$= 0.14465 (100) / (48.1^{0.2} \cdot 5735^{0.1})$</td></tr> <tr> <td></td><td>=</td><td>2.8 min</td></tr> </tbody> </table>	Area, A =	5735 m²		Average slope, H =	48.1 m per 100m		Distance on the line of natural flow, L =	100 m		Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$	$= 0.14465 (100) / (48.1^{0.2} \cdot 5735^{0.1})$		=	2.8 min	<p>Ref.</p> <p>SDM 7.5.2 (d)</p>	
Area, A =	5735 m²																
Average slope, H =	48.1 m per 100m																
Distance on the line of natural flow, L =	100 m																
Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$	$= 0.14465 (100) / (48.1^{0.2} \cdot 5735^{0.1})$															
	=	2.8 min															
<p>2 For Proposed UC in Catchment Area D</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.70</td> <td>38.60</td> </tr> <tr> <td>Invert level (mPD)</td> <td>38.25</td> <td>37.89</td> </tr> </tbody> </table> <p>Width of u-channel, w = 450 mm</p> <p>Length of u-channel, L_c = 54.1 m</p> <p>Depth of vertical part of u-channel, d = 485 mm</p> <p>Gradient of u-channel, S_f = $(38.25 - 37.89) / 54.1 = 0.00665$</p> <p>Cross-Section Area, a = $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 485$ = 0.298 m²</p> <p>Wetted Perimeter, p = $\pi r + 2 d = 3.14 \times 225 + 2 \times 485$ = 1.677 m</p> <p>Hydraulic radius, R = a / p = 0.178 m</p>		From	To	Ground level (mPD)	38.70	38.60	Invert level (mPD)	38.25	37.89	<p>SDM 8.2.1</p>							
	From	To															
Ground level (mPD)	38.70	38.60															
Invert level (mPD)	38.25	37.89															
<p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n =</td> <td>0.016</td> <td>for concrete lined channels:-</td> <td>SDM Table 13</td> </tr> <tr> <td>Allowable velocity, v =</td> <td>$R^{1/6} x (RS_f)^{1/2} / n = (0.178)^{1/6} x (0.178 \times 0.007)^{1/2} / 0.016$</td> <td></td> <td>SDM Table 12</td> </tr> <tr> <td></td> <td>= 1.61 m/s</td> <td></td> <td></td> </tr> <tr> <td>Time of flow, t_f =</td> <td>0.6 min</td> <td></td> <td></td> </tr> </tbody> </table>	Take n =	0.016	for concrete lined channels:-	SDM Table 13	Allowable velocity, v =	$R^{1/6} x (RS_f)^{1/2} / n = (0.178)^{1/6} x (0.178 \times 0.007)^{1/2} / 0.016$		SDM Table 12		= 1.61 m/s			Time of flow, t_f =	0.6 min			
Take n =	0.016	for concrete lined channels:-	SDM Table 13														
Allowable velocity, v =	$R^{1/6} x (RS_f)^{1/2} / n = (0.178)^{1/6} x (0.178 \times 0.007)^{1/2} / 0.016$		SDM Table 12														
	= 1.61 m/s																
Time of flow, t_f =	0.6 min																
<p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i =</td> <td>$a / (t_o + t_f + b)^c$</td> <td></td> <td>SDM 4.3.2</td> </tr> <tr> <td></td> <td>$= 505.5 / (2.8 + 0.6 + 3.29)^{0.355}$ for return period T = 50 years</td> <td></td> <td>Corrigendum 1/2024</td> </tr> <tr> <td></td> <td>= 258</td> <td></td> <td>SDM Table 3a</td> </tr> </tbody> </table>	Design intensity, i =	$a / (t_o + t_f + b)^c$		SDM 4.3.2		$= 505.5 / (2.8 + 0.6 + 3.29)^{0.355}$ for return period T = 50 years		Corrigendum 1/2024		= 258		SDM Table 3a					
Design intensity, i =	$a / (t_o + t_f + b)^c$		SDM 4.3.2														
	$= 505.5 / (2.8 + 0.6 + 3.29)^{0.355}$ for return period T = 50 years		Corrigendum 1/2024														
	= 258		SDM Table 3a														
<table> <thead> <tr> <th>Type of surface</th> <th>Runoff Coefficient C</th> <th>Catchment Area A (m²)</th> <th>C x A</th> </tr> </thead> <tbody> <tr> <td>Steep Grassland(heavy soil)</td> <td>0.35</td> <td>3455.0</td> <td>1209.3</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>2280.0</td> <td>2166.0</td> </tr> <tr> <td></td> <td></td> <td>SUM = 3375.3</td> <td></td> </tr> </tbody> </table>	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Steep Grassland(heavy soil)	0.35	3455.0	1209.3	Concrete Paving	0.95	2280.0	2166.0			SUM = 3375.3		<p>SDM 7.5.2 (b)</p>
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A														
Steep Grassland(heavy soil)	0.35	3455.0	1209.3														
Concrete Paving	0.95	2280.0	2166.0														
		SUM = 3375.3															
<p>Upstream flow, Q_u = 0 m³/s</p> <p>Design flow, Q_d = $0.278i \sum C_j A_j + Q_u$ where A_j is in km²</p> $= 0.278 \times 258 \times 3375.25 / 1000000 + 0$ = 0.242 m³/s	<p>SDM 7.5.2 (a)</p>																
<p>Allowable flow, Q_a = $a \times v$</p> $= 0.298 \times 1.61$ = 0.480 m³/s <p>> Q_d (O.K.)</p>																	
<p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>																	
<p>Scale: NA</p>	<p>Hydraulic Calculation</p>	<p>Goldrich Planners & Surveyors Ltd.</p>															
<p>December 2025</p>	<p>Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long</p>	<p>Page 4 (P25025)</p>															

<p>1 For Catchment Area E</p> <table> <tbody> <tr> <td>Area, A =</td><td>1043 m²</td><td></td></tr> <tr> <td>Average slope, H =</td><td>0.1 m per 100m</td><td></td></tr> <tr> <td>Distance on the line of natural flow, L =</td><td>25 m</td><td></td></tr> <tr> <td>Time of concentration, t_o =</td><td>$0.14465L / (H^{0.2}A^{0.1})$</td><td>$= 0.14465 (25) / (0.1^{0.2} \cdot 1043^{0.1})$</td></tr> <tr> <td></td><td>=</td><td>2.9 min</td></tr> </tbody> </table>	Area, A =	1043 m²		Average slope, H =	0.1 m per 100m		Distance on the line of natural flow, L =	25 m		Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$	$= 0.14465 (25) / (0.1^{0.2} \cdot 1043^{0.1})$		=	2.9 min	<p>Ref.</p> <p>SDM 7.5.2 (d)</p>	
Area, A =	1043 m²																
Average slope, H =	0.1 m per 100m																
Distance on the line of natural flow, L =	25 m																
Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$	$= 0.14465 (25) / (0.1^{0.2} \cdot 1043^{0.1})$															
	=	2.9 min															
<p>2 For Proposed UC in Catchment Area E</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.60</td> <td>38.30</td> </tr> <tr> <td>Invert level (mPD)</td> <td>37.89</td> <td>37.50</td> </tr> </tbody> </table> <p>Width of u-channel, w = 450 mm</p> <p>Length of u-channel, L_c = 58.6 m</p> <p>Depth of vertical part of u-channel, d = 575 mm</p> <p>Gradient of u-channel, S_f = $(37.89 - 37.5) / 58.6 = 0.00666$</p> <p>Cross-Section Area, a = $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 575$ = 0.338 m²</p> <p>Wetted Perimeter, p = $\pi r + 2 d = 3.14 \times 225 + 2 \times 575$ = 1.857 m</p> <p>Hydraulic radius, R = a / p = 0.182 m</p>		From	To	Ground level (mPD)	38.60	38.30	Invert level (mPD)	37.89	37.50	<p>SDM 8.2.1</p>							
	From	To															
Ground level (mPD)	38.60	38.30															
Invert level (mPD)	37.89	37.50															
<p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n =</td> <td>0.016</td> <td>for concrete lined channels:-</td> <td>SDM Table 13</td> </tr> <tr> <td>Allowable velocity, v =</td> <td>$R^{1/6} \times (RS_f)^{1/2} / n = (0.182)^{1/6} \times (0.182 \times 0.007)^{1/2} / 0.016$</td> <td></td> <td>SDM Table 12</td> </tr> <tr> <td></td> <td>= 1.64 m/s</td> <td></td> <td></td> </tr> <tr> <td>Time of flow, t_f =</td> <td>0.6 min</td> <td></td> <td></td> </tr> </tbody> </table>	Take n =	0.016	for concrete lined channels:-	SDM Table 13	Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.182)^{1/6} \times (0.182 \times 0.007)^{1/2} / 0.016$		SDM Table 12		= 1.64 m/s			Time of flow, t_f =	0.6 min			
Take n =	0.016	for concrete lined channels:-	SDM Table 13														
Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.182)^{1/6} \times (0.182 \times 0.007)^{1/2} / 0.016$		SDM Table 12														
	= 1.64 m/s																
Time of flow, t_f =	0.6 min																
<p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i =</td> <td>$a / (t_o + t_f + b)^c$</td> <td></td> <td>SDM 4.3.2</td> </tr> <tr> <td></td> <td>$= 505.5 / (2.9 + 0.6 + 3.29)^{0.355}$ for return period T = 50 years</td> <td></td> <td>Corrigendum 1/2024</td> </tr> <tr> <td></td> <td>= 257</td> <td></td> <td>SDM Table 3a</td> </tr> </tbody> </table>	Design intensity, i =	$a / (t_o + t_f + b)^c$		SDM 4.3.2		$= 505.5 / (2.9 + 0.6 + 3.29)^{0.355}$ for return period T = 50 years		Corrigendum 1/2024		= 257		SDM Table 3a					
Design intensity, i =	$a / (t_o + t_f + b)^c$		SDM 4.3.2														
	$= 505.5 / (2.9 + 0.6 + 3.29)^{0.355}$ for return period T = 50 years		Corrigendum 1/2024														
	= 257		SDM Table 3a														
<table> <thead> <tr> <th>Type of surface</th> <th>Runoff Coefficient C</th> <th>Catchment Area A (m²)</th> <th>C x A</th> </tr> </thead> <tbody> <tr> <td>Steep Glassland(heavy soil)</td> <td>0.35</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>1043.0</td> <td>990.9</td> </tr> <tr> <td></td> <td></td> <td>SUM =</td> <td>990.9</td> </tr> </tbody> </table>	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Steep Glassland(heavy soil)	0.35	0.0	0.0	Concrete Paving	0.95	1043.0	990.9			SUM =	990.9	<p>SDM 7.5.2 (b)</p>
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A														
Steep Glassland(heavy soil)	0.35	0.0	0.0														
Concrete Paving	0.95	1043.0	990.9														
		SUM =	990.9														
<p>Upstream flow, Q_u = 0.242 m³/s</p> <p>Design flow, Q_d = $0.278i \sum C_j A_j + Q_u$ where A_j is in km²</p> $= 0.278 \times 257 \times 990.85 / 1000000 + 0.242$ $= 0.313 m3/s$	<p>SDM 7.5.2 (a)</p>																
<p>Allowable flow, Q_a = $a \times v$</p> $= 0.338 \times 1.64$ $= 0.554 m3/s$ <p>$> Q_d$ (O.K.)</p>																	
<p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>																	
<p>Scale: NA</p>	<p>Hydraulic Calculation</p>	<p>Goldrich Planners & Surveyors Ltd.</p>															
<p>December 2025</p>	<p>Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long</p>	<p>Page 5 (P25025)</p>															

<p>1 For Catchment Area F</p> <table> <tbody> <tr> <td>Area, A =</td> <td>635 m²</td> <td rowspan="3">Ref.</td> </tr> <tr> <td>Average slope, H =</td> <td>0.1 m per 100m</td> </tr> <tr> <td>Distance on the line of natural flow, L =</td> <td>16 m</td> </tr> <tr> <td>Time of concentration, t_o =</td> <td>$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (16) / (0.1^{0.2} \cdot 635^{0.1})$</td> </tr> <tr> <td></td> <td>= 1.9 min</td> </tr> </tbody> </table> <p>2 For Proposed UC in Catchment Area F</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.30</td> <td>36.50</td> </tr> <tr> <td>Invert level (mPD)</td> <td>37.50</td> <td>35.92</td> </tr> </tbody> </table> <table> <tbody> <tr> <td>Width of u-channel, w =</td> <td>450 mm</td> <td rowspan="4">SDM 7.5.2 (d)</td> </tr> <tr> <td>Length of u-channel, L_c =</td> <td>64.1 m</td> </tr> <tr> <td>Depth of vertical part of u-channel, d =</td> <td>355 mm</td> </tr> <tr> <td>Gradient of u-channel, S_f =</td> <td>$(37.5 - 35.92) / 64.1 = 0.025$</td> </tr> <tr> <td>Cross-Section Area, a =</td> <td>$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 355$</td> </tr> <tr> <td></td> <td>= 0.239 m²</td> </tr> <tr> <td>Wetted Perimeter, p =</td> <td>$\pi r + 2d = 3.14 \times 225 + 2 \times 355$</td> </tr> <tr> <td></td> <td>= 1.417 m</td> </tr> <tr> <td>Hydraulic radius, R =</td> <td>a / p</td> </tr> <tr> <td></td> <td>= 0.169 m</td> </tr> </tbody> </table> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n =</td> <td>0.016</td> <td>for concrete lined channels:-</td> <td rowspan="3">SDM Table 13</td> </tr> <tr> <td>Allowable velocity, v =</td> <td>$R^{1/6} \times (RS_f)^{1/2} / n = (0.169)^{1/6} \times (0.169 \times 0.025)^{1/2} / 0.016$</td> </tr> <tr> <td></td> <td>= 3.00 m/s</td> </tr> <tr> <td>Time of flow, t_f =</td> <td>0.4 min</td> <td>SDM Table 12</td> </tr> </tbody> </table> <p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i =</td> <td>$a / (t_o + t_f + b)^c$</td> <td rowspan="3">SDM 4.3.2</td> </tr> <tr> <td></td> <td>= $505.5 / (1.9 + 0.4 + 3.29)^{0.355}$ for return period T = 50 years</td> </tr> <tr> <td></td> <td>= 275</td> </tr> <tr> <td>Corrigendum 1/2024</td> <td></td> </tr> <tr> <td>SDM Table 3a</td> <td></td> </tr> <tr> <td>Type of surface</td> <td>Runoff Coefficient C</td> <td>Catchment Area A (m²)</td> <td rowspan="3">SDM 7.5.2 (b)</td> </tr> <tr> <td>Steep Glassland(heavy soil)</td> <td>0.35</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>635.0</td> </tr> <tr> <td></td> <td></td> <td>603.3</td> </tr> <tr> <td></td> <td></td> <td>SUM = 603.3</td> </tr> <tr> <td>Upstream flow, Q_u =</td> <td>0.313 m³/s</td> <td></td> </tr> <tr> <td>Design flow, Q_d =</td> <td>$0.278i \sum C_j A_j + Q_u$ where A_j is in km²</td> <td rowspan="3">SDM 7.5.2 (a)</td> </tr> <tr> <td></td> <td>= $0.278 \times 275 \times 603.25 / 1000000 + 0.313$</td> </tr> <tr> <td></td> <td>= 0.359 m³/s</td> </tr> <tr> <td>Allowable flow, Q_a =</td> <td>$a \times v$</td> </tr> <tr> <td></td> <td>= 0.239 \times 3</td> </tr> <tr> <td></td> <td>= 0.717 m³/s</td> </tr> <tr> <td></td> <td>> Q_d (O.K.)</td> </tr> </tbody> </table> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>	Area, A =	635 m²	Ref.	Average slope, H =	0.1 m per 100m	Distance on the line of natural flow, L =	16 m	Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (16) / (0.1^{0.2} \cdot 635^{0.1})$		= 1.9 min		From	To	Ground level (mPD)	38.30	36.50	Invert level (mPD)	37.50	35.92	Width of u-channel, w =	450 mm	SDM 7.5.2 (d)	Length of u-channel, L_c =	64.1 m	Depth of vertical part of u-channel, d =	355 mm	Gradient of u-channel, S_f =	$(37.5 - 35.92) / 64.1 = 0.025$	Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 355$		= 0.239 m²	Wetted Perimeter, p =	$\pi r + 2d = 3.14 \times 225 + 2 \times 355$		= 1.417 m	Hydraulic radius, R =	a / p		= 0.169 m	Take n =	0.016	for concrete lined channels:-	SDM Table 13	Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.169)^{1/6} \times (0.169 \times 0.025)^{1/2} / 0.016$		= 3.00 m/s	Time of flow, t_f =	0.4 min	SDM Table 12	Design intensity, i =	$a / (t_o + t_f + b)^c$	SDM 4.3.2		= $505.5 / (1.9 + 0.4 + 3.29)^{0.355}$ for return period T = 50 years		= 275	Corrigendum 1/2024		SDM Table 3a		Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	SDM 7.5.2 (b)	Steep Glassland(heavy soil)	0.35	0.0	Concrete Paving	0.95	635.0			603.3			SUM = 603.3	Upstream flow, Q_u =	0.313 m³/s		Design flow, Q_d =	$0.278i \sum C_j A_j + Q_u$ where A_j is in km ²	SDM 7.5.2 (a)		= $0.278 \times 275 \times 603.25 / 1000000 + 0.313$		= 0.359 m³/s	Allowable flow, Q_a =	$a \times v$		= 0.239 \times 3		= 0.717 m³/s		> Q_d (O.K.)	Ref.
Area, A =	635 m²	Ref.																																																																																																
Average slope, H =	0.1 m per 100m																																																																																																	
Distance on the line of natural flow, L =	16 m																																																																																																	
Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (16) / (0.1^{0.2} \cdot 635^{0.1})$																																																																																																	
	= 1.9 min																																																																																																	
	From	To																																																																																																
Ground level (mPD)	38.30	36.50																																																																																																
Invert level (mPD)	37.50	35.92																																																																																																
Width of u-channel, w =	450 mm	SDM 7.5.2 (d)																																																																																																
Length of u-channel, L_c =	64.1 m																																																																																																	
Depth of vertical part of u-channel, d =	355 mm																																																																																																	
Gradient of u-channel, S_f =	$(37.5 - 35.92) / 64.1 = 0.025$																																																																																																	
Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 355$																																																																																																	
	= 0.239 m²																																																																																																	
Wetted Perimeter, p =	$\pi r + 2d = 3.14 \times 225 + 2 \times 355$																																																																																																	
	= 1.417 m																																																																																																	
Hydraulic radius, R =	a / p																																																																																																	
	= 0.169 m																																																																																																	
Take n =	0.016	for concrete lined channels:-	SDM Table 13																																																																																															
Allowable velocity, v =	$R^{1/6} \times (RS_f)^{1/2} / n = (0.169)^{1/6} \times (0.169 \times 0.025)^{1/2} / 0.016$																																																																																																	
	= 3.00 m/s																																																																																																	
Time of flow, t_f =	0.4 min	SDM Table 12																																																																																																
Design intensity, i =	$a / (t_o + t_f + b)^c$	SDM 4.3.2																																																																																																
	= $505.5 / (1.9 + 0.4 + 3.29)^{0.355}$ for return period T = 50 years																																																																																																	
	= 275																																																																																																	
Corrigendum 1/2024																																																																																																		
SDM Table 3a																																																																																																		
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	SDM 7.5.2 (b)																																																																																															
Steep Glassland(heavy soil)	0.35	0.0																																																																																																
Concrete Paving	0.95	635.0																																																																																																
		603.3																																																																																																
		SUM = 603.3																																																																																																
Upstream flow, Q_u =	0.313 m³/s																																																																																																	
Design flow, Q_d =	$0.278i \sum C_j A_j + Q_u$ where A_j is in km ²	SDM 7.5.2 (a)																																																																																																
	= $0.278 \times 275 \times 603.25 / 1000000 + 0.313$																																																																																																	
	= 0.359 m³/s																																																																																																	
Allowable flow, Q_a =	$a \times v$																																																																																																	
	= 0.239 \times 3																																																																																																	
	= 0.717 m³/s																																																																																																	
	> Q_d (O.K.)																																																																																																	
Scale: NA	<p>Hydraulic Calculation</p> <p>Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long</p>	Goldrich Planners & Surveyors Ltd. Page 6 (P25025)																																																																																																
December 2025																																																																																																		

<p>1 For Catchment Area G</p> <table> <tbody> <tr> <td>Area, A =</td> <td>511 m²</td> <td rowspan="3">Ref.</td> </tr> <tr> <td>Average slope, H =</td> <td>0.1 m per 100m</td> </tr> <tr> <td>Distance on the line of natural flow, L =</td> <td>10 m</td> </tr> <tr> <td>Time of concentration, t_o =</td> <td>$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (10) / (0.1^{0.2} \cdot 511^{0.1})$ = 1.2 min</td> <td>SDM 7.5.2 (d)</td> </tr> </tbody> </table> <p>2 For Proposed UC in Catchment Area G</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>36.50</td> <td>36.50</td> </tr> <tr> <td>Invert level (mPD)</td> <td>35.92</td> <td>35.58</td> </tr> </tbody> </table> <table> <tbody> <tr> <td>Width of u-channel, w =</td> <td>450 mm</td> </tr> <tr> <td>Length of u-channel, L_c =</td> <td>71.5 m</td> </tr> <tr> <td>Depth of vertical part of u-channel, d =</td> <td>695 mm</td> </tr> <tr> <td>Gradient of u-channel, S_f =</td> <td>$(35.92 - 35.58) / 71.5 = 0.005$</td> </tr> <tr> <td>Cross-Section Area, a =</td> <td>$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 695$ = 0.392 m²</td> </tr> <tr> <td>Wetted Perimeter, p =</td> <td>$\pi r + 2 d = 3.14 \times 225 + 2 \times 695$ = 2.097 m</td> </tr> <tr> <td>Hydraulic radius, R =</td> <td>$a / p = 0.187$ m</td> </tr> </tbody> </table> <p>SDM 8.2.1</p> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n =</td> <td>0.016 for concrete lined channels:-</td> <td rowspan="3">SDM Table 13</td> </tr> <tr> <td>Allowable velocity, v =</td> <td>$R^{1/6} x (RS_f)^{1/2} / n = (0.187)^{1/6} x (0.187 \times 0.005)^{1/2} / 0.016$</td> </tr> <tr> <td>=</td> <td>1.41 m/s</td> </tr> <tr> <td>Time of flow, t_f =</td> <td>0.8 min</td> <td>SDM Table 12</td> </tr> </tbody> </table> <p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i =</td> <td>$a / (t_o + t_f + b)^c$ = $505.5 / (1.2 + 0.8 + 3.29)^{0.355}$ for return period T = 50 years = 278</td> <td rowspan="3">SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</td> </tr> <tr> <td>Type of surface</td> <td>Runoff Coefficient C</td> <td>Catchment Area A (m²)</td> </tr> <tr> <td>Steep Glassland(heavy soil)</td> <td>0.35</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>511.0</td> </tr> <tr> <td></td> <td></td> <td>C x A</td> </tr> <tr> <td></td> <td></td> <td>485.5</td> </tr> <tr> <td></td> <td></td> <td>SUM = 485.5</td> </tr> </tbody> </table> <table> <tbody> <tr> <td>Upstream flow, Q_u =</td> <td>0.359 m³/s</td> </tr> <tr> <td>Design flow, Q_d =</td> <td>$0.278i \sum C_j A_j + Q_u$ where A_j is in km² = $0.278 \times 278 \times 485.45 / 1000000 + 0.359$ = 0.397 m³/s</td> </tr> <tr> <td>Allowable flow, Q_a =</td> <td>$a \times v$ = 0.392×1.41 = 0.553 m³/s</td> </tr> <tr> <td colspan="2">> Q_d (O.K.)</td> </tr> </tbody> </table> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>	Area, A =	511 m ²	Ref.	Average slope, H =	0.1 m per 100m	Distance on the line of natural flow, L =	10 m	Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (10) / (0.1^{0.2} \cdot 511^{0.1})$ = 1.2 min	SDM 7.5.2 (d)		From	To	Ground level (mPD)	36.50	36.50	Invert level (mPD)	35.92	35.58	Width of u-channel, w =	450 mm	Length of u-channel, L_c =	71.5 m	Depth of vertical part of u-channel, d =	695 mm	Gradient of u-channel, S_f =	$(35.92 - 35.58) / 71.5 = 0.005$	Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 695$ = 0.392 m ²	Wetted Perimeter, p =	$\pi r + 2 d = 3.14 \times 225 + 2 \times 695$ = 2.097 m	Hydraulic radius, R =	$a / p = 0.187$ m	Take n =	0.016 for concrete lined channels:-	SDM Table 13	Allowable velocity, v =	$R^{1/6} x (RS_f)^{1/2} / n = (0.187)^{1/6} x (0.187 \times 0.005)^{1/2} / 0.016$	=	1.41 m/s	Time of flow, t_f =	0.8 min	SDM Table 12	Design intensity, i =	$a / (t_o + t_f + b)^c$ = $505.5 / (1.2 + 0.8 + 3.29)^{0.355}$ for return period T = 50 years = 278	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	Steep Glassland(heavy soil)	0.35	0.0	Concrete Paving	0.95	511.0			C x A			485.5			SUM = 485.5	Upstream flow, Q_u =	0.359 m ³ /s	Design flow, Q_d =	$0.278i \sum C_j A_j + Q_u$ where A_j is in km ² = $0.278 \times 278 \times 485.45 / 1000000 + 0.359$ = 0.397 m ³ /s	Allowable flow, Q_a =	$a \times v$ = 0.392×1.41 = 0.553 m ³ /s	> Q_d (O.K.)		Ref.
Area, A =	511 m ²	Ref.																																																																							
Average slope, H =	0.1 m per 100m																																																																								
Distance on the line of natural flow, L =	10 m																																																																								
Time of concentration, t_o =	$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (10) / (0.1^{0.2} \cdot 511^{0.1})$ = 1.2 min	SDM 7.5.2 (d)																																																																							
	From	To																																																																							
Ground level (mPD)	36.50	36.50																																																																							
Invert level (mPD)	35.92	35.58																																																																							
Width of u-channel, w =	450 mm																																																																								
Length of u-channel, L_c =	71.5 m																																																																								
Depth of vertical part of u-channel, d =	695 mm																																																																								
Gradient of u-channel, S_f =	$(35.92 - 35.58) / 71.5 = 0.005$																																																																								
Cross-Section Area, a =	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 225^2 + 450 \times 695$ = 0.392 m ²																																																																								
Wetted Perimeter, p =	$\pi r + 2 d = 3.14 \times 225 + 2 \times 695$ = 2.097 m																																																																								
Hydraulic radius, R =	$a / p = 0.187$ m																																																																								
Take n =	0.016 for concrete lined channels:-	SDM Table 13																																																																							
Allowable velocity, v =	$R^{1/6} x (RS_f)^{1/2} / n = (0.187)^{1/6} x (0.187 \times 0.005)^{1/2} / 0.016$																																																																								
=	1.41 m/s																																																																								
Time of flow, t_f =	0.8 min	SDM Table 12																																																																							
Design intensity, i =	$a / (t_o + t_f + b)^c$ = $505.5 / (1.2 + 0.8 + 3.29)^{0.355}$ for return period T = 50 years = 278	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a																																																																							
Type of surface	Runoff Coefficient C		Catchment Area A (m ²)																																																																						
Steep Glassland(heavy soil)	0.35		0.0																																																																						
Concrete Paving	0.95	511.0																																																																							
		C x A																																																																							
		485.5																																																																							
		SUM = 485.5																																																																							
Upstream flow, Q_u =	0.359 m ³ /s																																																																								
Design flow, Q_d =	$0.278i \sum C_j A_j + Q_u$ where A_j is in km ² = $0.278 \times 278 \times 485.45 / 1000000 + 0.359$ = 0.397 m ³ /s																																																																								
Allowable flow, Q_a =	$a \times v$ = 0.392×1.41 = 0.553 m ³ /s																																																																								
> Q_d (O.K.)																																																																									

1 For Connection between CP10 and Existing Public 500 UC

Area, A	=	0 m ²	SDM 7.5.2 (d)
Average slope, H	=	0.1 m per 100m	
Distance on the line of natural flow, L	=	0 m	
Time of concentration, t_o	=	$0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (0) / (0.1^{0.2} \cdot 0^{0.1})$ = 0.0 min	

2 For Proposed UC in between CP10 and Existing Public 500 UC

	From	To
Ground level (mPD)	36.50	35.80
Invert level (mPD)	35.58	35.20

Width of u-channel, w	=	500 mm	SDM 8.2.1
Length of u-channel, L_c	=	19 m	
Depth of vertical part of u-channel, d	=	350 mm	
Gradient of u-channel, S_f	=	$(35.58 - 35.2) / 18.8 = 0.020$	
Cross-Section Area, a	=	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 250^2 + 500 \times 350$ = 0.273 m ²	
Wetted Perimeter, p	=	$\pi r + 2d = 3.14 \times 250 + 2 \times 350$ = 1.485 m	
Hydraulic radius, R	=	$a / p = 0.184$ m	

3 Use Manning Equation for estimating velocity of stormwater

Take n	=	0.016 for concrete lined channels:-	SDM Table 13 SDM Table 12
Allowable velocity, v	=	$R^{1/6} \times (RS_f)^{1/2} / n = (0.184)^{1/6} \times (0.184 \times 0.02)^{1/2} / 0.016$ = 2.87 m/s	
Time of flow, t_f	=	0.1 min	

4 Use "Rational Method" for calculation of design flow

Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a
	=	$505.5 / (0 + 0.1 + 3.29)^{0.355}$ for return period T = 50 years	
	=	327	

Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A
Steep Glassland(heavy soil)	0.35	0.0	0.0
Concrete Paving	0.95	0.0	0.0
SUM =			0.0

$$\text{Upstream flow, } Q_u = 0.619 \text{ m}^3/\text{s}$$

$$\begin{aligned} \text{Design flow, } Q_d &= 0.278i \sum C_j A_j + Q_u \quad \text{where } A_j \text{ is in km}^2 \\ &= 0.278 \times 327 \times 0 / 1000000 + 0.619 \\ &= 0.619 \text{ m}^3/\text{s} \end{aligned}$$

$$\begin{aligned} \text{Allowable flow, } Q_a &= a \times v \\ &= 0.273 \times 2.87 \\ &= 0.785 \text{ m}^3/\text{s} \\ &> Q_d \text{ (O.K.)} \end{aligned}$$

Reference was made to Stormwater Drainage Manual (SDM) by DSD

Scale: NA	Hydraulic Calculation	Goldrich Planners & Surveyors Ltd.
December 2025	Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long	Page 8 (P25025)

Comments from Public

Comment	Response
The proposed use is incompatible with the location.	Applications for warehouse use are approved in vicinity. Proposed warehouse on this site is compatible with the uses in the location.
Noise Pollution: Vehicles run 24 hours a day to the site which affects villagers nearby.	The operation hours are from 8 a.m. to 7 p.m. daily from Mondays to Saturdays. There is no operation on Sundays and public holidays. The total trip attraction and generation is expected to be 12 trips per day. It is expected the noise impact on villagers nearby will be minimal.
Environmental Impact: The site was a pigsty. The environment is damaged by the proposed development.	Pigsty generates odour, noise and sewage which will affect the villagers nearby. The proposed warehouse will upgrade the environment of the vicinity by removing the undesirable odour and sewage.
Air Pollution: Vehicles would emit pollutants which will affect villagers nearby.	The total trip attraction and generation is expected to be 12 trips per day. The emission of vehicles is compliance with emission standard. It is expected the air pollution impact on villagers nearby will be minimal.
Road safety concern: Increase in heavy goods vehicles volume will raise safety hazards to villagers walking along the pedestrian road.	Drivers will be reminded to pay more attention to the pedestrians on the road. The total trip attraction and generation is expected to be 12 trips per day. The low trip rate would not impose a high safety hazard on the pedestrians.
Proposed site formation and structures will affect walls at lowland.	All site formation and structures will be set back about 2.5m from the top of the wall to ensure no adverse impact on the wall.
The site causes flooding to the lowland.	Without the proposed development, there is no u-channel to collect the surface runoff from the hill. Flooding would occur. The proposed development will construct u-channel to collect the surface runoff from the catchment area and will improve the water flow situation to reduce the chance of flooding.
Illegal land filling issue	The applicant has stopped the land filling. He is applying to regularize the situation.
Illegal structures issue	The unauthorized structures have been removed.

GoldRich PLANNERS & SURVEYORS LTD.

金潤規劃測量師行有限公司

Your Ref.: A/YL-PH/1077

Our Ref.: P25025/TL26037

23 January 2026

The Secretary
Town Planning Board
15/F., North Point Government Offices
333 Java Road, North Point, Hong Kong

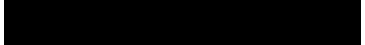
By Post and E-mail
tpbpd@pland.gov.hk

Dear Sir,

Submission of Further Information

**Proposed Temporary Warehouse (excluding Dangerous Goods Godown) with
Ancillary Office and associated Filling of Land for a Period of 3 Years
Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111
and Adjoining Government Land, Pat Heung, Yuen Long
(Application No.: A/YL-PH/1077)**

We would like to submit further information to respond to the comments from Drainage Services Department.

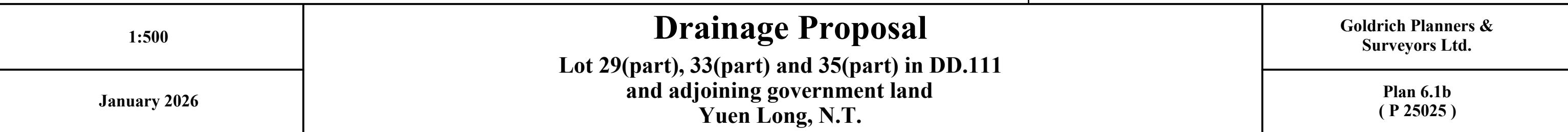
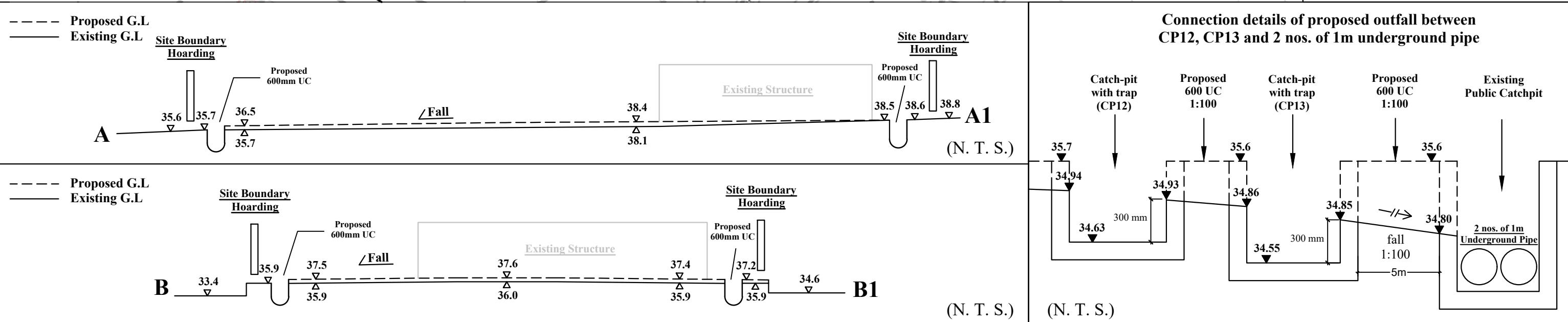
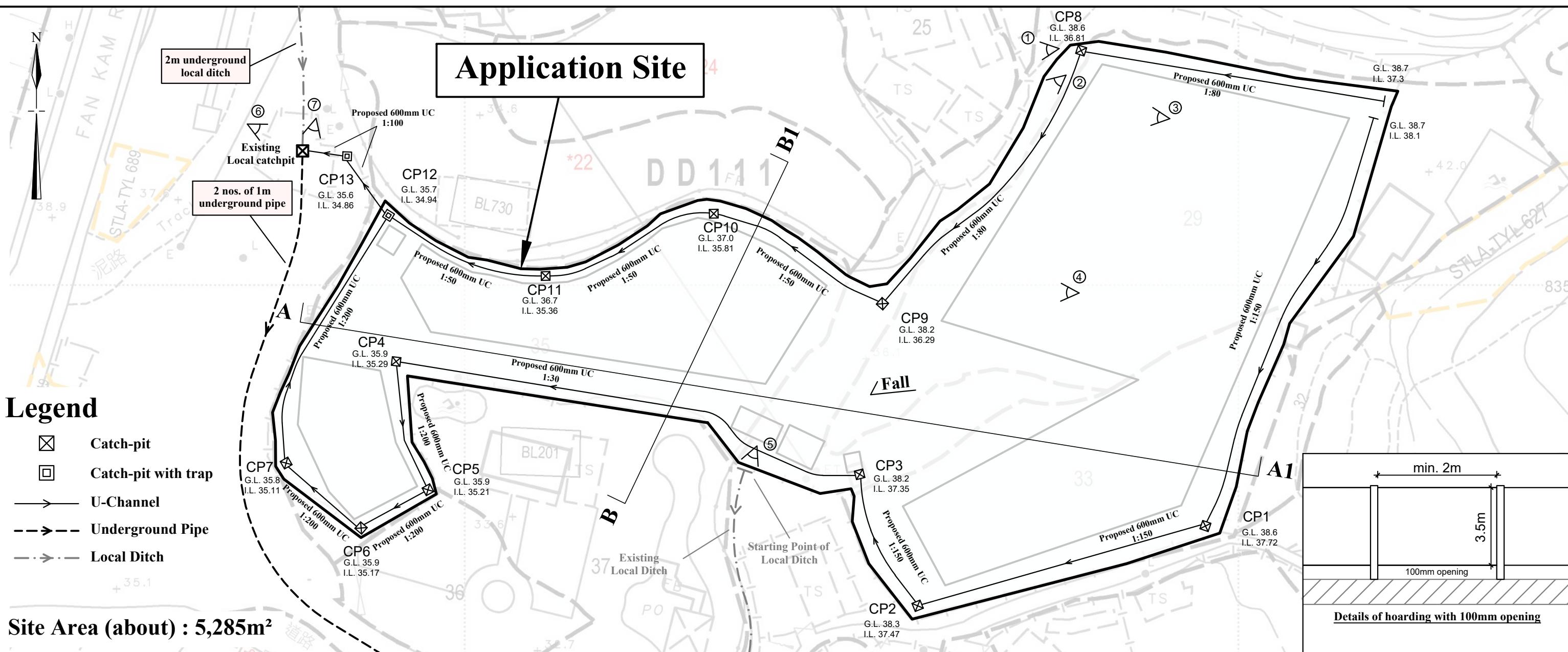

Yours faithfully,
For and on behalf of
Goldrich Planners & Surveyors Ltd.

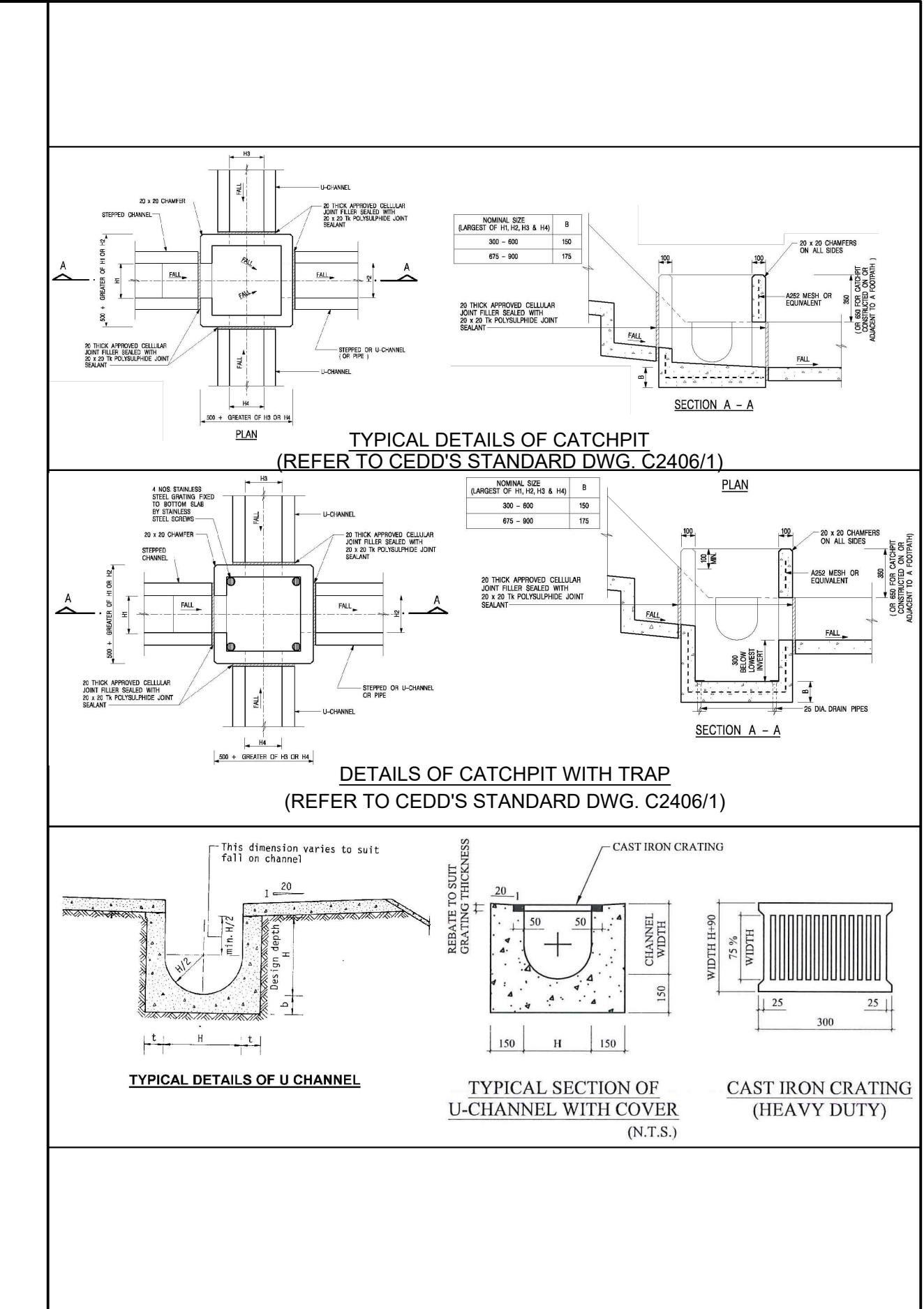
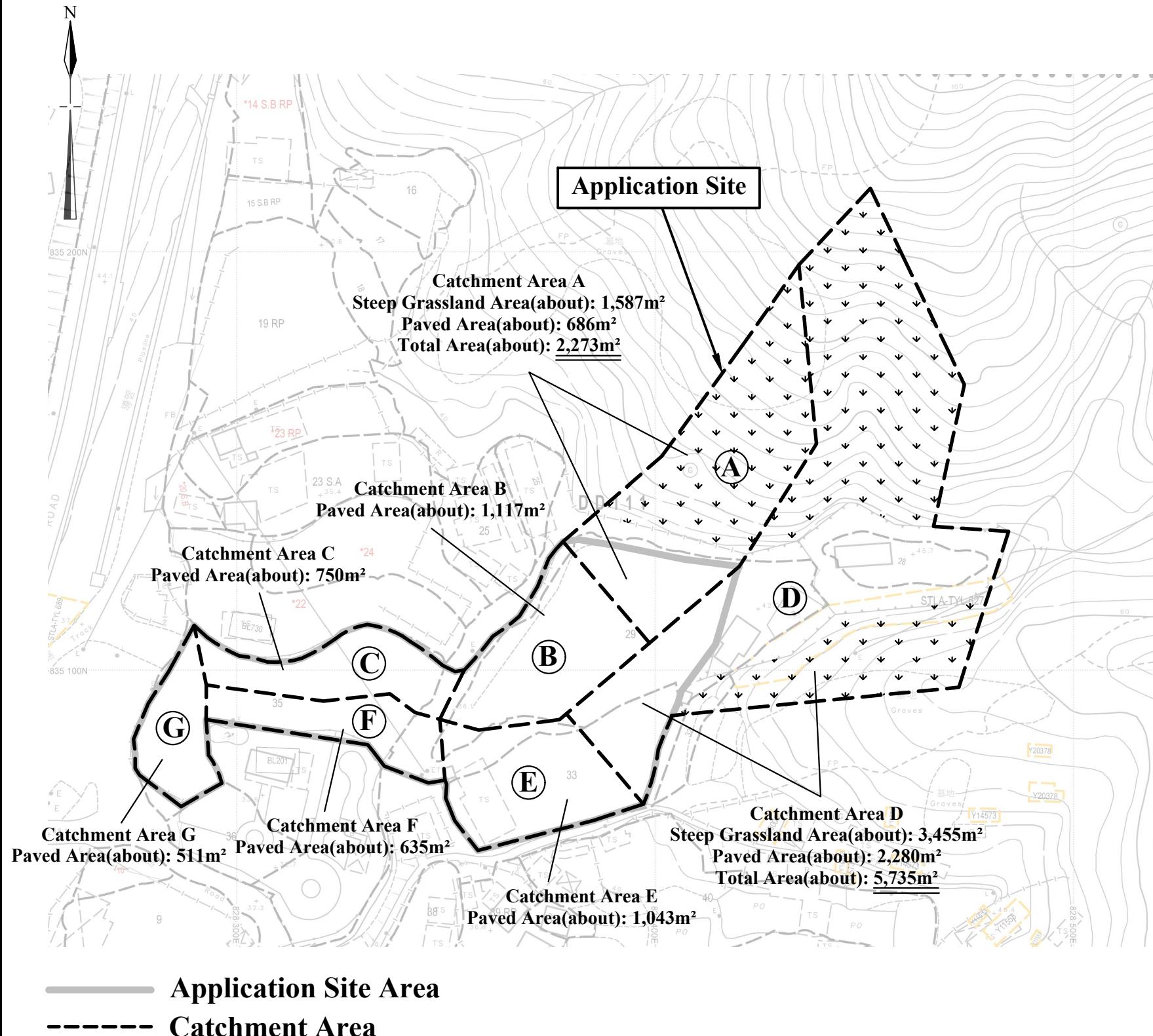
Francis Lau

Encl.

c.c.

DPO/FS&YLE, PlanD *by email only*




Comments from Drainage Services Department dated 20.1.2026

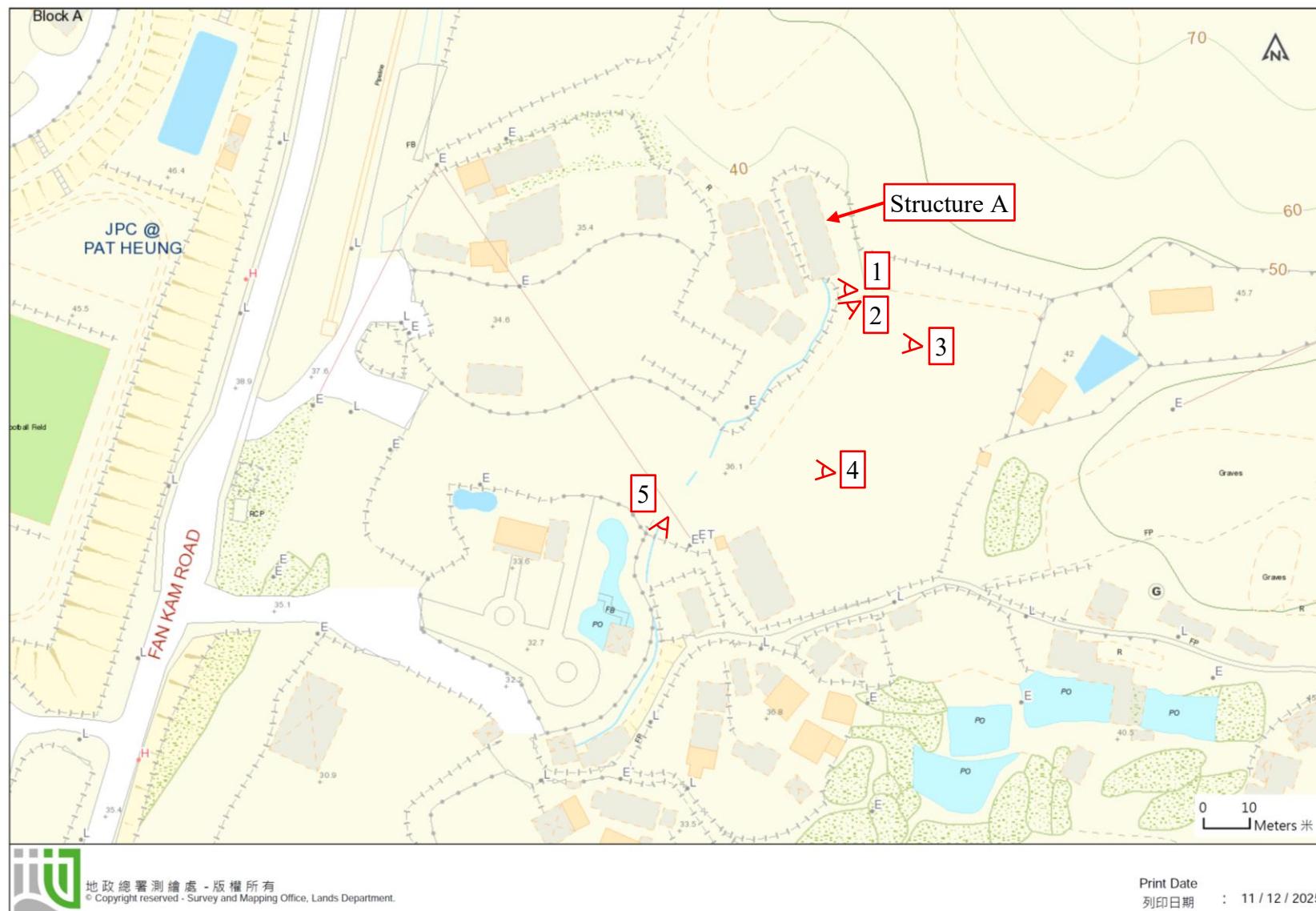


Contact person: [REDACTED]

Comments	Responses
i. It is noted that the site area is 5285m ² and the ground to the north of the application site is generally higher. Since the overland flow from the adjacent lands shall be probably intercepted, external catchment shall be considered in the calculation (i.e. Lots 22, 24, 25 and 26, etc. in D.D. 111). Please also make reference to the latest Technical Note No. 1 issued by DSD for more details in preparing the drainage proposal. Please upgrade all drainage facilities size accordingly.	<p>The ground level of the ground to the north is +34.6mPD as shown in Plan 6.1b. The ground level of the western side of the application site is +36.5mPD. Thus, the ground to the north of the application site is lower than the application site.</p> <p>The U-channels within the site are upgraded to 600mm. Please refer to Plan 6.1b.</p>
ii. Referring to R-to-C, please advise whether any section of the said local ditch is within the application site. If affirmative, please ensure that the existing local ditch and the relevant discharge connection(s) should be maintained due to the proposed development. Please also provide adequate measures and drainage facilities to intercept their flow properly. Please indicate the above on the drainage plan for reference.	No section of the said local ditch is within the application site. Please refer to attached site photographs and Plan 6.1b for the viewpoints of the photographs.
iii. Catchpit should be provided at the turning point of the proposed u-channel.	Noted. Additional catchpits are provided. Please refer to Plan 6.1b.
iv. Please advise if any site formation/levelling works to be carried out under this application. Cross sections showing the existing and proposed ground levels of the captioned site with respect to the adjacent areas should be given. Referring to cross sections A-A and B-B, please note that the proposed peripheral surface channels shall be provided along the site boundary <u>at the original/existing ground level</u> (instead of the revised ground level) to collect the surface runoff accrued on the application site and to intercept the overland flow from the adjacent lands.	<p>There are site formation/levelling works to be carried out under this application. Please refer to the cross sections at Plan 6.1b showing the existing and proposed ground levels.</p> <p>The proposed peripheral surface channels are provided along the site boundary at the original/existing ground level. Please refer to the Sections at Plan 6.1b.</p>

	Comments	Responses
v.	Please indicate clearly the full alignment of the discharge path from the application site all the way down to the ultimate discharge point (e.g. a well-established stream course/public drainage system).	Please refer to attached photographs.
vi.	The existing 500 mm u-channel, to which the proposed to discharge the stormwater from the subject site was not maintained by this office. Please resolve any conflict/disagreement arisen for discharging the runoff from the application site(s) to the proposed discharge point(s). Moreover, please ensure that this drainage system and the existing downstream drains/channels/streams have adequate capacity to convey the additional runoff from the application site(s). Regular maintenance should be carried out by the applicant(s) to avoid blockage of the system.	Noted.
vii.	Further to (vi) above, since there is no record of the said discharge path, please provide site photos to demonstrate its presence and existing condition.	The discharge path is updated to discharge to an existing catchpit where there are 2 nos. of 1m underground pipe. Please refer to Plan 6.1b and viewpoint photographs 6 and 7.
viii.	The development should neither obstruct overland flow and nor adversely affect existing natural streams, village drains, ditches and the adjacent areas, etc.	Noted.
ix.	Please resolve any conflict/disagreement with relevant lot owner(s) and seek permission from DLO/YL for laying new drains/channels and/or modifying/upgrading existing ones in other private lots or on Government Land, where required, outside the application site(s).	Noted.

Application Site

N.T.S


January 2026

Drainage Proposal
Lot 29(part), 33(part) and 35(part) in DD.111
and adjoining government land
Yuen Long, N.T.

Goldrich Planners &
Surveyors Ltd.

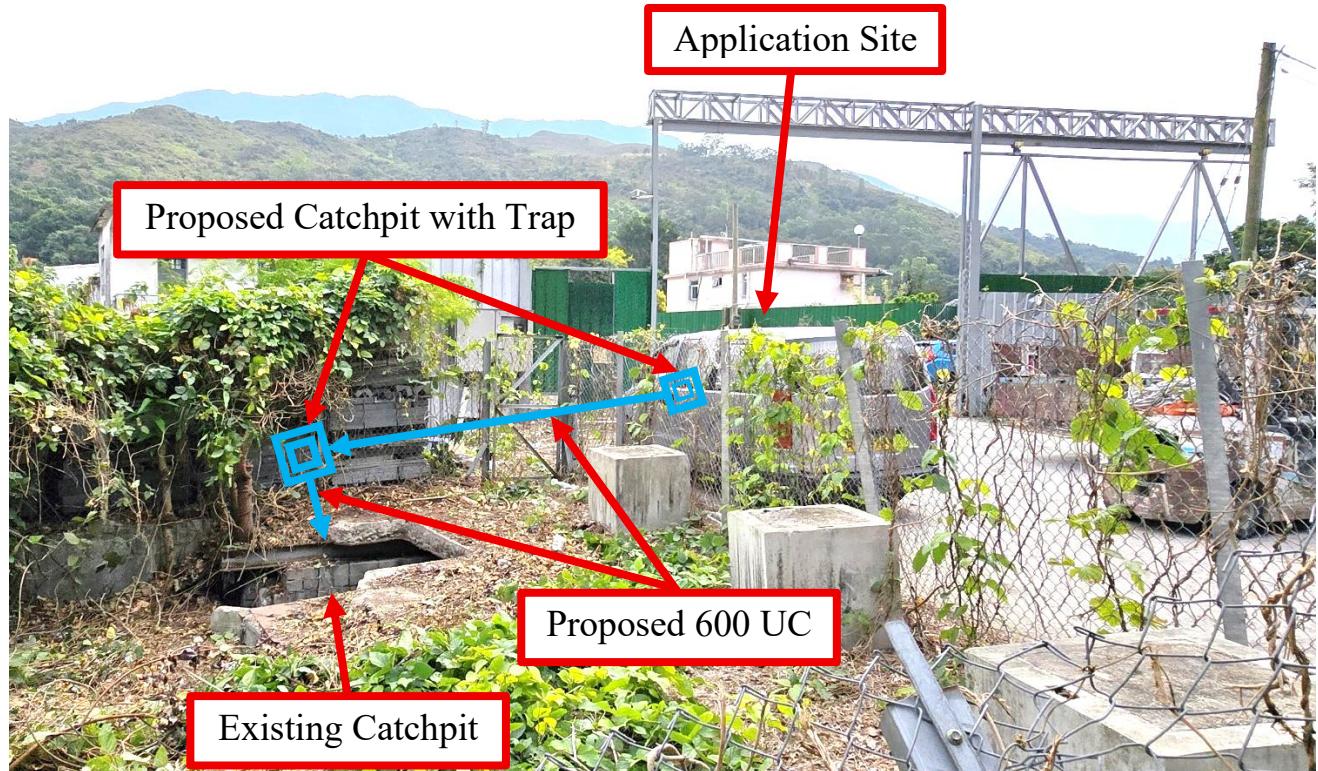
Plan 6.2b
(P 25025)

Map A

Viewpoint 1

Viewpoint 2

Viewpoint 3


Viewpoint 4

Viewpoint 5

Viewpoint 6

Viewpoint 7

<p>1 For Catchment Area A</p> <table> <tbody> <tr> <td>Area, A</td><td>=</td><td>2273 m²</td><td rowspan="3">Ref.</td></tr> <tr> <td>Average slope, H</td><td>=</td><td>47.5 m per 100m</td></tr> <tr> <td>Distance on the line of natural flow, L</td><td>=</td><td>77 m</td></tr> </tbody> </table> <p>Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (77) / (47.5^{0.2} \cdot 2273^{0.1})$ = 2.4 min</p>	Area, A	=	2273 m ²	Ref.	Average slope, H	=	47.5 m per 100m	Distance on the line of natural flow, L	=	77 m	SDM 7.5.2 (d)								
Area, A	=	2273 m ²	Ref.																
Average slope, H	=	47.5 m per 100m																	
Distance on the line of natural flow, L	=	77 m																	
<p>2 For Proposed UC in Catchment Area A</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> <th></th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.70</td> <td>38.60</td> <td></td> </tr> <tr> <td>Invert level (mPD)</td> <td>37.30</td> <td>36.81</td> <td></td> </tr> </tbody> </table> <p>Width of u-channel, w = 600 mm Length of u-channel, L_c = 39.2 m Depth of vertical part of u-channel, d = 1490 mm Gradient of u-channel, S_f = $(37.3 - 36.81) / 39.2 = 0.0125$</p> <p>Cross-Section Area, a = $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 1490$ = 1.035 m² Wetted Perimeter, p = $\pi r + 2 d = 3.14 \times 300 + 2 \times 1490$ = 3.922 m Hydraulic radius, R = a / p = 0.264 m</p>		From	To		Ground level (mPD)	38.70	38.60		Invert level (mPD)	37.30	36.81		SDM 8.2.1						
	From	To																	
Ground level (mPD)	38.70	38.60																	
Invert level (mPD)	37.30	36.81																	
<p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n</td> <td>=</td> <td>0.016</td> <td>for concrete lined channels:-</td> <td rowspan="3">SDM Table 13</td> </tr> <tr> <td>Allowable velocity, v</td> <td>=</td> <td>$R^{1/6} x (RS_f)^{1/2} / n$</td> <td>= $(0.264)^{1/6} \times (0.264 \times 0.0125)^{1/2} / 0.016$</td> </tr> <tr> <td></td> <td>=</td> <td>2.88 m/s</td> <td></td> </tr> <tr> <td>Time of flow, t_f</td> <td>=</td> <td>0.2 min</td> <td></td> <td>SDM Table 12</td> </tr> </tbody> </table>	Take n	=	0.016	for concrete lined channels:-	SDM Table 13	Allowable velocity, v	=	$R^{1/6} x (RS_f)^{1/2} / n$	= $(0.264)^{1/6} \times (0.264 \times 0.0125)^{1/2} / 0.016$		=	2.88 m/s		Time of flow, t_f	=	0.2 min		SDM Table 12	SDM Table 13 SDM Table 12
Take n	=	0.016	for concrete lined channels:-	SDM Table 13															
Allowable velocity, v	=	$R^{1/6} x (RS_f)^{1/2} / n$	= $(0.264)^{1/6} \times (0.264 \times 0.0125)^{1/2} / 0.016$																
	=	2.88 m/s																	
Time of flow, t_f	=	0.2 min		SDM Table 12															
<p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i</td> <td>=</td> <td>$a / (t_o + t_f + b)^c$</td> <td rowspan="3">SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</td> </tr> <tr> <td></td> <td>=</td> <td>$505.5 / (2.4 + 0.2 + 3.29)^{0.355}$ for return period T = 50 years</td> </tr> <tr> <td></td> <td>=</td> <td>269</td> </tr> </tbody> </table>	Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a		=	$505.5 / (2.4 + 0.2 + 3.29)^{0.355}$ for return period T = 50 years		=	269	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a								
Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a																
	=	$505.5 / (2.4 + 0.2 + 3.29)^{0.355}$ for return period T = 50 years																	
	=	269																	
<table> <thead> <tr> <th>Type of surface</th> <th>Runoff Coefficient C</th> <th>Catchment Area A (m²)</th> <th>C x A</th> </tr> </thead> <tbody> <tr> <td>Steep Grassland(heavy soil)</td> <td>0.35</td> <td>1587.0</td> <td>555.5</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>686.0</td> <td>651.7</td> </tr> <tr> <td></td> <td></td> <td>SUM =</td> <td>1207.2</td> </tr> </tbody> </table>	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Steep Grassland(heavy soil)	0.35	1587.0	555.5	Concrete Paving	0.95	686.0	651.7			SUM =	1207.2	SDM 7.5.2 (b)		
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																
Steep Grassland(heavy soil)	0.35	1587.0	555.5																
Concrete Paving	0.95	686.0	651.7																
		SUM =	1207.2																
<p>Upstream flow, Q_u = 0 m³/s</p> <p>Design flow, Q_d = $1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km² = $1.16 \times 0.278 \times 269 \times 1207.15 / 1000000 + 0$ = 0.105 m³/s</p> <p>Allowable flow, Q_a = $a \times v$ = 1.035×2.88 = 2.977 m³/s > Q_d (O.K.)</p>	SDM 7.5.2 (a) Corrigendum 1/2022																		
<p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>	SDM 7.5.2 (a) Corrigendum 1/2022																		
<p>Scale: NA</p> <p>January 2026</p>	<p>Goldrich Planners & Surveyors Ltd.</p> <p>Page 1 (P25025)</p>																		

<p>1 For Catchment Area B</p> <table> <tbody> <tr> <td>Area, A</td> <td>=</td> <td>1117 m²</td> <td rowspan="3">Ref.</td> </tr> <tr> <td>Average slope, H</td> <td>=</td> <td>0.1 m per 100m</td> </tr> <tr> <td>Distance on the line of natural flow, L</td> <td>=</td> <td>22.5 m</td> </tr> <tr> <td>Time of concentration, t_o</td> <td>=</td> <td>$0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (22.5) / (0.1^{0.2} \cdot 1117^{0.1})$</td> <td>SDM 7.5.2 (d)</td> </tr> <tr> <td></td> <td>=</td> <td>2.6 min</td> <td></td> </tr> </tbody> </table> <p>2 For Proposed UC in Catchment Area B</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.60</td> <td>38.20</td> </tr> <tr> <td>Invert level (mPD)</td> <td>36.81</td> <td>36.29</td> </tr> </tbody> </table> <p>Width of u-channel, w = 600 mm Length of u-channel, L_c = 41.5 m Depth of vertical part of u-channel, d = 1610 mm Gradient of u-channel, S_f = $(36.81 - 36.29) / 41.5 = 0.0125$</p> <p>Cross-Section Area, a = $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 1610$ = 1.107 m² Wetted Perimeter, p = $\pi r + 2 d = 3.14 \times 300 + 2 \times 1610$ = 4.162 m Hydraulic radius, R = a / p = 0.266 m</p> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n</td> <td>=</td> <td>0.016 for concrete lined channels:-</td> <td rowspan="3">SDM Table 13</td> </tr> <tr> <td>Allowable velocity, v</td> <td>=</td> <td>$R^{1/6} \times (RS_f)^{1/2} / n = (0.266)^{1/6} \times (0.266 \times 0.013)^{1/2} / 0.016$</td> </tr> <tr> <td></td> <td>=</td> <td>2.89 m/s</td> </tr> <tr> <td>Time of flow, t_f</td> <td>=</td> <td>0.2 min</td> <td>SDM Table 12</td> </tr> </tbody> </table> <p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i</td> <td>=</td> <td>$a / (t_o + t_f + b)^c$</td> <td rowspan="3">SDM 4.3.2</td> </tr> <tr> <td></td> <td>=</td> <td>$505.5 / (2.6 + 0.2 + 3.29)^{0.355}$ for return period T = 50 years</td> </tr> <tr> <td></td> <td>=</td> <td>266</td> </tr> <tr> <td>Type of surface</td> <td></td> <td>Runoff Coefficient C</td> <td rowspan="3">Corrigendum 1/2024</td> </tr> <tr> <td>Flat Grassland(heavy soil)</td> <td></td> <td>0.25</td> </tr> <tr> <td>Concrete Paving</td> <td></td> <td>0.95</td> </tr> <tr> <td></td> <td></td> <td>Catchment Area A (m²)</td> <td rowspan="3">SDM Table 3a</td> </tr> <tr> <td></td> <td></td> <td>0.0</td> </tr> <tr> <td></td> <td></td> <td>1117.0</td> </tr> <tr> <td></td> <td></td> <td>C x A</td> </tr> <tr> <td></td> <td></td> <td>1061.2</td> </tr> <tr> <td></td> <td></td> <td>SUM = 1061.2</td> </tr> </tbody> </table> <p>Upstream flow, Q_u = 0.105 m³/s</p> <p>Design flow, Q_d = $1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km² = $1.16 \times 0.278 \times 266 \times 1061.15 / 1000000 + 0.105$ = 0.196 m³/s</p> <p>Allowable flow, Q_a = a x v = 1.107 x 2.89 = 3.205 m³/s > Q_d (O.K.)</p> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>	Area, A	=	1117 m ²	Ref.	Average slope, H	=	0.1 m per 100m	Distance on the line of natural flow, L	=	22.5 m	Time of concentration, t _o	=	$0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (22.5) / (0.1^{0.2} \cdot 1117^{0.1})$	SDM 7.5.2 (d)		=	2.6 min			From	To	Ground level (mPD)	38.60	38.20	Invert level (mPD)	36.81	36.29	Take n	=	0.016 for concrete lined channels:-	SDM Table 13	Allowable velocity, v	=	$R^{1/6} \times (RS_f)^{1/2} / n = (0.266)^{1/6} \times (0.266 \times 0.013)^{1/2} / 0.016$		=	2.89 m/s	Time of flow, t _f	=	0.2 min	SDM Table 12	Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2		=	$505.5 / (2.6 + 0.2 + 3.29)^{0.355}$ for return period T = 50 years		=	266	Type of surface		Runoff Coefficient C	Corrigendum 1/2024	Flat Grassland(heavy soil)		0.25	Concrete Paving		0.95			Catchment Area A (m ²)	SDM Table 3a			0.0			1117.0			C x A			1061.2			SUM = 1061.2	<p>Ref.</p> <p>SDM 7.5.2 (d)</p> <p>SDM 8.2.1</p> <p>SDM Table 13</p> <p>SDM Table 12</p> <p>SDM 4.3.2</p> <p>Corrigendum 1/2024</p> <p>SDM Table 3a</p> <p>SDM 7.5.2 (b)</p> <p>SDM 7.5.2 (a)</p> <p>Corrigendum 1/2022</p>
Area, A	=	1117 m ²	Ref.																																																																														
Average slope, H	=	0.1 m per 100m																																																																															
Distance on the line of natural flow, L	=	22.5 m																																																																															
Time of concentration, t _o	=	$0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (22.5) / (0.1^{0.2} \cdot 1117^{0.1})$	SDM 7.5.2 (d)																																																																														
	=	2.6 min																																																																															
	From	To																																																																															
Ground level (mPD)	38.60	38.20																																																																															
Invert level (mPD)	36.81	36.29																																																																															
Take n	=	0.016 for concrete lined channels:-	SDM Table 13																																																																														
Allowable velocity, v	=	$R^{1/6} \times (RS_f)^{1/2} / n = (0.266)^{1/6} \times (0.266 \times 0.013)^{1/2} / 0.016$																																																																															
	=	2.89 m/s																																																																															
Time of flow, t _f	=	0.2 min	SDM Table 12																																																																														
Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2																																																																														
	=	$505.5 / (2.6 + 0.2 + 3.29)^{0.355}$ for return period T = 50 years																																																																															
	=	266																																																																															
Type of surface		Runoff Coefficient C	Corrigendum 1/2024																																																																														
Flat Grassland(heavy soil)		0.25																																																																															
Concrete Paving		0.95																																																																															
		Catchment Area A (m ²)	SDM Table 3a																																																																														
		0.0																																																																															
		1117.0																																																																															
		C x A																																																																															
		1061.2																																																																															
		SUM = 1061.2																																																																															
<p>Scale: NA</p> <p>January 2026</p>	<p>Hydraulic Calculation</p> <p>Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long</p>	<p>Goldrich Planners & Surveyors Ltd.</p> <p>Page 2 (P25025)</p>																																																																															

<p>1 For Catchment Area C</p> <table> <tbody> <tr> <td>Area, A</td><td>=</td><td>750 m²</td><td rowspan="3">Ref.</td></tr> <tr> <td>Average slope, H</td><td>=</td><td>0.1 m per 100m</td></tr> <tr> <td>Distance on the line of natural flow, L</td><td>=</td><td>15 m</td></tr> </tbody> </table> <p>Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (15) / (0.1^{0.2} \cdot 750^{0.1})$ = 1.8 min</p>	Area, A	=	750 m ²	Ref.	Average slope, H	=	0.1 m per 100m	Distance on the line of natural flow, L	=	15 m	SDM 7.5.2 (d)																																							
Area, A	=	750 m ²	Ref.																																															
Average slope, H	=	0.1 m per 100m																																																
Distance on the line of natural flow, L	=	15 m																																																
<p>2 For Proposed UC in Catchment Area C</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> <th></th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.20</td> <td>35.70</td> <td></td> </tr> <tr> <td>Invert level (mPD)</td> <td>36.29</td> <td>34.94</td> <td></td> </tr> </tbody> </table>		From	To		Ground level (mPD)	38.20	35.70		Invert level (mPD)	36.29	34.94		<table> <tbody> <tr> <td>Width of u-channel, w</td> <td>=</td> <td>600 mm</td> <td></td> </tr> <tr> <td>Length of u-channel, L_c</td> <td>=</td> <td>67.5 m</td> <td></td> </tr> <tr> <td>Depth of vertical part of u-channel, d</td> <td>=</td> <td>460 mm</td> <td></td> </tr> <tr> <td>Gradient of u-channel, S_f</td> <td>=</td> <td>$(36.29 - 34.94) / 67.5 = 0.020$</td> <td></td> </tr> <tr> <td>Cross-Section Area, a</td> <td>=</td> <td>$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 460$</td> <td></td> </tr> <tr> <td></td> <td>=</td> <td>0.417 m²</td> <td></td> </tr> <tr> <td>Wetted Perimeter, p</td> <td>=</td> <td>$\pi r + 2d = 3.14 \times 300 + 2 \times 460$</td> <td></td> </tr> <tr> <td></td> <td>=</td> <td>1.862 m</td> <td></td> </tr> <tr> <td>Hydraulic radius, R</td> <td>=</td> <td>$a / p = 0.224$ m</td> <td></td> </tr> </tbody> </table>	Width of u-channel, w	=	600 mm		Length of u-channel, L_c	=	67.5 m		Depth of vertical part of u-channel, d	=	460 mm		Gradient of u-channel, S_f	=	$(36.29 - 34.94) / 67.5 = 0.020$		Cross-Section Area, a	=	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 460$			=	0.417 m ²		Wetted Perimeter, p	=	$\pi r + 2d = 3.14 \times 300 + 2 \times 460$			=	1.862 m		Hydraulic radius, R	=	$a / p = 0.224$ m		SDM 8.2.1
	From	To																																																
Ground level (mPD)	38.20	35.70																																																
Invert level (mPD)	36.29	34.94																																																
Width of u-channel, w	=	600 mm																																																
Length of u-channel, L_c	=	67.5 m																																																
Depth of vertical part of u-channel, d	=	460 mm																																																
Gradient of u-channel, S_f	=	$(36.29 - 34.94) / 67.5 = 0.020$																																																
Cross-Section Area, a	=	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 460$																																																
	=	0.417 m ²																																																
Wetted Perimeter, p	=	$\pi r + 2d = 3.14 \times 300 + 2 \times 460$																																																
	=	1.862 m																																																
Hydraulic radius, R	=	$a / p = 0.224$ m																																																
<p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n</td> <td>=</td> <td>0.016</td> <td>for concrete lined channels:-</td> <td rowspan="3">SDM Table 13</td> </tr> <tr> <td>Allowable velocity, v</td> <td>=</td> <td>$R^{1/6} \times (RS_f)^{1/2} / n = (0.224)^{1/6} \times (0.224 \times 0.02)^{1/2} / 0.016$</td> <td></td> </tr> <tr> <td></td> <td>=</td> <td>3.26 m/s</td> <td></td> </tr> <tr> <td>Time of flow, t_f</td> <td>=</td> <td>0.3 min</td> <td></td> <td></td> </tr> </tbody> </table>	Take n	=	0.016	for concrete lined channels:-	SDM Table 13	Allowable velocity, v	=	$R^{1/6} \times (RS_f)^{1/2} / n = (0.224)^{1/6} \times (0.224 \times 0.02)^{1/2} / 0.016$			=	3.26 m/s		Time of flow, t_f	=	0.3 min			SDM Table 13 SDM Table 12																															
Take n	=	0.016	for concrete lined channels:-	SDM Table 13																																														
Allowable velocity, v	=	$R^{1/6} \times (RS_f)^{1/2} / n = (0.224)^{1/6} \times (0.224 \times 0.02)^{1/2} / 0.016$																																																
	=	3.26 m/s																																																
Time of flow, t_f	=	0.3 min																																																
<p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i</td> <td>=</td> <td>$a / (t_o + t_f + b)^c$</td> <td rowspan="3">SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</td> </tr> <tr> <td></td> <td>=</td> <td>$505.5 / (1.8 + 0.3 + 3.29)^{0.355}$ for return period T = 50 years</td> </tr> <tr> <td></td> <td>=</td> <td>278</td> </tr> </tbody> </table>	Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a		=	$505.5 / (1.8 + 0.3 + 3.29)^{0.355}$ for return period T = 50 years		=	278																																								
Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a																																															
	=	$505.5 / (1.8 + 0.3 + 3.29)^{0.355}$ for return period T = 50 years																																																
	=	278																																																
<table> <thead> <tr> <th>Type of surface</th> <th>Runoff Coefficient C</th> <th>Catchment Area A (m²)</th> <th>C x A</th> </tr> </thead> <tbody> <tr> <td>Flat Grassland(heavy soil)</td> <td>0.25</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>750.0</td> <td>712.5</td> </tr> <tr> <td></td> <td></td> <td>SUM =</td> <td>712.5</td> </tr> </tbody> </table>	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Flat Grassland(heavy soil)	0.25	0.0	0.0	Concrete Paving	0.95	750.0	712.5			SUM =	712.5	SDM 7.5.2 (b)																																	
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																																															
Flat Grassland(heavy soil)	0.25	0.0	0.0																																															
Concrete Paving	0.95	750.0	712.5																																															
		SUM =	712.5																																															
<p>Upstream flow, Q_u = 0.196 m³/s</p> <p>Design flow, Q_d = $1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km²</p> $= 1.16 \times 0.278 \times 278 \times 712.5 / 1000000 + 0.196$ $= 0.260 \text{ m}^3/\text{s}$	SDM 7.5.2 (a) Corrigendum 1/2022																																																	
<p>Allowable flow, Q_a = $a \times v$</p> $= 0.417 \times 3.26$ $= 1.361 \text{ m}^3/\text{s}$ <p>$> Q_d$ (O.K.)</p>																																																		
<p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>																																																		
<p>Scale: NA</p> <p>January 2026</p>	<p>Hydraulic Calculation</p> <p>Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long</p>	<p>Goldrich Planners & Surveyors Ltd.</p> <p>Page 3 (P25025)</p>																																																

<p>1 For Catchment Area D</p> <table> <tbody> <tr> <td>Area, A</td><td>=</td><td>5735 m²</td></tr> <tr> <td>Average slope, H</td><td>=</td><td>48.1 m per 100m</td></tr> <tr> <td>Distance on the line of natural flow, L</td><td>=</td><td>100 m</td></tr> <tr> <td>Time of concentration, t_o</td><td>=</td><td>$0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (100) / (48.1^{0.2} \cdot 5735^{0.1}) = 2.8 \text{ min}$</td></tr> </tbody> </table>	Area, A	=	5735 m ²	Average slope, H	=	48.1 m per 100m	Distance on the line of natural flow, L	=	100 m	Time of concentration, t _o	=	$0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (100) / (48.1^{0.2} \cdot 5735^{0.1}) = 2.8 \text{ min}$	<p>Ref.</p>				
Area, A	=	5735 m ²															
Average slope, H	=	48.1 m per 100m															
Distance on the line of natural flow, L	=	100 m															
Time of concentration, t _o	=	$0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (100) / (48.1^{0.2} \cdot 5735^{0.1}) = 2.8 \text{ min}$															
<p>2 For Proposed UC in Catchment Area D</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.70</td> <td>38.60</td> </tr> <tr> <td>Invert level (mPD)</td> <td>38.10</td> <td>37.72</td> </tr> </tbody> </table>		From	To	Ground level (mPD)	38.70	38.60	Invert level (mPD)	38.10	37.72	<p>SDM 7.5.2 (d)</p>							
	From	To															
Ground level (mPD)	38.70	38.60															
Invert level (mPD)	38.10	37.72															
<p>Width of u-channel, w</p> <p>Length of u-channel, L_c</p> <p>Depth of vertical part of u-channel, d</p> <p>Gradient of u-channel, S_f</p> <p>Cross-Section Area, a</p> <p>Wetted Perimeter, p</p> <p>Hydraulic radius, R</p>	<p>= 600 mm</p> <p>= 56.8 m</p> <p>= 580 mm</p> <p>= $(38.1 - 37.72) / 56.8 = 0.0067$</p> <p>= $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 580 = 0.489 \text{ m}^2$</p> <p>= $\pi r + 2d = 3.14 \times 300 + 2 \times 580 = 2.102 \text{ m}$</p> <p>= $a / p = 0.489 / 2.102 = 0.233 \text{ m}$</p>	<p>SDM 8.2.1</p>															
<p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n</td> <td>=</td> <td>0.016</td> <td>for concrete lined channels:-</td> </tr> <tr> <td>Allowable velocity, v</td> <td>=</td> <td>$R^{1/6} \times (RS_f)^{1/2} / n = (0.233)^{1/6} \times (0.233 \times 0.007)^{1/2} / 0.016 = 1.93 \text{ m/s}$</td> <td>SDM Table 13</td> </tr> <tr> <td>Time of flow, t_f</td> <td>=</td> <td>0.5 min</td> <td>SDM Table 12</td> </tr> </tbody> </table>	Take n	=	0.016	for concrete lined channels:-	Allowable velocity, v	=	$R^{1/6} \times (RS_f)^{1/2} / n = (0.233)^{1/6} \times (0.233 \times 0.007)^{1/2} / 0.016 = 1.93 \text{ m/s}$	SDM Table 13	Time of flow, t _f	=	0.5 min	SDM Table 12					
Take n	=	0.016	for concrete lined channels:-														
Allowable velocity, v	=	$R^{1/6} \times (RS_f)^{1/2} / n = (0.233)^{1/6} \times (0.233 \times 0.007)^{1/2} / 0.016 = 1.93 \text{ m/s}$	SDM Table 13														
Time of flow, t _f	=	0.5 min	SDM Table 12														
<p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i</td> <td>=</td> <td>$a / (t_o + t_f + b)^c$</td> <td>SDM 4.3.2</td> </tr> <tr> <td></td> <td>=</td> <td>$505.5 / (2.8 + 0.5 + 3.29)^{0.355} \text{ for return period T = 50 years}$</td> <td>Corrigendum 1/2024</td> </tr> <tr> <td></td> <td>=</td> <td>259</td> <td>SDM Table 3a</td> </tr> </tbody> </table>	Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2		=	$505.5 / (2.8 + 0.5 + 3.29)^{0.355} \text{ for return period T = 50 years}$	Corrigendum 1/2024		=	259	SDM Table 3a					
Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2														
	=	$505.5 / (2.8 + 0.5 + 3.29)^{0.355} \text{ for return period T = 50 years}$	Corrigendum 1/2024														
	=	259	SDM Table 3a														
<table> <thead> <tr> <th>Type of surface</th> <th>Runoff Coefficient C</th> <th>Catchment Area A (m²)</th> <th>C x A</th> </tr> </thead> <tbody> <tr> <td>Steep Glassland(heavy soil)</td> <td>0.35</td> <td>3455.0</td> <td>1209.3</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>2280.0</td> <td>2166.0</td> </tr> <tr> <td></td> <td></td> <td>SUM =</td> <td>3375.3</td> </tr> </tbody> </table>	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Steep Glassland(heavy soil)	0.35	3455.0	1209.3	Concrete Paving	0.95	2280.0	2166.0			SUM =	3375.3	<p>SDM 7.5.2 (b)</p>
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A														
Steep Glassland(heavy soil)	0.35	3455.0	1209.3														
Concrete Paving	0.95	2280.0	2166.0														
		SUM =	3375.3														
<p>Upstream flow, Q_u</p> <p>Design flow, Q_d</p> <p>Allowable flow, Q_a</p>	<p>= 0 m³/s</p> <p>= $1.16 \times 0.278i \sum C_j A_j + Q_u \text{ where } A_j \text{ is in km}^2$</p> <p>= $1.16 \times 0.278 \times 259 \times 3375.25 / 1000000 + 0 = 0.282 \text{ m}^3/\text{s}$</p> <p>= $a \times v$</p> <p>= $0.489 \times 1.93 = 0.947 \text{ m}^3/\text{s}$</p> <p>> Q_d (O.K.)</p>	<p>SDM 7.5.2 (a)</p> <p>Corrigendum 1/2022</p>															
<p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>																	
<p>Scale: NA</p>	<p>Hydraulic Calculation</p>	<p>Goldrich Planners & Surveyors Ltd.</p>															
<p>January 2026</p>	<p>Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long</p>	<p>Page 4 (P25025)</p>															

<p>1 For Catchment Area E</p> <table> <tbody> <tr> <td>Area, A</td> <td>=</td> <td>1043 m²</td> <td rowspan="3" style="vertical-align: middle; text-align: right;">Ref.</td> </tr> <tr> <td>Average slope, H</td> <td>=</td> <td>0.1 m per 100m</td> </tr> <tr> <td>Distance on the line of natural flow, L</td> <td>=</td> <td>25 m</td> </tr> </tbody> </table> <p>Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (25) / (0.1^{0.2} \cdot 1043^{0.1})$ = 2.9 min</p> <p>2 For Proposed UC in Catchment Area E</p> <table> <thead> <tr> <th></th> <th style="text-align: center;">From</th> <th style="text-align: center;">To</th> <th></th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.60</td> <td>38.20</td> <td rowspan="4" style="vertical-align: middle; text-align: right;">SDM 7.5.2 (d)</td> </tr> <tr> <td>Invert level (mPD)</td> <td>37.72</td> <td>37.35</td> </tr> <tr> <td>Width of u-channel, w</td> <td>=</td> <td>600 mm</td> </tr> <tr> <td>Length of u-channel, L_c</td> <td>=</td> <td>55.3 m</td> </tr> <tr> <td>Depth of vertical part of u-channel, d</td> <td>=</td> <td>550 mm</td> </tr> <tr> <td>Gradient of u-channel, S_f</td> <td>=</td> <td>$(37.72 - 37.35) / 55.3 = 0.0067$</td> </tr> <tr> <td>Cross-Section Area, a</td> <td>=</td> <td>$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 550$ = 0.471 m²</td> <td rowspan="4" style="vertical-align: middle; text-align: right;">SDM 8.2.1</td> </tr> <tr> <td>Wetted Perimeter, p</td> <td>=</td> <td>$\pi r + 2 d = 3.14 \times 300 + 2 \times 550$ = 2.042 m</td> </tr> <tr> <td>Hydraulic radius, R</td> <td>=</td> <td>$a / p = 0.471 / 2.042 = 0.231$ m</td> </tr> <tr> <td>Time of flow, t_f</td> <td>=</td> <td>0.5 min</td> </tr> </tbody> </table> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n</td> <td>=</td> <td>0.016 for concrete lined channels:-</td> <td rowspan="3" style="vertical-align: middle; text-align: right;">SDM Table 13</td> </tr> <tr> <td>Allowable velocity, v</td> <td>=</td> <td>$R^{1/6} x (RS_f)^{1/2} / n = (0.231)^{1/6} x (0.231 \times 0.007)^{1/2} / 0.016$ = 1.92 m/s</td> </tr> <tr> <td>Time of flow, t_f</td> <td>=</td> <td>0.5 min</td> </tr> </tbody> </table> <p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i</td> <td>=</td> <td>$a / (t_o + t_f + b)^c$ = $258 / (2.9 + 0.5 + 3.29)^{0.355}$ for return period T = 50 years = 258</td> <td rowspan="3" style="vertical-align: middle; text-align: right;">SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</td> </tr> <tr> <td>Type of surface</td> <td></td> <td>Runoff Coefficient C</td> <td>Catchment Area A (m²)</td> <td>$C \times A$</td> </tr> <tr> <td>Flat Grassland(heavy soil)</td> <td></td> <td>0.25</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td></td> <td>0.95</td> <td>1043.0</td> <td>990.9</td> </tr> <tr> <td></td> <td></td> <td></td> <td>SUM =</td> <td>990.9</td> </tr> </tbody> </table> <p>Upstream flow, Q_u = 0.282 m³/s</p> <p>Design flow, Q_d = $1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km² = $1.16 \times 0.278 \times 258 \times 990.85 / 1000000 + 0.282$ = 0.365 m³/s</p> <p>Allowable flow, Q_a = $a \times v$ = 0.471×1.92 = 0.907 m³/s > Q_d (O.K.)</p> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>	Area, A	=	1043 m ²	Ref.	Average slope, H	=	0.1 m per 100m	Distance on the line of natural flow, L	=	25 m		From	To		Ground level (mPD)	38.60	38.20	SDM 7.5.2 (d)	Invert level (mPD)	37.72	37.35	Width of u-channel, w	=	600 mm	Length of u-channel, L_c	=	55.3 m	Depth of vertical part of u-channel, d	=	550 mm	Gradient of u-channel, S_f	=	$(37.72 - 37.35) / 55.3 = 0.0067$	Cross-Section Area, a	=	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 550$ = 0.471 m ²	SDM 8.2.1	Wetted Perimeter, p	=	$\pi r + 2 d = 3.14 \times 300 + 2 \times 550$ = 2.042 m	Hydraulic radius, R	=	$a / p = 0.471 / 2.042 = 0.231$ m	Time of flow, t_f	=	0.5 min	Take n	=	0.016 for concrete lined channels:-	SDM Table 13	Allowable velocity, v	=	$R^{1/6} x (RS_f)^{1/2} / n = (0.231)^{1/6} x (0.231 \times 0.007)^{1/2} / 0.016$ = 1.92 m/s	Time of flow, t_f	=	0.5 min	Design intensity, i	=	$a / (t_o + t_f + b)^c$ = $258 / (2.9 + 0.5 + 3.29)^{0.355}$ for return period T = 50 years = 258	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a	Type of surface		Runoff Coefficient C	Catchment Area A (m ²)	$C \times A$	Flat Grassland(heavy soil)		0.25	0.0	0.0	Concrete Paving		0.95	1043.0	990.9				SUM =	990.9	<p>Ref.</p> <p>SDM 7.5.2 (d)</p> <p>SDM 8.2.1</p> <p>SDM Table 13 SDM Table 12</p> <p>SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</p> <p>SDM 7.5.2 (b)</p> <p>SDM 7.5.2 (a) Corrigendum 1/2022</p>
Area, A	=	1043 m ²	Ref.																																																																														
Average slope, H	=	0.1 m per 100m																																																																															
Distance on the line of natural flow, L	=	25 m																																																																															
	From	To																																																																															
Ground level (mPD)	38.60	38.20	SDM 7.5.2 (d)																																																																														
Invert level (mPD)	37.72	37.35																																																																															
Width of u-channel, w	=	600 mm																																																																															
Length of u-channel, L_c	=	55.3 m																																																																															
Depth of vertical part of u-channel, d	=	550 mm																																																																															
Gradient of u-channel, S_f	=	$(37.72 - 37.35) / 55.3 = 0.0067$																																																																															
Cross-Section Area, a	=	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 550$ = 0.471 m ²	SDM 8.2.1																																																																														
Wetted Perimeter, p	=	$\pi r + 2 d = 3.14 \times 300 + 2 \times 550$ = 2.042 m																																																																															
Hydraulic radius, R	=	$a / p = 0.471 / 2.042 = 0.231$ m																																																																															
Time of flow, t_f	=	0.5 min																																																																															
Take n	=	0.016 for concrete lined channels:-	SDM Table 13																																																																														
Allowable velocity, v	=	$R^{1/6} x (RS_f)^{1/2} / n = (0.231)^{1/6} x (0.231 \times 0.007)^{1/2} / 0.016$ = 1.92 m/s																																																																															
Time of flow, t_f	=	0.5 min																																																																															
Design intensity, i	=	$a / (t_o + t_f + b)^c$ = $258 / (2.9 + 0.5 + 3.29)^{0.355}$ for return period T = 50 years = 258	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a																																																																														
Type of surface		Runoff Coefficient C		Catchment Area A (m ²)	$C \times A$																																																																												
Flat Grassland(heavy soil)		0.25		0.0	0.0																																																																												
Concrete Paving		0.95	1043.0	990.9																																																																													
			SUM =	990.9																																																																													
<p>Scale: NA</p> <p>January 2026</p>	<p>Hydraulic Calculation</p> <p>Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long</p>	<p>Goldrich Planners & Surveyors Ltd.</p> <p>Page 5 (P25025)</p>																																																																															

<p>1 For Catchment Area F</p> <table> <tbody> <tr> <td>Area, A</td> <td>=</td> <td>635 m²</td> <td rowspan="3">Ref.</td> </tr> <tr> <td>Average slope, H</td> <td>=</td> <td>0.1 m per 100m</td> </tr> <tr> <td>Distance on the line of natural flow, L</td> <td>=</td> <td>16 m</td> </tr> </tbody> </table> <p>Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (16) / (0.1^{0.2} \cdot 635^{0.1})$ = 1.9 min</p> <p>2 For Proposed UC in Catchment Area F</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.20</td> <td>35.90</td> </tr> <tr> <td>Invert level (mPD)</td> <td>37.35</td> <td>35.29</td> </tr> </tbody> </table> <p>Width of u-channel, w = 600 mm Length of u-channel, L_c = 61.8 m Depth of vertical part of u-channel, d = 310 mm Gradient of u-channel, S_f = $(37.35 - 35.29) / 61.8$ = 0.0333</p> <p>Cross-Section Area, a = $0.5 \pi r^2 + w d$ = $0.5 \times 3.14 \times 300^2 + 600 \times 310$ = 0.327 m² Wetted Perimeter, p = $\pi r + 2 d$ = $3.14 \times 300 + 2 \times 310$ = 1.562 m Hydraulic radius, R = a / p = 0.210 m</p> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n</td> <td>=</td> <td>0.016</td> <td>for concrete lined channels:-</td> <td rowspan="3">SDM Table 13</td> </tr> <tr> <td>Allowable velocity, v</td> <td>=</td> <td>$R^{1/6} \times (RS_f)^{1/2} / n$</td> <td>= $(0.21)^{1/6} \times (0.21 \times 0.033)^{1/2} / 0.016$</td> </tr> <tr> <td></td> <td>=</td> <td>4.03 m/s</td> <td></td> </tr> <tr> <td>Time of flow, t_f</td> <td>=</td> <td>0.3 min</td> <td></td> <td>SDM Table 12</td> </tr> </tbody> </table> <p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i</td> <td>=</td> <td>$a / (t_o + t_f + b)^c$</td> <td rowspan="3">SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</td> </tr> <tr> <td></td> <td>=</td> <td>$505.5 / (1.9 + 0.3 + 3.29)^{0.355}$ for return period T = 50 years</td> </tr> <tr> <td></td> <td>=</td> <td>277</td> </tr> <tr> <td>Type of surface</td> <td></td> <td>Runoff Coefficient C</td> <td>Catchment Area A (m²)</td> <td rowspan="3">SDM 7.5.2 (b)</td> </tr> <tr> <td>Flat Grassland(heavy soil)</td> <td></td> <td>0.25</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td></td> <td>0.95</td> <td>635.0</td> </tr> <tr> <td></td> <td></td> <td></td> <td>SUM = 603.3</td> </tr> <tr> <td>Upstream flow, Q_u</td> <td>=</td> <td>0.365 m³/s</td> <td></td> <td></td> </tr> <tr> <td>Design flow, Q_d</td> <td>=</td> <td>$1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km²</td> <td rowspan="3">SDM 7.5.2 (a) Corrigendum 1/2022</td> </tr> <tr> <td></td> <td>=</td> <td>$1.16 \times 0.278 \times 277 \times 603.25 / 1000000 + 0.365$</td> </tr> <tr> <td></td> <td>=</td> <td>0.419 m³/s</td> </tr> <tr> <td>Allowable flow, Q_a</td> <td>=</td> <td>$a \times v$</td> <td></td> <td></td> </tr> <tr> <td></td> <td>=</td> <td>0.327×4.03</td> <td></td> <td></td> </tr> <tr> <td></td> <td>=</td> <td>1.318 m³/s</td> <td></td> <td></td> </tr> <tr> <td></td> <td>></td> <td>Q_d (O.K.)</td> <td></td> <td></td> </tr> </tbody> </table> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>	Area, A	=	635 m ²	Ref.	Average slope, H	=	0.1 m per 100m	Distance on the line of natural flow, L	=	16 m		From	To	Ground level (mPD)	38.20	35.90	Invert level (mPD)	37.35	35.29	Take n	=	0.016	for concrete lined channels:-	SDM Table 13	Allowable velocity, v	=	$R^{1/6} \times (RS_f)^{1/2} / n$	= $(0.21)^{1/6} \times (0.21 \times 0.033)^{1/2} / 0.016$		=	4.03 m/s		Time of flow, t_f	=	0.3 min		SDM Table 12	Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a		=	$505.5 / (1.9 + 0.3 + 3.29)^{0.355}$ for return period T = 50 years		=	277	Type of surface		Runoff Coefficient C	Catchment Area A (m ²)	SDM 7.5.2 (b)	Flat Grassland(heavy soil)		0.25	0.0	Concrete Paving		0.95	635.0				SUM = 603.3	Upstream flow, Q_u	=	0.365 m ³ /s			Design flow, Q_d	=	$1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km ²	SDM 7.5.2 (a) Corrigendum 1/2022		=	$1.16 \times 0.278 \times 277 \times 603.25 / 1000000 + 0.365$		=	0.419 m ³ /s	Allowable flow, Q_a	=	$a \times v$				=	0.327×4.03				=	1.318 m ³ /s				>	Q_d (O.K.)			Ref.
Area, A	=	635 m ²	Ref.																																																																																																	
Average slope, H	=	0.1 m per 100m																																																																																																		
Distance on the line of natural flow, L	=	16 m																																																																																																		
	From	To																																																																																																		
Ground level (mPD)	38.20	35.90																																																																																																		
Invert level (mPD)	37.35	35.29																																																																																																		
Take n	=	0.016	for concrete lined channels:-	SDM Table 13																																																																																																
Allowable velocity, v	=	$R^{1/6} \times (RS_f)^{1/2} / n$	= $(0.21)^{1/6} \times (0.21 \times 0.033)^{1/2} / 0.016$																																																																																																	
	=	4.03 m/s																																																																																																		
Time of flow, t_f	=	0.3 min		SDM Table 12																																																																																																
Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a																																																																																																	
	=	$505.5 / (1.9 + 0.3 + 3.29)^{0.355}$ for return period T = 50 years																																																																																																		
	=	277																																																																																																		
Type of surface		Runoff Coefficient C	Catchment Area A (m ²)	SDM 7.5.2 (b)																																																																																																
Flat Grassland(heavy soil)		0.25	0.0																																																																																																	
Concrete Paving		0.95	635.0																																																																																																	
			SUM = 603.3																																																																																																	
Upstream flow, Q_u	=	0.365 m ³ /s																																																																																																		
Design flow, Q_d	=	$1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km ²	SDM 7.5.2 (a) Corrigendum 1/2022																																																																																																	
	=	$1.16 \times 0.278 \times 277 \times 603.25 / 1000000 + 0.365$																																																																																																		
	=	0.419 m ³ /s																																																																																																		
Allowable flow, Q_a	=	$a \times v$																																																																																																		
	=	0.327×4.03																																																																																																		
	=	1.318 m ³ /s																																																																																																		
	>	Q_d (O.K.)																																																																																																		
Scale: NA January 2026	<h3>Hydraulic Calculation</h3> <p>Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long</p>	Goldrich Planners & Surveyors Ltd. Page 6 (P25025)																																																																																																		

<p>1 For Catchment Area G</p> <table> <tbody> <tr> <td>Area, A</td> <td>=</td> <td>511 m²</td> <td rowspan="3">Ref.</td> </tr> <tr> <td>Average slope, H</td> <td>=</td> <td>0.1 m per 100m</td> </tr> <tr> <td>Distance on the line of natural flow, L</td> <td>=</td> <td>10 m</td> </tr> </tbody> </table> <p>Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (10) / (0.1^{0.2} \cdot 511^{0.1})$ = 1.2 min</p> <p>2 For Proposed UC in Catchment Area G</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>35.90</td> <td>35.70</td> </tr> <tr> <td>Invert level (mPD)</td> <td>35.29</td> <td>34.94</td> </tr> </tbody> </table> <table> <tbody> <tr> <td>Width of u-channel, w</td> <td>=</td> <td>600 mm</td> </tr> <tr> <td>Length of u-channel, L_c</td> <td>=</td> <td>71.4 m</td> </tr> <tr> <td>Depth of vertical part of u-channel, d</td> <td>=</td> <td>460 mm</td> </tr> <tr> <td>Gradient of u-channel, S_f</td> <td>=</td> <td>$(35.29 - 34.94) / 71.4 = 0.005$</td> </tr> </tbody> </table> <table> <tbody> <tr> <td>Cross-Section Area, a</td> <td>=</td> <td>$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 460$</td> <td rowspan="4">SDM 8.2.1</td> </tr> <tr> <td></td> <td>=</td> <td>0.417 m²</td> </tr> <tr> <td>Wetted Perimeter, p</td> <td>=</td> <td>$\pi r + 2d = 3.14 \times 300 + 2 \times 460$</td> </tr> <tr> <td></td> <td>=</td> <td>1.862 m</td> </tr> <tr> <td>Hydraulic radius, R</td> <td>=</td> <td>$a / p = 0.224$ m</td> </tr> </tbody> </table> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n</td> <td>=</td> <td>0.016 for concrete lined channels:-</td> <td rowspan="3">SDM Table 13</td> </tr> <tr> <td>Allowable velocity, v</td> <td>=</td> <td>$R^{1/6} x (RS_f)^{1/2} / n = (0.224)^{1/6} x (0.224 \times 0.005)^{1/2} / 0.016$</td> </tr> <tr> <td></td> <td>=</td> <td>1.61 m/s</td> </tr> <tr> <td>Time of flow, t_f</td> <td>=</td> <td>0.7 min</td> <td>SDM Table 12</td> </tr> </tbody> </table> <p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i</td> <td>=</td> <td>$a / (t_o + t_f + b)^c$</td> <td rowspan="3">SDM 4.3.2</td> </tr> <tr> <td></td> <td>=</td> <td>$505.5 / (1.2 + 0.7 + 3.29)^{0.355}$ for return period T = 50 years</td> </tr> <tr> <td></td> <td>=</td> <td>280</td> </tr> </tbody> </table> <table> <thead> <tr> <th>Type of surface</th> <th>Runoff Coefficient C</th> <th>Catchment Area A (m²)</th> <th>C x A</th> </tr> </thead> <tbody> <tr> <td>Flat Grassland(heavy soil)</td> <td>0.25</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>511.0</td> <td>485.5</td> </tr> <tr> <td></td> <td></td> <td>SUM =</td> <td>485.5</td> </tr> </tbody> </table> <p>Upstream flow, Q_u = 0.419 m³/s</p> <table> <tbody> <tr> <td>Design flow, Q_d</td> <td>=</td> <td>$1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km²</td> <td rowspan="3">SDM 7.5.2 (a)</td> </tr> <tr> <td></td> <td>=</td> <td>$1.16 \times 0.278 \times 280 \times 485.45 / 1000000 + 0.419$</td> </tr> <tr> <td></td> <td>=</td> <td>0.463 m³/s</td> </tr> </tbody> </table> <table> <tbody> <tr> <td>Allowable flow, Q_a</td> <td>=</td> <td>$a \times v$</td> <td rowspan="3">Corrigendum 1/2022</td> </tr> <tr> <td></td> <td>=</td> <td>0.417×1.61</td> </tr> <tr> <td></td> <td>=</td> <td>0.674 m³/s</td> </tr> </tbody> </table> <p>> Q_d (O.K.)</p> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>	Area, A	=	511 m ²	Ref.	Average slope, H	=	0.1 m per 100m	Distance on the line of natural flow, L	=	10 m		From	To	Ground level (mPD)	35.90	35.70	Invert level (mPD)	35.29	34.94	Width of u-channel, w	=	600 mm	Length of u-channel, L_c	=	71.4 m	Depth of vertical part of u-channel, d	=	460 mm	Gradient of u-channel, S_f	=	$(35.29 - 34.94) / 71.4 = 0.005$	Cross-Section Area, a	=	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 460$	SDM 8.2.1		=	0.417 m ²	Wetted Perimeter, p	=	$\pi r + 2d = 3.14 \times 300 + 2 \times 460$		=	1.862 m	Hydraulic radius, R	=	$a / p = 0.224$ m	Take n	=	0.016 for concrete lined channels:-	SDM Table 13	Allowable velocity, v	=	$R^{1/6} x (RS_f)^{1/2} / n = (0.224)^{1/6} x (0.224 \times 0.005)^{1/2} / 0.016$		=	1.61 m/s	Time of flow, t_f	=	0.7 min	SDM Table 12	Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2		=	$505.5 / (1.2 + 0.7 + 3.29)^{0.355}$ for return period T = 50 years		=	280	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Flat Grassland(heavy soil)	0.25	0.0	0.0	Concrete Paving	0.95	511.0	485.5			SUM =	485.5	Design flow, Q_d	=	$1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km ²	SDM 7.5.2 (a)		=	$1.16 \times 0.278 \times 280 \times 485.45 / 1000000 + 0.419$		=	0.463 m ³ /s	Allowable flow, Q_a	=	$a \times v$	Corrigendum 1/2022		=	0.417×1.61		=	0.674 m ³ /s	Ref.
Area, A	=	511 m ²	Ref.																																																																																																									
Average slope, H	=	0.1 m per 100m																																																																																																										
Distance on the line of natural flow, L	=	10 m																																																																																																										
	From	To																																																																																																										
Ground level (mPD)	35.90	35.70																																																																																																										
Invert level (mPD)	35.29	34.94																																																																																																										
Width of u-channel, w	=	600 mm																																																																																																										
Length of u-channel, L_c	=	71.4 m																																																																																																										
Depth of vertical part of u-channel, d	=	460 mm																																																																																																										
Gradient of u-channel, S_f	=	$(35.29 - 34.94) / 71.4 = 0.005$																																																																																																										
Cross-Section Area, a	=	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 460$	SDM 8.2.1																																																																																																									
	=	0.417 m ²																																																																																																										
Wetted Perimeter, p	=	$\pi r + 2d = 3.14 \times 300 + 2 \times 460$																																																																																																										
	=	1.862 m																																																																																																										
Hydraulic radius, R	=	$a / p = 0.224$ m																																																																																																										
Take n	=	0.016 for concrete lined channels:-	SDM Table 13																																																																																																									
Allowable velocity, v	=	$R^{1/6} x (RS_f)^{1/2} / n = (0.224)^{1/6} x (0.224 \times 0.005)^{1/2} / 0.016$																																																																																																										
	=	1.61 m/s																																																																																																										
Time of flow, t_f	=	0.7 min	SDM Table 12																																																																																																									
Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2																																																																																																									
	=	$505.5 / (1.2 + 0.7 + 3.29)^{0.355}$ for return period T = 50 years																																																																																																										
	=	280																																																																																																										
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																																																																																																									
Flat Grassland(heavy soil)	0.25	0.0	0.0																																																																																																									
Concrete Paving	0.95	511.0	485.5																																																																																																									
		SUM =	485.5																																																																																																									
Design flow, Q_d	=	$1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km ²	SDM 7.5.2 (a)																																																																																																									
	=	$1.16 \times 0.278 \times 280 \times 485.45 / 1000000 + 0.419$																																																																																																										
	=	0.463 m ³ /s																																																																																																										
Allowable flow, Q_a	=	$a \times v$	Corrigendum 1/2022																																																																																																									
	=	0.417×1.61																																																																																																										
	=	0.674 m ³ /s																																																																																																										
Scale: NA	Hydraulic Calculation	Goldrich Planners & Surveyors Ltd.																																																																																																										
January 2026	Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long	Page 7 (P25025)																																																																																																										

<p>1 For connection between CP12, CP13 and 2 nos. of 1 m underground pipe</p> <p>Area, A = 0 m² Average slope, H = 0.1 m per 100m Distance on the line of natural flow, L = 0 m</p> <p>Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (0) / (0.1^{0.2} \cdot 0^{0.1})$ = 0.0 min</p> <p>2 For Proposed UC in between CP12, CP13 and 2 nos. of 1 m underground pipe</p> <table border="1" data-bbox="179 422 783 506"> <thead> <tr> <th></th><th>From</th><th>To</th></tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td><td>35.70</td><td>35.60</td></tr> <tr> <td>Invert level (mPD)</td><td>34.94</td><td>34.80</td></tr> </tbody> </table> <p>Width of u-channel, w = 600 mm Length of u-channel, L_c = 14.5 m Depth of vertical part of u-channel, d = 500 mm Gradient of u-channel, S_f = $(34.94 - 34.8) / 14.5 = 0.010$</p> <p>Cross-Section Area, a = $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 500$ = 0.441 m² Wetted Perimeter, p = $\pi r + 2 d = 3.14 \times 300 + 2 \times 500$ = 1.942 m Hydraulic radius, R = $a / p = 0.227$ m</p> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <p>Take n = 0.016 for concrete lined channels:- Allowable velocity, v = $R^{1/6} \times (RS_f)^{1/2} / n = (0.227)^{1/6} \times (0.227 \times 0.01)^{1/2} / 0.016$ = 2.29 m/s Time of flow, t_f = 0.1 min</p> <p>4 Use "Rational Method" for calculation of design flow</p> <p>Design intensity, i = $a / (t_o + t_f + b)^c$ = $328 / (0 + 0.1 + 3.29)^{0.355}$ for return period T = 50 years = 328</p> <table border="1" data-bbox="179 1267 1224 1393"> <thead> <tr> <th>Type of surface</th><th>Runoff Coefficient C</th><th>Catchment Area A (m²)</th><th>C x A</th></tr> </thead> <tbody> <tr> <td>Flat Grassland(heavy soil)</td><td>0.25</td><td>0.0</td><td>0.0</td></tr> <tr> <td>Concrete Paving</td><td>0.95</td><td>0.0</td><td>0.0</td></tr> <tr> <td></td><td></td><td>SUM =</td><td>0.0</td></tr> </tbody> </table> <p>Upstream flow, Q_u = 0.723 m³/s</p> <p>Design flow, Q_d = $1.16 \times 0.278 \sum C_j A_j + Q_u$ where A_j is in km² = $1.16 \times 0.278 \times 328 \times 0 / 1000000 + 0.723$ = 0.723 m³/s</p> <p>Allowable flow, Q_a = $a \times v$ = 0.441×2.29 = 1.009 m³/s > Q_d (O.K.)</p> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>		From	To	Ground level (mPD)	35.70	35.60	Invert level (mPD)	34.94	34.80	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Flat Grassland(heavy soil)	0.25	0.0	0.0	Concrete Paving	0.95	0.0	0.0			SUM =	0.0	<p>Ref.</p> <p>SDM 7.5.2 (d)</p> <p>SDM 8.2.1</p> <p>SDM Table 13 SDM Table 12</p> <p>SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</p> <p>SDM 7.5.2 (b)</p> <p>SDM 7.5.2 (a) Corrigendum 1/2022</p>
	From	To																								
Ground level (mPD)	35.70	35.60																								
Invert level (mPD)	34.94	34.80																								
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																							
Flat Grassland(heavy soil)	0.25	0.0	0.0																							
Concrete Paving	0.95	0.0	0.0																							
		SUM =	0.0																							
<p>Scale: NA</p> <p>January 2026</p>	<p>Goldrich Planners & Surveyors Ltd.</p> <p>Page 8 (P25025)</p>																									

Urgent Return receipt Expand Group Restricted Prevent Copy Confidential

From: Rich Gold [REDACTED]
Sent: 2026-02-04 星期三 10:21:05
To: tpbpd/PLAND <tpbpd@pland.gov.hk>
Cc: [REDACTED]
Subject: Planning Application No. A/YL-PH/1077 - Submission of Further Information
Attachment: A_YL-PH_1077_Lr to TPB_FI_DSD_3.2.2026.pdf

Dear Sir/Madam,

We would like to submit further information to supersede the submissions on 2.2.2026 11:07a.m. and 2.2.2026 3:14p.m.

It is noted that there are some overgrown vegetation and silting in the downstream channel outside the site (see Plan 6.3 and viewpoints 10-12). The applicant undertakes to clear these overgrown vegetation and silting.

Regards,
Alan Poon

--
[Goldrich Planners and Surveyors Ltd.](#)
[REDACTED]

Notice to recipient: This e-mail is meant for only the intended recipient of the transmission, and may contain information of Goldrich Planners and Surveyors Ltd. that is confidential and/or privileged. If you received this e-mail in error, any review, use, dissemination, distribution, or copying of this e-mail is strictly prohibited. Please notify us immediately of the error by return e-mail and please delete this message from your system. Thank you in advance for your cooperation.

Your Ref.: A/YL-PH/1077

Our Ref.: P25025/TL26046

3 February 2026

The Secretary
Town Planning Board
15/F., North Point Government Offices
333 Java Road, North Point, Hong Kong

By Post and E-mail
tpbpd@pland.gov.hk

Dear Sir,

Submission of Further Information

**Proposed Temporary Warehouse (excluding Dangerous Goods Godown) with
Ancillary Office and associated Filling of Land for a Period of 3 Years
Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111
and Adjoining Government Land, Pat Heung, Yuen Long
(Application No.: A/YL-PH/1077)**

We would like to submit further information to respond to the comments from Drainage Services Department.

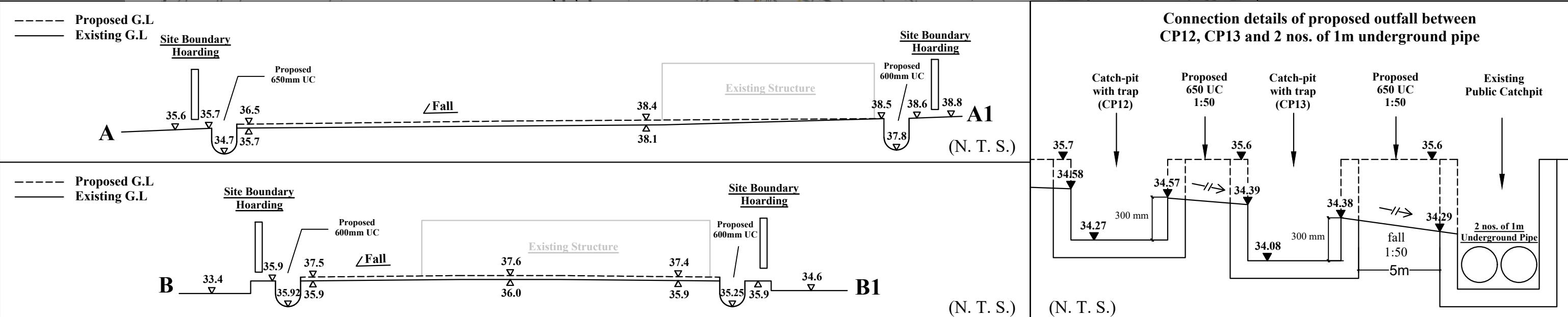
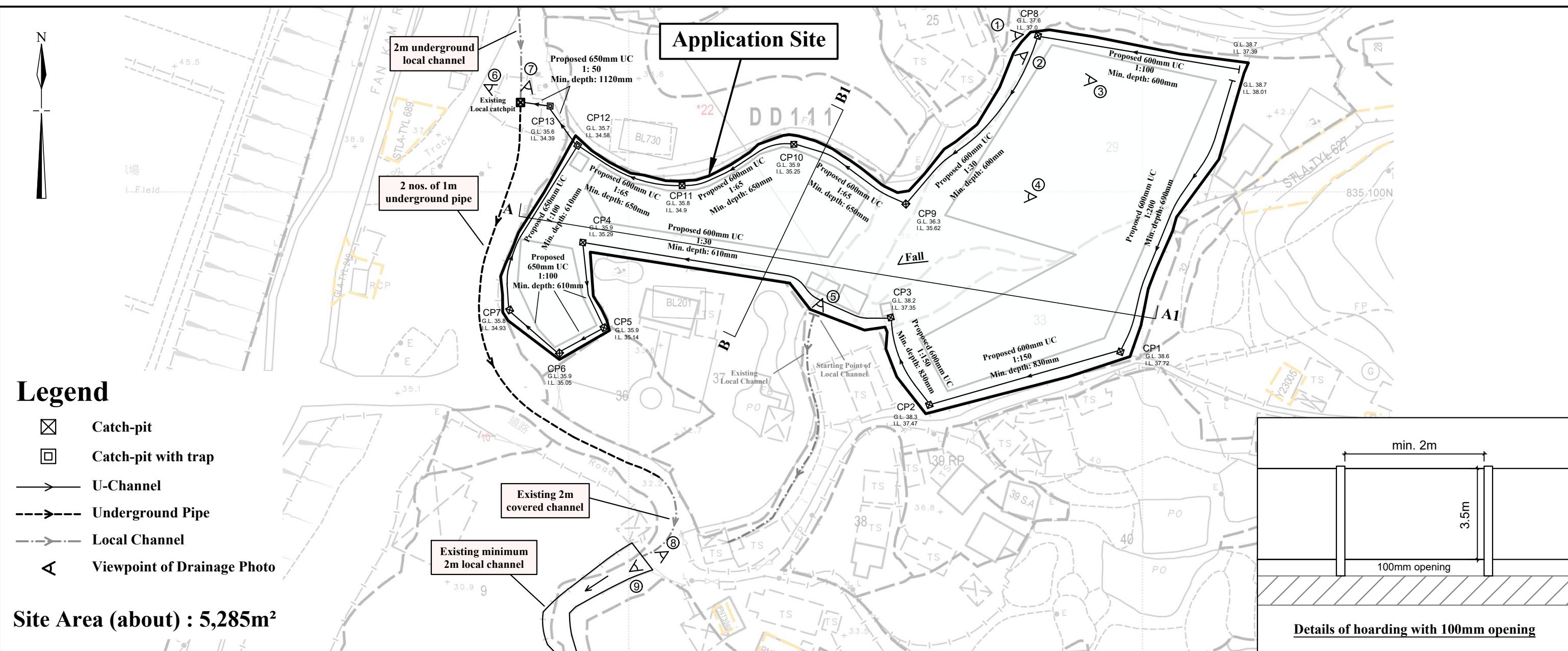
It is noted that there are some overgrown vegetations and silting in the downstream channel outside the site (see Plan 6.3 and viewpoints 10-12). The applicant undertakes to clear these overgrown vegetation and silting.

Yours faithfully,
For and on behalf of
Goldrich Planners & Surveyors Ltd.

Alan Poon p.p.
Francis Lau

Encl.

c.c.

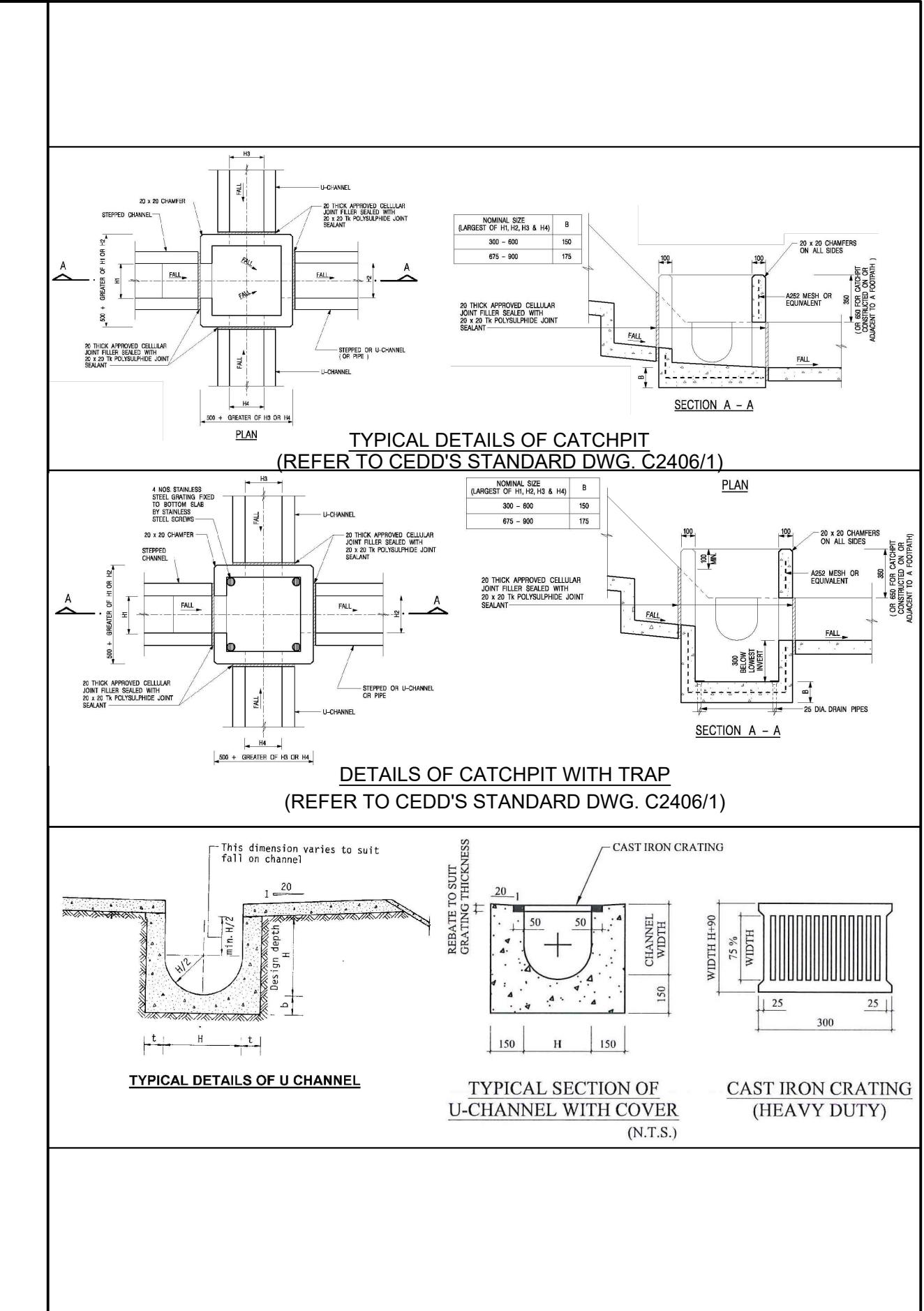
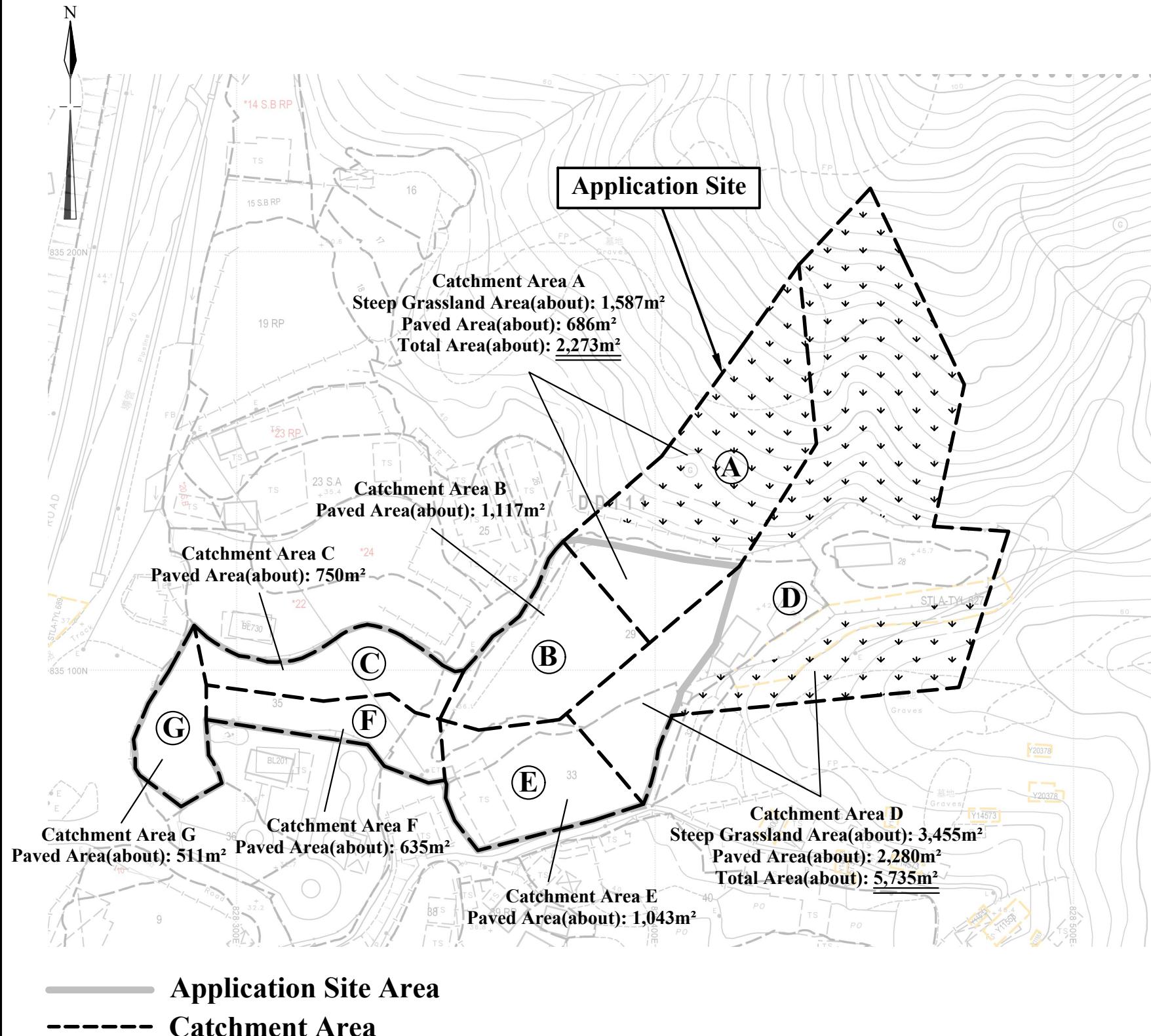


DPO/FS&YLE, PlanD [REDACTED] *by email only*

Comments from Drainage Services Department dated 30.1.2026

Contact person: [REDACTED]

	Comments	Responses																																						
i.	The hydraulic capacity of the proposed downstream facility (from CP12 to the existing underground pipe - 600mm u-channel at 1:100) should be larger than the upstream ones. (from CP11 to CP12 - 600mm u-channel at 1:50). A similar case is also happened for the proposed drainage facility from CP3 to CP4 - 600mm u-channel at 1:30. Please review the size and gradient of the proposed drainage facility at downstream.	<p>The u-channels after CP4 are upgraded to 650mm u-channels. The hydraulic capacity of the proposed downstream facility is larger than the upstream. The hydraulic capacity is as follows:</p> <table border="1"> <thead> <tr> <th>Section of U-channel</th> <th>Specification of U-channel</th> <th>Capacity</th> <th>Capacity larger than Upstream?</th> </tr> </thead> <tbody> <tr> <td>Before CP1</td> <td>600mm UC 1:200 min. depth: 690mm</td> <td>0.820 m³/s</td> <td>Yes</td> </tr> <tr> <td>CP1-CP3</td> <td>600mm UC 1:150 min. depth: 830mm</td> <td>0.907 m³/s</td> <td>Yes</td> </tr> <tr> <td>CP3-CP4</td> <td>600mm UC 1:30 min. depth: 610mm</td> <td>1.318 m³/s</td> <td>Yes</td> </tr> <tr> <td>CP4-CP12</td> <td>650mm UC 1:100 min. depth: 610mm</td> <td>1.740 m³/s</td> <td>Yes</td> </tr> <tr> <td>Before CP8</td> <td>600mm UC 1:100 min. depth: 600mm</td> <td>0.704 m³/s</td> <td>Yes</td> </tr> <tr> <td>CP8-CP9</td> <td>600mm UC 1:30 min. depth: 600mm</td> <td>1.529 m³/s</td> <td>Yes</td> </tr> <tr> <td>CP9-CP12</td> <td>600mm UC 1:65 min. depth: 650mm</td> <td>1.925 m³/s</td> <td>Yes</td> </tr> <tr> <td>After CP12</td> <td>650mm UC 1:50 min. depth: 1120mm</td> <td>2.973 m³/s</td> <td>Yes</td> </tr> </tbody> </table>			Section of U-channel	Specification of U-channel	Capacity	Capacity larger than Upstream?	Before CP1	600mm UC 1:200 min. depth: 690mm	0.820 m ³ /s	Yes	CP1-CP3	600mm UC 1:150 min. depth: 830mm	0.907 m ³ /s	Yes	CP3-CP4	600mm UC 1:30 min. depth: 610mm	1.318 m ³ /s	Yes	CP4-CP12	650mm UC 1:100 min. depth: 610mm	1.740 m ³ /s	Yes	Before CP8	600mm UC 1:100 min. depth: 600mm	0.704 m ³ /s	Yes	CP8-CP9	600mm UC 1:30 min. depth: 600mm	1.529 m ³ /s	Yes	CP9-CP12	600mm UC 1:65 min. depth: 650mm	1.925 m ³ /s	Yes	After CP12	650mm UC 1:50 min. depth: 1120mm	2.973 m ³ /s	Yes
Section of U-channel	Specification of U-channel	Capacity	Capacity larger than Upstream?																																					
Before CP1	600mm UC 1:200 min. depth: 690mm	0.820 m ³ /s	Yes																																					
CP1-CP3	600mm UC 1:150 min. depth: 830mm	0.907 m ³ /s	Yes																																					
CP3-CP4	600mm UC 1:30 min. depth: 610mm	1.318 m ³ /s	Yes																																					
CP4-CP12	650mm UC 1:100 min. depth: 610mm	1.740 m ³ /s	Yes																																					
Before CP8	600mm UC 1:100 min. depth: 600mm	0.704 m ³ /s	Yes																																					
CP8-CP9	600mm UC 1:30 min. depth: 600mm	1.529 m ³ /s	Yes																																					
CP9-CP12	600mm UC 1:65 min. depth: 650mm	1.925 m ³ /s	Yes																																					
After CP12	650mm UC 1:50 min. depth: 1120mm	2.973 m ³ /s	Yes																																					

	Comments	Responses
		Please refer to Hydraulic Calculation Page 1 to Page 8 for reference. The hydraulic capacity of the drainage facilities is underlined.
ii.	Please indicate clearly the full alignment of the discharge path from the application site all the way down to the ultimate discharge point (e.g. a well-established stream course/public drainage system) for the existing underground pipe and provide site photos to demonstrate its presence and existing condition at downstream.	<p>Please refer to Plan 6.3 showing the viewpoints of photographs and attached drainage photographs.</p> <p>It is observed that there are some weeds in the channel downstream (Viewpoints 11 and 12). The applicant undertakes to clear the weeds.</p>
iii.	The development should neither obstruct overland flow and nor adversely affect existing natural streams, village drains, ditches and the adjacent areas, etc.	Noted.
iv.	Please resolve any conflict/disagreement with relevant lot owner(s) and seek permission from DLO/YL for laying new drains/channels and/or modifying/upgrading existing ones in other private lots or on Government Land, where required, outside the application site(s)	Noted.

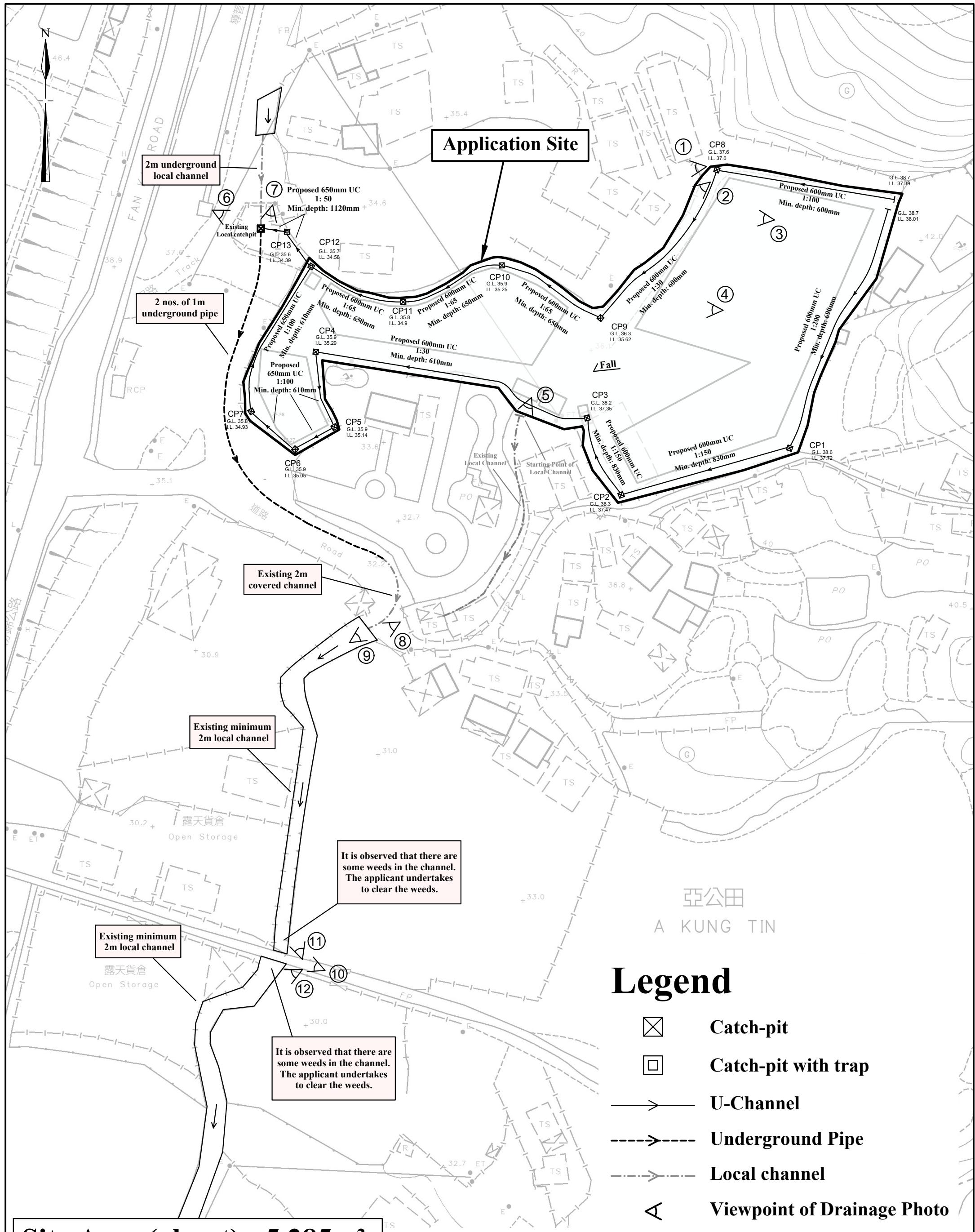


Drainage Proposal

**Lot 29(part), 33(part) and 35(part) in DD.111
and adjoining government land
Yuen Long, N.T.**

Goldrich Planners & Surveyors Ltd.

Plan 6.1b (P 25025)

January 2026


N.T.S

January 2026

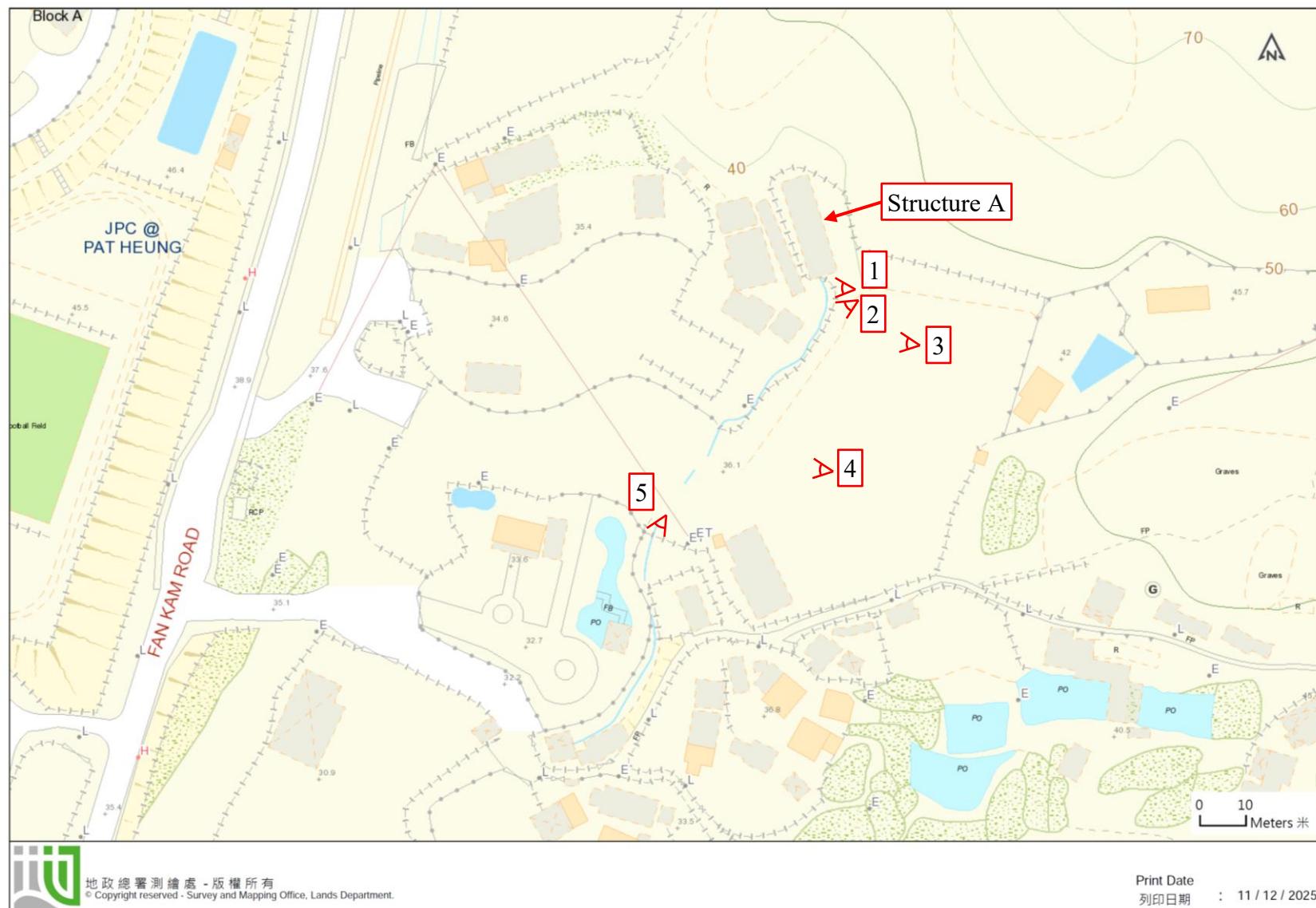
Drainage Proposal
Lot 29(part), 33(part) and 35(part) in DD.111
and adjoining government land
Yuen Long, N.T.

Goldrich Planners &
Surveyors Ltd.

Plan 6.2b
(P 25025)

1:750(A3)

Drainage Proposal


Lot 29(part), 33(part) and 35(part) in DD.111
and adjoining government land
Yuen Long, N.T.

Goldrich Planners &
Surveyors Ltd.

February 2026

Plan 6.3
(P 25025)

Map A

Viewpoint 1

Viewpoint 2

Viewpoint 3

Viewpoint 4

Viewpoint 5

Viewpoint 6

Viewpoint 7

Viewpoint 8

Viewpoint 9

Viewpoint 10

Viewpoint 11

Viewpoint 12

<p>1 For Catchment Area A</p> <table> <tbody> <tr> <td>Area, A</td><td>=</td><td>2273 m²</td><td rowspan="3">Ref.</td></tr> <tr> <td>Average slope, H</td><td>=</td><td>47.5 m per 100m</td></tr> <tr> <td>Distance on the line of natural flow, L</td><td>=</td><td>77 m</td></tr> </tbody> </table> <p>Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (77) / (47.5^{0.2} \cdot 2273^{0.1})$ = 2.4 min</p>	Area, A	=	2273 m ²	Ref.	Average slope, H	=	47.5 m per 100m	Distance on the line of natural flow, L	=	77 m	SDM 7.5.2 (d)																	
Area, A	=	2273 m ²	Ref.																									
Average slope, H	=	47.5 m per 100m																										
Distance on the line of natural flow, L	=	77 m																										
<p>2 For Proposed UC in Catchment Area A</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> <th></th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.70</td> <td>37.60</td> <td></td> </tr> <tr> <td>Invert level (mPD)</td> <td>37.39</td> <td>37.00</td> <td></td> </tr> </tbody> </table>		From	To		Ground level (mPD)	38.70	37.60		Invert level (mPD)	37.39	37.00																	
	From	To																										
Ground level (mPD)	38.70	37.60																										
Invert level (mPD)	37.39	37.00																										
<p>Width of u-channel, w = 600 mm Length of u-channel, L_c = 39.2 m Depth of vertical part of u-channel, d = 300 mm Gradient of u-channel, S_f = $(37.39-37) / 39.2 = 0.010$</p> <p>Cross-Section Area, a = $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 300$ = 0.321 m² Wetted Perimeter, p = $\pi r + 2 d = 3.14 \times 300 + 2 \times 300$ = 1.542 m Hydraulic radius, R = $a / p = 0.208$ m</p>	SDM 8.2.1																											
<p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n</td> <td>=</td> <td>0.016</td> <td>for concrete lined channels:-</td> <td rowspan="3">SDM Table 13</td> </tr> <tr> <td>Allowable velocity, v</td> <td>=</td> <td>$R^{1/6} \times (RS_f)^{1/2} / n = (0.208)^{1/6} \times (0.208 \times 0.01)^{1/2} / 0.016$</td> <td></td> </tr> <tr> <td></td> <td>=</td> <td>2.19 m/s</td> <td></td> </tr> <tr> <td>Time of flow, t_f</td> <td>=</td> <td>0.3 min</td> <td></td> <td>SDM Table 12</td> </tr> </tbody> </table>	Take n	=	0.016	for concrete lined channels:-	SDM Table 13	Allowable velocity, v	=	$R^{1/6} \times (RS_f)^{1/2} / n = (0.208)^{1/6} \times (0.208 \times 0.01)^{1/2} / 0.016$			=	2.19 m/s		Time of flow, t_f	=	0.3 min		SDM Table 12	SDM Table 12									
Take n	=	0.016	for concrete lined channels:-	SDM Table 13																								
Allowable velocity, v	=	$R^{1/6} \times (RS_f)^{1/2} / n = (0.208)^{1/6} \times (0.208 \times 0.01)^{1/2} / 0.016$																										
	=	2.19 m/s																										
Time of flow, t_f	=	0.3 min		SDM Table 12																								
<p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i</td> <td>=</td> <td>$a / (t_o + t_f + b)^c$</td> <td rowspan="3">SDM 4.3.2</td> </tr> <tr> <td></td> <td>=</td> <td>$505.5 / (2.4 + 0.3 + 3.29)^{0.355}$ for return period T = 50 years</td> </tr> <tr> <td></td> <td>=</td> <td>268</td> </tr> <tr> <td>Type of surface</td> <td></td> <td>Runoff Coefficient C</td> <td>Catchment Area A (m²)</td> <td rowspan="4">SDM 7.5.2 (b)</td> </tr> <tr> <td>Steep Glassland(heavy soil)</td> <td></td> <td>0.35</td> <td>1587.0</td> </tr> <tr> <td>Concrete Paving</td> <td></td> <td>0.95</td> <td>686.0</td> </tr> <tr> <td></td> <td></td> <td></td> <td>SUM = 1207.2</td> </tr> </tbody> </table>	Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2		=	$505.5 / (2.4 + 0.3 + 3.29)^{0.355}$ for return period T = 50 years		=	268	Type of surface		Runoff Coefficient C	Catchment Area A (m ²)	SDM 7.5.2 (b)	Steep Glassland(heavy soil)		0.35	1587.0	Concrete Paving		0.95	686.0				SUM = 1207.2	Corrigendum 1/2024 SDM Table 3a
Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2																									
	=	$505.5 / (2.4 + 0.3 + 3.29)^{0.355}$ for return period T = 50 years																										
	=	268																										
Type of surface		Runoff Coefficient C	Catchment Area A (m ²)	SDM 7.5.2 (b)																								
Steep Glassland(heavy soil)		0.35	1587.0																									
Concrete Paving		0.95	686.0																									
			SUM = 1207.2																									
<p>Upstream flow, Q_u = 0 m³/s</p> <p>Design flow, Q_d = $1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km² = $1.16 \times 0.278 \times 268 \times 1207.15 / 1000000 + 0$ = 0.104 m³/s</p> <p>Allowable flow, Q_a = $a \times v$ = 0.321×2.19 = 0.704 m³/s > Q_d (O.K.)</p>	SDM 7.5.2 (a) Corrigendum 1/2022																											
<p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>																												
Scale: NA	Hydraulic Calculation	Goldrich Planners & Surveyors Ltd.																										
January 2026	Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long	Page 1 (P25025)																										

<p>1 For Catchment Area B</p> <p>Area, A = 1117 m² Average slope, H = 0.1 m per 100m Distance on the line of natural flow, L = 22.5 m</p> <p>Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (22.5) / (0.1^{0.2} \cdot 1117^{0.1})$ = 2.6 min</p> <p>2 For Proposed UC in Catchment Area B</p> <table border="1" data-bbox="176 428 784 508"> <thead> <tr> <th></th><th>From</th><th>To</th></tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td><td>37.60</td><td>36.30</td></tr> <tr> <td>Invert level (mPD)</td><td>37.00</td><td>35.62</td></tr> </tbody> </table> <p>Width of u-channel, w = 600 mm Length of u-channel, L_c = 41 m Depth of vertical part of u-channel, d = 380 mm Gradient of u-channel, S_f = $(37-35.62)/41 = 0.0337$</p> <p>Cross-Section Area, a = $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 380$ = 0.369 m² Wetted Perimeter, p = $\pi r + 2 d = 3.14 \times 300 + 2 \times 380$ = 1.702 m Hydraulic radius, R = a / p = 0.217 m</p> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <p>Take n = 0.016 for concrete lined channels:- Allowable velocity, v = $R^{1/6} x (RS_f)^{1/2} / n = (0.217)^{1/6} x (0.217 \times 0.034)^{1/2} / 0.016$ = 4.14 m/s Time of flow, t_f = 0.2 min</p> <p>4 Use "Rational Method" for calculation of design flow</p> <p>Design intensity, i = $a / (t_o + t_f + b)^c$ = $505.5 / (2.6 + 0.2 + 3.29)^{0.355}$ for return period T = 50 years = 267</p> <table border="1" data-bbox="176 1273 1237 1396"> <thead> <tr> <th>Type of surface</th><th>Runoff Coefficient C</th><th>Catchment Area A (m²)</th><th>C x A</th></tr> </thead> <tbody> <tr> <td>Flat Grassland(heavy soil)</td><td>0.25</td><td>0.0</td><td>0.0</td></tr> <tr> <td>Concrete Paving</td><td>0.95</td><td>1117.0</td><td>1061.2</td></tr> <tr> <td></td><td></td><td>SUM =</td><td>1061.2</td></tr> </tbody> </table> <p>Upstream flow, Q_u = 0.104 m³/s</p> <p>Design flow, Q_d = $1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km² = $1.16 \times 0.278 \times 267 \times 1061.15 / 1000000 + 0.104$ = 0.196 m³/s</p> <p>Allowable flow, Q_a = $a \times v$ = 0.369×4.14 = 1.529 m³/s > Q_d (O.K.)</p> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>		From	To	Ground level (mPD)	37.60	36.30	Invert level (mPD)	37.00	35.62	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Flat Grassland(heavy soil)	0.25	0.0	0.0	Concrete Paving	0.95	1117.0	1061.2			SUM =	1061.2	<p>Ref.</p> <p>SDM 7.5.2 (d)</p> <p>SDM 8.2.1</p> <p>SDM Table 13 SDM Table 12</p> <p>SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</p> <p>SDM 7.5.2 (b)</p> <p>SDM 7.5.2 (a) Corrigendum 1/2022</p>
	From	To																								
Ground level (mPD)	37.60	36.30																								
Invert level (mPD)	37.00	35.62																								
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																							
Flat Grassland(heavy soil)	0.25	0.0	0.0																							
Concrete Paving	0.95	1117.0	1061.2																							
		SUM =	1061.2																							
<p>Scale: NA</p> <p>January 2026</p>	<p>Goldrich Planners & Surveyors Ltd.</p> <p>Page 2 (P25025)</p>																									

<p>1 For Catchment Area C</p> <table> <tbody> <tr> <td>Area, A</td> <td>=</td> <td>750 m²</td> <td rowspan="3">Ref.</td> </tr> <tr> <td>Average slope, H</td> <td>=</td> <td>0.1 m per 100m</td> </tr> <tr> <td>Distance on the line of natural flow, L</td> <td>=</td> <td>15 m</td> </tr> <tr> <td>Time of concentration, t_o</td> <td>=</td> <td>$0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (15) / (0.1^{0.2} \cdot 750^{0.1})$</td> <td>SDM 7.5.2 (d)</td> </tr> <tr> <td></td> <td>=</td> <td>1.8 min</td> <td></td> </tr> </tbody> </table> <p>2 For Proposed UC in Catchment Area C</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>36.30</td> <td>35.70</td> </tr> <tr> <td>Invert level (mPD)</td> <td>35.62</td> <td>34.58</td> </tr> </tbody> </table> <table> <tbody> <tr> <td>Width of u-channel, w</td> <td>=</td> <td>600 mm</td> <td rowspan="4">SDM 8.2.1</td> </tr> <tr> <td>Length of u-channel, L_c</td> <td>=</td> <td>67.5 m</td> </tr> <tr> <td>Depth of vertical part of u-channel, d</td> <td>=</td> <td>820 mm</td> </tr> <tr> <td>Gradient of u-channel, S_f</td> <td>=</td> <td>$(35.62 - 34.58) / 67.5 = 0.0154$</td> </tr> <tr> <td>Cross-Section Area, a</td> <td>=</td> <td>$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 820$</td> <td></td> </tr> <tr> <td></td> <td>=</td> <td>0.633 m²</td> <td></td> </tr> <tr> <td>Wetted Perimeter, p</td> <td>=</td> <td>$\pi r + 2d = 3.14 \times 300 + 2 \times 820$</td> <td></td> </tr> <tr> <td></td> <td>=</td> <td>2.582 m</td> <td></td> </tr> <tr> <td>Hydraulic radius, R</td> <td>=</td> <td>a / p</td> <td></td> </tr> <tr> <td></td> <td>=</td> <td>0.245 m</td> <td></td> </tr> </tbody> </table> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n</td> <td>=</td> <td>0.016 for concrete lined channels:-</td> <td rowspan="3">SDM Table 13</td> </tr> <tr> <td>Allowable velocity, v</td> <td>=</td> <td>$R^{1/6} x (RS_f)^{1/2} / n = (0.245)^{1/6} x (0.245 \times 0.015)^{1/2} / 0.016$</td> </tr> <tr> <td></td> <td>=</td> <td>3.04 m/s</td> </tr> <tr> <td>Time of flow, t_f</td> <td>=</td> <td>0.4 min</td> <td>SDM Table 12</td> </tr> </tbody> </table> <p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i</td> <td>=</td> <td>$a / (t_o + t_f + b)^c$</td> <td rowspan="3">SDM 4.3.2</td> </tr> <tr> <td></td> <td>=</td> <td>$505.5 / (1.8 + 0.4 + 3.29)^{0.355}$ for return period T = 50 years</td> </tr> <tr> <td></td> <td>=</td> <td>277</td> </tr> <tr> <td>Type of surface</td> <td></td> <td>Runoff Coefficient C</td> <td rowspan="4">Corrigendum 1/2024</td> </tr> <tr> <td>Flat Grassland(heavy soil)</td> <td></td> <td>0.25</td> </tr> <tr> <td>Concrete Paving</td> <td></td> <td>0.95</td> </tr> <tr> <td></td> <td></td> <td>Catchment Area A (m²)</td> </tr> <tr> <td></td> <td></td> <td>750.0</td> <td rowspan="3">SDM Table 3a</td> </tr> <tr> <td></td> <td></td> <td>712.5</td> </tr> <tr> <td></td> <td></td> <td>SUM = 712.5</td> </tr> <tr> <td>Upstream flow, Q_u</td> <td>=</td> <td>0.196 m³/s</td> <td rowspan="4">SDM 7.5.2 (b)</td> </tr> <tr> <td>Design flow, Q_d</td> <td>=</td> <td>$1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km²</td> </tr> <tr> <td></td> <td>=</td> <td>$1.16 \times 0.278 \times 277 \times 712.5 / 1000000 + 0.196$</td> </tr> <tr> <td></td> <td>=</td> <td>0.260 m³/s</td> </tr> <tr> <td>Allowable flow, Q_a</td> <td>=</td> <td>$a \times v$</td> <td rowspan="4">Corrigendum 1/2022</td> </tr> <tr> <td></td> <td>=</td> <td>0.633×3.04</td> </tr> <tr> <td></td> <td>=</td> <td>1.925 m³/s</td> </tr> <tr> <td></td> <td>></td> <td>Q_d (O.K.)</td> </tr> </tbody> </table> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>	Area, A	=	750 m ²	Ref.	Average slope, H	=	0.1 m per 100m	Distance on the line of natural flow, L	=	15 m	Time of concentration, t _o	=	$0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (15) / (0.1^{0.2} \cdot 750^{0.1})$	SDM 7.5.2 (d)		=	1.8 min			From	To	Ground level (mPD)	36.30	35.70	Invert level (mPD)	35.62	34.58	Width of u-channel, w	=	600 mm	SDM 8.2.1	Length of u-channel, L _c	=	67.5 m	Depth of vertical part of u-channel, d	=	820 mm	Gradient of u-channel, S _f	=	$(35.62 - 34.58) / 67.5 = 0.0154$	Cross-Section Area, a	=	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 820$			=	0.633 m ²		Wetted Perimeter, p	=	$\pi r + 2d = 3.14 \times 300 + 2 \times 820$			=	2.582 m		Hydraulic radius, R	=	a / p			=	0.245 m		Take n	=	0.016 for concrete lined channels:-	SDM Table 13	Allowable velocity, v	=	$R^{1/6} x (RS_f)^{1/2} / n = (0.245)^{1/6} x (0.245 \times 0.015)^{1/2} / 0.016$		=	3.04 m/s	Time of flow, t _f	=	0.4 min	SDM Table 12	Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2		=	$505.5 / (1.8 + 0.4 + 3.29)^{0.355}$ for return period T = 50 years		=	277	Type of surface		Runoff Coefficient C	Corrigendum 1/2024	Flat Grassland(heavy soil)		0.25	Concrete Paving		0.95			Catchment Area A (m ²)			750.0	SDM Table 3a			712.5			SUM = 712.5	Upstream flow, Q _u	=	0.196 m ³ /s	SDM 7.5.2 (b)	Design flow, Q _d	=	$1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A _j is in km ²		=	$1.16 \times 0.278 \times 277 \times 712.5 / 1000000 + 0.196$		=	0.260 m ³ /s	Allowable flow, Q _a	=	$a \times v$	Corrigendum 1/2022		=	0.633×3.04		=	1.925 m ³ /s		>	Q_d (O.K.)	Ref.
Area, A	=	750 m ²	Ref.																																																																																																																																							
Average slope, H	=	0.1 m per 100m																																																																																																																																								
Distance on the line of natural flow, L	=	15 m																																																																																																																																								
Time of concentration, t _o	=	$0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (15) / (0.1^{0.2} \cdot 750^{0.1})$	SDM 7.5.2 (d)																																																																																																																																							
	=	1.8 min																																																																																																																																								
	From	To																																																																																																																																								
Ground level (mPD)	36.30	35.70																																																																																																																																								
Invert level (mPD)	35.62	34.58																																																																																																																																								
Width of u-channel, w	=	600 mm	SDM 8.2.1																																																																																																																																							
Length of u-channel, L _c	=	67.5 m																																																																																																																																								
Depth of vertical part of u-channel, d	=	820 mm																																																																																																																																								
Gradient of u-channel, S _f	=	$(35.62 - 34.58) / 67.5 = 0.0154$																																																																																																																																								
Cross-Section Area, a	=	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 820$																																																																																																																																								
	=	0.633 m ²																																																																																																																																								
Wetted Perimeter, p	=	$\pi r + 2d = 3.14 \times 300 + 2 \times 820$																																																																																																																																								
	=	2.582 m																																																																																																																																								
Hydraulic radius, R	=	a / p																																																																																																																																								
	=	0.245 m																																																																																																																																								
Take n	=	0.016 for concrete lined channels:-	SDM Table 13																																																																																																																																							
Allowable velocity, v	=	$R^{1/6} x (RS_f)^{1/2} / n = (0.245)^{1/6} x (0.245 \times 0.015)^{1/2} / 0.016$																																																																																																																																								
	=	3.04 m/s																																																																																																																																								
Time of flow, t _f	=	0.4 min	SDM Table 12																																																																																																																																							
Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2																																																																																																																																							
	=	$505.5 / (1.8 + 0.4 + 3.29)^{0.355}$ for return period T = 50 years																																																																																																																																								
	=	277																																																																																																																																								
Type of surface		Runoff Coefficient C	Corrigendum 1/2024																																																																																																																																							
Flat Grassland(heavy soil)		0.25																																																																																																																																								
Concrete Paving		0.95																																																																																																																																								
		Catchment Area A (m ²)																																																																																																																																								
		750.0	SDM Table 3a																																																																																																																																							
		712.5																																																																																																																																								
		SUM = 712.5																																																																																																																																								
Upstream flow, Q _u	=	0.196 m ³ /s	SDM 7.5.2 (b)																																																																																																																																							
Design flow, Q _d	=	$1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A _j is in km ²																																																																																																																																								
	=	$1.16 \times 0.278 \times 277 \times 712.5 / 1000000 + 0.196$																																																																																																																																								
	=	0.260 m ³ /s																																																																																																																																								
Allowable flow, Q _a	=	$a \times v$	Corrigendum 1/2022																																																																																																																																							
	=	0.633×3.04																																																																																																																																								
	=	1.925 m ³ /s																																																																																																																																								
	>	Q_d (O.K.)																																																																																																																																								
Scale: NA	Hydraulic Calculation	Goldrich Planners & Surveyors Ltd.																																																																																																																																								
January 2026	Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long	Page 3 (P25025)																																																																																																																																								

<p>1 For Catchment Area D</p> <table> <tbody> <tr> <td>Area, A</td><td>=</td><td>5735 m²</td></tr> <tr> <td>Average slope, H</td><td>=</td><td>48.1 m per 100m</td></tr> <tr> <td>Distance on the line of natural flow, L</td><td>=</td><td>100 m</td></tr> <tr> <td>Time of concentration, t_o</td><td>=</td><td>$0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (100) / (48.1^{0.2} \cdot 5735^{0.1}) = 2.8 \text{ min}$</td></tr> </tbody> </table>	Area, A	=	5735 m ²	Average slope, H	=	48.1 m per 100m	Distance on the line of natural flow, L	=	100 m	Time of concentration, t_o	=	$0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (100) / (48.1^{0.2} \cdot 5735^{0.1}) = 2.8 \text{ min}$	<p>Ref.</p>															
Area, A	=	5735 m ²																										
Average slope, H	=	48.1 m per 100m																										
Distance on the line of natural flow, L	=	100 m																										
Time of concentration, t_o	=	$0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (100) / (48.1^{0.2} \cdot 5735^{0.1}) = 2.8 \text{ min}$																										
<p>2 For Proposed UC in Catchment Area D</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.70</td> <td>38.60</td> </tr> <tr> <td>Invert level (mPD)</td> <td>38.01</td> <td>37.72</td> </tr> </tbody> </table>		From	To	Ground level (mPD)	38.70	38.60	Invert level (mPD)	38.01	37.72	<p>SDM 7.5.2 (d)</p>																		
	From	To																										
Ground level (mPD)	38.70	38.60																										
Invert level (mPD)	38.01	37.72																										
<table> <tbody> <tr> <td>Width of u-channel, w</td> <td>=</td> <td>600 mm</td> </tr> <tr> <td>Length of u-channel, L_c</td> <td>=</td> <td>56.8 m</td> </tr> <tr> <td>Depth of vertical part of u-channel, d</td> <td>=</td> <td>580 mm</td> </tr> <tr> <td>Gradient of u-channel, S_f</td> <td>=</td> <td>$(38.01 - 37.72) / 56.8 = 0.0050$</td> </tr> <tr> <td>Cross-Section Area, a</td> <td>=</td> <td>$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 580$</td> </tr> <tr> <td></td> <td>=</td> <td>0.489 m²</td> </tr> <tr> <td>Wetted Perimeter, p</td> <td>=</td> <td>$\pi r + 2d = 3.14 \times 300 + 2 \times 580$</td> </tr> <tr> <td></td> <td>=</td> <td>2.102 m</td> </tr> <tr> <td>Hydraulic radius, R</td> <td>=</td> <td>$a / p = 0.233 \text{ m}$</td> </tr> </tbody> </table>	Width of u-channel, w	=	600 mm	Length of u-channel, L_c	=	56.8 m	Depth of vertical part of u-channel, d	=	580 mm	Gradient of u-channel, S_f	=	$(38.01 - 37.72) / 56.8 = 0.0050$	Cross-Section Area, a	=	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 580$		=	0.489 m ²	Wetted Perimeter, p	=	$\pi r + 2d = 3.14 \times 300 + 2 \times 580$		=	2.102 m	Hydraulic radius, R	=	$a / p = 0.233 \text{ m}$	<p>SDM 8.2.1</p>
Width of u-channel, w	=	600 mm																										
Length of u-channel, L_c	=	56.8 m																										
Depth of vertical part of u-channel, d	=	580 mm																										
Gradient of u-channel, S_f	=	$(38.01 - 37.72) / 56.8 = 0.0050$																										
Cross-Section Area, a	=	$0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 300^2 + 600 \times 580$																										
	=	0.489 m ²																										
Wetted Perimeter, p	=	$\pi r + 2d = 3.14 \times 300 + 2 \times 580$																										
	=	2.102 m																										
Hydraulic radius, R	=	$a / p = 0.233 \text{ m}$																										
<p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n</td> <td>=</td> <td>0.016 for concrete lined channels:-</td> </tr> <tr> <td>Allowable velocity, v</td> <td>=</td> <td>$R^{1/6} x (RS_f)^{1/2} / n = (0.233)^{1/6} x (0.233 \times 0.005)^{1/2} / 0.016$</td> </tr> <tr> <td></td> <td>=</td> <td>1.68 m/s</td> </tr> <tr> <td>Time of flow, t_f</td> <td>=</td> <td>0.6 min</td> </tr> </tbody> </table>	Take n	=	0.016 for concrete lined channels:-	Allowable velocity, v	=	$R^{1/6} x (RS_f)^{1/2} / n = (0.233)^{1/6} x (0.233 \times 0.005)^{1/2} / 0.016$		=	1.68 m/s	Time of flow, t_f	=	0.6 min	<p>SDM Table 13 SDM Table 12</p>															
Take n	=	0.016 for concrete lined channels:-																										
Allowable velocity, v	=	$R^{1/6} x (RS_f)^{1/2} / n = (0.233)^{1/6} x (0.233 \times 0.005)^{1/2} / 0.016$																										
	=	1.68 m/s																										
Time of flow, t_f	=	0.6 min																										
<p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i</td> <td>=</td> <td>$a / (t_o + t_f + b)^c$</td> </tr> <tr> <td></td> <td>=</td> <td>$505.5 / (2.8 + 0.6 + 3.29)^{0.355} \text{ for return period T = 50 years}$</td> </tr> <tr> <td></td> <td>=</td> <td>258</td> </tr> </tbody> </table>	Design intensity, i	=	$a / (t_o + t_f + b)^c$		=	$505.5 / (2.8 + 0.6 + 3.29)^{0.355} \text{ for return period T = 50 years}$		=	258	<p>SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</p>																		
Design intensity, i	=	$a / (t_o + t_f + b)^c$																										
	=	$505.5 / (2.8 + 0.6 + 3.29)^{0.355} \text{ for return period T = 50 years}$																										
	=	258																										
<table> <thead> <tr> <th>Type of surface</th> <th>Runoff Coefficient C</th> <th>Catchment Area A (m²)</th> <th>C x A</th> </tr> </thead> <tbody> <tr> <td>Steep Glassland(heavy soil)</td> <td>0.35</td> <td>3455.0</td> <td>1209.3</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>2280.0</td> <td>2166.0</td> </tr> <tr> <td></td> <td></td> <td>SUM =</td> <td>3375.3</td> </tr> </tbody> </table>	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Steep Glassland(heavy soil)	0.35	3455.0	1209.3	Concrete Paving	0.95	2280.0	2166.0			SUM =	3375.3	<p>SDM 7.5.2 (b)</p>											
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																									
Steep Glassland(heavy soil)	0.35	3455.0	1209.3																									
Concrete Paving	0.95	2280.0	2166.0																									
		SUM =	3375.3																									
<p>Upstream flow, Q_u = 0 m³/s</p> <p>Design flow, Q_d = $1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km²</p> $= 1.16 \times 0.278 \times 258 \times 3375.25 / 1000000 + 0$ $= 0.281 \text{ m}^3/\text{s}$	<p>SDM 7.5.2 (a) Corrigendum 1/2022</p>																											
<p>Allowable flow, Q_a = $a \times v$</p> $= 0.489 \times 1.68$ $= 0.820 \text{ m}^3/\text{s}$ <p>$> Q_d$ (O.K.)</p>																												
<p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>																												
<p>Scale: NA</p>	<p>Hydraulic Calculation</p>	<p>Goldrich Planners & Surveyors Ltd.</p>																										
<p>January 2026</p>	<p>Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long</p>	<p>Page 4 (P25025)</p>																										

<p>1 For Catchment Area E</p> <table> <tbody> <tr> <td>Area, A</td> <td>=</td> <td>1043 m²</td> <td rowspan="3">Ref.</td> </tr> <tr> <td>Average slope, H</td> <td>=</td> <td>0.1 m per 100m</td> </tr> <tr> <td>Distance on the line of natural flow, L</td> <td>=</td> <td>25 m</td> </tr> </tbody> </table> <p>Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (25) / (0.1^{0.2} \cdot 1043^{0.1})$ = 2.9 min</p> <p>2 For Proposed UC in Catchment Area E</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.60</td> <td>38.20</td> </tr> <tr> <td>Invert level (mPD)</td> <td>37.72</td> <td>37.35</td> </tr> </tbody> </table> <p>Width of u-channel, w = 600 mm Length of u-channel, L_c = 55.3 m Depth of vertical part of u-channel, d = 550 mm Gradient of u-channel, S_f = $(37.72 - 37.35) / 55.3$ = 0.0067</p> <p>Cross-Section Area, a = $0.5 \pi r^2 + w d$ = $0.5 \times 3.14 \times 300^2 + 600 \times 550$ = 0.471 m² Wetted Perimeter, p = $\pi r + 2 d$ = $3.14 \times 300 + 2 \times 550$ = 2.042 m Hydraulic radius, R = a / p = 0.231 m</p> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n</td> <td>=</td> <td>0.016</td> <td>for concrete lined channels:-</td> <td rowspan="3">SDM Table 13 SDM Table 12</td> </tr> <tr> <td>Allowable velocity, v</td> <td>=</td> <td>$R^{1/6} x (RS_f)^{1/2} / n$</td> <td>= $(0.231)^{1/6} \times (0.231 \times 0.007)^{1/2} / 0.016$</td> </tr> <tr> <td></td> <td>=</td> <td>1.92 m/s</td> <td></td> </tr> <tr> <td>Time of flow, t_f</td> <td>=</td> <td>0.5 min</td> <td></td> <td></td> </tr> </tbody> </table> <p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i</td> <td>=</td> <td>$a / (t_o + t_f + b)^c$</td> <td rowspan="3">SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</td> </tr> <tr> <td></td> <td>=</td> <td>$505.5 / (2.9 + 0.5 + 3.29)^{0.355}$ for return period T = 50 years</td> </tr> <tr> <td></td> <td>=</td> <td>258</td> </tr> <tr> <td>Type of surface</td> <td></td> <td>Runoff Coefficient C</td> <td>Catchment Area A (m²)</td> <td rowspan="3">SDM 7.5.2 (b)</td> </tr> <tr> <td>Flat Grassland(heavy soil)</td> <td></td> <td>0.25</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td></td> <td>0.95</td> <td>1043.0</td> </tr> <tr> <td></td> <td></td> <td></td> <td>SUM = 990.9</td> <td></td> </tr> <tr> <td>Upstream flow, Q_u</td> <td>=</td> <td>0.281 m³/s</td> <td></td> <td></td> </tr> <tr> <td>Design flow, Q_d</td> <td>=</td> <td>$1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km²</td> <td rowspan="3">SDM 7.5.2 (a) Corrigendum 1/2022</td> </tr> <tr> <td></td> <td>=</td> <td>$1.16 \times 0.278 \times 258 \times 990.85 / 1000000 + 0.281$</td> </tr> <tr> <td></td> <td>=</td> <td>0.364 m³/s</td> </tr> <tr> <td>Allowable flow, Q_a</td> <td>=</td> <td>$a \times v$</td> <td></td> <td></td> </tr> <tr> <td></td> <td>=</td> <td>0.471×1.92</td> <td></td> <td></td> </tr> <tr> <td></td> <td>=</td> <td>0.907 m³/s</td> <td></td> <td></td> </tr> <tr> <td></td> <td>></td> <td>Q_d (O.K.)</td> <td></td> <td></td> </tr> </tbody> </table> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>	Area, A	=	1043 m ²	Ref.	Average slope, H	=	0.1 m per 100m	Distance on the line of natural flow, L	=	25 m		From	To	Ground level (mPD)	38.60	38.20	Invert level (mPD)	37.72	37.35	Take n	=	0.016	for concrete lined channels:-	SDM Table 13 SDM Table 12	Allowable velocity, v	=	$R^{1/6} x (RS_f)^{1/2} / n$	= $(0.231)^{1/6} \times (0.231 \times 0.007)^{1/2} / 0.016$		=	1.92 m/s		Time of flow, t_f	=	0.5 min			Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a		=	$505.5 / (2.9 + 0.5 + 3.29)^{0.355}$ for return period T = 50 years		=	258	Type of surface		Runoff Coefficient C	Catchment Area A (m ²)	SDM 7.5.2 (b)	Flat Grassland(heavy soil)		0.25	0.0	Concrete Paving		0.95	1043.0				SUM = 990.9		Upstream flow, Q_u	=	0.281 m ³ /s			Design flow, Q_d	=	$1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km ²	SDM 7.5.2 (a) Corrigendum 1/2022		=	$1.16 \times 0.278 \times 258 \times 990.85 / 1000000 + 0.281$		=	0.364 m ³ /s	Allowable flow, Q_a	=	$a \times v$				=	0.471×1.92				=	0.907 m ³ /s				>	Q_d (O.K.)			Ref.
Area, A	=	1043 m ²	Ref.																																																																																																		
Average slope, H	=	0.1 m per 100m																																																																																																			
Distance on the line of natural flow, L	=	25 m																																																																																																			
	From	To																																																																																																			
Ground level (mPD)	38.60	38.20																																																																																																			
Invert level (mPD)	37.72	37.35																																																																																																			
Take n	=	0.016	for concrete lined channels:-	SDM Table 13 SDM Table 12																																																																																																	
Allowable velocity, v	=	$R^{1/6} x (RS_f)^{1/2} / n$	= $(0.231)^{1/6} \times (0.231 \times 0.007)^{1/2} / 0.016$																																																																																																		
	=	1.92 m/s																																																																																																			
Time of flow, t_f	=	0.5 min																																																																																																			
Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a																																																																																																		
	=	$505.5 / (2.9 + 0.5 + 3.29)^{0.355}$ for return period T = 50 years																																																																																																			
	=	258																																																																																																			
Type of surface		Runoff Coefficient C	Catchment Area A (m ²)	SDM 7.5.2 (b)																																																																																																	
Flat Grassland(heavy soil)		0.25	0.0																																																																																																		
Concrete Paving		0.95	1043.0																																																																																																		
			SUM = 990.9																																																																																																		
Upstream flow, Q_u	=	0.281 m ³ /s																																																																																																			
Design flow, Q_d	=	$1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km ²	SDM 7.5.2 (a) Corrigendum 1/2022																																																																																																		
	=	$1.16 \times 0.278 \times 258 \times 990.85 / 1000000 + 0.281$																																																																																																			
	=	0.364 m ³ /s																																																																																																			
Allowable flow, Q_a	=	$a \times v$																																																																																																			
	=	0.471×1.92																																																																																																			
	=	0.907 m ³ /s																																																																																																			
	>	Q_d (O.K.)																																																																																																			
Scale: NA January 2026	<p>Hydraulic Calculation</p> <p>Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long</p>	<p>Goldrich Planners & Surveyors Ltd. Page 5 (P25025)</p>																																																																																																			

<p>1 For Catchment Area F</p> <table> <tbody> <tr> <td>Area, A</td> <td>=</td> <td>635 m²</td> <td rowspan="3">Ref.</td> </tr> <tr> <td>Average slope, H</td> <td>=</td> <td>0.1 m per 100m</td> </tr> <tr> <td>Distance on the line of natural flow, L</td> <td>=</td> <td>16 m</td> </tr> </tbody> </table> <p>Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (16) / (0.1^{0.2} \cdot 635^{0.1})$ = 1.9 min</p> <p>2 For Proposed UC in Catchment Area F</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>38.20</td> <td>35.90</td> </tr> <tr> <td>Invert level (mPD)</td> <td>37.35</td> <td>35.29</td> </tr> </tbody> </table> <p>Width of u-channel, w = 600 mm Length of u-channel, L_c = 61.8 m Depth of vertical part of u-channel, d = 310 mm Gradient of u-channel, S_f = $(37.35 - 35.29) / 61.8$ = 0.0333</p> <p>Cross-Section Area, a = $0.5 \pi r^2 + w d$ = $0.5 \times 3.14 \times 300^2 + 600 \times 310$ = 0.327 m² Wetted Perimeter, p = $\pi r + 2 d$ = $3.14 \times 300 + 2 \times 310$ = 1.562 m Hydraulic radius, R = a / p = 0.210 m</p> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <table> <tbody> <tr> <td>Take n</td> <td>=</td> <td>0.016</td> <td>for concrete lined channels:-</td> <td rowspan="3">SDM Table 13</td> </tr> <tr> <td>Allowable velocity, v</td> <td>=</td> <td>$R^{1/6} \times (RS_f)^{1/2} / n$</td> <td>= $(0.21)^{1/6} \times (0.21 \times 0.033)^{1/2} / 0.016$</td> </tr> <tr> <td></td> <td>=</td> <td>4.03 m/s</td> <td></td> </tr> <tr> <td>Time of flow, t_f</td> <td>=</td> <td>0.3 min</td> <td></td> <td>SDM Table 12</td> </tr> </tbody> </table> <p>4 Use "Rational Method" for calculation of design flow</p> <table> <tbody> <tr> <td>Design intensity, i</td> <td>=</td> <td>$a / (t_o + t_f + b)^c$</td> <td rowspan="3">SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</td> </tr> <tr> <td></td> <td>=</td> <td>$505.5 / (1.9 + 0.3 + 3.29)^{0.355}$ for return period T = 50 years</td> </tr> <tr> <td></td> <td>=</td> <td>277</td> </tr> <tr> <td>Type of surface</td> <td></td> <td>Runoff Coefficient C</td> <td>Catchment Area A (m²)</td> <td rowspan="3">SDM 7.5.2 (b)</td> </tr> <tr> <td>Flat Grassland(heavy soil)</td> <td></td> <td>0.25</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td></td> <td>0.95</td> <td>635.0</td> </tr> <tr> <td></td> <td></td> <td></td> <td>SUM = 603.3</td> </tr> </tbody> </table> <p>Upstream flow, Q_u = 0.364 m³/s</p> <p>Design flow, Q_d = $1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km² = $1.16 \times 0.278 \times 277 \times 603.25 / 1000000 + 0.364$ = 0.418 m³/s</p> <p>Allowable flow, Q_a = $a \times v$ = 0.327×4.03 = 1.318 m³/s > Q_d (O.K.)</p> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>	Area, A	=	635 m ²	Ref.	Average slope, H	=	0.1 m per 100m	Distance on the line of natural flow, L	=	16 m		From	To	Ground level (mPD)	38.20	35.90	Invert level (mPD)	37.35	35.29	Take n	=	0.016	for concrete lined channels:-	SDM Table 13	Allowable velocity, v	=	$R^{1/6} \times (RS_f)^{1/2} / n$	= $(0.21)^{1/6} \times (0.21 \times 0.033)^{1/2} / 0.016$		=	4.03 m/s		Time of flow, t_f	=	0.3 min		SDM Table 12	Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a		=	$505.5 / (1.9 + 0.3 + 3.29)^{0.355}$ for return period T = 50 years		=	277	Type of surface		Runoff Coefficient C	Catchment Area A (m ²)	SDM 7.5.2 (b)	Flat Grassland(heavy soil)		0.25	0.0	Concrete Paving		0.95	635.0				SUM = 603.3	Ref.
Area, A	=	635 m ²	Ref.																																																														
Average slope, H	=	0.1 m per 100m																																																															
Distance on the line of natural flow, L	=	16 m																																																															
	From	To																																																															
Ground level (mPD)	38.20	35.90																																																															
Invert level (mPD)	37.35	35.29																																																															
Take n	=	0.016	for concrete lined channels:-	SDM Table 13																																																													
Allowable velocity, v	=	$R^{1/6} \times (RS_f)^{1/2} / n$	= $(0.21)^{1/6} \times (0.21 \times 0.033)^{1/2} / 0.016$																																																														
	=	4.03 m/s																																																															
Time of flow, t_f	=	0.3 min		SDM Table 12																																																													
Design intensity, i	=	$a / (t_o + t_f + b)^c$	SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a																																																														
	=	$505.5 / (1.9 + 0.3 + 3.29)^{0.355}$ for return period T = 50 years																																																															
	=	277																																																															
Type of surface		Runoff Coefficient C	Catchment Area A (m ²)	SDM 7.5.2 (b)																																																													
Flat Grassland(heavy soil)		0.25	0.0																																																														
Concrete Paving		0.95	635.0																																																														
			SUM = 603.3																																																														
Scale: NA January 2026	<h3>Hydraulic Calculation</h3> <p>Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung, Yuen Long</p>	Goldrich Planners & Surveyors Ltd. Page 6 (P25025)																																																															

<p>1 For Catchment Area G</p> <table> <tbody> <tr> <td>Area, A</td> <td>=</td> <td>511 m²</td> <td rowspan="3">Ref.</td> </tr> <tr> <td>Average slope, H</td> <td>=</td> <td>0.1 m per 100m</td> </tr> <tr> <td>Distance on the line of natural flow, L</td> <td>=</td> <td>10 m</td> </tr> </tbody> </table> <p>Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (10) / (0.1^{0.2} \cdot 511^{0.1})$ = 1.2 min</p> <p>2 For Proposed UC in Catchment Area G</p> <table> <thead> <tr> <th></th> <th>From</th> <th>To</th> </tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td> <td>35.90</td> <td>35.70</td> </tr> <tr> <td>Invert level (mPD)</td> <td>35.29</td> <td>34.58</td> </tr> </tbody> </table> <p>Width of u-channel, w = 650 mm Length of u-channel, L_c = 71.4 m Depth of vertical part of u-channel, d = 795 mm Gradient of u-channel, S_f = $(35.29 - 34.58) / 71.4$ = 0.010</p> <p>Cross-Section Area, a = $0.5 \pi r^2 + w d$ = $0.5 \times 3.14 \times 325^2 + 650 \times 795$ = 0.683 m² Wetted Perimeter, p = $\pi r + 2 d$ = $3.14 \times 325 + 2 \times 795$ = 2.611 m Hydraulic radius, R = a / p = 0.261 m</p> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <p>Take n = 0.016 for concrete lined channels:- Allowable velocity, v = $R^{1/6} x (RS_f)^{1/2} / n$ = $(0.261)^{1/6} x (0.261 \times 0.01)^{1/2} / 0.016$ = 2.55 m/s Time of flow, t_f = 0.5 min</p> <p>4 Use "Rational Method" for calculation of design flow</p> <p>Design intensity, i = $a / (t_o + t_f + b)^c$ = $505.5 / (1.2 + 0.5 + 3.29)^{0.355}$ for return period T = 50 years = 286</p> <table> <thead> <tr> <th>Type of surface</th> <th>Runoff Coefficient C</th> <th>Catchment Area A (m²)</th> <th>C x A</th> </tr> </thead> <tbody> <tr> <td>Flat Grassland(heavy soil)</td> <td>0.25</td> <td>0.0</td> <td>0.0</td> </tr> <tr> <td>Concrete Paving</td> <td>0.95</td> <td>511.0</td> <td>485.5</td> </tr> <tr> <td></td> <td></td> <td>SUM =</td> <td>485.5</td> </tr> </tbody> </table> <p>Upstream flow, Q_u = 0.418 m³/s</p> <p>Design flow, Q_d = $1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km² = $1.16 \times 0.278 \times 286 \times 485.45 / 1000000 + 0.418$ = 0.463 m³/s</p> <p>Allowable flow, Q_a = $a \times v$ = 0.683×2.55 = 1.740 m³/s > Q_d (O.K.)</p> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>	Area, A	=	511 m ²	Ref.	Average slope, H	=	0.1 m per 100m	Distance on the line of natural flow, L	=	10 m		From	To	Ground level (mPD)	35.90	35.70	Invert level (mPD)	35.29	34.58	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Flat Grassland(heavy soil)	0.25	0.0	0.0	Concrete Paving	0.95	511.0	485.5			SUM =	485.5	Ref.
Area, A	=	511 m ²	Ref.																																	
Average slope, H	=	0.1 m per 100m																																		
Distance on the line of natural flow, L	=	10 m																																		
	From	To																																		
Ground level (mPD)	35.90	35.70																																		
Invert level (mPD)	35.29	34.58																																		
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																																	
Flat Grassland(heavy soil)	0.25	0.0	0.0																																	
Concrete Paving	0.95	511.0	485.5																																	
		SUM =	485.5																																	
Scale: NA January 2026	Goldrich Planners & Surveyors Ltd. Page 7 (P25025)																																			

<p>1 For connection between CP12, CP13 and 2 nos. of 1 m underground pipe</p> <p>Area, A = 0 m² Average slope, H = 0.1 m per 100m Distance on the line of natural flow, L = 0 m</p> <p>Time of concentration, t_o = $0.14465L / (H^{0.2}A^{0.1})$ = $0.14465 (0) / (0.1^{0.2} \cdot 0^{0.1})$ = 0.0 min</p> <p>2 For Proposed UC in between CP12, CP13 and 2 nos. of 1 m underground pipe</p> <table border="1" data-bbox="179 422 783 506"> <thead> <tr> <th></th><th>From</th><th>To</th></tr> </thead> <tbody> <tr> <td>Ground level (mPD)</td><td>35.70</td><td>35.60</td></tr> <tr> <td>Invert level (mPD)</td><td>34.58</td><td>34.29</td></tr> </tbody> </table> <p>Width of u-channel, w = 650 mm Length of u-channel, L_c = 14.5 m Depth of vertical part of u-channel, d = 985 mm Gradient of u-channel, S_f = $(34.58 - 34.29) / 14.5$ = 0.020</p> <p>Cross-Section Area, a = $0.5 \pi r^2 + w d$ = $0.5 \times 3.14 \times 325^2 + 650 \times 985$ = 0.806 m² Wetted Perimeter, p = $\pi r + 2 d$ = $3.14 \times 325 + 2 \times 985$ = 2.991 m Hydraulic radius, R = a / p = 0.270 m</p> <p>3 Use Manning Equation for estimating velocity of stormwater</p> <p>Take n = 0.016 for concrete lined channels:- Allowable velocity, v = $R^{1/6} \times (RS_f)^{1/2} / n$ = $(0.27)^{1/6} \times (0.27 \times 0.02)^{1/2} / 0.016$ = 3.69 m/s Time of flow, t_f = 0.1 min</p> <p>4 Use "Rational Method" for calculation of design flow</p> <p>Design intensity, i = $a / (t_o + t_f + b)^c$ = $329 / (0 + 0.1 + 3.29)^{0.355}$ for return period T = 50 years = 329</p> <table border="1" data-bbox="179 1267 1224 1393"> <thead> <tr> <th>Type of surface</th><th>Runoff Coefficient C</th><th>Catchment Area A (m²)</th><th>C x A</th></tr> </thead> <tbody> <tr> <td>Flat Glassland(heavy soil)</td><td>0.25</td><td>0.0</td><td>0.0</td></tr> <tr> <td>Concrete Paving</td><td>0.95</td><td>0.0</td><td>0.0</td></tr> <tr> <td></td><td></td><td>SUM =</td><td>0.0</td></tr> </tbody> </table> <p>Upstream flow, Q_u = 0.723 m³/s</p> <p>Design flow, Q_d = $1.16 \times 0.278 i \sum C_j A_j + Q_u$ where A_j is in km² = $1.16 \times 0.278 \times 329 \times 0 / 1000000 + 0.723$ = 0.723 m³/s</p> <p>Allowable flow, Q_a = $a \times v$ = 0.806×3.69 = 2.973 m³/s > Q_d (O.K.)</p> <p>Reference was made to Stormwater Drainage Manual (SDM) by DSD</p>		From	To	Ground level (mPD)	35.70	35.60	Invert level (mPD)	34.58	34.29	Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A	Flat Glassland(heavy soil)	0.25	0.0	0.0	Concrete Paving	0.95	0.0	0.0			SUM =	0.0	<p>Ref.</p> <p>SDM 7.5.2 (d)</p> <p>SDM 8.2.1</p> <p>SDM Table 13 SDM Table 12</p> <p>SDM 4.3.2 Corrigendum 1/2024 SDM Table 3a</p> <p>SDM 7.5.2 (b)</p> <p>SDM 7.5.2 (a) Corrigendum 1/2022</p>
	From	To																								
Ground level (mPD)	35.70	35.60																								
Invert level (mPD)	34.58	34.29																								
Type of surface	Runoff Coefficient C	Catchment Area A (m ²)	C x A																							
Flat Glassland(heavy soil)	0.25	0.0	0.0																							
Concrete Paving	0.95	0.0	0.0																							
		SUM =	0.0																							
<p>Scale: NA</p> <p>January 2026</p>	<p>Goldrich Planners & Surveyors Ltd.</p> <p>Page 8 (P25025)</p>																									

Previous Applications involving the Site

Approved Application

Application No.	Proposed Uses/Developments	Date of Consideration (RNTPC)
A/YL-PH/768	Proposed Temporary Public Vehicle Park for Private Car and Light Goods Vehicle for a Period of 3 Years	17.8.2018 (Revoked on 17.9.2020)

Rejected Application

Application No.	Proposed Uses/Developments	Date of Consideration (RNTPC)	Rejection Reasons
A/YL-PH/861	Proposed Temporary Recyclable Collection Centre (Recycling of Plastic and Plastic Bottles) with Ancillary Office and Plastic Breaking Workshop for a Period of 3 Years	26.3.2021	(1) and (2)

Rejection Reasons

- (1) The proposed development was not in line with the planning intention of the “Residential (Group D)” zone which was primarily for improvement and upgrading of existing temporary structures within the rural areas through redevelopment of existing temporary structures into permanent buildings, and for low-rise, low-density residential developments subject to planning permission from the Board. No strong planning justification had been given in the submission for a departure from the planning intention, even on a temporary basis.
- (2) The proposed development was not compatible with the surrounding areas where residential structures were found.

**Similar Application within the “Residential (Group D)” Zone
in the Vicinity of the Site in the Past Five Years**

Approved Application

Application No.	Proposed Uses/Developments	Date of Consideration (RNTPC)
A/YL-PH/967	Proposed Temporary Warehouse (excluding Dangerous Goods Godown) with Ancillary Facilities for a Period of 3 Years and Filling of Land	13.10.2023

Government Departments' General Comments

1. Traffic

- (i) Comments of the Commissioner for Transport:
 - no comment on the application from traffic engineering perspective; and
 - advisory comments are at **Appendix V**.
- (ii) Comments of the Chief Highway Engineer/New Territories West, Highways Department (HyD):
 - no in-principle objection to the application from highways maintenance perspective; and
 - advisory comments are at **Appendix V**.

2. Drainage

Comments of the Chief Engineer/Mainland North, Drainage Services Department:

- no in-principle objection to the application from public drainage point of view provided that all existing drains/watercourse should be maintained and the overland flow from adjacent lands should not be affected;
- the submitted drainage proposal is considered acceptable;
- should the application be approved, approval conditions requiring the implementation and maintenance of the accepted drainage facilities for the development should be included in the planning permission; and
- advisory comments are at **Appendix V**.

3. Fire Safety

Comments of the Director of Fire Services:

- no in-principle objection to the application subject to fire service installations being provided to the satisfaction of his department; and
- advisory comments are at **Appendix V**.

4. Landscape Aspect

Comments of the Chief Town Planner/Urban Design and Landscape, Planning Department:

- the application site (the Site) falls within an area zoned “Residential (Group D)” which is a non-landscape sensitive zoning, and no significant landscape impact arising from the proposed use is anticipated.

5. Building Matters

Comments of the Chief Building Surveyor/New Territories West, Buildings Department:

- no objection to the application; and
- advisory comments are at **Appendix V**.

6. District Office's Comments

Comments of the District Officer (Yuen Long), Home Affairs Department:

- no particular comment on the application and no comment received from the locals upon close of consultation.

7. Other Departments

The following government departments have no objection to/no adverse comment/no comment on the application:

- Chief Engineer/Construction, Water Supplies Department;
- Chief Engineer/Railway Development 1-1, HyD; and
- Project Manager (West), Civil Engineering and Development Department.

Recommended Advisory Clauses

- (a) to resolve any land issues relating to the proposed use with the concerned owner(s) and/or occupant(s);
- (b) to note the comments of the District Lands Officer/Yuen Long, Lands Department (DLO/YL, LandsD) that:
 - (i) there is/are unauthorised structure(s) and/or uses on Lot 29 in D.D.111. The lot owner(s) should immediately rectify/apply for regularisation on the lease breaches and his office reserves the rights to take necessary lease enforcement action against the breaches without further notices;
 - (ii) there is/are unauthorised structure(s) and/or uses on Lot 35 in D.D.111 which is/are already subject to lease enforcement actions according to case priority. The lot owner(s) should rectify/apply for regularisation on the lease breaches as demanded by LandsD;
 - (iii) no permission is given for occupation of Government land (GL) (about 523m² subject to verification) included in the application site (the Site). Any occupation of GL without Government's prior approval is an offence under the Land (Miscellaneous Provisions) Ordinance (Cap. 28); and
 - (iv) the lots owner(s) shall apply to his office for a Short Term Waiver (STW) and/or Short Term Tenancy (STT) to permit the structure(s) erected within the said private lot(s) and the occupation of the GL. The application(s) for STW and/or STT will be considered by LandsD acting in the capacity as a landlord and there is no guarantee that it will be approved. The STW and/or STT, if approved, will be subject to such terms and conditions including the payment of waiver fee/rent and administrative fee as considered appropriate by LandsD. Besides, given the proposed use is temporary in nature, only erection of temporary structure(s) will be considered;
- (c) to note the comments of the Commissioner for Transport that:
 - (i) the Site is connected to the public road network via a section of a local access road which is not managed by the Transport Department. The land status of the local access road should be checked with LandsD. Moreover, the management and maintenance responsibilities of the local access road should be clarified with the relevant lands and maintenance authorities accordingly;
 - (ii) sufficient manoeuvring space shall be provided within the Site; and
 - (iii) no vehicle is allowed to queue back to or reverse onto/from public road at any time during the planning approval period;

- (d) to note the comments of the Chief Highway Engineer/New Territories West, Highways Department (HyD) that:
 - (i) the Site involves and is adjoining Government land which is not under HyD's maintenance purview;
 - (ii) HyD shall not be responsible for the maintenance of proposed access connecting the Site to Fan Kam Road, including the local track; and
 - (iii) adequate drainage measures should be provided to prevent surface water running from the Site to nearby public road and drains;
- (e) to note the Comments of the Chief Engineer/Mainland North, Drainage Services Department that:
 - (i) it is noted that the applicant will conduct clearance works for the existing 2m local channel at downstream and all existing drains/watercourse should be maintained and the overland flow from adjacent lands should not be affected. The applicant should implement the drainage facilities on site in accordance with the agreed drainage proposal;
 - (ii) the applicant is required to rectify the drainage system if they are found to be inadequate or ineffective during operation. The applicant shall also be liable for and shall indemnify claims and demands arising out of damage or nuisance caused by a failure of the drainage system;
 - (iii) the existing two 1m pipes, 2m covered channel and 2m local channel, to which the applicant proposed to discharge the stormwater from the Site were not maintained by this office. The applicant(s) shall resolve any conflict/disagreement arisen for discharging the runoff from the Site to the proposed discharge point(s). In the case that it is a local village drains, the District Officer (Yuen Long) should be consulted;
 - (iv) the proposed use would neither obstruct overland flow nor adversely affected any existing natural streams, village drains, ditches and the adjacent areas;
 - (v) the applicant should consult DLO/YL and seek consent from relevant lot owners for any works to be carried out outside his lot boundary before commencement of the drainage works; and
 - (vi) for any change of existing ground level and associated works proposed by the applicant that could affect adjacent land and cause other impacts and/or other issues to public, the applicant is required to submit technical assessment(s) in other aspect(s) and seek comment from relevant departments as necessary;

- (f) to note the comments of the Director of Environmental Protection that:
 - (i) the applicant shall follow the latest 'Code of Practice on Handling the Environmental Aspects of Temporary Uses and Open Storage Sites';
 - (ii) the applicant shall follow the relevant guidelines and requirements in relevant Professional Persons Environmental Consultative Committee Practice Notes (ProPECC PNs), in particular the ProPECC PN 1/23 'Drainage Plans subject to Comment by the Environmental Protection Department' including completion of percolation test and certification by Authorized Person;
 - (iii) the applicant shall provide adequate supporting infrastructure/facilities for proper collection, treatment and disposal of waste/wastewater generated from the proposed use; and
 - (iv) the applicant shall meet the statutory requirements under relevant environmental legislation;
- (g) to note the comments of the Director of Fire Services that:
 - (i) the applicant shall submit relevant layout plans incorporated with the proposed fire service installations (FSIs) to the Fire Services Department for approval. The layout plans should be drawn to scale and depicted with dimensions and nature of occupancy. The location of where the proposed FSIs are to be installed should be clearly marked on the layout plans; and
 - (ii) if the proposed structures are required to comply with the Buildings Ordinance (BO) (Cap. 123), detailed fire services requirements will be formulated upon receipt of formal submission of general building plans;
- (h) to note the comments of the Chief Building Surveyor/New Territories West, Buildings Department (BD) that:
 - (i) it is noted that seven structures and associated filling of land are proposed in the application. Before any new building works (including containers/ open sheds as temporary buildings, demolition and land filling, etc.) are to be carried out on the Site, prior approval and consent of the Building Authority (BA) should be obtained, otherwise they are unauthorized building works (UBW) under the BO. An Authorized Person should be appointed as the co-ordinator for the proposed building works in accordance with the BO;
 - (ii) the Site shall be provided with means of obtaining access thereto from a street and emergency vehicular access in accordance with Regulations 5 and 41D of the Building (Planning) Regulations (B(P)R) respectively;
 - (iii) the Site does not abut on a specified street of not less than 4.5m wide and its permitted development intensity shall be determined under Regulation 19(3) of the B(P)R at building plan submission stage;

- (iv) if the existing structure (not being a New Territories Exempted House) is erected on leased land without the approval of the BA, they are UBW under the BO and should not be designated for any proposed use under the captioned application;
- (v) for UBW erected on leased land, enforcement action may be taken by BD to effect their removal in accordance with the prevailing enforcement policy against UBW as and when necessary. The granting of any planning approval should not be construed as an acceptance of any existing building works or UBW on the Site under the BO;
- (vi) any temporary shelters or converted containers for office, storage, washroom or other uses are considered as temporary buildings are subject to the control of Part VII of the B(P)R; and
- (vii) detailed checking under the BO will be carried out at building plan submission stage.

Urgent Return receipt Expand Group Restricted Prevent Copy

From: [REDACTED]
Sent: 2025-07-31 星期四 04:43:02
To: tpbpd/PLAND <tpbpd@pland.gov.hk>
Subject: A/YL-PH/1077 DD 111 Pat Heung, near FS Training School

A/YL-PH/1077

Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung

Site area: About 4,861m² Includes Government Land of about 424m²

Zoning: "Res (Group D)"

Applied Use: Warehouse / 5 Vehicle Parking / **Filling of Land**

Dear TPB Members,

The Review Application was withdrawn. Now a warehouse complex is proposed.

However, this is not Cat 2 designation and this use would also be incompatible with the location, as per the TPB decision on the withdrawn application.

The application is not in line with the planning intention of Res D.

Mary Mulvihill

From: [REDACTED]
To: tpbpd <tpbpd@pland.gov.hk>
Date: Wednesday, 26 May 2021 2:34 AM HKT
Subject: Re: A/YL-PH/861 DD 111 Pat Heung, near FS Training School

Dear TPB Members,

The proposed use involving recycling of plastic, plastic bottles and plastic breaking was considered not compatible with the surrounding areas which were rural in character intermixed with residential dwellings/structures and vacant/unused land. **A densely vegetated "Conservation Area" zone was also located to the east of the site.**

Recycling depots are prone to fires and leakage of toxic substances. Such a facility is certainly no appropriate for the location.

Review has no merit.

Mary Mulvihill

From: [REDACTED]
To: "tpbpd" <tpbpd@pland.gov.hk>
Sent: Tuesday, November 3, 2020 3:47:23 AM
Subject: A/YL-PH/861 DD 111 Pat Heung

A/YL-PH/861
Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung
Site area : About 5,760m² Includes Government Land of about 829m²
Zoning : "Res (Group D)"
Applied Use : 6 Vehicle Parking

Dear TPB Members,

802 was withdrawn but application is back, with some additional Government Land.

Previous objections upheld.

Mary Mulvihill

From: [REDACTED]
To: "tpbpd" <tpbpd@pland.gov.hk>
Sent: Friday, March 8, 2019 1:55:21 AM
Subject: A/YL-PH/802 DD 111 Pat Heung

Dear TPB Members,

Despite negative comments:

The Chief Town Planner/Urban Design and Landscape, Planning Department (CTP/UD&L, PlanD) had reservation on the application as vegetation had been cleared within the site in 2017 prior to submission of the application. Approval of the application would set an undesirable precedent to encourage vegetation clearance prior to application

and objections that pointed out that this application could not be genuine – 120sqmts per vehicle

MEMBERS HAD NO QUESTION ON THE APPLICATION

Now the real intention of the site has been revealed – a recycling depot.

There are no avenues for objectors to appeal or contest what are obviously blatant failure of members to conduct due diligence with regards to applications and to address objections.

Granted there are dozens of applications to plough through, but if volume and time is an issue then this should be discussed. TPB has 30+ members, only 5 are required for a quorum, so perhaps it is time to consider holding additional meetings for Rural applications.

Recycling operations should operate only within specifically allocated site complete with modern technology, adequate drainage and all the good environmental practices in place.

Sites zoned for residential are certainly not appropriate for what is the ultimate brownfield use as there are frequent reports of fires and other incidents at these operation.

Member please do your duty and look into the particulars of each application.

Mary Mulvihill

From: [REDACTED]
To: "tpbpd" <tpbpd@pland.gov.hk>
Sent: Wednesday, August 1, 2018 2:25:03 AM
Subject: Re: A/YL-PH/768 DD 111 Pat Heung

Dear TPB Members,

Nothing can justify the dedication of 120+SQMTS to parking a single vehicle when we have people in the community living in 50SQFT units.

If you approve this ridiculous application you are indeed instrumental in perpetuation the current land problems.

Mary Mulvihill

From: [REDACTED]
To: "tpbpd" <tpbpd@pland.gov.hk>
Sent: Monday, February 19, 2018 2:29:21 AM
Subject: A/YL-PH/768 DD 111 Pat Heung

A/YL-PH/768

Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung

Site area : About 5,432m² Includes Government Land of about 448m²

Zoning : "Res (Group D)"

Applied Use : 30 Vehicle Parking / 14 Light Goods

Dear TPB Members,

Kung Hei Fat Choi. Hopefully members will follow the lead of the Dog this year in sniffing out unacceptable land uses.

It is time to review this most inefficient form of land use, or abuse being a better term. Now that humans are forced to live in nano flats it is no longer tolerable that hundreds of

hectares of land be devoted to parking vehicles. In this case 120sqmts per vehicle, 5 or 6 times the size of many residential units on the market. **The site is bigger than a village.** How about providing temporary container homes on the site?

The development, that would appear to be an ongoing unapproved brownfield use, is not in line with the planning intention of 'Res D' zone, to provide residential units and/or community services. There was no strong planning justification in the submission to merit a departure from such planning intention, even on a temporary basis.

Parking facilities should be accommodated in high rise buildings, underground or in stacked facilities, see attached. The villagers own 2,100 sqft homes. If they want to keep a car then they should convert a portion of the ground floor of their spacious residences into a car port. This is common practice all over the world and private residential compounds in NT include a car port or two on ground floor of each unit.

Approval of the application, even on a temporary basis, would set an undesirable precedent for similar uses. The cumulative impact of approving such applications would result in a general degradation of the environment of the area.

Mary Mulvihill

tpbpd/PLAND

寄件者: [REDACTED]
寄件日期: 2025年11月02日星期日 12:06
收件者: tpbpd/PLAND
主旨: 申請臨時露天倉
類別: Internet Email

tpbpd@pland.gov.hk

致:城市規劃委員會

申請編號:A/YL-PH/1077

地點: Lot 29 (Part), 33 (Part) and 35 (Part) in D.D.111

地帶: S/YL-PH/11

項目:臨時貨倉

我們亞公田村全村村民,反對上述地段的改變土地用途申請為 臨時貨倉。

城市規劃目的是促進社區的衛生、安全、便利及一般福利,並且為市民締造一個組織更完善、效率更高和更稱心的居住和工作環境,將上述地段改善 臨時貨倉,完全違背了城規會的宗旨。

理由如下:

噪音污染:車輛 24 小時,於臨時貨倉駛出駛入,擾亂居民的安寧生活,增加村民的精神壓力。

破壞環境:以前上址是豬場,農業用地,尚有綠化帶,如今已是面目全非,整體的鄉效和諧,已經完全被破壞,塵土飛揚。

空氣污染:在車輛廢氣和民居相距又近的情況下。汽車噴出的廢氣包括二氧化硫、氧化氮,一氧化碳、鉛、懸浮粒子等,所有污染物都對人體的呼吸系統有害,而鉛更會影影響兒童智力發展。

交通罪行:該處粉錦公路的馬路,是長長斜坡,車速非常快,重型車輛眾多,現在,居民過馬路已經好危險,如改建臨時貨倉,車輛數量急增,會引發更多的交通意外。

河道淤塞:上址由一個農場,然後不停堆高地台至一層樓的高度,已經嚴重影響四周環境, 施工期間的沙泥碎石,不繼流至下游沉積,導致下游經常造成河水氾濫,河水湧入村民家中,嚴重威脅村民的人身安全。

倒塌圍牆:上址不停堆高地台, 導致旁邊的圍牆出現裂痕,如果臨時貨倉一旦建成,只會增加上址地台的承受重量,加快四週圍牆的爆裂狀況,增加圍牆的倒塌危機,嚴重危害村民的人身安全。

盼望城規會體察民情,理解民意,反對上址申請改變為 臨時貨倉。

亞公田村 村民

Rock Tsang

敬上聯絡電話 [REDACTED]

Email [REDACTED]

Regards

Rock Tsang

tpbpd/PLAND

寄件者:

[REDACTED]
2025年11月05日星期三 2:59

寄件日期:

收件者:

tpbpd/PLAND

主旨:

反對A/YL-PH/1077 改建臨時貨倉

類別:

Internet Email

致: 城市規劃委員會

申請編號: A/YL-PH/1077

地點: Lot 29 (Part), 33 (Part) and 35 (Part) in D.D.111

地帶: S/YL-PH/11

項目: 臨時貨倉

我們亞公田村全村村民，反對上述地段的改變土地用途申請為臨時貨倉。

城市規劃目的是促進社區的衛生、安全、便利及一般福利，並且為市民締造一個組織更完善、效率更高和更稱心的居住和工作環境，將上述地段改為臨時貨倉，完全違背了城規會的宗旨。理由如下:

- 噪音污染: 車輛24小時，於臨時貨倉駛出駛入，擾亂居民的安寧生活，增加村民的精神壓力。
- 破壞環境: 以前上址是豬場，農業用地，尚有綠化帶，如今已是面目全非，整體的鄉效和諧，已經完全被破壞，造成塵土飛揚。
- 空氣污染: 在貨倉毗鄰民居的情況下，汽車排放的廢氣包括二氧化硫、氧化氮，一氧化碳、鉛、懸浮粒子等，所有污染物都對人體的呼吸系統有害，而鉛更會影影響兒童智力發展。
- 交通罪行: 該處粉錦公路的馬路，是長長斜坡，車速非常快，重型車輛眾多，又沒有交通過路設施，現在居民經常要快步環過馬路，年長或小朋友甚至乎要跑着過路，常常險象環生好危險，如改建臨時貨倉，車輛數量急增，必要會引發更多的交通意外。
- 倒塌圍牆: 上址不停堆高地台，導致旁邊的圍牆出現裂痕，如果臨時貨倉一旦建成，只會增加上址地台的承受重量，加快四週圍牆的爆裂狀況，增加圍牆的倒塌危機，嚴重危害村民的人身安全。
- 河道淤塞: 上址由一個農場，然後不停堆高地台至一層樓的高度，已經嚴重影響四周環境，施工期間的沙泥碎石，不繼流至下游沉積，導致下游經常造成河水氾濫，河水湧入村民家中，嚴重威脅村民的人身安全，亦造成村民的財物損失。其中2018年暴雨來襲期間（見附圖）上流不斷湧入大量沙石堵塞了河道，引致本人及其他村民的被洪水圍困，居所被黃泥水浸至成人胸口位置，需要消防人員乘坐救生艇來拯救，及後洪水退卻後整個家園一片頽垣敗瓦，大部份電器及傢俬被浸壞，牆身和門框被浸至霉爛，清理家園用了接近兩星期，當時申請的特別援助只獲發HK\$3000，根本完全不夠彌補損失。

假如上址獲批改為臨時貨倉，請問持有人或租用人如何確保其填土工程不會影響河道重蹈2018年沙石流毀壞下游居民家園的覆轍？及以上所有問題均能被完全控制或解決？城規會又有何監管措施和方案，以確保我們全村居民的生活質素維持不變或不會被降低，甚至乎變差？

盼望城規會體察民情，理解民意，反對上址申請改變為臨時貨倉。謝謝！

亞公田村村民 [REDACTED]

關婉怡女士

敬上

聯絡電話: [REDACTED]

Email: [REDACTED]

tpbpd/PLAND

寄件者:

[REDACTED]
2025年11月04日星期二 20:18

寄件日期:

tpbpd/PLAND

收件者:

申請編號:A/YL-PH/1077 地點: Lot 29 (Part), 33 (Part) and 35 (Part) in D.D.111 地帶:

主旨:

S/YL-PH/11 項目:臨時貨倉

類別:

Internet Email

tpbpd@pland.gov.hk

致:城市規劃委員會

申請編號:A/YL-PH/1077

地點: Lot 29 (Part), 33 (Part) and 35 (Part) in D.D.111

地帶: S/YL-PH/11

項目:臨時貨倉

我們亞公田村全村村民,反對上述地段的改變土地用途申請為臨時貨倉。

城市規劃目的是促進社區的衛生、安全、便利及一般福利,並且為市民締造一個組織更完善、效率更高和更稱心的居住和工作環境,將上述地段改善臨時貨倉,完全違背了城規會的宗旨。

理由如下:

噪音污染:車輛 24 小時,於臨時貨倉駛出駛入,擾亂居民的安寧生活,增加村民的精神壓力。

破壞環境:以前上址是豬場,農業用地,尚有綠化帶,如今已是面目全非,整體的鄉效和諧,已經完全被破壞,塵土飛揚。

空氣污染:在車輛廢氣和民居相距又近的情況下。汽車噴出的廢氣包括二氧化硫、氧化氮,一氧化碳、鉛、懸浮粒子等,所有污染物都對人體的呼吸系統有害,而鉛更會影影響兒童智力發展。

交通罪行:該處粉錦公路的馬路,是長長斜坡,車速非常快,重型車輛眾多,現在,居民過馬路已經好危險,如改建臨時貨倉,車輛數量急增,會引發更多的交通意外。

河道淤塞:上址由一個農場,然後不停堆高地台至一層樓的高度,已經嚴重影響四周環境,施工期間的沙泥碎石,不繼流至下游沉積,導致下游經常造成河水氾濫,河水湧入村民家中,嚴重威脅村民的人身安全。

倒塌圍牆:上址不停堆高地台,導致旁邊的圍牆出現裂痕,如果臨時貨倉一旦建成,只會增加上址地台的承受重量,加快四週圍牆的爆裂狀況,增加圍牆的倒塌危機,嚴重危害村民的人身安全。

盼望城規會體察民情,理解民意,反對上址申請改變為臨時貨倉。

亞公田村所有村民

代表:林太(黃玉珍)

敬上聯絡電話

Email

tpbpd/PLAND

寄件者:

寄件日期:

2025年11月05日星期三 12:45

收件者:

tpbpd/PLAND

主旨:

Comments and Objection to Planning Application A/YL-PH/1077

類別:

Internet Email

Attention : Town Planning Board ("the Board")
Subject : Comments and Objection to Planning Application A/YL-PH/1077
Location : Lot 29 (Part), 33 (Part) and 35 (Part) in D.D. 111
Date : November 5, 2025
Submission : By email (tpbpd@pland.gov.hk)

Dear Sir/Madam,

With regards to the Planning Application A/YL-PH/1077, proposing to convert into Temporary Warehouse with Ancillary Facilities, and Associated Filling of Land, I would like to (i) raise my **objection and grounds** against the application; and (ii) bring to the Board's attention the **recent deliberate non-compliance history of this applicant** who caused irreversible environmental damage and adverse nuisances to the vicinity and neighborhood.

Potential negative and adverse impacts of the Application

1. **Grave Road Safety Concern.** There are many residential dwellings, with one godown storage and one stone processing factory already in the vicinity of the location. There is **only one narrow one-way branch road** connecting this area to the main road (i.e., Fan Kam Road). The existing traffic flow along Fan Kam Road and the branch road is already very dense consisting of heavy-duty and long cargo trucks. As the branch road is a downward slope with a steep gradient, any approval of further warehouses/godowns will result in a **sharp spike in truck traffic flow** which certainly lead to **more traffic accidents and severely threaten the life and safety of the residents and other road users** of Fan Kam Road and the branch road.

2. **Air and Noise Pollutions.** The traffic flow of heavy-duty and long cargo trucks from one existing godown storage and one stone processing factory has already caused considerable **road surface fracture, dust and exhaust**. Approving any further warehouse/godown facility will lead to increased heavy truck traffic 24/7 and **aggravate the adverse impacts on the physical and mental health of the residents and wildlife** living adjacent to these facilities.

3. **Worsening Flooding Problem.** In light of frequent severe rainstorms and typhoons in recent years, there have been repeated reports to the local District Council and Drainage Services Department of ongoing flooding threats due to overflowing of the river tributary in the area. Thanks to the considerable efforts jointly by various governmental bodies, this flooding problem has been contained in the past two years. However, if the Board were to approve this proposed application, which is purportedly a large-area warehouse site, (i) the stack-up containers, metal structures and construction materials to be placed on the site, (ii) elevated concrete platforms and entrance to the site, and (iii) additional road surface fracture and soil erosion due to permanent removal of nearby greenbelt, will certainly obstruct the drainage of rainwater and more importantly, turn all prior governmental works to alleviate flooding into futile efforts.

Last but not least, I would urge the Board to seriously take note of the **recent non-compliance track record** of this Applicant in considering application. In May 2025, this applicant was reported of (i) **committing illegal land filling and fly-tipping**; (ii) **elevating concrete platform and erecting fixed structures without prior TPD approval**; (iii) To hide its illegal actions, it deliberately operated after dark at night. If without the reports filed as well as the joint investigation and monitoring by Environmental Protection Department, Lands Department and the Board, the applicant would have ignored and bypassed all regulatory oversight and approval requirements, and converted the site to an illegal warehousing facility. Therefore, there is a high inherent risk of potential material deviations to the proposal presented in application which may

Urgent Return receipt Expand Group Restricted Prevent Copy

potentially cause further irreparable destruction to the environment and heightened concerns and unrest to the neighboring residents.

I earnestly hope the Board could give due regards to the abovementioned grounds and concerns when considering the Planning Application A/YL-PH/1077. Thank you for your attention

Yours faithfully,

Yvonne Lo

Tel: [REDACTED]

Email: [REDACTED]

tpbpd/PLAND

寄件者:

2025年11月18日星期二 3:20

寄件日期:

tpbpd/PLAND

收件者:

Re: A/YL-PH/1077 DD 111 Pat Heung, near FS Training School

主旨:

類別:

Internet Email

Dear TPB Members,

Site size has been revised to 5,285m² which includes 523m² of Government Land.

Members should refer to issues pertaining to Drainage, unauthorized structures and occupation of GL.

Are you going to again reward both Destroy to Build and illegal operaitons?

Mary Mulvihill

From:

To: tpbpd <tpbpd@pland.gov.hk>

Date: Thursday, 31 July 2025 4:43 AM HKT

Subject: A/YL-PH/1077 DD 111 Pat Heung, near FS Training School

A/YL-PH/1077

Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung

Site area: About 4,861m² Includes Government Land of about 424m²

Zoning: "Res (Group D)"

Applied Use: Warehouse / 5 Vehicle Parking / **Filling of Land**

Dear TPB Members,

The Review Application was withdrawn. Now a warehouse complex is proposed.

However, this is not Cat 2 designation and this use would also be incompatible with the location, as per the TPB decision on the withdrawn application.

The application is not in line with th planning intention of Res D.

Mary Mulvihill

From: [REDACTED]

To: tpbpd <tpbpd@pland.gov.hk>

Date: Wednesday, 26 May 2021 2:34 AM HKT

Subject: Re: A/YL-PH/861 DD 111 Pat Heung, near FS Training School

Dear TPB Members,

The proposed use involving recycling of plastic, plastic bottles and plastic breaking was considered not compatible with the surrounding areas which were rural in character intermixed with residential dwellings/structures and vacant/unused land. **A densely vegetated “Conservation Area” zone was also located to the east of the site.**

Recycling depots are prone to fires and leakage of toxic substances. Such a facility is certainly no appropriate for the location.

Review has no merit.

Mary Mulvihill

From: [REDACTED]

To: "tpbpd" <tpbpd@pland.gov.hk>

Sent: Tuesday, November 3, 2020 3:47:23 AM

Subject: A/YL-PH/861 DD 111 Pat Heung

A/YL-PH/861

Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung
Site area : About 5,760m² Includes Government Land of about 829m²

Zoning : "Res (Group D)"

Applied Use : 6 Vehicle Parking

Dear TPB Members,

802 was withdrawn but application is back, with some additional Government Land.

Previous objections upheld.

Mary Mulvihill

From: [REDACTED]

To: "tpbpd" <tpbpd@pland.gov.hk>

Urgent Return receipt Expand Group Restricted Prevent Copy

Sent: Friday, March 8, 2019 1:55:21 AM

Subject: A/YL-PH/802 DD 111 Pat Heung

Dear TPB Members,

Despite negative comments:

The Chief Town Planner/Urban Design and Landscape, Planning Department (CTP/UD&L, PlanD) had reservation on the application as vegetation had been cleared within the site in 2017 prior to submission of the application. Approval of the application would set an undesirable precedent to encourage vegetation clearance prior to application and objections that pointed out that this application could not be genuine – 120sqmts per vehicle

MEMBERS HAD NO QUESTION ON THE APPLICATION

Now the real intention of the site has been revealed – a recycling depot.

There are no avenues for objectors to appeal or contest what are obviously blatant failure of members to conduct due diligence with regards to applications and to address objections.

Granted there are dozens of applications to plough through, but if volume and time is an issue then this should be discussed. TPB has 30+ members, only 5 are required for a quorum, so perhaps it is time to consider holding additional meetings for Rural applications.

Recycling operations should operate only within specifically allocated site complete with modern technology, adequate drainage and all the good environmental practices in place.

Sites zoned for residential are certainly not appropriate for what is the ultimate brownfield use as there are frequent reports of fires and other incidents at these operations. Member please do your duty and look into the particulars of each application.

Mary Mulvihill

From: [REDACTED]

To: "tpbpd" <tpbpd@pland.gov.hk>

Sent: Wednesday, August 1, 2018 2:25:03 AM

Subject: Re: A/YL-PH/768 DD 111 Pat Heung

Dear TPB Members,

Nothing can justify the dedication of 120+SQMTS to parking a single vehicle when we have people in the community living in 50SQFT units.

Urgent Return receipt Expand Group Restricted Prevent Copy

If you approve this ridiculous application you are indeed instrumental in perpetuation the current land problems.

Mary Mulvihill

From: [REDACTED]
To: "tpbpd" <tpbpd@pland.gov.hk>
Sent: Monday, February 19, 2018 2:29:21 AM
Subject: A/YL-PH/768 DD 111 Pat Heung

A/YL-PH/768

Lots 29 (Part), 33 (Part) and 35 (Part) in D.D. 111 and Adjoining Government Land, Pat Heung

Site area : About 5,432m² Includes Government Land of about 448m²

Zoning : "Res (Group D)"

Applied Use : 30 Vehicle Parking / 14 Light Goods

Dear TPB Members,

Kung Hei Fat Choi. Hopefully members will follow the lead of the Dog this year in sniffing out unacceptable land uses.

It is time to review this most inefficient form of land use, or abuse being a better term. Now that humans are forced to live in nano flats it is no longer tolerable that hundreds of hectares of land be devoted to parking vehicles. In this case 120sqmts per vehicle, 5 or 6 times the size of many residential units on the market. **The site is bigger than a village.** How about providing temporary container homes on the site?

The development, that would appear to be an ongoing unapproved brownfield use, is not in line with the planning intention of 'Res D' zone, to provide residential units and/or community services. There was no strong planning justification in the submission to merit a departure from such planning intention, even on a temporary basis.

Parking facilities should be accommodated in high rise buildings, underground or in stacked facilities, see attached. The villagers own 2,100 sqft homes. If they want to keep a car then they should convert a portion of the ground floor of their spacious residences into a car port. This is common practice all over the world and private residential compounds in NT include a car port or two on ground floor of each unit.

Approval of the application, even on a temporary basis, would set an undesirable precedent for similar uses. The cumulative impact of approving such applications would result in a general degradation of the environment of the area.

Mary Mulvihill